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Guimarães, Portugal

luis.matos@dsi.uminho.pt

Duarte Folgado
Fraunhofer Portugal Research Association

Fraunhofer
Caparica, Portugal

duarte.folgado@fraunhofer.pt

Maria Lua Nunes
Fraunhofer Portugal Research Association

Fraunhofer
Caparica, Portugal

maria.nunes@aicos.fraunhofer.pt

João Rui Pereira
Chief Financial Officer

PAFIL - Clothing Industry
Vila Nova de Famalicão, Portugal

jrui.pereira@pafil.pt
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Abstract—Nowadays, manufacturing industries still face diffi-
culties applying traditional Work-related MusculoSkeletal Dis-
orders (WMSDs) risk assessment methods due to the high
effort required by a continuous data collection when using
observational methods. An interesting solution is to adopt Inertial
Measurement Units (IMUs) to automate the data collection, thus
supporting occupational health professionals. In this paper, we
propose a deep learning approach to predict human motion
based on IMU data with the goal of preventing industrial
worker problematic movements that can arise during repetitive
actions. The proposed system includes an initial Madgwick filter
to merge the raw inertial tri-axis sensor data into a single
angle orientation time series. Then, a Machine Learning (ML)
algorithm is trained with the obtained time series, allowing to
build a forecasting model. The effectiveness of the developed
system was validated by using an open-source dataset composed
of different motions for the upper body collected in a laboratory
environment, aiming to monitor the abduction/adduction angle
of the arm. Firstly, distinct ML algorithms were compared for
a single angle orientation time series prediction, including: three
Long Short-Term Memory (LSTM) methods – a one layer, a
stacked layer and a Sequence to Sequence (Seq2Seq) model; and
three non deep learning methods – a Multiple Linear Regression,
a Random Forest and a Support Vector Machine. The best results
were provided by the Seq2Seq LSTM model, which was further
evaluated for WMSD prevention by considering 11 human
subject datasets and two evaluation procedures (single person and
multiple person training and testing). Overall, interesting results
were achieved, particularly for multiple person evaluation, where
the proposed Seq2Seq LSTM has shown an excellent capability
to anticipate problematic movements.

Index Terms—Musculoskeletal Disorders, Sensor Fusion,

Forescasting, Deep Learning, Long Short-Term Memory (LSTM).

I. INTRODUCTION

In diverse manufacturing sectors (e.g., textile, garment,
automotive), the production processes typically require a co-
operation between human operators and machines. Often, the
actions carried out by the workers are repetitive, which is
a risk factor for developing Work-related MusculoSkeletal
Disorders (WMSDs) [1]. In effect, WMSDs represent one
of the biggest concerns for the workers’ health and safety,
producing a significant impact on productivity and product
quality, while also leading to absenteeism and early retirement
[2]. For instance, in Portugal, where the automotive industry
represents a substantial part of the exportation sector, the
WMSDs have a massive impact on the operators’ lives. Indeed,
a study made in an assembly line of a Portuguese automotive
industry showed that 56.7% of the analyzed 400 workers had
suffered from these injuries [3]. In particular, upper limbs
(mainly shoulder, wrist, and hand), cervical/neck, and lumbar
spine were the body parts mostly reported for discomfort and
pain.

Ergonomics departments at large industrial manufacturing
systems often conduct systematic analysis of processes and
workplaces towards the prevention of WMSDs. These er-
gonomic professionals often rely on observational methods for
data acquisition, which involve analyzing in-place or video



recording data from operators at work and manually filling
ergonomic worksheets (e.g., RULA and EAWS) according to
ISO norms of WMSD risk. A promising alternative for WMSD
prevention is based on inertial motion capture systems. Inertial
Measurement Units (IMUs) are the base component of such
systems and usually measure acceleration, angular velocity
and the magnetic field. These data can be combined by using
sensor fusion techniques to obtain a more accurate and reliable
attitude representation [4]. In particular, the data from human
movement is often converted into postural angles, which can
directly be used to measure WMSD risk.

