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Abstract

With the surge of inexpensive, widely accessible, and precise Micro-Electro-
Mechanical Systems (MEMS) in recent years, inertial systems tracking move-
ment have become ubiquitous nowadays. Contrary to Global Positioning Sys-
tem (GPS)-based positioning, Inertial Navigation System (INS) are intrinsically
unaffected by signal jamming, blockage susceptibilities, and spoofing. Measure-
ments from inertial sensors are also acquired at elevated sampling rates and may
be numerically integrated to estimate position and orientation knowledge. These
measurements are precise on a small-time scale but gradually accumulate errors
over extended periods. Combining multiple inertial sensors in a method known as
sensor fusion makes it possible to produce a more consistent and dependable un-
derstanding of the system, decreasing accumulative errors. Several sensor fusion
algorithms occur in literature aimed at estimating the Attitude and Heading
Reference System (AHRS) of a rigid body with respect to a reference frame.
This work describes the development and implementation of a low-cost, multi-
purpose INS for position and orientation estimation. Additionally, it presents an
experimental comparison of a series of sensor fusion solutions and benchmarking
their performance on estimating the position of a moving object. Results show
a correlation between what sensors are trusted by the algorithm and how well it
performed at estimating position. Mahony, SAAM and Tilt algorithms had best
general position estimate performance.

Keywords: Sensor Fusion · Inertial Navigation System (INS) · Micro-Electro-
Mechanical Systems (MEMS) · Inertial Measurement Unit (IMU) · Attitude
and Heading Reference System (AHRS)



Resumo

Com o recente surgimento de sistemas micro-eletromecânico amplamente acessíveis
e precisos nos últimos anos, o rastreio de movimento através de sistemas de in-
erciais tornou-se omnipresente nos dias de hoje. Contrariamente à localização
baseada no Sistema de Posicionamento Global (GPS), os Sistemas de Naveg-
ação Inercial (SNI) não são afetados intrinsecamente pela interferência de sinal,
suscetibilidades de bloqueio e falsificação. As medições dos sensores inerciais
também são adquiridas a elevadas taxas de amostragem e podem ser integradas
numericamente para estimar os conhecimentos de posição e orientação. Estas
medições são precisas numa escala de pequena dimensão, mas acumulam grad-
ualmente erros durante longos períodos. Combinar múltiplos sensores inerci-
ais num método conhecido como fusão de sensores permite produzir uma mais
consistente e confiável compreensão do sistema, diminuindo erros acumulativos.
Vários algoritmos de fusão de sensores ocorrem na literatura com o objetivo de
estimar os Sistemas de Referência de Atitude e Rumo (SRAR) de um corpo
rígido no que diz respeito a uma estrutura de referência. Este trabalho descreve
o desenvolvimento e implementação de um sistema multiusos de baixo custo
para estimativa de posição e orientação. Além disso, apresenta uma comparação
experimental de uma série de soluções de fusão de sensores e compara o seu de-
sempenho na estimativa da posição de um objeto em movimento. Os resultados
mostram uma correlação entre os sensores que são confiados pelo algoritmo e o
quão bem ele desempenhou na posição estimada. Os algoritmos Mahony, SAAM
e Tilt tiveram o melhor desempenho da estimativa da posição geral.

Keywords: Fusão de Sensores · Sistemas de navegação Inercial · Sistemas
Microeletromecânicos · Unidade de Medição Inercial · Sistemas de Referência
de Atutude e Rumo
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1 Introduction

Navigation systems have become a popular subject in the designing of unmanned
and autonomous systems in recent years. Still, most navigation systems highly
depend on the Global Navigation Satellite System (GNSS) receivers as the cen-
tral resource of navigation data. Although the satellite system can deliver accu-
rate and long-term positioning in open spaces, when relying on GNSS only local-
ization, there are often circumstances when the satellite signal is obstructed or
weakened, resulting in degradation or even loss of position estimate precision [12].
Such is especially threatening in high urbanized centers where satellite signals
can suffer multipath propagation from tall glass-covered buildings [13]. Satellite
positioning is especially impactful in battery autonomy, whereas GNSS receivers
remain draining a substantial amount of electric current. Inevitably, there is
a need to become less dependent on GNSS-based localization, particularly in
autonomous settings. Substantial research has been conducted to enhance the
localization precision of an object devoid of satellite signals [14] [15] [16] [17] [18].
Increased accuracy is a precursor to establishing autonomous agents for a diver-
sity of functions. Inertial Measurement Unit (IMU) have become standard in
embedded inertial systems due to their low cost, lightweight, and low power
consumption. They can provide short-term position and orientation changes.
Furthermore, inertial systems have been employed in wearable applications with
uses in Unmanned Aerial Vehicle (UAV) [19] [20] [21], telemedicine [22], and
robotics [23]. Despite these accomplishments, inertial systems suffer from rapid
drift owing to the existence of disturbances and noise in the measurements.
Practically all present commercial applications are restricted to minimal mo-
tion recognition. Position and orientation in real-world applications are rarely
employed due to difficulties in precise integration. Recently, innovative fusion
algorithms have emerged, which can diminish the impacts of noise and distur-
bances, broadening these devices’ capabilities. There is an increasing need, which
remains unmet, for inertial orientation and position applications since they are
key to automation and the Internet of Things (IoT). We propose a low-cost, mul-
tipurpose inertial solution with modules for an Inertial Measurement Unit (IMU)
that may support maintaining high levels of orientation and location exactness
even when satellite-based location is not possible. Focusing on how different sen-
sor fusion algorithms perform in assessing a body’s position in space.
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1.1 Problem Statement

1.1.1 A. GNSS only positioning is prone to signal jamming and
impacts battery autonomy

Modern navigation relies greatly on the Global Navigation Satellite System
(GNSS) constellations (such as Global Positioning System (GPS), Galileo, GLONASS,
etc.); being straightforward to operate, accurate and trustworthy, it is widely
employed in navigation systems. Nevertheless, GNSS signals still encounter nu-
merous vulnerabilities and can often be compromised by natural and human
sources [12]. Attacks against GNSS-based localization are becoming more fre-
quent and of intensifying damage [24]. Satellite signals can also be affected by
abnormal activity due to solar winds, creating temporary gaps in coverage [25].
Moreover, while GNSS offers seamless navigation with inexpensive receivers, they
are also prone to signal jamming, where satellites are unable to detect the ob-
jects. Repeatedly, position accuracy is reduced or even lost, such as in tunnels or
underground sections [26] [13]. Furthermore, GNSS cannot accurately determine
altitude with the necessary exactness, which is essential to accurately depict a
body in three-dimensional space. Lastly, localization technologies demand high
processing capacity and communication costs. This is particularly impactful in
autonomous settings, where battery autonomy is crucial, while GNSS receivers
continue to drain a large amount of electric current [27]. Consequently, power
optimization is critical, and there is a necessity to become less reliant on GNSS-
based localization.

1.1.2 B. Dead reckoning is susceptible to cumulative errors and
suffers from gimbal lock

When understanding the alternatives to GNSS for estimating the position, the
dead reckoning technique is often employed to resolve the location of a moving
object. Using sensor data (gyroscope, accelerometer, magnetometer, etc.), it is
possible to assess current position even when GNSS positioning is not possi-
ble [13]. It has been recognized as a low-power alternative to GNSS localization
that can deliver high-resolution position data [15]. It is possible to estimate the
current position from an obtained distance (which may be estimated from ve-
locity), the known starting point, and estimated drift. However, the precision
of the dead-reckoning approach is continuously worsening while measurement
errors accumulate during the current position estimation [16]. The approach is
also embedded sensorial fusion techniques (will be explored in Section 2.4 Sensor
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Fusion), which mathematically merge a series of navigation solutions to obtain
the best estimate of the navigator’s current position, velocity, attitude angles,
etc [28].

Still, precise tracking of a moving and rotating body in three-dimensional
space implies a superior degree of complexity (compared to two-dimensional
tracking). It can be accomplished in a range of approaches. Most commonly,
the orientation of bodies that move in three dimensions may be explained by a
combination of their angle of rotation across each of their three axes (e.g., such
as in trigonometry, where Euler angles can approximate yaw, roll, and pitch).
Fundamentally, a specific movement could be defined by multiple rotations. In
such case, to perform a rotation over a particular axis, rotational matrices, vector
operations, and trigonometric functions are required [29]. This involves numerous
complex mathematical operations and several clock cycles in a microprocessor
that could negatively impact computational performance [30].

Nevertheless, the rotation axes are not always independent, and results are
not necessarily distinctive or unique. This further implies that the plane of two
gimbals (rotational axes) to align, which causes the recognized gimbal lock phe-
nomenon, where two out of three gimbals are parallel or very nearly parallel,
reducing the output to two degrees of freedom [31]. When gimbal lock happens,
it is not possible to reorientate the axes without an external reference (a more in-
depth analysis will be given at 2.2 Orientation). Alternatives using quaternions
may be used, while most studies apply them in microcomputers rather than on
microcontrollers. Quaternions give the capability to define any three-dimensional
rotation around an axis distinctively and are not susceptible to gimbal lock [32].

1.1.3 C. Gravity acceleration greatly impacts sensor readings
An accelerometer is generally utilized to estimate the velocity and position of a
given body devoid of the usage of GNSS. These electromechanical devices can
measure proper acceleration forces, which can be employed to determine a body’s
velocity and position relative to a starting point. In theory, this can be done by
integrating the resultant of acceleration yielding velocity; double integrating will
deliver the body’s accumulative position [33]. In practice, these measurements
are influenced by Earth’s gravitational field and rotational components of accel-
eration, significantly magnifying numerical errors during the readings [34]. The
gravity component will not be differentiated from the physical acceleration of the
device and will eventually generate exceedingly elevated errors in the measured
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acceleration. Double integrating these measurements will inherently amplify er-
rors which will accumulate exponentially, translating into a yet greater offset in
velocity and position estimates [35].

A potential solution to minimize this difficulty is to assume the body moves
on a flat surface, thus greatly diminishing the influence of the gravity com-
ponent on acceleration readings. Every inaccuracy that may arise from hiring
such supposition can be regarded as noise and is smoothly filtered [34]. Un-
derstandably, such an assumption is not possible with a body moving through
three-dimensional space since it is subject to many kinds of forces and move-
ments. A numerical process is required for handling accelerometer measurements
that utterly removes the effect of the gravity component and further undesirable
acceleration vectors.

1.2 Research Questions

While research has been performed towards orientation estimation by the fu-
sion of multiple sensors, few studies sought to assess position due to difficulties
removing the measurement of normal forces that do not cause physical acceler-
ation of the sensor. This investigation seeks to comprehend how different sensor
fusion approaches perform in approximating the orientation of a moving system,
along with how to overcome the positioning challenge through a technique that
combines orientation estimation to filter non-physical acceleration.

– [RQ1]. Estimate - How to perform a low-cost orientation and position
estimation of a moving object devoid of GNSS?
The study will emphasize on the possibility of estimating the orientation and
position of a moving object in three-dimensional space short of GNSS-based
positioning by combining multiple low-cost sensors to provide an object’s
navigation information.

– [RQ2]. Comparing - How distinct fusion techniques perform in orientation
and position estimation?
An experimental comparison between various sensor fusion algorithms is
used to evaluate how accurate each approach can approximate orientation
and position.
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1.3 Thesis Contribution

With this study, we aim to design and build a low-cost, multipurpose Iner-
tial Navigation System, intending to estimate the orientation and position of a
moving object in three-dimensional space. This research additionally proposes
introducing an experimental comparison among several established AHRS sen-
sor fusion algorithms such as the EKF, Madgwick, and Mahony algorithms.
Furthermore, a quaternion-based gravity compensation filter will be presented,
diminishing the influence of the gravity component on acceleration readings.

1.4 Thesis Outline

This section will describe this document’s organization and structure. First,
there will be an introductory section to some background knowledge regarding
different concepts and notions that will be adopted throughout the dissertation.
Building a foundation of understanding wherein the mathematics and arithmetic
behind attitude representation. An introduction to inertial sensors and how they
can be employed to estimate orientation using sensor fusion. This is followed
by a related work section, which will narrow the existing literature within this
research’s scope, examining the methods each author used in their work and
interpreting key insights and how each source contributes to the existing pool of
knowledge on its subject. A position estimation methodology is then presented
providing an overview of the process employed to assess the system’s orientation
and position. From the raw sensor measurements to final position output, and
every step in the method. Next, a hardware and software experimental setup
outline, describing and specifying development and implementation of the low-
cost Inertial Navigation System (INS) aimed at position estimation in three-
dimensional space describing the hardware and software solution. Later in the
section, the experimental tests are depicted, describing how they were conducted
to assess the position performance of the INS under different conditions. The
results from the experiments are then presented followed by a discussion of results
drawing conclusions and comparing with the existent work. This section will also
illustrate some challenges faced and future work. Lastly, a conclusion chapter will
finalize restating the work done, summarize the key supporting ideas discussed
throughout the work, and offering some final impressions wrapping final thoughts
and main points.
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2 Background

The subsequent section presents background knowledge regarding different con-
cepts and notions that will be adopted throughout the dissertation. First, a
definition of orientation frames and coordinate systems will be presented, fol-
lowed by an introduction to rotation matrices, Euler angles, and quaternions,
building a foundation of understanding wherein the mathematics and arithmetic
behind attitude representation. An introduction to inertial sensors and how they
can be employed to estimate orientation is then exhibited. The chapter concludes
with an analysis and summary of different sensor fusion algorithms utilized to
determine orientation.

2.1 Frames of coordinates

This section will focus on defining and distinguishing the different concepts
of frame coordinate systems. An emphasis will be given to East North Up
(ENU), Earth Centered, Earth Fixed (ECEF), and the World Geodetic Sys-
tem (WGS84). The notion of body frame will also be defined. The ECEF and
WGS84 can be considered supplementary frame systems applied to describe the
ENU frame, which can be understood as the world frame.

