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Abstract 

The motivation of this research is to obtain an accurate three-dimensional (3D) layout 

of an underground conduit, which may be beneficial to optic fiber cable installers and 

engineers. A newly designed algorithm for 3D position tracking with the help of an inertial 

sensor and an encoder has been developed. Two types of representations (Euler angle and 

Quaternion) for orientation and rotation are also introduced, followed by several data pre-

processing procedures. A sensing fusion method is utilized to overcome the accumulated 

errors introduced by the sensor drifting. Considering the application of 3D underground 

duct mapping in this research, a sensing system using the newly designed algorithm was 

designed and analyzed. Additional information, such as the orientation and position of the 

starting and ending points, are integrated into the algorithm to correct the sensing drifting 

and refine the position estimation. To verify and demonstrate the design of the algorithm 

and sensing system for 3D underground duct mapping, an experimental test-bed based on 

the sensing system design, which consists of an IMU, a duct rodder and a fiber blower, was 

developed. Experiments on three different layouts of the conduit were conducted and 

analyzed to demonstrate the feasibility and efficiency of the newly developed algorithm 

and the sensing system design.  
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1. Introduction  

1.1 Motivation 

As the release of the 5G technology approaches, the market for optic fiber cables and 

their associated installing machines and accessories is expected to thrive. Fiber cables’ 

capabilities are continuously increasing. They will have the ability to carry more data or 

information in a shorter period of time and therefore, they are expected to be more 

expensive. Those cables are subject to damage if they are blown through a conduit of a 

high bend radius. Avoiding the damage of an optic fiber cable, which costs thousands of 

US dollars, is one of the main goals of this research project. There are millions of ducts or 

conduits that have been laid underground for decades. Those ducts have experienced drifts, 

bends, or inconsistent expansions based on the nature of their surroundings. For example, 

cold temperatures may cause a duct to highly bend. Furthermore, poor soil exploration of 

the location where those ducts are installed is a reason for optic fiber cable damage over 

time. This research area is challenging due to the uncertain underground conditions and the 

complexity of the duct layouts. The concern is that the precise depth and orientation of 

those ducts are unknown and inconsistent over years. This means that if duct installers want 

to change or to fix a piece of duct underground, they could dig meters far from where those 

ducts are located, which will result in a waste of time and money. In addition, over years, 

when roads are paved, the depth of the underground ducts relative to the surface of the road 

changes. It is very difficult to keep track of the ducts’ depth relative to the surface of the 

road. Shown below in [1, Fig. 1] is the process of blowing optical fiber underground. The 

optical fiber is rolled around a spool, shown on the left side of the figure. The tip of the 
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fiber is then fed into the machine from one side. It is then pushed by the use of two rubber 

belts, or chains, driven by a motor or two (pneumatic or hydraulic). The air compressor 

also helps in pushing the cable through the duct. The duct has to be pressurized before the 

cable is fed into the machine to ensure that there are no any leaks or dust in the duct [1]. 

Manufacturers of fiber optic installation machines spend a lot of money and time to 

develop a machine that is capable of installing the fiber cable from a designated start to an 

end location. It would be beneficial if they were able to view, through a computer software, 

how the underground duct is laid out. The information, such as the location and the 

magnitude of the maximum bend radii, the maximum the elevation or depth, could be very 

advantageous to the engineers who design the optic fiber cable installation equipment. In 

addition, it will save time to the machine operators who will be able to know, prior to 

blowing the fiber cable, whether or not their machine will be capable of performing the 

task. It will also save large amounts of money by protecting the optical fiber cables from 

potential damage. The goal of this project is to develop an intelligent sensing system that 

is capable of reconstructing a precise 3D plot of a layout of an underground duct.  

Figure 1. Optical fiber cable installation in an underground duct [1] 
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1.2 Introduction to Condux International, Inc. 

Condux International has been manufacturing underground and overhead cable 

installation tools and equipment for the telecoms and electric industries. Condux has been 

in the optic fiber cable installation field for over 30 years with two main production lines: 

cable blowers and cable pullers. Condux also manufacturers all the tools required by 

contractors to perform a complete installation process. Due to the uncertain underground 

conditions, mentioned in the previous section, Condux has directed its focus towards duct 

mapping. It is very crucial for the engineers at Condux to determine the layout or the shape 

of the underground conduit before blowing the optic fiber cable in it. This layout or map 

of the underground conduit would allow the engineers to determine whether or not the fiber 

installing machine is capable of blowing the fiber through the conduit. In addition, the USA 

government requires the cables installers to provide a map that shows where those 

underground conduit are located underground prior to installing the fiber. This research 

assists Condux, and any other company in the same field, to obtain a 3D map of an 

underground optic fiber cable conduit.  

1.3 Introduction to Inertial Sensors 

Inertial sensors are sensors based on inertia and relevant measuring principles, which 

mainly includes accelerometers and gyroscopes, denoted as Inertial Measuring Units 

(IMUs). Their most familiar applications include smart phones, tablets, and Virtual Reality 

(VR) headsets. For instance, accelerometers are used in smart devices to ensure that images 

on screens are always displayed upright. They are also widely used in military, robotics, 

and aerospace-related applications. When IMUs are combined with other sensors, such as 
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the Global Positioning System (GPS) receivers, more complex outcomes could be 

obtained. The term that describes the combination of accelerometers with other sensors is 

called “sensor fusion”. Many researches and experiments have been done on sensors’ 

fusion due to the very useful outcomes that could be obtained by combining different kinds 

of sensors together besides their cheap cost. The most common and useful type of inertial 

sensor is the Micro electro-mechanical system (MEMS) sensor. The usage of the MEMS 

sensors in the medical and military sectors has widely increased during the past decade.  

1.3.1 Accelerometers 

Accelerometers could be used for three purposes; the first of which is orientation 

detection, as mentioned earlier, the second is velocity and displacement determination, and 

the third is vibration detection in a mechanical system. Accelerometers convert a 

mechanical property, which is the force acting on the sensor, to a corresponding 

acceleration value, usually expressed in the units of gravitational acceleration, “g”. The use 

of accelerometers to determine displacement, is usually undesired due to the numerous 

types of errors that may result, which will be further elaborated in the next sections. It is 

very challenging to completely eliminate the errors associated with accelerometers due to 

their very random and unpredictable nature.  
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There are different types of accelerometers. The accelerometers are chosen based on the 

required functions or the type of measurement to be made. There are three technologies 

that are used to measure acceleration. The first of which is Piezoelectric (PE) 

accelerometers. Piezoelectric accelerometers offer a wide measurement frequency range 

(up to 30 kHz) and are sold in a wide range of sensitivities, weights, sizes, and forms. PE 

accelerometers are suitable for shock or vibration measurements. Piezoelectric 

accelerometers have a piezoelectric element mounted by a screw between a dummy weight 

and the base. Measurements of large shock or vibration are possible due to the 

accelerometer’s high mechanical capabilities (ultimate strength). Shown below in               

[2, Fig. 2] is a schematic of a piezoelectric accelerometer. [2] 

 

  

 

 

 

The second type of accelerometers is Piezoresistive (PR) accelerometers. PR 

accelerometers usually have low sensitivity which limits their usage for measuring 

vibrations. They are commonly used, however, to measure shock. PR accelerometers 

usually have a wide bandwidth (higher than 130 kHz) and their lowest frequency response 

could go down to 0 Hz. This property allows PR accelerometers to measure transient states. 