In this paper, we propose a Long Short-Term Memory
(LSTM) deep learning model approach for motion prediction
using inertial sensors. The proposed Machine Learning (ML)
pipeline consists of four steps: 1 – IMU data collection (tri-
axis accelerometer, magnetometer and gyroscope data); 2 – a
sensor fusion using the Madgwick orientation filter to obtain
a single time series with the angular construction of the
movement; 3 – a time series forecasting approach to predict
upcoming angular postures based on current poses (via the
LSTM model); and 4 – an assessment of the LSTM predicted
motion according to the ISO 11226 norm, which focuses on
evaluating high risk working postures. The final goal (not
studied in this work) is to automatically feed an exoskeleton
suit with the LSTM high risk alarm signals, such that it would
trigger a muscle blocking response, thus preventing the risky
movements in advance. The proposed ML pipeline is validated
by using an open-source dataset related with different worker
motions for the upper body collected in a controlled laboratory
environment. In step 3, we initially assume one angular posture
time series, in order to compare distinct ML algorithms: three
different LSTM prediction models – single layer, stacked layer
and Sequential to Sequential (Seq2Seq) model; and three non
deep learning methods – Multiple Linear Regression (MLR),
Support Vector Machine (SVM) and Random Forest (RF). The
best results were obtained by the Seq2Seq LSTM, which was
then evaluated in terms of its value to perform the fourth step
of the pipeline, by considering data from 11 human subjects
and two evaluation training and testing procedures (single and
multiple person).

The paper is structured as follows. Section 2 introduces the
related work on ergonomic evaluation based on IMUs. Next,
Section 3 describes the IMU data, the proposed WMSD pre-
vention approach and evaluation methodology. Then, Section
4 discusses the obtained results. Finally, Section 5 presents the
main conclusions.

II. RELATED WORK

Although the manual methods still are the most common
used, IMUs are becoming a popular method for human motion
capture. In recent years, some studies have proposed a inertial
motion tracking system for industrial applications, aiming to
analyze and evaluate the human motion of the workers. In
[5], IMUs were used with the European Assembly Work-
Sheet (EAWS) ergonomic tool in an automotive industry,
where the goal was to evaluate working postures. In the same

industry, the study of [6] proposed a method for inertial data
anomaly detection using human working movements. Some
ML studies adopt a classification approach to identify postures
from IMU data. For instance, in [7] several ML algorithms
were used to classify nine different human exercises, with
a RF model obtaining the highest accuracy results. In [8],
a deep Convolutional Neural Network (CNN) was proposed
for gait phase recognition, reaching an 97% of accuracy. In
the same work, the authors argued about the advantage of
exoskeletons to provide support and assistance to the working
movements. Regarding gait kinematics and kinetics prediction,
three Artificial Neural Networks (ANN) were compared in
[9]: Multilayer Perceptron (MLP), Long Short-Term Memory
(LSTM) and CNN. The experiments revealed that CNNs
provided the best predictions for joint angles, MLPs for
joint moments and LSTMs for real-time joint angle and joint
moment prediction. LSTMs were also used in [10] to predict
human gait stability of the elderly users based on data from
real patients walking with a robotic rollator. The main goal
was to perform a real-time classification of the type of walking
movement (safe or risk) by adopting a Seq2Seq LSTM model.
In another study [11], the same Seq2Seq LSTM architecture
was proposed for the detection of suspicious human behaviors
based on abnormal pedestrian trajectories.

While interesting results have been achieved by the related
works, there is still a lack of IMU data studies that address the
full ML cycle, from IMU data to the final WMSD prevention.
This is precisely the research gap addressed in this paper,
where we propose a complete ML pipeline to prevent WMSD
based on IMU data. The ML pipeline includes a sensor
fusion based on the Madgwick filter, generating an angular
time series that is forecasted using ML algorithms. Several
of the related works assume a classification approach when
tracking human motion (e.g., [7], [8]). In contrast, we assume
a more flexible time series (regression) approach, where the
same trained ML models can be applied to anticipate different
WMSD risk levels (e.g., by considering distinct angle risk
thresholds). Moreover, we compare six different ML methods
for angular motion time series prediction, including three
LSTM deep learning models. And the best method (Seq2Seq
LSTM) is further evaluated to prevent WMSD by considering
two procedures (single and multiple data), using real-world
data related with 11 human subjects.

