93 research outputs found

    Formulation of a new gradient descent MARG orientation algorithm: case study on robot teleoperation

    Get PDF
    We introduce a novel magnetic angular rate gravity (MARG) sensor fusion algorithm for inertial measurement. The new algorithm improves the popular gradient descent (ʻMadgwick’) algorithm increasing accuracy and robustness while preserving computa- tional efficiency. Analytic and experimental results demonstrate faster convergence for multiple variations of the algorithm through changing magnetic inclination. Furthermore, decoupling of magnetic field variance from roll and pitch estimation is pro- ven for enhanced robustness. The algorithm is validated in a human-machine interface (HMI) case study. The case study involves hardware implementation for wearable robot teleoperation in both Virtual Reality (VR) and in real-time on a 14 degree-of-freedom (DoF) humanoid robot. The experiment fuses inertial (movement) and mechanomyography (MMG) muscle sensing to control robot arm movement and grasp simultaneously, demon- strating algorithm efficacy and capacity to interface with other physiological sensors. To our knowledge, this is the first such formulation and the first fusion of inertial measure- ment and MMG in HMI. We believe the new algorithm holds the potential to impact a very wide range of inertial measurement applications where full orientation necessary. Physiological sensor synthesis and hardware interface further provides a foundation for robotic teleoperation systems with necessary robustness for use in the field

    A Kalman Filter for Nonlinear Attitude Estimation Using Time Variable Matrices and Quaternions

    Get PDF
    [Abstract] The nonlinear problem of sensing the attitude of a solid body is solved by a novel implementation of the Kalman Filter. This implementation combines the use of quaternions to represent attitudes, time-varying matrices to model the dynamic behavior of the process and a particular state vector. This vector was explicitly created from measurable physical quantities, which can be estimated from the filter input and output. The specifically designed arrangement of these three elements and the way they are combined allow the proposed attitude estimator to be formulated following a classical Kalman Filter approach. The result is a novel estimator that preserves the simplicity of the original Kalman formulation and avoids the explicit calculation of Jacobian matrices in each iteration or the evaluation of augmented state vectors.Ministerio de Ciencia, Innovación y Universidades; RTI2018-101114-B-I00Xunta de Galicia; ED431C 2017/1

    Design and implementation of resilient attitude estimation algorithms for aerospace applications

    Get PDF
    Satellite attitude estimation is a critical component of satellite attitude determination and control systems, relying on highly accurate sensors such as IMUs, star trackers, and sun sensors. However, the complex space environment can cause sensor performance degradation or even failure. To address this issue, FDIR systems are necessary. This thesis presents a novel approach to satellite attitude estimation that utilizes an InertialNavigation System (INS) to achieve high accuracy with the low computational load. The algorithm is based on a two-layer Kalman filter, which incorporates the quaternion estimator(QUEST) algorithm, FQA, Linear interpolation (LERP)algorithms, and KF. Moreover, the thesis proposes an FDIR system for the INS that can detect and isolate faults and recover the system safely. This system includes two-layer fault detection with isolation and two-layered recovery, which utilizes an Adaptive Unscented Kalman Filter (AUKF), QUEST algorithm, residual generators, Radial Basis Function (RBF) neural networks, and an adaptive complementary filter (ACF). These two fault detection layers aim to isolate and identify faults while decreasing the rate of false alarms. An FPGA-based FDIR system is also designed and implemented to reduce latency while maintaining normal resource consumption in this thesis. Finally, a Fault Tolerance Federated Kalman Filter (FTFKF) is proposed to fuse the output from INS and the CNS to achieve high precision and robust attitude estimation.The findings of this study provide a solid foundation for the development of FDIR systems for various applications such as robotics, autonomous vehicles, and unmanned aerial vehicles, particularly for satellite attitude estimation. The proposed INS-based approach with the FDIR system has demonstrated high accuracy, fault tolerance, and low computational load, making it a promising solution for satellite attitude estimation in harsh space environment

    Elasticity mapping for breast cancer diagnosis using tactile imaging and auxiliary sensor fusion