Shown below in [3, Fig. 3] is a schematic of a Piezoresistive accelerometer. [3] 

Figure 2. Piezoelectric accelerometer [2] 
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The third type of accelerometers is the Variable capacitance (VC) accelerometer. This 

is the newest and most common type of accelerometer. Its high sensitivity and narrow 

bandwidth help in measuring low-frequency vibration, motion, and steady-state 

acceleration. Thermal zero and sensitivity shifts can be as low as 1.5% over a temperature 

range of 180 °C. VC accelerometers rely on the change in capacitance in response to 

acceleration. Shown in [4, Fig. 4] is a schematic of a variable capacitance accelerometer, 

or a capacitive accelerometer. [4] 

 

 

 

 

 

All three types of accelerometers mentioned above are used for various applications. 

Each has its advantages and disadvantages. They are chosen based on the type of 

measurement required. The frequency response of the accelerometer that corresponds to 

Figure 3. Piezoresistive accelerometer using cantilever design [3] 

Figure 4. Capacitive accelerometer [4] 
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the mechanical stimulation is considered the most critical parameter an accelerometer is 

chosen upon. [5] 

MEMS accelerometers could be utilized in this research to obtain velocity and 

displacement by direct integration. This method results in a large random accumulative 

errors, however. The accelerometer could also be used to estimate the roll and pitch rotation 

angles. This will be further elaborated in the next section.  

1.3.2 Gyroscopes 

Gyroscopes, in their simplest form, are a spinning wheel or a disk that are allowed to 

rotate freely about an axis. The orientation of the axis is not affected by tilting of the 

mounting. Gyroscopes are the most important part of an inertial navigation system. The 

use of gyroscopes has significantly increased over the past decade. Their use has evolved 

to monitoring the orientation of an aircraft or guiding an unmanned aircraft during flight. 

In addition to numerous medical, military, and aerospace applications. Gyroscopes 

measure angular velocity, usually in degrees/second. The most common types of 

gyroscopes are the Ring Laser Gyroscope (RLG) and Fiber Optics Gyroscope (FOG). Both 

operate based on the same principle, the Sagnac effect. The Sagnac effect results from 

splitting a light beam in two and directing them through different paths. Those two light 

beams are then allowed to interfere. The fringe pattern is observed and the change in 

rotational angle is calculated based on the fringe data. The difference between FOG and 

RLG is that one propagates in a cavity and the other propagates in the fiber, see Figure 5. 

[6]  
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The third and most important type of gyroscopes is the MEMS gyroscope. The use of 

MEMS gyroscopes has exponentially increased over the past five decades. The main 

advantage of MEMS gyroscopes over FOG and RLG gyroscopes is their low cost. In 

addition, MEMS gyroscopes are very small in size, which allows their usage in various 

applications where FOG and RLG cannot be used. Also, they do not have any moving 

components, which means that they are less likely to be damaged. They are also completely 

maintenance free. Shown below in [7, Fig. 5] are the ring laser and fiber optic gyros. [7] 

 

 

 

 

 

 

1.3.3 Utilizing Accelerometers and Gyroscopes to Obtain Velocity, Displacement, and 

Orientation 

Since the IMU outputs the time intervals along with the accelerometer and gyroscope 

values, direct integration could be done to obtain velocity data from the acceleration data 

along each of the three axes. Another integral could also be done to obtain the displacement 

data from the velocity data. The same theory applies to the gyroscope. Integration of the 

angular velocity data could be done to obtain the orientation or the Euler angles roll, pitch, 

and yaw. It is worth mentioning that direct integration of the data results in high random 

Figure 5. Ring laser and Fiber optic gyroscopes [7] 

a) Ring laser gyro b) Fiber optic gyro 
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accumulative error over time. This accumulative error drastically decreases the quality of 

the data and outputs false results. 

 A trapezoidal numerical integration method is used to estimate velocity and 

displacement with acceleration data. The mathematical equations are shown below. 

( ) ( )0
0

t

t t dt= + ∫v v a                                                   (1)  

( ) ( )0
0

t

t t dt= + ∫p p v                                                   (2)  

Where ( )tv  and ( )tp  are the estimated velocity and displacement of the sensor, v0 and 

p0 are the initial velocity and position, respectively. 

Note that the same equations, Eqs. (1) and (2), could be used to determine the Euler angles 

from the angular velocities (or the gyroscope data).  

The accelerometer’s data could also be used to determine the roll and pitch angles using 

the following relationships shown in Eqs. (3a) and (3b). 

( ) ( )( )1tan b b

nb nby z
Roll a a−=                                         (3a)  

( ) ( ) ( )
2 2

1tan b b b

nb nb nbx y z
Pitch a a a−  

= + 
 

                             (3b)  

Roll angle is calculated from the y and z components of the accelerometer’s data whereas 

pitch angle is calculated from the y, z, and x components of the acceleration. 

1.4 Review of Prior and Related Work 

This research addresses a problem that has been discussed by many researchers and 

engineers over the past decades. Remote tracking of the location and the orientation with 
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alternative approaches has been the concern. Researches on precise real-time tracking of 

acceleration, velocity, and displacement are widely growing. Tracking, locating, and 

mapping are commonly used in applications of the fields of military, engineering, robotics, 

and automotive industries. Sometimes the sole use of GPS in determining the location is 

not accurate and reliable and hence the Inertial Measuring Units (IMUs) are also utilized. 

Researches on IMUs have been significantly growing in the past decade due to their 

relatively cheap price and great advantages. They are also usually fused with other sensors 

for accuracy purposes. An example of a commonly used inertial sensor is the Xbox 360 

Kinect Sensor, which is capable of determining the orientation of a human body. Although 

the principle of orientation and location estimation is very straightforward, to obtain 

accurate and reliable estimation is still challenging.  

 Numerous filters and data rectification methods are developed to improve the 

estimation. The Kalman filter, extended Kalman filter, Madgwick filter, and the 

complementary filter are commonly used for data refinement, each of which has its own 

advantages and disadvantages. The output from each filter was compared against the other 

using the same data set and algorithm. It is very challenging to state that one filter is better 

than the other two. The filter type is chosen based on the function and the design intent of 

the application. For example, some applications require immediate analysis and processing 

of data. On the other hand, offline data analysis and processing may be acceptable in other 

applications, and hence the processing time will not be a constraint.  
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1.4.1 Orientation and Position Estimation Methods 

Various researches have been made to track the human body movement. Orientation 

estimation researches were conducted using magnetic, angular rate, and gravity (MARG) 

sensors. With the help of accelerometers, the position, relative to a starting point in the 

XYZ-plane, was computed [8]. The nature of the human body movement was utilized in 

the developed algorithm. Calibration of the accelerometers, gyroscopes, and 

magnetometers was performed during the stance phase of the human movement. Although 

it may seem that very accurate results could be obtained, there was still an error of about 

3-5%, as the sensing system completely stops every step the human takes [8]. In another 

research, a self-calibration IMU was utilized to model the errors of the accelerometer, 

gyroscope, and magnetometer simultaneously. A post-processed least-squares framework 

was used to reduce the accumulative errors. However, the errors propagated over longer 

time periods. This limits the versatility of the research [9]. Additional researches were 

performed to map tendon ducts on pre-stressed concrete bridges by means of Ground 

Penetrating Radar (GPR) [10]. The use of a radar-based solution would be very expensive 

compared to the use of an IMU-based system, as the inertial measuring units are relatively 

cheap. The GPR technology was only precise in the XY-plane; however, the results were 

not accurate enough on the Z-axis, the axis perpendicular to the surface of the ground [10].  

A mobile battery-powered robot was designed for air duct exploration in recent research. 

