
Solutions of Twisted Word Equations, EDT0L
Languages, and Context-Free Groups∗†

Volker Diekert1 and Murray Elder2

1 Universität Stuttgart, Formal Methods in CS, Stuttgart, Germany
diekert@fmi.uni-stuttgart.de

2 University of Technology Sydney, Sydney, Australia
murray.elder@uts.edu.au

Abstract
We prove that the full solution set of a twisted word equation with regular constraints is an EDT0L
language. It follows that the set of solutions to equations with rational constraints in a context-
free group (= finitely generated virtually free group) in reduced normal forms is EDT0L. We can
also decide whether or not the solution set is finite, which was an open problem. Moreover, this
can all be done in PSPACE. Our results generalize the work by Lohrey and Sénizergues (ICALP
2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to complexity and with
respect to expressive power. Both papers show that satisfiability is decidable, but neither gave
any concrete complexity bound. Our results concern all solutions, and give, in some sense, the
“optimal” formal language characterization.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Gram-
mars and Other Rewriting Systems, F.4.3 Formal Languages

Keywords and phrases Twisted word equation, EDT0L, virtually free group, context-free group

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.96

1 Introduction

In a seminal paper [21] Makanin showed that the problem WordEquations is decidable. The
first complexity estimation of that problem was a tower of several exponential functions,
but this dropped down to PSPACE by Plandowski [24] using compression. The insight that
long solutions of word equations can be efficiently compressed is due to [25], which led to
the conjecture that WordEquations is NP-complete. In 2013 Jeż applied his recompression
technique: he presented a new and simple NSPACE(n logn) algorithm to solve word equations
[16]. (Very recently, he lowered the complexity to NSPACE(n) [17]). Actually his method
achieved more: it describes all solutions, copes with rational constraints (which is essential
in applications), and it extends to free groups [6]. Building on ideas in [6], Ciobanu and
the present authors showed that the full solution set of a given word equation with rational
constraints is EDT0L [3]. This was known before only for quadratic word equations by
[11]. EDT0L-languages are defined by a certain type of Lindenmayer system, see [27]. The
motivation for [3] was to prove that the full solution set in reduced words of equations in
free groups is an indexed language, an open problem at the time [12, 15]. But EDT0L is
better: it is strictly included in the class of indexed languages [9].

∗ A full version of the paper is available at https://arxiv.org/abs/1701.03297.
† Research supported by Australian Research Council (ARC) Project DP 160100486 and German Research

Foundation (DFG) Project DI 435/7-1

EA
T

C
S

© Volker Diekert and Murray Elder;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 96; pp. 96:1–96:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.96
https://arxiv.org/abs/1701.03297
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

96:2 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

The class of finitely generated (f.g. for short) virtually free groups arises in many different
ways. A fundamental theorem of Muller and Schupp (relying on [8]) says that a f.g. group is
virtually free if and only if it is context-free [23]. This means that, given any set of monoid
generators A, the set of words w ∈ A∗ which represent 1 ∈ V forms a context-free language.
Other characterizations include: (1) fundamental groups of finite graphs of finite groups
[18], (2) f.g. groups having a Cayley graph with finite treewidth [19], (3) groups having a
finite presentation by some geodesic string rewriting system [13], and (4) f.g. groups having
a Cayley graph with decidable monadic second-order theory [19], etc. See [7]. We show that
given a f.g. virtually free group V there is a PSPACE-algorithm which produces, for a given
equation with rational constraints, an EDT0L grammar which describes the full solution set
in reduced words over a natural set of generators. Several remarks are in order here. First,
virtually free groups (which are not free) have torsion, and this is serious obstacle to applying
the techniques used in [24, 16, 6, 3]. A driving motivation to study virtually free groups is the
connection to word hyperbolic groups [14]. Solving equations in torsion-free hyperbolic groups
reduces to solving equations in free groups [26], but solving equations in word hyperbolic
groups with torsion reduces to solving equations in virtually free groups which in turn reduces
to solving “twisted” word equations with rational constraints [4]. The question how to solve
“twisted” word equations was asked by Makanin ([22, Problem 10.26(b)]) and solved by
Lohrey and Sénizergues [20] and Dahmani and Guirardel [4]. Both papers show more general
results, and yield independent proofs that satisfiability for equations over a f.g. virtually
free group is decidable. The approach in [4] assumes a bound on the so-called “exponent of
periodicity”, thus it does not handle the full set of solutions. Lohrey and Sénizergues [20]
prove a general transfer result which applies to all solutions, but this does not produce any
“nice” description. Note that to have “some description” of all solutions is not enough to
decide finiteness, in general. Our EDT0L description pays attention that every solution is
represented exactly once. The other achievement here is a first known concrete complexity
bound: PSPACE, a surprisingly low complexity given the circumstances.

Therefore, the present paper extends [4, 20] in various aspects. As in [4] we are working
over twisted word equations with rational constraints, which is the natural approach due
to Bass-Serre theory [31], see [18] (and [29, 30] for effective constructions). Our main
new contribution is within combinatorics on words. Although we follow the general scheme
[16, 6, 3] to define a sound and complete algorithm to produce an NFA describing all solutions,
the technical details are quite far from previous methods.

Proofs omitted from the present paper can be found in [5].

1.1 Preliminaries
An alphabet is a finite set of letters; and Σ∗ denotes the free monoid of words over Σ. The
empty word is denoted by 1. The length w ∈ Σ∗ is |w|, and |w|a counts how often a letter
a appears in w. Let M be any monoid. Then u ∈ M is a factor of v ∈ M if we can write
v = xuy for some x, y. If x = 1 (resp. y = 1), then we say that u is a prefix (resp. suffix)
of v. For a prefix, we also write u ≤ v. An involution is a bijection x 7→ x such that x = x

for all x in the set. A monoid with involution additionally has to satisfy xy = y x. If G is
a group, then it is a monoid with involution by taking g = g−1 for all g ∈ G. Thus, we
identify g and g−1 in groups. In the following, every alphabet comes with an involution.
This is no restriction since the identity is always an involution for sets. A morphism between
sets with involution is a mapping respecting the involution. A morphism between monoids
with involution is a homomorphism ϕ : M → N such that ϕ(x) = ϕ(x). For ∆ ⊆ M ∩N
we say that it is a ∆-morphism if ϕ(x) = x for all x ∈ ∆. A bijective morphism from a
set to itself is called an automorphism and the set of automorphisms on a set (or monoid)

