1,162 research outputs found

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Nuevas técnicas de inyección de fallos en sistemas embebidos mediante el uso de modelos virtuales descritos en el nivel de transacción

    Get PDF
    Mejor software y más rápido. Este es el desafío que se deriva de la necesidad de construir sistemas cada vez más inteligentes. En cualquier diseño embebido actual, el software es un componente fundamental que dota al sistema de una alta capacidad de configuración, gran número de funcionalidades y elasticidad en el comportamiento del sistema en situaciones excepcionales. Si además el desarrollo del conjunto hardware/software integrado en un System on Chip (SoC), forma parte de un sistema de control crítico donde se deben tener en cuenta requisitos de tolerancia a fallos, la verificación exhaustiva de los mismos consume un porcentaje cada vez más importante de los recursos totales dedicados al desarrollo y puesta en funcionamiento del sistema. En este contexto, el uso de metodologías clásicas de codiseño y coverificación es completamente ineficiente, siendo necesario el uso de nuevas tecnologías y herramientas para el desarrollo y verificación tempranos del software embebido. Entre ellas se puede incluir la propuesta en este trabajo de tesis, la cual aborda el problema mediante el uso de modelos ejecutables del hardware definidos en el nivel de transacción. Debido a los estrictos requisitos de robustez que imperan en el desarrollo de software espacial, es necesario llevar a cabo tareas de verificación en etapas muy tempranas del desarrollo para asegurar que los mecanismos de tolerancia a fallos, avanzados en la especificación del sistema, funcionan adecuadamente. De forma general, es deseable que estas tareas se realicen en paralelo con el desarrollo hardware, anticipando problemas o errores existentes en la especificación del sistema. Además, la verificación completa de los mecanismos de excepción implementados en el software, puede ser imposible de realizar en hardware real ya que los escenarios de fallo deben ser artificial y sistemáticamente generados mediante técnicas de inyección de fallos que permitan realizar campañas de inyección controlables, observables y reproducibles. En esta tesis se describe la investigación, desarrollo y uso de una plataforma virtual denominada "Leon2ViP", con capacidad de inyección de fallos y basada en interfaces SystemC/TLM2 para el desarrollo temprano y verificación de software embebido en el marco del proyecto Solar Orbiter. De esta forma ha sido posible ejecutar y probar exactamente el mismo código binario a ejecutar en el hardware real, pero en un entorno más controlable y determinista. Ello permite la realización de campañas de inyección de fallos muy focalizadas que no serían posible de otra manera. El uso de "\Leon2ViP" ha significado una mejora significante, en términos de coste y tiempo, en el desarrollo y verificación del software de arranque de la unidad de control del instrumento (ICU) del detector de partículas energéticas (EPD) embarcado en Solar Orbiter

    Hardware-Assisted Dependable Systems

    Get PDF
    Unpredictable hardware faults and software bugs lead to application crashes, incorrect computations, unavailability of internet services, data losses, malfunctioning components, and consequently financial losses or even death of people. In particular, faults in microprocessors (CPUs) and memory corruption bugs are among the major unresolved issues of today. CPU faults may result in benign crashes and, more problematically, in silent data corruptions that can lead to catastrophic consequences, silently propagating from component to component and finally shutting down the whole system. Similarly, memory corruption bugs (memory-safety vulnerabilities) may result in a benign application crash but may also be exploited by a malicious hacker to gain control over the system or leak confidential data. Both these classes of errors are notoriously hard to detect and tolerate. Usual mitigation strategy is to apply ad-hoc local patches: checksums to protect specific computations against hardware faults and bug fixes to protect programs against known vulnerabilities. This strategy is unsatisfactory since it is prone to errors, requires significant manual effort, and protects only against anticipated faults. On the other extreme, Byzantine Fault Tolerance solutions defend against all kinds of hardware and software errors, but are inadequately expensive in terms of resources and performance overhead. In this thesis, we examine and propose five techniques to protect against hardware CPU faults and software memory-corruption bugs. All these techniques are hardware-assisted: they use recent advancements in CPU designs and modern CPU extensions. Three of these techniques target hardware CPU faults and rely on specific CPU features: ∆-encoding efficiently utilizes instruction-level parallelism of modern CPUs, Elzar re-purposes Intel AVX extensions, and HAFT builds on Intel TSX instructions. The rest two target software bugs: SGXBounds detects vulnerabilities inside Intel SGX enclaves, and “MPX Explained” analyzes the recent Intel MPX extension to protect against buffer overflow bugs. Our techniques achieve three goals: transparency, practicality, and efficiency. All our systems are implemented as compiler passes which transparently harden unmodified applications against hardware faults and software bugs. They are practical since they rely on commodity CPUs and require no specialized hardware or operating system support. Finally, they are efficient because they use hardware assistance in the form of CPU extensions to lower performance overhead