The purpose of the research was to 3D map air ventilation ducts by the use of a wheeled 

robot. The relatively big size of the air ventilation ducts worked as an advantage to the 

researchers. The research was focused mainly on less complicated environments. The 3D 
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mapping was only applicable for ducts that had minimal to no obstacles. However, a high 

growth rate of errors occurred, which limited the robot’s capability to function on short 

ducts only. The high errors resulted from the unavailability of a global localization 

reference [11]. It is possible to obtain a bias-free displacement estimation only if the motion 

is sinusoidal. Weighted-Frequency Fourier Linear Combiner (WFLC) and Band-Limited 

Multiple Fourier Linear Combiner (BMFLC) methods were used to find the displacement 

only from accelerometer data. However, those methods could only be used if the motion is 

periodic. In other words, the WFLC and the BMFLC could be utilized only if the 

acceleration can be modeled by a series of sine and/or cosine components. This method 

could be useful in other applications [12]. A drift-free displacement estimation method 

using a periodic or a quasi-periodic signal was proposed in a research paper. The paper 

utilized the WFLC and the BMFLC methods mentioned above. However, the only 

difference is that it could handle quasi-periodic signals, unlike the method proposed in [12]. 

The position of an actual periodic or a quasi-periodic motion is estimated through an 

attenuated and phase-shifted position of periodic or quasi-periodic motion. The results had 

a low-frequency drift that was filtered out using a high-pass filter [13]. 

It would have been helpful if the Global Positioning System (GPS) could be used in this 

project. However, the currently available GPS technology cannot penetrate the ground and 

reach several meters underneath. The use of a signal transmitting technology underground 

was not considered for the same reason. Another research was conducted to determine the 

position and the orientation of a Tissue Imaging Probe System (TIPS) with the use of an 

IMU and a microcontroller. The Finite Impulse Response filtering (FIR), which is a high 
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pass filter, was used to eliminate the errors resulted from the double integration of the 

accelerometer data. Increasing the filtering capabilities of the FIR caused a slower response 

time, which was not desirable in the research. The experimental displacement was off 

compared to the actual displacement the probe was moved [14]. A 2-D location tracking 

method was proposed in [15]. The method was proposed to track a land vehicle using a 6-

dof IMU. The calibration method proposed in the research did not allow usage over long 

time periods. The device had to be mounted on top of the vehicle with the z-axis orthogonal 

to the roof of the car. That was the only method to compensate for the acceleration due to 

gravity and prevent the interference between the gravitational acceleration and the 

vehicle’s translational acceleration. 

1.4.2 Kalman Filter for Orientation and Location Estimation 

The Kalman filter is a very complicated set of recursive mathematical equations used to 

provide estimates of a state of a process. It functions in a way that minimizes the mean of 

squared errors. It can be used to make estimations about future states even if the past and 

the present states are imprecise. The Kalman filter uses a set of measurements that are 

observed over a defined period of time. The more data points per unit time, the better the 

results.   

A research was conducted to track a 3-dimensional orientation of a chip that consists of an 

accelerometer and a magnetometer. The algorithm utilized The Kalman filter to obtain an 

orientation estimation with respect to the gravity’s coordinate system and the chip’s local 

magnetic field vectors. Since accelerometers measure acceleration and not orientation, 

other input parameters were used in the Kalman filter to correct the accelerometer’s errors. 
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Those additional filters were dynamically varied depending on the state of the system. The 

filter input parameters were calibrated using MATLAB simulations. A rotation and a 

vibration movement were performed to adjust the parameters. The chip was used in a 

human posture tracking device [16]. In another research [17], various inertial sensors were 

fused together to obtain accurate position and orientation estimation. The research focused 

on the signal processing aspects of position and orientation estimation. Different modeling 

methods were used to test the proposed algorithm. The algorithm included the use of the 

Extended Kalman Filter as well as the Complementary Filter. Several probabilistic models 

were done for the gyroscope and the accelerometer. The obtained data of the orientations 

were smoothed using an optimization method; Gauss-Newton. Kalman filter’s results were 

compared against the Complementary filter. Two calibration methods were utilized in the 

model; Maximum a Posteriori, and Maximum likelihood. Both of those methods estimate 

a variable from a probabilistic distribution model. The only difference between both 

methods is that the Maximum a Postetiori method works on a posterior distribution, and 

not only repeatability.  

Another research was conducted to build a map and compute its location using a mobile 

robot. The mobile robot was only implemented on a 2-dimensional layout. A 3-dimensional 

test of the system involved added complexity and increased sensing and complexed 

modeling. The algorithm used involved the estimation of a joint state that had a robot pose 

as well as a defined position of an observed landmark. State space matrices were used to 

define the robot’s location relative to the horizontal land. The Extended Kalman filter 

(EKF) was used to improve the resulted map [18]. The optimization formulation of the 



15 

 

Kalman filtering was analyzed in different research. Initial classic Kalman smoothing as a 

least squares problem was first analyzed. Extensions of Kalman smoothing into systems 

with nonlinear processes and models was then performed. The Maximum a Posteriori 

formulation was performed under linear and Gaussian assumptions. A smooth and non-

smooth signal was tested with the proposed method. The results showed higher accuracy 

in smooth signals. Two novel approaches to Kalman smoothing of sparse systems were 

also performed [19]. 

Another research was conducted to study the noise of the inertial navigation sensors; an 

accelerometer and a gyroscope. Simple average filtering algorithm was performed to the 

gyroscope data at rest and during an identified rotation. The Kalman filter was then used 

due to the complexity of the sensors’ errors. The Kalman filter was used to tie the 

accelerometer and the gyroscope together to generate more accurate plots of the 

orientation. The Kalman filter method was proven to produce better results compared with 

simple filters [20]. Another research implemented the Kalman filter on accelerometer data 

for three state estimation of a dynamic system [21]. The dynamic system was assumed to 

be in constant acceleration. The research implements the Kalman filter on a model of the 

system. The algorithm obtained in the research could be extended for usage in gyroscopes, 

and a combination of the two; an accelerometer and a gyroscope. Other researches have 

been conducted to determine the orientation of a rigid body. Research has been conducted 

to determine the shape and angle of a rigid body in full 3-dimensional, 360 degrees on each 

axis. The Kalman filter (KF) was used to get a more precise estimation of a current state, 

based on historical or statistical data [22].  
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Another research paper combined both, a train of IMUs and MARG sensor arrays, to 

get more accurate and efficient results about the orientation of a rigid body [23]. A “novel 

orientation filter” was designed to reduce the accumulative errors. The novel orientation 

filter has a quaternion representation allowing the data to be used in an analytically derived 

gradient-descent algorithm [24]. The novel orientation filter was compared against the 

Kalman filter and the results were very comparable. Kalman filters (KF) or extended 

Kalman filters (EKF) are used to correct bias when two sensors or more are fused together, 

such as a gyroscope and a magnetometer. Two researches were completed to track the 

human body movement and a small handheld microsurgical instrument in [25] and [26], 

respectively. Both researches utilized the EK and the EKF filters; however, there was a 

minimal dependency on the magnetometer data in this research due to the unknown 

underground conditions. Any steel foundations or metal bodies could drastically affect the 

magnetometer readings. A research was conducted to examine the disadvantages of the 

Kalman filter. It was proven, via simulations and experiments that the Kalman filter fails 

if multiple states satisfy the steady-state measurement. Also, the future estimator is very 

imprecise when the initial guess of the state is inaccurate [26].  

1.5 Problem Description and Objectives 

The cost of the optical fiber cable is extremely expensive due to its high capabilities. It 

would be a waste of time and money if that cable was incorrectly installed or damaged 

during an installation process. The main reason for damaging the cable is trying to push 

the cable, via an installation machine, through a high bend radius in the conduit. One 

possible solution is to make an accurate estimation of how the underground conduit looks 
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like. Prior knowledge of the conduit layout will allow engineers to calculate the bend radii 

in the conduit and determine their corresponding locations. Accordingly, decisions about 

the fiber cable capability of passing through the conduit safely will be made. The ultimate 

goal of this research is to develop an intelligent sensing system that is capable of obtaining 

an accurate 3-dimensional layout of an underground conduit with the least possible 

percentage error. Three objectives are needed to be achieved by this work. 