2.1.1 ECEF and ENU frame

ECEF coordinate system describes a referential axis where the origin of the
coordinates is at the center of mass of the Earth, also known as barycenter [36].
Mathematically, this translates to the integral of the position vector times the
density over the Earth being zero (equation 1) [37].

∫
−→x ρ dx3 = 0 (1)

The X-axis is described by the intersection of the zero-latitude line (Equator)
plan and the zero-longitude line (prime meridian) plan. The orientation of the
X-axis is deemed to be positive from the center towards the point defined by
zero latitude and longitude. Z-axis is expressed by the line interconnecting North
and South Poles, staying positive in the Earth’s barycenter to the North Pole.
Y-axis lies in the equatorial plane and is perpendicular to the plane described
by the X and Z-axis, and it is in a positive direction (figure 1). The right-hand
rule explains its orientation.
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The ENU system is a geographic coordinate structure where the origin is
placed at an empirical point in the ECEF coordinate system. In the ENU co-
ordinate system, the X-axis points towards the East, and the Y-axis aims over
the North Pole. The plane described by the X and Y-axis is tangential to the
WGS84 frame on the origin of ENU. Z-axis designates the elevation from a de-
fined geographical plane (figure 1). The ENU frame is considered in this work
as the reference frame.

XECEF
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ZECEF
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Fig. 1: An illustrative diagram for the WGS84, ECEF, and ENU coordinate
systems for the Earth and their transformation correlation (PM line is the
Prime Meridian; λ and φ are latitude and longitude in WGS84; X, Y, Z for
ECEF; and E, N, U for ENU).

Considering a point of reference in the ECEF frame, it is required to discover
the equivalent latitude and longitude (λr and φr respectively) of the reference
point (Xr, Yr, Zr). The parameters of WGS84 required to perform such trans-
formation are presented in table 2 [10].



8

Parameter Notation Value
Semi-major axis a 6 378 137.0 m
Reciprocal of flattening 1/f 298.257 223 563
Semi-minor axis b 6 356 752.3142 m
First eccentricity squared e2 6.694 379 990 14x10-3
Second eccentricity squared e′2 6.739 496 742 28x10-3

Table 2: WGS 84 needed parameters to convert ECEF coordinates into ENU.
[10]

The conversion from ECEF to ENU coordinates is done with respect to the
receiver reference point. Applying the set of equations (2) to approximate lati-
tude (λr) and longitude (φr) for the reference coordinate point. The last trans-
formation outcome in applying equation (3) to ECEF physical quantities with
the vector pointing from the receiver reference point (Xr, Yr, Zr) to estimated
position (Xp, Yp, Zp) in the ENU coordinate frame [38].

p =
√
(Xr)2 + (Yr)2

θ = arctan(Zr
a

pb
)

λr = arctan(Yr, Xr)

φr = arctan(
Zr + e2b sin3(θ)

p− e2a cos3(θ)

(2)

xy
z


ENU

=

 − sin(λr) cos(φr) 0

− sin(φr) cos(λr) − sin(φr) sin(λr) cos(φr)

cos(φr) cos(λr) cos(φr) sin(λr) sin(φr)


Xp −Xr

Yp − Yr

Zp − Zr


ECEF

(3)

2.1.2 Body frame

As the name indicates, the body reference frame is attached to, and moves with,
the platform body itself. It is an orthogonal cartesian system with an origin
specified at a point on the platform. Axes can be defined both relative to the
platform or to the navigation frame. The body frame being an entity which
moves and rotates freely inside the navigation frame coordinate system (figure
2). This dissertation uses the term body frame to explain the IMU’s frame of
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reference relative to the navigation frame coordinate system. TheXb, Yb, and
Zb are defined by the MPU-6050 coordinate system (explored in chapter 5.1
Hardware).

Fig. 2: Navigation and body frame coordinate systems.
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2.2 Orientation

The attitude orientation of a body in space is a critical aspect in position es-
timation. In a low-cost AHRS, accuracy and low complexity are important in
essential the attitude of a body. There are various ways to represent attitude,
including rotational matrices, Euler angles, and quaternions.

2.2.1 Rotation Matrix

The rotation matrix is a concept employed to express the transformation of coor-
dinates from one frame to another. In addition, it can also convey the orientation
of one frame relative to another. Any orientation can be attained by composing
three elemental rotations, beginning from a known standard orientation [39].
Analogously, any rotation matrix R can be decomposed as a product of three
elemental rotation matrices (equation 4).

R = X(α)Y (β)Z(γ) (4)

In equation 4, R is a rotation matrix that can be applied to represent a
composition of intrinsic rotations about axes X, Y , Z (in that order), or a
composition of extrinsic rotations about axes Z, Y , X (in that order) [40].

ax

ay
bx

rxy

rxx

bzrzx

rzy

by ryx

ryy

ax

ay

rxy

rxx

rzx

rzy

ryxryy
bx
rxz

by
ryz

bz
rzz

az

Fig. 3: Frame axis example.

The convention used in this work is represented by equation 5 and maps
quantities described in frame b to frame a. Comparing the structure of equation
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5 with figure 3 it is seen that columns of a
bR represent each unity vector defining

all axes of frame b.

a
bR =


arxx

aryx
arzx

arxy
aryy

arzy
arxz

aryz
arzz

 (5)

Rotation matrices fit in to the orthonormal class and one crucial property
is that a

bR
a
bR

T = I indicating a
bR

T =a
b R−1. Likewise, a a

bR
T is equivalent to

b
aR [41].

Fig. 4: 3D rotation around vector r̂ of angle θ between frame A and B.

2.2.2 Direct Cosine Matrix

The Direct Cosine Matrix (DCM) is related to the rotational matrix, however
it is a 3x3 matrix that comprises the cosines of the 9 possible sets of axes of
two distinct Cartesian coordinate systems. The DCM is normally employed to
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convert from the body frame into the earth frame. The DCM methodology has
achieved considerable recognition for its improvement of linear measurement
equations in Kalman filters (more in-depth review at chapter 2.4 Sensor Fusion)
[42].

2.2.3 Euler angles

Euler angles are a well-known form to represent attitude with respect to a fixed
coordinate system. Mathematically, Euler angles represent three composed se-
quential rotations that stir a reference frame to a given referred frame [43]. It
expresses a rotation in three angles, often referred to as pitch, roll, and yaw, de-
noted by φ, θ, and ψ (The roll will have the range of ±180◦, this allows the pitch
to have the range of ±90◦. The yaw is represented using the range of ±180◦).
These angles depict three successive rotations about the axes of the coordinate
frame, for instance, x−y−z: First rotate φ radians about the x-axis, then rotate
θ radians about the y-axis and finally rotate ψ radians about the z-axis [44]. As
stated by the differential equations of Euler angles given at (equation 6), φ, θ,
and ψ can be found based on angular rate measurements.

φ̇θ̇
ψ̇

 =
1

cos(θ)

 sin(φ) 0 − cos(φ)

cos(θ) cos(φ) 0 cos(θ) sin(φ)

sin(θ) sin(φ) 1 sin(θ) cos(φ)


ω

b
nbx

ωb
nby

ωb
nbz

 (6)

Merely three differential equations require solving prior to the attitude gets
distinctly approximated [45]. Each individual rotation is expressed by its own
rotation matrix using the respective Euler angle associated, and the final orien-
tation is the result of successive matrices multiplications, as shown in equation
7.

b
aR = b

2Rx(φ)
2
1Ry(θ)

1
aRz(ψ) =

 sin(φ) 0 − cos(φ)

cos(θ) cos(φ) 0 cos(θ) sin(φ)

sin(θ) sin(φ) 1 sin(θ) cos(φ)

 (7)

Nevertheless, there is a significant flaw with this approach. As cos(θ) ap-
proaches zero, the differential equations degrade rapidly, and the output solution
becomes vastly imprecise, which indicates that these equations cannot provide
effective attitude results at unique points in space [46]. This is also known as
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Gimbal lock. Euler angles can be represented as a gimballed system, where the
three axes can be thought of as three distinct gimbals attached together [47].
Gimbal lock happens when two axes line up, such as when the pitch and the yaw
axis are aligned, and as the roll gimbal is rotated, the pitch and the yaw angle
are both affected simultaneously, consequently losing orientation (figure 5) [31].
Euler angles commonly involve a large number of complex mathematical opera-
tions, such as matrix manipulations, which typically take up several clock cycles
in a Central Processing Unit (CPU), such can negatively impact computational
performance.

Fig. 5: Representation of the Gimbal Lock problematic [1] - The exterior blue
gimbal characterizes the x-axis, the middle, red-colored gimbal the y-axis, and
the inner green gimbal the z-axis. In the initial arrangement a), every axis is
perpendicular to one another. Following a rotation of 90◦ across the red ar-
row (y-axis), the blue and the green gimbals occupy the same rotation axis.
This condition inhibits the clear determination of the rotation axes when sub-
sequently rotating around the x or z-axis.

2.2.4 Quaternions

Another commonly used attitude representation is the quaternion. To compre-
hend quaternions, one must first grasp the complex number relationship. A com-
plex number can depict a rotation in a 2-dimensional coordinate frame with a
real x-axis and an imaginary y-axis (or vice versa) (figure 6) [48]. A quater-
nion builds upon this concept, but rather than one imaginary axis, it makes use
of three imaginary axes: similar to merging three complex numbers into one.
Four components are required to progress from a two-dimensional definition to
a three-dimensional plane: one real component q0 and three imaginary q1, q2 and
q3. Quaternions are mathematically denoted as equation 8, and are commonly
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represented as a vector (equation 9), where q0 is the norm, q1, q2, and q3 are
complex coordinates with i, j, k being the axis versors. [49].

Fig. 6: 90-degree rotation in a 2-dimensional coordinate frame with a real x-
axis and an imaginary y-axis.

q = q0 + q1i+ q2j + q3k (8)

q =
[
q0 q1 q2 q3

]
(9)

Specifically, when used for attitude description the quaternions should have
a norm equal to 1 [50]:

‖q‖ =
√
q20 + q21 + q22 + q23 = 1 (10)

Normalizing a quaternion is identical to normalizing a vector [45]. The quater-
nion q is divided by the norm of the quaternion ‖q‖. When a quaternion is
normalized, it is known as unit quaternion (also mentioned as versor of q) and
denoted with a circumflex accent (q̂):

q̂ =
q

‖q‖
(11)
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A quaternion’s conjugate (q∗) is expressed by:

q∗ =
[
q0 −q1 −q2 −q3

]
(12)

The inverse of a quaternion (q−1) is therefore given by:

q−1 =
q∗

‖q‖
(13)

Applying the notation as declared previously, w
b q constitutes the orientation

of body frame (b) with respect to world frame (w). From equation 8, the subse-
quent list of properties/operations is derived:

Multiplication of basis elements Every quaternion multiplication of basis
elements i, j and k ought to follow the succeeding list of properties (also visible
in table 3 containing multiplication of basis elements):

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

(14)

× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Table 3: Quaternion multiplication of basis elements.

Multiplication of quaternions The product of two quaternions, a and b, is
denoted by ⊗ and it is defined by the Hamilton product. It can be calculated by
the product of the basis elements and the distributive law. The product can then
be expanded by the distributive law into a a sum of products of basis elements.
Returning the next expression:
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a⊗ b = [a0a1a2a3]⊗ [b0b1b2b3] =


a0b0 + a1b0i+ a2b0j + a3b0k

a0b1i+ a1b1i
2 + a2b1ij + a3b1ik

a0b2j + a1b2ji+ a2b2j
2 + a3b2jk

a0b3k + a1b3ki+ a2b3kj + a3b3k
2

 (15)

As a result, the rules defined in equation 14 and table 3 can be applied at
this step producing:

a⊗ b =


a0b0 − a1b1 − a2b2 − a3b3

(a0b1 + a1b0 + a2b3 − a3b2)i

(a0b2 − a1b3 + a2b0 + a3b1)j

(a0b3 + a1b2 − a2b1 + a3b0)k

 (16)

Quaternion conjugate Conjugation is an involution (a function that is its
own inverse), conjugating an element twice yields the original constituent. The
conjugate of a quaternion relates to an inverse rotation, in this case constitutes
the orientation of world frame with respect to body frame:

w
b q

∗ = b
wq = [q0 − q1 − q2 − q3] (17)

Vector rotation Defining the subsequent quaternion representation of the same
vector but in each referential by using is pure quaternion as

wv =
[
0 wx wy wz

]
and bv =

[
0 bx by bz

]
. The rotation of vector v from one

frame to other, using a quaternion is given by:

bv = w
b q̂ ⊗ wv ⊗ w

b q̂
∗ (18)

Composed rotations The composition of rotations can be defined in quater-
nions as the product between two quaternions. For instance, the sequence a
a
b q̂ → b

cq̂ is equal to a
c q̂ and is described by:

a
c q̂ =

b
cq̂ ⊗ a

b q̂ (19)
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Quaternion representation permits a more truthful and efficient attitude esti-
mation approach. This is because operations Euler angles entail matrix multipli-
cation which involves additional computational effort as it implicates more math-
ematical numerical calculations. An additional benefit of employing quaternions
is that any transformation is intrinsically orthonormal. Normalizing a quater-
nion is significantly computationally more efficient than normalizing a matrix.
Furthermore, since every rotation needs normalization when completed, the com-
putational costs accumulate [51]. Owing to these benefits, the quaternions are
used to determine attitude in this project, while Euler angles are applied merely
as a representation of the orientation defined by the quaternions (Euler angles
are simpler in human physical interpretation) [52].

