
Design and implementation of resilient
attitude estimation algorithms for

aerospace applications

XIANLIANG CHEN

M.Eng

Supervisor: Xiaofeng Wu
Associate Supervisor: KC Wong

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Aerospace, Mechanical and Mechatronic Engineering
Faculty of Engineering

The University of Sydney
Australia

2 July 2023



Declaration

I declare that this thesis is my original work and has not been submitted for any other

academic degree or diploma at any institution. This work represents my own research and is

based on my personal findings, analyses, and interpretations.

I confirm that all the sources used in this thesis have been properly acknowledged and

cited according to the guidelines set forth by my academic institution. I have taken due care

to ensure that all the information presented in this thesis is accurate, reliable, and unbiased.

Any errors or omissions are unintentional and solely my responsibility.

Furthermore, I declare that I have complied with all ethical standards, including obtaining

necessary permissions and consent from research participants, and that my research has been

conducted in accordance with the relevant codes of conduct and guidelines.

In conclusion, I affirm that this thesis is a true representation of my academic achievements

and research capabilities. I hope that it will contribute to the advancement of knowledge in

the field and inspire future research endeavors.

Name: Xianliang Chen

ii



Authorship attribution statement

Chapter 4 of this thesis is published in Xianliang Chen et al. (2023a). ‘An Observation

Model From Linear Interpolation for Quaternion-Based Attitude Estimation’. In: IEEE

Transactions on Instrumentation and Measurement 72, pp. 1–12. I designed the research,

conducted the experiments, analyzed the data, and wrote this paper.

Chapter 5 of this thesis is submitted to the Xianliang Chen et al. (2023b). ‘Kalman filter

and neural network fusion for fault detection and recovery in satellite attitude estimation’.

Manuscript submitted for publication and is under review condition. In addition, the QUEST

and RBF part of Chapter 5 is published in Xianliang Chen et al. (2022). ‘Feasibility Study

of Neural Network in Satellite Attitude Determination’. In: 6th International Technical

Conference on Advances in Computing, Control and Industrial Engineering (CCIE 2021).

Springer, pp. 264–271. In these 2 papers, I designed the research, conducted the experiments,

analyzed the data, and wrote the paper.

Chapter 6 of this thesis is finished and prepared to submit to the journal "IEEE Sensor

Journal". I designed the research, conducted the experiments, analyzed the data, and wrote

the paper.

Chapter 7 of this thesis is prepared to be submitted to the Xianliang Chen et al. (2023c).

‘Optimized FPGA Implementation of Fault Detection, Isolation and Recovery System for

Satellite Attitude Estimation’. Manuscript submitted for publication. I designed the research,

conducted the experiments, analyzed the data, and wrote this paper.

In addition to the statements above, in cases where I am not the corresponding author

of a published item, permission to include the published material has been granted by the

corresponding author.

Student Name: XIANLIANG CHEN

Signature:

iii



iv AUTHORSHIP ATTRIBUTION STATEMENT

Date: 15 March 2023

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements above are correct.

Supervisor Name: Xiaofeng Wu

Signature:

Date:



Abstract

Satellite attitude estimation is a critical component of satellite attitude determination

and control systems, relying on highly accurate sensors such as Inertial Measurement Units

(IMUs), star trackers, and sun sensors. However, the complex space environment can cause

sensor performance degradation or even failure. To address this issue, fault detection, isolation,

and recovery (FDIR) systems are necessary.

This thesis presents a novel approach to satellite attitude estimation that utilizes an Inertial

Navigation System (INS) to achieve high accuracy with the low computational load. The

algorithm is based on a two-layer Kalman filter, which incorporates the quaternion estimator

(QUEST) algorithm, Factored Quaternion Algorithm (FQA), Linear interpolation (LERP)

algorithms, and kalman filter (KF).

Moreover, the thesis proposes an FDIR system for the INS that can detect and isolate

faults and recover the system to a safe state. This system includes two-layer fault detection

with isolation and two-layered recovery, which utilizes an Adaptive Unscented Kalman

Filter (AUKF), QUEST algorithm, residual generators, Radial Basis Function (RBF) neural

networks, and an adaptive complementary filter (ACF). These two fault detection layers aim

to isolate and identify faults while decreasing the rate of false alarms. An FPGA-based FDIR

system is also designed and implemented to reduce latency while maintaining normal resource

consumption in this thesis.

Finally, a Fault Tolerance Federated Kalman Filter (FTFKF) is proposed to fuse the output

from INS and the Celestial Navigation System (CNS) to achieve high precision and robust

attitude estimation.

The findings of this study provide a solid foundation for the development of FDIR systems

for various applications such as robotics, autonomous vehicles, and unmanned aerial vehicles,

particularly for satellite attitude estimation. The proposed INS-based approach with the FDIR

v
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system has demonstrated high accuracy, fault tolerance, and low computational load, making

it a promising solution for satellite attitude estimation in harsh space environments.
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CHAPTER 1

Introduction

Satellite technology has become an indispensable tool for modern society. Satellites are

used for various applications including communication, navigation, earth observation, and

scientific research. To perform these applications, satellites need to be accurately controlled in

their attitude, which is the orientation of the satellite in space. The Attitude , Determination,

and Control System (ADCS) in satellites is essential for pointing the payloads in the right

direction, maintaining communication links, and ensuring accurate earth observations. There

are an increasing large number of research about the satellite attitude, including the Inertial

Navigation System (INS), Celestial Navigation System (CNS), Global navigation satellite

systems (GNSS), etc.

The INS consisting of an IMU and a processing unit utilizes a gyroscope, accelerometer, and

magnetometer to determine the position, velocity, and attitude of the satellite in real time,

without any external assistance. The gyroscope establishes the reference coordinate system

(inertial coordinate system) and measures the rotational motion of the satellite, while the

accelerometer and magnetometer measure the acceleration of motion. The processing unit

decodes the velocity, position, and attitude data based on the measured signals and outputs

the satellite’s navigation information. With its high short-term accuracy, continuous output,

and strong anti-interference ability, the inertial navigation system is capable of performing

the navigation task autonomously and efficiently. However, the major drawback of the INS

is the accumulation of drift errors from the gyroscope with time, leading to a large error in

long-term attitude estimation.

The CNS employs a range of sensors, including Earth sensors, Sun sensors, and star trackers,

to acquire celestial orientation information. The CNS comprises an Astrometry Measurement

1
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section and a navigation solution component, the latter of which typically encompasses

algorithms for determining orbit, attitude, and position. While the CNS can furnish excep-

tionally precise attitude information, the output is subject to discontinuity and environmental

perturbations.

GNSS, which stands for Global Navigation Satellite System, is a cutting-edge and highly

advanced navigation system that relies on a network of orbiting satellites to provide accurate

and reliable location and attitude information. By utilizing a sophisticated array of sensors

and receivers, GNSS is able to calculate the precise position, velocity, and orientation of

objects with unparalleled accuracy. The technology behind GNSS is truly groundbreaking.

With a constellation of satellites in orbit around the Earth, GNSS is able to triangulate the

location of any object with a compatible receiver. This allows for a wide range of applications,

such as transportation, mapping, military operations, and surveying. Because of its high level

of accuracy and reliability, GNSS has become an essential tool in a wide variety of fields.

However, attitude estimation is still challenging, especially in the presence of external dis-

turbances, such as solar radiation pressure, magnetic field, and atmospheric drag. These

disturbances can cause the satellite to deviate from its desired attitude, which can lead to re-

duced performance, reduced lifetime, or even a mission failure. Therefore the Fault, Isolation,

and recovery system (FDIR) is necessary for the ADCS in the satellite. The FDIR involves

fault detection, isolation, and recovery, which can recover the system safely. The goal of

isolation and recovery is to minimize the impact of the fault on the satellite’s performance

and to ensure that the satellite can continue to perform its mission. Furthermore, the objective

of the fault detection system is to identify the fault in a timely manner, with the aim of

minimizing false alarms.

Implementing FDIR on Field-Programmable Gate Arrays (FPGAs) is a promising approach

to improve the performance and reliability of ADCS in the satellite. FPGAs are integrated

circuits that can be reconfigured in space, making them ideal for implementing complex al-

gorithms and control systems. Implementing FDIR on FPGAs allows for real-time processing

of the data from the sensors, keeping the accuracy of the attitude estimation and enabling

rapid response to faults and recovery to a safe state. Furthermore, the utilization of FPGAs has
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been proven to significantly enhance programming efficiency and minimize latency through

the implementation of optimized algorithms and the utilization of optimized input data. These

advantages make FPGAs an attractive choice for various demanding applications, particularly

those in the aerospace industry. In addition to their programming capabilities, FPGAs possess

remarkable reliability with low power consumption characteristics, making them well-suited

for deployment in space-based systems. These attributes make FPGAs an ideal solution

for meeting the stringent requirements of space-based applications, where harsh conditions

and limited power availability characterize the operational environment. The combination

of programming efficiency, reliability, and low power consumption provides an attractive

solution for space applications, where performance and reliability are of utmost importance.

1.1 Thesis Motivation

The field of satellite attitude estimation is crucial to the success of the ADCS. To accurately

determine the attitude of a satellite, a combination of sensors such as star trackers, sun sensors,

and gyroscopes are utilized to gather measurements. The task of attitude estimation requires

high levels of accuracy while also being mindful of limited computational resources on

the satellite. However, the accuracy of the attitude estimation is highly dependent on the

sensors’ accuracy, each of which has its own inherent limitations and measurement errors. For

example, the IMU may suffer from bias problems, and the Star tracker can easily be impacted

by environmental factors leading to discontinuity issues. Therefore, it is necessary to have a

novel algorithm to improve the attitude accuracy of INS and keep a low computational load.

There is also a need for a novel algorithm that can maintain high levels of attitude accuracy

while also being computationally efficient. Such an algorithm would not only enhance the

overall performance of the ADCS but also address the limitations of the current systems in

use.

The FDIR system in Satellite attitude estimation is an important aspect of satellite design that

ensures that the satellite can continue to perform its mission in the presence of faults. A fault

in the ADCS, such as a failure of a sensor, can cause the satellite to deviate from its desired
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attitude. Fault tolerance mechanisms are used to detect and isolate the faulty component and

recover the system to a safe state. This is commonly achieved through redundancy. However,

the limited space and power resources on satellites, particularly for Cube-Sats, make the

implementation of redundant components challenging. Therefore, the FDIR algorithms play a

crucial role in ensuring accurate attitude estimation and avoiding false alarms. The algorithms

is able to effectively address the problem of sensor outliers and provide a robust solution for

fault detection, isolation, and recovery.

The FDIR system has stringent demands on programming speed, as early detection of faults

is essential for ensuring a quicker recovery to a safe state. Optimization on the algorithm

side of the FDIR system can enhance its running speed. However, the optimization at the

hardware level proves to be more effective. An example of such optimization is implementing

the FDIR system on an FPGA and further optimizing it through parallel pipelining. This

approach reduces latency significantly while maintaining normal resource consumption.

Based on the above reasons, this thesis focuses on the development of satellite attitude

estimation by INS, the FDIR system of the INS for the satellite attitude estimation, and the

fusion method of INS and CNS. Another objective of this research is to design and implement

an FPGA-based FDIR system that can accurately estimate the satellite attitude, detect and

isolate faults, and recover the system to a safe state. The FDIR system will be tested on an

air-bearing Table with the motion tracking system to evaluate its performance and validate

its effectiveness. The results of this research will provide a basis for future work on the

development of FDIR systems for other applications, such as robotics, autonomous vehicles,

and unmanned aerial vehicles.

1.2 Scope and Objectives

The scope of this thesis is to propose and develop novel algorithms for satellite attitude estim-

ation and FDIR within an onboard satellite ADCS. The thesis aims to address the challenges

of achieving high accuracy, robustness, and fault tolerance in satellite attitude estimation and
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FDIR in the presence of adverse conditions and faulty sensors. These algorithms will be

optimized and implemented on the hardware. The objectives of this thesis are as follows:

(1) Develop a two-layer Kalman filter-based algorithm for satellite attitude estimation

utilizing an INS. The algorithm integrates the QUEST and the FQ to achieve higher

accuracy in attitude estimation. The algorithm should provide smooth outputs, avoid

singularities, and reduce computational complexity.

(2) Propose a groundbreaking approach for the FDIR system within an IMU as part

of the satellite ADCS. The approach should involve the fusion of outputs from

the AUKF, QUEST, and two Radial Basis Function (RBF) neural networks. The

objective is to ensure robustness and high accuracy in satellite attitude estimation,

even in the presence of a faulty sensor.

(3) Implement and optimize the FDIR system on the FPGA platform. The optimiz-

ation should focus on enhancing efficiency, minimizing latency, and maintaining

normal resource consumption and temperature. The implementation should lever-

age pipelining and parallel techniques to achieve prompt fault detection and quick

recovery.

(4) Evaluate the proposed algorithms and system implementation through simulations

and experiments. The evaluation should assess the accuracy, robustness, fault

tolerance, false alarm rate, and efficiency of the satellite attitude estimation and

FDIR system. Comparative analysis with existing approaches should be performed

to demonstrate the superiority of the proposed solutions.

(5) Provide insights into the significance of the proposed algorithms and system im-

plementation in the field of satellite attitude determination and control. Highlight

the contributions and potential applications of the novel, robust, and high-accuracy

solutions for satellite ADCS, especially in challenging space environments.
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1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 provides a comprehensive review of the

related fields. It covers the satellite attitude determination system, fault tolerance problems in

satellites, and the implementation of Field Programmable Gate Arrays (FPGAs) for attitude

estimation.

Chapter 3 introduces the background and basic knowledge of satellite attitude estimation,

including coordinate reference, attitude representation, different sensor models in satellite

attitude estimation and kinematic equation and low earth orbit dynamic equation.

Chapter 4 presents a novel algorithm for satellite attitude estimation utilizing an INS system. It

introduces a two-layer Kalman filter-based approach for attitude estimation. The proposed al-

gorithm integrates the results of the quaternion estimator algorithm (QUEST) and the factored

quaternion algorithm (FQA) to achieve higher accuracy in attitude estimation compared to

using each algorithm separately. The Kalman filter uses a quaternion matrix derived from

the linear interpolation (LERP) of the observation and process models. The process model,

which integrates the output from the gyroscope, provides a smooth output while avoiding

singularities and reducing computational complexity. The two-layer architecture is robust

against magnetic disturbances and other adverse conditions. Additionally, the second linear

interpolation ensures high-precision attitude estimation for vehicles in both static and dynamic

environments.

Chapter 5 presents a groundbreaking approach for the FDIR system within an IMU as a

part of an onboard satellite Attitude ADCS. This approach involves the fusion of outputs

from the AUKF, QUEST, and two RBF neural networks, which are based on an adaptive

complementary filter(ACF) and hypothesis testing. This multi-layer approach ensures the

robustness and high accuracy of the satellite’s attitude estimation. In the preliminary phase of

the recovery process, the AUKF is utilized for both fault detection and attitude recovery. This

is followed by a secondary recovery phase that employs trained neural networks to estimate

the attitude, providing a more comprehensive solution. This multi-level recovery strategy

guarantees that the satellite ADCS system can maintain a reasonable level of accuracy even in
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the presence of a faulty sensor. Additionally, the proposed algorithm provides a lower false

alarm rate, resulting in a more reliable satellite attitude estimation solution. The proposed

approach represents a significant contribution to the field of satellite attitude determination

and control, offering a novel, robust, and high-accuracy solution to the challenging problem

of fault tolerance in INS.

Chapter 6 introduces a novel algorithm based on the federated kalman filter for fusion INs and

CNS in satellite ADCS, and realizes fault detection, isolation, and recovery in a complicated

space environment. The FTFKF includes two sub-filters and a master filter. When in a safe

situation, compared with the single INS and CNS, the FTFKF can has higher accurate attitude

information. When in failure, the FTFKF can detect which sub-filter is in the failure, and

isolate this sub-filter, recover the normal satellite attitude. Furthermore, in case of a false

alarm, when the fault detection factor exceeds the threshold constant steps, the sub-filter will

be determined in the failure.

Chapter 7 introduces the implementation and optimization of the FDIR system on the FPGA

in detail. The optimization of the system on an FPGA board, utilizing pipelining and parallel

techniques, significantly enhances its efficiency while minimizing latency and maintaining

normal resource consumption and temperature. The FDIR system demands high program-

ming speed due to the need for prompt fault detection and quick recovery. The proposed

implementation leverages the ZYNQ platform by integrating complex algorithms, such as

AUKF and RBF, into the FPGA part (Programmable Logic (PL)) and integrating them with

the ARM processor ( Processing System (PS)) using ACF to maximize the utilization of

resources available on the ZYNQ platform.

Chapter 8 will conclude the work that has been finished in this thesis and present the future

research direction with the potential improvements.



CHAPTER 2

Literature review

2.1 Attitude Determination System

In the field of satellite attitude determination, there are various techniques utilized, with INS,

CNS, and GNSS being the most well-known. This chapter will introduce these algorithms

and how they are utilized in satellite ADCS.

2.1.1 Inertial Navigation System

Magnetic, Angular Rate, and Gravity (MARG) sensors have been used for real-time attitude

estimation for applications such as human body motion tracking (Yun et al. 2005; Lee and

Park 2009; Liem and Gavrila 2014) and orientation of quadrotor drones(Marins et al. 2001).

MARG sensors include a 3-axis magnetometer, a 3-axis gyroscope, and a 3-axis accelerometer.

MARG sensors can be used as an alternative to an IMU for attitude estimation as part of an

Attitude and Heading Reference System (AHRS) (Collinson 2013). In addition to the 3-axis

gyroscope, a 3-axis accelerometer is found in an IMU; a MARG sensor also contains a 3-axis

magnetometer.

However, the sensors required by an AHRS have disadvantages that reduce the accuracy of

attitude estimation. Specifically, the gyroscope has gyro bias drift and measurement noise.

Gyroscopes are suited to predict an orientation in a short period but not a long steady-state

period. The magnetometer can be easily affected by the nearby ferrous materials causing

distortions in the local magnetic field. The accelerometer cannot give information on the yaw
8
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angle because of its inability to measure the rotation along a vertical axis (Wang et al. 2015b).

Hence, sensor fusion is necessary for accurate attitude estimations.

Algorithms, such as the QUEST algorithm, the three-axis attitude determination (TRIAD)

algorithm, and the q-Euler algorithm (Markley and Mortari 2000; Guo et al. 2017a; Markley

2002; Campos and Furtado 2017), can estimate attitude from two reference vectors (gravity

and magnetic field) and an observation vector. Such algorithms can calculate the normalized

quaternion by solving Wahba’s problem (Wahba 1965). However, the uncertainty of the

reference vectors is still problematic to the attitude determination algorithm due to measure-

ment noises of the sensors, bias errors, and installation errors. For the QUEST (Yun et al.

2005; Crassidis et al. 2007) and TRIAD algorithms, the local magnetic field data affects

the yaw angle, the roll angle, and the pitch angles. However, due to the deviation in the

direction of the magnetic field vector between different locations, these algorithms should

avoid using magnetic field data to calculate the pitch and roll angles. To solve this problem

(Liu et al. 2012), presents the Factored Quaternion Algorithm (FQA) to obtain quaternions,

meaning magnetic variation only affects the yaw angle. Both QUEST and TRIAD or FQA

use current measurements only; this measurement is based on available information about

the body and the initial frame. However, these algorithms can only be used for steady-state

attitude determination and do not involve any predictive dynamic attitude information.

A method of attitude estimation that offers the ability to perform dynamic attitude determina-

tion in real-time uses relative measurements based on a gyroscope and Kalman Filter (KF)

(Sun and Deng 2004; Zanetti et al. 2009). In addition, (Makni et al. 2014) uses a viable

quaternion-based Adaptive Kalman Filter (q-AKF) to estimate the attitude. While it reduces

computational loads, it only estimates two Euler angles. Quaternions serve as a singularity-

free substitution for Euler Angles to represent attitude (Alaimo et al. 2013). The estimation

scheme (Lefferts et al. 1982) demonstrates a seven-dimensional state matrix, including a

group of 4-D quaternions and a 3-D gyro drift-rate bias matrix. (Sabatini 2006; Zhang

et al. 2012; Foxlin 1996) introduces a 10-D state matrix (4-D quaternions, 3-D acceleration

bias, and 3-D magnetic field bias), and (Sabatini 2011) presents a 9-D state matrix (3-axis

acceleration, 3-axis angular velocity, 3-axis magnetometer output). However, the estimation
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schemes mentioned above require a large number of matrix operations to linearize the process

model and the observation model by Jacobian Matrices. However, having multidimensional

Jacobian matrix operations inside these algorithms means the computational load is high.

To solve the high dimension problem, a large number of researchers have focused on a

two-layered architecture (Yun et al. 2005; Lee and Park 2009; Marins et al. 2001; Wang et al.

2015a; Crassidis et al. 2007; Feng et al. 2017; Lee and Choi 2017; Liu et al. 2014; Valenti

et al. 2015; Sabatelli et al. 2012). The first layer uses an attitude estimation algorithm, such as

the QUEST algorithm (Yun et al. 2005), adaptive-step Gradient Descent Algorithm (AGSD)

(Wang et al. 2015a), or other algorithms (Lee and Park 2009; Feng et al. 2017; Liu et al.

2014)to calculate the computed quaternion that is then input to the Kalman filter. The second

layer is the Kalman Filter.

Yun (Yun et al. 2005) uses the QUEST algorithm to compute a quaternion to describe an

attitude. Still, the state matrix and observation matrix are 7-D, including 4-D computed

quaternion and 3-D angular velocity, which will increase the computational load; however,

compared with the traditional two-layered QUEST and Kalman filter approach, it improves

the attitude accuracy while decreasing the computational load. Similarly, Seo (Seo et al. 2011)

employs the FQA algorithm to calculate a quaternion as the observation model. However,

the precision of the attitude is not good, and it is still superior to the traditional FQA and

Kalman filter algorithm. Wang (Wang et al. 2015a) uses an adaptive-step Gradient Descent

algorithm (AGSD) to get the computed quaternion from the accelerometer. It is necessary to

use the Jacobin Matrix to get the step size during this step. Then the calculated quaternion

and the angular velocity obtained from the gyroscope are input to the Kalman Filter to

estimate a quaternion. However, the accelerometer cannot measure the rotation about the

vertical axis; therefore, it is necessary to use a magnetometer to determine the yaw angle in

AHRS. The calculation of the Jacobin Matrix to get the step size in AGSD leads to a large

computational load and total running time. As an alternative to the above, Lee (Lee and

Park 2009) utilizes a 4-D computed quaternion produced by the two-observation quaternion

estimation method (O2OQ) with a vector selector used as the observation model. However,

during the process, there are two steps to calculate the computed quaternion: O2OQ algorithm
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and vector selector, which will increase computational cost. Feng (Feng et al. 2017) also

treats computed quaternions as the observation model in the Kalman Filter and only uses

the two-step geometrically intuitive correction (TGIC) to get the computed quaternion. This

algorithm can obtain correct attitude information immune to magnetic distortion and reduce

33.8% of root mean square error. As the accelerometer cannot measure the rotation of the

vertical axis, additional sensors are required (Magnis and Petit 2014; Ni and Zhang 2011;

Zhai 2017) to solve this problem.

Another method is the traditional one-layer Kalman Filter. Shuster (Shuster 1989) combines

the QUSET algorithm and Kalman Filter in different ways. In (Shuster 1989) the Kalman

filter is used to smooth the prediction, and the QUEST is used as a filter, which can avoid

questionable subtractions and improve the computation speed because it implements the

whole attitude calculation rather than incremental corrections. In (Shuster 1990), the QUEST

algorithm is used as the data compressor to improve the calculation efficiency. The estimated

attitude from vectors in a single frame can be described as Wahba’s problem (Wertz 2012),

and there have been many solutions to Wahba’s problem, such as the TRIAD algorithm and

QUEST algorithm (Shuster and Oh 1981). In these algorithms, the QUEST can find the

quaternions by minimizing the loss function. In addition, Valenti (Valenti et al. 2015) presents

how to combine Algebraic Quaternion Algorithm (AQUA) with the Kalman Filter, which

computes the quaternion as the composition of two algebraic quaternions. Alternatively,

the Complementary Filter and gradient descent algorithm[37] can deal with the inertial

and magnetic sensors (Liang et al. 2011; Madgwick et al. 2011; Calusdian et al. 2011).

Calusdian (Calusdian et al. 2011) presents a quaternion algorithm based on the adaptive gain

Complementary Filter and FQA. The algorithm utilizes the Complementary filter to take

advantage of low-frequency accelerometers, magnetometers, and high-frequency gyroscopes

to achieve high accuracy. While QUEST does offer a less computationally intense alternative

to FQA, the accuracy of the quaternions offered by the FQA is not as high as the QUEST

algorithm.