− The first objective is to develop a position tracking method based on inertial sensor and 

encoder measurements. This method should be efficient, robust, accurate, and 

insensitive to different types of errors introduced by measurements. 

− The second objective is to design a sensing system for 3D underground conduit 

mapping, optimize the design based on the previously developed method and make it 

suitable for the corresponding application. 

− The final objective is to design and build an experimental test-bed to implement the 

design of the sensing system for 3D underground conduit mapping and consequently 

verify and evaluate its performance. 

1.6 Outline and Organization of Thesis 

     The remainder of this dissertation is outlined as follows:  

Chapter 2 presents a newly designed algorithm for 3D position tracking with the 

measurements of the inertial sensor and encoder. Two types of representations (Euler angle 

and Quaternion) for orientation and rotation are also introduced, which is followed by 

several data pre-processing procedures. A sensing fusion method is utilized to overcome 
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the accumulated errors introduced by the sensor drifting. Considering the application of 3D 

underground duct mapping, a sensing system using the algorithm presented in Chapter 2 is 

designed and analyzed in Chapter 3. Additional information, such as orientation and 

position of the starting and ending points, are integrated into the algorithm to correct the 

sensing drifting and refine the position estimation. 

To verify and demonstrate the design of the algorithm and sensing system for 3D 

underground duct mapping presented in Chapter 2 and 3, several experiments are 

conducted and analyzed in Chapter 4. Finally, Chapter 5 summarizes the contributions of 

this research as well as the future works that can refine and extend these studies. 

2. Self-constrained Position Tracking Using Inertial Sensor and 

Encoder 

To develop an intelligent sensing system that can obtain an accurate 3-dimensional layout 

of an underground conduit, a self-constrained position tracking method using the inertial 

sensor and encoder has been established. Several methods are integrated, which consists of 

two parts: 1) orientation estimation; 2) position estimation. The orientation provides a 

critical basis for the position estimation, which results in more attention on orientation 

estimation. See Figure 6. 
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Ideally, the location and orientation information can be obtained by integrating the 

measurements of inertial sensors (acceleration and angular velocity). However, sensor 

readings are normally affected by measurement errors. Manipulation of integrals would 

accumulate the error and dramatically affect estimation results. Thereby, the critical part 

of position tracking using inertial sensors, is to eliminate the effects of errors on the position 

estimation. Before introducing the tracking method, the errors of inertial sensors are 

analyzed, which provide a basis for tracking method design. 

m ta a e= + , where b ne e e= +  (1) 

The sensor measurement am is contributed by true value at and error e, which consists 

of slowly time-varying bias eb and random error en. The time-varying bias eb is due to the 

system characters and environment such as temperature whereas the random error en is 

caused by the system noise and uncertainty. Normally, the random error has Gaussian 

distribution with zero mean, which leads to no influence on integration. 

Encoder Data 3D Trajectory 

IMU Data Random Peak 

Elimination 

Offset Calibration Mechanical Filter 

Start/End Points 

Detection 

Quaternions 

Determination 

Unit Vectors 

Calculation 

Figure 6. Self-constrained position tracking algorithm 
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In order to conduct position tracking, a number of coordinate frames need to be 

introduced. To simplify this problem, we assume the earth is stationary and the earth frame 

is an inertial frame. 

− Sensor frame (s) is the coordinate frame of inertial sensors with its origin located at 

the center of sensors. All sensor readings are with respect to this frame. 

− Navigation frame (n) is a local coordinate frame that is defined stationary with respect 

to the earth. The results of position tracking are the estimation of the location and 

orientation of the sensor frame with respect to the navigation frame. 

− Inertial/earth frame (i) is a stationary frame with the origin located at the center of the 

earth. The inertial sensors measure the linear acceleration and angular velocity with 

respect to the inertial frame. 

Based on the simplified coordinate frame defined above, there is no relative motion 

between navigation frame and inertial frame and the inertial sensor can be assumed to 

measure the linear acceleration and angular velocity with respect to navigation frame.  

2.1 Orientation and Rotation Representation 

Since the inertial sensor is attached to the moving object, the task of position tracking is 

to estimation the trajectory of the sensor frame. The inertial sensor measures the inertial 

parameters of the sensor frame with respect to the inertial frame (or navigation frame) in 

the sensor frame. A method to represent the orientation and rotation of the moving frame 

is desired, which can be mainly achieved with two representations, Euler angle and 

Quaternion. 
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1) Euler Angle Representation  

Any rotation can be accomplished with three rotation about 3 axes of a coordination 

system. Those three element rotations define Euler angle, which is typically denoted as 

, ,ϕ θ ψ . There are two types of rotation, extrinsic rotation and intrinsic rotation. The former 

defines the rotation about the axes of the fixed original coordinate system whereas the later 

defines the rotation about the moving coordination system attached to the moving body. 

The Euler angle with extrinsic rotation following the sequence of z-y-x are utilized in this 

thesis. 

A 3×3 rotation matrix is introduced to perform the rotation. All three-element rotation 

of Euler angle defined above are represented with the following 3 basic rotation matrices: 

( ) ( ) ( )

1 0 0 cos 0 sin cos sin 0

0 cos sin , 0 1 0 , sin cos 0

0 sin cos sin 0 cos 0 0 1

x y z

θ θ ψ ψ

ϕ ϕ ϕ θ ψ ψ ψ

ϕ ϕ θ θ

−     
     = − = =     
     −     

R R R            (2a,b) 

( ) ( ) ( )z y xψ θ ϕ= ⋅ ⋅R R R R  

 

The orientation’s parameters φ, θ, and ψ are the roll, pitch, and yaw about the x-axis, y-

axis, and z-axis respectively. The overall rotation R can be represented by a 3×3 matrix 

constructed with the multiplication of 3 basic rotation matrices. Thereby, to convert the 

sensor readings to the navigation frame, the following equations are utilized: 

n ns s

ns ns=ω R ω , where ( ) ( ) ( )ns

z y xψ θ ϕ= ⋅ ⋅R R R R                         (3a, b)  

s

nsω  are inertial sensor measurements, which are the angular velocity of the sensor frame 

with respect to the navigation frame in the sensor frame. By multiplying the rotation matrix 
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nsR  from the sensor frame to the navigation frame, the corresponding angular velocity          

( n

nsω ) in the navigation system is derived. The orientation’s parameters φ, θ, and ψ are the 

roll, pitch, and yaw about the x-axis, y-axis, and z-axis respectively, which are estimated 

with previous measurements of inertial sensors. 

2) Quaternion Representation  

Besides the Euler angle, any rotation or sequence of rotation of a moving coordinate B 

about a fixed coordinate A can also be interpreted as a single rotation by an angle α about 

a fixed axis (called Euler axis), which is represented with a unit vector 
T

x y zu u u =  u
r

. 

Thereby, a combination of a unit vector representing the axis and a scalar angle can 

uniquely determine a 3D rotation or the orientation of coordinate B relative to coordinate 

A. A number system, quaternions, consisting of four numbers are introduced to 

mathematically represent this angle-axis rotation or orientation as below: 

[ ]1 2 3 4
cos 2 sin 2 sin 2 sin 2BA

x y z
q q q q u u uα α α α = = − − − q      (4a, b)  

The inverse (denoted by subscript −1) or conjugate (denoted by subscript *) of the rotation 

quaternion are introduced to represent the opposite rotation or swapped relative orientation, 

which is mathematically expressed in Eq. (5). 

( ) ( ) [ ]
1 *

1 2 3 4

BA BA ABq q q q
−

= = − − − =q q q                           (5a, b) 
 

Where qAB represent the orientation of coordinate A with respect coordinate B. 
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To represent a sequential orientation and coordinate transformation, the Hamilton product 

(denoted by ⊗ ) of the quaternion is introduced in Eq. (6). This product is not commutative, 

which is expressed as ⊗ ≠ ⊗m n n m . 