    Get PDF
    Tactile Imaging (TI) is a technology utilising capacitive pressure sensors to image elasticity distributions within soft tissues such as the breast for cancer screening. TI aims to solve critical problems in the cancer screening pathway, particularly: low sensitivity of manual palpation, patient discomfort during X-ray mammography, and the poor quality of breast cancer referral forms between primary and secondary care facilities. TI is effective in identifying ‘non-palpable’, early-stage tumours, with basic differential ability that reduced unnecessary biopsies by 21% in repeated clinical studies. TI has its limitations, particularly: the measured hardness of a lesion is relative to the background hardness, and lesion location estimates are subjective and prone to operator error. TI can achieve more than simple visualisation of lesions and can act as an accurate differentiator and material analysis tool with further metric development and acknowledgement of error sensitivities when transferring from phantom to clinical trials. This thesis explores and develops two methods, specifically inertial measurement and IR vein imaging, for determining the breast background elasticity, and registering tactile maps for lesion localisation, based on fusion of tactile and auxiliary sensors. These sensors enhance the capabilities of TI, with background tissue elasticity determined with MAE < 4% over tissues in the range 9 kPa – 90 kPa and probe trajectory across the breast measured with an error ratio < 0.3%, independent of applied load, validated on silicone phantoms. A basic TI error model is also proposed, maintaining tactile sensor stability and accuracy with 1% settling times < 1.5s over a range of realistic operating conditions. These developments are designed to be easily implemented into commercial systems, through appropriate design, to maximise impact, providing a stable platform for accurate tissue measurements. This will allow clinical TI to further reduce benign referral rates in a cost-effective manner, by elasticity differentiation and lesion classification in future works.Tactile Imaging (TI) is a technology utilising capacitive pressure sensors to image elasticity distributions within soft tissues such as the breast for cancer screening. TI aims to solve critical problems in the cancer screening pathway, particularly: low sensitivity of manual palpation, patient discomfort during X-ray mammography, and the poor quality of breast cancer referral forms between primary and secondary care facilities. TI is effective in identifying ‘non-palpable’, early-stage tumours, with basic differential ability that reduced unnecessary biopsies by 21% in repeated clinical studies. TI has its limitations, particularly: the measured hardness of a lesion is relative to the background hardness, and lesion location estimates are subjective and prone to operator error. TI can achieve more than simple visualisation of lesions and can act as an accurate differentiator and material analysis tool with further metric development and acknowledgement of error sensitivities when transferring from phantom to clinical trials. This thesis explores and develops two methods, specifically inertial measurement and IR vein imaging, for determining the breast background elasticity, and registering tactile maps for lesion localisation, based on fusion of tactile and auxiliary sensors. These sensors enhance the capabilities of TI, with background tissue elasticity determined with MAE < 4% over tissues in the range 9 kPa – 90 kPa and probe trajectory across the breast measured with an error ratio < 0.3%, independent of applied load, validated on silicone phantoms. A basic TI error model is also proposed, maintaining tactile sensor stability and accuracy with 1% settling times < 1.5s over a range of realistic operating conditions. These developments are designed to be easily implemented into commercial systems, through appropriate design, to maximise impact, providing a stable platform for accurate tissue measurements. This will allow clinical TI to further reduce benign referral rates in a cost-effective manner, by elasticity differentiation and lesion classification in future works

    A study on virtual reality and developing the experience in a gaming simulation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Masters by ResearchVirtual Reality (VR) is an experience where a person is provided with the freedom of viewing and moving in a virtual world [1]. The experience is not constrained to a limited control. Here, it was triggered interactively according to the user’s physical movement [1] [2]. So the user feels as if they are seeing the real world; also, 3D technologies allow the viewer to experience the volume of the object and its prospection in the virtual world [1]. The human brain generates the depth when each eye receives the images in its point of view. For learning for and developing the project using the university’s facilities, some of the core parts of the research have been accomplished, such as designing the VR motion controller and VR HMD (Head Mount Display), using an open source microcontroller. The VR HMD with the VR controller gives an immersive feel and a complete VR system [2]. The motive was to demonstrate a working model to create a VR experience on a mobile platform. Particularly, the VR system uses a micro electro-mechanical system to track motion without a tracking camera. The VR experience has also been developed in a gaming simulation. To produce this, Maya, Unity, Motion Analysis System, MotionBuilder, Arduino and programming have been used. The lessons and codes taken or improvised from [33] [44] [25] and [45] have been studied and implemented