This paper develops a quaternion-based algorithm with a two-layer architecture. The ob-

servation vector is obtained by the fusion of the QUEST algorithm and FQA using Linear
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interpolation (LERP). In this scheme, the first step is using the QUEST algorithm and the

FQA to preprocess the data from the accelerometers and magnetometers to get two groups

of computed quaternions. Then these computed quaternions go through LERP to get the

measured quaternions to form an observation quaternion model before being input into a

Kalman Filter. In addition, the angular rate from the gyroscope is used to get the approximated

quaternion that will be combined with the quaternion from the LERP to obtain the optimal

quaternion for the Kalman Filter. Then the second layer combines the measured quaternions

and optimal quaternions in the Kalman Filter to get the estimated quaternions.

2.1.2 Celestial Navigation System

CNS is a method of determining the position of an object in space by using observations of

celestial objects, such as the sun, moon, and stars. Nowadays, CNS is commonly used as a

navigation system for many satellites, providing reliable and accurate navigation information.

The celestial observation in CNS is based on different kinds of sensors, such as star trackers

(Liebe 1995), sun sensors(Psiaki 1999), Horizon sensors(Tekawy et al. 1996).

Star trackers are essential devices for satellite attitude estimation, providing accurate orienta-

tion information based on the positions of stars. These devices have been extensively utilized

in a variety of satellite missions due to their exceptional accuracy. In particular, Yelubayev

et al. 2015 describes the development of star trackers for satellite attitude determination,

focusing on the optical system of the tracker.

The German Aerospace Center (DLR) is currently designing and developing a novel star

tracker for use as the primary attitude sensor in the SHEFEX mission. The developed star

tracker is a low-cost and low-accuracy sensor that meets the attitude accuracy requirements of

the mission (Samaan and Theil 2012). Additionally, Samaan et al. 2011 presents an open-loop

and closed-loop hardware test bench to demonstrate the functionality of star trackers. The test

bench consists of an optical star field simulator, a real-time simulation computer, and the star

tracker being tested. Recently, an ultra-low-cost star tracker based on the Raspberry Pi has

been introduced by Gutiérrez et al. 2020. This new design offers a cost-effective alternative to
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FIGURE 2.1: Basic processing flow of the star tracker (Rijlaarsdam et al. 2020)

conventional star trackers while maintaining the essential functionality required for satellite

attitude estimation. In addition, Ju et al. 2000 has developed a micro star tracker suitable for

small spacecraft, which combines a high quantum efficiency sensor, a high-speed dedicated

microcomputer, and a lightweight, high aperture optical system. This design provides a

practical solution for small spacecraft requiring high-precision attitude determination. Finally,

Muruganandan 2018 has designed the Arcsecond Pico Star Tracker (APST), which has been

optimized for use on nanosatellites. The APST is expected to provide pointing knowledge in

the arcsecond range, which is a significant improvement over previous designs.

In the development of a star tracker, the algorithm is as crucial as the hardware in achieving

high-precision attitude determination. Figure 2.1 illustrates the basic processing flow of a

star tracker, which comprises three phases: star detection and centroiding, star identification,

and attitude estimation. Various studies have been conducted on different phases of the star

tracker, and algorithms can be classified into two main categories (Spratling IV and Mortari

2009). The first category is capable of autonomously identifying stars in a scene without

prior attitude information, which addresses the lost-in-space problem. The second category

involves a more efficient star identification algorithm that leverages some available attitude

information. To tackle the star identification problem, algorithms of the first category treat

stars as vertices in a subgraph, with angular distances between stars serving as edge weights.

The task of identifying stars then involves finding an isomorphic subgraph in a database.

Several algorithms fall under this category, including the triangle algorithm (Liebe 1993),

polygon angular matching algorithm (Wertz 1978), group match algorithms (Kosik 1991),

and pyramid algorithm (Mortari et al. 2004). Additionally, (Mortari 1997) proposed a fast and

robust technique for identifying stars in a large catalog using only their angular separation,

suitable for spacecraft equipped with wide field-of-view star trackers. This algorithm involves
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two identification processes: the K-vector Star-Pair Identification Technique (SPIT) and the

Reference-Star Star-Matching Identification Technique (SMIT). In a similar vein, (Samaan

et al. 2005) introduced two novel algorithms for recursive mode star identification. Based on

the spherical polygon search (SP-search) algorithm, the first approach allows for accessing

all the cataloged stars observed by the sensor field-of-view (FOV) and recursively adding

or removing candidate cataloged stars based on predicted image motion induced by camera

attitude dynamics. The second method relies on star neighborhood information and a catalog

neighborhood pointer matrix to access the star catalog.

Algorithms in the second category assign a unique pattern to each star based on its relative

position to nearby stars and then search for the closest match to the measured pattern in a

pre-existing database. Examples of such algorithms include the grid algorithm (Padgett and

Kreutz-Delgado 1997), the singular value method algorithm (Kim et al. 2003), the Log-Polar

transform algorithm (Wei et al. 2009), the genetic algorithm-based identification algorithm

(Paladugu et al. 2003), and the ordered set of points algorithm (Zhu et al. 2018). An efficient

star pattern recognition algorithm was presented by (Lamy Au Rousseau et al. 2005), which

ensures compatibility between the software and the imaging sensor’s noise level. Another

algorithm, proposed by (Kolomenkin et al. 2008), matches stars in an image taken with a

camera to stars in a star catalog using a geometric voting scheme. In this method, a pair of

stars in the catalog vote for a pair of stars in the image if the angular distance between the

stars in both pairs is similar. (Rufino and Accardo 2003) introduced an analytical study of the

centroiding algorithm’s error and showed that both a systematic and a random contribution

exist. From this approach, the position computation accuracy was improved from 0.01 to

0.005 pixels

Overall, the continuous development of star tracker technology has provided a wide range of

options for satellite missions requiring accurate attitude determination. These advancements

have made significant contributions to the field of satellite engineering and continue to offer

new possibilities for future missions.
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2.1.3 Global Navigation Satellite Systems

GNSS has become ubiquitous in the modern area and has been utilized in several applications,

such as UAV and satellite attitude estimation, determining the attitude of any outdoor moving

object (Raskaliyev et al. 2020).

The GNSS baseline model can be described in the following formula according to the Gauss-

Markov modelTeunissen 2008:

E(y) = Az +Bb;D(y) = Qy (2.1)

where E(.) and D(.) denote the expectation and dispersion operator, y is the given GNSS data

vector of order m, z and b are the unknown parameter vectors of order n and p, and where A

and G are the given design matrices that link the data vector to the unknown parameters. The

geometry matrix G contains the unit line-of-sight vectors. The variance matrix of y is given by

the positive definite matrix Qy, which is assumed to be known. The data vector y will usually

consist of the observed minus computed’ single- or multiple frequency double-difference

(DD) phases and/or pseudo-range (code) observations accumulated overall observation epochs.

The entries of vector z are then the DD carrier phase ambiguities, expressed in units of cycles

rather than range. They are known to be integers, z ∈ Zn. The entries of vector b will

consist of the remaining unknown parameters, such as baseline components (coordinates)

and possibly atmospheric delay parameters (troposphere, ionosphere). They are known to be

real-valued,b ∈ Rp.

High-precision positioning, navigation, and attitude determination heavily rely on carrier

phase ambiguity resolution, as emphasized in Teunissen’s work (Teunissen 2007). The initial

proposal for ambiguity resolution in GNSS attitude determination was presented by Peng

et al. (Peng et al. 1999). Meibo et al. (Meibo et al. 2013) provide a concise overview

of various GNSS-based models and methods for spacecraft attitude determination using

phase measurements. In their work, Bing et al. (Bing et al. 2013) compare two different

approaches, constrained Least-squares Ambiguity Decorrelation Adjustment (LAMBDA),

and multivariate constrained LAMBDA, for GNSS-based attitude estimation. Baroni and
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Kuga (Baroni and Kuga 2012) conduct both theoretical and experimental analyses of the Least-

Squares Ambiguity Search Technique (LSAST) and LAMBDA algorithms using quaternion

formulation for attitude determination. Their work aims to compare the two methods in terms

of their efficiency and accuracy. Different algorithms, including Cohen’s traditional method

(Li 2000) and the vectorization method (Kuang and Tan 2002), are used to convert scalar

carrier phase measurements into 3-D vector measurements, simulating a Wahba-like cost

function. This conversion allows for conventional attitude determination algorithms, such

as QUEST, to determine the vehicle’s attitude. Li et al. (Li 2000) propose an algorithm that

directly computes all nine elements in the attitude matrix based on the scalar SDCP cost

function, classified as a non-Wahba-like problem.

The determination of attitude by GNSS can be classified into three categories: (1) baseline

position-based estimation, (2) Wahba-like problem, and (3) non-Wahba-like problem. The

baseline position-based method utilizes the estimated antenna position in the inertial reference

frame instead of SDCP, and it includes the DCM attitude determination method, which is

described in previous studies (Lu et al. 1993, Lin et al. 2004). Specifically, this method

computes respective Euler angles based on each axis of the baseline position vector.

In recent years, there has been a growing interest in developing GNSS algorithms to address

various error sources, such as multipath, ionospheric delay, and receiver noise (Goh and Low

2017). To mitigate these errors, attitude estimation based on GNSS determination has been

proposed, which includes Extend Kalman filter-based (EKF)Weill 1994, unscented Kalman

filter (UKF)Julier and Uhlmann 2004, and particle filter (PF) methods. Kalman filter-based

methods estimate the satellite’s attitude and GNSS measurements simultaneously, while UKF

methods are more robust to nonlinearity in the system. PF methods, on the other hand, rely

on a Monte Carlo-based approach to provide a probabilistic estimate of the satellite’s attitude.

Overall, these algorithms offer promising solutions for GNSS-based attitude estimation, which

is a critical task for various space and navigation applications.
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2.1.4 Multi-sensor Fusion

Multi-sensor fusion is a powerful approach to enhance the accuracy and reliability of satellite

attitude estimation by combining the strengths of different sensors while compensating for

their individual weaknesses. Among various combinations of sensors, the integration of

INS and CNS has been widely studied and applied in various aerospace missions. INS

provides accurate and low-drift attitude and position measurements by utilizing gyroscopes,

magnetometers, and accelerometers to measure the inertial forces and movements of a satellite.

CNS, on the other hand, allows for the monitoring of external forces and environmental

conditions to provide feedback on the satellite’s position and orientation. The INS/CNS

system combines the complementary information from these two sensors to create a more

robust and accurate navigation system.

2.1.4.1 Inertial Navigation System/Celestial Navigation System

To further improve the performance of INS/CNS, researchers have proposed various innovative

approaches. For example, Ning et al. 2013 applied INS/CNS in lunar rovers, while (Qu et

al. 2010) used it in spacecraft. In (Wu et al. 2013), an INS/CNS integrated system was

developed to eliminate the accumulated errors of the INS for a moving object by using CNS

output. (Wu et al. 2022) proposed an adaptive main Kalman filter for ambiguity, eliminated

GNSS/INS tightly coupled integrated systems, and developed a robust adaptive subfilter for

GNSS individually. Another innovative approach is presented in Gou et al. 2019, where

a novel INS/CNS integrated navigation system based on multi-star pseudo measurements

was developed to solve the problem of inaccurate navigation parameter estimations caused

by small stellar angular distances in a single field-of-view star sensor. Finally, (Yang et al.

2022) proposed a SINS/CNS integrated navigation scheme based on a novel mathematical

horizon reference determination method. This approach utilizes the inertial coordinate system

to construct the mathematical horizon reference, which can decouple and compensate for

attitude and position errors, resulting in more accurate navigation results. To address the

problem that traditional CNS takes a long time to identify the star map, which limits the

improvement of the dynamic response-ability, (Mu et al. 2020) developed an INS/CNS deeply
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integrated navigation method that includes a deeply integrated model and a second-order

state augmented H-infinity filter. This approach achieves better dynamic response-ability by

optimizing the identification of the star map in CNS.

In conclusion, the integration of INS and CNS is a promising approach for improving satellite

attitude estimation, and innovative approaches such as multi-star pseudo measurements and

deeply integrated models have been proposed to further enhance the performance of INS/CNS

systems. These advances in multi-sensor fusion can lead to more reliable and accurate

navigation systems for aerospace missions.

2.1.4.2 Inertial Navigation System/Global navigation satellite systems

The integration of INS and GNSS systems is a common approach used to enhance navigation

accuracy and reliability. By combining these systems, the GNSS system can correct the errors

in the INS system, resulting in improved overall accuracy and robustness (Jing et al. 2022).

The limitations of GNSS accuracy, caused by factors such as the number of available satellites,

signal-to-noise ratio, and multipath effect, can be reduced by the use of an INS system that is

not affected by these factors (Arribas Lázaro 2012). In addition, the combination of INS and

GNSS can result in more accurate velocity estimates by utilizing the inertial measurements to

mitigate the effects of GNSS system drift (Liu et al. 2018).

Recent research has proposed innovative approaches to further improve the performance

of INS/GNSS integrated systems. For instance, Ding et al. (Ding et al. 2022) proposed a

data fusion scheme that leverages the complementary advantages of a MARG sensor and a

low-cost GNSS receiver. The resulting approach offers enhanced navigation performance

with improved accuracy. Moreover, researchers have proposed robust INS/GNSS integration

approaches that can effectively compensate for errors in MEMS-SINS systems. For example,

Wang et al. 2020 proposed a tightly-coupled navigation approach aided by non-holonomic

constraint (NHC) that achieves accuracy improvements of about 46% (position), 35% (velo-

city), and 15% (attitude), compared to traditional approaches. Another challenge faced by

INS/GNSS integration is filter divergence caused by unknown or variable noise statistical
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characteristics in a dynamic environment. To address this, Sun et al. 2022 proposed a fu-

sion adaptive filtering scheme combining innovation-based adaptive estimation (IAE) and

the adaptive fading Kalman filter (AFKF) to prevent filter divergence and maintain optimal

performance. Finally, Xu et al. 2023 proposed a motion-constrained GNSS/INS integrated

navigation method based on a BP neural network (MC-BP method). This method fuses a

BP neural network with motion constraints to predict the pseudo-measurement of GNSS,

resulting in improved navigation performance.

In summary, the integration of INS and GNSS systems offers improved accuracy and ro-

bustness, and recent research has proposed innovative approaches to further enhance the

performance of integrated systems, including the use of complementary sensors, robust

approaches to compensate for errors, and adaptive filtering schemes.

2.1.4.3 Global navigation satellite systems/Celestial Navigation System

To enhance the accuracy, reliability, availability, and integrity of positioning data, a com-

bination of GNSS and CNS has been proposed. While GNSS provides accurate positioning

data, its effectiveness can be limited by environmental factors and interference, as noted in

previous research (Feng et al. 2019). However, CNS can complement GNSS by providing

additional information, such as ground-based aids, to improve accuracy and mitigate the

impact of jamming and spoofing attacks. By integrating these two systems, the overall accur-

acy and reliability of the navigation system can be improved, resulting in more precise and

trustworthy positioning information. Moreover, combining GNSS and CNS can also enhance

the availability and integrity of the navigation system. GNSS can be vulnerable to interference

and satellite outages, but the integration of CNS provides a backup system and redundancy

that can ensure the navigation services are still available even in the absence of GNSS. This

CNS/GNSS hybrid system provides a more robust and resilient navigation solution that can

effectively operate even when the GNSS is in a failure situation, as stated in recent research

(Dhahbane et al. 2021).

In summary, integrating GNSS and CNS offers significant advantages, including improved ac-

curacy, reliability, availability, and integrity. By combining these two systems, the navigation
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system can overcome the limitations of each and provide a more comprehensive and reliable

solution.

2.1.4.4 Inertial Navigation System/Global Navigation Satellite Systems/Celestial

Navigation System

The combination of INS, GNSS, and CNS systems is widely used for high-accuracy navigation

and positioning applications due to its ability to provide reliable and accurate information in a

range of environments. The INS system utilizes gyroscopes and accelerometers to provide

precise navigation information, while the CNS system employs a map-matching algorithm to

offer dependable navigation information even in areas with obstructions or interference. The

GNSS system utilizes satellites to provide highly accurate and reliable positioning information,

even in areas without a line of sight. Combining these three systems results in a robust and

accurate navigation and positioning system that is capable of operating in a wide range of

environments.

However, the performance of data fusion algorithms based on the CKF can be degraded

when there are non-Gaussian noise and process-modeling errors in the system model. To

address this issue, (Liu and Chen 2022) proposed the use of the AFCCKF-ODF algorithm for

optimal data fusion. The AFCCKF-ODF algorithm is based on the Adaptive Fading maximum

Correntropy generalized high-degree CKF and is capable of handling non-Gaussian noise

and process-modeling errors in the system model. In addition, (Gao et al. 2018) presented

an unscented Kalman filter (UKF) based multi-sensor optimal data fusion methodology

for INS/GNSS/CNS integration. This methodology is based on a nonlinear system model

and is capable of providing highly accurate navigation and positioning information in a

range of environments. Furthermore, (Hu et al. 2016) proposed a modified version of the

federated Kalman filter (MFKF) for INS/GNSS/CNS integration. The MFKF improves the

computational efficiency of the FKF’s master filter and is capable of providing highly accurate

navigation and positioning information in a range of environments. Finally, (Xu et al. 2022)

presented a chi-square test-based adaptive federated cubature Kalman filter (CAFCKF) to

improve the stability of navigation in hypersonic cruise vehicles (HCVs). The CAFCKF
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algorithm is capable of handling the high levels of noise and uncertainties that are present in

HCV navigation systems and is capable of providing highly accurate and reliable navigation

and positioning information.

2.2 Fault Tolerance Scheme

The satellite Attitude Determination System (ADS) is crucial for satellite operations and

requires high reliability and safety. The ADS reliability is directly dependent on the sensors,

whose failure is the main reason for system breakdowns (Balaban et al. 2009; Nasrolahi and

Abdollahi 2018). The ADS failure onboard a satellite is a high risk of mission failure and can

even lead to the loss of the satellite. Therefore, Fault Detection, Isolation, and Reconstruction

(FDIR) in ADS is essential for the reliability and safety of the satellite (Yuan et al. 2021;

Tipaldi and Bruenjes 2015; Hasan et al. 2022; Carvajal-Godinez et al. 2017). The methods

for detecting faults are divided into hardware redundancy(Nasrolahi et al. 2012; Liang and

Jia 2015; Hwang et al. 2009) and analytical redundancy (Guerrier et al. 2012; Wang et al.

2015b; Venkateswaran et al. 2002; Yoon et al. 2011; Nasrolahi and Abdollahi 2018; Hajiyev

2014; Guo et al. 2017b; Xiong et al. 2013). For the hardware redundancy, multiple sources of

sensor information for attitude estimation can be collected from Inertial Measurement Units

(IMU), sun sensors, star trackers or infrared Earth sensors and compared with each other

to detect the faults. However, the redundant hardware leads to extra mass and size, which

infers a higher satellite cost that is undesirable for small satellites like CubeSats (Tipaldi

and Bruenjes 2015; Patton et al. 2010; Scharnagl et al. 2022). In comparison, the analytical

redundancy is mostly a model-based method using the system’s dynamic and kinematic

models. These model-based methods produce residuals using analytical relations and output

an attitude estimate without extra hardware requirements (Nasrolahi et al. 2014). Another

approach to fault tolerance is the model-free method (Li et al. 2020), which is based on prior

known data, such as fault diagnostic trees (Barua et al. 2009), neural networks (Cai et al.

2007; Sheng et al. 2018; Xinyuan et al. 2012), fuzzy sets(Mei et al. 2022; Gao et al. 2021;

Hou et al. 2022), possibility theory (Cayrac et al. 1996), and telemetry data (Nalepa et al.

2022). Some researchers use neural networks and genetic algorithms for fault detection and
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isolation of control moment gyroscopes onboard satellites(Muthusamy and Kumar 2021).

However, these methods mainly depend on large datasets, and the limited data available from

the space environment means that these methods cannot cope with real-world fault scenarios.

Furthermore, some researchers believe the working process of the neural network, similar to

a black box, is unreliable in satellite attitude estimation (Li et al. 2020).

Attitude estimation for satellites cannot be defined entirely by a linear system, which means

traditional Kalman Filters (KF) have limited capability. Therefore, Extended EKF(Lim and

Park 2014; Pirmoradi et al. 2009; Mehra et al. 1995), Unscented Kalman Filters (UKF)

(Uhlmann and Durrant-Whyte 1995; Le and Matunaga 2014; Soken and Hajiyev 2010; Xiong

et al. 2007; Pourtakdoust et al. 2022), and Federated Kalman Filters (FKF)(Zhou et al. 2016;

Xu et al. 2022; Hu et al. 2016; Bae et al. 2011; Ushaq et al. 2013) are used. The EKF uses

hypothesis testing for effectively detecting and isolating a faulty sensor; however, the nonlinear

system’s first-order linearization can cause increasing errors in the mean and covariance of the

state vector (Crassidis and Markley 2003). For an adaptive unscented Kalman Filter (AUKF),

the main deficiency is the heavy and complex calculation load from the residual generator,

which leads to delays in the fault isolation process (Le and Matunaga 2014), but it has a

recovery function because of the adaptive covariance matrix. In (Pourtakdoust et al. 2022),

the modified unscented Kalman Filter (MUKF) is presented to estimate the gyro=less satellite

under faulty sensor conditions. In (Zhou et al. 2016), the Fault Tolerance FKF (FTFKF)

can detect a faulty sensor by comparing and analyzing dimensionless fault detection factors

and then selectively fusing the sub-filter outputs to improve the satellite attitude estimation

accuracy. However, this process is computational-intensive. Furthermore, (Hu et al. 2016)

presents a modified version of the FKF for INS, GNS, and CNS, this integration improves

the computational efficiency involved in the master filter of FKF but requires hardware

redundancy.

In the field of fault-tolerant navigation systems, the conventional approach entails the integ-

ration of three fundamental filter types with a residual processor, as depicted in Figure 2.2

(Williamson et al. 2009). The overarching objective of this system is to detect and isolate any

fault signals that may be present in the measurements and actuator commands received from



2.2 FAULT TOLERANCE SCHEME 23

FIGURE 2.2: The traditional fault-tolerant navigation system (Williamson
et al. 2009)

various sensors. To achieve this objective, the measurements and actuator commands undergo

processing through a sequence of filters. These include a standard state estimator filter, a

bank of fault detection filters, and a bank of parity relationships. The residuals obtained

from each of these filters are subsequently fed into the residual processor, which comprises a

hypothesis-testing scheme. In the residual processor, separate hypotheses are formulated for

each potential fault signal. The processor then generates an estimate of the likelihood of each

fault signal, aiding in the determination of the presence of any faults within the system.

This thesis presents a novel FDIR subsystem in chapter 5, made up of three important stages.

The first stage acquires two groups of quaternions from the AUKF, and the QUEST algorithms

(Shuster and Oh 1981). Then two residual generators produce the residual used for fault

detection and fault isolation. The QUEST algorithm can achieve a high accuracy attitude

estimation and avoid the gyro bias and noise of the magnetic field data. Compared with

(Le and Matunaga 2014) using estimated errors and gyro bias as the input of the residual

generators, the proposed scheme employs the quaternion as the input of the residual generator.

In normal operation, the residuals are zero-mean with white noise when each sensor is healthy

without fault or failure. In contrast, a biased residual means there is a failure or fault in

the sensor. The second stage has fault detection, which employs the residuals to determine

whether a fault has occurred, and in fault isolation, the specific faulty sensor within the IMU

is identified. This phase uses statistical methods to determine whether the residuals have

strayed considerably from zero. However, if the threshold is not accurate, the residuals will

be not only sensitive to faults but also noise, distributions, and model uncertainties, and this

will cause a false alarm.
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To decrease the rate of false alarms the Parity Equation (PE) (Jin and Zhang 1997 Du et

al. 2019 )and Chi-square (Wang et al. 2016 Kottath et al. 2017 )approaches are used with

residual generators for detecting gyro and quaternion faults, respectively. In the proposed

scheme, the hypothesis testing algorithm is employed to reduce false alarms Kottath et al.

2017. Compared with traditional statistical methods Yuan et al. 2021, this scheme decreases

the false alarm rate and avoids constant weightings of AUKF, QUEST, and RBF. At the

preliminary recovery phase, this scheme also gives a quaternion obtained from the AUKF to

update the measurement noise of the covariance matrix within the AUKF.

2.3 Relative Attitude

Relative attitude is a critical aspect of satellite attitude estimation, especially for rendez-

vous and docking in formation fly (FF) and the fault isolation and recovery in deep space

(Williamson et al. 2009). Maintaining precise knowledge of relative position and attitude is

essential for the success of many space missions, and it will play an important role in future

applications of formation missions and space exploration.

For instance, in the context of rendezvous, proximity operations, and docking (RvD) of two

identical 3U CubeSats, the final translation phase and proximity operations are critical to

mission safety since multiple spacecraft are involved in the process. To address this challenge,

researchers have proposed various onboard relative position and attitude estimation and

control methods.