V. Diekert and M. Elder 96:3

M forms the group Aut(M). Let G be a group. It acts on a set (with involution) X by
a mapping x 7→ g · x if 1 · x = x, f · (g · x) = (fg) · x (and f · x = f · x). If G acts on a
monoid (with involution) M , then we additionally demand that every group element acts
as an automorphism: f · (xy) = (f · x)(f · y). Frequently, we write f(x) instead of f · x.
The specification of regular constraints is given here by assigning to each constant and
variable an element in a finite monoid (typically the finite monoid is a monoid of Boolean
matrices and arises as the transformation monoid of a finite automaton.) By making the
finite monoid larger, we can turn it into a monoid N with involution and where G acts on it.
This allows us to represent regular constraints using a morphism µ : (A ∪ (G×X))∗ → N

which respects the involution and the action of G. In the following we fix the finite monoid
N and we assume that all morphisms to N respect the involution and G action. We say
that M is an NG-i-monoid if M is a monoid with involution and a G action together with a
morphism µ : M → N . (In this abbreviation the i stands for “involution”.) If not explicitly
stated otherwise all monoids under consideration are NG-i-monoids (including N itself). A
morphism between NG-i-monoids M,M ′ with morphisms µ, µ′ is a morphism ϕ : M →M ′

such that ϕ(g · x) = g · (ϕ(x)) and µ′ϕ = µ. Henceforth, by default, a morphism means a
morphism between NG-i-monoids.

Regular languages in finitely generated free monoids can be defined via nondeterministic
finite automata (NFA for short) or via recognizability via homomorphisms to finite monoids,
to mention just two possible definitions. This notion extends to every monoid M : an NFA
is a directed finite graph A with initial and final states, where the transitions are labeled
with elements of the monoid M . A transition labeled by 1 ∈M is called an ε-transition. We
say that m ∈ M is accepted by the automaton A if there exists a path from some initial
to some final state such that multiplying the edge labels together yields m. This defines
the accepted language L(A) = {m ∈M | m is accepted by A}. According to [10] a subset
L ⊆ M is rational if and only if L is accepted by some NFA over M . An NFA is called
trim if every state is on some path from an initial to a final state. Ensuring the NFA that
we construct in our proof below is trim, allows us to decide emptiness or finiteness of the
solution set.

A subset L ⊆ A∗ × · · · ×A∗ is called EDT0L if there some (extended) alphabet C with
c1, . . . , ck ∈ C such that A ⊆ C and a rational set R ⊆ End(C∗) of endomorphisms over
C∗ such that L = {(h(c1), . . . , h(ck)) | h ∈ R} . The classical definition for EDT0L refers to
k = 1. Our definition uses a characterization of EDT0L languages due to Asveld [1, 28].

Let B and Y be two disjoint NG-i-alphabets. We call B the alphabet of constants and Y
the set of twisted variables. It is convenient to choose a minimal subset X ⊆ Y such that
every Y ∈ Y has the form Y = f · X for some X ∈ X and f ∈ G. Moreover, we assume
X 6= X for all variables. If G acts without fixed points on Y, then we identify Y = G×X
and the action becomes g · (f,X) = (gf,X). By M(B,X , θ, µ) we denote an NG-i-monoid
which is generated by B∪{f(X) | f ∈ G,X ∈ X} together with a finite set θ of homogeneous
defining relations, which means every (x, y) ∈ θ satisfies |x| = |y|. We always assume that
(x, y) ∈ θ implies µ(x) = µ(y), (x, y) ∈ θ, and (f(x), f(y)) ∈ θ for all f ∈ G, even if these
relations are not listed in the specification of θ. For complexity issues we require |x| ≤ 2 for
each (x, y) ∈ θ and |θ| ∈ O(|G| ‖S‖2) where ‖S‖ is specified in Theorem 1. The homogeneity
condition makes it possible to solve the word problem and all other computational issues for
the quotient M(B,X , θ, µ) = M(B,X , ∅, µ)/ {x = y | (x, y) ∈ θ} within our space bound.

2 The main results

Let A an alphabet of constants and G be a subgroup of Aut(A). Initially, the set of twisted
variables is G × V. For a word w ∈ A∗ and f ∈ G we use the notation f(w) = (f, w);

ICALP 2017

96:4 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

and we hence identify (A ∪ (G × V))∗ = ((G × (A∗ ∪ V))∗. We abbreviate (1, x) as x for
x ∈ A∗∪V . A system S of twisted word equations with rational constraints is given by a set of
pairs {(Ui, Vi) | 1 ≤ i ≤ s} where Ui, Vi ∈ (A ∪ (G× V))∗ are twisted words and a morphism
µ0 : (A ∪ (G × V))∗ → N . It is specified by its restriction to A ∪ V; and µ0 respects the
involution and the action of G.

As usual, a twisted equation (Ui, Vi) is also written as Ui = Vi. A solution of S is given
a morphism σ : V → A∗ which is (uniquely) extended to an A-morphism of NG-i-monoids
σ : (A ∪ (G × V))∗ → A∗ such that σ(Ui) = σ(Vi) for all i and µ0σ(X) = µ0(X) for all
variables. Hence, µ0σ = µ0. The full solution set Sol(S) for V =

{
X1, X1, . . . , Xk, Xk

}
is Sol(S) = {(σ(X1), . . . , σ(Xk)) ∈ A∗ × · · · ×A∗ | σ solves S} . We define the size ‖S‖ by
‖S‖ = |G|+ |A|+ |V|+ s+

∑
1≤i≤s |UiVi| .

Convention. For better readability we don’t measure N , but we add the general hypotheses
that N is given in such a way that the specification and all necessary computations over N
(multiplication, computing the involution and the G action) can be done in polynomial space
with respect to ‖S‖. This is no restriction, as we can add trivial equations to enlarge ‖S‖.

I Theorem 1. There is a PSPACE algorithm which takes as input a system of twisted word
equations with rational constraints S as above with input size ‖S‖. The output is an extended
alphabet C of size O(|G|2 ‖S‖2), letters cX ∈ C for each X ∈ V, and a trim NFA A accepting
a rational set of A-morphisms L(A) ⊆ End(C∗) such that

Sol(S) =
{

(h(cX1), . . . , h(cX|V|)) ∈ C
∗ × · · · × C∗

∣∣ h ∈ L(A)
}
. (1)

Intermediate equations, which label states of the NFA, have a length bound in O(|G| ‖S‖2).
Moreover, Sol(S) = ∅ if and only if L(A) = ∅, and |Sol(S)| < ∞ if and only if A doesn’t
contain any directed cycle.