 

[ ] [ ]1 2 3 4 1 2 3 4

T

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 3 2 4 3 1 4 2

1 4 2 3 3 2 4 1

     

m m m m n n n n

m n m n m n m n

m n m n m n m n

m n m n m n m n

m n m n m n m n

⊗ = ⊗

− − − 
 + + − =
 − + +
 

+ − + 

m n

              (6) 

 

Assume another coordinate C is introduced and its orientation qCB with respect to 

coordinate B is given. The orientation of C relative to A is represented with the quaternion 

product in Eq. (7). 

CA CB BA= ⊗q q q                                                   (7)  

Assume uA is a vector described in coordinate A. A 0 is inserted to this vector to make it a 

row vector containing 4 elements. Given the relative orientation of coordinate B 

represented with qAB, the same vector described in coordination B is expressed in Eq. (8). 

( )B BA A BA
∗

= ⊗ ⊗u q u q                                            (8) 
 

2.2 Pre-process of Raw Data 

The quality of the raw data directly affects the estimation results, especially when the 

integration manipulation is involved. Thereby, the raw data should be pre-processed to 

filter the noise/error before being applied with the position tracking algorithm. There are 

several steps listed as below: 
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1) Offset calibration 

As illustrated in Eq. (1), there is a slowly time-varying bias eb in inertial sensor 

measurement, which can be roughly eliminated by subtracting the mean of the data 

points when the sensor is stationary. This should be done each time when the sensor is 

powered up. 

2) Random Peak elimination 

In the measurements, there are lots of random peaks which are much greater than 

peripheral data. This peak can be eliminated as expressed in Eq. (9) 

( ) ( ) ( )
1

ˆ 1 1
2

a i a i a i= − + +     if ( ) ( ) ( ) ( )1 1
1  and 1a i a i h a i a i h− − > − + >            (9)  

( )a i is the measurement, ( )â i  is the updated result after manipulation, and h1 is the 

threshold. 

3) Mechanical and Moving average Filter 

In the measurements, there are also random error en as introduced in Eq. 1. Part of these 

errors is relatively small and isolate around zero, which is a filter with mechanical filter 

expressed with Eq. (10a). Meanwhile, due to the character of zero mean, moving filter 

defined in Eq. (10b) is utilized. 

( )ˆ 0a i =   if ( ) 2
a i h<                                        (10a) 

( ) ( )
1

0

1
ˆ

M

j

a i a i j
M

−

=

= +∑                                         (10b) 

 

Where 2h  is the threshold, M is the size of the filter. 



25 

 

2.3 Orientation Estimation 

Theoretically, given an IMU, the orientation of the moving sensor can be easily 

estimated by integrating the angular rate (gyroscope reading), detecting the direction of 

gravitational acceleration or geomagnetic field. However, it becomes challenging when 

measurement errors and underground magnetic anomalies are introduced. A reliable and 

accurate filter of orientation estimation which fuses two estimations from the IMU 

similarly to the complementary filter is introduced. Because of the unknown and 

complicated underground condition, the magnetometer which is normally used to 

determine the heading will not be utilized.  

2.3.1 Orientation Estimation with Angular Velocity  

 

Ideally, the orientation can be estimated by integrating the angular velocity. Even though 

a gyroscope can provide the angular velocity, these measurements are with respect to the 

sensor coordinate, which needs to be converted to the navigation coordinate. Quaternion 

representation is utilized for this part.  

With the measurements of the gyroscope s

nsω represented in quaternion form shown in 

Eq. (11a), the time rate of the orientation of the navigation frame relative to the sensor 

frame expressed with quaternion can be calculated using Eq. (11b). 

0s

ns x y z
ω ω ω =  ω ,

1

2

ns ns s

ns= ⊗q q ω&                     (11a, b)  

By numerically integrating the quaternion derivative nsq& , the orientation of the navigation 

frame relative to the sensor frame ns

tq  can be calculated with Eq. (12). 
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, , 1 ,

1

2

ns ns s

t est t ns tω −= ⊗q q ω& , , , 1 ,

ns ns ns

t est t t tω ω−= + ∆q q q&                          (12a, b)  

Where t∆ is the time interval, , 1

ns

est t−q is the previous orientation estimation. 

2.3.2 Orientation Estimation with Gravitational Acceleration 

 

An accelerometer measures the acceleration of the moving sensor frame relative to the 

inertial frame with respect to the sensor frame, which consists of two parts, gravitational 

acceleration and linear acceleration due to the motion. Normally, the latter is much smaller 

than the former, which make it possible to simply assume the accelerometer only measure 

the gravitational acceleration. 

The task to estimate orientation with gravitational acceleration can be converted to a 

typical optimization problem expressed in Eq. (13). 

( )
4

min , ,
ns

ns n s

ns nsf
→q

q a a


,  

Objective function: ( ) ( ), ,ns n s ns n ns s

ns ns ns nsf
∗

= ⊗ ⊗ −q a a q a q a               (13a, b, c) 

[ ]1 2 3 4

ns q q q q=q , constraint: 1ns =q  

Where [ ]0 0 0 1n

ns =a and 0s

ns x y z
a a a =  a is the gravitational acceleration with 

respect to the inertial frame (navigation frame) and sensor frame. s

nsa is the measurement 

of the accelerometer.  

The gradient descent algorithm is applied to obtain the sensor frame orientation 

represented with qns, which is mathematically represented in Eq. (14). 
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( )
( )

( ) ( ) ( )

1

, ,
, 0,1,2,...

, ,

, , , , ,

ns n s

k ns nsns ns

k k ns n s

k ns ns

ns n s T ns n ns n s

k ns ns k ns k ns ns

f
k n

f

f f

µ+

∇
= − =

∇

∇ =

q a a
q q

q a a

q a a J q a q a a

,  

( )
( )
( )

( )
( )

2 4 1 3 3 4 1 2

1 2 3 4 2 1 4 3

2 2
2 32 3

2 2 2 2 2

, , 2 , , 2 2 2 2

0 4 4 02 0.5

x

ns n s T ns n

k ns ns y k ns

z

q q qq a q q q q

f qq q q a q q q q

q qq q a

 − − − − 
   = + − =   
   − −− − −    

q a a J q a  

(14a, b, c, d) 

1

ns

n+q  represents the orientation of the sensor which will be calculated after n iteration 

with the initial guess of 
0

ns
q  and step size μ. The Jacobian J of the objective function f is 

involved to calculate the gradient of f. 

In order to decrease the calculation for the optimization, instead of doing multiple 

iterations of calculation to calculate the orientation using each measurement, one iteration 

is conducted for each measurement and the result is used for the iteration of the next 

measurement as illustrated in Eq. (15a) with an assumption that the convergence rate μt is 

equal or greater than the physical rate of change of orientation expressed in Eq. (15c) 

, , 1

ns ns

t est t t

f

f
µ∇ −

∇
= −

∇
q q   

( ) ( ), 1 , 1
where , , ,       , 1T ns n ns n ns

est t ns est t ns t t
f f tµ α α− −∇ = = ∆ >J q a q a q&  

(15a, b, c) 

The orientation ns

tq  at time t is calculated with the previous orientation estimation , 1

ns

est t−q  

and the gradient of the objective function f∇ which is calculated with Eq. 15(b).  

 

2.3.3 Filter Fusion Algorithm 
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With the measurements of IMU, the orientation can be calculated with Eq. (12) and (15). 

Like the complementary filter, a fusion method for orientation estimation is described in 

Eq. (16) by introducing a weight constant γt.  