Philip et al. (Philip and Ananthasayanam 2003) describe a scheme for autonomous space

rendezvous and docking systems that includes homing, closing, final translation, and proximity

operations. They highlight the importance of the final translation phase and proximity

operations from a mission safety perspective and present an onboard relative position and

attitude estimation and control method for these phases. Torisaka et al. (Torisaka et al. 2013)

propose a method for controlling relative position and attitude using only magnetic force with

multi-dipole for formation-flying spacecraft. Their approach has potential applications for

FF missions that require precise formation control. Qiao et al. (Qiao et al. 2013) address
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the challenge of vision-based relative position and attitude estimation for spacecraft RvD

by proposing a dual quaternion-based algorithm for the final phase of the process. Yu et al.

(Yu et al. 2014) present a stereo vision-based method for estimating relative pose during the

final phase of rendezvous and docking of noncooperative satellites. Their approach utilizes

sparse stereo vision algorithms, which could have significant advantages over dense stereo

algorithms in terms of computational efficiency. Shakouri and colleagues (2018) proposed

an innovative algorithm for fault detection in satellite formation flying. Their approach

leverages the relative attitude between two satellites and is able to operate effectively even in

the presence of time-varying faults. Importantly, the algorithm does not require the addition

of any extra subsystems to the satellites themselves, making it a practical and cost-effective

solution for real-world applications. In a related study, Kim and colleagues (2000) also

explored the use of Satellite-to-Satellite tracking (SST) methods for fault detection and

recovery in satellite networks. Through simulations, they demonstrated the feasibility of

their approach and highlighted the potential benefits of leveraging SST in future spacecraft

missions. To accurately describe the relative motion of spacecraft formation flying, Baoyin

and colleagues (2002) presented a novel method based on relative orbital elements. This

approach is particularly well-suited to elliptical orbits with arbitrary eccentricity and provides

a more accurate and detailed understanding of the dynamics at play in satellite formations.

There are various approaches to relative navigation (RN) for formation flying (FF) satellites,

each with its advantages and limitations. Low-orbit satellites can utilize the Global Positioning

System (GPS) for RN, as described in Montenbruck and Gill’s work (Montenbruck et al.

2002), while deep space missions may require autonomous methods, such as those presented

by Purcell and Davis in their study (Purcell et al. 1998). Another novel approach for RN is

presented by Tweddle et al. (Tweddle and Saenz-Otero 2015), who developed a design for a

relative state estimator that employs a small fiducial target and a single monochrome camera,

effectively solving the exterior orientation problem (Horn et al. 1986).

In addition, Kim and colleagues (Kim et al. 2007) developed a new method for relative

navigation and attitude estimation of spacecraft in formation flying, which involves coupling

line-of-sight measurements with gyro measurements and dynamical models in an extended
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FIGURE 2.3: Identification of potential relative navigation scenarios for the
application (Song et al. 2022)

Kalman filter (EKF) to determine the relative attitude, position, and gyro biases. Xing and

colleagues (Xing et al. 2010) proposed an approach for estimating relative position and

attitude for satellite formation flying using an EKF and 6 degrees-of-freedom (DOF) relative

motion models. These models include two parts: the relative translational dynamics of the

center of mass (c.m) and the rotational dynamics of two spacecraft. This is an improvement

over traditional three DOF point mass models (Alfriend 2002), which ignore the influence of

the angular motion of the spacecraft body with respect to the Earth or other spacecraft.

The relative satellite attitude estimation also can be done by Artificial Intelligence (AI), deep

Learning (DL), Machine Learning (ML), and neural network(Song et al. 2022) in recent years.

The relative attitude estimation based on neural network is often employed in the following

scenarios which is shown in Figure 2.3:

(1) non-cooperative rendezvous with a spacecraft

(2) terrain navigation for descent and landing;

(3) asteroid explorations and asteroid patch pinpoint localization

(Sharma et al. 2018) proposed a deep CNN for relative pose classification of non-cooperative

spacecraft to address two issues: robustness to illumination conditions due to a lack of

reliable visual features and scarcity of image datasets required for training and benchmarking.

(Sharma and D’Amico 2020) also presented the Spacecraft Pose Network (SPN), the first

neural network-based method for on-board estimation of the relative position and attitude,

of a known noncooperative spacecraft using monocular vision. (Harl et al. 2013) developed
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an NN-based state observer, which is a modified state observer to estimate gravitational

uncertainties that spacecraft experience in an asteroid orbiting scenario. (Ren et al. 2015)

employed Faster Region-based Convolutional Neural Network (R-CNN) architecture to detect

the 2D bounding box of the target in the input image. Mathematically, the Spacecraft Pose

Network utilizes a Gauss-Newton algorithm to solve a minimization problem for the estimate

of relative position, for which the required initial guess is obtained from the bounding box

(Kehl et al. 2017).

In summary, relative attitude estimation is a critical component of satellite operations, par-

ticularly in RvD processes for FF missions and fault isolation and recovery in deep space

exploration. Various methods have been developed for onboard relative position and attitude

estimation and control, RN, and fault detection and recovery, utilizing techniques such as

magnetic force, vision-based estimation, and GPS. These approaches have the potential to

significantly enhance the safety and efficiency of space missions in the future.

2.4 Field-programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are a type of programmable hardware device

(Programmable Array Logic (PAL), Generic Array Logic (GAL), or Complex Programmable

Logic Device (CPLD)) that can be configured to perform a wide variety of digital logic

functions. They are utilized in a variety of applications, including digital signal processing,

image processing, and communication systems. When the FPGA is utilized as a semi-custom

circuit in an Application-Specific Integrated Circuit (ASIC), it has 4 main advantages:

(1) FPGAs can address the issue of the lack of full-custom circuits. Unlike full-custom

circuits, which require specialized design and manufacturing processes, FPGAs can

be programmed to perform a wide range of functions, making them highly versatile.

(2) FPGAs solve the problem of the limited number of gate circuits available in tradi-

tional programmable logic circuit devices, such as Programmable Array Logic (PAL)

and Generic Array Logic (GAL). With FPGAs, the number of gates can be tailored

to specific application needs, allowing for greater flexibility in design.
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(3) FPGAs have the ability to be reprogrammed, making them suitable for applications

that require frequent changes or updates. This feature also makes them suitable for

prototyping and testing new designs.

(4) FPGAs can be used for prototyping and testing digital circuits before committing to

the more expensive process of creating an ASIC. This can reduce the risk of costly

errors or design flaws and speed up the development process.

Field-Programmable Gate Arrays (FPGAs) are versatile devices that can be used to implement

a wide range of digital circuits, from simple gate circuits to complex designs. FPGAs are

programmable hardware devices that allow for the logical allocation of resources, including

logic units, Random Access Memory (RAM), and Digital Signal Processing (DSP) units. The

ability to reprogram and load new designs onto FPGAs quickly and inexpensively makes

them an attractive choice for a variety of applications.

While FPGAs are highly adaptable devices, many high-level languages cannot be directly

implemented on them. Instead, hardware description languages (HDLs), such as VHDL and

Verilog, are commonly used to design FPGA circuits. However, the Xilinx Company has

developed a new FPGA board, the PYNQ-Z2, which allows for the generation of register

transfer level (RTL) designs using system C code. The PYNQ-Z2 board is based on the

ZYNQ-7020 system-on-chip (SoC), which includes ARM Cortex-A9 processors. This allows

for the integration of a Processing System (PS) within the FPGA, which is separate from the

Programmable Logic (PL). In our tasks, we have successfully implemented algorithms on

the PYNQ-Z2 using system C code to generate RTL designs. This has allowed us to take

advantage of the versatility of FPGAs while using a high-level language. The integration

of a Processing System within the FPGA has also allowed us to perform tasks that would

otherwise require external hardware or software. The ability to rapidly prototype and test

designs on the PYNQ-Z2 has reduced development costs and accelerated our research.

FPGAs are complex digital circuits that are composed of an array of configurable logic blocks

(CLBs), input-output blocks (IOBs), and programmable interconnects. These components can

be configured by the user to implement a desired digital circuit. Programmable interconnects

are responsible for routing signals between the CLBs and input/output (I/O) blocks, allowing
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FIGURE 2.4: Structure of the FPGA (Souissi et al. 2012)

for the transmission of information throughout the FPGA. The structure of FPGA is shown in

figure 2.4.

The CLBs are the heart of the FPGA and contain logic gates, flip-flops, Look-Up Tables

(LUTs), and other digital building blocks. These elements can be utilized to construct

sophisticated digital circuits. Each LUT is connected to the input of a Flip-Flop (FF) which

drives other logic components such as Full Adders (FAs), Multiplexers (MUXs), and in-block

Input/Output (I/O). All CLBs modules are connected to each other or the IOB by metal wiring,

creating a cohesive and integrated system.

To program the FPGA, logic synthesis, layout, and routing tools are utilized. This enables the

rapid creation and testing of a designed logic circuit, making FPGAs a powerful technology

for modern Integrated Circuit (IC) design verification. The memory unit of the FPGA stores

information about the connections between modules and I/O, the logic functions of the

CLBs, and ultimately establishes the general features of the FPGA device. This high-speed

programmability and versatility make FPGAs an important tool in modern digital design.

FPGAs are electronic devices that integrate various basic components to create complex

circuits. This integration leads to a reduction in the required area, an increase in the speed

of operation, and the ability to perform a wider range of functions. These functions include
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general-purpose DSP blocks, multipliers, embedded processors, high-speed I/O logic, and

embedded memory. One of the key characteristics of FPGAs is their ability to be programmed

during running time, which enables high efficiency in reprogrammable computing or re-

programmable systems. This means that the onboard Central Processing Unit (CPU) can

reconfigure itself to suit real-time changing tasks. A complete System-on-Chip (SoC) includes

the logic blocks and interconnects of FPGAs and embedded microprocessors. One example

of this technology is the PYNQ-z2 (Xilinx Zynq-7020), shown in Figure 2.5. This device

features a dual-core ARM Cortex-A9 processor with a 28nm-based processing system (PS)

and connections to the programmable logic (PL).

2.4.1 PYNQ-Z2 Board

The PYNQ-Z2 board, as illustrated in Figure 2.6, has been purposefully designed to facilitate

cutting-edge research in the areas of embedded systems, DSP, and computer vision. This

powerful board offers users the ability to customize their hardware acceleration for a variety of

tasks, such as image processing and machine learning while boasting a considerable 512MB

of DDR3 memory. In addition to its impressive memory capabilities, the PYNQ-Z2 board also

features a USB-UART interface, a USB On-The-Go (OTG) port, an Ethernet port, a micro SD

card slot, and an array of peripheral connectors. These features make it an extremely versatile

tool, well-suited to a wide range of research applications.

Python programming language is a prominent feature of the PYNQ-Z2. Python is a high-level

language that is easy to understand, making it an excellent choice for both novice and expert

developers. The language’s readability enables developers to write, test, and debug code

quickly, which results in reduced development time and increased efficiency. Moreover,

Python’s flexibility makes it an excellent fit for a diverse range of applications, including

embedded systems, Internet of Things (IoT) devices, data analysis, and machine learning.

As a result, developers can utilize the same language across various projects, reducing the

learning curve and enhancing productivity.
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FIGURE 2.5: The architecture of ZYNQ-Z2 (Xilinx 2022a)

Another essential feature of the PYNQ-Z2 is its ability to perform high-speed, low-latency data

processing. The FPGA fabric of the PYNQ-Z2 is designed for low-power, high-performance

computing, which makes it an ideal platform for various applications such as signal processing,

image and video processing, and machine learning. Furthermore, the PYNQ-Z2 supports a

wide range of high-speed interfaces such as USB 3.0, Ethernet, and HDMI, allowing easy

connectivity to various peripherals and external devices.
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FIGURE 2.6: PYNQ-Z2

FIGURE 2.7: The Framework of PYNQ-Z2

The PYNQ is divided into four layers: the hardware layer, the Linux kernel, the python

software layer, and the application layer. The framework of the PYNQ-Z2 is shown in

figure 2.7. The hardware layer has PS and PL, which include the Arm and the FPGA

respectively. It can generate the different bitstreams, and dynamically switch different

functions of the FPGA through software API. The software is in the PS and it consists of

Linux and Python. The application layer consists of Jupyter Notebook based on Python and

IPython. Jupyter Notebook provides an environment to record code, run code and view the

results, visualize data analysis, and view the output. These features make it a convenient tool

for data cleaning, statistical modeling, building and training machine learning models, and

visualizing data.
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FIGURE 2.8: The Communication between PS and PL (Xilinx 2022b)

The ZYNQ platform has 9 AXI interfaces facilitating communication between the Program-

mable Logic (PL) and the Processing System (PS). Specifically, the PL side has 4 AXI Master

HP (High Performance) ports, 2 AXI GP (General Purpose) ports, 2 AXI Slave GP ports, and

1 AXI Master ACP port. The PS side also features GPIO controllers that are connected to the

PL.

To manage data movement between the Zynq PS and PL interfaces, four Zynq classes are

utilized: GPIO (General Purpose Input/Output), MIMO (Memory Mapped IO), Xink (Memory

allocation), and DMA (Direct Memory Access). The appropriate class for a given IP depends

on the Zynq PS interface it is connected to and the interface of the IP. For instance, a Python

program running on PYNQ can access an IP that is connected to an AXI Slave via a GP port

using MIMO.

2.4.2 FPGA Development

Programming on the FPGA is divided into two methods: High-level Synthesis(HLs) and

Hardware Description Language(HDL). The HLS includes C and C++. They provide com-

pilation instructions that inform processors about the program execution process(javaTpoint
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2022). The main function of it is instead of coding the Hardware register-transfer level (RTL).

HLS is used as a hardware development approach to design digital systems at a higher level

of abstraction. HLS can allow users to write source code in software languages and tools

in HLS can compile the code, generate Control and Data Flow Graph (CDFG), perform the

optimization, and finally output RTL for synthesis and implementation. The design flow by

HLS and Vivado is shown in figure 2.9. All steps of the project are finished in three main

parts: HLS, Vivado, and PYNQ-Z2 board. The project begins with system analysis and

partitioning, followed by writing C++ code to meet the requirements specified in high-level

synthesis (HLS). In HLS, the next steps involve simulation and synthesis, culminating in

exporting the register transfer level (RTL) code.

Moving into the Vivado environment, the first step is importing the RTL code as an IP core and

building a block diagram. The second step involves generating the bitstream and exporting it.

Finally, the PYNQ-Z2 board is used to execute the program. The bitstream is imported to the

board, the overlay is loaded, and the program is run using Python code.

Vivado HLS provides designers with practical assistance by increasing the level of abstraction

in system design in two methods:

(1) Using C/C++ as the programming language, taking full advantage of the high-level

structures available in that language.

(2) Providing more data primitives for designers to use the underlying hardware building

blocks (bit vectors, queues, etc.)

These two features help designers solve common protocol system design challenges more

easily with Vivado HLS than with RTL. Another major advantage of HLS is the ease of

architectural research and simulation.

The HDL is a critical tool for designing digital logic systems and describing digital circuits.

Unlike traditional methods of manually drawing each individual component, the HDL allows

designers to specify high-level functional behavior, making it particularly well-suited for

handling large and complex structures. Two of the most widely used HDLs are Verilog and the
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FIGURE 2.9: The design flow in HLS and Vivado

VHSIC Hardware Description Language (VHDL). Both of these languages focus on circuit

description and tell the processor how the circuit diagrams are formed and connected.

Of the two, VHDL is a particularly high-level language for circuit design and is considered

to be a universal HDL for Electronic Design Automation (EDA) technology. This is due to

its precise syntax, clear hierarchical structure, and independence from device design when

compared to other hardware description languages. However, despite its many advantages,

designing with VHDL can be quite complex. Therefore, it is important to introduce alternate

languages to reduce the complexity and streamline the design process. One such language

is Verilog, which develops an abstraction level to hide the details of its implementation to

simplify the process. This makes it more robust and flexible than other HDLs. Verilog

has become one of the most popular HDLs in use today. As an example of the practical

applications of HDLs, the development of a Guidance, Navigation, and Control (GNC)

system for unmanned aerial vehicles (UAVs) is often implemented on the FPGA using Verilog
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(Cadena et al. 2017). This underscores the critical role that HDLs play in the design and

implementation of advanced electronic systems.

In FPGAs, because each logic block is independent, it can perform some unique design

attributes such as parallel and style and pipelined architecture. Furthermore, the number of

gates used for a certain process can also be optimized. All these technologies can be combined

with serial processing to enhance the performance of applications.

(1) Serial Processing: Serial processing is a method of designing functions where each

clock cycle executes one operation in sequential order. This approach is often utilized

as the internal logic of a Finite-State Machine (FSM), where the FSM can only exist

in one of a finite number of states at any given time. In FPGA programming, registers

are vital resources used to store state variables, and the state transition is determined

by a block of combinational logic. A second logic block is then required to produce

the output of the FSM. The advantage of using a serial design is that it requires

minimal hardware, thereby reducing both the area and power consumption. However,

the downside is that the performance of the design is significantly slower.

(2) Parallel Processing: One of the significant advantages of FPGA design is its ability to

perform parallel processing. Unlike sequential processing which is commonly used

in other processors, FPGA can simultaneously execute multiple tasks or modules

at the same time, provided they are not sequentially related. This feature enables

FPGA to perform several operations in one clock cycle, resulting in a significant

performance improvement, particularly for applications with strict processing time

requirements. Although parallel design strategy requires more resources than the

sequential processing type, the benefits outweigh the cost in applications that demand

high performance.

(3) Pipelining is a powerful technique that enables the seamless execution of multiple

operations continuously and efficiently. Unlike traditional approaches where each

operation must complete before the next one can start, pipelining allows for over-

lapping and parallel processing of operations, resulting in faster and more efficient
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performance. In the context of FPGA programming, pipelining is a critical design as-

pect that offers unique advantages for high-performance computing. It is essentially

a hybrid approach that combines the benefits of both serial and parallel processing

methods. Multiple tasks can be designed in parallel, and each task can receive input

and output results in sequential logic, thereby maximizing efficiency and minimizing

latency. Overall, pipelining represents a critical design element in modern FPGA

programming, enabling developers to achieve unprecedented levels of performance

and efficiency in a wide range of applications. By embracing this approach, research-

ers and practitioners can unlock the full potential of FPGA technology and drive

innovation in a variety of fields, from aerospace engineering to medical imaging and

beyond.

2.4.3 Kalman Filter and Neural Networks on FPGA

Satellite attitude estimation algorithms rely heavily on the accuracy and computational

efficiency of the Kalman Filter. Unfortunately, the implementation of complex algorithms

like the Kalman Filter on FPGA can be challenging due to hardware design complexities.

However, recent advancements in FPGA technology have enabled the implementation of

novel attitude-solving algorithms with IMU, such as the INS algorithm presented by Zhu et

al. (Zhu et al. 2022). To further improve the performance of integrated INS-GPS systems,

Agarwal et al. (Agarwal et al. 2009) proposed an improved design and fabrication approach,

where the digital signal processor (DSP) is utilized for inertial navigation and Kalman filter

computations. This approach reduces the total chip count, resulting in a compact system,

which can be further implemented on the FPGA by creating a universal asynchronous receiver

transmitter (UART) and dual port random axis memory (DPRAM). Another approach to

address the scalability problem of IMU array sensor fusion is presented in Waheed et al.

(Waheed and Elfadel 2018). The authors designed a specialized vector processor that achieves

real-time, high-throughput IMU sensor array fusion based on the KF paradigm. The proposed

design offers a more efficient and scalable solution compared to conventional FPGA-based

implementations. Bhogadi et al. (Bhogadi et al. 2015) proposed an improved design of a
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loosely coupled GPS/INS integrated system that utilizes the MicroBlaze processor on the

Virtex-6 FPGA for inertial navigation and Kalman filter computations. The approach offers a

more efficient and scalable solution compared to conventional FPGA-based implementations,

providing a promising solution for future INS-GPS integrated systems.

The Extended Kalman filter (EKF) is a critical algorithm in embedded systems. In (Carletta

et al. 2020), the authors achieved Cubesat attitude estimation using a three-axis magnetometer

and implemented the EKF algorithm on an FPGA. They rearranged complex matrix operations

into the form of the Faddeev algorithm to enhance computational efficiency. Similarly,

(Weimer et al. 2015) proposed a particle filter to estimate attitude and velocity on a small

unmanned aerial system using GPS, gyro, and accelerometer measurements. However, particle

filters have a large computational load, and the authors implemented them on an FPGA using

pipeline techniques to solve this problem. In (Jew et al. 2010), the authors presented the

implementation of real-time algorithms for an aided INS on a fabric processor-based FPGA.

This approach allowed for the development of a hard real-time computational architecture

tailored to the specific INS requirements while still preserving flexibility. Furthermore, (Xu et

al. 2010) combined the Kalman filter and the least squares support vector machine (LS-SVM)

to aid the GPS/INS integrated system, and they implemented the system on an FPGA. In

(Akgün et al. 2020), various system identification techniques, such as the Kalman filter (EKF),

recursive least square (RLS), and least mean square (LMS) filters, were used to estimate the

parameters of linear (DC motor) and nonlinear systems (inverted pendulum and adaptive

polynomial models). The authors used FPGAs for rapid prototyping, real-time processing,

and high computational programs.

Another variant, the unscented Kalman filter (UKF) also has superior performance (Crassidis

et al. 2007). (Soh and Wu 2017) presents a hardware/software co-design of the unscented

Kalman filter with a five-stage pipeline on FPGA.(Soh and Wu 2016) also explored the

feasibility of an FPGA-based UKF for a singular nanosatellite, as well as a generic, more

portable variant with parallelized datapaths. The parallelism can increase the overall data

throughput of the system by the hardware pipelines and increase the algorithm running speed

(Xue et al. 2020). Hardware pipelines are also often used to accelerate complex algorithms
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that can be implemented in hardware and have a certain amount of data independence, such

as encryption (Wang and Ha 2013) or image processing (Draper et al. 2003).

The Neural Network is also an important algorithm in satellite attitude algorithms, especially

for the image processing in Star tracker. Numerous well-known neural networks are crucial

to image processing, such as Convolutional Neural Networks (CNN), Deep Learning Neural

Networks (DNN), Quantum Neural Networks (QNN), Backpropagation Neural Networks

(Bp), and Support Vector Machines (SVM). (Liu and Wu 2022) developed a general-purpose

feature detection hardware architecture based on the Speeded-Up Robust Features (SURF)

algorithm and presents an FPGA-based implementation of a modified SURF algorithm. (Zhao

et al. 2019) designed an embedded FPGA image recognition system on Convolutional Neural

Network (CNN). By using parallelism and pipeline, and parallelization to realize multi-depth

convolution operations. (Guo et al. 2017c) presented an overview of different neural network

inference accelerators based on FPGA and summarizes the main techniques used, including

CNN, RNN, and generative adversarial network(GAN). (Wang and Luo 2022) proposed

a special processor for keypoint detection of aircraft that was based on FPGA with DNN

to accelerate the detection process. The design used HLS high-level synthesis, fixed-point

quantization, on-chip data buffering, and FIFO (first in first out) optimization methods.

The development of voice recognition systems on FPGA also has been a significant area

of research in recent years. Recurrent neural networks (RNN) and their variant, Long

short-term memory (LSTM), have emerged as the dominant models for speech recognition.

Early research efforts, such as those by Ferreira et al. (2016), focused on implementing

LSTM networks on FPGA hardware. This work sparked interest in exploring the hardware

implementation of LSTM, rather than just relying on software implementation. Building upon

this work, Zhang et al. (2017) developed an improved system that incorporated sparse LSTM

layers, which occupied fewer resources and achieved better performance. In addition, Han et

al. (2017) proposed an efficient speech recognition engine called ESE that is based on FPGA

and utilizes sparse LSTM. The ESE engine is capable of compressing the size of the LSTM

model by a factor of 20, resulting in a highly efficient and compact system.
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2.5 Summary

This chapter presents a comprehensive review of various fields related to satellites at an

advanced level. Specifically, it explores the satellite attitude determination system, encom-

passing INS, CNS , GNSS, and multi-system fusion methods. Additionally, it examines

the fault tolerance of sensors employed in satellites, relative attitude estimation techniques,

fundamental concepts of FPGAs, and methods for implementing FPGA-based satellite attitude

estimation.

Numerous innovative algorithms for satellite attitude estimation are introduced, leveraging

IMU, star tracker, and other sensors. Notable algorithms include the QUEST algorithm, FQA

algorithm, O2OQ algorithm, SMIT algorithm, and LAMBDA algorithm. Furthermore, to

ensure fault tolerance for each sensor on the satellite, several FDIR algorithms are presented,

such as AUKF, FTFKF, and a hardware redundancy scheme.

The comprehension of FPGAs is fundamental for implementing these algorithms on the

hardware, and this section also provides numerous optimization schemes aimed at reducing

latency while maintaining optimal resource utilization.