    A Deep Learning approach to prevent problematic movements of industrial workers based on inertial sensors

    Get PDF
    Nowadays, manufacturing industries still face difficulties applying traditional Work-related MusculoSkeletal Disorders (WMSDs) risk assessment methods due to the high effort required by a continuous data collection when using observational methods. An interesting solution is to adopt Inertial Measurement Units (IMUs) to automate the data collection, thus supporting occupational health professionals. In this paper, we propose a deep learning approach to predict human motion based on IMU data with the goal of preventing industrial worker problematic movements that can arise during repetitive actions. The proposed system includes an initial Madgwick filter to merge the raw inertial tri-axis sensor data into a single angle orientation time series. Then, a Machine Learning (ML) algorithm is trained with the obtained time series, allowing to build a forecasting model. The effectiveness of the developed system was validated by using an open-source dataset composed of different motions for the upper body collected in a laboratory environment, aiming to monitor the abduction/adduction angle of the arm. Firstly, distinct ML algorithms were compared for a single angle orientation time series prediction, including: three Long Short-Term Memory (LSTM) methods - a one layer, a stacked layer and a Sequence to Sequence (Seq2Seq) model; and three non deep learning methods - a Multiple Linear Regression, a Random Forest and a Support Vector Machine. The best results were provided by the Seq2Seq LSTM model, which was further evaluated for WMSD prevention by considering 11 human subject datasets and two evaluation procedures (single person and multiple person training and testing). Overall, interesting results were achieved, particularly for multiple person evaluation, where the proposed Seq2Seq LSTM has shown an excellent capability to anticipate problematic movements.This article is a result of the project STVgoDigital - Digitalization of the T&C sector (POCI-01-0247-FEDER-046086), supported by COMPETE 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional De velopment Fund (ERDF)

    Putting artificial intelligence into wearable human-machine interfaces – towards a generic, self-improving controller

    Get PDF
    The standard approach to creating a machine learning based controller is to provide users with a number of gestures that they need to make; record multiple instances of each gesture using specific sensors; extract the relevant sensor data and pass it through a supervised learning algorithm until the algorithm can successfully identify the gestures; map each gesture to a control signal that performs a desired outcome. This approach is both inflexible and time consuming. The primary contribution of this research was to investigate a new approach to putting artificial intelligence into wearable human-machine interfaces by creating a Generic, Self-Improving Controller. It was shown to learn two user-defined static gestures with an accuracy of 100% in less than 10 samples per gesture; three in less than 20 samples per gesture; and four in less than 35 samples per gesture. Pre-defined dynamic gestures were more difficult to learn. It learnt two with an accuracy of 90% in less than 6,000 samples per gesture; and four with an accuracy of 70% after 50,000 samples per gesture. The research has resulted in a number of additional contributions: • The creation of a source-independent hardware data capture, processing, fusion and storage tool for standardising the capture and storage of historical copies of data captured from multiple different sensors. • An improved Attitude and Heading Reference System (AHRS) algorithm for calculating orientation quaternions that is five orders of magnitude more precise. • The reformulation of the regularised TD learning algorithm; the reformulation of the TD learning algorithm applied the artificial neural network back-propagation algorithm; and the combination of the reformulations into a new, regularised TD learning algorithm applied to the artificial neural network back-propagation algorithm. • The creation of a Generic, Self-Improving Predictor that can use different learning algorithms and a Flexible Artificial Neural Network.Open Acces

    Development of a Sensing System for Underground Optic Fiber Cable Conduit Mapping