The result above is far-reaching extension of Makanin’s classical result on pure word
equations. It combines combinatorics on words, automata theory, formal languages, and
group actions on alphabets. It doesn’t use band complexes, Makanin-Razborov diagrams
or results from algebraic geometry over groups [4, 2]. Here, a virtually free group V is
given by a group extension of a free group F (B) with a finite group G with the natural set
A = B ∪B−1 ∪G \ {1} as generators. We represent elements of V by reduced normal forms
in V̂ , where V̂ is the set of words in B∗G ⊆ A∗ without factors bb. Thus, we have a natural
notion of solution in reduced normal forms.

I Corollary 2. Let V be a f.g. virtually free group. There is an NSPACE(m2‖S‖2 log(‖S‖))
algorithm such that:
Input. A system S of s equations Ui = Vi over V with rational constraints and in variables
X1, . . . , Xk, where ‖S‖ = k +

∑
1≤i≤s |UiVi| and m denotes the number of states for the

NFA’s to encode constraints.
Output. An extended alphabet C of size O(‖S‖2), letters cX ∈ C for each variable, and a
trim NFA A accepting a rational set of A-morphisms over C∗ such that{

(h(cX1), . . . , h(cXk)) ∈ (C∗)k
∣∣ h ∈ L(A)

}
=
{

(σ(X1), . . . , σ(Xk)) ∈ V̂ k
∣∣∣ σ solves S

}
.

Moreover, there is no solution if and only if L(A) = ∅, and there are infinitely many solutions
if and only if A contains a directed cycle.

The reduction of Corollary 2 to Theorem 1 follows [4] very closely, see [5] for details:

V. Diekert and M. Elder 96:5

1. Embed V into a semi-direct product F (S) oG using Bass-Serre theory. This encodes V̂
as a rational set in S∗G and allows us to view a system of equations over V (with rational
constraints) as a system of twisted word equations with rational constraints over S.

2. Handling of rational constraints by transformations on NFA’s by standard methods.

3. Projection of EDT0L languages and respecting reduced normal forms using the fact that
the embedding satisfies B ⊆ S.

3 Outline of the proof of Theorem 1

The actual proof of Theorem 1 is rather technical, so this extended abstract outlines the
central ideas only. The focus is on those parts which are original and where the twisting
forces us to deviate from what has been done elsewhere. Jeż’s recompression technique is
based on two procedures: block-compression and pair-compression; solutions are obtained
by iteratively popping the first and last letters of variables (performing moves of the form
X 7→ aX), which increases the length of the equation, and compressing factors by replacing
pairs ab and powers aλ by a single (new) letter. In the “untwisted” setting, when we compress
a pair ab we replace every occurrence of the factor that is “visible” in the equation, but in
the twisted case, the pair ab appearing on one side of the equation needs to match with
f(ab) on the other side, which causes complications. The basic problem is that twisting
of a word (ab)λ by some f ∈ G may result in f(ab)λ = (ba)λ. The complications related
to this will become clear below. Therefore we introduce two new procedures. First we
define a new and more general δ-periodic-compression w.r.t. some δ ∈ Θ(|G| ‖S‖). In some
sense, δ-periodic-compression removes the problem caused by f(p)λ = qλ where p and q

are primitive words of length at most δ. (Powers of long primitive words are then handled
in later iterations.) Performing one δ-periodic-compression will result in a situation where
“equivalent” positions in the solution are far apart. This property is used for our version of
pair-compression without the possibility to “uncross” pairs as is the usual strategy. Instead
we do the following. First we pop out from every σ(X) rather long prefixes and suffixes. After
that we find room to compress enough pairs ab into fresh letters c. We cannot compress pairs
by their label (twisting prevents that), so we compress only pairs ab where the corresponding
two positions have no equivalent position which is located at some border of an occurrence
of a variable. This is our leads to a new definition of twisted-pair-compression. Of course, we
must define precisely when positions are equivalent and everything must take the action of G
and rational constraints into account. Last but not least, we must realize the procedure by
following arcs in an NFA where the labels are endomorphisms over some extended alphabet
C. This yields the EDT0L property of the full solution set, more importantly it transforms
questions about solvability of equations into structural properties of a finite graph.

One of the new features presented here is the ambient algebraic structure: in the case
of free monoids (resp. free groups) the intermediate monoids were partially commutative.
Twisting leads to more complicated defining relations. More concretely, when working with
an equation U = V over constants B and variables X with constraints defined by an NG-i-
monoid morphism µ : B ∪ X → N , we deal with an NG-i-monoid denoted by M(B,X , θ, µ).
The algebraic structure is a quotient monoid (B ∪ X)∗/ {xy = zx | (xy, zx) ∈ θ}, where
x ∈ B ∪ X and y, z ∈ (B ∪ X)∗ with |y| = |z|. The idea is that, reading a word in
w ∈ (B ∪ X)∗, the position of x is not fixed, it “floats” by conjugating y to z or vice versa,
without changing the length of W . This possibility of “floating” is essential in our approach.

ICALP 2017

96:6 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

Z

Z

Y

X

↑h ↑f
↓1 ↓g

Y

h−1(rs)

rs f(rs) f2(rs)

rs f(rs) f2(rs)

fj(r)

fj(r)

Figure 1 “Graphical” proof of Proposition 3.

3.1 States of the NFA
We start with a system of S of s equations Ui = Vi over some alphabet A of constants and
in variables Xj . We encode S as a single word using a marker symbol and we obtain the
initial equation as:

Winit = #X1# · · ·#Xk#U1# · · ·Us# #X1# · · ·#Xk#V1# · · ·Vs#. (2)

Note that σ(W) = σ(W) if and only if σ(Ui) = σ(Vi) for all i. We fix n = |Winit|. Note that
this implies n > |A|+ |V| and ‖S‖ ∈ |G|+ Θ(n). States of the transition system are denoted
as (W,B,X , θ, µ). We call a state an extended equation. Here, B are the current constants
and X are the current variables with A ⊆ B ⊆ C and X ⊆ Ω where C and Ω are fixed and
of size O(|G|2‖S‖2) and W ∈M(B,X , θ, µ) has length bounded by O(|G|‖S‖2). A solution
is a morphism (of NG-i-monoids) σ : M(B,X , θ, µ)→M(B, θ, µ) such that σ(W) = σ(W).
Here, M(B, θ, µ) is the submonoid of M(B,X , θ, µ). If θ is empty, then we speak about a
standard state. We begin at a standard state and the aim is to track for every solution a
path from the initial standard state (Winit, A,G× V, ∅, µ0) to some final state (W,B, ∅, ∅, µ)
without types and variables such that W = W .