III. MATERIALS AND METHODS

A. Industrial Worker Data

The “Upper-body movements: precise tracking of human
motion using inertial sensors” is an open-source dataset avail-
able at Zenodo platform [12]. The data contains different
motions for the upper-body of 11 participants (five women and
six men) using a total of four IMUs. We note that the IMU
devices need less processing power and are more economic
when compared with other human motion capture systems
[13]. Each set of movements contains the collection time
acquired at 100 Hz and tri-axis data from the accelerometers,
gyroscopes and magnetometers. In this paper, we assume a



movement that was collected from a single IMU placed on
the right arm, which represents the static evaluation of the
shoulder joint. Fig. 1 exemplifies the placement of the IMU
units (left side) and the data that can be generated using the
shoulder joint sensor IMU (right side).

B. Data Preprocessing

As we focus on the evaluation of the abduction/adduction
of the right shoulder, we use the data collected by the IMU
3 placed on the right arm for the 11 participants. To merge
the raw data (total of 9 variables) into a single angular move-
ment time series, we employ the Madgwick orientation filter
[15], as implemented by the Attitude and Heading Reference
System (AHRS), which is an open-source Python toolbox for
attitude estimation (https://ahrs.readthedocs.io/en/latest/). The
orientation filter was proposed by Madgwick [16]. It is an
algorithm commonly used due to it is high accuracy and
good performance at low-power real-time applications. Also,
it needs less time-consuming calculations when compared
to the known Kalman filter for orientation sensors [17]. In
particular, Madgwick showed that this filter it is a very good
option to overcome the difficulty of implementing the Kalman
technique since the obtained results indicates a matching
accuracy between these two approaches [16].

The Madgwick filter uses accelerometer and magnetometer
readings to handle the gyroscope signal drift, which corre-
sponds to the sensor’s low frequency bias, an instability that
grows unbounded over time [18]. With the filter, it is possible
to obtain a quaternion, which represents an orientation that
can be converted into Euler angles (pitch, ϕ, roll, θ, and
yaw, ψ). Considering the Earth frame as reference, as shown
in the left of Fig. 1, the θ angle corresponds to the arm’s
abduction/adduction. An example of the attitude representation
of the studied movement (in angles) is presented in Fig. 2. We
further inspected the graphical application of the Madgwick
filter on the analyzed dataset, thus obtaining a manual visual
confirmation that the generated time series is well aligned with
the annotated data.

C. Modeling

We assume Time Series Forecasting (TSF) approach to
model the generated angular data θt = yt = (y1, y2, ..., ym),
where t denotes the time period, measured in centiseconds
(cs), and m represents the length of the series. The goal is to
estimate the next angular movements at the current time T by
using a forecasting model (f , previously trained with historical
data) that is fed with K time lags, allowing to compute an h-
ahead prediction: ŷT+h = f(h, yT , yT−1, ..., yT−K+1).

By adopting an TSF approach, the same trained models can
be applied to anticipate distinct WMSD risks. Let Rl and Ru

denote a particular lower and upper angle WMSD risk level.
The future angular estimates can be computed at time T and
thus an alarm signal can be triggered if any of the obtained
ahead forecasts is set outside the [Rl, Ru] range. To increase
the sensibility of the WMSD alarm system, we define a τ
tolerance value and thus we predict a problematic movement

if ŷT+h+τ > Ru or ŷT+h−τ < Rl, where h ∈ {1, ...,H} and
H denotes the maximum forecasting horizon (or anticipation
time).

The LSTM is a special type of deep Recurrent Neural
Network (RNN) that solves the “short-term memory” problem
through a mechanism of gates that manage to regulate the flow
of information [19], [20]. These recurrent neural networks are
also capable of learning order dependence in sequence predic-
tion problems, which is the case of time series prediction. Each
LSTM is a set of cells, where each cell includes three control
gates: the “forget gate” that defines whether the information
is relevant (1) or not (0); the “memory gate” that decides the
new data that should be stored and/or modified in the cell; and
the “output gate” that controls what is produced in each cell
[21].