2.3 Inertial Measurement Units

An Inertial Measurement Unit (IMU) is an electronic tool that quantifies and de-
scribes specific force, angular rate, and occasionally the orientation of a body. It
comprises an amalgamation of accelerometers, gyroscopes, and optionally mag-
netometers. They have also become standard in embedded inertial systems due
to their low cost, lightweight, and low power consumption. IMUs are normally
employed in aircraft maneuvering (via an Attitude and Heading Reference Sys-
tem), such as spacecrafts [53] [54] [55], satellites [56], and Unmanned Aerial
Vehicle (UAV) [57] [58], to name a few. IMUs have been employed in wearable
applications with uses in telemedicine [22] [59] [60] [61], and robotics [23]. Newly
developed IMUs integrate satellite localization capabilities permitting these de-
vices to operate even when satellites signals are unobtainable, such as in tunnels,
indoors, or in the presence of electronic interference. These types of electronic
devices are highly susceptible to the occurrence of errors. There are several dif-
ferent types of sensor errors. The main errors that cause unreliable readings are
high frequent noise, offset error and drift error.

The first diagram in figure 7 corresponds to the signal error categorized as
noise. Noise is made of high frequencies and might be reduced by applying a low
pass filter [62]. The primary sensor noise sources can be environmental noise,
such as temperature oscillations, gravity, etc. From movements, such as vibra-
tions, shocks. Or even hardware noise, such as electrical and mechanical thermal
noise. The second type is the offset error, also known as bias error (second graph
in the figure). This offset originates from a shift from the real value and can be
resolved by deducting the offset component with a high pass filter. The last type
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Fig. 7: Three main types of sensor error.

of error is the drift components which can arise from vibrations, shocks, and
temperature variations. The primary drift source in this study will be produced
by numerical integration through the position calculation. Temperature fluctu-
ations can trigger instabilities in the bias of the sensor signal. By utilizing a
supplementary sensor to determine the ambient temperature, the bias generated
error can be counteracted by applying adjustments to the output signals. The
correlation between bias error and temperature depends on the sensor mecha-
nism. For a gyroscope, the temperature shift will produce an error in orientation
which increases linearly with time. For an accelerometer, the temperature will
produce an error in position, therefore developing quadratically with time. For
the magnetometer the increasing temperature will lead to softening in the mov-
ing structure [63]. As mentioned before Inertial Measurement Unit (IMU) are
generally comprised of an amalgamation of accelerometers, gyroscopes, magne-
tometers. The following sub section will describe each one of these electronic
utensils.

2.3.1 Accelerometer

An accelerometer is a device capable of measuring proper acceleration. Proper
acceleration is the physical acceleration experienced by an object. It is thus
acceleration relative to an inertial observer who is momentarily at rest relative
to the object being measured [64]. As an example, if an accelerometer would be
placed at rest on the surface of the Earth, it will measure an upwards acceleration
due to Earth’s gravity of g ' 9.81 m/s2. This is due to the Earth’s surface
exerting a normal force upwards relative to the local inertial frame. On the
other hand, a free-falling accelerometer (moving in the center of the Earth’s
direction at around 9.81 m/s2) would quantify no acceleration. Acceleration is
quantified in the SI unit meters per second (m/s2), or standard gravity, denoted
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by gn, being the nominal gravitational acceleration of an object in a vacuum
near the surface of the Earth. It is defined by standard as 9.80665 m/s2.

The working principle of an accelerometer can be expounded by a single
mass (m) fixed to a stiffness spring (k) that in turn is fastened to outer frame,
as illustrated in figure 8 [2].

Fig. 8: Schematic demonstrating the working principle of an accelerometer. [2]

Often, the structure incorporates a dashpot (a mechanical device which re-
sists motion via viscous friction). The dashpot has a resistive coefficient (c) and
is tied to the mass parallel to the spring. When the system is affected by a lin-
ear acceleration, a force equivalent to mass times the acceleration acts upon the
mass, causing it to deflect. This deflection is then converted into an analogous
electrical signal. The dashpot mechanism causes the system to quickly stabilize
following the acceleration. To derive the motion equation of the system, New-
ton’s second law is used, where all real forces acting on the proof-mass are equal
to the inertia force on the mass. With x being the displacement of the mass m
relative to the outer system. When the system is subject to an acceleration a,
the equation of motion for the mass is:

mx+ kx+ cx =
−→
F ⇔ mx+ kx+ cx = m−→a (20)
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Where c and k are the dashpot resistive coefficient and spring stiffness con-
stant, respectively. Consequently, the acceleration can be computed by measur-
ing x, compression of the spring.

2.3.2 Gyroscope

A gyroscope is a device utilized to quantify angular velocity and orientation
based on the principles of conservation of angular momentum [65]. A conven-
tional gyroscope accommodates a spinning wheel mounted on two gimbals let-
ting it spin in all three axes, as shown in figure 9. The rotating wheel will
resist changes in orientation as an effect of the angular momentum. As a result,
when a rotation is exerted on the mechanical gyroscope, the wheel will persist
in its global orientation meanwhile the angles between neighboring gimbals will
change [3].

Fig. 9: Representation of a conventional gyroscope accommodating a spinning
wheel mounted on two gimbals. [3]

A traditional mechanical gyroscope can merely evaluate orientation, and
since they contain moving parts, they can cause the output to drift over time.
Modern gyroscopes (such as optical and MEMS gyroscopes) are rate-gyros,
meaning they can detect angular velocity [66]. Angular velocity (ω) is quan-
tified in the SI unit radians per second (rad/s), or degrees per second (◦/s).
MEMS sensors constructed using silicon electrical methods have a smaller num-
ber of parts and are inexpensive to produce [67]. MEMS gyroscopes based on
the Coriolis effect, which states that in a frame of reference rotating at angular
velocity (ω), a mass (m) moving with linear velocity (v) experiences a force (fig-
ure 10) [68]:
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−→
F Coriolis = −2m(ω ×−→v ) (21)

Above, the cross product between angular velocity (ω) and linear velocity
(v) multiplies solely by orthogonal vector components. The outcome of the cross
product is orthogonal to both v and ω. Its direction can be ascertained by the
right-hand rule.

 

 

Fig. 10: System where two masses are oscillating in opposite directions. When
a rotation is applied, the masses are affected by the Coriolis force and the dis-
placement is measured by a change in capacitance. [4]

The gyroscope sensor measurements supply a body’s angular rate, a mea-
surement of the change in angle over time which is represented by ω(x) [68]:

ω(x) =
dx

dt
(22)

The angular rate supplied by the gyroscope sensor can be integrated over an
interval of time (t) and a sampling period (Ts). The sum of every measurement
will return an absolute angle θ. The integration of the angular rate is shown in
equation 23 [68]:
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θ =

∫ t

0

ω(x)dx =

t∑
0

ω(x) · Ts (23)

Given a set of angular rates w = [wx, wy, wz] measured by the gyroscope, by
equation 16 it is possible to convert the set into a matrix of quaternion rates
(Ω) [68]:

Ω =


0 −wx −wy −wz

wx 0 wz −wy

wy −wz 0 wx

wz wy −wx 0

 (24)

From a quaternion rate at instant t − 1, given a current angular speed it is
possible to estimate the quaternion at instant t. Quaternion qt revolved by the
gyroscope, the antecedent attitude quaternion qt−1 is multiplied by Ω, then half
of the period Ts [68].

qt = qt−1 ∗Ω ∗ 1

2
∗ Ts (25)

2.3.3 Magnetometer

A magnetometer is an electronic utensil that evaluates existent magnetic flux
(a magnetic field’s intensity). Magnetic flux is quantified in the SI unit mi-
crotesla (µT ). Certain magnetometers can detect the orientation, magnitude, or
relative change of a magnetic field [69]. A magnetometer accompanied with an
accelerometer can successfully reckon an orientation angle. The magnetometer
readings uniquely are not able to perceive a heading angle due to the presence
of all sorts of distortions such as of the earth’s own magnetic fields or even local
disturbances of nearby metallic bodies on the sensor [70] [69]. There are two
categories of magnetic distortions: Hard iron and soft iron [71] (figure 11). Hard
iron distortions are generated by materials that exhibit a continuous additive
field, and as a result, produce a persistent additive value to the measurements
of the magnetometer [72]. A piece of magnetized iron or a speaker, for exam-
ple, will induce a hard iron distortion in the magnetometer. If the orientation
and position of the magnetic disturbance relative to the sensor is unchanging,
the magnetic offset will remain constant. It is possible to compensate for hard
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iron disturbances by discerning the maximum and minimum x and y offsets.
The x-axis and y-axis offset (α and β, respectively) are given by the average of
the maximum (xmax and ymax) and minimum (xmin and ymin) values for each
axis [5]:

α =
xmax + xmin

2

β =
ymax + ymin

2

(26)

By subtracting these offsets from the magnetometer readings, it is possible
to substantially remove any present hard iron disturbances.

Soft iron distortion is the consequence of a material’s influence that can warp
a magnetic field but does not necessarily produce a magnetic field itself, and as
a result is not additive [73]. Unlike hard iron distortion which has a continuous
disturbance, a soft iron distortion is determined by the direction of the material
in respect to the sensor and the magnetic field of the same material. Calculating
the soft iron distortion is computationally more expensive than the hard iron
elimination. There are two axes to consider, the major and the minor axes [74].

As seen in equation 27 and 28, the major axis is the axis that runs along
the x-axis. This will be used to find the angle θ by calculating the magnitude of
the line segment. Essentially by computing r, it is the same as calculating the
magnitude of each point on the ellipse and finding the maximum point [5].

r =
√

(x1)2 + (y1)2 (27)

θ = arcsin(
y1
r
) (28)

2.4 Sensor Fusion

Sensor fusion defines the blending of sensory information from two or more
sources in a way that generates a more consistent and dependable understanding
of the system. One that would otherwise not be possible when these sources
were used individually [75]. Ideally, a gyroscope could deduce a body’s attitude
independently. As mentioned previously, integrating the gyroscope’s readings can
ascertain the attitude solution of a body. Notwithstanding, with less cost comes
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Fig. 11: Representation of a magnetometer’s different types of disturbances. [5]

lower accuracy and precision. This originates from a drift build up on the gyro’s
readings, where error accumulates exponentially on the integrated output [76].
The accelerometer and magnetometer can work together to evaluate attitude
straight from measurements of acceleration and present magnetic fields. This
combination is often corrupted by disturbances such as vibrations and local
magnetic interferences [70]. Hence, both solutions have their respective benefits
and require a rectifying term from an additional sensor. This conducts to a
demand for a sensor fusion algorithm that combines both solutions in a way
that emphasizes their strengths and minimizes their weaknesses [77]. A sensor
fusion algorithm will decide on the optimal trust combination of each sensor to
assess attitude. A diversity of suitable algorithms exist that can fuse the output
of different sensors to create a more reliable and consistent signal. This chapter
will highlight some of the most prominent sensor fusion algorithms in existence:

2.4.1 Kalman Filter

The Kalman filter algorithm is a set of mathematical equations that provides
a computationally efficient approach to estimate some unknown variables by
the detected measurements [78]. Kalman filters operate recursive functions to
predict the present state of a linear problem by monitoring the current input
data, the previous input data, and the previous state prediction. Two generally
assigned methods for Kalman filter-based sensor fusion are state-vector fusion
and measurement fusion. The state-vector fusion method (figure 12) applies a
group of Kalman filters to acquire individual sensor-based state estimates, which
are subsequently fused to obtain an enhanced combined state estimate.

Measurement fusion (figure 13) approach directly combines the sensor data
to achieve a joint measurement and later uses a single Kalman filter to get hold
of the final state estimate centered on the fused measurement [6].
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Fig. 12: Kalman-filter-based multi-sensor state-vector fusion. [6]

Fig. 13: Kalman-filter-based multi-sensor measurement fusion. [6]

When applied appropriately, Kalman filters offer highly precise orientation,
even with the existence of substantial noise. Nevertheless, Kalman filters are
computationally expensive rising hardware cost and latency. They are also of
complex implementation, which, shared with computational overhead, can make
the algorithm unfeasible for computationally restricted applications. They are
regularly useful in a wide-ranging variety of applications and have become a stan-
dard method in sensor fusion. Several studies examine the possibility of using
Kalman filters to predict a body’s orientation and position by combining multi-
ple sensors. The Kalman filter is founded on recursive Bayesian filtering. Con-
sequently, the system’s noise is assumed to be Gaussian. Therefore, the Kalman
filter is generally suggested for linear systems. For this reason, an extension of
the classic Kalman Filter designed for non-linear systems has emerged, recog-
nized as Extended Kalman Filter (EKF) [23].

2.4.2 Complementary Filter

The complementary filter is considered a simpler approach relatively to the
Kalman filter since it is a computationally lightweight solution and straightfor-
ward to implement [7]. This filter takes as input two noisy sensor measurements
and assumes one input is mainly formed by high-frequency signals whereas the
other is mostly by low-frequency signals. Through a low pass filter, the high-
frequency noise of the first input is filtered out. An identical procedure occurs
with the second signal, but this time with a high pass filter to remove low-
frequency noises, as illustrated in figure 14.
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Fig. 14: Basic complementary filter [7] - Two different measurement sources
for estimating one variable. The noise properties of the two measurements are
such that one source gives good information only in low frequency region while
the other is good only in high frequency region.

The accelerometer is especially vulnerable to vibrations and centripetal forces,
these can be filtered by a low pass filter behaving as a moving average filter. The
gyroscope is precise and exact in the short term, but quickly loses precision
in integration due to drift. For that reason, a high pass filter that allows the
short-term gyroscope data is desirable, thus, removing the long-term drift. At
any given moment, the signal is subject to a low pass filter (equation 29) or a
high pass filter (equation 30), where xt is the measurements from the sensor, yt
is the filtered final output, and α is a filter coefficient:

yt = (1− α)xt + αyt−1 (29)

yt = (1− α)yt−1 + (1− α)(xt − xt−1) (30)

α filter coefficient describes the borderline where the gyroscope measurements
end, and the accelerometer readings begin and vice versa. It rules how much the
output relies on the current reading or a new value that arrives. α is typically
above 0.5 by the definition above. Where the filter coefficient α is determined
by:

α =
τ

τ +∆t
(31)

Where τ is the wanted time constant (time interval for the readings to re-
spond) and ∆t is the sampling period.
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θ =
τ

τ + s
a+

s

τ + s

1

s
ω =

a+ τω

τ + s
(32)

A mathematical model of the complementary filter can be represented as
equation 33, where θt represents current orientation, α is the filter coefficient, ω
the gyro’s angular velocity, and a the acceleration obtained from the accelerom-
eter:

θt = (1− α)(θt−1 + ω∆t) + αa (33)

Yet, the complementary filter is not especially robust to noisy or biased
data since it simply uses currently available information, therefore, has no direct
method of compensating for sensor noise [23]. A conventional application of the
complementary filter is to bring together measurements of vertical acceleration
and barometric readings to attain an approximation of vertical velocity. Simi-
lar to the Kalman filter, new versions built upon the principles of the classic
complementary filter have emerged in recent times, such as the Extended Com-
plementary Filter (ECF). They promise a high level of accuracy and enhanced
robustness to noise while preserving computational efficiency.