We need to reuse names for constants, so we also need a procedure, called alphabet-
reduction, to get rid of invisible constants. These are letters b ∈ B where for no f ∈ G the
letter f(b) appears in W . Since a given solution σ might use them, we cannot simply throw
them out. This forces us to consider entire solutions which are pairs (α, σ) where σ is a
solution as above and α : M(B, θ, µ)→ A∗ is an A-morphism.

3.2 Twisted conjugacy
An important concept in our approach is twisted conjugacy. We say that words x, y ∈ A∗ are
twisted conjugate if there are f, g, h ∈ G and z ∈ A∗ such that zg(y) = h(x)f(z).

I Proposition 3. Let σ be a solution of Z(g, Y) = (h,X)(f, Z) such that |σ(X)| satisfies
1 ≤ |σ(X)| < |σ(Z)|. Then there are words r ∈ A+, s ∈ A∗ and e, j ∈ N with 0 ≤ j < |G|
such that σ(X) = h−1(rs) and σ(Z) = ((rs)f(rs) · · · f |G|−1(rs))e f0(rs) · · · f j−1(rs)f j(r).

3.3 δ-periodic-compression
Recall that w = a1 · · · an with a ∈ A has period p ∈ N if ai = ai+p for all 1 ≤ i ≤ n− p. Let
δ be some positive natural number. We say that a word w is δ-periodic if it has some period
less or equal to than δ. Let u be a prefix (resp. factor, resp. suffix) of some nonempty word
w. We say that u is a maximal δ-periodic prefix (resp. factor, resp. suffix) in w if we cannot
extend the occurrence of the factor u inside w by any letter to the right or left, to get a
δ-periodic word. A δ-periodic word w is called long if |w| ≥ 3δ, and very long if |w| ≥ 10δ.
Standard knowledge in combinatorics on words tells us:

V. Diekert and M. Elder 96:7

I Lemma 4. Let w be a δ-periodic word and w = per = qfs such that p, q are primitive,
|p| ≤ |q| ≤ δ, 1 6= r ≤ p, 1 6= s ≤ q, and |w| ≥ 2δ. Then p = q, e = f ≥ 1, and r = s.

Let us give a high-level description of our new procedure δ-periodic-compression. For
simplicity, we deal just with a single “triangulated” twisted equation (f,X)w(g, Y) = Z

where X, Y , Z are variables and w ∈ B∗ is word over the current constants B. We consider
a fixed solution σ and we ignore rational constraints by assuming N = {1}. Moreover, we
assume that for every letter b ∈ B there is some f ∈ G such that f(b) is a letter in w. Thus,
we start with an alphabet-reduction which removes invisible letters for a given solution.
Since σ is a solution, we can identify positions in w with positions in σ(Z). These identified
positions carry the same label and we also say that these positions are visible.

Let us consider all very long maximal δ-periodic factors qdq′, written as uperv, of σ(Z)
which have an occurrence with a visible position. Note that their total number is bounded
by |w|/δ. In the description we assume that |u| = |v| = 3δ, p is primitive of length at most δ
and 1 6= r ≤ p. Hence, uperv defines the triple (p, r, e) uniquely by Lemma 4.

The idea is that at the end we arrive at a state with a solution where all occurrences of
these factors upeλrv are replaced by u[r, s, λ]v where [r, s, λ] is the notation for a single fresh
letter and rs = p. Here λ is a formal symbol taken from some some index set Λ of size at
most |w|/δ. In order to avoid many case distinctions we consider the following (in some sense
most interesting) special case, only. We assume that σ(X) is a very long periodic word, σ(Y)
has a very long δ-periodic prefix, and σ(Z) has a δ-periodic prefix longer than |σ(X)|, but no
long δ-periodic suffix. Moreover, we assume that w has more than two very long δ-periodic
factors. Note that upeλrv = urqeλv if 1 6= r 6= p, p = rs, and q = sr. Let us resume: let
uλp

eλ
λ rλvλ be an occurrence of a very long δ-periodic factor in σ(Z) with at least one visible

position, |uλ| = |vλ| = 3δ, and pλ is primitive with |pλ| ≤ δ. Thus, λ ∈ Λ. There are three
cases which we distinguish by using the names λ, ν, ρ ∈ Λ. First, the occurrence of uλpeλλ rλvλ
is the δ-periodic prefix of σ(Z). As, by our simplification assumption, this prefix is longer
than σ(X), we deduce that we can write σ(f,X) = uλp

e
λp
′ with p′ ≤ pλ. Second, all “inner”

positions peνν rν of z = uνp
eν
ν rνvν are visible. In this case, since σ(X) (resp. σ(Y)) has a very

long prefix (resp. suffix), this corresponds to an occurrence of the factor z in w. Third we
can write σ(g, Y) = p′′pe

′

ρ rρvρy with e′ ≥ 6 and p′′ ≤ pρ for some maximal δ-periodic factor
uρp

eρ
ρ rρvρ of σ(Z) with ρ ∈ Λ. Moreover, we are in the case that the maximal δ-periodic

prefix of vρy is vρ and y 6= 1. As we assumed that w has more than two very long δ-periodic
factors, we can write w = w1p

ν
νrνw2.

The procedure introduces at this point (for each λ ∈ Λ) new “typed” variables: [X, pλ],
[Y, pλ], and [Z, pλ]. Actually, we need many more variables. Whenever we introduce variable
[V, p] we also introduce [V , p] and [V, qa] for p = aq; and we iterate this process. Finally,
the action of G is defined by identifying (f, [V, p]) with (1, [V, f(p)]) = [V, f(p)]. (Note that
(f, [V, p]) = (g, [V, p]) ⇐⇒ f(p) = g(p).)

The maximal number of these typed variables introduced by any equation with at most n
variables is at most 2n|G|δ. The factor 2n is there because we consider for every variable a
prefix and a suffix; and the factor δ comes in because |p| ≤ δ and with p = aq every conjugate
qa is also considered. Let X ′ be the enlarged set of untyped variables X ∈ X and fresh typed
variables [V, p]. Together with introducing these variables we switch to the algebraic structure
to read the equation in the monoid M(B,X ′, θ, µ′) where the defining relations are given by
θ = {(a[V, p], [V, q]a | ap = qa ∧ a ∈ B}. We define the type of [V, p] to be θ([V, p]) = p and
we observe that the defining relations imply p[V, p] = [V, p]p in M(B,X ′, θ, µ′). We need a
stronger notion of solution for typed variables in order to prevent that an unsolvable equation
is transformed in a solvable one. If θ([V, p]) = p, then we require σ([V, p]) ∈ p∗. Since σ is

ICALP 2017

96:8 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

a morphism, it also satisfies the defining relations. Hence, aσ([V, p]) = σ([V, q])a implies
|σ([V, p])| = |σ([V, p])|, too. The value of µ′([V, p]) is defined implicitly in the following loop.