In this work, we assume a base LSTM that is fed just with
one time lag (K = 1) and that is capable of predicting up
to H-ahead predictions (e.g., ŷT+5 = f(5, yT )). In this work,
we fix the maximum horizon to H = 25, which corresponds
to one quarter of a second. We explore three LSTM models,
all trained with the Adam optimizer, using the Mean Squared
Error (MSE) loss function. The simpler LSTM includes one
input node (fed sequentially during the training phase) that
is linked to a LSTM layer composed of L cells (hidden
units), each assuming the Leaky ReLU activation function.
This function was adopted since it allows to output negative
values, which often occur in our angular series (Fig. 2). Then,
the hidden LSTM layer is connected to an output dense layer,
with H nodes and linear activation functions (since we do not
normalize the original angular series). Under this setup, when
yt = (1, 2, ..., 10) and H = 5, a total of 5 training examples
are generated. The first example is 1 → (2,3,4,5,6) and the last
training instance is 5 → (6,7,8,9,10). Preliminary experiments
were held by considering the first 70% observations of a single
time series (from person A, which contains a total of 7,069
observations), allowing to fix the number of LSTM layer cells
(by inspecting the best MSE value when using a simple grid
search L ∈ {25, 50, 100, 200}) to L = 100. Stacked LSTMs
allow a more complex feature representation of the current
input and have been shown to improve time series forecasting
results [22]. Thus, in this work we also test a stacked LSTM
that includes two LSTM hidden layers, each with L = 100
cells. The third Seq2Seq LSTM model assumes a encoder-
decoder or sequence to sequence architecture, which contains
one model for reading and encoding the input sequence and
a second model to decoding and predict, such as presented
in [23]. As shown in Fig. 3, the model includes two LSTM
layers (L = 100), one repeat vector layer with H nodes, to
repeat the incoming inputs for up to H times, and one time
distributed layer, to process the output from the LSTM hidden
layer and generate the H sequential output values.

For benchmarking purposes, we explore three additional
ML algorithms: MLR, RF and SVM (with a Gaussian ker-
nel). Since these models to not contain an internal temporal
memory, we adopt a sliding time window to generate the
training examples, assuming a total of K = H time lags:



Fig. 1: Placement of the sensors and the Earth reference frame (left image, adapted from [14], the third IMU sensor is signaled
by a red circle) and an example of the data collected from the shoulder joint sensor (third IMU, right plot)

(a) person A (b) person E

Fig. 2: Example of an angular reconstruction of the abduction/adduction of the arm for two human subjects (A and E) when
using the Madgwick filter (dashed horizontal line denotes the ISO 11226 WMSD risk level; red circle represents the target
time period when evaluating the WMSD anticipation capability of the proposed approach).

ŷT+h = f(h, yT , yT−1, ..., yT−H+1). Moreover, since each
algorithm can only output one value (the next forecast),
multi-step ahead forecasts can be obtained by assuming an
iterative feedback of previous forecasts [24]. For instance,
ŷT+2 = f(2, ŷT+1, yT , ...), and so on.

All the ML experiments were executed by using an Intel
i7 processor with 1.80 GHz and 16.0 GB of RAM. The
data processing and modeling was implemented by using the
Python programming language. In particular, we adopted the
following Python libraries: scikit-learn – for MLR, SVR
and RF and TensorFlow – for LSTM. To generate the
training examples for the non deep learning methods (MLR,
RF and SVM), we adopted the CasesSeries function
from the rminer R package [25]. The MLR, RF and SVM
methods were set with their default implementation values.

D. Evaluation

In this work, we assume three evaluation procedures. Firstly,
we adopt a pure TSF evaluation by considering a single time

series (person A) to compare the six forecasting methods from
Section III-C. We assume a time ordered holdout split, in
which 70% of the oldest observations are used for training
and the more recent 30% of the values are used for testing
purposes. Four popular TSF measures are adopted, namely
the coefficient of determination (R2), the Mean Absolute Error
(MAE), MSE and Root MSE (RMSE):

R2 = 1−
∑

i∈T (yi − ŷi)
2∑

i∈T (yi − ȳi)2
(1)

MAE =
1

n

∑
i∈T

|yi − ŷi|2 (2)

MSE =
1

n

∑
i∈T

(yi − ŷi)
2 (3)

RMSE =
√
MSE (4)
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Fig. 3: Diagram of the proposed LSTM Seq2Seq network.

where T denotes the testing period when assuming a fixed
h value. For instance, the person A series contains a total
of 7,079 observations, with the oldest 4,948 elements being
used to train the forecasting model, which is tested on the
remainder 2,131 values. For h = 1 (one-ahead predictions),
T = {49.48+h, 49.49+h, ..., 70.78+h}. Similarly, for h = 5,
T = {49.48 + h, 49.49 + h, ..., 70.74 + h}, and so on. For
R2 ∈ [0, 1], the higher the values, the better are the predictions.
As for the other measures (MAE, MSE and RMSE), better
forecasts correspond to lower values.