2.4.3 Optimization Algorithm

Up until recently, there remained mainly two distinct AHRS fusion approaches.
One category including the complementary filters, and the other is related to
Kalman filtering. Some recent AHRS algorithms have emerged in the literature
over the past years. Two of the most prominent are the Mahony and Madgwick
algorithms, which have been categorized as optimization filters. Optimization fil-
ters obtain orientation by assessing a vector representative of the sensor output
at the present orientation and lessening the disparity concerning predicted and
observed outputs. Optimization filters are well established for linking accuracy
with computational expense and simplicity of implementation [22]. Both meth-
ods make use of a quaternion representation, which is a four-dimensional complex
number representing of an object orientation. Quaternions involve fewer compu-
tation time because of their minimal quantity of calculation parameters [79].
Additionally, vector rotations are easily executed by quaternion multiplications.
Madgwick et al. [80] pioneered a gradient descent fusion algorithm, frequently
recognized as ’Madgwick Algorithm.’ This gradient descent fusion algorithm first
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obtains a quaternion estimation of the gyroscope output integration and later
corrects it with a quaternion from the accelerometer and magnetometer data.
Madgwick’s approach guarantees decent attitude estimation at a low computa-
tional cost. Further, it tackles the difficulty of the local magnetic disturbances
that can influence all the orientation components. By reducing the constraint of
the magnetic field vector rotation, it can limit the effect of the magnetic distur-
bances to only affect the yaw component of the orientation.

2.4.4 Other Algorithms

Angular Rate

Angular Rate updates a quaternion through incorporation of angular rate
measurements of a gyroscope. The simplest approach to update the quaternions
is by combining the differential equation for a local rotation rate [81]. In a
kinematic system, the angular velocity ω of a rigid body at any instant time
is defined with respect to a fixed frame coinciding directly with its body frame.
Therefore, this angular velocity is in terms of the body frame [82].

AQUA

Roberto Valenti’s Algebraic Quaternion Algorithm (AQUA) [50] approxi-
mates a quaternion with the algebraic solution of a system from inertial/mag-
netic observations. AQUA computes the "tilt" quaternion and the "heading"
quaternion independently in two sub-parts. This prevents the effect of the mag-
netic disturbances on the roll and pitch components of the orientation. AQUA
can be employed with a complementary filter to fuse the gyroscope data together
with accelerometer and magnetic field readings. The correction part of the filter
is based on the individually assessed quaternions and works for both IMU and
Magnetic, Angular Rate, and Gravity (MARG) sensors [83].

FAMC

The most conventional low-cost sensor system is the Accelerometer-Magnetometer
combination (AMC). It mixes the local gravity and the Earth’s magnetic field
simultaneously, establishing a full-attitude estimation system. The most famous
attitude determination formulation is Wahba’s Problem, which sprung several
solutions using Euler Angles, Direction Cosine Matrices and Quaternions. The
matrix operations in these solutions are the main focus of interest in this method.
The operations are methodically simplified, where the accuracy is retained, while
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the time expenditure is reduced, yielding the Fast Accelerometer-Magnetometer
Combination (FAMC).

FLAE

The Fast Linear Attitude Estimator (FLAE) acquires the orientation quater-
nion with an eigenvalue-based solution as suggested by [84]. A figurative solution
to the resultant characteristic polynomial is also derived for a higher computa-
tion performance.

Fourati

Attitude estimation set of rules as suggested by [85], whose method blends
a quaternion-based nonlinear filter with the Levenberg Marquardt Algorithm
(LMA). The estimation algorithm has a complementary construction that man-
ages measurements from an accelerometer, a magnetometer, and a gyroscope,
joint in a strap-down system, built on the time integral of the angular velocity,
exploiting the Earth’s magnetic field and gravity vector to compensate the at-
titude predicted by the gyroscope. The rigid body attitude in space is revealed
when the body’s orientation frame (XB ,YB ,ZB) is identified with respect to the
navigation frame (XN ,YN ,ZN ), where the navigation frame respects the conven-
tion North East Down (NED).

QUEST

QUaternion ESTimator (QUEST) as described by Shuster in [86] and [87].

ROLEQ

Recursive Optimal Linear Estimator of Quaternion (ROLEQ) is a revised
OLEQ, where a recursive evaluation of the attitude is created with the computed
angular velocity [88]. This estimation is set as the primary value for the OLEQ
estimation, simplifying the rotational operations.

SAAM

Super-fast Attitude from Accelerometer and Magnetometer (SAAM) is a
novel estimator suggested by [84], proposes an exceptionally simplified compu-
tation of Davenport’s resolution to Wahba’s problem, where the full solution is
condensed to a couple of floating-point operations, not losing much accuracy,
and keeping computational time low.
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Tilt

Tilt does attitude estimation through measurements of gravity acceleration.
The most straightforward approach to assess the attitude from the gravitational
acceleration is utilizing 3D geometric quadrants. Even though some techniques
use arctan to approximate the angles [89] [90], it is desired to utilize arctan2 to
investigate all quadrants seeking the tilt angles.



31

3 Related Work

This section will narrow the existing literature within this research’s scope, ex-
amining the methods each author used in their work and interpreting key insights
and how each source contributes to the existing pool of knowledge on its subject.
The literature review is divided into the subsequent sections: 1) Position estima-
tion using inertial sensors systems. 2) Sensor fusion in position and orientation
estimation.

3.1 Position estimation using inertial sensor systems

Inertial sensor systems have been thoroughly researched with the purpose of
delivering position estimation of a moving body. Inertial systems are autonomous
and independent and do not rely on external information, such as radio signals
or electromagnetic waves. Their navigation data have short-term high accuracy,
great constancy, and elevated data update rate. They may be applied in an array
of distinct positioning methods.

3.1.1 Pedestrian Dead Reckoning

Pedestrian dead reckoning (PDR) is among the most explored. PDR combines
step detection, step length estimation, and orientation approximations to calcu-
late the absolute position and heading of a walking user. PDR can operate with
a single accelerometer, although superior precision and robustness are obtained
with more sensors. An IMU containing several accelerometers, gyroscopes, mag-
netometers, and even pressure sensors are commonly employed to recognize steps
and orientation. Sensors might be body-mounted or shoe-mounted. Pedestrian
navigation systems can aid the blind and visually impaired, locating and rescu-
ing firefighters and other emergency workers, hiking, sports, and others. PDR is
commonly reviewed in the literature, being subject to studies in various settings.

Ladetto et al. [91] applied PDR in urban and indoor areas seeking to assist
blind people reaching unfamiliar locations along with aiming to facilitate emer-
gency coordinators to track rescue workers. The study integrated a GPS receiver
with a body mounted IMU applying pattern recognition to accelerometer sig-
nals, determining a user’s step signature.

Stirling et al. [92] illustrate an experiment exploiting a shoe-mounted sensor
prototype that calculates stride length with accelerometers and magnetometers.
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Their system measures angular acceleration by manipulating pairs of accelerom-
eters as an alternative to gyroscopes.

Several other studies investigate the prospect of using inertial sensor systems
to estimate the absolute position and heading of a walking user for multiple
purposes [93] [94] [95] [96]. The main drawback of PDR is its dependence on
step prediction algorithms that must distinguish step direction and step lengths
as the user changes pace.

3.1.2 Strapdown Inertial Integration

Strapdown inertial integration or Strapdown Inertial Navigation System (SNIS)
is another prevalent position method. With SNIS, sensors are usually tightly
strapped or attached to the axes of the moving body’s structure, lowering costs,
and enhancing the system’s reliability. This technique integrates accelerome-
ter and gyroscope measurements to distinguish the variation of position and
heading. The strapdown system demands a high-level measurement rate, on av-
erage, beyond 2000 Hz. Typically, higher measurement rates translate into more
accurate integration readings of position and attitude. Strapdown systems are
currently employed in commercial and military applications (airplanes, vessels,
Remotely Operated Underwater Vehicle (ROV), projectiles) and are a topic of
study among scholars.

Jameian et al. [97] introduced SNIS to nautical environments, proposing a
compensation method against disturbing forces affecting vessel motion caused by
rough sea conditions. They aim to resolve attitude determination offset through
self-alignment of SNIS by establishing vector observations. The implementation
makes use of a quaternion estimator for attitude determination, significantly
diminishing computational complexity.

An indoor strapdown inertial navigation with small foot-mounted and self-
contained sensor systems was described by Bird et al. [98]. Similar to PDR,
SNIS also has applications in pedestrian navigation systems, although operating
in an utterly distinct fashion. Unlike PDR, the strapdown navigation algorithm
traces the entire movement of the foot in between steps. Any movement like
walking, running, climbing up or down, moving backward or sideways, sliding,
and even jumping can be tracked. This is possible because of a Zero-Velocity
Update (ZVU) which exploits the brief periods of zero velocity when the feet are
stationary on the ground.
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SNIS and PDR may also be used together, sharing the same inertial sensors.
In this case, inertial navigation is incorporated within the multi-sensor integra-
tion architecture as the reference system and PDR as an aiding sensor.

With a focus on low-cost inertial motion sensors, Coyte et al. [17] applied
PDR to sporting training and rehabilitation. They propose solutions to acceler-
ation noise accumulation and gyroscope angle error problems. To improve the
accuracy of displacement estimation with a low-grade IMU, they developed a
ZVU algorithm.

3.2 Sensor fusion in position and orientation estimation

Sensor fusion defines the blending of sensory information from two or more
sources in a way that generates a more consistent and dependable understand-
ing of the system. One that would otherwise not be possible when these sources
were used individually [99]. Fusing multiple inertial systems has raised significant
interest and consideration in location and attitude performance improvement.
Numerous methods arose in recent times that merge information from various
systems such as inertial sensors, GNSS, radar, radio telescopes, signal of oppor-
tunity systems like Angle of Arrival (AOA), Time of Arrival (TOA), Received
Signal Strength (RSS), and Signal to Noise Ratio (SNR). The combination of
multiple sources can help reduce noise with two different sensor types. These
separate systems are integrated by fusion filter algorithms which process each
input and generate a more precise and reliable output [100]. A substantial sum
of distinct solutions designed to assess the orientation of a rigid body regarding
a reference frame exist in literature. Two main approaches aimed at sensor fu-
sion exist, Kalman and complementary related filters. A comprehensive analysis
of the literature will be conducted seeking to better understand the distinction
between algorithms and how do they compare.

3.2.1 Kalman filter

Several research works have been conducted on Inertial Navigation System (INS)
and Global Navigation Satellite System (GNSS) integration through data fusion,
particularly using the Kalman filter. To overcome the shortcomings linked to the
detached functioning of GNSS and INS, Wong et al. [18] Qi et al. [101], and Nas-
sar et al. [14] combined both systems so that their disadvantages were lessened or
eradicated, complementing one another. While GNSS was comparatively more



34

stable and consistent for long periods, INS had a more reliable and comprehen-
sive short-term signal. Updating INS position and velocity with GNSS data cor-
rected error expansion at the same time it delivered more precise estimates. The
Kalman Filter attempted to adjust INS information based on the system error
model whenever GNSS signals were interrupted or limited. These studies have
demonstrated success in satisfying the accuracy requirements of low-precision ap-
plications. However, they could not deliver the high precision positioning some
applications required. Hence, other studies attempted to achieve better perfor-
mance of integrated INS/GNSS systems through the exploration of extended and
adaptive Kalman filtering techniques. Mohamed and Schwarz [102] performed an
analysis on INS/GNSS alternative integration through an adaptive Kalman fil-
tering technique. Findings reveal that their adaptive Kalman filter outperformed
by almost 50% the conventional filter.

The use of data fusion in autonomous flying units such as UAV has recently
gained particular concern due to the dissemination of consumer-grade quad-
copters. In autonomous aerial settings, an accurate altitude reading is crucial to
control the position of the flying system. However, such measurements are re-
peatedly corrupted with signal noise produced by the vehicle’s motors. Hetényi
et al. [19] applied a Kalman Filter to fuse the sonar and accelerometer signals, ob-
taining a considerably improved altitude estimate with minimal error. Similarly,
Luo et al. [20] combined the UAV sensor system and received signal strength
(RSS) in a Kalman filter solution. The study sought to increase position and
altitude estimation as well as collision avoidance precision by approximating the
distance between the receiver and the transmitter via the use of radiofrequency
signals reducing the noise component.

Sharma et al. [21] present an experiment of Kalman filter-based sensor fu-
sion for extrapolation of a robot’s orientation and depth to obstacle by fusing
the inputs from three infrared sensors and an inertial sensor system. The com-
bination of multiple sensor inputs allowed the robot to operate in fault-tolerant
applications and enhanced its obstacle avoidance decision making, localization,
and orientation estimations.

3.2.2 Complementary filter
Madgwick et al. [22] outlined the formulation of an Extended Complementary
Filter (ECF) algorithm and exhibited its applicability as a human motion mon-
itoring wearable. Their design fused magnetic, angular rate, and gravity sensor
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data to remotely estimate limb orientation in stroke patients performing reha-
bilitation exercises. They analyzed performance under a range of circumstances
and benchmarked alongside other frequently utilized sensor fusion algorithms.
They claim an improved computational efficiency of over 30% when compared
with standard alternative algorithms.