The loop is over all variables in some order. Of course, whatever happens to a variable V
forces a simultaneous change in V , too. We pop from each variable the maximal δ-periodic
suffix of σ(X) if this suffix is longer than 3δ. Otherwise we do nothing. As we have no control
on the length of this suffix, we introduce a new typed variable. (Clearly, as we consider X
and X prefixes and suffixes are popped out, and each X may produce two typed variable.)
What we do in our concrete situation (where we have Λ = {λ, ν, ρ}) is the following:
1. We substitute (f,X) by τ(f,X) = uλ[X, pλ]p`λp′. (So, X vanishes.) Moreover, for

technical reasons, we require 5δ < |p`λp′| ≤ 6δ. We can define σ′([X, pλ]) ∈ p∗λ such that
σ(f,X) = uλσ

′([X, pλ])p`λp′.
2. We substitute (g, Y) by τ(g, Y) = p′′prρ[Y, pρ](g, Y) with the length condition 5δ <∣∣p′′prρ∣∣ ≤ 6δ. We can define σ′(g, Y) = vρy and σ′([Y, pρ]) ∈ p∗ρ such that σ(g, Y) =

p′′prρσ
′([Y, pρ])σ′(g, Y).

3. We substitute Z by τ(Z) = sq`
′ [Z, q]Z with the length condition 5δ < |sq`′ | ≤ 6δ. Here

q is the conjugate of pλ such that q = srλ, pλ = rλs. We can define σ′(Z) = vλz and
σ′([Z, q]) ∈ q∗ with sq`′σ′([Z, q])σ′(Z) = σ(Z).

This leads to a new solution σ′ to the twisted equation uλ[X, pλ]p`λp′wp′′pr
′

ρ [Y, pρ](g, Y) =
sq`
′ [Z, q]Z. We rename σ′ as σ. Note that uλ is a prefix of sq`′ . The positions of [X, pλ] and

[Z, q] are not adjusted, but our defining relations do not fix these positions. So, we use these
defining relations to represent the equation by the following equation between words

uλ[X, pλ]p`
′′

λ rλvλw
′uρp

r′

ρ rρ[Y, pρ](g, Y) = uλ[Z, q]p`
′′′

λ rλZ. (3)

The morphism σ solves this equation. Moreover, in our concrete situation we have vλw′uρ =
vuνp

ν
νrνu; and again, we content ourselves to consider the special case where uνpννrν is

the only occurrence of very long δ-periodic factor in vλw′uρ. Ignoring uλ on the left, the
remaining task is to compress the equation (where vλ ≤ vuν and uρ ≤ u vν)

[X, pλ]p`
′′

λ rλvuνp
ν
νrνvνup

r′

ρ rρ[Y, pρ](g, Y) = [Z, q]p`
′′′

λ rλZ (4)

with respect to the solution σ. The crucial idea comes next: we use a larger alphabet of
constants, we change the type of variables and we introduce more defining relations. For
each λ ∈ Λ we introduce a new constant, denoted as [pλ, rλ, λ], and for each variable [V, p] we
introduce a constant [p]. Thus, [pλ, rλ, λ] and [p] are fresh letters. We also let act G on these
letters in the obvious way, so we actually introduce more letters. Let h be the morphism
defined by h([pλ, rλ, λ]) = pλrλ and h([p]) = p, it means h compresses the words pλrλ and p
into single letters, then Equation (4) is the image under h of the equation

[X, pλ][pλ]`
′′−1 [pλ, rλ, λ] vuν [pν]ν−1 [pν , rν , ν] vνu[pρ]r

′−1 [pρ, rρ, ρ] [Y, pρ](g, Y) (5)

= [Z, q][pλ]`
′′′−1 [pλ, rλ, λ] Z (6)

To have a visual notation we color the letters of the form [pλ, rλ, λ] green . The procedure
continues by redefining the type of a twisted variable [V, p] as the letter [p]. We augment θ
by more defining relations:

{[V, p][p] = [p][V, p] | [V, p] twisted variable}∪
{

[pλ, rλ, λ] [srλ] = [pλ] [pλ, rλ, λ]
∣∣∣ pλ = rλs

}
.

It is not hard to see that we find a solution σ′ of the new equation over the larger alphabet
of constants such that hσ′ = σh which is needed to prove the EDT0L property. The

V. Diekert and M. Elder 96:9

remaining procedure is essentially the same as in [3]: using transformations either based on
substitutions [V, p] 7→ [V, p][p] and [V, p] 7→ 1 or homomorphisms based on [p] 7→ [p][p] and
[pλ, rλ, λ] 7→ [pλ, rλ, λ] [pλ] we can compress the above equation and simultaneously the
solution such that the equation becomes its final form. We finish δ-periodic compression with

[pλ, rλ, λ] vuν [pν , rν , ν] vνu [pρ, rρ, ρ] (g, Y) = [Z, q] [pλ, rλ, λ] Z. (7)

The typed variables are gone, the letters [p] are not visible anymore, moreover, the new
solution doesn’t use them. We are back in a free monoid, because none of the defining
relations is used anymore. Note that Equation (7) is shorter than the original equation.
Indeed, while the initial increase in the length of the equation is in O(nδ), each green letter
represents the inner part of a very long δ-periodic word of length at least 6δ.

I Proposition 5. Let Es = (Ws, Bs,Xs, ∅, µs) be the state where we started δ-periodic-
compression with |Ws| ≥ 8δn; and let Et = (Wt, Bt,Xt, ∅, µt) the standard state where we
finish δ-periodic-compression, and (W,B,X , θ, µ) any state which we have seen on the path
from Es to Et during the procedure. Then we have |Wt| ≤ |Ws|+20δn and |W | ≤ |Ws|+O(δn).
Moreover, let nnew =

∑
b∈Bt\Bs |Wt|b. If nnew ≥ 10n, then |Wt| < |Ws|.

I Remark. Note that nnew is the number of green letters we see in Wt. Let σ be the solution
after δ-periodic-compression, then for X ∈ Xt the length of a δ-periodic prefix (and suffix
resp.) is bounded by 3δ. Hence, there is no very long δ-periodic prefix or suffix in σ(X).