Once the best forecasting method is selected, we perform
a WMSD anticipation evaluation. For the analyzed shoulder
movement, the ISO 11226 norm (“Ergonomics – Evaluation of
static working postures tool”) only defines a risk for a positive
angle (Ru = 60 degrees), thus we assume an allowed angular
range of [-∞,60]. As shown in Fig. 2, the Ru = 60 risk
level was applied to all 11 angular movement time series. In
particular, we test the WMSD anticipation capability on the
second half of each time series and thus we store the all initial
time periods in terms of t values of risky shoulder movements
(denoted here as tr = {tr1 , tr2 , ..., trn}) that occur within
such second half time period. In Fig. 2, these time periods are
signaled by using red colored points. For instance, there are 3
WMSD testing points for persons A and E. The total number
of tested periods (trn ) for each series is presented in Table III.
For different anticipation times (h ∈ {1, 2, ...,H}), we execute
two WMSD training and testing evaluation procedures, which
work as follows:

Single Person – A growing window scheme [26],
[27] is applied such that there are trn model training
and testing updates. For the first tr value (tr1 ),
all the oldest observations up to tr1 − H are used
to train the TSF model. Then, for max(h) = H
and T = tr1 − H , up to h ahead forecasts are

computed and the procedure detailed in Section III-C
is applied, namely a correct WMSD is detected
as: w(T,max(h)) = 1 if ŷT+h + τ > Ru, else
w(T,max(h)) = 0. After this, we increase the
current time (T ) and decrease the maximum horizon
H , namely T = tr1 −H + 1 and max(h) = H − 1,
and so on until a one step ahead prediction is
executed (T = tr1 − 1 and max(h) = 1). Then,
we consider the next tr value (tr2 ), retraining the
forecasting model with all observations up to tr2−H ,
repeating the previously described steps, until all trn
points are analyzed. For a fixed max(h) value, the
overall WMSD score (in %) is computed as the sum
of all w(T,max(h)) computations divided by the
total number of risky points (trn ). This procedure
is applied separately to all 11 human subject data
from the analyzed dataset.
Multiple Person – More similar to other ML appli-
cations, the forecasting model is now trained with the
full angular time series (pure TSF learning) of several
persons (7 persons selected from the 11 time series,
namely the set {A,B,E,G,H,J,K} that corresponds to
the series that have trn = 3), which consists in the
training set. Then, the trained and fixed forecasting
model is tested on the WMSD risky points (tr) of
the remainder 4 time series ({C,D,F,I}), allowing to
compute individual and overall WMSD scores.

IV. RESULTS

Table I summarizes the TSF results obtained for the first
evaluation phase (h = 1, one-step ahead predictions). When
analyzing the table, it becomes clear that the LSTM based
methods perform much better than the non deep learning
methods (MLR, RF and SVM). Overall, the best predictive
results was obtained by the Seq2Seq LSTM, since it provides
lower MAE, MSE and RMSE values when compared with the
one layer and stacked LSTM, while obtaining the same R2

level. Following these results, the Seq2Seq LSTM is selected
as the TSF algorithm for the remainder experiments presented
in this paper.

TABLE I: TSF results for each model (person A series, h = 1,
best values are in bold).

Model R2 MAE MSE RMSE

MLR 0.66 15.62 304.12 15.65
RF 0.09 10.68 210.06 10.70
SVM 0.60 15.14 336.52 15.16
One layer LSTM 0.88 0.40 0.19 0.40
Stacked LSTM 0.88 0.38 0.16 0.38
Seq2Seq LSTM 0.88 0.11 0.02 0.12