A complementary filter designed for sensor fusion in quadrotor UAV em-
ploying a low-cost inertial measurement system was proposed by Noordin et
al. [103]. The complementary filter filtered high-frequency signals associated with
the gyroscope and low-frequency signals linked to the accelerometer. Findings
demonstrate that the complementary filter technique overcame the over drift
conundrum related to gyroscopes and was capable of computing attitude angles
efficiently. Euston et al. [104] conducted an analogous study with a non-linear
complementary filter for attitude estimation in a UAV utilizing a low-cost IMU.
They broadened the experiment to incorporate a model of the longitudinal angle-
of-attack corresponding to the UAV’s airframe acceleration using airspeed data.
As a result, they could estimate the acceleration of the UAV during continuous
turns based on gyroscope and airspeed data. They accomplished attitude filter-
ing performance of similar quality as an EKF that fused GPS/INS at a far less
computational cost.

3.2.3 Sensor fusion algorithms comparison

Some studies have conducted comparison experiments between the sensor fusion
algorithms in distinct settings to assess their performance in that unique con-
dition. Ludwig et al. [79] compared Madgwick and Mahony in a foot-mounted
experiment. Their findings revealed that Madgwick achieved better heading ori-
entation than Mahony when compared to the ground truth. Nonetheless, the
performance of Mahony was superior to Madgwick. The same authors tested
on [105] quadcopters the EKF, Madgwick, and Mahony filters. Results showed
that Mahony delivered a more precise orientation estimation and faster exe-
cution time than Madgwick and EKF. Diaz et al. [106] present a comparison
among Madgwick and Mahony, a basic AHRS estimation algorithm, and the
recent algorithm proposed by the authors. The study centered around compar-
ing the performance of Madgwick, Mahony, EKF, and their own sensor fusion
algorithm, emphasizing the behavior under magnetic perturbations. Various ex-
amples of movement were analyzed, from carrying the sensor at separate places
such as pocket, shoe, and hand. They concluded that their algorithm was slightly
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less influenced by magnetic perturbations than the others, but overall, the algo-
rithms performed similarly.
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4 Methodology

This section provides an overview of the methodology employed to assess the
system’s orientation and position. Going through how the sensor’s outputs are
combined to obtain orientation by sensor fusion, and how displacement can be es-
timated using clever filter techniques to remove gravity’s influence on accelerom-
eter’s readings. A position estimation method is then presented showing how
combining orientation and displacement using dead reckoning technique can re-
turn a body’s position over time. The chapter ends with a visualization of how
the designed position methodology pipeline performs trying to estimate position
of an experiment. It will also describe how well did the estimation perform by
describing how to measure an experiment’s estimation error.

4.0.1 Estimating Orientation

The first step in methodology is to obtain orientation (AHRS) from the fusion
of the three sensor raw outputs (figure 15). The accelerometer provided the
system’s proper acceleration; the gyroscope supplied the body’s angular rate,
and the magnetometer presented the detected magnetic flux.
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Fig. 15: Raw sensor data on each axis obtained by the accelerometer, gyro-
scope, and magnetometer.
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Measurements were taken at periods of 50 ms (20 Hz). This frequency was
chosen for being the lowest sample period that didn’t compromise accuracy. To
estimate orientation from the raw sensor data, two approaches were created: the
first approach was to apply a sensor fusion algorithm directly in the inertial
system’s microcontroller, which could estimate orientation in real time while the
measurements were being taken. The Madgwick algorithm was utilized for its
well-recognized proficiency to merge accuracy with computational cost and sim-
plicity of implementation. The second approach meant storing the raw sensor
data in an SD card and process it later the experiment with a sensor fusion
library, so a benchmark of how different sensor fusion algorithms perform under
the same data. This chapter’s data and plots will be based on the microcon-
troller’s Madgwick real time sensor fusion, but this principle applies in the same
manner to the post-experiment sensor fusion approach. The sensor fusion algo-
rithm (in this case Madgwick’s filter) takes as input the raw sensor measurements
and outputs estimated orientation as a set of four quaternions (figure 16).
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Fig. 16: Madgwick’s algorithm sensor fusion output of the raw measurement
data of figure 15.

As mentioned in chapter 2.2 Orientation, quaternions can be converted back
into Euler angles by:
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φθ
ψ

 =


arctan 2(q0q1+q2q3)

1−2(q21+q22 )

arcsin(2(q0q2 − q3q1))

arctan 2(q0q1+q1q2)
1−2(q22+q32 )

 (34)

Which Programmatically can be translated as the following script:

# r o l l ( x−a x i s r o t a t i o n )
s inr_cosp = 2 ∗ ( q0 ∗ q1 + q2 ∗ q3 )
cosr_cosp = 1 − 2 ∗ ( q1 ∗ q1 + q2 ∗ q2 )
ang l e s . r o l l = math . atan2 ( sinr_cosp , cosr_cosp )
# p i t c h (y−a x i s r o t a t i o n )
s inp = 2 ∗ ( q0 ∗ q2 − q3 ∗ q1 )
ang l e s . p i t ch = math . a s in ( s inp )
# yaw ( z−a x i s r o t a t i o n )
siny_cosp = 2 ∗ ( q0 ∗ q3 + q1 ∗ q2 )
cosy_cosp = 1 − 2 ∗ ( q2 ∗ q2 + q3 ∗ q3 )
ang l e s . yaw = math . atan2 ( siny_cosp , cosy_cosp )
return ang l e s
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data of 15 converted into Euler angles.
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4.0.2 Estimating Displacement

Accelerometer readings can measure proper acceleration forces, which can be em-
ployed to determine a body’s velocity and position relative to a starting point.
Integrating the resultant of acceleration will yield velocity, and double integrat-
ing will provide the body’s accumulative position.

Once the measured inertial-frame acceleration is attained, it can be inte-
grated to obtain inertial frame velocity vi and position xi can be calculated:

vi = v0 +

∫ t

ai dt (35)

xi = x0 +

∫∫ t

ai dt (36)

In practice, data is acquired at discrete time periods (∆t), so the approximate
velocity and position are estimated by:

vi[k + 1] = vi[k] + ai[k]∆t (37)

xi[k + 1] = xi[k] + vi[k]∆t (38)

However, these measurements are affected by the Earth’s gravitational field
(as seen in figure 15 in the acceleration readings) and rotational components of
acceleration, considerably amplifying numerical errors. The gravity component
will not be differentiated from the physical acceleration of the device and will
eventually generate exceedingly elevated errors in the measured acceleration. To
overcome this challenge, a gravity compensation algorithm is crucial for sub-
tracting the impact of the gravity component on acceleration readings.

# acce l e rometer read ing
a c c e l e r a t i o n = [ ax , ay , ay ]

# quatern ion corresponding to the o r i e n t a t i o n
q

# g r a v i t y on Earth in m/s^2
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g rav i ty = [ 0 , 0 , −9.81]

a_rotated = r o t a t e ( a c c e l e r a t i o n , q )
# r o t a t e the measured a c c e l e r a t i o n in t o
# the Earth frame o f r e f e r ence

l i n e a r _ a c c e l e r a t i o n = a_rotated − grav i ty

Rotating the accelerometer reading by the quaternion into the Earth frame
of reference (into the Earth’s coordinate system), then subtracting gravity. The
remaining acceleration is the acceleration of the sensor in the Earth frame of
reference often referred to as linear acceleration. Through orientation estimation
determined previously, it is possible to find the orientation of the Earth frame
with respect to the sensor frame. Therefore, compute the expected direction of
gravity and then subtract that from the accelerometer readings (figure 18).
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gravity compensation (red). When tilting the sensor, the accelerometer will
measure gravity’s acceleration (around 9.8 ms−2). The gravity compensa-
tion filter can counteract virtually all the gravitational influence on the sensor
readings.
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4.0.3 Estimating Position

Resulting in a linear acceleration that corresponds to the physical acceleration
of the device. This linear acceleration can be numerically integrated returning
velocity and double integrating delivering the position of the device (figure 19).

Fig. 19: Overview of the position estimation methodology.

The next step consisted of experimentally testing the inertial system seeking
to achieve position estimation merely by integrating the accelerometer measure-
ments with the gravity compensation filter. The tests involved walking on a
straight line carrying a box containing the inertial system (with the inertial
X-axis parallel to the path) for around 30 meters, evaluating the computed ac-
celeration, velocity, and accumulative position estimation. Specific tests were
executed at walking pace, others at running pace, and some with a combination
of both.

First, one-dimensional experiments were conducted, pursuing to estimate ac-
cumulative position when moving on a straight line for 30 meters. These tests
revealed an average error margin from 10% to 15% of the actual distance. Dif-
ferent movements and walking paces were tested, such as stopping at different
time intervals. With the accomplishment of this first experiment, we decided to
expand the testing to two dimensions. An experiment result is observed in figure
20, where the final observed accumulative position was 25 meters.

Combining the displacement over a period with the estimations of attitude,
it is possible to implement a two-dimensional estimation of position using the
dead reckoning technique. The new position xi, is given by applying a direction
vector to the previous determined position xi−1. The norm of the direction vec-
tor is given by the displacement in that axis over the period since last sample
(∆x) and its angle by the decomposing the attitude estimation (yaw θ) into two
components, cos θ for the x axis, and sin θ for the y axis (as shown in figure 21):
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Fig. 20: Plot showing how acceleration is integrated into velocity and displace-
ment.

Fig. 21: Illustration of a unit circle where θ is the attitude angle.

A mathematical representation of this approach is seen at equation 39:
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xi = ∆x cos(θ) + xi−1

yi = ∆y sin(θ) + yi−1

(39)

Programmatically this is equivalent to:

# Ca l cu l a t e X, Y, Z p o s i t i o n s − Distance ∗ heading ang l e
lastX , lastY , l a s tZ = getCoord inates ( )
newX = displacementX ∗ cos ( rad ians (yaw ) ) + lastX
newY = displacementY ∗ s i n ( rad ians (yaw ) ) + lastY
newZ = displacementZ ∗ s i n ( rad ians ( p i t ch ) ) + la s tZ

# Update the coord ina te wi th each func t i on
updateCoordinates (newX, newY, newZ)

Fig. 22: Illustration of the dead reckoning approach. The object’s position at a
given moment is given by the last known position, the heading angle ∆θ, and
the travelled distance ∆x that occur during the last sample.
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4.0.4 Applying methodology in 2D

In two-dimensional tests, the output from X-axis and Y-axis accelerometer mea-
surements were integrated with orientation to acquire accumulative position on
both axes. Integrated axis position was then plotted into a scatter plot that
combines the accumulative position on the two axes. Figure 23 shows the output
of applying the position methodology to an experiment of a 4m× 4m square.
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Fig. 23: Result after applying the position estimation methodology to the raw
sensor data.

The figure shows a succession of position points, each calculated by the last
known position, the heading angle, and the travelled distance. The position given
is relative to the sensor’s own body frame, not the world’s frame.

4.0.4.1 Measuring error
In order to quantify how well a test performed in estimating position, it is nec-
essary to compare it against a ground truth (explained in previous chapter).
Error was quantified in two ways, the first being how far are the estimated
shape corners from the ground truth’s vertices. A turning detection algorithm,
Ramer-Douglas-Peucke (RDP) Algorithm, was used to estimate when a vertice
is present in the estimated path.
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Fig. 24: Illustration of the real-world test ground truth (represented by the
4m× 4m blue line square) and how the estimated path compares. Orange dots
represent the estimated corners of the RDP Algorithm.

By measuring how far each estimated turn is from the closest real shapes
vertices, it is possible to conclude how well that shape was estimated by the
inertial solution. The second way to quantify error is to measure the distance
from every estimated point to the closest neighbor in the ground truth’s path.
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(a) Estimated shape corners are con-
nected to their closest ground truth ver-
tice, averaging all these distances will
give a better understanding of how the
shape was estimated by the inertial sys-
tem.
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(b) The second error measurement tech-
nique where every point in the estimated
position path is connected their closest
neighbor in the ground truth’s line. Av-
eraging every distance here can give a
better understanding of how precise the
estimation was.
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4.0.5 Applying methodology in 3D

Finally, by applying the method to the Z-axis, it is possible to obtain a three-
dimensional estimation. The output from X-axis, Y-axis, and Z-axis accelerom-
eter measurements were combined with orientation and integrated to obtain an
accumulative position on all axes. A three-dimensional visualization of the pre-
vious experiment is visible at figure 26.
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Fig. 26: Three-dimensional view of the experiment.

The same methodology mentioned in the previous chapter can be applied
in three dimensions. The RDP algorithm was applied to detect turns in the
estimated path. By measuring how far each estimated turn is from the closest
real shapes vertices, it is possible to conclude how well that shape was estimated
by the inertial solution.

4.0.5.1 Measuring error
To quantify how well a test performed in estimating position, it is necessary to
compare it against a ground truth (explained in previous chapter). Error was
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quantified in two ways, the first being how far are the estimated shape corners
from the ground truth’s vertices. A turning detection algorithm, RDP Algorithm,
was used to estimate when a vertice is present in the estimated path.
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Fig. 27: The same methodology applies to three-dimensional estimation. The
real-world test ground truth (represented by the 4m × 4m blue line square)
and how the estimated path compares. Orange dots represent the estimated
corners of the RDP Algorithm.

The second way to quantify error is to measure the distance from every
estimated point to the closest neighbor in the ground truth’s path. By averaging
every distance Mean Average Error (MAE), it is possible to have an overall
understanding of how the estimation performed (equation 40).

MAE =
1

n

n∑
i=1

|xi − x| (40)
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5 Experimental Setup

This section provides a hardware and software experimental setup outline, de-
scribing and specifying development and implementation of the low-cost Iner-
tial Navigation System (INS) aimed at position estimation in three-dimensional
space. This section will first describe what actual hardware was used and how
it was assembled and going through hardware specifications. Followed by a soft-
ware walkthrough describing what software and libraries were utilized and how
hardware and communicate with each other.