( ), , ,= 1 ,0 1ns ns ns

est t t t t t tωγ γ γ∇ + − ≤ ≤q q q   (16) 

The value of γt can be determined by ensuring the weighted divergence rate of ,

ns

tωq  (β) 

equal to the weighted convergence rate of ,

ns

t∇q ( t tµ ∆ ), which is represented in Eq. (17a) 

or rearranged in Eq. (17b) can be expressed as the magnitude of a quaternion derivative 

due to the measurement error. 

( )1  or t t t t

t

t
t

β
γ µ γ β γ

µ β
∆ = − =

∆ +
  (17a, b) 

Since α defined in Eq. (15c) has no upper bound, μt could be very large and Eq. (17b) 

could be simplified as t ttγ β µ= ∆ , which is very small. Thereby, Eq. (16) can be 

simplified as below by substituting Eq. (12b) and (15a) and expressed in Eq. (18). 

( )( ), , 1 ,
= 1 0ns ns ns

est t t est t t

t

t f
t

f
ω

β
µ

µ
−

 ∆ ∇
− + − + ∆  ∇ 

q q q&   (18) 

By rearranging Eq. (18), a filter is derived as shown in Eq. (19a), where ,

ns

est tq&  is the 

estimated rate of change of orientation and ,

ns

e tq&  is the estimated error of ,

ns

est tq& . 

, , 1 ,=ns ns ns

est t est t est t t− + ∆q q q&   

where  , , , ,,     ns ns ns ns

est t t e t e t f fω β= − = ∇ ∇q q q q& & & &  

(19a, b, c) 
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The filter estimates the orientation by numerically integrating ,

ns

est tq& , which is estimated 

with Eq. (19b). The difference between (12a) and (19a) is that the error of the rate of change 

of orientation obtained from the gyroscope ,

ns

tωq&  is removed by involving the accelerometer 

measurements.  

2.4 Position Estimation 

The distance of travel of the sensor can be easily obtained by involving the encoder 

readings. The trajectory of the moving sensor can be easily estimated by combining the 

real-time encoder measurements and estimation of the sensor frame. 

Assume the sensor always moves along the x axis of the sensor frame and distance of 

travel at time t is td∆  provided by the encoder. Thereby, the change of position with respect 

to the sensor frame s

t∆r  at time t is represented in Eq. (20a), which can be transformed to 

the navigation frame using the orientation estimation ,

ns

est tq  with Eq. (20b). The estimation 

of the sensor position is calculated by adding the change of the position for each time period 

as illustrated in Eq. (20c). Originally the sensor frame is assumed to coincide with the 

navigation frame, thereby, [ ],0 = 0 0 0 0n

estr  when t = 0. 

[ ] ( ), , , , 10 0 0 ,   ,   =s n ns s ns n n n

t t t est t t est t est t est t td
∗

∆ −∆ = ∆ ∆ = ⊗ ∆ ⊗ + ∆r r q r q r r r   (20a, b, c) 

Since the sensor moves along the x axis of the sensor frame, the rotation about the x axis 

(roll angle) will not affect the position estimation and the x-axis error of the gyroscope has 

less effect on the position estimation. The rotation about the y axis (pitch angle) will affect 
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the elevation (z component of the position vector) whereas the rotation about the z axis 

(yaw angle) will affect the heading (x and y component of the position vector). 

3. Design of Sensing System for 3D Underground Conduit Mapping 

With the method developed in the previous section, a sensing system for 3D 

underground conduit mapping is designed as manifested in Fig. 8. An IMU with power is 

packed in a designated IP68 metal housing. A rope is hooked onto the device and the other 

side of the rope is blown through the duct all the way to the other side using an optic fiber 

blower. The rope on the other side of the duct is hooked to a controllable motor with an 

encoder. The device is then inserted into one end of the duct, powered on, and left 

stationary for several seconds for offset calibration. A simplified flowchart of data 

acquisition and processing is shown below in Fig. 7. Since real-time underground conduit 

mapping is not required, all the IMU and encoder data is stored in SD card and analyzed 

and processed offline to construct an accurate 3D layout of the underground conduit with 

the method presented in the previous section.  

 

Figure 7. Schematics of Sensing system for 3D underground mapping  
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Figure 8. Flowchart of the data acquisition and processing 

Even though the main algorithm for position tracking has been presented in the previous 

section, there are several additional improvements designed based on the application. 

1. Motion detection (starting/ending points) 

After inserting the sensor into the duct, the sensor should be station for calibration, the 

station phase is then followed by the controlled motion through the duct. It is very 

important to be able to identify and crop the data for the calibration phase and the duct 

mapping phase, which is based on the detection and identification of the motion of the 

sensor.  As illustrated in Fig. 9, by introducing a user-defined threshold h3 illustrated 

by two red dash line, k1 and k2, which are the starting and ending points of the motion, 

can be automatically detected based on the acceleration measurement. The acceleration 

will be within a user-defined threshold h3 if the sensor does not move.  
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+h3

−h3

k1 k2

 

Figure 9. Illustration of motion detection 

2. Gyroscope drifting correction 

Gyroscopes’ errors consists of two parts, slow time-varying bias and random error with 

zero mean as mathematically represented in Eq. (1). The constant offset within the error 

can be easily eliminated by calibration procedure explained in the previous section. 

Considering the working principle of the gyroscope for orientation estimation 

(integration manipulation), the random error with zero mean has little effect on the 

estimation results, which is not true for the time-varying bias. Thereby, an 

accelerometer, which detects the direction of the gravitational acceleration, is involved 

to correct parts of the drifting effect of the gyroscope with the proposed filter. The 

drifting effect on the heading angle (yaw), normally corrected by a magnetometer (not 

available in this application), is still unsolved.  

Contrary to commonly seen applications that process live orientation and position 

information, offline processing of data can be done instead. All the data is accessible 



33 

 

for the orientation and position estimation. In this research project, the orientation 

and/or position of the starting and ending point may be available. A new refinement 

method is developed and implemented by following the procedures as below. 

Assume the orientation at the starting and ending points are known and represented 

with quaternions ,

ns

true startq and ,

ns

true endq , respectively.  

1) Sensor drifting estimation and compensation 

Since the output of the gyroscope at the starting point in stationary is zero after the 

calibration procedure, the measurement of the gyroscope at the ending in stationary is 

the sensor drift ωd. 

Assume the sensor output linearly drifts with time elapsing, the compensated 

measurements 
,com tω   at time t can be obtained with Eq. (21) 

, ,com t meas t d

t

T
= −ω ω ω   (21) 

Where T is the time for data collecting and ωmeas,t is the measurement at time t. 

2) Orientation refinement 

Since all the data is available before processing, it is possible to do the orientation 

estimation in the opposite direction (from the ending point to starting point). Thereby, 

two sequences of orientation estimation can be calculated. Because of the estimation 

principle (numerical integration), the accuracy of the estimation will decline over time. 

Inspired by the complementary filter, the orientation can be estimated with Eq. (22), 

which involves two weight coefficients related to t and T.   
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( ) ( ), , ,1ns ns ns

est t est t est tstart end

t t

T T

 
= − + 
 

q q q   (22) 

Where ( ) ( ), ,and ns ns

est t est tstart end
q q are the orientation estimation at time t starting from the 

starting and the ending points, respectively. 

The orientation at the starting and ending points represented with quaternion ,

ns

true startq

and ,

ns

true endq respectively are utilized as the initial orientation (guess) for two estimations 

mentioned above. 

3) Position correction  

The information of the locations of the ending point can also benefit the position 

estimation if it is available. Given a constant orientation error, the position error 

increases linearly with the movement of the sensor. Thereby, the position estimation 

can be corrected using Eq. (23). 

, , , ,
t

est t est t true end est end

d

D
 = + − r r r r   (23) 

Where D is total displacement of the sensor for the whole data collecting process, dt is 

the displacement of the sensor at time t, 
,true endr  is the location of the ending point, 

,est tr

is the corrected position estimation at time t. 