3.4 Twisted pair-compression
We place ourselves after a sequence of rounds of popping out letters for each variable, alphabet-
reduction, and δ-periodic compression. We are at a standard state E = (W,B,X , ∅, µ) where
∅ 6= X ⊆ V. Without restriction, we may assume that |W | ∈ Θ(|G|n2) and that the number
of visible green letters is at most 10n: our construction ensures that |W | ∈ O(|G|n2), and we
can always pop out letters to make the equation longer; and if the number of visible green
letters exceeds 10n then according to Proposition 5 the most recent δ-periodic-compression
had decreased the length of the equation, so we can perform another round.

Throughout, it is possible to write W = U1#u(f,X)w(g, Y)v#U2U ′2 # vZu#U ′1 with
|U ′i |# = |U ′i |#, i = 1, 2. Here u(f,X)w(g, Y)v = uZv is called a local equation. For
simplicity we may assume that u, v, w ∈ B∗ and that (f,X), (g, Y), Z = (1, Z) are twisted
variables. Moreover, we may assume that for each local equation its “dual” equation
v(g, Y)w(f,X)u = vZv is also part of the system encoded in W . Since W is long, we can
assume that |uwv| is long, too. Since there are at most O(n) green letters, there are long
intervals without green letters. The goal is to compress enough pairs ab ≤W of constants
into single letters without causing any conflict or overlap with other pairs or variables that
are connected via twisting. We compress pairs according to an equivalence relation between
positions. The idea is that whenever we modify a solution at position i, then we must modify
σ(W) at all equivalent positions j ≡ i.

The notion of equivalent positions is defined for a given solution σ, it has a reasonably
intuitive definition. We write W = UV with σ(U) = σ(V) and σ(U) = a1 · · · am with ai ∈ B.
We associate with U (resp. V) the interval [1,m] ⊆ N (resp. [m+ 1, 2m]) of positions and we
let i ∼ m+ i for 1 ≤ i ≤ m. We say that position i sits directly “above” m+ i, see Figure 2.

Each occurrence of a twisted variable (f,X) in UV corresponds to some interval of
length |σ(X)| in [1, 2m] and we identify the i-th positions in each of these intervals for
1 ≤ i ≤ |σ(X)|. Identified positions are represented by a unique position corresponding to

ICALP 2017

96:10 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

U1 U2

U ′1 U ′2

X

Z

Y

u

u

v

vw

↓f ↓g

Figure 2 W = UV viewed as U on top and V on the bottom and σ(U) = σ(V) in the middle.

X

Y

i

j(red) (red)

Figure 3 Red positions. We use ∼ to put i ≈ j into a “domino tower”.

the leftmost occurrence of a twisted variable (f,X) in U . This interval is denoted by I(X).
Thus, we identify various positions and we carry over the relation ∼: if i and j are identified
with i′ and j′ and if i′ ∼ j′, then we also let i ∼ j. By ≈ we denote the generated equivalence
relation of ∼. The relation ≈ can be visualized in so-called domino towers as in Figure 3.
Clearly, we may have i ≈ j for various i, j ∈ I(X). For example, an equation (f,X)a = bX

forces i ≈ j for all i, j ∈ I(X). There is also a natural notion of duality: I(X) and I(X)
are disjoint, but if we change σ(X) at the first position, we must change σ(X) at the last
position. Thus, for the i-th position in I(X) we let i be the (|σ(X)| − i+ 1)-st position in
I(X); and we write i↔ i. Finally, we let ≡⊆ [1, 2m]× [1, 2m] be the equivalence relation
generated by ≈ and ↔. Clearly, if i ≈ j ↔ j and the label at position i is a ∈ B, then a
labels j and a labels j.

Positions at the borders of some σ(X) inside σ(W) play a special role because we cannot
compress over borders. We color the first and last position in each I(X) red (unless it has
already the color green) to signal “danger”. We color red all positions equivalent to a red
position, too. Since the set of green positions is closed under equivalence (they are the fresh
letters [pλ, rλ, λ]), no conflict between red and green is introduced here. It follows that there
are at most n pairwise different equivalence classes of red positions.

We extend the notion of equivalence to intervals (without red positions). Let p ∈ N. We
directly link an interval [i, i + p] of positions in σ(X) (resp. w, σ(Y)) to [j, j + p] in σ(Z)
if there is an equation, for example like u(f,X)w(g, Y)v = uZv, such that σ(X)[i, i + p]
(resp. w[i, i + p], σ(Y)[i, i + p]) sits directly above the σ(Z)[j, j + p]; and we write [i, i +
p] ∼ [j, j + p] in this case. For each interval [i, i + p] of positions in σ(X) we also let
[i, i+ p]↔ [i+ p, i]. As above, we let ≈ and ≡ be the generated equivalence relations of ∼
resp. ∼ ∪↔. Since i ∼ j ⇐⇒ i ∼ j we can deduce

[i, i+ p] ≡ [j, j + p] ⇐⇒ [i, i+ p] ≈ [j, j + p] ∨ [i, i+ p] ≈ [j + p, j]. (8)

I Lemma 6. Let [i− 1, i, i+ 1, i+ 2] be an interval without any red position and where the
four positions are pairwise inequivalent. Consider [i, i + 1] ≡ [j, j + 1] ≡ [k, k + 1]. Then
either k = j and [j, j + 1] 6≈ [k − 1, k] or [j, j + 1] ∩ [k, k + 1] = ∅.

V. Diekert and M. Elder 96:11

X

Y

i

j

pp

p

(a) W : [i− p, i+ p] ∼ [j − p, j + p]

X

Y

i

j

(b) Wp : i ∼ j

Figure 4 Example illustrating the proof of Lemma 7.

Let p ∈ N and σ be a solution for W . For each X we do:
if |σ(X)| ≤ 2p, then replace X by σ(X) and remove X from the set of variables;
if |σ(X)| > 2p, then write σ(X) = uwv with |u| = |v| = p and replace X by uXv. Change
the interval I(X) = [l, r] to Ip(X) = [l + p, r − p]. (So, it is smaller.)

Denote the new solution for Wp defined by that procedure by σp.

I Lemma 7. Let i and j be positions in σp(Wp) = σ(W) which belong to variables in Wp.
This means i, j ∈

⋃
{Ip(X) | X ∈ Xp}. Then we have i ∼ j (resp. i↔ j) for Wp and σp if

and only if [i− p, i+ p] ∼ [j − p, j + p] (resp. [i− p, i+ p]↔ [j − p, j + p]) for W and σ.