CHAPTER 3

Attitude Determination System

To accurately describe attitude information, it is essential to possess knowledge of attitude

representations and reference frames. Additionally, understanding the sensor model and

kinematic model is crucial for precise attitude estimation. This chapter aims to introduce

various reference frames and attitude representations, as well as important sensor models used

in satellites.

The ability to accurately estimate the attitude of a satellite is vital for its proper functioning,

and requires a solid understanding of various aspects. Reference frames, which provide

a means for expressing the orientation of an object, are crucial for describing the attitude

of a satellite. Different reference frames, such as the Earth-centered inertial frame, the

Earth-centered Earth-fixed frame, and the body frame, are discussed in this chapter.

Furthermore, various attitude representations, such as Euler angles, quaternions, and rotation

matrices, are introduced. Each representation has its own strengths and weaknesses, and the

choice of representation often depends on the specific application.

In addition to reference frames and attitude representations, knowledge of sensor models

is essential for accurate attitude estimation. Different sensor models, such as the gyro,

magnetometer, and sun sensor, are discussed, along with their advantages and disadvantages.

Overall, this chapter provides a comprehensive overview of the various components necessary

for precise attitude estimation in satellites. A thorough understanding of reference frames,

attitude representations, and sensor models is essential for accurate attitude determination

and the proper functioning of satellites.

41
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3.1 Reference Frame

This section presents the definitions of various reference frames. These frames are essential as

they yield distinct measurements and models. To ensure clarity and consistency in the analysis,

it is crucial to establish unique and unambiguous definitions for the rotations between frames.

The aim is to ensure that the resulting data and models are reliable and accurate.

3.1.1 The Earth Centered Interial

The Earth Centered Interial (ECI) is located in the center of the earth and fixed towards the

stars. From figure 3.1(Popescu 2014), The X-axis corresponds to the vernal equinox and the

Z-axis points towards the north celestial pole. The Y axis completes a right-hand Cartesian

coordinate system. the Properties of the ECI reference frame are: first, it does not rotate with

the Earth’s rotation. Second, the ECI reference frame can be used as the inertial coordinate

system for the spacecraft near the Earth.

FIGURE 3.1: ECI reference frame (Popescu 2014)
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3.1.2 Earth-centered Earth-fixed reference frame

Figure 3.2 depicts the Earth-centered Earth-fixed (ECEF) reference frame, which serves as a

crucial coordinate system in modern geodesy and satellite navigation. In this reference frame,

the Z axis points towards the north pole, while the X axis lies in the plane of the Greenwich

meridian. Completing the right-hand set, the Y axis forms a perpendicular axis to both the X

and Z axes.

One of the key properties of the ECEF reference frame is that it is fixed with respect to the

Earth and rotates along with the planet. This feature distinguishes the ECEF reference frame

from the Earth-centered inertial (ECI) reference frame, which remains fixed with respect to

distant stars. Such a distinction is of paramount importance in many applications that require

accurate positioning and tracking of objects in space.

FIGURE 3.2: ECEF reference frame (Popescu 2014)

3.1.3 North East Down

The ECI and ECEF coordinate frames both utilize the center of the Earth as their origin point,

presenting significant challenges for navigation implementation. Alternatively, the North East
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Down (NED) frame establishes its origin at the Earth’s surface and aligns with the carrier’s

orientation. This frame is derived by fitting the local ellipsoid shape onto a tangent plane at

the current location, resulting in a coordinate system that is fixed relative to a point on the

Earth’s surface. As illustrated in Figure 3.3, the X axis points towards the North, the Z axis

points downwards along the local ellipsoid normal, and the Y axis completes the right-hand

rule by pointing East. Notably, the NED frame rotates with the Earth’s rotation.

FIGURE 3.3: Representation of the NED reference frame

3.2 Attitude Representation

3.2.1 Rotation Matrix

The rotation matrix is one of the most popular methods to describe the attitude. The rotation

matrix must be orthogonal (both frames with orthogonal axes) and orthonormal (all axes are

orthonormal). It is a 3× 3 matrix to describe the rotation of three axes (x, y, and z axes). The

rotation matrix can be described as:

Ra
b = {ai • bi} (3.1)
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It means the rotation matrix from a to b, the elements rij = ai • bj of the rotation matrix Ra
b

are called the direction matrix. A simple rotation is a rotation about a fixed axis. There are

three simple rotations when the vectors are expressed in Cartesian coordinate frames:

Rx(ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (3.2)

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.3)

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.4)

They represent three angles ϕ, θ, andψ rotation about three axis x, y z, respectively. The

Rotation matrix has some important properties, the first is the rotation matrix is always

orthogonal and it satisfies:

Rb
a = Rb

a

−1
= Ra

b
T (3.5)

There are two definitions of the rotation matrix. First is a coordinate transformation matrix

when transforming the coordinate vector vb to va. secondly as a rotation matrix when rotating

the coordinate vector pa to the coordinate vector qa where qb = pa by:

qa = Ra
bp

a (3.6)

The third is that the rotation matrix can describe a complicated rotation:

Ra
d = Ra

bR
b
cR

c
d (3.7)

However, using the rotation matrix has some disadvantagesEgeland and Gravdahl 2002, the

first is it is very difficult to interpolate rotation between two orientations, and the second is it

is hard to keep the matrix orthonormalized.
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3.2.2 Euler Angles

The Euler angles are also commonly used to describe attitude. It can be presented as Θ =

[ϕ θ ψ]T , representing roll pitch yaw respectively. When the attitude of the satellite is

determined by the rotation between the body frame and the orbit frame. The rotation from the

body frame to orbit frame may be considered as a composite rotation consisting of a rotation

ψ about the zb, then a rotation θ about the current (rotated) y-axis, and finally a rotation ϕ

about the current x-axis. The details are illustrated in figure 3.4(Sunde 2005). The resulting

rotation matrix is:

Ro
b(Θ) =


cos θ cosψ sin θ sinϕ sinψ − cosϕ sinψ sin θ cosϕ cosψ + sinϕ sinψ

cos θ sinψ sin θ sinϕ cosψ + cosϕ cosψ sin θ cosϕ sinψ − sinϕ cosψ

sin θ cos θ sinϕ cos θ cosϕ


(3.8)

It can be found that the matrix is singular at ±90◦ from (3.8). The singularity is a not avoided

problem When using the Euler angles.

3.2.3 Quaternion

The shortages of the rotation matrix and Euler angles are not intuitive, and exist singularity

problems that could lead to the gimbal-lock problem at 90 degrees, respectively. The qua-

ternion can also represent the attitudes in the b frame (body frame) relative to the r frame

(reference frame). Using quaternion to represent the attitude has several advantages: First, it

can Solve the Gimbal Lock problem. Second, the quaternion only needs to store four floating

point numbers, which is lighter than the rotation matrix, and Euler angles. Third, When using

some operations such as inversion or concatenation, the quaternion are more efficient than the

rotation matrix and Euler angles. It can be described as:

q =
[
q0 q1 q2 q3

]
(3.9)

The quaternion consists of a scalar part q0 and a vector part e = [q1 q2 q3]
T . The conjugate of
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FIGURE 3.4: Attitude representation by Euler angles (Sunde 2005)

the quaternion q can be written as q∗:

q∗ =
[
q0 − q1 − q2 − q3

]
(3.10)

Quaternion should satisfy q20 + q21 + q22 + q23 = 1. In addition, the multiplication of two

quaternions p⊗ q are:

p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3

p1q0 + p0q1 + p2q3 − p3q2

p2q0 + p0q2 + p3q1 − p1q3

p3q0 + p0q3 + p1q2 − p2q1

 (3.11)

The Direction Cosine Matrix (DCM) is also can be represented by quaternion:

Cb
n =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 (3.12)



48 3 ATTITUDE DETERMINATION SYSTEM

Similarly, the Euler angles can be expressed in quaternations, and the sequence is ZYX and

the coordinate system is NED (North-EAST-Down):
θ

ϕ

ψ

 =


atan2((2q2q3 + 2q1q0), (q

2
0 − q21 − q22 + q23))

asin(2q0q2 − 2q1q3)

atan2((2q1q2 + 2q0q3), (q
2
0 + q21 − q22 − q23))

 (3.13)

Therefore, there are 4 main advantages: No singularities, No trigonometric functions, a

Convenient product rule for successive rotations, and the Kinematic equation of attitude is

linear. On the other hand, the disadvantage is: No obvious physical interpretation.

3.2.4 Modified Rodriguez Parameter

Sometimes, using the 4-element quaternion vector causes ambiguity and unwinding phenom-

ena(Song and Cai 2012). Therefore, the Modified Rodriguez Parameter (MRP), which were

first created in 1962 by T. F Wiener(Markley and Crassidis 2014), is used to represent the

satellite attitude deriving from the Eulers principle rotation theorem:

p = tanh θ/4n (3.14)

where, q, n,and θ are three-element vectors of MRP. They are the unit vector, Euler’s rotation

axes, and rotation angles, respectively(Forbes 2015). The vector of Modified Rodriguez

parameters p is related to the quaternion q by the following relation:

p =
q1:3

1 + q0
(3.15)

which has the inverse

q =
1

1 + ||p||2

 2p

1− ||p||2

 (3.16)

However, there is a singularity when θ between [0, 2π], and this singularity can be avoided by

using the MRP shadow set (ps):

ps = −p/pTp (3.17)
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These is the main disadvantages of the MRP, and the advantages of MPR are: No redund-

ant parameters, No trigonometric functions, and a Convenient product rule for successive

rotations.

Overall, the advantages (+) and disadvantages (-) of different attitude representations are

summarized in Table 3.1:

TABLE 3.1: Characteristics of different attitude representations

Attitude representations Characteristics

Euler Angles

(+) No redundant parameters
(+) Clear physical interpretation

(-) Presence of trigonometric functions
(-) Singularity when θ = ±π/2

(-) No convenient product rule for successive rotations
(-) The kinematic equation of attitude is nonlinear

DCM

(+) No singularities
(+) No trigonometric functions

(+) Convenient product rule for successive rotations
(+) The kinematic equation of attitude is linear

(-) complicated computation

quaternion

(+) No singularities
(+) No trigonometric functions

(+) Convenient product rule for successive rotations
(+) The kinematic equation of attitude is linear

(-) No obvious physical interpretation

MRP

(+) No redundant parameters
(+) No trigonometric functions

(+) Convenient product rule for successive rotations
(-) No obvious physical interpretation Singularity
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3.3 Sensor Model

3.3.1 IMU

3.3.1.1 Gyroscope

The gyroscope outputs the angular rate of the body frame with respect to the inertial frame.

The model of the gyroscope can be described as follows:

ω(t) = ωt(t) + bg(t) + ηg(t) (3.18)

Where ηg is the zero mean Gaussian white noise with a standard deviation σw and a covariance

Qw, ωt is the true angular velocity, bg = [bgx bgy bgz]
T is the gyro bias vector that can be

described as:
d

dt
bg(t) = −bg(t)/τ + ηb (3.19)

Where ηb is a zero-mean Gaussian white noise with standard deviation σb and a covariance

Qb, and τ is the sensor time constant. It is assumed that noise signals in the measurement and

the process are uncorrelated

E = [ηgη
T
b ] = 0 (3.20)

3.3.1.2 Acceleometer

The output of the accelerometer are ax, ay, and az, which represent the acceleration of the

X, Y, and Z axis, respectively. When the accelerometer is placed horizontally, the Z-axis is

vertically up, the output of the Z-axis is 1g (g is the acceleration of gravity), and the output of

the X-axis and Y-axis are 0. Therefore, the output of the accelerometer is [0 0 g]. The rotation

matrix of X, Y, and Z axis are Mx, My, and Mz, respectively. The Euler angles Θ = [ϕ θ ψ]T

represent the rotation angles about the X Y Z axis, and the rotation sequence is Z-Y-X. It
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follows: 
ax

ay

az

 =Mx •My •Mz


0

0

g

 (3.21)

In this Equation:

Mx•My•Mz =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

•

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

•


cosψ sinψ 0

− sinψ cosψ 0

0 0 1‘

 (3.22)

We can get the following: 
ax

ay

az

 =


sin θ

cos θsinϕ

cos θ cosϕ

 • g (3.23)

Therefore, the roll angle and the pitch angle are:

roll = arctan
ay
g

(3.24)

pitch = − arctan
ax√
a2y + a2z

(3.25)

The model of the accelerometer is shown:

a(t) = A ∗ at(t) + ηa(t) (3.26)

Where at is the true angular velocity, ηa is the zero mean Gaussian white noise, and A

represents the direction cosine matrix.

The major drawback of the accelerometer is that it cannot obtain the yaw angle, which means

It cannot be utilized uniquely. Accelerometers are often used with other sensors, such as

magnetometers, gyroscopes, star trackers, to get a more accurate attitude.
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3.3.1.3 Magnetometer

The magnetic field vector varies with the orbital parameters as the spacecraft moves throughout

its orbit. When those parameters are known, the magnetic field tensor vector that influences

the satellite can be presented analytically as a function of time Sekhavat et al. 2007:

H1(t) =
Me

r30
(cos(ω0t)[cos(ϵ)sin(i)− sin(ϵ)cos(i)cos(ωe)t)]− sin(ω0t)sin(ϵ)sin(ωet))

H2(t) = −Me

r30
[cos(ϵ)cos(i) + sin(ϵ)sin(i)cos(ωet))]

H3(t) =
2Me

r30
(sin(ω0t)[cos(ϵ)sin(i)− sin(ϵ)cos(i)cos(ωet)]− 2sin(ω0t)sin(ϵ)sin(ωet))

(3.27)

Where ω0 is the angular velocity of the orbit with respect to the inertial frame, which can be

described as ω0 = (u/r30)
1
2 where u is the Earth Gravitational constant, Me is the distance

between the center of mass of the satellite and Earth. The model of the magnetometer output

can be presented as: 
Hmx(t)

Hmy(t)

Hmz(t)

 = A ∗


H1(t)

H2(t)

H3(t)

+ ηm (3.28)

Where, Hm = [Hmx Hmy Hmz]
T , it is the magnetic field vector from the magnetometer, and

H = H1 H2 H3 is the magnetic field vector in the orbit frame. The ηm is the zero-mean

Gaussian white noise, and A represents the direction cosine matrix.

3.3.2 Star Tracker

Star tracker is an important sensor of celestial navigation systems. It uses the star as the

reference source for attitude measurement and can output the vector direction in star-tracker

coordinates, providing high-precision measurements for spacecraft attitude control and astro-

nomical navigation systems (Eisenman and Liebe 1996).
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Nowdays, the CCD star tracker is mature and widely used in the aerospace industry. The star

tracker includes the hood, optical system, photoelectric conversion circuit (CCD components,

timing circuit, driver circuit, acquisition, and amplification circuit), control circuit (cooler

control, operating circuit), secondary power supply, a data processing module (star map pre-

processing, star mass extraction, star map recognition and attitude estimation) and external

interface. The structure of the CCD star tracker is shown in figure 3.5

FIGURE 3.5: The basic structure of the CCD Star tracker

The theory of the Star tracker is shown in figure 3.6.OsXSYSZS is the star tracker coordinate

system. Oµων is the Image plane coordinate system. The Ys is the same as the ω, and they

have the same direction with the OsO. The OsO is the focal length of the optical lens f. P is

the image of the star on the Oµων plan, and the Pµ is the projection of POs on the Oµων

plan. The angle between the POs and OsO is α. The angle between POs and PµOs is δ.

From 3.6 it can found:

tanα =
OPµ

f
(3.29)
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tan δ =
ν

f/cosα
(3.30)

The unit vector of POS is po, and it can be described in the star tracker coordinate system:

po =


xs

ys

zs

 =


− sinα cos δ

cosα cos δ

− sin δ

+ Vs (3.31)

where Vs is the measurement noise vector of the star tracker

FIGURE 3.6: The Star tracker measurement diagram

3.4 Kinematic Equation

This part presents the deduction of the satellite‘s mathematical model. This model is the basis

of the Kalman Filter and the nonlinear observer.

Quaternions can represent satellite attitudes without singularities as q = [q0 q1 q2 q3]
T , the

convention used for this work has the scalar q0 and a three-axis vector as e = [q1 q2 q3]
T . The

attitude matrix Aq is calculated as a quadratic function of q:

Aq(q) = (q20 − ||e||2)I3×3 + 2eeT − 2q0[e×] (3.32)

Where I3×3 is a 3× 3 matrix and the [e×] is defined as the cross matrix:
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[e×] =


0 −q3 q2

q3 0 −q1
−q2 q1 0

 (3.33)

The quaternion kinematics model can then be defined as:

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (3.34)

Where ω = [ωx ωy ωz]
T is the vector of the angular velocity of the body frame with respect to

the inertial frame, the Ω(ω) is the skew matrix:

Ω(ω) =

−[ω×] ω

ωT 0

 (3.35)

3.5 Low Earth Orbit Dynamic Equation

The altitude of the Earth orbit is in the range of 160 km to 2000 km from sea level. The

dynamics of the satellite is based on Newton’s law of gravitation. However, the actual motion

of the satellite deviates from the motion modeled because of the irregular shape of the Earth

and the non-uniform density. To solve this problem, a Legendre polynomial with latitude and

longitude as parameters is used to enlarge the Earth’s gravitational potential (Kaula 2013).

The state vector of the satellite motion can be described as:

Xsat =

t
v

 =
[
x y z vx vy vz

]T
(3.36)

Where r = [x y z]T and v = [vx vy vz]
T represent the position and velocity of the satellite in

the ECI frame, respectively.

3.6 Summary

This chapter provides a comprehensive overview of the fundamental concepts in satellite

attitude determination systems. It covers essential aspects such as attitude representation,
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including quaternions and Euler angles, the navigation reference frame, models of various

sensors, as well as kinematic and dynamic equations. This foundational knowledge serves as

a basis for understanding the subsequent sections.



CHAPTER 4

An Observation Model from Linear Interpolation for Quaternion-based

Attitude Estimation

In this chapter, the proposed observation model from linear interpolation for quaternion-based

attitude estimation is described. The work was first presented by (Chen et al. 2023a). First,

an introduction is given a brief flowchart of this algorithm. The following sections provide

each module separately, including the QUEST algorithm, FQA algorithm, and Kalman

filter. Finally, the simulation and experimental results are given to verify the validity of the

algorithm.

4.1 Introduction

This paper aims to solve multiple problems associated with attitude estimation: the complexity

of Kalman Filter calculations in the Attitude and Heading Reference System (AHRS), the

interference sensitivity of Magnetic Angular Rate and Gravity (MARG) sensors, and the

low accuracy of the Factored Quaternion Algorithm (FQA). It presents a two-layer Linear

Kalman Filter using MARG sensors to obtain attitude estimation in quaternions. Firstly, data

from a triaxial accelerometer and magnetometer is processed by a novel algorithm, which

fuses the Quaternion Estimator (QUEST) algorithm and FQA by the Linear interpolation

(LERP) to obtain an observation model. Secondly, the process model in the two-layer Kalman

Filter was obtained by using LERP to fuse an optimum quaternion obtained from a gyroscope

and FQA. The LERP can eliminate gyro bias drift, and integral error, and compensate for

unexpected conditions, such as fast rotation and temporary strong magnetic disturbances.

The proposed algorithm presents higher accuracy and lower computational load than QUEST
57
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or FQA used with a Kalman Filter. The performance of the proposed algorithm is verified

through simulations and experiments.

4.2 Kalman Filter Design

The gyroscope is a basic sensor in the satellite attitude estimation system. The relationship

between the angular velocity ω and quaternion derivation q̇ is:

q̇ =
1

2
× q ⊗ ω (4.1)

Where ⊗ represents quaternion multiplication. The quaternions can be obtained by integrating

the quaternion derivative q̇ with the constant sampling time. However, the quaternions

from the integrator are not unit quaternions, which cannot satisfy the attitude calculation

requirement. Thus, it is necessary to normalize the resultant quaternions in the last step of the

updating procedure. The last output of the integration is called the approximation quaternion

qap. Equation (4.1)is employed as the process model in the last step. The flow chart of the

process model is shown in figure 4.1, in which ω and ωn denote the angular velocity and

the measurement noise, respectively. The two-layer Kalman filter will be discussed in the

following section.

FIGURE 4.1: Kalman filter process model of a gyroscope

The Kalman Filter state vector is typically a 7-D vector (a 4-D quaternion vector with 3-D

angular velocity or 3-D gyro bias drift). Hence, the classical Kalman filter in most real-time

attitude estimation applications is more than four dimensions. To reduce the dimensions,

some researchers also have combined a two-layer Kalman Filter with other algorithms, such
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as FQA as shown in Fig. 2, Gradient Descent Algorithm, and other algorithms (Yun et al.

2005; Lee and Park 2009; Wang et al. 2015a; Feng et al. 2017; Valenti et al. 2015; Seo et al.

2011).

FIGURE 4.2: Block diagram of combing a two-layer Kalman filter and FQA

In figure 4.2, a and m are the acceleration and local magnetic field vectors, respectively and

are input into the FQA to obtain the computed quaternion qc. The angular velocity from

the gyroscope can be integrated at the same time to yield the approximation quaternion qap.

Then the Kalman Filter fuses the qc with the qap to get the estimated quaternion qe. The key

distinction between this scheme and the others is that both the state and measurement vector

are four-dimensional. The low-dimensional matrix has fewer processing demands than a

high-dimensional matrix, reducing the running time. This technique, however, has limited

performance in several aspects. The first is the noise of each sensor, e.g. the magnetometer

output is easily contaminated by the ferromagnetic particles, while the accelerometer is

affected by the linear motion; Second, when the angular rate is integrated, the measurement

errors are likewise integrated, resulting in infinite attitude drift errors; Third, the observation

model qc can be produced by different algorithms such as FQA, QUEST, and Gradient Descent

algorithm, which have their own shortages. For example, the low accuracy of the FQA the low

efficiency of QUEST, and the weak dynamics performance of the Gradient Descent algorithm.

This paper introduces a new observation model to solve these problems. More text.
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4.3 New Two-Layer Kalman Filter

4.3.1 Traditional Observation Model

4.3.1.1 QUEST Algorithm

The deterministic algorithm is always popular in attitude determination, including the TRIAD

algorithm, q-Euler algorithm, and QUEST algorithm (Liu et al. 2012; Shuster and Oh 1981).

In (Wahba 1965), Wahba presented the famous Wahba problem to find the orthogonal matrix

A, which satisfies:

AV̂i = Ŵi(i = 1.......n) (4.2)

Where V̂i represents a set of unit reference vectors, and Ŵiis a set of unit observation vectors.

To find an orthogonal matrix, Wahba minimizes a loss function:

L(A) =
1

2

n∑
i=1

ai

∣∣∣Ŵi − AV̂i

∣∣∣2 (4.3)

Where ai are non-negative weights. At the same time, the gain function can be defined as:

g(A) = 1− L(A) =
n∑

i=1

aiŴi

T
AV̂i = tr[ABT ] (4.4)

The gain functiong(A) is the maximum when the loss function L(A) is the minimum. The

goal is to find the suitable attitude matrix A, i.e. finding the maximum number of gain function

g(A). In (8), the tr is the trace operation, and B is the attitude profile matrix, which is defined

by:

B =
n∑

i=1

aiŴiAV̂i
T

(4.5)

The attitude matrix A can be given in terms of quaternion q:

A(q) = (q20e
T e)I + 2eeT + 2q0e (4.6)
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where I is the identity matrix and e is anti-symmetric, and it denotes:

e =


0 q3 −q2

−q3 0 q1

q2 −q1 0

 (3)

The gain function g(A) also can be written in terms of quaternion q:

g(q) = (q20 − eT e)ε+ eTSe+ 2q0(e
TZ) (4.7)

In this equation: 

ε = tr(B),

S = B +BT ,

Z =
n∑

i=1

ai(Ŵi)V̂i)) = B −BT .

(4.8)

Where K is the maximum eigenvalue of the matrix:

K =

S − εI Z

ZT ε

 (4.9)

From the Method of Lagrange multipliers, Equation 4.7 should be:

g(q) = qTKq − λqT q (4.10)

To get the optimal quaternion of the gain function, taking the first derivative of 4.10 for qT ,

and setting this equation to zero, we have λq = Kq. The quaternion is represented by the

Gibb’s vector Y: 

q =
1

1 + ||Y ||2

 Y

1

,
Y = [(λ+ ε)I − S]−1Z,

λ = ε+ Z ∗ Y.