4. Experimental Implementation and Discussion 

To verify and demonstrate the design of the algorithm and sensing system for 3D 

underground duct mapping presented in Chapter 2 and 3, several experiments have been 
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conducted and analyzed. The experimental setup, procedures, results and analysis will be 

provided in the following two sections.  

4.1 Experimental setup description 

Based on the design introduced in Chapter 3, a sensing system for 3D underground 

mapping has been implemented as illustrated in Fig. 10, which consists of a sensing unit, 

a duct rodder (08078545) and a fiber blowing machine (GS350). The sensing unit contains 

a sensing housing made of steel, an IMU (SEN-14001) provided by SparkFun and a 400 

mAh Lithium-ion battery (13851). The sensing device is then mounted to the duct rodder, 

which has high mechanical strength and durability, using a small swivel that allows the 

sensing device to rotate about its own moving axis to prevent the high torsion generated in 

the duct rodder. The fiber blowing machine can push the sensing unit in the duct by pushing 

the duct rodder, which is placed between two gear belts driven by pneumatic motors. The 

PLC box in the blowing machine does not only control the speed of the pneumatic motors, 

but also measures and records the speed and distance of the rodder using an integrated 

encoder (Z7934-ND) with 1Hz sampling rate. Both the duct rodder and fiber blowing 

machine are manufactured by Condux. A 2” diameter conduit was utilized to perform the 

experiment as shown in Fig. 10. 
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Figure 10. Experimental setup 

In order to keep the high accuracy of the estimation, the IMU collects the data with the 

sampling rate of 100 Hz, which is not consistent with the sampling rate of the encoder        

(1 Hz). Since the same sampling rate is required for position tracking algorithm, additional 

data are estimated between each pair of the encoder’s measurements with linear 

interpolation.  

4.2 Experimental Procedures 

The details of the experimental procedures are as follows: 

− Blow two small sized foam pieces through the conduit to ensure the cleanness of the 

conduit. 

− Power on the sensing unit and keep it in stationary for 2-3 minutes for calibration. A 

water level was used to make sure that the z axis of the IMU is exactly vertical during 

calibration.  
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− Power on the PLC box to record the reading of the encoder. Insert the sensing unit into 

the conduit and keep it in stationary for another 2-3 minutes to identify the starting 

point. Measure the yaw angle of the conduit/sensing unit with the cell phone 

magnetometer. 

− Power on the fiber blowing machine (pneumatic motors) and slowly move the sensing 

unit through the conduit by feeding the duct rodder. 

− Keep the sensing unit in stationary for another 2-3 minutes to identify the ending point 

when it moves to the end of the conduit. Measure the yaw angle of the conduit/sensing 

unit again. 

− Store the IMU and encoder data in the computer and reset the IMU and fiber blowing 

machine for another run. 

The measurements of the IMU and encoder are stored in an SD card internal flash driver 

respectively. These two sequences of data can be aligned by identifying the motion or 

starting/ending points. The motion of the sensing unit should be smooth, but there is no 

need to maintain absolute constant moving speed.  

4.3 Experimental results  

Several experiments were conducted with three different duct layouts with the 

dimensions and shapes shown in Fig. 11. The length of each section of the layouts (lines 

and curves) was measured with a walking wheel tape. Assume z component of all the 

layouts is zero except one section of layout3 represented with a red line shown in Fig. 11. 

The curve in x-z plane can be modeled as a Gaussian function with 20, 1µ σ= = . This 
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section was implemented by placing the conduit on a 0.8m, 0.5m table height and width, 

respectively, as shown in Fig. 13(a).  

As mentioned in the previous section, the sensing device always moves along the local 

x axis of the sensing coordinate system (xyz). For each trial, the sensing unit originally sits 

at the origin of the navigation coordinate system (XYZ) with the initial orientation shown 

in Fig. 11. Fig. 12(a), (b) and (c) compare the experimental results and actual layouts in x-

y plane whereas Fig. 13 (b) compares the results of part of Layout3 in y-z plane. The mean 

and standard deviation (STD) of the estimation errors are shown in Table I.  

2=0 =1µ σ，

 

Figure 11. Schematics and dimensions of three layouts 
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Figure 12. Comparison of the estimation results and actual layouts in x-y plane 

 

Figure 13. Part of layout 3 and corresponding results (x-z plane) 

Table 1. Estimation errors of three layouts 

 Layout 1 Layout2 Layout3 

Mean (m) 0.3917 −0.1230 −0.1522 

STD (m) 0.5975 0.2109 1.0870 
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4.4 Discussion and Analysis  

Some observations can be made from the experimental results illustrated in Figs. 12, 13 

and Table I. 

− The 3D mapping of the conduit can be reconstructed with the sensing system developed 

based on the new designed 3D tracking system. 

− The tracking errors increase with the time elapse or displacement increase. 

− As illustrated in Fig. 12, the estimation results in x-y plane of layout1 and 2 are better 

than the results of layout3, which includes additional z axis (3D tracking). 

− The vertical motion of the sensing unit can be reconstructed as shown in Fig. 13(b). 

The large error close to x = 0 and peak shift are caused by the poor estimation of the 

previous section.  

− The orientation and value of z component at the ending location are successfully pulled 

to 90° and 0 with Eqs. (22) and (23) respectively. 

The accuracy of the 3D position tracking mainly depends on the accuracy of the 

orientation estimation. Even a small deviation of the angle will result in a tremendous error 

with the increase of the travel distance. The experimental errors at certain sections of the 

layouts are relatively large especially for layouts 3. The errors may be caused by the 

following factors: 1) uncompensated sensor drift, 2) unsuccessful calibration and 3) 

measurement error.  
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5. Conclusion and Future Work 

The use of MEMS sensors have notably increased over the past decades due to their 

high demand in various localization related applications. A new algorithm has been 

developed and experimented in this research. The algorithm was developed bas on the use 

of an IMU sensor that gathered information about acceleration and orientation at 100 Hz. 

The encoder, that gathered information about distance at 1 Hz, is also a critical input to the 

algorithm. Three different duct layouts were utilized to test the algorithm. The first two 

duct layouts were on the xy-plane and the third duct layout was on the xyz-plane. The 

analysis showed higher accuracy on the xy-plane versus the xyz-plane. Uncompensated 

drift of the IMU, inaccurate distance data, and imprecise duct layout measurements are all 

possible causes of the resulting error. The standard deviations of the estimated trajectories 

from the actual duct layouts were 0.5975, 0.2109, and 1.0870 in layouts 1, 2, and 3, 

respectively. The error is expected to increase over longer ducts.  A possible solution to 

this problem is to frequently bring the sensing device to a complete stop for re-calibrating 

the sensing system. A potential improvement is to also use an alternative to the GS350 

machine to blow the sensing device through the conduit, since it was only used in this 

application to utilize its encoder. Finding an alternative to the GS350 machine would save 

a big amount of money to whoever is interested in performing a similar experiment. 