5.1 Hardware

As our projected solution involved a low-cost navigation system, the hardware
selection criteria were primarily founded on availability and cost. The cost reduc-
tion normally concedes in accurateness and reliability, although with the recent
surge of inexpensive, widely accessible, and precise microelectromechanical sys-
tems (MEMS), that is no longer the case. Still, we aim to employ commercially
available tools at the lowest possible cost without compromising the design of a
robust and accurate Inertial Navigation System (INS). A LoPy microcontroller
was selected as the navigational computing device of the inertial system, meet-
ing the envisioned requirements for low power with flexible and diverse com-
putational capabilities [107]. The LoPy development board interfaces with the
external physical inertial sensor through connection pins (figure 29a) and com-
municates remotely by Long Range Communication (LoRa) protocol. A PySense
expansion board connects with the LoPy module providing a programable inter-
face for the microcontroller. The Inertial Navigation System (INS) encompasses
a small MPU-9250 (figure 29b).

MPU-9250 IMU is one of the most widely available low cost commercial
IMUs. It is also considered to have an exceptional quality price ratio. The
MPU-9250 contains temperature and pressure sensors as well. This chip is ex-
tensively employed in wearable sensors for health [108] [109], fitness [110], and
sports [111] [112] [113], motion-based game controllers [114], and portable gam-
ing [115] [116]. This IMU is operated to estimate motion by identifying the
presence of acceleration vectors, rotational rates, and local magnetic field di-
rection. It features an embedded 9-axis MEMS sensor from InvenSense. The
MPU-9250 is a combined System-in-package (SIP) comprising an MPU-6050
(3-axis accelerometer and 3-axis gyroscope combination) and an AK8963 3-axis



51

(a) INS Hardware (b) MPU-9250 Breakout

Fig. 29: Pin connection between the microcontroller (left) and the IMU (right).
Modules are linked through SCL, CLK, VDD and GND pins.

magnetometer [117]. The MPU-6050 coordinate system operates within a tra-
ditional cartesian coordinate system with a counter-clockwise rotation as the
positive rotation direction [8]. The AK8963 shifts the x and y-axis directions,
while reversing the direction of the z-axis [9]. These conventions will be utilized
during calibration for each of the three sensors.

Fig. 30: Coordinate system of an MPU-6050 (3-axis accelerometer and 3-axis
gyroscope combination) and AK8963 3-axis magnetometer. [8] [9]
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5.1.1 Accelerometer

The triple-axis MEMS accelerometer in MPU-9250 the following features [118]:

– Digital-output triple-axis accelerometer with a programmable full-scale range
of ±2g, ±4, ±8g and ±16g and integrated 16-bit ADCs

– Accelerometer normal operating current: 450µA

– The text in the entries may be of any length

– Low power accelerometer mode current: 8.4µA at 0.98Hz, 19.8µA at 31.25Hz

– Sleep mode current: 8µA

– User-programmable interrupts

– Wake-on-motion interrupt for low power operation of applications processor

– Self-test

Parameter Min. Typ. Max. Units
Full-Scale range ±16 g
Sensitivity Scale Factor 2,048 LSB/g
Nonlinearity ±0.1 %

Rate Noise Spectral Density 300 µg/
√
Hz

Operating Current 3.2 mA
Startup Time 20 ms
Output Data Rate 4 4000 Hz

Table 4: Accelerometer Specifications.

5.1.2 Gyroscope

The triple-axis MEMS gyroscope in the MPU-9250 the following features [118]:

– Digital-output X-Axis, Y-Axis, and Z-Axis angular rate sensors (gyroscopes)
with a user-programmable fullscale range of ±250, ±500, ±1000, and ±2000◦/s

and integrated 16-bit ADCs

– Digitally programmable low-pass filter

– Gyroscope operating current: 3.2mA

– Sleep mode current: 8µA
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– Factory calibrated sensitivity scale factor

– Self-test

Parameter Min. Typ. Max. Units
Full-Scale range ±2000 ◦/s
Sensitivity Scale Factor 131 LSB/(◦/s)
Nonlinearity ±0.5 %

Rate Noise Spectral Density 300 ◦/s/
√
Hz

Operating Current 450 µA
Startup Time 35 ms
Output Data Rate 4 8000 Hz

Table 5: Gyroscope Specifications.

5.1.3 Magnetometer

The triple-axis MEMS accelerometer in MPU-9250 the following features [118]:

– 3-axis silicon monolithic Hall-effect magnetic sensor with magnetic concen-
trator

– Wide dynamic measurement range and high resolution with lower current
consumption.

– Output data resolution of 14 bit (0.6µT/LSB) or 16 bits (15µT/LSB)

– Full scale measurement range is ±4800µT

– Magnetometer Normal operating current: 280µA at 8Hz repetition rate

– Self-test function with internal magnetic source to confirm magnetic sensor
operation on end products

Parameter Min. Typ. Max. Units
Full-Scale range ±4800 µT
Sensitivity Scale Factor 0.6 µT/LSB
Operating Current 280 µA
Initial Calibration Tolerance ±500 LSB

Table 6: Magnetometer specification.
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5.2 Software

The microcontroller operates MicroPython, a barebones and efficient implemen-
tation of Python 3, which incorporates a small subset of the Python standard
library [119]. It is optimized to run on microcontrollers and in constrained en-
vironments [120]. The inertial module’s raw measurements are interpreted by
the microcontroller through Inter-Integrated Circuit (I2C) MicroPython driver
serial allowing to read the peripherals memory addresses synchronously. The
I2C communication makes use of the Serial Data (SDA) and Serial Clock (SCL)
pins of the MPU9250. The SCL offers the serial clock, and the SDA gives the
serial data. The memory address of the MPU9250 is at address is 0x68 when
the pin is connected to ground and is set by pin AD0. The AK8963’s address
is by default at 0x0C. Prior to the communication begins the SCL and SDA
are equally high, triggered by the pull-up resistors. These pull-up resistors are
arranged to make specific pins turn out to be high when not being defined by
the LoPy, this avoids communication difficulties when the LoPy is waiting for
inbound serial data. When the transmission between the LoPy (master) and the
MPU9250 (slave) initializes the start order is produced. This is accomplished by
lowering SDA, see figure 31. Later the SCL commences to produce clock pulses
and the initial byte is sent out by the master. This first byte holds the 7-bit
address of the slave and a read/write bite. If the read/write bit is 0 the master
writes to the slave. If the read/write bit is 1 the master reads from the slave.
The bits can only be sent when the serial clock is high. Each byte sent should be
followed by an acknowledge bit. When the master is done writing/reading then
the stop condition is created.

Fig. 31: I2C protocol.
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The readings of each sensor are later averaged and linearized to better detect
and reduce the presence of outlier readings [121]. A fusion algorithm takes as
input the averaged data of the accelerometer, gyroscope, and magnetometer. It
returns the estimated inertial angles (pitch, roll, and yaw) as well as the pro-
jected linear acceleration with a gravity compensation numerical method that
utterly removes the effect of the gravity component. Numerically integrating
the resultant linear acceleration yields velocity, and double integrating will de-
liver the body’s accumulative position (more in-depth explanation at chapter 4
Methodology). Merging the AHRS with an accumulative position allows track-
ing a moving body in three dimensions over time. To perform sensor fusion, two
methodologies were used: the first relates our implementation of Madgwick’s fil-
ter to conduct real-time sensor fusion in the microcontroller, which in a future
study might be used to communicate in real-time a body’s position. The Madg-
wick algorithm was utilized for its well-recognized proficiency to merge accuracy
with computational cost and simplicity of implementation. But since the study
aimed at comparing how different sensor fusion approaches perform under the
same data, we needed a second approach which meant storing the raw sensor
data in an SD card and process it later the experiment with a sensor fusion
library, AHRS: Attitude and Heading Reference Systems [11], an open-source
Python toolbox for attitude estimation using the most known algorithms, meth-
ods, and resources. To benchmark how different sensor fusion algorithms perform
under the same data. Available sensor fusion algorithms in AHRS library and
what sensors they use to perform AHRS estimation is present at table 7.

5.3 Calibration

A correct calibration of such sensors is essential for the compensation of their
systematic errors, bias, and scale factor. Each time prior to an experiment, the
inertial sensor is calibrated while the system is stationary and stabilized to com-
pensate for static error that might corrupt the measurements.

5.3.1 Accelerometer Calibration

Calibration of the accelerometer requires taking advantage of the acceleration
due to gravity, which we can use in the positive and negative orientation of the
IMU [122]. Additionally, we can also position the IMU perpendicular to gravity
in order to acquire a third calibration point. This results in three unique values
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Algorithm Accelerometer Gyroscope Magnetometer
Angular Rate Yes No No
AQUA Yes Yes Optional
Complementary Yes Yes Optional
Davenport’s Yes No Yes
EKF Yes Yes Yes
FAMC Yes No Yes
FLAE Yes No Yes
Fourati Yes Yes Yes
Madgwick Yes Yes Optional
Mahony Yes Yes Optional
OLEQ Yes No Yes
QUEST Yes No Yes
ROLEQ Yes No Yes
SAAM Yes No Yes
Tilt Yes No Optional

Table 7: Available sensor fusion algorithms in AHRS library and what sensors
they use. [11]

that can be combined to formulate a linear fit between the three values and the
values outputted by each axis of the accelerometer.

count=256
aox , aoy , aoz = ( 0 . 0 , 0 . 0 , 0 . 0 )
s e l f . _acce l e romete r_o f f s e t = ( 0 . 0 , 0 . 0 , 0 . 0 )
n = f loat ( count )

while count :
utime . sleep_ms ( de lay )
# tak ing samples f o r a per iod o f time
ax , ay , az = s e l f . a c c e l e r a t i o n
# sum every sample on each a x i s
aox += ax
aoy += ay
aoz += az
count −= 1

# average the samples taken
s e l f . _acce l e romete r_o f f s e t = ( aox / n , aoy / n , aoz / n)
return s e l f . _acce l e romete r_o f f s e t
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The result of the accelerometer’s calibration offset correction is present at
figure 32 where the calibrated output clearly shows an offset correction with the
ax and ay readings centered at 0 ms−2 while the az revolving at the 9.8 ms−2.
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Fig. 32: Accelerometer calibration offset correction.

5.3.2 Gyroscope Calibration

The simplest calibration of an IMU consists of calculating the offset for each axis
of the gyroscope. The gyroscope is the easiest calibration due to the expected
readings outputted under steady conditions. Each of the three axes of the gyro
should read 0 radians-per-second (rad/s) when the IMU is not moving. The
offsets can be measured by first taking some readings while the IMU is not
moving, then using those values as ’offsets’ when reading the gyro values in the
future. This is merely the simplest calibration method for the IMU and suffices
for most casual uses of the gyroscope and IMU [123].



58

count=256
gox , goy , goz = ( 0 . 0 , 0 . 0 , 0 . 0 )
s e l f . _gyro_of fset = ( 0 . 0 , 0 . 0 , 0 . 0 )

while count :
gx , gy , gz = s e l f . gyro
# sum every sample on each a x i s
gox += gx
goy += gy
goz += gz
count −= 1

# average the samples taken
s e l f . _gyro_of fset = ( gox / count , goy / count , goz / count )
return s e l f . _gyro_of fset

The result of the gyroscope’s calibration offset correction is present at figure
33 where the calibrated output clearly shows an offset correction with the ωx,
ωy and ωz readings centered at 0 rad/s.
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Fig. 33: Gyroscope calibration offset correction.
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5.3.3 Magnetometer Calibration

To calibrate the magnetometer, a series of measurements of the nearby magnetic
field are taken while holding the sensor in an eight-figure pattern through every
orientation possible. Ideally the measurements should portray a perfect sphere
centered at the origin and where the radius of the sphere is the magnetic field’s
strength [124]. Plotting the magnetometer’s raw measurements (as seen in figure
34a and figure 34b), it is visible that these do not form a perfect sphere, nor
are they centered at the origin. These are referred to as hard iron and soft iron
errors or biases, respectively. If no magnetic anomaly algorithm is applied to
perceive and avoid it, such distortions in the magnetic field can be interpreted
as changes in orientation.

Hard iron biases are commonly the largest and the simplest errors to rectify.
With the magnetic field measurements, it is straightforward to compensate for
hard iron biases by keeping track of the minimum and maximum field measured
in m̃x, m̃y and m̃z. Once the minimum and maximum field measured in m̃x, m̃y

and m̃z are known, the average can be subtracted from the following data which
results in the re-centering of the response surface on the origin. The following
script illustrates how a hard iron correction could be implemented:

# Hard iron c o r r e c t i o n

# ge t average x mag b i a s in counts
o f f s e t_x = (maxx + minx ) / 2
# ge t average y mag b i a s in counts
o f f s e t_y = (maxy + miny ) / 2
# ge t average z mag b i a s in counts
o f f s e t _ z = (maxz + minz ) / 2

s e l f . _o f f s e t = ( of f set_x , o f f set_y , o f f s e t_ z )
return s e l f . _o f f s e t

It is possible now to filter any soft iron biases by taking the minimum and
maximum field measured already computed and manipulate them to rescale the
magnetometer data to normalize the output across m̃x, m̃y and m̃z. It is possible
to accomplish this by calculating the scale factor with the ratio of the average
max - min through each axis and the numerical mean of all three axes. This
means, for instance, if xmax − xmin ratio is considerable, m̃x has its magnetic
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(a) Magnetometer measurements of magnetic field strength
along orthogonal X and Y-axis.
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(b) Magnetometer measurements of magnetic field strength
along orthogonal X, Y and Z-axis.

Fig. 34: Raw magnetometer measurements.

field scale reduced, or if the ymax − ymax ratio is smaller compared to the other
axes, it has its magnetic field values increased. This is known as orthogonal
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rescaling, identical to a diagonalized 3 x 3 calibration matrix while enabling
further scale bias correction.