We define and fix δ = |G| ε and ε = 30n. We start at a standard state E = (W,B,X , ∅, µ)
together with a solution σ. For simplicity, we assume that all local equations have the
form u(f,X)w(g, Y)v = uZv. Moreover, when we start pair-compression (directly after
δ-periodic-compression) there are some green letters and corresponding green visible positions.
1. For every X in some order do: either replace X by σ(X) (if |σ(X)| ≤ 10δ) or write

σ(X) = ux with |u| = 10δ; replace X by τ(X) = uX; rename the new equation and new
solution as (E, σ). Define the intervals I(X) as done above color red positions in σ(W)
which are equivalent to a first or last position in I(X) unless they are green.

2. while there is an interval [i− 1, i, i+ 1, i+ 2] such that (1) all four positions are pairwise
inequivalent, (2) no position is colored, and (3) all positions are visible
do
a. Let ab the label of the middle interval [i, i + 1]. Choose fresh letter c and define
a morphism h by h(c) = ab. (Hence, f(c) = c ⇐⇒ f(ab) = ab, too.) Whenever
[i, i + 1] ≈ [j, j + 1], then the label of [j, j + 1] is f(ab) for some f ∈ G. Replace each
of the intervals [j, j + 1] and [j − 1, j] by a single new position and label this position
with f(c) and f(c) resp. There is no conflict in this relabeling by Lemma 6. Since there
is no red position, there is no “crossing” of the intervals [j, j + 1] or [j − 1, j]. So, this
gives a new but shorter equation W ′. We have h(W ′) = W and new solution σ′ such that
hσ′(W ′) = σ(W) There is a new numbering for the positions, but the colored positions
can still be identified.
b. Define B′ = B ∪ {f(c), f(c) | f ∈ G} and E′ = (W ′, B′,X , ∅, µ′).
c. Rename (E′, σ′) as (E, σ) and transfer the induced coloring.
end while

If we started the procedure with W and the while loop with W`, then the loop terminates
with an equation W ′ and we introduced at most |G| (|W`| − |W ′|) new letters. It is also
clear that |W ′| ≤ |W | + 20δn since any increase of length is due to the first steps, where
we replaced each variable X either by σ(X) or by uXv. The worst case for |W ′| is that no
compression took place. However, we assume that there at most 10n green letters. Hence,
we can use the following fact.

ICALP 2017

96:12 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

I Proposition 8. Let (E, σ) with equation W just after a δ-periodic-compression where
at most 10n green letters are visible. If |W | ∈ 20`δn + O(δn), then the pair-compression
procedure outputs an equation W ′ such that |W ′| ≤ |W |+ 20δn and |W ′| ≤ 59|W |

60 +O(δn).

Let us highlight that Proposition 8 is the key step in the proof of Theorem 1 and it is
here where twisted conjugacy comes into play. Following any given solution at the initial
state, it bounds the lengths of all intermediate equations in O(δn) = O(|G|n2). Since at a
standard state we can perform an alphabet reduction we can bound the size of the extended
alphabet C in O(|G|2n2). Moreover, the number of untyped variables is never increasing.
Typed variables disappear and reappear, but their number never grows beyond the size of C.

After δ-periodic compression, no σ(X) started or ended in a very long δ-periodic word. In
the procedure above either X vanished or we replaced X by uXv where |u| = |v| = 10δ. We
carefully colored some position red after that replacement. Consider the new equation with
the new solution just after that step; and rename the corresponding pair as (W,σ). Consider
positions i < k in σ(W) such that no position k with i ≤ k ≤ j is green. With the help of
Proposition 3, Lemma 7 and “domino towers” as depicted in Figure 4, one can show the
following fact: if i ≡ k ≡ j for some k, then |j− i| > ε. The fact is not obvious but extremely
useful: knowing that equivalent positions are far apart allows one to find enough intervals of
length four, such that pair-compression reduces their length to at most three by Lemma 6.

Putting all this together, the overall compression method has the following high-level
description. Start at the initial state Einit with a given initial entire solution (idA∗ , σinit).

begin compression
Rename Einit as E = (W,B,X , ∅, µ); rename (idA∗ , σinit) as (α, σ).
Repeat the following loop until X = ∅.
begin loop
1. Pop out letters from variables until |W | ≥ 100δn.
2. Define κ > 0 by κδn = |W |. Call δ-periodic-compression (starting with an alphabet-
reduction), and let W ′ denote the equation at the end of the procedure.
3. If |W ′| < κδn, then do nothing, else call pair-compression.
end loop
end compression

Proposition 8 implies that κ ∈ Q is bounded above by some effective constant in O(1).
Defining a weight in N4 (ordered lexicographically) by

‖E,α, σ‖ =

 ∑
X has no type

|ασ(X)| ,
∑

X is typed
|ασ(X)| , |W | , |B|

finally shows that the compression method terminates for every given solution because every
step in the procedures is weight-reducing. This means our algorithm finds all solutions. This
finishes the outline of the proof of Theorem 1.

Acknowledgements. We thank the anonymous referees for very helpful feedback.

References
1 Peter R. J. Asveld. Controlled iteration grammars and full hyper-AFL’s. Information and

Control, 34(3):248–269, 1977. doi:10.1016/S0019-9958(77)90308-4.

http://dx.doi.org/10.1016/S0019-9958(77)90308-4

V. Diekert and M. Elder 96:13

2 Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov. Algebraic geometry
over groups. In Algorithmic problems in groups and semigroups (Lincoln, NE, 1998),
Trends Math., pages 35–50. Birkhäuser Boston, Boston, MA, 2000. doi:10.1007/
978-1-4612-1388-8_3.

3 Laura Ciobanu, Volker Diekert, and Murray Elder. Solution sets for equations over free
groups are EDT0L languages. Internat. J. Algebra Comput., 26(5):843–886, 2016. Confer-
ence version in ICALP 2015, LNCS 9135. doi:10.1142/S0218196716500363.

4 François Dahmani and Vincent Guirardel. Foliations for solving equations in groups: free,
virtually free, and hyperbolic groups. J. Topol., 3(2):343–404, 2010. doi:10.1112/jtopol/
jtq010.

5 Volker Diekert and Murray Elder. Solutions of twisted word equations, EDT0L languages,
and context-free groups. ArXiv e-prints, January 2017. URL: https://arxiv.org/abs/
1701.03297, arXiv:1701.03297.

6 Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equations
in free groups and monoids with involution. Inform. and Comput., 251:263–286, 2016.
Conference version in Proc. CSR 2014, LNCS 8476 (2014). doi:10.1016/j.ic.2016.09.
009.