(4.11)



624 AN OBSERVATION MODEL FROM LINEAR INTERPOLATION FOR QUATERNION-BASED ATTITUDE ESTIMATION

When λ = λmax, the Y and q represent the optimal attitude solution, and the eigenvalues λ

can be determined by:

λ = σ + ZT 1

(λ+ ε)I − S
Z (4.12)

(4.12) is the characteristic equation for the eigenvalue K; however, the maximum eigenvalue

of K is close to the unit when the gain function is maximized, which results in the singu-

larity problem. To avoid this problem, the Cayley-Hamilton theorem can be applied to the

characteristic of the matrix:

S3 = 2σS2 − κS +∆I (4.13)

where

σ = 1/2trS

κ = tr(adjS)

∆ = detS

(4.14)

From (4.13), the meromorphic function of S can be described by :

[(ω + σ)I − S]−1 = γ−1(αI + βS + S2) (4.15)

where α = ω2 − σ2 + κ,β = ω − σ, and γ = (ω + σ)α−∆ Inserting (4.15) to (4.12) and a

new e characteristic equation is obtained:

λ4 − (a+ b)λ2 − cλ+ (ab+ cσ − d) = 0 (4.16)

Where a = σ2 − κ, b = σ2 + ZTZc = ∆+ ZTSZ d = ZTS2Z

The maximum eigenvalue of (4.16) is close to unity, and Newton-Raphson Method is applied

to (4.16) to get a high accuracy maximum eigenvalue of the matrix. In this research, there are

two 3-axial sensors to be applied, and the maximum eigenvalue can be written:

λmax =
√
a21 + 2a1a2 cos θV − θW + a22 (4.17)
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where

cos θV − θW = (V̂1V̂2)(Ŵ1Ŵ2) +
∣∣∣V̂1V̂2∣∣∣ ∣∣∣Ŵ1Ŵ2

∣∣∣ (4.18)

Then for (4.16), assuming the value of ω is λmax, we obtain:

qopt =
1

γ2 + ∥X∥2

 X

Y

 (4.19)

4.3.1.2 FQA Algorithm

According to (Liu et al. 2012), FQA calculates the quaternion of each Euler angle separately.

It first calculates the elevation orientation, i.e. the pitch angle θ. From the accelerometer

readings, we obtain:

a =


ax

ay

az

 (4.20)

It is necessary to normalize the vector of the accelerometer measurements and get a. It is

noted that when a rigid body moves at a constant velocity and is in a fixed orientation, the

accelerometer only measures gravity. In addition, the x-axis accelerometer only detects the

component of gravity along the x-axis, which is also described by the elevation angle (pitch

angle). It can be seen in the following arguments. The x-axis accelerometer is perpendicular

to gravity; therefore, it detects zero acceleration when the rigid body is in its reference

orientation. The y-axis accelerometer is also zero, while the z-axis is −g. If the rigid body is

pitched up through an angle θ, the relationship between the pitch angle θ and accelerometers

measurements is:

ax = g sin θ (4.21)

Where g = 9.81m/s2, is the acceleration gravity, and the θ can be expressed as:

sin θ = ax (4.22)
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To obtain the quaternion of the pitch angle, it is necessary to calculate the cos θ
2

and sin θ
2

by

the trigonometric half-angle formulae:

sin
θ

2
= sgn(sin θ)

√
(1− cos θ)/2 (4.23)

cos
θ

2
=

√
(1 + cos θ)/2 (4.24)

Therefore, the elevation quaternion can be represented as:

qe = cos
θ

2

[
1 0 0 0

]
+ sin

θ

2

[
0 0 1 0

]
(4.25)

The relationship between roll angle ϕ and accelerometer readings are:

ay = −g cos θ sinϕ

az = −g cos θ cosϕ
(4.26)

The ay and az should be in the normalization form and (4.26) can be represented as:

sinϕ = −ay/cos θ

cosϕ = −az/cos θ
(4.27)

The next step is to obtain the half-angle sine and cosine for the roll angle in the same way as

(4.23) and (4.24), and the roll quaternion is obtained by:

qr = cos
ϕ

2

[
1 0 0 0

]
+ sin

ϕ

2

[
0 1 0 0

]
(4.28)

The calculation of the yaw angle only requires the magnetometer readings, and the first step

is normalization:
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mb =


mb

x

mb
y

mb
z

 (4.29)

And the magnetic in the intermediate Earth coordinate system:

me = (qe ⊗ qr)⊗mb ⊗ (q−1
r ⊗ q−1

e ) (4.30)

In this formula, the mb can be written in the pure vector mb = [0mb
x m

b
y m

b
z], and q−1 is the

inverse quaternion. me should be the same with the local normalized magnetic field vector

n = [(nx ny nz)], which can be found in [41] when there is no measurement error. nx

ny

 =

 cosψ −sinψ

sinψ cosψ

 me
x

me
y

 (4.31)

After the normalization, it can be written as:

N =

Nx

Ny

 =
1√

nx
2 + ny

2
=

nx

ny

 (4.32)

And the corresponding data measured by the magnetometer are:

M =

 Mx

My

 =
1√

me
x
2 +me

y
2

 me
x

me
y

 (4.33)

Then the value of sin(Ψ) and cosψ can be presented as:cosψ
sinψ

 =

 Mx My

−My Mx

 Nx

Ny

 (4.34)

The yaw angle quaternion is given by:

qa = cos
ψ

2

[
1 0 0 0

]
+ sin

ψ

2

[
0 0 0 1

]
(4.35)
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Finally, the computed quaternion can be obtained by:

qc = qa ⊗ qe ⊗ qr (4.36)

4.3.2 New Observation Model

The LERP can be used to generate the new observation model from the FQA and QUEST

algorithms. Figure 4.3 shows how the LERP is used to fuse FQA and QUEST, and the output

quaternion can be the observation model. It enhances the accuracy and solves high-frequency

noise-affected accelerometer data and low-frequency noise-affected gyroscope output (Valenti

et al. 2015). Figure 4.3indicates the quaternion qf and qQ from FQA and QUEST, respectively,

and ∆qf , ∆qQ are quaternion noise of FQA and QUEST, respectively. From LERP, the

quaternion noise can be calculated by: ∆qf = (1− α)qI + αqf ,

∆qQ = (1− α)qI + αqQ.
(4.37)

Where qI = [1 0 0 0] and α ∈ [0, 1] is the introduced in (De Franceschi and Zardi 2003).

However, the outputs of the LERP are not unit quaternion, it is necessary to normalize the

quaternion: 
∆q̂f =

∆qf
∥qf∥

∆q̂Q =
∆qQ
∥qQ∥

(4.38)

The first group of optimal quaternion q_oq from the fusion of the FQA and the QUEST by

LERP requires the employment of a select vector:

qoq =

 qf ⊗∆q̂f if∆qf < ∆qQ

qQ ⊗∆q̂Q if∆qQ < ∆qf

(4.39)

Furthermore, the FQA and QUEST are suitable for static conditions, whilst the integrating

angular rate is suitable for dynamic conditions, necessitating the use of a second LERP to

extract the second group optimal quaternion qof from Kalman Filter and FQA.

qof = (1−G)qω +Gqf (4.40)
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Where G is the gain 0 to 1; qω is the quaternion by integrating the angular rate from the

gyroscope, qof is the optimal quaternion by combining qf and qω.

FIGURE 4.3: Block diagram of the proposed algorithm

4.3.2.1 Details of A Two-layer Kalman Filter

In the Kalman Filter, the most important two parts are the process model and observation

model, which can be described by:Xk = ϕk−1Xk−1 + wk−1,

Zk = HXk + vk.
(4.41)

Where ϕ is the state transition matrix, H denotes the observation matrix, the identity matrix,

and w and v are White Gauss process noise and measurement noise. In this scheme, the state

vector is Xk and the observation vector is Zk and they can be defined as:Xk = qof ,

Zk = qoq.
(4.42)
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Therefore, the state vector can be rewritten in:

qk+1 = ϕk(Ωk, Ts)qk + wk (4.43)

where Ts in it represents the sample time, which should be quite small and

Ω(ω) =
1

2

0 −ωT

ω ω[×]

 (4.44)

ω is the angular velocity of the gyroscope and its size is 1 × 3. In addition, ω[×] is a 3×3

skew-symmetric matrix described by:

ω[×] =


0 −ωz −ωy

−ωz 0 ωx

ωy −ωx 0

 (4.45)

Then the Taylor series can be applied to (4.43), we can get:

qk+1 = [I4×4(1−
∆θ2

8
) +

1

2
ΩkTs]qk (4.46)

where

∆θ2 = (ωxTs)
2 + (ωyTs)

2 + (ωzTs)
2 (4.47)

the state vector(4.43) can be represented by:

qk+1 = [I4×4(1−
∆θ2

8
) +

1

2
ΩkTs]qk + ωq

k (4.48)

and

−Ts
2
Ξkω

m = −Ts
2

[ek×]− q0I3×3

−ekT

ωm = ωq
k (4.49)

Where [ek] =[q1k q2k q3k]T , and ωm is the gyroscope measurement noise. The Kalman Filter

also considers the process noise covariance matrix Qk:

Qk =
Ts
2

2

Ξkσg
2IΞk

T (4.50)

For the observation model, the measurement model can be given by:

Z =
[
qoq0 qoq1 qoq2 qoq3

]T
(4.51)
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During the process, it is essential to calculate the Kalman Gain K and the measurement noise

covariance matrix Rk , which can be defined by:

Kk+1 = P−
k+1H

T
k+1(Hk+1P

−
k+1H

T
k+1 +Rk+1)

−1

Rk = E
[
VkV

T
k

]
= σ2

qI
(4.52)

The σq2 is averaged quaternion variance, P−
k+1 is prior error covariance and I is the four-

dimensional identity matrix.

Figure 4.4 depicts the whole structure of the Kalman Filter. It demonstrates the fluent diagram

of the whole Kalman ole Kalman Filter and consists of three primary components: projection,

Kalman gain, and update. The initial estimate of quaternion X̂0 or q̂0is defined as the matrix

[1 0 0 0]T and P0 is the initial covariance matrix equaling the matrix [1 0 0 0]T . They are

input to the projection step to compute a priori state estimate quaternion q−k+1 and a priori

error covariance P−
k+1. Then calculating the Kalman Gain Kk+1 be the basis of updating a

posteriori state estimate quaternion qk+1and a posteriori state error covariance Pk+1. Finally,

the optimal quaternion qoq from LERP input to the update step of Kalman Filter together to

calculate a posteriori state estimate quaternion qk+1(qof )and a posteriori state error covariance

Pk+1.

4.4 Simulation and Experiments of New Two-Layer Kalman

Filter

4.4.1 Simulation Results

We obtain the true attitude information in the simulation by integrating the angular rate

without noise. The simulated angular velocity, acceleration, and magnetic field are affected

by White Gaussian noise with a standard deviation of σg = 0.0545rad/s, σa = 0.19m/s2,

and σm = 0.001G, respectively. In addition, the measurement noise of the accelerometer,

gyroscope, and magnetometer is 0.0001972m/s2, 9.1385× 10−5rad/s, and 0.1µT ,and the

step time is 0.01 seconds. The true attitude is compared with the results of the proposed



704 AN OBSERVATION MODEL FROM LINEAR INTERPOLATION FOR QUATERNION-BASED ATTITUDE ESTIMATION

FIGURE 4.4: Block diagram of Kalman Filter

algorithm, QKF, and FQAKF in figure 4.5. The proposed algorithm outperforms the QKF

and FQAKF in terms of reduced errors in all Euler angles, particularly the pitch angle.

Figure 4.6 depicts the detailed mistakes of the proposed approach and other algorithms. The

average error of the proposed algorithm is 0.2669 deg. The average absolute error of QKF is

0.7912 deg, which is more than 3 times higher than that obtained by the proposed algorithm.

The average error of FQAKF is 1.5818 deg, which is the largest error of the three algorithms.

This indicates that the proposed algorithm outperforms the other comparison Kalman filters

in simulation.
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FIGURE 4.5: Comparison of Simulated Euler Angler Between Different Algorithms

FIGURE 4.6: Comparison of the absolute error between Different Algorithms

4.4.2 Experimental Results

In this section, we evaluate the performances of the three algorithms using MARG iner-

tial/magnetic sensors experimentally. The experiment setup on the air-bearing table as shown

in figure 4.7. The air-bearing table offers torque-free motion with three degrees of freedom,

excluding extreme angles due to the platform structure. The LSM9DS1 is a system-in-package

featuring a 3D digital linear acceleration sensor, a 3D digital angular rate sensor, and a 3D

digital magnetic sensor. The running step is around 0.036 seconds, and there are 4631 steps.
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It takes about 166 seconds for the whole experiment. The initial quaternion q = [1 0 0 0]T .

Furthermore, the sensor module is assembled with its x, y, z-axis and aligned with NED

(North, EAST, Down) direction.

FIGURE 4.7: The experiment on air-bearing table

Figure 4.8 illustrates the quaternion results from the three algorithms. Each FQAKF qua-

ternion has significant errors, particularly q0 and q3, while q1 and q2 have fewer errors. The

estimated quaternion q from the proposed algorithm is the closest to the reference quaternion,

followed by the quaternion from QKF. In conclusion, the proposed algorithm presents the best

accuracy, followed by QKF while FQAKF shows the most inferior performance. Figure 4.9

depicts the quaternion errors from different algorithms. The FQAKF has the largest error,

which is about 0.1614, while the error of the QKF is 0.0136. The error of the proposed al-

gorithm is minimal (0.004). As a result, the proposed method outperforms QKF and FQAKF

in terms of accuracy.

Table 4.1 shows the average quaternion errors of the three algorithms. The proposed algorithm

has minimum errors for almost all the members of the quaternion except for the q3. However,

the difference of q3, between the proposed algorithm and the FQAKF is negligible. Therefore,
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FIGURE 4.8: The Quaternion Produced By Different Algorithms

FIGURE 4.9: The Quaternion Error 1of Different Algorithms(Presented Al-
gorithm, QKF, FQAKF)

the quaternion accuracy of the proposed algorithm is the highest, and the quaternion accuracy

of the FQAKF is the lowest.

TABLE 4.1: DETAILED QUATERNION ERROR OF DIFFERENT ALGORITHMS

quaternion Proposed algorithm FQAKF QKF
q0 5.7639× 10−4 0.0346 0.0019
q1 9.3341× 10−4 0.0051 0.0031
q2 0.0013 0.0038 0.005
q3 9.5106× 10−4 0.1179 0.0036
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Figure 4.10 shows the Euler angles produced by the proposed algorithm (a), FQAKF (b),

QKF (c), and the reference Euler angles (d), respectively. In this experiment, the air-bearing

table only changes the yaw angle, which has a 360-degree rotation. In the proposed algorithm,

the roll angle and pitch angle calculated by the proposed controller are robust to the magnetic

distortion, which is the main advantage of the proposed algorithm. The yaw angle from

FQAKF shows the significant delays from the other algorithms. The reference yaw angle is

similar to the yaw angle from the proposed algorithm and the detailed average error is shown

in Table 4.2.
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(a)

(b)

(c)

(d)

FIGURE 4.10: Euler angle from different algorithms
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TABLE 4.2: ERROR OF YAW ANGLE BETWEEN DIFFERENT AL-
GORITHMS AND REFERENCE YAW ANGLE

quaternion Proposed algorithm FQAKF QKF
Average error of yaw angle(deg) 0.1421 8.1971 0.6266
Average error of pitch angle(deg) 0.1606 0.3643 0.5353
Average error of roll angle(deg) 0.1194 0.5837 0.3977

The average error of the yaw angle from the proposed algorithm is 0.1421, which is 97%

lower than that of the FQAKF and around 23% lower than that of the QKF. For the pitch

angle and the roll angle, the proposed algorithm also presents the minimum error.

According to the previous experiment, the proposed algorithm is more accurate on the yaw

angle than other algorithms. The experiment results in figure 4.11 demonstrate that the

proposed algorithm is not only more accurate on the yaw angle, but also the pitch angle and

roll angle than other algorithms. Figure 4.11 shows that the proposed algorithm produces the

best results for pitch and roll angle, followed by the QKF and the FQAKF with the lowest

accuracy.

The process model and observation mode are 7× 7 matrixes in the QKF. There are 6 steps

of matrix calculation and 294 elements to estimate the attitudes in one loop. The FQAKF

requires 4× 4 matrixes and 9 matrix calculation steps. Therefore, there are 144 elements in

one loop. The proposed algorithm employs a 4× 4 matrix, and two matrix calculation steps

less than FQAKF because of the LERP. Therefore, there are 112 elements in one loop. We

conduct 10 repeat experiments and got the average running time for the algorithms. The three

algorithms are implemented on the Raspberry PI 3B+ with Python. The Raspberry PI 3B+

has a 64-bit 1.4GHz quad-core ARM Cortex-A53 (CPU), 1 GB LPDDR2 SDRAM(RAM),

and Broadcom Videncore-IV(GPU). The speed of 1K writes and 1K reads of memory are

632.27MB/S and 857.96MB/S, respectively. Table 4.3 exhibits the average one-loop running

time of three algorithms on Raspberry PI 3B+. The running time of the proposed algorithm is

0.002459526 seconds less than that of the FQAKF (0.010483503 seconds) and lower than

that of the QKF (0.011303639 seconds). In theory, the computational load of the FQAKF

is 29% higher than the proposed algorithm. In the experiment, compared with the FQAKF,
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the proposed algorithm improves 16.9% computational efficiency. While the efficiency of the

QKF algorithm is the worst.

(a)

(b)

(c)

FIGURE 4.11: Euler angle from different algorithms
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TABLE 4.3: RUNNING TIME OF DIFFERENT ALGORITHMS

TIME
Novel algorithm 0.006459526 seconds

QKF 0.011303639 seconds
FQAKF 0.010483503 seconds

4.5 Summery

This chapter presents a two-layer Kalman filter architecture for attitude estimation. It provides

a novel algorithm to produce a quaternion observation model that is the result of the fusion

of QUEST and FQA, offering a higher attitude accuracy than the attitudes obtained if these

algorithms were used individually. The Kalman filter employs the quaternion matrix from the

LERP of the observation and process models. The process model in the two-layer architecture

is formed by integrating the gyroscope output, providing a smooth output while avoiding

singularities and reducing computational complexity. The two-layer architecture is robust

against magnetic disturbance and other undesirable conditions. Furthermore, the second

LERP ensures the attitude estimation of vehicles can maintain a high level of accuracy in both

static and dynamic motion conditions. The performance of the proposed algorithm is validated

by both simulation and physical experiments on the air-bearing table. The experiment results

indicate that the proposed algorithm can achieve highly accurate attitude estimation with low

computational load. This part has the following highlights:

(1) Compared with traditional algorithms of QKF, and FQAKF, the fusion of QUEST

and FQA by LERP can improve the attitude estimation accuracy.

(2) The quaternion-based Kalman Filter is in the minimum order, significantly reducing

the computational load.

(3) The 2-layer architecture algorithm combines the measurement model and the Kalman

Filter to form a feedback loop, which can deal with unexpected situations such as

fast-moving and temporary magnetic disturbance. In addition, the LERP can reduce

the quaternion error from QUEST, FQA, and integration of the gyroscope output.
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(4) The second LERP step takes advantage of QUEST, FQA, and the gyroscope to

achieve better performances on both the short-term and long-term attitude estima-

tions.



CHAPTER 5

Kalman filter and neural network fusion for fault detection and recovery

in satellite attitude estimation

This chapter provides a fault detection, isolation, and recovery scheme for satellite attitude

estimation, which is presented by (Chen et al. 2023b), and the part of neural network has

been published by (Chen et al. 2022). First, it shows a brief of the proposed scheme, and then

the theory and structure of this algorithm are presented in the following parts. Finally, the

simulation and experimental results are given to verify the validity of the algorithm.

5.1 Introduction

Most satellite missions have extremely stringent requirements for attitude reliability. However,

the IMU, which is part of the ADS, is susceptible to performance degradation in the space

environment and can lead to failure. The proposed fault tolerance scheme includes two-

layer fault detection with isolation and two-layered recovery. AUKF, QUEST algorithm and

residual generator constitute the first layer of fault detection. At the same time, RBF neural

networks and an adaptive complementary filter (ACF) make up the second layer of fault

detection. These two fault detection layers aim to isolate and identify faults while decreasing

the rate of false alarms. The AUKF and FDIR residual generator comprise the two-layered

attitude recovery system.

The proposed scheme builds two RBF neural networks from the AUKF and QUEST quaternion

output, they offer a quaternion when a fault has been identified by the residual generator. The

RBF activated is dependent on the sensor failure, triggering a chain response to disregard
80
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quaternions that are produced by either the AUKF or QUEST, depending on the relevant

failed sensor.

Compared with the traditional fault tolerance system, this scheme reduces the calculation

load in the residual generator. It not only solves the outlier problem of sensors but also has

higher accuracy attitude estimation. When one of the IMU sensors fails and is detected, the

proposed scheme can still maintain accurate attitude estimation by leveraging a trained neural

network. In addition, the secondary fault detection and isolation layer can minimize the rate

of false alarms, meaning more reliable ADS for satellites.

5.2 Fault Detection, Isolation, and Recovery System

In the proposed scheme, the system is divided into two main phases; the first phase is for fault

detection and isolation to give preliminary recovery, and the second part is a secondary, more

advanced recovery stage. The preliminary recovery is based on the AUKF and the QUEST

algorithm, while the RBF is only used for training the model during this phase, as seen in

figure 5.1.

Fig.5.1 includes two estimators: an AUKF, which has a fault recovery function, and QUEST.

The AUKF estimator employs a gyroscope and a magnetometer to get the quaternion qa based

on the satellite attitude kinematics seen in (4.1). In normal operation, the AUKF result is

the same as the UKF. If a fault occurs in the gyroscope or magnetometer, the AUKF will

update the covariance matrix and produce an updated quaternion. The second estimator,

QUEST, provides a quaternion qq by minimizing the Wahba’s loss function based on the

outputs of the accelerometer and magnetometer in the inertial frame. The next are two residual

generators, an ACF, and two RBF neural networks. When the fault is detected, firstly, the

residual generators after the AUKF and QUEST algorithms will determine which sensor is

broken. If the fault is in the gyroscope or magnetometer, AUKF will adjust the covariance

matrix to achieve the new qa. This is the preliminary recovery.
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FIGURE 5.1: Flowchart of the fault detection, preliminary recovery, and the
training process

During the secondary recovery phase, figure 5.2 shows the process of the secondary fault

recovery by RBF and ACF. When the preliminary recovery is initiated, the two RBF neural

networks stop training and start to produce two quaternion groups qr1 and qr2 at the same

time.

The quaternion group to be used depends on the sensors without fault. When the gyroscope

is at fault, the input data are qa, qq and qr1. When the fault is at the magnetometer or the

accelerometer, the input data are qr1 and qa. If there is no fault, the input data are qa and qq.

This quaternion is then used by ACF to get the final quaternion qf . For example, the first

RBF (RBF1) connects the AUKF outputs with final quaternion; The second RBF (RBF2)

connects the QUEST outputs with the final quaternion. When the fault detection and fault

isolation process determines that the gyroscope is in failure, then the quaternion from AUKF

is incorrect. Hence, RBF2 will be used for the secondary fault recovery. The other quaternions

used by ACF are from the QUEST and the primary recovery result from AUKF. This process

increases the accuracy of the final attitude estimation.
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FIGURE 5.2: process of the secondary fault recovery by RBF and the Adaptive
Complementary Filter.

5.2.1 The Theory of Fault Detection and Isolation System

The residual vectors of the filter/estimator will be monitored utilizing residual generation and

statistical tests to find faults of failure in AUKF or QUEST. The hypothesis tests determine

which sensor is in failure.

5.2.1.1 The Theory of UKF

UKF is used for nonlinear systems because traditional Kalman Filters can only be used to

represent linear systems. The UKF can produce a set of the sigma points from a known prior

mean and covariance of the current state, and the mean prediction is calculated from the

transformed sigma points (Soken et al. 2014). The UKF model is given by:

xk+1 = f(xk, k) + wk

ỹk = h(xk, k) + vk

(5.1)

Where, xk is the state vector, ỹk is the measurement vector, and wk and vk are stated process

noise and measurement noise, respectively. Moreover, the noise vector wk and ỹk are assumed
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to be the Gaussian white noise with the covariance vector Qk and Rk. f and h denote the

system function and measurement function, respectively.

UKF starts with the calculation of the 2n + 1 sigma points with a mean of x̃(k|k) and a

covariance of P (k|k). For the n dimensional state vector, the sigma points are depicted by:

χ+
0 = x̃+

χ+
j = x̃+ γ(

√
p+k +Qk)j

χ+
j+n = x̃− γ(

√
p+k +Qk)j

(5.2)

Here, j = 1, 2, 3...n, (
√
p+k +Qk)j is the jth column of the square root matrix, γ =

√
n+ λ,

and λ = α2(n + κ)− n are the scaling parameters. α is a constant number, which decides

the spread of the sigma points around x̃(k|k) and normally is set as a small positive value.