For TSF quality demonstration purposes, we consider the
same person A series and its three risky shoulder time pe-
riods (tr). Table II presents the forecasting measures when
performing H =25 predictions under a h = 1 or h = 25



forecasting horizon. For the first target point (tr1 ) and h = 1,
T = {tr1 − 25 + h, ..., tr1 − 1 + h}. Similarly, for the same
point and h = 25, T = {tr1 − 50 + h, ..., tr1 − 25 + h}. As
expected, the forecasting results degrade when the anticipation
range is increased (h = 25), in an effect that is noted more
on the MAE, MSE and RMSE measures. To complement
the TSF demonstration results, Fig. 4 presents the Seq2Seq
LSTM forecasts for the first phase test data (for a time period
related with tr3 ). In particular, the one-ahead (T + 1 or
h = 1, blue line) and 25-ahead (T + 25, green line) forecasts
are plotted against the ground truth values (black line). For
baseline comparison purposes, the figure also includes the
T + 25 ahead naive forecasts (red line), which correspond to
the previous ground truth angular values (known at time T ).
As expected, the h = 1 forecasts are better than the h = 25
ahead predictions. Moreover, both Seq2Seq LSTM forecasts
anticipate the rising angular motion of the ground truth and
naive 25-ahead forecasts, which is valuable to prevent a
WMSD movement (angular values close to Ru − τ ). In the
next WMSD evaluation phases (single and multiple person),
we further evaluate the Seq2Seq LSTM capability to anticipate
shoulder risky movements.

TABLE II: Seq2Seq LSTM prediction results for person A,
H = 25 and three risky periods (tr).

h tr R2 MAE MSE RMSE

tr1 =39.87 0.99 0.50 0.26 0.51
1 tr2 =49.51 0.99 0.35 0.12 0.35

tr3 =59.34 0.99 0.69 0.48 0.69

tr1 =39.87 0.98 8.08 70.73 8.41
25 tr2 =49.51 0.98 2.53 6.69 2.59

tr3 =59.34 0.89 1.65 2.99 1.73

Turning to the WMSD anticipation evaluation, and after
consulting occupational health experts, we assumed a very
small tolerance value of τ = 1 degree. Table III shows the
single person evaluation results, where each cell contains in the
numerator the total w() score (number of correct anticipations)
and in the denominator the number of considered risky points
(trn ). To simplify the visualization, the table only shows a
subset of the tested anticipation time periods (max(h)). The
average anticipation score, computed for a fixed max(h) value
and for all 11 time series (horizontal analysis), is presented at
the last column of the table. The analysis of this score confirms
a trade-off between the anticipation time and the WMSD
detection capability. The highest predictive score is obtained
when the risk detection is performed just 1 cs in advance
(86%). The performance decreases significantly (54%) then
the anticipation time is 2 cs. Afterwards, there is a smaller
decay in performance, reaching an average of 43% when
max(h) = 25 cs. As for the performance at the individual level
(vertical analysis), the last row of the table presents the overall
score per person, when considering the distinct anticipation
times. For person A, a perfect risk point detection is obtained

56.5 57.0 57.5 58.0 58.5 59.0 59.5
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Fig. 4: Example of the Seq2Seq LSTM forecasts for Person
A (ground truth - black line; T + 1 ahead forecasts (h = 1) -
blue line; T+25 ahead forecasts (h = 25) - green line; T+25
ahead naive forecasts (h = 25) - red line Threshold for the
risk shoulder angle movement (Ru − τ , Ru = 60, τ = 1) -
dashed gray line).

for all analyzed anticipation times (100%). Other interesting
person results were obtained for series K (76%) and F (71%).
However, a small individual performance was obtained for
some series, particularly series G. We have further inspected
person G results and found that this person produced a more
abrupt shoulder movement. For demonstration purposes, we
have also tested the performance for person G when increasing
the tolerance value to τ = 2 degrees. As expected, the obtained
results (shown in parentheses in the table), have substantially
improved (overall score of 57%). We note that there is a
trade-off in setting the tolerance value (τ ), since a too large
value would trigger several false positives. For the sake of
consistency with the single person evaluation results, in the
remainder experiments shown in this paper, we keep the initial
and small τ = 1 degree value.

The multiple person training and testing evaluation results
are presented in Table IV. While assuming the same τ = 1 that
was adopted for the single person evaluation, perfect WMSD
results were achieved by the Seq2Seq LSTM forecasts, identi-
fying correctly all risky initial points (tr) and for all analyzed
anticipation times (max(h)). These are very interesting results,
suggesting that rather than training a distinct ML model
for each person, the best strategy to anticipate problematic



TABLE III: Single person risky shoulder anticipation scores (τ = 1).