# So f t i ron c o r r e c t i o n
# ge t average a x i s max chord l e n g t h in counts
avg_delta_x = (maxx − minx ) / 2
avg_delta_y = (maxy − miny ) / 2
avg_delta_z = (maxz − minz ) / 2

avg_delta = ( avg_delta_x + avg_delta_y + avg_delta_z )
avg_delta /= 3

scale_x = avg_delta / avg_delta_x
scale_y = avg_delta / avg_delta_y
sca le_z = avg_delta / avg_delta_z

s e l f . _scale = ( scale_x , scale_y , sca le_z )
return s e l f . _scale

The result of rescaling the MPU9250 magnetometer data is shown at figure
35:
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(a) Raw (blue) and calibrated (red) mag-
netometer measurements of magnetic
field strength along orthogonal X, Y-axis.
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Fig. 35: Raw and calibrated magnetometer measurements.
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5.4 Experiments

Several experimental tests were conducted to assess the position performance of
the INS under different conditions. Experiments were performed indoors, out-
doors, and underwater. These tests typically consisted of carrying the INS in a
movable platform, typically a skateboard or an electric scooter forming a geo-
metric shape such as a square or a triangle following a precise path on the floor.
Geometric shapes were used to better assess the estimating performance of the
system against a ground truth baseline. This section will describe how each set
of experiments were carried out and what challenges were faced.

5.5 Indoor Experiments

Indoor experiments were executed at Madeira Tecnopolo building, floor -1, in a
wide-open interior. A guiding rope was layout out in the floor forming a geometric
figure acting as baseline for the experiment. The inertial system was placed on
an electrical skateboard powered by a laptop computer, which could have been
replaced by a portable battery pack. Three kinds of geometric shapes were tested:
line, square, triangle. To better understand how distance affects estimation of
position, for every geometric figure, tests were made under two different distance
magnitudes: 4 and 16 meters.

Fig. 36: 4-meter side ground square used for baseline of accuracy of inertial
system.
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Once the experiment was set up, it was time to start testing the INS. The
board was dragged at constant speed through the guideline transporting the
inertial system. The INS was continuously estimating orientation and position
several times a second and storing data to an SD card. The board was dragged
at walking speed and stopped at corners when direction changed.

Fig. 37: Skateboard being dragged along the guideline.
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5.6 Outdoor Experiments

Outdoor experiments were conducted at praça do povo’s square (figure 38), in a
sport’s platform with a guiding rope also acting as baseline for the experiment
in the forming of geometric figures on the ground.

Fig. 38: Platform where outdoors experiments were conducted.

Here, the sports platform consisted of one 28mx28m square, composed of
4 meter squares, forming a 7x7 grid (figure 39). This was helpful since this
knowledge could also be used to benchmark the position estimation of the system
and easily calculate error margins.

Fig. 39: Bird’s-eye view representation of the 7x7 grid platform where outdoor
experiments were conducted.
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The inertial system was placed on an electrical scooter (figure 40a) in this
case, being powered by a laptop computer (figure 40b). The scooter was dragged
at walking pace (figure 40c) along the planned path marked by the rope.

(a) Spiral experiment path outlined by the white rope.

(b) Close-up view of the inertial
system (white box) attach with
an elastic band to the scooter’s
body frame.

(c) Pushing the electrical scooter
containing the laptop and inertial
system along the platform’s edges
forming geometrical shapes.

Fig. 40: Photos illustrating how outdoor experiments were performed.
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Here several shapes were tested, from simple lines, squares, and triangles to
more complex figures such as the ones illustrated at figure 41b and figure 41a.

(a) Spiral-based shape with increasing
length sides. (b) Squares of increasing side length.

Fig. 41: Bird’s-eye view representation of the more complex path shapes taken.
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5.7 Underwater Experiments

Underwater experiments were carried out at Madeira Carlton hotel divepoint,
where the INS was placed in an underwater spherical housing built for 360◦cam-
eras with a portable battery pack (figure 42a). Since the hardware was inac-
cessible inside the housing, the software had to be adjusted to support remote
triggering of the INS via a wireless hotspot using a mobile phone via an HTTP
request signal. Tests of the housing were performed prior to the experiment veri-
fying the presence of any water leaks and the well-functioning of the INS (figure
42b).

(a) Spherical housing encompassing
the inertial system and portable bat-
tery pack.

(b) The capsule was submerged in a
water tank to verify the presence of
any water leaks.

Fig. 42: View of the tests made to assure the underwater housing was water-
proof.

Once safety checks were completed, guaranteeing the feasibility of the study,
the team went to Madeira Carlton hotel divepoint, where tests were conducted
to evaluate the estimation quality of the proposed solution under water by a
professional diver (figure 43a). A 5-meter square net being held by two people
above water served as guideline for the diver performing the experiment under-
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water. The diver held the spherical housing while swimming along the guideline
maintaining a constant speed while slowly increasing depth (figure 43c).

(a) The housing being held underwater by the diver.

(b) The capsule housing the
inertial system being handed
out to a professional diver.

(c) View of the diver follow-
ing the net underwater hold-
ing the spherical housing.

Fig. 43: Photos of the underwater tests conducted at Madeira Carlton hotel
divepoint.
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6 Results

This section presents results from the different set of experiments mentioned in
chapter 5.4 Experiments. For every experiment, there is a table comparing every
algorithm’s displacement and turn error, in absolute and relative measurements.
And lastly, a 3D visualization of the best performing algorithm (the one with
the lowest displacement error and turn error respectively) for that experiment
is present for every test. This chapter is divided by geometric shapes: lines,
triangles, squares, each with their respective distances.

6.1 Line

The line shape consisted of moving the inertial system in a straight line for a
determined distance. Three line distances were tested: 4, 16, and 28 meter. The
results are shown below:

6.1.1 4 meter

For the 4-meter line experiment, the OLEQ algorithm which had the lowest
displacement error with an average of 0.13 meters (3.24% of error margin), and
ROLEQ with an average of 0.24 meters of turn error (6.06% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 0.16 3.90 0.50 12.62
AQUA 0.90 22.59 1.46 36.50
Complementary 0.34 8.45 0.55 13.66
Davenport 0.49 12.28 0.64 16.02
EKF 1.01 25.28 1.35 33.73
FAMC 0.17 4.25 0.50 12.57
FLAE 0.49 12.29 0.64 16.04
Fourati 0.32 8.01 0.54 13.39
Madgwick 0.74 18.57 0.74 18.51
Mahony 0.25 6.21 0.55 13.80
OLEQ 0.13 3.24 0.41 10.28
QUEST 2.14 53.59 2.07 51.69
ROLEQ 0.16 4.06 0.24 6.06
SAAM 0.34 8.53 0.55 13.82
Tilt 0.34 8.53 0.55 13.82
Average 0.53 13.32 0.75 18.84

Table 8: 4 meter line position estimation error (displacement and turn) of the
sensor fusion algorithms.
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Fig. 44: Position estimation by the best performing algorithms in the 4-meter
line experiment.
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6.1.2 16 meter

For the 16-meter line experiment, the FAMC algorithm which had the lowest
displacement error with an average of 0.43 meters (2.69% of error margin), and
Mahony with an average of 2.11 meters of turn error (13.21% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 0.89 5.59 3.97 24.78
AQUA 6.41 40.04 9.27 57.92
Complementary 0.49 3.08 2.16 13.47
Davenport 0.51 3.17 2.16 13.52
EKF 0.67 4.17 2.22 13.86
FAMC 0.43 2.69 2.16 13.49
FLAE 0.51 3.17 2.16 13.52
Fourati 1.09 6.83 4.80 29.98
Madgwick 0.49 3.05 2.15 13.47
Mahony 0.48 3.01 2.11 13.21
OLEQ 0.68 4.28 3.54 22.14
QUEST 2.61 16.33 3.79 23.72
ROLEQ 0.72 4.51 3.56 22.26
SAAM 0.48 3.02 2.14 13.35
Tilt 0.48 3.02 2.14 13.35
Average 1.13 7.06 3.22 20.14

Table 9: 16 meter line position estimation error (displacement and turn) of the
sensor fusion algorithms.
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Fig. 45: Position estimation by the best performing algorithms in the 16-meter
line experiment.
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6.1.3 28 meter

For the 28-meter line experiment, the Complementary algorithm which had the
lowest displacement error with an average of 0.52 meters (1.85% of error margin),
and SAAM with an average of 4.23 meters of turn error (15.09% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 1.29 4.61 6.08 21.73
AQUA 8.66 30.93 14.77 52.75
Complementary 0.52 1.85 4.31 15.41
Davenport 0.73 2.60 5.47 19.53
EKF 0.76 2.73 4.35 15.55
FAMC 0.50 1.80 4.33 15.45
FLAE 0.73 2.59 5.47 19.53
Fourati 1.07 3.81 6.21 22.18
Madgwick 0.55 1.96 4.29 15.32
Mahony 0.53 1.88 4.19 14.98
OLEQ 0.69 2.47 5.35 19.11
QUEST 3.08 11.01 11.72 41.87
ROLEQ 0.83 2.95 5.39 19.24
SAAM 0.51 1.81 4.23 15.09
Tilt 0.51 1.81 4.23 15.09
Average 1.40 4.99 6.03 21.52

Table 10: 28 meter line position estimation error (displacement and turn) of
the sensor fusion algorithms.
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Fig. 46: Position estimation by the best performing algorithms in the 28-meter
line experiment.
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6.2 Triangle

6.2.1 4 meter

For the 4-meter triangle experiment, the Mahony algorithm which had the lowest
displacement error with an average of 0.90 meters (7.50% of error margin), and
EKF with an average of 0.49 meters of turn error (4.09% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 4.53 37.72 7.35 61.28
AQUA 3.10 25.82 4.27 35.61
Complementary 3.85 32.08 3.43 28.59
Davenport 1.12 9.30 1.39 11.57
EKF 1.24 10.31 0.49 4.09
FAMC 4.43 36.90 7.12 59.37
FLAE 1.09 9.08 1.32 11.00
Fourati 7.36 61.33 8.47 70.60
Madgwick 1.94 16.15 1.02 8.51
Mahony 0.90 7.50 0.99 8.28
OLEQ 1.18 9.81 1.03 8.58
QUEST 2.84 23.65 2.58 21.50
ROLEQ 1.17 9.71 0.85 7.06
SAAM 1.05 8.71 1.08 9.01
Tilt 1.05 8.71 1.08 9.01
Average 2.45 20.45 2.83 23.60

Table 11: 4 meter triangle position estimation error (displacement and turn) of
the sensor fusion algorithms.
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Fig. 47: Position estimation by the best performing algorithms in the 4-meter
side triangle experiment.
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6.2.2 16 meter

For the 16-meter triangle experiment, the Mahony algorithm which had the
lowest displacement error with an average of 1.79 meters (3.74% of error margin),
and EKF with an average of 1.59 meters of turn error (3.32% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 12.84 26.74 24.84 51.76
AQUA 7.81 16.28 12.64 26.33
Complementary 2.60 5.41 3.30 6.87
Davenport 2.49 5.18 2.37 4.93
EKF 2.44 5.09 1.59 3.32
FAMC 11.93 24.86 23.55 49.06
FLAE 2.48 5.18 2.27 4.73
Fourati 23.17 48.26 29.76 62.01
Madgwick 6.88 14.32 8.29 17.28
Mahony 1.79 3.74 1.87 3.90
OLEQ 2.43 5.05 1.68 3.50
QUEST 9.51 19.82 11.48 23.92
ROLEQ 2.56 5.34 2.19 4.57
SAAM 1.88 3.91 1.81 3.77
Tilt 1.88 3.91 1.81 3.77
Average 6.18 12.87 8.63 17.98

Table 12: 16 meter triangle position estimation error (displacement and turn)
of the sensor fusion algorithms.
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Fig. 48: Position estimation by the best performing algorithms in the 16-meter
side triangle experiment.
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6.2.3 28 meter

For the 28-meter triangle experiment, the Mahony algorithm which had the
lowest displacement error with an average of 2.93 meters (3.49% of error margin),
and EKF with an average of 5.04 meters of turn error (5.99% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 22.91 27.28 48.97 58.29
AQUA 6.77 8.06 15.53 18.49
Complementary 5.69 6.78 10.22 12.16
Davenport 3.93 4.68 5.06 6.02
EKF 3.52 4.19 5.04 5.99
FAMC 21.07 25.08 46.74 55.64
FLAE 3.88 4.62 4.98 5.93
Fourati 35.63 42.41 53.27 63.42
Madgwick 15.58 18.55 17.78 21.16
Mahony 2.93 3.49 4.69 5.59
OLEQ 4.69 5.58 5.05 6.01
QUEST 15.18 18.08 30.32 36.09
ROLEQ 4.38 5.22 5.40 6.43
SAAM 2.93 3.48 4.54 5.40
Tilt 2.93 3.48 4.54 5.40
Average 10.14 12.07 17.47 20.80

Table 13: 28 meter square position estimation error (displacement and turn) of
the sensor fusion algorithms.
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6.3 Square

6.3.1 4 meter

For the 4-meter square experiment, the Mahony algorithm which had the lowest
displacement error with an average of 0.53 meters (3.34% of error margin), and
FLAE with an average of 0.38 meters of turn error (2.37% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 5.97 37.29 7.29 45.58
AQUA 4.12 25.75 4.20 26.23
Complementary 1.20 7.50 1.46 9.13
Davenport 0.69 4.31 0.43 2.70
EKF 1.09 6.79 1.53 9.56
FAMC 6.01 37.57 6.98 43.61
FLAE 0.69 4.32 0.38 2.37
Fourati 9.08 56.78 9.74 60.87
Madgwick 1.02 6.40 1.18 7.36
Mahony 0.53 3.34 0.37 2.29
OLEQ 0.60 3.74 0.52 3.23
QUEST 5.07 31.71 5.57 34.79
ROLEQ 0.78 4.90 0.88 5.48
SAAM 0.59 3.69 0.37 2.33
Tilt 0.59 3.69 0.37 2.33
Average 2.54 15.85 2.75 17.19