The constant κ is a secondary scaling parameter, which is always set to zero. The next step in

UKF is using the system dynamics to convert each sigma point:

χ−
j (k + 1) = f(χ+

k , k) (5.3)

The prior mean and covariance are computed as:

x̂+k+1 =
2n∑
i=0

Wm
i χ

−
k+1(i) (5.4)

P−
k+1 =

2n∑
i=0

W c
i (χ

−
k+1(i)− x̂+k+1)(χ

−
k+1(i)− x̂+k+1)

T +Qk (5.5)

Where:

Wm
0 =

λ

n+ λ

W c
0 = Wm

0 + 1− α2 + β

W c
i = Wm

i =
1

2(n+ λ)

(5.6)
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β is employed to include the prior information of the distribution of the state vector x. The

mean measurement vector and output covariance matrix are shown by:

ŷ+k+1 =
2n∑
i=0

Wm
i Yk+1(i) (5.7)

P yy
k+1 =

2n∑
i=0

W c
i (Yk+1(i)− ŷ+k+1)(Yk+1(i)− ŷ+k+1)

T (5.8)

Where the Yk+1 represents the predicted observation and it is given by

Yk+1(i) = h(χ−
k+1(i), k) (5.9)

Next the innovation covariance P vv is calculated by

P vv
k+1 = P yy

k+1 +Rk+1 (5.10)

The cross-correlation matrix is represented by

P xy
k+1 =

2n∑
i=0

W c
i (χk+1(i)− x̂+k+1)(Yk+1(i)− ŷ+k+1)

T (5.11)

The Kalman gain is calculated by P xy and P vv:

Kk+1 = P xy
k+1P

vv
k+1 (5.12)

Finally, the updated state and covariance are computed by the traditional Kalman Filter

method:
ˆx+k+1 =

ˆx−k+1 +Kk+1(ỹk+1 − ŷ+k+1)) (5.13)

P+
k+1 = P−

k+1 −Kk+1P
vv
k+1K

T
k+1 (5.14)

5.2.1.2 Residual Generators

The critical step of the proposed algorithm detects the fault based on the residual, which is

sensitive to the faults. The faults can be unpredictable in terms of time and magnitude. AUKF

generates the first residual vr1, which is the difference between the measured values from the
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sensors ỹ and the predicted values from the AUKF ŷ.

vr1 = ỹ − ŷ (5.15)

The first residual needs to be normalized to realize the state diagnosis:

ṽr1 =
vr1(i)√
σvv
ii

, i = 1 : n,
√
σvv
ii = pvvk+1(i, 1) (5.16)

The second residual is based on the QUEST algorithm, which outputs the current satellite

attitudes qq = [q0 q1 q2 q3]
T ; however, it does not store past data or predict any attitude

information. Therefore, the variance of the qq can be monitored, rather than the output of the

QUEST algorithm.

In order to reduce the false alarm rate, the hypothesis test is employed to decide the correct

threshold. The statistical hypothesis is a method based on the data from scientific studies.

The testing begins by expressing the value of a population mean in a null hypothesis, which is

assumed to be true. For the first residual vector, it is important to find the threshold Jth1,

prob{|vr1|> Jth1|θ = 0} < α, vr1 =
1

M

N∑
j=1

vr1 (5.17)

Where, prob{|vr1|> Jth1|θ = 0} is the probability that |vr1|> Jth1 when the condition θ = 0,

it represents the false alarm rate. α is a constant number and also can be called the significant

level. In this scheme, the following rules are adopted:

v̂r1 ≤ Jth1 : θ = 0(H0, nullhypothesis)

v̂r1 > Jth1 : θ = 0(H1, alternativehypothesis)
(5.18)

Where, the null hypothesis H0 denotes the no-fault situation, the alternative hypothesis H1

represents the presence of a fault. Then the next step is calculating the threshold Jth1, the

detailed steps are shown as follows.

Step 1:

prob{t > tα/2} = α/2 (5.19)
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α/2 is calculated by the table of t distribution with the degree of freedom, which

equals to M − 1

Step 2:

Jth1 = tα/2
Sr1√
M

(5.20)

S2
r1 =

∑M
j=1(vr1j − vr1)

M − 1
(5.21)

Where

t =
vr1

Sr1/
√
M

(5.22)

For the second residual generator, it is necessary to find a statistic threshold Ith2, and the best

method is monitoring the change in the variance. The statistic is depicted as:

S2
r2 =

1

M − 1

M∑
j=1

(qj − q)2 (5.23)

q =
1

M

M∑
j=1

qj (5.24)

In addition, the decision rule is denoted as:

S2
r2 ≤ Jth2 : (H0, nullhypothesis)

S2
r2 > Jth2 : (H1, alternativehypothesis)

(5.25)

When S2
r2 ≤ Jth2, it indicates there is no fault, while S2

r2 > Jth2 represents the fault case.

5.2.2 Fault Isolation

After fault detection, the next step is fault isolation. This scheme allows for identifying

single-sensor fault situations.

TABLE 5.1: Table 1 Fault isolation logic table

AUKF × × × ✓
QUEST ✓ × × ✓

Broken sensor Gyro Magn Accel No Fault
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The first residual generator is based on AUKF, which receives data from the gyroscope and

magnetometer. The second residual generator is based on QUEST, which is designed to

obtain the measurement data from the accelerometer and the magnetometer. Table 5.1 shows

the fault isolation logic in the FTD system, to determine which sensor is in fault. The ×

represents H1 alternative hypothesis, which means fault occurs, and the ✓ represents H0 null

hypothesis, which means no fault. From Table 1, it can be seen when AUKF is detected as the

fault and QUEST is no fault, it means the fault has only occurred in the gyroscope. Similarly,

when AUKF and QUEST are both detected as faults, it signifies a fault has occurred in the

magnetometer. If the fault occurs in the accelerometer, AUKF is in normal operation while

the QUEST is detected as a fault.

5.2.3 The Preliminary Recovery: AUKF

The input of AUKF is the angular velocity and magnetic field data from the gyroscope and

the magnetometer, respectively. From the first residual generator, the first residual vector vr1

can be computed by (5.13) and the average value of the first residual can be calculated by

(5.16). The estimated value of the sensor noise can be calculated as:

σ̂2
R =

∑M
j=1(vr1j−vr1)

2

M − 1
(5.26)

When either the gyroscope or magnetometer has a fault, the covariance matrix R∗ is updated

in real-time based on the measurement noise statistical estimator. As opposed to the traditional

UKF, where the covariance matrix R∗ is a constant number, R0, and can not deal with the

fault tolerance problem.

R0 = σ2
magI3×3 (5.27)

σmag is the variance of the magnetometer noise, and it is a constant number, which is the base

of the updated covariance matrix R∗:

R∗ = γRR0 (5.28)
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Where γ is a positive scalar scaling factor:

γ =
σ̂2
R

σ2
mag

(5.29)

For the second residual generator, the input is the magnetic field data from the magnetometer

and the acceleration from the accelerometer. When each sensor is in normal operation,

the output of the QUEST qq will go through the adaptive complementary filter with the

result of the AUKF qa to get the final quaternion qf , as shown in figure 5.1. When one of

the accelerometers or magnetometers has a fault, the gain of the QUEST in the adaptive

complementary filter will be zero. The ACF is shown in figure 5.3, which fuses the quaternion

qq and qa to provide the quaternion qf . The qf has higher attitude accuracy because ACF

can adjust the weight of the qq and qa, respectively by the filter gain k. The qq is compared

with the most recent qf to get the quaternion error: e(t) = qq(t) − qf (t). The error e(t) is

multiplied by the Gain k, which is used to correct the quaternion qa. The Laplace transform

is used to analyze the adaptive complementary filter. When the input of the qa is zero, the

transform function from qq Qq(s) = Lqq(t) to the final quaternion: Qf (s) = Lqf (t) is:

Hq(s) =
Qf (s)

Qq(s)
=

k

s+ k
(5.30)

When the input of the qq is zero, the transform function is:

Ha(s) =
Qf (s)

Qa(s)
=

k

s+ k
(5.31)

FIGURE 5.3: Block diagram of the adaptive complementary filter based on the quaternion
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5.2.4 The Second Recovery System

After the first recovery system, there is the secondary recovery system, which is based on

the t outputs of the RBF neural network and the output of the first recovery system. In the

no-fault case, the RBF neural network is used to train the model. It has three layers: the input

layer, the hidden layer, which applies a nonlinear transformation, and the output layer. Once

a fault is detected, the RBF stops training the model and starts producing predicted results

based on the trained model. The output of RBF can be described as:

yk =
N∑
i=1

ωikφ(x, ci) (5.32)

Where x is the m dimension input signals; ωik is the synaptic weights from the hidden layer to

the output layer; ϕ(x, ci) is the radial basis active function with the center ci; N is the number

of hidden layers. The radial basis active function is based on the Gaussian function:

φ(x, ci) = G(x, ci) (5.33)

Where,

G(x, ci) = exp(− 1

2σ2
i

∥x− ci∥2) (5.34)

Where σ is the width of the Gaussian function. In the proposed method, K is the clustering

algorithm used for calculating the value of the center ci. From the input layer to the hidden

layer, the radial basis function is:

Zj = exp(−
∥∥∥∥x− cj

dj

∥∥∥∥2

) (5.35)

Where dj is the width of the neuron, and it can be defined as:

dj =
cmax√
2h

(5.36)

The cmax is the maximum distance between centers, and h is the number of cluster centers.

From the hidden layer to the output layer, the function is seen in (5.31) and ωik can be

computed by the Gradient descent:

ωik(t) = ωik(t− 1)− η
∂E

∂ωik(t− 1)
+ α[ωik(t− 1)− ωik(t− 2)] (5.37)
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where η is the learning rate and E is the loss function. Then the output of the RBF will

go through the Hypothesis testing algorithm with the output of the AUKF and QUEST,

respectively, which is shown in figure 5.4. Figure 5.4 shows the multiple model structure

FIGURE 5.4: Multiple Model adaptive estimation structure with hypothesis
testing algorithm

adaptive estimation with the hypothesis test. In figure 5.4 ri is the residual error between the

final quaternion qf and the quaternion from different estimators, such as qq, qa,qr1, and qr2.

The output of the estimator can be defined as:

q̂fi =

∫
x

xp(x|z∗i )dx (5.38)

Where x is the system rate, which is qa, qf , qr1, qr2, z∗i represents the measurements up to

the time ti and p(x|z∗i )dx is the probability density function of x given z∗i . According to

the traditional probability, which is based on the measurements z∗i and the filter parameter
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α,(5.37) can be represented as:

q̂fi =

∫
x

x

∫
α

p(x|z∗i )dαdx (5.39)

According to the Bays theorem:

p(x, α|z∗i ) = p(x|α, z∗i )p(α|z∗i ) (5.40)

Where p(α|z∗i ) is calculated by:

p(z∗i |α) = βe{•} (5.41)

Where the β = 1

(2π)
1
2 |Ai|

1
2

, the {•} = {−1
2
rTi (ti).A

−1
i ri(ti)} Ai being the covariance matrix

of the computed residual ri. Substituting (5.39) into (5.38), it gives:

q̂fi =

∫
α

p(α|z∗i )
∫
x

p(x|α, z∗i )dαdx =

∫
x

p(α|z∗i )q̂fiαdx (5.42)

5.3 Experiment of Fault Isolation and Recovery

In this section, the proposed algorithm is implemented on an air-bearing table. The motion-

tracking system is used to provide the reference attitude information, which is shown in

figure 5.5.

In this experiment, a torque-free air-bearing table with three degrees of freedom is used,

excluding extreme angles due to the platform constraints. The LSM9DS1 is a system-in-

package featuring a 3D digital linear acceleration sensor, a 3D digital angular rate sensor, and

a 3D digital magnetic sensor. The motion tracking system includes four OptiTrack cameras

that capture the air-bearing table’s attitude information. In this experiment, the results of

the AUKF, QUEST algorithm, and the proposed algorithm are compared with the reference

attitudes from the motion tracking system. In addition, there are three different scenarios: the

gyroscope (scenario 1), magnetometer (scenario 2), and accelerometer (scenario 3), which are

faulty individually. The failure point starts at the 700th steps and finishes at the 1122th steps.

When each sensor is in the normal state, the Euler Angle and the quaternion from the AUKF,

QUEST algorithm, and proposed algorithm are shown in figure 5.6(a) and figure 5.6(b),
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FIGURE 5.5: The Air-bearing Table and Motion Tracking System

respectively. According to figure 5.6, the proposed algorithm produces the best results for

yaw, pitch, and roll angle, followed by the AUKF and the QUEST with the lowest accuracy,

and the detailed data is presented in Table 5.2.

TABLE 5.2: The detailed absolute error of different algorithms in standard situation

Euler Angle/deg Proposed Algorithm AUKF QUEST
Yaw 0.049562 0.063 0.094
Pitch 0.2269 0.2455 0.4635
Roll 0.15344 0.2457 0.2792

In scenario 1, the standard output and failure output of the gyroscope are both shown in

figure 5.7. The failure starts from the 700th point and then remains at zero until the experiment

is completed. figure 5.8 (a) and (b) indicate the Euler Angles representations of the quaternion

of this scenario. The recovery results of the AUKF, QUEST algorithm and the proposed

algorithms are also shown in figure 5.8 (a) and (b). Figure 5.8(c) presents the errors of these

algorithms. For this scenario, the fault is limited to the gyroscope. The QUEST output is

the same as the output of the standard scenario because the input data are acceleration and

magnetic field. From figure 5.8(a) and (b), the AUKF and the proposed algorithm can both
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(a) The Euler Angle of Different Algorithms

(b) The Quaternion of Different Algorithms

FIGURE 5.6: The Euler Angle and Quaternion from Different Algorithms

recover the attitude from the 710th step. However, for the yaw Angle, the recovery result of

the AUKF shows a lag to the reference yaw angle.
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FIGURE 5.7: The output of standard and fault gyroscope

(a) The Euler Angle of Different Algorithms

(b) The Quaternion of Different Algorithms

(c) The Error of Different Algorithms

FIGURE 5.8: The Euler Angle and Quaternion, and Error from Different Algorithms
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The Euler angles from the AUKF, from the 700th to the 710th step, maintains normal operation

as it is still within the bounds of the threshold. However, at the 710th step the threshold of

0.06 is exceeded. For the proposed algorithm, the result fuses the quaternion from AUKF,

QUEST, RBF1, and RBF2. Therefore, from the 700th step to the 710th step, the error at

the pitch angle is around 0.5 degrees, and the error at the roll angle is about 0.1 degrees.

Before the fault was detected, the accuracy of each algorithm is the same as the standard

scenario, as shown in figure 5.6, and after the recovery (710th step). The Euler Angles and

quaternion from the proposed algorithm are still the most similar to the reference Euler Angle

and quaternion from the reference attitude. The second is the AUKF, and QUEST has the

lowest accuracy, although the result of AUKF has significant fault detected from the 700th

to the 710th step, and the delay at the 1009th step, this can also be seen in figure 5.8 (c). In

addition, Table 5.3 shows the detailed error of different algorithms, the attitude error from the

proposed algorithm is the minimum, the yaw angle is only 0.048 degrees, while the one from

the QUEST algorithm is the maximum, especially for the pitch roll angles(0.4635 degree).

TABLE 5.3: The detailed absolute error of different algorithms in scenario 1

Euler Angle/deg Proposed Algorithm AUKF QUEST
Yaw 0.048 0.9473 0.094
Pitch 0.1189 0.2787 0.4635
Roll 0.1123 0.2398 0.2792

Figure 5.9 shows the residual vectors of the fault, AUKF and QUEST algorithm. The residuals,

vr1 = [vr11 vr12 vr13 vr14], vr2 [vr21 vr22 vr23 Vr24, and vr3 = [vr31 vr32 vr33 vr34], represent the

vectors of the quaternion from the AUKF, the QUEST, and the fault scenario respectively. The

vectors of vr1 and vr4 in the AUKF are over the threshold 0.06 from the 700th step. After the

710th step, the AUKF performs the real-time update of the covariance matrix R∗ to recover

the attitudes. The quaternion vector from the QUEST is in the nominal state because the

input data of the QUEST algorithm are from the accelerometer and magnetometer. Therefore,

according to the logic table, the fault is from the gyroscope.

In scenario 2 the magnetometer has a fault. From the 700th step, the Euler angle will not

change until the end of the experiment, which is shown in figure 5.10. Figure 5.11 (a), (b) and
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FIGURE 5.9: The Residual vector of the AUKF and QUEST algorithm

FIGURE 5.10: The Residual vector of the AUKF and QUEST algorithm

(c) are the Euler angles, quaternions, and errors of the algorithms when the magnetometer

fails at the 700th step. From figure 5.11 (a) and (b), the Euler angles and quaternions are the

same as the result of the standard scenario. After the 700th step, the result from the AUKF

and the QUEST are always the same data because the magnetic field data are both the input of

the AUKF and the QUEST. AUKF has the recovery function based on updating the covariance

matrix R∗. However, QUEST does not have the capability, because it is based on real-time
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measurement data. Therefore, in figure 5.11 (a), the Euler angle of the attitude from the

QUEST algorithm keeps the same data after the fault point (the 700th step). However, the

attitude of AUKF keeps the fault Euler angle from the 700th step to the 716th step because the

residual exceeds the threshold 0.1 at the 716th step, which is shown in figure 5.12. After the

716th step, the result of the AUKF starts to recover to normal attitudes. However, the accuracy

is lower than the proposed algorithm. figure 5.11 (c) shows the error of the Euler angle from

different algorithms, and the detailed data is displayed in Table 5.4. It can be found that the

error from QUEST is the largest the Yaw angle is up to 19.5250 degrees because the QUEST

cannot recover fault. The nest is the AUKF, and the minimum error is from the proposed

algorithm. Furthermore, because QUEST lacks a recovery mechanism, the error after the

700th step is rather substantial.

TABLE 5.4: The detailed absolute error of different algorithms in scenario 2

Euler Angle/deg Proposed Algorithm AUKF QUEST
Yaw 0.0518 0.5185 19.5250
Pitch 0.0073 0.2285 0.5463
Roll 0.021 0.2031 0.3295

Figure 5.12 shows the residual vectors from the AUKF and QUEST algorithms. From

figure 5.12, both the residual vector from the AUKF and the QUEST exceed the threshold of

0.1. Therefore, the AUKF and QUEST both have fault signals. From the logic table, the fault

can therefore be determined to be the magnetometer.
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(a) The Euler Angle of Different Algorithms

(b) The Quaternion of Different Algorithms

(c) The Error of Different Algorithms

FIGURE 5.11: The Euler Angle and Quaternion,and Error from Different Algorithms
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FIGURE 5.12: The Residual vector of the AUKF and QUEST algorithm

In scenario 3 the accelerometer is faulty from the 700th step. figure 5.13 (a), (b), and (c) show

the Euler angles, quaternions, and errors from different algorithms. From figure 5.13(a) and

Fig.13 (b), the output of the AUKF is correct because the input of the AUKF is the angular

rate from the gyroscope and the magnetic field from the magnetometer. The acceleration is

only used as an input by the QUEST algorithm. Therefore, the attitude from QUEST keeps

the same data from the 700 step. The proposed algorithm fuses the attitude from the AUKF,

the RBF1 by the adaptive complementary filter to get the final attitude information, which has

the highest accuracy among the algorithms, which is shown in figure 5.13 (c), and the detailed

data is in the Table 5.5. It can be found, the error of the proposed algorithm is minimal,

compared to the large error from the QUEST algorithm(the error of the yaw angle is 19.4561

degrees). From the experimental results, the proposed algorithm is proven for fault detection

and recovery. Furthermore, compared with the AUKF, the proposed algorithm has higher

accuracy, especially during the between after fault and finishing fault detection. The dynamic

threshold also reduces the false alarm rate.

TABLE 5.5: The detailed error of different algorithms in scenario 3

Euler Angle/deg Proposed Algorithm AUKF QUEST
Yaw 0.05109 0.063 19.4561
Pitch -0.072 0.2455 -0.4619
Roll 0.0058 -0.2457 0.3454
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Figure 5.14 shows the residual vector from the AUKF and QUEST algorithms. The residual

vector of the AUKF is always smaller than the threshold of 0.05. Therefore, there is no fault

in AUKF. However, for the QUEST algorithm, the residual vector exceeds the threshold 0.05

at the 700th step. From the logic table rule. the fault is at the accelerometer.
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(a) The Euler Angle of Different Algorithms

(b) The Quaternion of Different Algorithms

(c) The Error of Different Algorithms

FIGURE 5.13: The Euler Angle and Quaternion,and Error from Different Algorithms
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FIGURE 5.14: The Residual vector of the AUKF and QUEST algorithm

5.4 Summery

This chapter presented a novel method to detect, isolate and recover faults of an IMU as

part of an onboard satellite ADCS system. By fusing the outputs of AUKF, QUEST and

two RBF neural networks based on an adaptive complementary filter and hypothesis test to

achieve the fault-tolerant and high-accurate attitude estimations. The preliminary recovery

phase uses an AUKF as fault detection as well as providing the ability to recover attitudes.

The secondary recovery phase uses trained neural networks to provide an estimated attitude.

This multi-level recovery strategy allows the satellite ADCS system to maintain a reasonable

accuracy even with a sensor fault. In addition, the proposed algorithm offers a higher accuracy

when compared to methods such as the AUKF and QUEST algorithms for each sensor failure

when tested on an experimental platform. Furthermore, the secondary fault detection and

isolation layer provides lower false alarm rates, resulting in a more reliable satellite attitude

estimation solution. In conclusion, the highlights of this part:
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(1) This Chapter develops a novel algorithm, which is based on the AUKF and RBF

neural network, to realize fault detection, isolation, and recovery for satellite attitude

estimation.

(2) The hypothesis testing algorithm follows the residual generators to adjust the weight

of the AUKF, QUEST, and RBF in order to decrease the false alarm rate.

(3) Compared with AUKF, the double fault recovery strategy has better precision for

satellite attitude estimation.

.



CHAPTER 6

The Fault Recovery Based on Fault-tolerant Federated Kalman Filter for

INS/CNS

This chapter describes a fault-tolerant federated kalman filter for INS/CNS. The work was

finished and prepared to submit to the IEEE Sensor Journal. First, a novel scheme of fault-

tolerant federated kalman filter is given to solve the failure in the INS/CNS. The following

sections present the theory and details of this algorithm. Finally, the implementation analysis

and test results are given to verify the validity of the algorithm.

6.1 Introduction

Chapter 5 of this thesis focuses on FDIR in the satellite attitude determination system (ADS),

specifically in the FDIR of the INS. However, most satellites do not rely solely on the INS

for high-precision attitude determination but also employ the CNS. To enable fault detection

and recovery in both subsystems of the ADS, this chapter proposes a fault-tolerant federated

Kalman filter (FTFKF) that integrates INS and CNS data.

The FTFKF scheme consists of two subsystems based on a common gyroscope model.

The first subsystem uses the QUEST algorithm to fuse data from the accelerometer and

magnetometer, while the second subsystem employs data from the star tracker. These

subfilters operate in parallel, making them suitable for FPGA-based parallel optimization. By

fusing attitude information from INS and CNS, the proposed scheme improves the accuracy

of ADS attitude estimation and allows for online fault detection and timely fault tolerance.

Under normal conditions, ADS attitude estimation relies on data from both INS (gyroscope,

accelerometer, and magnetometer) and CNS (star tracker). In the event of a fault, the
105
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FTFKF analyzes dimensionless fault factors to identify the faulty subsystem and selectively

fuses the output of the unaffected subsystem to restore attitude estimation accuracy. This

approach enhances the reliability of the ADS and provides more accurate and reliable attitude

information compared to relying on only INS and CNS data. Additionally, in case of a false

alarm, the FTFKF has a fault confirmation process. which can decrease the false alarm rate.

6.2 Traditional Satellite Attitude Determination System

Model

Traditional satellite attitude determination relies on the gyroscope and star tracker for accurate

orientation measurements. The gyroscope provides high-precision reference information for

short-term measurements. However, over long periods, it suffers from gyro drift bias, leading

to significant errors that accumulate over time. To correct for this, real-time correction from

the star tracker is necessary. As illustrated in figure 6.1, the output of the star tracker, denoted

by s, and the gyroscope data are used as input into the attitude calculation process to obtain

the computed quaternion qs. Simultaneously, the angular velocity from the gyroscope is

integrated to yield the approximation quaternion qap. The Kalman Filter is then utilized to

fuse the qs and qap to obtain the estimated quaternion qe.

The state quaternion is based on the satellite kinematic model, providing a reliable and

accurate orientation measurement for the satellite:

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (6.1)

The relationship between the angular velocity ω and quaternion derivative q̇ is:

q̇ =
1

2
× q ⊗ (ω + ωn) (6.2)

The output quaternion, denoted as qs, is obtained from the star tracker, a sophisticated device

capable of measuring spacecraft attitude with high precision by utilizing stars as a reference

source. The star tracker generates directional vectors in star-tracker coordinates, which serve
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FIGURE 6.1: The traditional satellite determination system

FIGURE 6.2: The measurement model of star tracker

as a fundamental component in the attitude determination systems of satellites. Specifically,

the measurement model of the star tracker can be modeled as a pinhole imaging system, as

illustrated in Figure 6.2, which enables accurate and reliable measurements. This traditional

system has been widely adopted in spacecraft attitude determination.

Figure 6.2 presents the star’s direction vector will be represented in the star tracker reference.

