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Note on Title

Based on the recommendation of the reviewers and the PhD committee, the initial working
title of this thesis (“Dependable Systems Leveraging New ISA Extensions”) was adapted to the
final title named “Hardware-Assisted Dependable Systems”. This title better reflects the actual
content of the thesis in its general sense.
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Abstract

Unpredictable hardware faults and software bugs lead to application crashes, incorrect computa-
tions, unavailability of internet services, data losses, malfunctioning components, and consequently
financial losses or even death of people. In particular, faults in microprocessors (CPUs) and
memory corruption bugs are among the major unresolved issues of today. CPU faults may result
in benign crashes and, more problematically, in silent data corruptions that can lead to catas-
trophic consequences, silently propagating from component to component and finally shutting
down the whole system. Similarly, memory corruption bugs (memory-safety vulnerabilities) may
result in a benign application crash but may also be exploited by a malicious hacker to gain
control over the system or leak confidential data.
Both these classes of errors are notoriously hard to detect and tolerate. Usual mitigation

strategy is to apply ad-hoc local patches: checksums to protect specific computations against
hardware faults and bug fixes to protect programs against known vulnerabilities. This strategy
is unsatisfactory since it is prone to errors, requires significant manual effort, and protects only
against anticipated faults. On the other extreme, Byzantine Fault Tolerance solutions defend
against all kinds of hardware and software errors, but are inadequately expensive in terms of
resources and performance overhead.

In this thesis, we examine and propose five techniques to protect against hardware CPU faults
and software memory-corruption bugs. All these techniques are hardware-assisted: they use
recent advancements in CPU designs and modern CPU extensions. Three of these techniques
target hardware CPU faults and rely on specific CPU features: ∆-encoding efficiently utilizes
instruction-level parallelism of modern CPUs, Elzar re-purposes Intel AVX extensions, and
HAFT builds on Intel TSX instructions. The rest two target software bugs: SGXBounds detects
vulnerabilities inside Intel SGX enclaves, and “MPX Explained” analyzes the recent Intel MPX
extension to protect against buffer overflow bugs.

Our techniques achieve three goals: transparency, practicality, and efficiency. All our systems
are implemented as compiler passes which transparently harden unmodified applications against
hardware faults and software bugs. They are practical since they rely on commodity CPUs and
require no specialized hardware or operating system support. Finally, they are efficient because
they use hardware assistance in the form of CPU extensions to lower performance overhead.
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1 Introduction
Modern software systems are complex beasts. From embedded systems powering autonomous
cars to MapReduce frameworks crunching numbers in data centers, our software gets bigger, in
terms of lines of code (LoC) and of interacting components [55].
Consider an example of Boeing 787 Dreamliner shipped in 2010: software that powers this

plane contains 7 million LoC, spread among 10,000 sensors and ECUs, generating over 15GB of
data for each flight [242]. Another example is the amount of software found in a modern high-end
car like Tesla Model S first presented in 2012: at least 100 million LoC and growing each year
[228]. If we look at Amazon or Google data centers, we will see thousands of nodes executing
billions of lines of code and producing results in a manner of milliseconds [55]. Perhaps the
best-known example of software complexity is the evolution of the Linux kernel: Linux version
1.0 was released in 1994 and contained 176 thousand LoC, steadily increased its code base and
by 2003 (version 2.6.0) it contained almost 6 million LoC, jumped to 12 million LoC in 2011
(version 3.0) and currently contains around 20 million LoC (version 4.13) contributed by almost
14,000 developers [81].

All this code executes on commodity hardware powered by Intel, AMD, and ARM micropro-
cessors (CPUs). Even domains that traditionally used specialized hardware solutions – e.g., cars
and trucks with the advent of autonomous driving – now switch to commodity architectures
based on ARM and x86 [112]. The complexity of modern CPUs may even eclipse that of
modern software. During 45 years of CPU history, the number of transistors exploded from mere
2,300 in the Intel 4004 microprocessor to 7 billion in the recent Intel Broadwell-EP Xeon (a
factor of 3,000,000). Not only the raw number of transistors on CPUs increased, but also their
architectures evolved in complex ways. In addition to several big leaps – increasing the word size
from only 4 bits to modern 64 bits, adding superscalar, out-of-order, and speculative execution,
moving to multi-threads and multi-cores – there were a number of smaller-scale changes to CPU
architectures, such as additional instructions for SIMD processing, virtualization, and security.
Microprocessor designs became so complex that the Intel’s Software Developer’s Manual contains
4,744 pages of dense explanations on the x86 architecture [105] and the famous optimization
manuals by Agner Fog span 628 pages describing obscure features of x86-based CPUs [221].

What does this huge complexity of software and hardware mean to application developers and
end users? Software complexity directly translates to software bugs and vulnerabilities: the 2014
report from Coverity shows that there are around 0.7 bugs per each 1,000 lines of code [59]. This
number would translate to almost 5,000 software bugs in a Boeing 787 plane and 70,000 in a
Tesla car. Even the high-quality Linux codebase contains around 5,000 bugs, with around 1,000
of them classified as potential high-impact vulnerabilities [59]. Hardware complexity, together
with shrinking transistor sizes (from 10,000 nm in Intel 4004 to 14 nm in Intel Skylake), leads to
sporadic hardware glitches: bits flipped in RAM or CPU registers, stale values in CPU flip-flops,
or stuck-at bits in CPU caches. Several large-scale studies indicate that hardware faults occur at
a surprisingly high rate and tend to reappear more frequently after the first occurrence [103, 165,
203]. Furthermore, the advancements in dark silicon-based 8 nm chip technology with fluctuating
voltages is forecasted to further deteriorate the reliability of CPUs [211].