7 Volker Diekert and Armin Weiß. Context-free groups and Bass-Serre theory. ArXiv e-prints,
July 2013. arXiv:1307.8297.

8 Martin J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathem-
aticae, 81(3):449–457, 1985. doi:10.1007/BF01388581.

9 Andrzej Ehrenfeucht and Grzegorz Rozenberg. On some context free languages that are
not deterministic ET0L languages. RAIRO Theor. Inform. Appl., 11:273–291, 1977.

10 Samuel Eilenberg. Automata, languages, and machines. Vol. A. Academic Press [A sub-
sidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure and Applied
Mathematics, Vol. 58.

11 Julien Ferté, Nathalie Marin, and Géraud Sénizergues. Word-mappings of level 2. Theory
Comput. Syst., 54:111–148, 2014. doi:10.1007/s00224-013-9489-5.

12 Robert H. Gilman. Personal communication, 2012.
13 Robert H. Gilman, Susan Hermiller, Derek F. Holt, and Sarah Rees. A characterisa-

tion of virtually free groups. Arch. Math. (Basel), 89(4):289–295, 2007. doi:10.1007/
s00013-007-2206-3.

14 Mikhael Gromov. Hyperbolic groups. In Essays in group theory, volume 8 ofMath. Sci. Res.
Inst. Publ., pages 75–263. Springer, New York, 1987. doi:10.1007/978-1-4613-9586-7_3.

15 Sanjay Jain, Alexei Miasnikov, and Frank Stephan. The complexity of verbal languages
over groups. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 405–414. IEEE Computer Soc., Los Alamitos, CA, 2012. doi:
10.1109/LICS.2012.50.

16 Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):Art. 4, 51, 2016. Conference version in Proc. STACS 2013. doi:10.1145/2743014.

17 Artur Jeż. Word Equations in Nondeterministic Linear Space, 2017. doi:10.4230/LIPIcs.
ICALP.2017.95.

18 Abe Karrass, Alfred Pietrowski, and Donald Solitar. Finite and infinite cyclic extensions
of free groups. J. Austral. Math. Soc., 16:458–466, 1973. Collection of articles dedicated to
the memory of Hanna Neumann, IV. doi:10.1017/S1446788700015445.

19 Dietrich Kuske and Markus Lohrey. Logical aspects of Cayley-graphs: the group case. Ann.
Pure Appl. Logic, 131(1-3):263–286, 2005. doi:10.1016/j.apal.2004.06.002.

20 Markus Lohrey and Géraud Sénizergues. Theories of HNN-extensions and amalgamated
products. In Automata, languages and programming. Part II, volume 4052 of Lecture Notes
in Comput. Sci., pages 504–515. Springer, Berlin, 2006. doi:10.1007/11787006_43.

ICALP 2017

http://dx.doi.org/10.1007/978-1-4612-1388-8_3
http://dx.doi.org/10.1007/978-1-4612-1388-8_3
http://dx.doi.org/10.1142/S0218196716500363
http://dx.doi.org/10.1112/jtopol/jtq010
http://dx.doi.org/10.1112/jtopol/jtq010
https://arxiv.org/abs/1701.03297
https://arxiv.org/abs/1701.03297
http://arxiv.org/abs/1701.03297
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://arxiv.org/abs/1307.8297
http://dx.doi.org/10.1007/BF01388581
http://dx.doi.org/10.1007/s00224-013-9489-5
http://dx.doi.org/10.1007/s00013-007-2206-3
http://dx.doi.org/10.1007/s00013-007-2206-3
http://dx.doi.org/10.1007/978-1-4613-9586-7_3
http://dx.doi.org/10.1109/LICS.2012.50
http://dx.doi.org/10.1109/LICS.2012.50
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://dx.doi.org/10.1017/S1446788700015445
http://dx.doi.org/10.1016/j.apal.2004.06.002
http://dx.doi.org/10.1007/11787006_43

96:14 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

21 Gennadií S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147–236, 1977. English transl. in Math. USSR Sbornik 32 (1977).

22 Victor Mazurov and Evgeny Khukhro. Unsolved Problems in Group Theory. The Kourovka
Notebook. No. 18 (English version). ArXiv e-prints, January 2014. arXiv:1401.0300.

23 David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages.
J. Comput. System Sci., 26(3):295–310, 1983. doi:10.1016/0022-0000(83)90003-X.

24 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM, 51:483–496, 2004. Conference version in FOCS’99. doi:doi:10.1145/990308.
990312.

25 Wojciech Plandowski andWojciech Rytter. Application of Lempel-Ziv encodings to the solu-
tion of word equations. In K. G. Larsen et al., editors, Proc. 25th International Colloquium
Automata, Languages and Programming (ICALP’98), Aalborg (Denmark), 1998, volume
1443 of Lecture Notes in Computer Science, pages 731–742, Heidelberg, 1998. Springer-
Verlag.

26 Eliyahu Rips and Zlil Sela. Canonical representatives and equations in hyperbolic groups.
Invent. Math., 120(3):489–512, 1995. doi:10.1007/BF01241140.

27 Grzegorz Rozenberg and Arto Salomaa. The Book of L. Springer, 1986.
28 Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal languages.

Vol. 1. Springer-Verlag, Berlin, 1997. Word, language, grammar. doi:10.1007/
978-3-642-59126-6.

29 Géraud Sénizergues. An effective version of Stallings’ theorem in the case of context-
free groups. In Automata, languages and programming (Lund, 1993), volume 700 of
Lecture Notes in Comput. Sci., pages 478–495. Springer, Berlin, 1993. doi:10.1007/
3-540-56939-1_96.

30 Géraud Sénizergues. On the finite subgroups of a context-free group. In Geometric and
computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ,
1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 201–212.
Amer. Math. Soc., Providence, RI, 1996.

31 Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the
1980 English translation.

http://arxiv.org/abs/1401.0300
http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/doi:10.1145/990308.990312
http://dx.doi.org/doi:10.1145/990308.990312
http://dx.doi.org/10.1007/BF01241140
http://dx.doi.org/10.1007/978-3-642-59126-6
http://dx.doi.org/10.1007/978-3-642-59126-6
http://dx.doi.org/10.1007/3-540-56939-1_96
http://dx.doi.org/10.1007/3-540-56939-1_96

	Introduction
	Preliminaries

	The main results
	Outline of the proof of Theorem 1
	States of the NFA
	Twisted conjugacy
	delta-periodic-compression
	Twisted pair-compression