The v and w represent cataloged vectors in the inertial frame O′ −XnYnZn and the direction
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vector in the star tracker frame o′ − xyz, respectively, and they can be described as:

v =


cosα cos δ

sinα cos δ

sin δ

+ Vs (6.3)

and

w =
1√

x2 + y2 + f 2


−x

−y

f

 (6.4)

where α and δ are the right ascension and declination of the associated guide star on the

celestial sphere, f represents the focal length of the camera in the star tracker. xandy are star

spot locations in the detector plane. In addition the direction vector w and v should follows:

w = H(q)v =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 v + Vs (6.5)

where the q = [q0 q1 q2 q3] are four components of quaternion, and the Vs is the sensor

measurement noise.

6.3 Fault-tolerance Federated Kalman Filter

6.3.1 Traditional Federated Kalman Filter

The traditional federated Kalman filter (FKF) is able to fuse measurement information from

different sensors reliably and effectively. The traditional architecture FKF is shown in

figure 6.3. This system includes INC, CNS and GNSS. It is a partitioned estimation method

with a two-level data processing architecture. On the first level, The INS is integrated with

CNS and GNSS respectively, by two local filters, which are always Kalman Filter. These two
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standard Kalman filers follow;

X−
k+1 = ϕkXk + wk,

P−
k+1 = ϕkXkϕ

T
k +Qk,

Kk+1 = P−
k+1H

T
k+1(Hk+1P

−
k+1H

T
k+1 +Rk+1)

−1,

Xk+1 = Kk+1(X
−
k+1 −Xk),

P−
k+1 = (I −Kk+1)Pk+1

(6.6)

The standard KF is comprised of three primary steps: Projection, Kalman Gain, and Update.

In this context, ϕ represents the state transition matrix, H represents the observation matrix,

P−
k+1 denotes the priori error covariance matrix, Pk+1 represents the a posteriori state error

covariance matrix, K represents the Kalman gain, and Q and R represent the process noise

covariance matrix and the measurement noise covariance matrix, respectively.

In the traditional FKF, two local filters operate in parallel, which enhances calculation

efficiency. The second filter utilizes the two local state estimations as input for the main filter,

resulting in global state estimation. The master filter aggregates all estimation information

from the different sub-filters to achieve a global result and then distributes the information to

each sub-filter in accordance with the principle of information sharing. This process enables

feedback of attitude information to each sub-filter, ultimately resetting their initial attitude

estimation and covariance matrix. Therefore, the whole process can be summarized as two

parts, information distribution, and information fusion.

In the figure 6.3, the X̂G is the output information of the master filter, the X̂1 and X̂2represent

the local state estimation from local filter 1 and 2 respectively. Pg is the error covariance

matrix of the master filter, and the Pi represents the error covariance matrix from the different

local filters.



110 6 THE FAULT RECOVERY BASED ON FAULT-TOLERANT FEDERATED KALMAN FILTER FOR INS/CNS

FIGURE 6.3: The architecture of FKF

6.3.1.1 Information Distribution Process

Information distribution can distribute the state estimation information P−1 and process noise

information Q−1 to each sub-filter, and this process is followed by:

P−1
i = βiP

−1
g (k)

Q−1
i = βiQ

−1
g (k)

X̂i(k) = X̂g(k)

(6.7)

where βi is the information-sharing factor coefficient. In the traditional FKF, the information-

sharing factor coefficient follows the information distribution principle and is commonly

determined by equal division:

β1 + β2 + βn = 1

β1 = β2 = βn

(6.8)
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6.3.1.2 Information Fusion Process

The main task of the information fusion is to get the global optimal estimation through the

estimation results of all sub-filters:

Pg = (
n∑

i=1

P−1
i (k))

−1

X̂g = Pg(
n∑

i=1

P−1
i (k)X̂i(k))

(6.9)

6.3.2 The Novel Fault-tolerant Federated Kalman filter

The traditional FKF poses challenges for satellites, particularly Cube-Sats, due to the redund-

ancy sensors that consume space and power resources. Moreover, the traditional FKF does

not provide a solution for sensor faults. To address these issues, we propose an FTFKF that

only utilizes an IMU and a star tracker to determine the attitude of the satellite.

The FTFKF architecture, as shown in figure 6.4, facilitates fault tolerance in the event of

an INS or CNS sensor failure. The angular velocity from the gyroscope is utilized in the

public state equation of the two sub-filters. Chapter 4 describes the state equation from the

gyroscope as follows:

qk+1 = ϕk(Ωk, Ts)qk + wk (6.10)

Where ϕ is the state transition matrix, H denotes the observation matrix, and w and v are

White Gauss process noise and measurement noise. The Ts in it represents the sample time,

which should be quite small, and Ω can be represented as:

Ω(ω) =
1

2

0 −ωT

ω ω[×]

 (6.11)
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Where ω is the angular velocity of the gyroscope, and its size is 1× 3. In addition, ω[×] is a

3×3 skew-symmetric matrix described by:

ω[×] =


0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

 (6.12)

Then the Taylor series can be applied to (6.10):

qk+1 = [I4×4(1−
∆θ2

8
) +

1

2
ΩkTs]qk (6.13)

where

∆θ2 = (ωxTs)
2 + (ωyTs)

2 + (ωzTs)
2 (6.14)

The two sub-filters both are standard KF. For the first sub-filter, the observation equation is

the quaternion qq from the QUEST algorithm. The input data of the QUEST algorithm are

the acceleration a and the local magnetic field m. For the second sub-filter, the observation

equation is the quaternion qs from the star tracker directly. Then these two sub-filters output

the attitude information X̂i, the covariance matrix Pi, and the fault detection factors of each

sub-filters γ1 and γ2 are sent to the master filter to get the final attitude information X̂g and

final covariance matrix Pg. The X̂g and Pf are distributed to each sun-filter according to the

distribution factor βi, which can be calculated by:

βi(k + 1) =
||Pi(k)||∑n
i=1||Pi(k)||

(6.15)

where ||Pi(k)|| is Frobenius norm of Pi. The ||Pi(k)|| reflects the absolute estimation error

and the βi reflects the relative estimation error.

For the fault detection of the proposed scheme, each fault detection factor γi is compared

with the threshold γ0. When γi does not exceed the γ0, it means this sub-filter is in the safe

scenario. On the other side, when the γi exceeds the γ0, which means the sub-filter is in the

failure scenario:
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γ =

≤ γ0 Normal

> γ0 Fault
(6.16)

The fault detection factor γ is determined by:

γ(k + 1) =

√√√√ 1

N

k+1∑
i=k+2−N

Ỹi
T
R−1Ỹi/m (6.17)

Where Ỹi is the residual of quaternion from each sub-filter, the calculation can be found in

Eq.(5.15). When the sub-filter is in the safe scenario, the corresponding residual Ỹi is small.

While the abrupt fault appears or a serious failure accumulated by the slowly changing fault,

the Ỹi becomes significantly large. The N is the statistical number of measurements, m is the

size of the quaternion and R is the sensor noise variance matrix. The γ is able to reflect the

abrupt fault and slow fault. The threshold γ0 is a critical element of fault detection. A smaller

γ0 is easier to detect the faults but also easier to lead the false alarm. On the other side, the

larger γ0 makes it harder to detect faults. The threshold γ0 can be described as:

γ0 =

√
||Ỹ ||
σ2

/4 (6.18)

where σ is the quaternion error standard deviation of the corresponding sub-filter.The fault

detection factor threshold γ0 is associated with the σ. When the satellite is in a steady state,

the residual of each sub-filter is similar to the white noise. The upper bouns is 3σ in statistical.

However, the residual is also affected by the satellite hitters and the unmodelled dynamics,

the upper bound is normally considered from 3σ to 5σ.
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FIGURE 6.4: The architecture of the Fault tolerance federated Kalman filter

6.4 Experiment of Fault-tolerant Federated Kalman Filter

In this section, the experiment is set up on the air-bearing table with the IMU and star tracker.

The air-bearing table offers torque-free motion with three degrees of freedom, excluding

extreme angles due to the platform structure. The LSM9DS1 is an IMU, which is employed

to track the motion of the system. The running step is around 0.036 seconds, and there are

1100 steps. It takes about 166 seconds for the whole experiment. The initial quaternion

q = [1 0 0 0]T . Furthermore, the sensor module is assembled with its x, y, and z-axis and

aligned with NED (North, EAST, Down) direction. The star tracker is shown in figure 6.5,

which is made by ourselves and will be assembled for the CAUVA-2. The update rate of the

star tracker is 2 Hz, the field of view (FOV) is 20◦, and the image dimension is 2448×2048px.

The accuracy of Roll, Pitch, and Yaw angles are 10.29”, 21.94”, and 26.24”, respectively.
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FIGURE 6.6: The quaternion of the Fault tolerance federated Kalman filter

FIGURE 6.5: The Star Tracker

The different quaternions obtained from the first sub-filter, the second sub-filter, and the

master filter are presented in Figure 6.6. The state equation for the first subfilter is the public

gyroscope model, and the observation model is the quaternion qq obtained from the QUEST

algorithm. The state equation for the second sub-filter is also the public gyroscope model,

and the measurement model is the quaternion qs obtained directly from the star tracker. The

final output of the master filter is represented by the quaternion qf .
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As shown in Figure 6.7, the quaternion from the second sub-filter qs is the closest to the

reference quaternion qr obtained from the motion tracking system. The average errors for

qs0, qs1, qs2, and qs3 are 0.0012, 0.0013, 0.0013, and 0.0014, respectively. The average

errors for the final quaternion (qf0, qf1, qf2, and qf3) are 0.0016, 0.0016, 0.0014, and 0.0019,

respectively. They are similar to the quaternion qs. The accuracy of the quaternion obtained

from the first sub-filter is the worst, with average errors for qq0, qq1, qq2, and qq3 of 0.0065,

0.0072, 0.0059, and 0.0078, respectively. Further details can be found in Table 6.1.

TABLE 6.1: The quaternion error from different filters

Quaternion q0 q1 q2 q3
Subfilter 1(IMU) 0.0065 0.0072 0.0059 0.0078

Subfilter 2(Star Stracker) 0.0012 0.0013 0.0012 0.0014
Master Filter 0.0016 0.0016 0.0014 0.0019

FIGURE 6.7: The Euler angle of the Fault tolerance federated Kalman filter
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Figure 6.7 displays the Euler angles generated by different filters. The second sub-filter

achieves the highest accuracy, followed by the Master filter, while the first sub-filter has the

worst accuracy. These findings are further supported by the error analysis in Figure 6.8, which

compares the errors of the Euler angles generated by different filters. Specifically, the Yaw

and Roll angles exhibit the smallest errors when generated by the second sub-filter, with

values of 0.2422 and 0.1679 degrees, respectively, followed by the errors of the Euler angles

generated by the Master filter. In contrast, the smallest error for the pitch angle is obtained

by the Master filter, with a value of 0.097 degrees, followed by the second sub-filter, which

has an error of 0.1652 degrees. Furthermore, the Euler angles generated by the first sub-filter

have the worst accuracy across all dimensions. The detailed error is shown in Table 6.2

FIGURE 6.8: The Euler angle absolute error of the Fault tolerance federated
Kalman filter

The process of the FDIR in INS has been introduced in Chapter 5, in the whole ADS, there

are two scenarios, the fault occurs in the first sub-filter (scenario 1), and the fault is in the

second sub-filter (scenario 2).
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TABLE 6.2: The error of Euler angles from different filters

Euler angles/deg Yaw Pitch Roll
Subfilter 1(IMU) 1.2796 0.4554 0.9894

Subfilter 2(Star tracker) 0.2422 0.1052 0.1679
Master Filter 0.3044 0.0970 0.2275

6.4.1 Scenario 1: When IMU Is in Fault

Figure 6.9 shows the quaternion of the FTFKF when the first sub-filter fails. The fault begins

at the 500th step and continues until the end of the experiment. The quaternions are safe from

the first step to the 500th step. From the 500th step to the 520th step is the fault confirmation

process, which means the failure is only judged to have occurred if γ exceeds the threshold

gamma0 for 20 continuous steps. This process is for decreasing false alarms. If a failure

is detected, the model switches to using the second sub-filter, and the quaternion from the

master filter qf is then the same as the quaternion from the second sub-filter qs from the 520th

step to the last step.

FIGURE 6.9: The quaternion of the FTFKF in scenario 1
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Table 6.3 presents the detailed quaternion error from different filters in the first scenario.

Compared with the quaternion values in Table 6.1 for the normal scenario, the quaternion

error is the same for the second sub-filter. This indicates that while the failure is restricted to

the first sub-filter, the second sub-filter remains functional and operates safely. Furthermore,

in this scenario, the quaternion error of the master filter is greater than that of the second

sub-filter but less than that of the first sub-filter.

TABLE 6.3: The quaternion error from different filters in scenario 1

Quaternion q0 q1 q2 q3
Subfilter 1(IMU) 0.6011 0.0319 0.0238 0.3511

Subfilter 2(Star tracker) 0.0012 0.0013 0.0012 0.0014
Master Filter 0.019 0.0021 0.0017 0.0036

FIGURE 6.10: The Euler angle of the Fault tolerance federated Kalman filter
in scenario 1

The figure 6.10 presents the Euler angles of the FTFKF when the first sub-filter is in failure.

The highest accurate Euler angle is from the second sub-filter filer, followed by the Euler

angle from the master filter. The Euler angles from the first sub-filter have the lowest accuracy

because of the failure. This result is also proven in the figure 6.11, which shows the Euler

angle absolute error of the FTFKF when the first sub-filter is in failure. In fugure 6.11, the

smallest value of Euler angle error is from the second sub-filter, and the second is the master

filter. The largest is the first sub-filter. The details are shown in Table 6.4.
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FIGURE 6.11: The Euler angle absolute error of the Fault tolerance federated
Kalman filter when the first sub-filter in failure

In Table 6.4, it is evident that the largest Euler angle error is observed in the first sub-

filter, which can be attributed to the presence of a fault in this particular sub-filter. The

first sub-filter’s yaw, pitch, and roll errors are quantified as 50.1267◦, 2.5238◦, and 3.2581◦,

respectively. In contrast, the second sub-filter exhibits relatively lower errors, with yaw, pitch,

and roll errors of 0.2422◦, 0.1052◦, and 0.1679◦, respectively. As for the master filter, the yaw,

pitch, and roll errors are measured to be 0.5129◦, 0.1221◦, and 0.2854◦, respectively. Notably,

the error of the master filter is not the smallest among the sub-filters since it is temporarily

disabled during the fault confirmation process.

TABLE 6.4: The error of Euler angles from different filters in scenario 1

Euler angles/deg Yaw Pitch Roll
Sub-filter 1(IMU) 50.1267 2.5238 3.2851

Sub-filter 2(Star tracker) 0.2422 0.1052 0.1679
Master Filter 0.5129 0.1221 0.2854

6.4.2 Scenario 2: When Star Tracker Is in Fault

For scenario 2, when the failure is in the second sub-filter, the quaternion of different filters

is shown in figure 6.12. It can be found the fault is the second sub-filter, after the 500th



6.4 EXPERIMENT OF FAULT-TOLERANT FEDERATED KALMAN FILTER 121

step. From the first step to the 500th step, the quaternion from different filters is the same

as the quaternion from the normal situation. From the 500th step to the 520th step is the

process of fault confirmation. During this process, the quaternion from the master qf does not

have high accuracy. After the 520th step, the failure is determined in the second sub-filter,

and FTFKF will switch to without the second sub-filter. Therefore, after the 520th step, the

quaternion from master qf is the same as the quaternion from the first sub-filter qq. The

detailed quaternion error from different filters in scenario 2 is presented in Table 6.5

FIGURE 6.12: The quaternion of the Fault tolerance federated Kalman filter
in scenario 2

TABLE 6.5: The quaternion error from different filters in scenario 2

Quaternion q0 q1 q2 q3
Sub-filter 1(IMU) 0.0065 0.0072 0.0059 0.0078

Sub-filter 2(Star tracker) 0.5984 0.0313 0.0240 0.3475
Master Filter 0.0044 0.4048 0.044 0.0061
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FIGURE 6.13: The Euler angle of the Fault tolerance federated Kalman filter
when star tracker in failure

The Euler angle of the FTFKF in scenario 2 is presented in Figure 6.13, which illustrates the

varying accuracies of the Euler angles obtained from different sub-filters and the master filter.

As evidenced in Figure 6.14, which portrays the Euler angle error of the FTFKF when the

star tracker experiences a fault, the highest accuracy is achieved by the Euler angles estimated

by the master filter, followed by those obtained from the first sub-filter, while the second

sub-filter produces the least accurate results due to the fault. These findings underscore the

superiority of the master filter in achieving the most precise Euler angle estimations. At the

same time, the accuracy of the sub-filters is constrained by the extent of the fault. Specifically,

the Euler angle error in the second sub-filter is the largest, followed by the error in the first

sub-filter, while the master filter exhibits the smallest error in the Euler angles. The figure 6.13

also shows, from the 500th step to the 500th step is the fault confirmation process, during this

time, the error of the master filter is large, but it is a temporary. In addition, detailed error
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of Euler angles from different filters is shown in the table 6.6. It also can prove the highest

accuracy is the master filter.

FIGURE 6.14: The Euler angle error of the Fault tolerance federated Kalman
filter when star tracker in failure

TABLE 6.6: The error of Euler angles from different filters in scenario 2

Euler angles/deg Yaw Pitch Roll
Subfilter 1(IMU) 1.2796 0.4554 0.9894

Subfilter 2(Star tracker) 49.571 2.0736 3.06
Master Filter 0.9429 0.2940 0.6925

6.5 Summery

This chapter presented a novel method to detect, isolate and recover faults of satellite ADCS

by fusing the outputs of INS, and CNS based on FTFKF to achieve the fault-tolerant and

high-accurate attitude information. The FTFKF employs INS and CNS as the sub-filter and
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the FKF is utilized to fuse the output from different sub-filters. The proposed algorithm offers

a higher accuracy when compared to single INS and CNS. Furthermore, the fault confirmation

process can provide lowers false alarm rates, resulting in a more reliable satellite attitude

estimation solution. Finally, the highlights of this part:

(1) This paper develops a novel algorithm, which is based on FTFKF, to realize satellite

attitude fault detection and recovery.

(2) The FTFKF-based algorithm offers reliable attitude estimation and decreases the

false alarm rate.

(3) The parallel subsystem of fault detection, optimized for implementation on FPGA,

enables real-time fault detection and fast recovery, demonstrating its potential in

practical applications.



CHAPTER 7

Optimized FPGA Implementation of Fault Detection, Isolation and

Recovery System for Satellite Attitude Estimation

This chapter introduces an optimized scheme for FPGA implementation of fault detection,

isolation and recovery for satellite attitude estimation. The work was submitted by (Chen

et al. 2023c). First, an overall design concept and framework are given, followed by a detailed

discussion of the optimization process. Finally, the results of implementation on FPGA and

the comparison with other devices, such as GPU and Raspberry Pi are presented.

7.1 Introduction

The attitude Determination and Control System (ADCS) of satellites is essential to have highly

accurate attitude estimation. The Inertial Measurement Unit (IMU) is an important sensor

for achieving accurate attitude estimation in ADCS. However, IMU sensors are vulnerable

to degradation in space and may cause mission failure. To address this issue, a novel fault

detection, isolation, and recovery system (FDIR) is necessary and presented in chapter 5.

Traditional FDIR implementation on Field-Programmable Gate Array (FPGA) has a high

computational load, taking up valuable hardware resources and slowing down processing

speed. Despite this, it still delivers high attitude accuracy even if one sensor component of the

IMU fails. In this chapter, the novel FDIR hardware design is divided into three stages: an

Adaptive Kalman Filter (AUKF), two RBF neural networks, and an adaptive Complementary

Filter (ACF). These stages are optimized through parallelism and pipeline processing on the

FPGA, reducing latency while maintaining normal resource consumption and high attitude
125
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accuracy. Compared to the GPU (Jetxon TX2), the FDIR implementation on the PYNQ-Z2

(zynq 7000 clg400) offers faster processing speed while preserving excellent accuracy.

The following steps to the workflow are included in this Chapter: First, the RTL is generated

in the HLS using C code. Secondly, the RTL is imported into Vivado, where a block design is

generated and the HDL wrapper is completed this then provides a bitstream for exportation.

Finally, the bitstream is imported to FPGA (PYNQ-Z2) board and the program uses Python

to run the FDIR system.

7.2 Design Overview

7.2.1 Project Workflow

The FPGA project consists of three parts: programming with High-level Synthesis (HLs)

using C++, designing the block in Vivado to generate the bitstream, and finally deploying the

project on the PYNQ-Z2 board. The Whole project design flow is shown in figure 7.1

(1) The First part: The first step is writing the C++ code according to the requirement

in the HLS, the next step in HLS is simulation and synthesis and the last step is

exporting RTL.

(2) The second part: The Vivado toolchain comprises a two-step process to obtain the

bitstream for a given design. First, the Register Transfer Level (RTL) and Block

Diagram must be imported into the toolchain. Subsequently, a Hardware Description

Language (HDL) wrapper is created to encapsulate the design hierarchy. Finally, the

bitstream generation process is triggered and exported to complete the flow.

(3) The third part: It is in the PYNQ-Z2 board. Import the bitstream to the PYNQ-Z2

board by the Overlay and implement the ACF by Python.
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FIGURE 7.1: The design flow in HLS and Vivado

7.2.2 The Whole Project Process Flow

The FDIR system includes an AUKF, a QUEST algorithm, 2 RBF neural networks, and an

ACF. In the hardware, the AUKF and the QUEST algorithm are in the first IP core, and two

RBF neural networks belong to the second IP core. The ACF, due to its low computational

demand, is implemented on the PS using Python. The hardware setup is depicted in figure 7.2.

The IP cores communicate with the processor as slaves over a communication bus and are

controlled by the software component. Memory buffers are in place between the modules of

the AUKF and the processor for data and control information transfer. The IP cores start to

work once valid data is present in the correct memory buffer, and the processor must store the

necessary data beforehand. The two IP cores are designed for the parallel processing of new

data, rather than serial processing. The working sequence on the FPGA board is as follows:
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FIGURE 7.2: The details of IP core

the first IP core runs in a simultaneous pipeline with the second IP core, and finally, the results

are fused by the ACF.

7.2.3 Traditional Hardware Design

The traditional hardware design follows a serial processing approach, where each algorithm

is executed one after the other, as depicted in figure 7.3. The first step is the execution of the

QUEST algorithm, followed by AUKF. Two residual generators are then used to determine if

a failure has occurred based on the residuals. The subsequent steps involve running RBF1

and RBF2. The final stage involves implementing the ACF on the FPGA board.

Serial processing operates one operation per clock cycle and performs the operations in

sequential order. This design strategy requires minimal hardware, reducing the area and power

consumption. However, it has a slower performance and higher latency, leading to longer

completion times for the program.
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FIGURE 7.3: Traditional Design of FDIR

7.2.3.1 Traditional Design of the First IP Core

It is possible to set up the first IP core in this traditional hardware design; there are two main

algorithms QUEST and the AUKF. The IMU data is input to the QUEST and AUKF, and

these algorithms are processed serially as shown in figure 7.4. First, each step of the QUEST

algorithm is calculated and then each step of the AUKF is computed through serial processing.

The QUEST has 5 and AUKF has 6 important stages in traditional serial processing, this

means 11 stages need to be complete in total, meaning 11 clock cycles must pass. This leads

to high latency and long processing time. However, the stages in both algorithms can be
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FIGURE 7.4: Flowchart of the Whole Project

optimized by pipeline processing and improved computational efficiency can be achieved by

reshaping the input data through an array partition. The details are described in section 7.2.4.

7.2.3.2 Traditional Design of the Second IP Core

The basic structure of the RBF is shown in figure 7.5. The input data is the quaternion from

the first IP, the activated function in the hidden layer is multivariate Gaussian function, which

can be described as:

hr = exp(−||X − cr||2

2σr2
), r = 1, 2.......n (7.1)

where cr = [cr1 cr2 cr3 cr4], n is the number of the neuron in the hidden layer,σr2 represents

the node center and node variance of rth neuron, and ||X − cr|| is the norm value which is

measured by the inputs and the node center at each neuron. The output of the n-th neuron of
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FIGURE 7.5: The basic architecture of RBF neural network

the output layer can be characterized as:

ym =
4∑

h=0

wnmhr,m = 0, 1, 2, 3 (7.2)

Substituting (7.1) in (7.2)gives:

ym =
4∑

h=0

wnme
(− ||X−cr ||2

2σr2
) (7.3)

where wnm is the synaptic weight between neuron n of the hidden layer and neuron m of the

output layer.
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7.2.4 Proposed Hardware Design

The proposed scheme of FDIR is depicted in figure 7.6. It depicts that the IMU data needs

to be reshaped to be sent to the IP cores. Instead of sequential processing, the first and

second IP cores are operated in pipelining. Additionally, the first IP core should run two

algorithms(AUKF and QUEST) in parallel. The two RBF neural networks are also operated

in parallel for the second IP core.