    Dependability analysis of web services

    Get PDF
    Web Services form the basis of the web based eCommerce eScience applications so it is vital that robust services are developed. Traditional validation and verification techniques are centred around the concept of removing all faults to guarantee correct operation whereas Dependability gives an assessment of how dependably a system can deliver the required functionality by assessing attributes, and by eliminating threats via means attempts to improve dependability. Fault injection is a well-proven dependability assessment method. Although much work has been done in the area of fault injection and distributed systems in general, there appears to have been little research carried out on applying this to middleware systems and Web Services in particular. There are additional problems associated with applying existing fault injection technologies to Web Services running in a virtual machine environment since most are either invasive or work at a machine level. The Fault Injection Technology (FIT) method has been devised to address these problems for middleware systems. The Web Service-Fault Injection Technology (WS-FIT) implementation applies the FIT method, based on network level fault injection, to Web Services to create a non-invasive dependability assessment method. It allows targeted perturbation of Web Service RFC parameters as well as more traditional network level fault injection operations. The WS-FIT tool includes taxonomies that define a system under test, fault models to apply and failure modes to be detected, and uses these taxonomies to generate fault injection campaigns. WS-FIT has been applied to a number of case studies and has successfully demonstrated its effectiveness. It has also been successfully applied to a third-party system to evaluate dependability means. It performed this dependability assessment as well as allowing debugging of the means to be undertaken uncovering unknown faults