    Get PDF
    The motivation of this research is to obtain an accurate three-dimensional (3D) layout of an underground conduit, which may be beneficial to optic fiber cable installers and engineers. A newly designed algorithm for 3D position tracking with the help of an inertial sensor and an encoder has been developed. Two types of representations (Euler angle and Quaternion) for orientation and rotation are also introduced, followed by several data pre-processing procedures. A sensing fusion method is utilized to overcome the accumulated errors introduced by the sensor drifting. Considering the application of 3D underground duct mapping in this research, a sensing system using the newly designed algorithm was designed and analyzed. Additional information, such as the orientation and position of the starting and ending points, are integrated into the algorithm to correct the sensing drifting and refine the position estimation. To verify and demonstrate the design of the algorithm and sensing system for 3D underground duct mapping, an experimental test-bed based on the sensing system design, which consists of an IMU, a duct rodder and a fiber blower, was developed. Experiments on three different layouts of the conduit were conducted and analyzed to demonstrate the feasibility and efficiency of the newly developed algorithm and the sensing system design

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Development of MEMS - based IMU for position estimation: comparison of sensor fusion solutions

    Get PDF
    With the surge of inexpensive, widely accessible, and precise Micro-Electro Mechanical Systems (MEMS) in recent years, inertial systems tracking move ment have become ubiquitous nowadays. Contrary to Global Positioning Sys tem (GPS)-based positioning, Inertial Navigation System (INS) are intrinsically unaffected by signal jamming, blockage susceptibilities, and spoofing. Measure ments from inertial sensors are also acquired at elevated sampling rates and may be numerically integrated to estimate position and orientation knowledge. These measurements are precise on a small-time scale but gradually accumulate errors over extended periods. Combining multiple inertial sensors in a method known as sensor fusion makes it possible to produce a more consistent and dependable un derstanding of the system, decreasing accumulative errors. Several sensor fusion algorithms occur in literature aimed at estimating the Attitude and Heading Reference System (AHRS) of a rigid body with respect to a reference frame. This work describes the development and implementation of a low-cost, multi purpose INS for position and orientation estimation. Additionally, it presents an experimental comparison of a series of sensor fusion solutions and benchmarking their performance on estimating the position of a moving object. Results show a correlation between what sensors are trusted by the algorithm and how well it performed at estimating position. Mahony, SAAM and Tilt algorithms had best general position estimate performance.Com o recente surgimento de sistemas micro-eletromecânico amplamente acessíveis e precisos nos últimos anos, o rastreio de movimento através de sistemas de in erciais tornou-se omnipresente nos dias de hoje. Contrariamente à localização baseada no Sistema de Posicionamento Global (GPS), os Sistemas de Naveg ação Inercial (SNI) não são afetados intrinsecamente pela interferência de sinal, suscetibilidades de bloqueio e falsificação. As medições dos sensores inerciais também são adquiridas a elevadas taxas de amostragem e podem ser integradas numericamente para estimar os conhecimentos de posição e orientação. Estas medições são precisas numa escala de pequena dimensão, mas acumulam grad ualmente erros durante longos períodos. Combinar múltiplos sensores inerci ais num método conhecido como fusão de sensores permite produzir uma mais consistente e confiável compreensão do sistema, diminuindo erros acumulativos. Vários algoritmos de fusão de sensores ocorrem na literatura com o objetivo de estimar os Sistemas de Referência de Atitude e Rumo (SRAR) de um corpo rígido no que diz respeito a uma estrutura de referência. Este trabalho descreve o desenvolvimento e implementação de um sistema multiusos de baixo custo para estimativa de posição e orientação. Além disso, apresenta uma comparação experimental de uma série de soluções de fusão de sensores e compara o seu de sempenho na estimativa da posição de um objeto em movimento. Os resultados mostram uma correlação entre os sensores que são confiados pelo algoritmo e o quão bem ele desempenhou na posição estimada. Os algoritmos Mahony, SAAM e Tilt tiveram o melhor desempenho da estimativa da posição geral
    corecore