Instantaneous transmission of data from the sensing device to a computer is also a potential 

improvement in this research project. Live analysis of data would allow the developer to 

monitor the errors as they arise and eliminate them. This would definitely decrease the 

sensor accumulative errors. Live analysis of the data could be obtained only if the sensor 
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is connected to the computer during the complete run. This could be achieved by custom 

manufacturing a duct rodder with a wire in it that transmits the data instantaneously. Future 

cooperation between Condux, the sponsor of the research, and potential researchers at the 

department of Mechanical and Civil Engineering at Minnesota State University, Mankato 

(MNSU) would positively affect the outcome of this research project.    
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7. Appendix: Critial MATLAB Codes 
1. Main function 

clear 
clc 
%Data setting 
%Trial2 
data2Old= xlsread('trial2IMU.xlsx'); 
Data= xlsread('trial2PLC.csv'); 
startEncoder = 264;  % starting index of encoder reading  
endEncoder = 390;   % ending index of encoder reading 
k1 = 20054; % starting index of IMU 
k2 = 31682; % ending index of IMU 
startCalibration = 16601; % starting index of calibration data 
endCalibration = 32100; % starting index of calibration data 
angleStart = (270-56)/180*pi; %Yaw angle at the starting location 
angleEnd = 90/180*pi;   %Yaw angle at the ending location 
paraOri = 0.05; %  weight coefficient  paraOri = 0, orienation 

estimated only from Gyro, with the increase of coefficent, more weight 

on accelerometer 
distanceData= Data(startEncoder:endEncoder,6); 
addpath('../Quaternions'); 
%time index (unit: sec) 
data2=data2Old(k1:k2,:); 
dataTime=data2(:,1)/1000; 

  
dataTime = dataTime-dataTime(1); 
dataGyo=[]; 
aa = [80 80 80];  
bb = [0.1 0.1 0.1]; 
driftGyro = zeros(3,1); 
timeDrift = (data2Old(endCalibration,1) - 

data2Old(startCalibration,1))/1000; 
for mm = 1:3 
    data = data2(:,(mm+4)); 
    for i=2:(length(data)-1) 
     if abs(data(i)-data(i-1))>aa(mm) & abs(data(i)-data(i+1))>aa(mm) 
        data(i)=(data(i-1)+data(i+1))/2; 
     end 
    end 

         
    

meanBefStart=sum(data2Old(startCalibration:startCalibration+199,mm+4))/

200; 
    

meanBefEnd=sum(data2Old(endCalibration:endCalibration+199,mm+4))/200; 
    driftGyro(mm) = meanBefEnd-meanBefStart; 
    data=data-meanBefStart;   % drift angular velocity 
    %mechanical filter 
    for i=1:length(data) 
        if abs(data(i))<=bb(mm)  
            data(i)=0; 
        end 
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    end 

  
    % correct the drift 
    data = data - dataTime/timeDrift*driftGyro(mm); 
    dataGyo=[dataGyo data];   

  
end 

  

  
dataAcc=[]; 
aa = [0.5 0.5 0.5]; 
bb = [0.02 0.02 0.02]; 

  
for kk = 1:3 
    data = data2(:,(kk+1)); 
    %eliminate the arbitrary peaks 
    for i=2:(length(data)-1) 
        if abs(data(i)-data(i-1))>aa(kk) & abs(data(i)-

data(i+1))>aa(kk) & sign(data(i)-data(i-1))*sign(data(i)-data(i+1)) == 

1 
            data(i)=(data(i-1)+data(i+1))/2; 
        end 
    end 
    % calibration 
    

meanBef=sum(data2Old(startCalibration:startCalibration+199,kk+1))/200; 
    data=data-meanBef; 
    %mechanical filter 
    for i=1:length(data) 
        if abs(data(i))<=bb(kk)  
            data(i)=0; 
        end 
    end 

  
    if kk==3 
        data=data+meanBef;  %No need to calibrate z axis of the 

accelerometer 
    end 
     dataAcc=[dataAcc data];   
end  

  
dataGyo = dataGyo * (pi/180); 
quaternion = zeros(length(dataTime), 4); 

  
%initial orientation, quaternion format 
tempQuaternionStart = [cos(angleStart/2) -sin(angleStart/2)*[0 0 1] ]; 
tempQuaternionEnd = [cos(angleEnd/2) -sin(angleEnd/2)*[0 0 1] ]; 
quaternionTemp(1,:,1) = [tempQuaternionStart]; 
quaternionTemp(length(dataTime),:,2) = [tempQuaternionEnd]; 

  
%smooth the accelerataion measurement 
dataAccQuat = [smooth(dataAcc(:,1), 5) smooth(dataAcc(:,2), 5) 

smooth(dataAcc(:,3), 5)]; 
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%Start->End 
tempQuaternion = quaternionTemp(1,:,1); 
for t = 2:length(dataTime) 
    tempQuaternion = estQuaternion(tempQuaternion, dataGyo(t,:), 

dataAccQuat(t,:),dataTime(t)-dataTime(t-1), paraOri); 
    quaternionTemp(t, :, 1) = tempQuaternion; 
end 

  
%End->Start 
tempQuaternion = quaternionTemp(length(dataTime),:,2); 
for t = length(dataTime)-1:-1:1 
    tempQuaternion = estQuaternion(tempQuaternion, -dataGyo(t,:), 

dataAccQuat(t,:),dataTime(t+1)-dataTime(t), paraOri); 
    quaternionTemp(t, :, 2) = -tempQuaternion; 
end 

  
% Orientation refinement 
for i = 1: length(dataTime) 
    quaternion(i,:) = (1-

dataTime(i)/(dataTime(end)))*quaternionTemp(i,:,1)+(dataTime(i)/(dataTi

me(end)))*quaternionTemp(i,:,2); 
    quaternion(i,:) = quaternion(i,:)/norm(quaternion(i,:)); 
end 

  
timeEncoder = 0:(length(distanceData)-1); 
distance = interp1(timeEncoder,distanceData,dataTime,'liner')*0.3048; 

  
%multiplying dv by the time difference: 
for i=2:length(dataTime) 
deltad=(distance(i)-distance(i-1)); 
dv(:,i)= quaternRotate([1 0 0]*deltad, quaternion(i,:)); 
end 
pos=zeros(3,length(dataTime)); 
for i=2:length(dataTime) 
pos(:,i)=pos(:,i-1)+dv(:,i); 
end 

  

  
%Position correction 
zEnd = 0.5; 
for i =1:length(distance) 
    pos(:,i) = pos(:,i)+distance(i)/distance(end)*([pos(1,end); 

pos(2,end); zEnd]-pos(:,end)); 
end 

  
figure 
plot3(pos(1,:),pos(2,:),pos(3,:)); 
axis equal 

  
% layout measurement 
load('layout1.mat'); 
hold on 
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plot(x,y); 

 

2.   Orientation estimation function 

function [Quaternion] = estQuaternion(quaternion, Gyroscope, 

Accelerometer, SamplePeriod, Beta) 
%Estimate quaternion with the measurements of accelerometer and 

gyroscope 
% inputs:     quaternion        previous orientation estimation 
%             Gyroscope         measurements of angular velocity 
%             Accelerometer     measurement of acceleration 
%             SamplePeriod      time period 
%             Beta constant     coefficient 
% output:     Quaternion        Updated orientation estimation 

  
          q = quaternion; % short name local variable for readability 
            % Normalise accelerometer measurement 
            if(norm(Accelerometer) == 0), return; end   % handle NaN 
            Accelerometer = Accelerometer / norm(Accelerometer);    % 

normalise magnitude 

  
            % Gradient decent algorithm corrective step 
            F = [2*(q(2)*q(4) - q(1)*q(3)) - Accelerometer(1) 
                2*(q(1)*q(2) + q(3)*q(4)) - Accelerometer(2) 
                2*(0.5 - q(2)^2 - q(3)^2) - Accelerometer(3)]; 
            J = [-2*q(3),   2*q(4),    -2*q(1), 2*q(2) 
                2*q(2),     2*q(1),     2*q(4), 2*q(3) 
                0,         -4*q(2),    -4*q(3), 0    ]; 
            step = (J'*F); 
            step = step / norm(step);   % normalise step magnitude 

  
            % Compute rate of change of quaternion 
            qDot = 0.5 * quaternProd(q, [0 Gyroscope(1) Gyroscope(2) 

Gyroscope(3)]) + Beta * step'; 

  
            % Integrate to yield quaternion 
            q = q + qDot * SamplePeriod; 
            Quaternion = q / norm(q); % normalise quaternion 

  
end 
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