    Vulnerability detection in device drivers

    Get PDF
    Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2017The constant evolution in electronics lets new equipment/devices to be regularly made available on the market, which has led to the situation where common operating systems (OS) include many device drivers(DD) produced by very diverse manufactures. Experience has shown that the development of DD is error prone, as a majority of the OS crashes can be attributed to flaws in their implementation. This thesis addresses the challenge of designing methodologies and tools to facilitate the detection of flaws in DD, contributing to decrease the errors in this kind of software, their impact in the OS stability, and the security threats caused by them. This is especially relevant because it can help developers to improve the quality of drivers during their implementation or when they are integrated into a system. The thesis work started by assessing how DD flaws can impact the correct execution of the Windows OS. The employed approach used a statistical analysis to obtain the list of kernel functions most used by the DD, and then automatically generated synthetic drivers that introduce parameter errors when calling a kernel function, thus mimicking a faulty interaction. The experimental results showed that most targeted functions were ineffective in the defence of the incorrect parameters. A reasonable number of crashes and a small number of hangs were observed suggesting a poor error containment capability of these OS functions. Then, we produced an architecture and a tool that supported the automatic injection of network attacks in mobile equipment (e.g., phone), with the objective of finding security flaws (or vulnerabilities) in Wi-Fi drivers. These DD were selected because they are of easy access to an external adversary, which simply needs to create malicious traffic to exploit them, and therefore the flaws in their implementation could have an important impact. Experiments with the tool uncovered a previously unknown vulnerability that causes OS hangs, when a specific value was assigned to the TIM element in the Beacon frame. The experiments also revealed a potential implementation problem of the TCP-IP stack by the use of disassociation frames when the target device was associated and authenticated with a Wi-Fi access point. Next, we developed a tool capable of registering and instrumenting the interactions between a DD and the OS. The solution used a wrapper DD around the binary of the driver under test, enabling full control over the function calls and parameters involved in the OS-DD interface. This tool can support very diverse testing operations, including the log of system activity and to reverse engineer the driver behaviour. Some experiments were performed with the tool, allowing to record the insights of the behaviour of the interactions between the DD and the OS, the parameter values and return values. Results also showed the ability to identify bugs in drivers, by executing tests based on the knowledge obtained from the driver’s dynamics. Our final contribution is a methodology and framework for the discovery of errors and vulnerabilities in Windows DD by resorting to the execution of the drivers in a fully emulated environment. This approach is capable of testing the drivers without requiring access to the associated hardware or the DD source code, and has a granular control over each machine instruction. Experiments performed with Off the Shelf DD confirmed a high dependency of the correctness of the parameters passed by the OS, identified the precise location and the motive of memory leaks, the existence of dormant and vulnerable code.A constante evolução da eletrónica tem como consequência a disponibilização regular no mercado de novos equipamentos/dispositivos, levando a uma situação em que os sistemas operativos (SO) mais comuns incluem uma grande quantidade de gestores de dispositivos (GD) produzidos por diversos fabricantes. A experiência tem mostrado que o desenvolvimento dos GD é sujeito a erros uma vez que a causa da maioria das paragens do SO pode ser atribuída a falhas na sua implementação. Esta tese centra-se no desafio da criação de metodologias e ferramentas que facilitam a deteção de falhas nos GD, contribuindo para uma diminuição nos erros neste tipo de software, o seu impacto na estabilidade do SO, e as ameaças de segurança por eles causadas. Isto é especialmente relevante porque pode ajudar a melhorar a qualidade dos GD tanto na sua implementação como quando estes são integrados em sistemas. Este trabalho inicia-se com uma avaliação de como as falhas nos GD podem levar a um funcionamento incorreto do SO Windows. A metodologia empregue usa uma análise estatística para obter a lista das funções do SO que são mais utilizadas pelos GD, e posteriormente constrói GD sintéticos que introduzem erros nos parâmetros passados durante a chamada às funções do SO, e desta forma, imita a integração duma falta. Os resultados das experiências mostraram que a maioria das funções testadas não se protege eficazmente dos parâmetros incorretos. Observou-se a ocorrência de um número razoável de paragens e um pequeno número de bloqueios, o que sugere uma pobre capacidade das funções do SO na contenção de erros. Posteriormente, produzimos uma arquitetura e uma ferramenta que suporta a injeção automática de ataques em equipamentos móveis (e.g., telemóveis), com o objetivo de encontrar falhas de segurança (ou vulnerabilidades) em GD de placas de rede Wi-Fi. Estes GD foram selecionados porque são de fácil acesso a um atacante remoto, o qual apenas necessita de criar tráfego malicioso para explorar falhas na sua implementação podendo ter um impacto importante. As experiências realizadas com a ferramenta revelaram uma vulnerabilidade anteriormente desconhecida que provoca um bloqueio no SO quando é atribuído um valor específico ao campo TIM da mensagem de Beacon. As experiências também revelaram um potencial problema na implementação do protocolo TCP-IP no uso das mensagens de desassociação quando o dispositivo alvo estava associado e autenticado com o ponto de acesso Wi-Fi. A seguir, desenvolvemos uma ferramenta com a capacidade de registar e instrumentar as interações entre os GD e o SO. A solução usa um GD que envolve o código binário do GD em teste, permitindo um controlo total sobre as chamadas a funções e aos parâmetros envolvidos na interface SO-GD. Esta ferramenta suporta diversas operações de teste, incluindo o registo da atividade do sistema e compreensão do comportamento do GD. Foram realizadas algumas experiências com esta ferramenta, permitindo o registo das interações entre o GD e o SO, os valores dos parâmetros e os valores de retorno das funções. Os resultados mostraram a capacidade de identificação de erros nos GD, através da execução de testes baseados no conhecimento da dinâmica do GD. A nossa contribuição final é uma metodologia e uma ferramenta para a descoberta de erros e vulnerabilidades em GD Windows recorrendo à execução do GD num ambiente totalmente emulado. Esta abordagem permite testar GD sem a necessidade do respetivo hardware ou o código fonte, e possuí controlo granular sobre a execução de cada instrução máquina. As experiências realizadas com GD disponíveis comercialmente confirmaram a grande dependência que os GD têm nos parâmetros das funções do SO, e identificaram o motivo e a localização precisa de fugas de memória, a existência de código não usado e vulnerável

    Safe and automatic live update

    Get PDF
    Tanenbaum, A.S. [Promotor

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance
    corecore