The optimization of the FPGA can be divided into 4 stages with the pipeline, which are

presented in figure 7.7. these four stages are optimized through a pipeline system, meaning

that stage 1 does not have to complete all its steps before stage 2 begins. This optimization

improves the efficiency of the process and reduces the latency.

Furthermore, there are a number of loops and matrices computations in AUKF, QUEST,

and RBF. In these algorithms, the loops can be optimized by pipelining, and the matrix

multiplication can be optimized in parallel.

For the different stages, the algorithms in it can be optimized in Parallel. For example, in

stage 2,the AUKF and QUEST can be operated in parallel. At stage 3, the residual generator

1 and residual generator 2 can be run in parallel as well. Similarly, stage 4 allows for the

operation of RBF 1 and RBF 2 are in parallel.

These algorithms and networks are stored in the register, allowing the PS to directly access

and calculate them using ACF with Python. To improve pipelining, the loops and matrix

computations in AUKF and QUEST can be optimized by Partition Array, a pipelining method.

The last step is still implementing the ACF on the PYNQ board.

The optimization scheme is based on three different methods: implementing two IP cores

parallel, reshaping of the input data, and optimization of Loop and matrix calculation by

pipeline and parallel.
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FIGURE 7.6: The proposed design of FDIR

FIGURE 7.7: The stage of the proposed design

7.2.4.1 Reshape of the Input Data

The First method is reshaping the data size. The input data is from IMU, which includes 3-axis

acceleration, 3-axis local magnetic field, and 3-axis angular rate. Therefore the size of one
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FIGURE 7.8: The Array partition and pipelining

group of the data is 3× 3 , and there are total 9 elements. These elements will extract one by

one because of serial processing. The optimization of the input data is array partition, which

is shown in figure 7.8. In figure 7.8, the original size input data is 1 × 9, which is divided

into 3 blocks, and each block has 3 elements. Then these three blocks can be extracted by

pipelining. Traditional design requires 1 clock cycle to read a single data and 9 clock cycles

to read a group of input data. The proposed design, however, only takes 5 clock cycles to

extract a group of input data due to the array partition, which allows for more array elements

to be read in a single clock cycle.

7.2.4.2 Implementing Two IP Cores Parallel

In different stages, many algorithms can be operated in parallel to improve computational

efficiency. In stage 2, both AUKF and QUEST can be implemented in parallel. Similarly, in

stage 3, the Residual generators can also be implemented in parallel. The two RBF neural

networks in stage 4 are also designed for parallel processing. Compared with the traditional

design of FDIR by serial processing in figure 7.3, the parallel processing in the proposed

scheme is able to perform the IP core 1 and IP core 2 in one clock cycle because they are not

sequentially related.

7.2.4.3 Optimization of Loop and Matrix Calculation by Pipeline

The last is the optimization of different Loops and matrices by pipelining and parallel. In

AUKF, QUEST, and RBF, the matrix computations can be optimized by pipelining. Block
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FIGURE 7.9: The optimization of matrix multiplication with parallel

matrices are sub-matrices partitioned out from the original matrix in the horizontal and

vertical directions. The original matrix can be the set of block matrices. The multiplication

of the original matrix can be divided into several multiplications of block matrices, and then

these multiplication of block matrices can be optimized in parallel . These can increase the

efficiency of computation speed with normal storage resources. For example, in the (5.1)in

the AUKF, the size of the state matrix f is 4 × 4, and the input data is quaternion whose

size is 4× 1. The optimization process is shown in 7.9. The state matrix f is divided into 4

1×4 block matrices:a,b,c,d. These block matrices have matrix multiplication with quaternion,

respectively at the same time. Then the 4 quaternion elements can be calculated at the time.

Similarly, in QUEST and RBF, there are many this type of optimization that can reduce the

latency.

Another optimization method in AUKF, QUESt, and RBF is the pipelining for the loops in the

algorithms. The optimization of a loop is illustrated in Figure 7.10. Figure 7.10.A displays

the loop without pipelining, while Figure 7.10. B shows the loop with pipelining. In the
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FIGURE 7.10: The optimization of matrix multiplication with parallel

figure, RD represents data reading, CMP signifies computing, and WR stands for data writing.

Figure 7.10. C presents the pseudocode of the loop. It can be found in a loop. There are

three main steps, reading data, computing, and writing data. If each step is one clock cycle,

executing data needs three clock cycles. When executing three data it needs p clock cycles.

However, with the use of loop pipelining, a 9-clock cycle loop can be reduced to 5 clock

cycles.

Due to the strict processing time requirements of FDIR, it is crucial to determine any fail-

ures and respond immediately. By incorporating array partitioning, reshaping of data, and

optimization in parallel can improve the efficiency of the work process.

7.3 Experiment

The simulation is completed in Cheaper 5. The FDIR system has been integrated on the

FPGA (PYNQ-Z2) as illustrated in Figure 7.11. The PYNQ Z2 platform is equipped with a

high-performance Zynq-7000 System on Chip (SoC) XC7Z020-1CLG400C, along with a 512

MB DDR3 memory controller boasting eight Direct Memory Access (DMA) channels and
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four high-speed AXI3 Slave ports. Additionally, it houses a Dual ARM Cortex-A9 MPCore,

256 KB On-Chip Memory, and 630 KB of fast block RAM, with an internal clock speed

surpassing 450 MHz.

FIGURE 7.11: FDIR Implementation on PYNQ Z2

The FPGA of this project consists of two IP cores: AUKF and RBF, as depicted in figure 7.12.

The illustration demonstrates that there are two IP blocks integrated into the FPGA, which can

be managed through Python running in the PS. The PYNQ framework offers a Python-based

interface for controlling the overlays in the PL from the PS.

FIGURE 7.12: Overlay of the FDIR

Figure 7.13 shows the quaternion from FDIR System in Matlab and Motion Tracking System,

respectively. It can be found that the results in Python are the same as the simulation in
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Matlab in Chapter 5. Figures 7.14, 7.15, and 7.16 depict the Euler angles for the gyroscope,

magnetometer, and accelerometer, respectively, under fault conditions. Each sub-figure (a),

(b), and (c) shows the yaw, pitch, and roll angle, respectively. The figures display three lines

representing the Euler angles measured by the FDIR system in the FPGA, the reference Euler

angles from the motion tracking system, and the Euler angles obtained when different sensors

fail.

The results demonstrate that the FDIR system is capable of timely fault recovery, as evidenced

by its ability to quickly correct for errors in the Euler angles measured by the faulty sensors.

Specifically, the measurements of the FDIR system closely match those of the motion tracking

system, indicating that the system is able to compensate effectively for sensor failures.

FIGURE 7.13: The Quaternion from FDIR System and Motion tracking System

The FDIR system has also been implemented on the GPU and the Raspberry Pi 3B+. For

the GPU platform, the NVIDIA Jeston TX2 SoM has been utilized. This embedded system-

on-module comprises a dual-core NVIDIA Denver2 and quad-core ARM Cortex-A57, 8GB

128-bit LPDDR4, and a 256-core Pascal GPU. It boasts a massive 58.3 GB Graphics Card

Ram, a 1.2 GHz Tegra 4 processor, 32GB eMMC, and Dual ISPs. The memory speed of
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FIGURE 7.14: The Euler angle when gyroscope failure

FIGURE 7.15: The Euler angle when magnetometer failure

FIGURE 7.16: The Euler angle when accelerometer failure

the GPU is 60 MHz, while the hard drive rotational speed is 5400 RPM, and the memory

bandwidth is 59.7GB/s. Furthermore, the power consumption of the GPU ranges from 7.5W

to 15W.
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On the other hand, the Raspberry Pi 3B+ features a 64-bit 1.4GHz quad-core ARM Cortex-

A53 CPU, 1 GB LPDDR2 SDRAM, and Broadcom Videncore-IV GPU. The memory per-

formance of the Raspberry Pi 3B+ is also noteworthy, with a write speed of 632.27MB/S and

a read speed of 857.96MB/S.

Table 7.1 summarizes the FDIR system’s running time performance on different hardware

platforms, including FPGA, GPU, and Raspberry Pi 3B+. The FPGA implementation achieves

the fastest running time, completing the entire project in 2.89578 seconds, followed by the

GPU implementation, which takes 4.35827 seconds. The Raspberry Pi 3B+ implementation

has the slowest running time performance, requiring 6.06531 seconds to complete the same

task. Moreover, the power consumption of the processors varies significantly. The FPGA

implementation is the most power-efficient, consuming only 1.7 watts, while the GPU imple-

mentation has the highest power consumption of 15 watts. This information is valuable for

system designers to make informed decisions based on running time performance and power

consumption requirements on hardware platform selection.

FIGURE 7.17: FDIR implementation on GPU

TABLE 7.1: The time and power consumption of different hardware

Processor FPGA GPU Raspberry Pi 3B+
Time/second 2.89758 4.35827 6.06531

Power consumption/W 1.7 15 12.5
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FIGURE 7.18: FDIR implementation on Raspberry Pi

7.3.1 Comparison Between Traditional Design and Proposed

Optimization on FPGA

The conventional design adheres to a sequential processing approach. Optimization aims

to strike a balance between computational speed and resource utilization. This section will

compare the traditional FDIR System with the proposed FDIR system in terms of latency,

resource consumption, and power consumption.

The initial step in the project is to create the RTL of two IP cores, AUKF and RBF, using

HLS simulation. In HLS simulation, figure 7.19 displays the synthesis report of AUKF and

RBF in the traditional design. It can be seen that the latency in Kalman and RBF are 2797

and 5828 clock cycles, which are relatively high. Figure 7.20 shows the synthesis report of

AUKF and RBF in the proposed scheme. The latency in Kalman and RBF are 606 and 470

clock cycles. Both the AUKF and QUEST in the proposed scheme have lower latency than in

the traditional design.

The resource consumption is shown in figure 7.21. The figure 7.21. (a) and (b) represent the

AUKF and RBF without optimization, respectively. For the AUKF without optimization, the

utilization of 4 different memories are: the utilization of BRAM is 13%, the utilization of

DSP is 11%, the utilization of FF is 12%, and the utilization of LUT is 35%. For the RBF

without optimization, the utilization of 4 different memories are: the utilization of BRAM is
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FIGURE 7.19: The synthesis report in traditional design by HLS simulation

FIGURE 7.20: The synthesis report in the proposed scheme by HLS simulation

10%, the utilization of DSP is 11%, the utilization of FF is 12%, and the utilization of LUT is

30%.

In figure 7.21.(c) and (d) are the synthesis report of AUKF and RBF with the optimization

scheme. For the AUKF with optimization, the utilization of BRAM is 9%, the utilization of

DSP is 24%, the utilization of FF is 20%, and the utilization of LUT is 26%. For the RBF with

optimization, the utilization of BRAM is 26%, the utilization of DSP is 50%, the utilization

of FF is 22%, and the utilization of LUT is 47%. It can be found in AUKF, the utilization of

BRAM in the proposed scheme is lower 1% of that in traditional design. However, other three
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FIGURE 7.21: The utilization report

memory registers, including DSP, FF, and LUT, the resource consumption is higher, especially

for the DSP, the utilization is higher than 13%. Compared with the traditional design, the

utilization of all memory registers has an increment in the RBF, especially for the DSP, the

utilization increase from 11% to 50%. For the BRAM, FF, and LUT, the utilization increase

by 16%,10%, and 17%.

The second step of the whole project is creating the Block design as the bitstream in Vivado.

The Block design of the proposed scheme is shown in figure 7.22. It can be found there

are two IP core: AUKF and RBF, a ZYNQ processor, and AXI SmartConnect. The AXI

SmartConnect is a necessary part of matrix multiplication. The IP core AUKF and RBF are

connected with AXI SmartConnect first, and then Axi Smartconnect connects with the ZYNQ

processor.

In Vivado, the utilization of the whole project is shown in figure 7.23. Figure 7.23(a) is

the resource consumption of FDIR in traditional design. Figure 7.23(b) is the resource

consumption of FDIR in the proposed scheme. It can be found that the utilization of each
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FIGURE 7.22: The Block Design
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FIGURE 7.23: The Block Design of the whole project

memory registers in the proposed scheme is higher than that in traditional design. Compared

with traditional design, the resource consumption of LUT FF, BRAM, and DSP increase

by 17%, 7%, 9%, 10%. It should be noted that the total resource consumption Wutilization

does not simply equal the sum of the individual resource utilizations for AUKF and RBF

(AUKFutilization and RBFutilization, respectively):

Wutilization ̸= AUKFutilization +RBFutilization (7.4)

This is because both AUKF and RBF are optimized using parallel and pipeline techniques.

In Vivado, the power consumption is presented in figure 7.24. The traditional design consumes

2.12 watts, but the optimized design consumes only 1.7 watts, a decrease of 0.42 watts. The

traditional design operates at 49.5◦C , while the proposed scheme operates at 44.6◦C. The

optimized design outperforms the traditional design in terms of power consumption..
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FIGURE 7.24: The power consumption

7.4 Summery

The present chapter presents the implementation of a novel FDIR system on various platforms,

namely FPGA, GPU, and Raspberry Pi 3 B+. To enhance the efficiency and reduce the latency

of the system on an FPGA board, the implementation employs advanced techniques such as

pipelining and parallelization. The optimized implementation of the FDIR system on FPGA

exhibits normal resource consumption and working temperature while significantly improving

its efficiency. The FDIR system is subject to strict requirements for programming speed due

to its critical role in detecting faults and enabling prompt recovery from them. The proposed

approach utilizes the ZYNQ platform by integrating complex algorithms, including AUKF

and RBF, into the FPGA part (PL) and fusing them with the ARM processor (PS) using the

ACF. This approach maximizes the utilization of resources available on the ZYNQ platform.

The implementation results of the proposed approach demonstrate high accuracy in attitude

estimation, which is consistent with simulation results. Overall, the presented implementation

significantly improves the efficiency and accuracy of the FDIR system on various platforms.

This part has the several highlights:

(1) Novel implementation of the FDIR system on the FPGA board.

(2) Creating a novel hardware design, dividing the FDIR system into three stages, and

generating the two IP cores. The two IP cores are implemented on the PL of PYNQ,
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and the ACF will be implemented on the PS of PYNQ. Therefore we can utilize the

resources of the PYNQ board efficiently.

(3) By implementing pipelining and parallelism for optimization, the latency can be

reduced without sacrificing resource utilization, ensuring a high level of accuracy at

all times and keeping a low working temperature.



CHAPTER 8

Conclusion

8.1 Summary of Research

This thesis presents three novel algorithms for satellite attitude estimation, along with the

implementation of one of these algorithms on an FPGA board with optimization. The first

algorithm is an attitude estimation algorithm for INS, which includes QUEST, FQA, Kalman

filter, and LERP algorithm. The second algorithm is focused on FDIR for the INS navigation

system. Finally, the third algorithm is a fault-tolerant federated Kalman filter for the ADCS in

the satellite, which combines the output of the INS and CNS and includes fault detection and

recovery mechanisms. In addition, the second algorithm has been implemented on the FPGA

board to reduce latency and resource consumption with optimization.

Chapter 1 introduces the research motivation for developing a satellite attitude estimation

algorithm in the INS and FDIR system for the ADCS. Additionally, the chapter presents

the FTFKF method to integrate the INS and Celestial Navigation System (CNS) for better

accuracy in attitude estimation.

Chapter 2 provides a comprehensive review of the related fields. It covers the satellite

attitude determination system, satellite fault tolerance problems, and FPGA implementation

for attitude estimation.

Chapter 3 introduces the background and basic knowledge of satellite attitude estimation.

It explains the coordinate reference systems, different attitude representations, and sensor

models used in satellite attitude estimation. It also presents the kinematic equation and low

earth orbit dynamic equation.
148
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Chapter 4 presents a novel two-layer Kalman filter-based algorithm for satellite attitude

estimation using an INS system. The proposed algorithm integrates the outputs of the

QUEST and FQA to achieve higher accuracy in attitude estimation. The Kalman filter uses

a quaternion matrix derived from the LERP as the observation and process models. The

process model integrates the output from the gyroscope to provide a smooth output while

avoiding singularities and reducing computational complexity. The two-layer architecture is

robust against magnetic disturbances and other adverse conditions. Furthermore, the second

linear interpolation ensures high-precision attitude estimation for vehicles in both static and

dynamic environments.

Chapter 5 presents a novel approach for the FDIR system within an Inertial Measurement Unit

(IMU) as a part of an onboard satellite ADCS. The proposed approach is groundbreaking,

involving the fusion of outputs from multiple algorithms, including AUKF, QUEST, and

two RBF neural networks based on an ACF and hypothesis testing. This multi-layered

approach ensures the robustness and high accuracy of the satellite’s attitude estimation, even

in the presence of faulty sensors. During the preliminary phase of the recovery process, the

AUKF algorithm is utilized for both fault detection and attitude recovery. Following this, a

secondary recovery phase employs trained neural networks to estimate the attitude, providing

a more comprehensive solution. The multi-level recovery strategy guarantees that the satellite

ADCS system can maintain a reasonable level of accuracy, ensuring that the satellite operates

correctly even in the presence of a faulty sensor. Furthermore, the proposed algorithm offers

a lower false alarm rate, which results in a more reliable satellite attitude estimation solution.

This novel approach represents a significant contribution to satellite attitude determination

and control, providing a robust, accurate, and comprehensive solution to the challenge of

fault tolerance in INS. In summary, the proposed FDIR system based on a multi-layered

approach involving the fusion of multiple algorithms offers an innovative solution to the

challenging problem of fault tolerance in INS. The system ensures robustness, high accuracy,

and reliability, making it an essential contribution to satellite attitude determination and

control.
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Chapter 6 presents a pioneering algorithm, the FTFKF, designed to fuse information from

the INS and CNS in satellite Attitude Determination and Control Systems (ADCS). This

algorithm enables fault detection, isolation, and recovery in complex space environments.

The FTFKF is composed of a master filter and two sub-filters. In safe scenarios, the FTFKF

provides more accurate attitude information than single INS and CNS solutions. However, in

the event of a failure, the FTFKF can identify the sub-filter that has malfunctioned, isolate

it, and recover the normal satellite attitude. Additionally, the algorithm incorporates a fault

detection factor threshold that, when exceeded for a constant number of steps, identifies the

sub-filter as the cause of a false alarm. The results of this study demonstrate the effectiveness

of the FTFKF in improving the accuracy and reliability of satellite ADCS in complex space

environments.

Chapter 7 presents a detailed account of implementing and optimizing the Fault Detection,

Isolation, and Recovery (FDIR) system on an FPGA. The system is optimized on an FPGA

board using pipelining and parallel techniques to achieve superior performance. This optimiz-

ation significantly enhances the system’s efficiency, minimizes latency, and maintains normal

resource consumption and temperature. The FDIR system demands high programming speed

for prompt fault detection and quick recovery. To this end, the proposed implementation

leverages the ZYNQ platform by integrating complex algorithms such as AUKF and RBF into

the FPGA part (PL). These algorithms are then integrated with the ARM processor (PS) using

ACF to maximize the utilization of resources available on the ZYNQ platform. Integrating

the advanced algorithms into the FPGA provides a powerful computing platform for the

FDIR system, enabling it to detect and isolate faults rapidly and accurately. By utilizing the

ZYNQ platform’s available resources effectively, the proposed implementation ensures that

the system operates at optimum performance levels while minimizing power consumption and

heat generation. In conclusion, implementing and optimizing the FDIR system on an FPGA,

as described in Chapter 7, presents a significant advancement in fault detection and recovery

technology. This optimized system leverages advanced algorithms, pipelining, and parallel

processing techniques to provide superior performance, making it a valuable contribution to

the field of fault-tolerant systems.
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8.2 Main Contribution

The main contributions of this thesis are three proposed algorithms and one algorithm imple-

mentation on FPGA. Two of them are designed for INS, and the other is the fusion of the INS

and CNS in the satellite ADCS. Specific content and key details are listed below.

• The first algorithm is a novel two-layer Kalman filter architecture for attitude es-

timation, which outperforms existing algorithms by fusing QUEST and FQA to

generate a more accurate quaternion observation model. The Kalman filter utilizes

a quaternion matrix from the LERP as the observation and process models. The

latter integrates the gyroscope output to achieve smooth results and avoid singularit-

ies, reducing computational complexity. The two-layer approach is robust against

magnetic disturbances and other adverse conditions. The second LERP also ensures

high accuracy in static and dynamic motion conditions. Simulations and physical

experiments on an air-bearing table validate the algorithm; In the simulation, the

average error of the proposed algorithm is 0.2669 deg. The average error of QKF

is 0.7912 deg, and the average error of FQAKF is 1.5818 deg, the largest error of

the three algorithms. In the experiment, the average error of the yaw angle from the

proposed algorithm is 97% lower than that of the FQAKF and around 23% lower

than that of the QKF. In addition, compared with the FQAKF, the proposed algorithm

improves 16.9% computational efficiency.

• This thesis presents a novel algorithm for detecting, isolating, and recovering faults

in INS, which is a critical component of an onboard satellite ADCS system. The

algorithm combines the outputs of AUKF, QUEST, and two RBF neural networks

with an adaptive complementary filter and hypothesis test to achieve fault-tolerant

and high-accuracy attitude estimations. The preliminary recovery phase employs

AUKF for fault detection and attitude recovery. The secondary recovery phase

uses trained neural networks to estimate attitude. The multi-level recovery strategy

ensures the satellite ADCS system maintains reasonable accuracy even with a sensor

fault. Compared to other methods such as AUKF and QUEST algorithms, the

proposed algorithm demonstrates higher accuracy for each sensor failure when
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tested on an experimental platform. The absolute error of Yaw Pitch and roll when

the gyroscope is in the fault are 0.0459562 deg/s, 0.2269 deg/s,and 0.15344 deg/s,

respectively. The secondary fault detection and isolation layer also yields lower false

alarm rates, making the satellite attitude estimation solution more reliable.

Overall, the algorithm offers a novel approach to fault detection, isolation, and

recovery in IMUs that could potentially improve the accuracy and reliability of

satellite ADCS systems.

• The third novel algorithm combines the INS and CNS of satellite ADCS. This

algorithm addresses the unique challenges posed by satellite navigation systems,

including the need for high accuracy and robustness to external disturbances. By

fusing data from both the IMU and star tracker, this algorithm is able to provide

highly accurate and robust estimation of the attitude, and attitude of the satellite,

making it important for satellite ADCS.

• the implementation of the FDIR system on various platforms, including FPGA,

GPU, and Raspberry Pi 3 B+, are presented. Optimizing the system on an FPGA

board through pipelining and parallel techniques significantly improves its efficiency

and reduces latency while keeping resource consumption and working temperature

normal. This is a novel implementation of this FDIR system on an FPGA board. Fault

Detection, The FDIR system is subject to stringent requirements for programming

speed. This is because a faster programming speed enables more prompt detection

of faults and quicker recovery from them. Furthermore, the proposed approach

leverages the ZYNQ platform by integrating complex algorithms, such as AUKF and

RBF, into the FPGA part (PL) and fusing them with the ARN processor (PS) using

the ACF, thus maximizing the utilization of the resources available on the ZYNQ

platform. The results of attitude estimation from the implementation are consistent

with simulation results, demonstrating high accuracy.
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8.3 Future Outlook

The current research presented in this thesis focuses on satellite attitude estimation, primarily

based on the IMU and star tracker sensors. However, it is important to note that GPS, sun

sensor, and other sensors are also commonly used in satellite attitude estimation. Therefore,

future research can be advanced by investigating more algorithms based on other sensors to

improve the accuracy and robustness of attitude estimation.

One approach for further research is to optimize and improve the algorithms used for attitude

estimation, leveraging other common sensors such as GPS and sun sensors. Sophisticated

sensor fusion algorithms like the extended Kalman Filter (EKF) or the Unscented Kalman

Filter (UKF) can be employed to enhance the accuracy of attitude estimation. Moreover, more

advanced fault detection algorithms such as the dynamic threshold algorithm, can be used to

improve the system’s fault detection and isolation capabilities.

Furthermore, the proposed algorithms can be extended to other applications like robotics and

autonomous vehicle systems. The fault detection and recovery approach can be applied to

other systems in the aerospace and automotive industries. The FPGA-based implementation

of the FDIR system can also be optimized by utilizing more efficient data structures and

design techniques.

Future research can also explore more advanced topics related to satellite attitude estimation

and the FDIR system. For instance, a more comprehensive fault detection system can be

developed to detect and diagnose a broader range of faults, such as permanent and transient

faults. Additionally, machine learning and artificial intelligence can enhance the accuracy and

robustness of attitude estimation and fault detection.

In conclusion, this thesis provides a comprehensive overview of the development of satellite

attitude estimation and the FDIR system. Novel algorithms for attitude estimation and fault

detection, along with a groundbreaking approach for the FDIR system have been developed

and tested. This research forms the basis for future work on developing FDIR systems for

other applications.
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