Table 14: 4 meter square position estimation error (displacement and turn) of
the sensor fusion algorithms.
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6.3.2 16 meter

For the 16-meter square experiment, the Madgwick algorithm which had the
lowest displacement error with an average of 1.93 meters (3.02% of error margin),
and FLAE with an average of 1.82 meters of turn error (2.84% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 21.87 34.17 26.78 41.85
AQUA 10.13 15.83 10.25 16.02
Complementary 15.26 23.85 13.69 21.40
Davenport 2.33 3.65 2.15 3.36
EKF 2.32 3.63 2.35 3.67
FAMC 20.73 32.40 25.26 39.47
FLAE 2.09 3.27 1.82 2.84
Fourati 34.16 53.37 36.37 56.83
Madgwick 1.93 3.02 1.98 3.09
Mahony 1.94 3.02 2.13 3.33
OLEQ 3.52 5.50 2.64 4.12
QUEST 17.97 28.07 19.53 30.52
ROLEQ 3.64 5.69 2.76 4.32
SAAM 2.15 3.36 2.12 3.31
Tilt 2.15 3.36 2.12 3.31
Average 9.48 14.81 10.13 15.83

Table 15: 16 meter square position estimation error (displacement and turn) of
the sensor fusion algorithms.
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6.3.3 28 meter

For the 28-meter square experiment, the Mahony algorithm which had the lowest
displacement error with an average of 2.97 meters (2.65% of error margin), and
FLAE with an average of 3.23 meters of turn error (2.89% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 35.00 31.25 46.96 41.92
AQUA 12.63 11.28 13.72 12.25
Complementary 15.95 14.24 16.54 14.77
Davenport 3.89 3.47 3.20 2.86
EKF 5.17 4.62 5.05 4.50
FAMC 32.67 29.17 45.35 40.49
FLAE 3.84 3.43 3.23 2.89
Fourati 57.83 51.63 66.25 59.15
Madgwick 4.03 3.60 3.58 3.20
Mahony 2.97 2.65 4.64 4.15
OLEQ 5.55 4.95 4.63 4.13
QUEST 26.64 23.78 32.23 28.78
ROLEQ 5.69 5.08 5.40 4.82
SAAM 3.22 2.87 3.37 3.01
Tilt 3.22 2.87 3.37 3.01
Average 14.55 12.99 17.17 15.33

Table 16: 28 meter square position estimation error (displacement and turn) of
the sensor fusion algorithms.
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6.4 Spiral

For the spiral experiment, the Davenport algorithm which had the lowest dis-
placement error with an average of 2.64 meters (1.78% of error margin), and
Madgwick with an average of 2.46 meters of turn error (1.66% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 41.51 28.05 61.37 41.47
AQUA 3.34 2.26 6.23 4.21
Complementary 2.86 1.93 6.92 4.67
Davenport 2.64 1.78 3.02 2.04
EKF 3.01 2.03 3.03 2.05
FAMC 39.96 27.00 48.09 32.49
FLAE 3.18 2.15 3.71 2.51
Fourati 41.45 28.00 61.91 41.83
Madgwick 2.74 1.85 2.46 1.66
Mahony 2.81 1.90 3.47 2.34
OLEQ 3.26 2.20 3.06 2.07
QUEST 19.97 13.50 35.23 23.80
ROLEQ 3.39 2.29 3.17 2.14
SAAM 2.73 1.84 3.29 2.23
Tilt 2.73 1.84 3.29 2.23
Average 11.70 7.91 16.55 11.18

Table 17: Spiral position estimation error (displacement and turn) of the sen-
sor fusion algorithms.
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6.5 Squares

For the 28-meter line experiment, the Tilt algorithm which had the lowest dis-
placement error with an average of 6.11 meters (4.88% of error margin), and
SAAM with an average of 7.23 meters of turn error (4.77% of error margin).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 32.91 22.24 51.46 34.77
AQUA 7.08 4.78 8.32 5.62
Complementary 11.63 7.86 11.34 7.66
Davenport 6.17 4.17 7.21 4.87
EKF 7.29 4.93 8.33 5.63
FAMC 31.83 21.51 38.19 25.81
FLAE 7.61 5.14 9.16 6.19
Fourati 54.90 37.09 73.30 49.53
Madgwick 6.53 4.42 7.53 5.09
Mahony 6.18 4.17 7.18 4.85
OLEQ 6.43 4.35 7.00 4.73
QUEST 12.57 8.49 25.22 17.04
ROLEQ 6.53 4.41 7.06 4.77
SAAM 6.11 4.13 7.23 4.88
Tilt 6.11 4.13 7.23 4.88
Average 13.99 9.45 18.38 12.42

Table 18: Squares position estimation error (displacement and turn) of the
sensor fusion algorithms.
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7 Discussion

7.1 Discussion of Results

Facing the result from the previous chapter, a few conclusions can be drawn.
Generally, the results showed a good estimation accuracy by most sensor fusion
algorithms, with small difference between the best performing algorithms (table
19).

Algorithm Displacement Error[m] Displacement Error[%] Turn Error[m] Turn Error[%]
AngularRate 16.35 23.53 25.96 39.64
AQUA 6.45 18.51 9.15 26.54
Complementary 5.49 10.28 6.72 13.44
Davenport 2.27 4.96 3.01 7.95
EKF 2.59 6.71 3.21 9.27
FAMC 15.43 22.11 22.57 35.22
FLAE 2.42 5.02 3.19 7.96
Fourati 24.19 36.14 31.87 48.16
Madgwick 3.86 8.35 4.64 10.42
Mahony 1.94 3.72 2.93 6.97
OLEQ 2.65 4.65 3.17 7.99
QUEST 10.69 22.55 16.34 30.34
ROLEQ 2.71 4.92 3.35 7.92
SAAM 2 4.12 2.79 6.93
Tilt 2 4.12 2.79 6.93
Average 6.74 11.98 9.45 17.71
Table 19: Overall ranking of how every algorithm performed in the given test.

The results showed that the algorithms had smaller displacement error than
turn error which indicates that algorithms were generally better at estimating
position than necessarily the shape of the experiment. Another conclusion was
that absolute error increases with distance, since longer experiments had bigger
absolute error rates than shorter experiments. Relative error measurements, on
the other side, decreased in longer tests. Some unexpected surprises from less
known algorithms such as OLEQ, ROLEQ, SAAM, Tilt, FLAE and Davenport
outperforming more well-established algorithms like the Complementary, EKF
and Madgwick.

From every test made, Mahony ranks best at displacement and with an av-
erage of 1.94 meters of absolute displacement error and 3.72% relative error.
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Closely followed by SAAM and Tilt with 2 meters of displacement error, and
4.12% of relative displacement error (table 20).

Algorithm Displacement Error[m] Displacement Error[%]
Mahony 1.94 3.72
SAAM 2 4.12
Tilt 2 4.12
Davenport 2.27 4.96
FLAE 2.42 5.02
EKF 2.59 6.71
OLEQ 2.65 4.65
ROLEQ 2.71 4.92
Madgwick 3.86 8.35
Complementary 5.49 10.28
AQUA 6.45 18.51
QUEST 10.69 22.55
FAMC 15.43 22.11
AngularRate 16.35 23.53
Fourati 24.19 36.14

Table 20: Algorithms ranked according to of how well performed at displace-
ment error.

SAAM and Tilt ranked best at turn error both with an average of 2.79
meters of absolute turn error and 6.93% of relative turn error. Closely followed
by Mahony with 6.97% meters of relative turn error (table 21).

On the other hand, Fourati had the worst general performance among all
algorithms, with a 24.19 (36.14% relative displacement error) meter error average
displacement and 31.87 (48.16% relative turn error) meter turn error average.
Angular Rate, FAMC, QUEST and AQUA also had poor overall results generally
performing under average of the other fusion algorithms.

From table 7, it is possible to draw a correlation between what sensor are
used by each algorithm and how they performed at estimating position. Tables
20 and 21 show that the worst performing algorithms are generally the ones who
don’t use every sensor available, for instance FAMC, QUEST and AQUA don’t
fuse the gyro’s readings to estimate orientation, while Angular Rate uses only
the gyro’s measurements. Fourati’s poor performance might be explained by the
fact that it depicts rigid body’s attitude in space with respect to the navigation
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frame (XN ,YN ,ZN ), where the navigation frame follows the convention North
East Down (NED), opposite of the convention used by the other algorithms,
East North Up (ENU).

Algorithm Turn Error[m] Turn Error[%]
SAAM 2.79 6.93
Tilt 2.79 6.93
Mahony 2.93 6.97
Davenport 3.01 7.95
OLEQ 3.17 7.99
FLAE 3.19 7.96
EKF 3.21 9.27
ROLEQ 3.35 7.92
Madgwick 4.64 10.42
Complementary 6.72 13.44
AQUA 9.15 26.54
QUEST 16.34 30.34
FAMC 22.57 35.22
AngularRate 25.96 39.64
Fourati 31.87 48.16

Table 21: Algorithms ranked according to of how well performed at turn error.

7.2 Comparing with Related Work

Ladetto et al. [91] applied PDR in urban and indoor areas seeking to assist blind
people reaching unfamiliar locations along with aiming to facilitate emergency
coordinators to track rescue workers. The study integrated a GPS receiver with
a body mounted IMU applying pattern recognition to accelerometer signals,
determining a user’s step signature. They verified an average position error of
5% of distance travelled which is significantly smaller than our results of 12%
average travelled error. Nonetheless, Ladetto et al. [91] had GPS receivers and
other sensors to help improve absolute position, which is not our case.

Stirling et al. [92] illustrate an experiment exploiting a shoe-mounted sensor
prototype that calculates stride length with accelerometers and magnetometers.
Their system measures angular acceleration by manipulating pairs of accelerom-
eters as an alternative to gyroscopes. The foot pod stride length measurement
was generally less than 10% different from the distances given by their control
point surveyed path. With a total distance estimated by the foot pod of 978
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meters, compared to 862 meters for the survey. Which goes into conformity with
our own results 12% displacement error.

Simulation experiments conducted by Ludwig et al. [79] using quadcopter
data and results show that Mahony provides better orientation estimation than
both Madgwick and EKF when using optimum parameters. The same authors
tested on [105] quadcopters the EKF, Madgwick, and Mahony filters. Results
showed that Mahony delivered a more precise orientation estimation and faster
execution time than Madgwick and EKF which also goes in compliance with our
results.

7.3 Challenges Faced

Common difficulties encountered when attempting to employ an accurate po-
sition estimation system lied significantly in the sensor’s output reliability and
consistency since these types of electronic devices are highly susceptible to the
existence of errors. Ever since the beginning of the development of this project
we realized calibration would play an important role if this idea was to ever
take off. The observations made throughout the examining of other positioning
systems have been that calibration ensures accurate measurements, and accu-
rate measurements are the foundation to the quality of data. These discoveries
lead to the significance of calibration as a means of reducing inaccuracies and
increase data quality significantly. As seen in chapter 5.3, several methods and
algorithms have been established which evidently decreased the drift and noise
components and have helped increase the accuracy of the positioning system.

To build a precise positioning system utilizing low-cost MEMS sensors was an
exciting challenge that came with numerous obstacles. The system requirements
were stringent owing to the environmental and economical requirements. To
accomplish a superior precision, the electronic components ought to have a higher
performance, higher resolution, and a higher sampling frequency.

Initially, this work planned to compare how estimation is affected by different
settings (indoor, outdoor, and underwater), by creating the same setup for every
environment and comparing how estimation was affected (underwater tests don’t
have dragging resistance which could influence displacement integration). This
turned out to be more difficult than expected since we struggled to replicate the
same experiments in every environment, couldn’t find indoor locations that had
enough space to replicate outdoor tests, the same happening with underwater
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tests. In the future, there should be an effort to make environmental comparison
possible to better understand how position estimation is affected by the envi-
ronment.

7.4 Future Work

Future work can expand upon this by experimenting with different hardware
by utilizing new inertial sensors and microcontrollers, testing new environments
such as aerial and nautical, and applying innovative solutions to sensor fusion
such as machine learning and deep learning algorithms to learn and better decide
how to perform the fusion of sensors. A benchmark comparison of the sensor
fusion algorithms on computational performance would also be an interesting
topic of research since computing efficiency is also a major variable in performing
real time position estimation.
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8 Conclusion

Conceptualizing, building, and developing an Inertial Navigation System (INS)
for position estimation was a challenging problem which involved the knowledge
from distinct areas, from electronics to programming, mathematics, and physics.
This work permitted to gain a deeper comprehension, understanding and appre-
ciation of how Micro-Electro-Mechanical Systems (MEMS), and inertial sensors
in general, operate. Grasping the multiple levels of complexity and abstraction
of decades of knowledge from different fields that this work lies upon was a hum-
bling experience.

Obtaining accurate position knowledge from low-cost inertial sensors is an
arduous task that is often considered not possible to achieve without the aid of
external sources of positioning or heading information. There was an effort to
optimize these sensors to their maximum capacities and prove that a low-cost
sensor-based positioning system is possible without the assistance of external
sources of positioning. We believe that such was achieved with this work, know-
ing well our solution has its own limitations and there is further space for im-
provement.

An extensive comparison among different sensor fusion solutions was pro-
vided, demonstrating how distinct fusion techniques perform in orientation and
position estimation. This experimental comparison of sensor fusion algorithms
was the largest and most profound there was in literature. This work also im-
plied a comprehensive experimental component which involved testing the In-
ertial Navigation System (INS) across different environments and conditions to
better assess how this impacted positioning performance.

This research also permitted to gain some knowledge on why certain sensor
fusion algorithms have superior position estimation performance when compared
to others, hypothesizing that algorithms who trust the gyro measurements and
slightly correct them with the absolute measurement of the magnetometer and
accelerometer ended up having the best results.

The questions this work was set to solve in the begging were answered, not
only is it possible to build a complete Inertial Navigation System (INS) out of
low cost Micro-Electro-Mechanical Systems (MEMS), but it can deliver accurate
and detailed position information as well.
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