Person

max(h) A B C D E F G (G τ = 2) H I J K
Average
Anticipation
Score (%)

1 3/3 2/3 1/2 1/1 2/3 2/2 2/3 (3/3) 3/3 2/2 3/3 3/3 86

2 3/3 2/3 1/2 0/1 1/3 2/2 0/3 (3/3) 1/3 1/2 2/3 2/3 54

3 3/3 2/3 1/2 0/1 1/3 2/2 0/3 (2/3) 1/3 0/2 1/3 3/3 50

5 3/3 2/3 1/2 1/1 1/3 1/2 0/3 (1/3) 1/3 0/2 1/3 2/3 46

10 3/3 1/3 1/2 0/1 1/3 1/2 0/3 (1/3) 1/3 1/2 2/3 2/3 46

15 3/3 1/3 1/2 0/1 1/3 1/2 0/3 (1/3) 1/3 1/2 1/3 2/3 43

25 3/3 1/3 1/2 0/1 1/3 1/2 0/3 (1/3) 1/3 1/2 1/3 2/3 43

Overall score
per person (%) 100 52 50 29 38 71 10 (57) 43 43 52 76

TABLE IV: Multiple person risky shoulder anticipation scores
(τ = 1).

Person

max(h) C D F I
Average
Anticipation
Score (%)

1 2/2 1/1 2/2 2/2 100

2 2/2 1/1 2/2 2/2 100

3 2/2 1/1 2/2 2/2 100

5 2/2 1/1 2/2 2/2 100

10 2/2 1/1 2/2 2/2 100

15 2/2 1/1 2/2 2/2 100

25 2/2 1/1 2/2 2/2 100

Overall score
per person (%) 100 100 100 100

movements is to train a single ML model with movements
collected from different human subjects.

V. CONCLUSIONS

Work-related MusculoSkeletal Disorders (WMSDs) are a
key issue that affect the health of workers in several industries
(e.g., textile, garment, automotive). In this paper, we propose a
Machine Learning (ML) pipeline for the automatic prevention
of WMSD movements. The pipeline assumes Inertial Mea-
surement Units (IMU) to automate the collection of working
movement data. Then, the tri-axis data (acceleration, angular
velocity and the magnetic field) is fused into a single angular
time series by adopting the Madgwick orientation filter. Next,
we perform a pure Time Series Forecasting (TSF) modeling.
Finally, the obtained angular forecasts are compared with a
risk threshold, allowing to trigger a WMSD alarm in advance.
The advantage of using a pure TSF approach is that it is more

flexible, since the same prediction model can be applied to
anticipate different angular risk levels.

During the TSF modeling, and using a single time series
related with shoulder movements, we compared six different
TSF methods: three deep learning architectures, based on the
Long Short-Term Memory (LSTM) neural network, and three
other ML algorithms (Multiple Linear Regression, Random
Forest and Support Vector Machine). Overall, the best TSF
results were obtained by a Seq2Seq LSTM model. This
method was further evaluated in terms of its capability to
anticipate problematic shoulder movements (according to the
ISO 11226 norm) by considering two procedures: single per-
son and multiple person training and testing. When executing
the single person evaluation, good results were achieved but
only for a very small anticipation time (86% for 1 cs). In
contrast, high quality results were obtained when training a
Seq2Seq LSTM model with movements from 7 persons and
then testing it to anticipate problematic shoulder movements
from 4 other persons. In effect, the proposed Seq2Seq LSTM
model detected perfectly all risky movements for all four
human subjects with an interesting anticipation time (one
quarter of a second).

The presented research has shown a strong potential of the
proposed ML pipeline to trigger WMSD alarms in advance.
In future work, we wish to collect data from more human
subjects, in order to increase the robustness of the obtained
experimental results. Using such extended datasets, we can
also further analyze the impact of distinct tolerance values
(τ ). While only studied for shoulder movements, the proposed
methodology could be easily adapted to other body part
movements (e.g., leg). Moreover, our research is inserted
within a larger R&D project, which aims to adopt exoskeletons
to prevent WMSDs. Thus, in the future work, we intend to link
the generated WMSD alarms into a real exoskeleton, checking
if the current anticipation times are sufficient to trigger a



real-time muscle blocking response that prevents the risky
movement.
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