7 research outputs found

    The Isomorphism Problem for Finite Extensions of Free Groups Is In PSPACE

    Get PDF
    We present an algorithm for the following problem: given a context-free grammar for the word problem of a virtually free group G, compute a finite graph of groups G with finite vertex groups and fundamental group G. Our algorithm is non-deterministic and runs in doubly exponential time. It follows that the isomorphism problem of context-free groups can be solved in doubly exponential space. Moreover, if, instead of a grammar, a finite extension of a free group is given as input, the construction of the graph of groups is in NP and, consequently, the isomorphism problem in PSPACE

    Solutions of twisted word equations, EDT0L languages, and context-free groups

    Get PDF
    © Volker Diekert and Murray Elder; 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Grammars and Other Rewriting Systems, F.4.3 Formal Languages. We prove that the full solution set of a twisted word equation with regular constraints is an EDT0L language. It follows that the set of solutions to equations with rational constraints in a contextfree group (= finitely generated virtually free group) in reduced normal forms is EDT0L. We can also decide whether or not the solution set is finite, which was an open problem. Moreover, this can all be done in PSPACE. Our results generalize the work by Lohrey and Sénizergues (ICALP 2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to complexity and with respect to expressive power. Both papers show that satisfiability is decidable, but neither gave any concrete complexity bound. Our results concern all solutions, and give, in some sense, the "optimal" formal language characterization

    Solutions to twisted word equations and equations in virtually free groups

    Full text link
    It is well known that the problem solving equations in virtually free groups can be reduced to the problem of solving twisted word equations with regular constraints over free monoids with involution. In this paper, we prove that the set of all solutions of a twisted word equation is an EDT0L language whose specification can be computed in [Formula: see text]. Within the same complexity bound we can decide whether the solution set is empty, finite, or infinite. In the second part of the paper we apply the results for twisted equations to obtain in [Formula: see text] an EDT0L description of the solution set of equations with rational constraints for finitely generated virtually free groups in standard normal forms with respect to a natural set of generators. If the rational constraints are given by a homomorphism into a fixed (or “small enough”) finite monoid, then our algorithms can be implemented in [Formula: see text], that is, in quasi-quadratic nondeterministic space. Our results generalize the work by Lohrey and Sénizergues (ICALP 2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to both complexity and expressive power. Neither paper gave any concrete complexity bound and the results in these papers are stated for subsets of solutions only, whereas our results concern all solutions. </jats:p
    corecore