There are numerous real-world examples of software bugs and hardware faults that cause
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financial damage or even death of people; we will name only a few prominent examples.

Software bugs manifest themselves in all technology domains and are frequently escalated
to software vulnerabilities exploited by hackers. In the aerospace domain, the aforementioned
Boeing 787’s software contained an integer overflow bug that could lead to a complete loss of
control in the air and required a shutdown every 248 days [230]. Bugs and vulnerabilities of
hardware/software systems of modern cars – including Tesla S – are considered a serious threat
to life of a driver and passengers and the main impediment to wide adoption of autonomous
driving [94]. A single software bug at the scale of such giants as Amazon and Google can lead
to outages of entire data centers and millions of dollars lost in revenue [86, 220]. Especially
threatening are the bugs in operating system kernels, which can be exploited to gain complete
control over a machine and disrupt all computations or steal confidential data; such bugs are
still routinely found in the Linux kernel [208].

Hardware faults are more intricate. Most of the time these faults lead to observable machine
crashes and can be easily fixed. Indeed, many embedded systems employ triple/dual modular
redundancy (TMR/DMR) and watchdogs to detect crashed nodes [23], while online services are
increasingly using techniques such as state machine replication [201] for tolerating crashes [22,
41, 102]. However, more insidious faults are Silent Data Corruptions (SDCs) – hardware faults
that lead to erroneous computation results. If not treated properly, these faults can result in
catastrophic consequences. Anecdotal evidences from internet services show that data corruptions
in hardware can lead to process state corruption [47], data loss [163], and in some unfortunate
cases, errors propagate throughout the system causing outage of the entire service [8].

The increasing rate of hardware faults and software bugs is already changing the way software
systems are designed today. Several studies show that it is common to use ad-hoc mechanisms
to detect data corruptions caused by hardware faults, such as source code assertions, periodic
background integrity checks, and message checksums throughout the system [2, 8]. Software bugs
are usually fixed by applying a specific, ad-hoc patch in a particular piece of code; ironically,
around 14–24% of these fixes introduce new bugs in the same application [253]. These ad-hoc
solutions have their drawbacks: they notably require extra manual effort to write the checks and
bug fixes and can only protect from errors anticipated by the programmer.

At the same time, the developers shy away from using comprehensive principled approaches
such as Byzantine fault tolerance (BFT). Though BFT solutions can tolerate both hardware and
software errors, they are cumbersome and inefficient, incurring high performance and maintenance
overheads due to an overly pessimistic fault model [31, 222].

Thus, we come to the crux of the problem tackled in this thesis: How to detect and tolerate
hardware faults and software bugs in a disciplined manner and with low overhead? To meet the
low-overhead requirement, we rely on the following observation: modern commodity CPUs possess
underutilized resources and unused extensions which can be re-purposed for fault tolerance (to
protect against hardware faults) and security (to protect against software bugs). Thus, our
proposed solutions are hardware-assisted: they are designed and implemented in such a way as
to utilize underlying hardware – modern Intel x86-64 CPUs in particular – in a most efficient
manner.

As we will see in the next chapters, hardware-assisted approaches significantly outperform
their software-only counterparts, usually by more than 30%. But to appreciate the advantages of
hardware assistance, we first need to understand the current state of hardware. In particular, we
will briefly outline the history, current trends, and features of commodity CPUs.
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Figure 1.1 – Timeline of features introduced in commodity-hardware CPUs. Name of the
first microarchitecture where a particular feature was implemented is given in brackets. For
simplicity, only Intel CPUs are shown.

1.1 Brief history of CPUs

All solutions presented in this thesis rely on the features of and extensions to commodity-hardware
CPUs. In this thesis, we dissect modern Intel microarchitectures and Instruction Set Architectures
(ISAs) to understand their performance implications and propose low-performance-overhead
systems based on this understanding. For example, ∆-encoding heavily relies on Instruction-Level
Parallelism achieved via such CPU advancements as deep instruction pipelines, superscalar out-
of-order execution, and speculative capabilities based on accurate branch prediction (Chapter 3);
Elzar and HAFT build upon Intel AVX and TSX extensions respectively (Chapters 4 and 5);
SGXBounds targets Intel SGX environments (Chapter 6); Intel MPX Explained discusses
performance and security aspects of the Intel MPX feature (Chapter 7).
Before we delve into details of particular technologies we utilize in this thesis, we need to

give a bigger picture and understand broader patterns in the development of CPUs and their
extensions. What follows next is a very brief history of CPU evolution on the example of the
biggest player in this field – Intel and its x86 microprocessors (see Figure 1.1).1
The very first CPU was developed in 1971. It was a tiny, crude, 4-bit Intel 4004 that could

perform simple arithmetic operations and was primarily used in calculators. This CPU had 16
4-bit general-purpose registers, 46 instructions, and could directly address 4KB of ROM and
640B of RAM. In those early days, executing a single instruction took 5 cycles, which translates
to 0.2 instructions per cycle (IPC). It was a long way to modern CPUs with Instruction-Level
Parallelism (ILP), with their IPC of 4-5. Intel 4004 did not feature a CPU cache – the memory–
CPU gap began to widen only in the 1980s, but in 1971, accessing ROM/RAM was not slower
than reading from CPU registers.
Fast-forward to 1978 and we see a wide variety of sufficiently powerful and commercially

available CPUs, with Intel, Motorola, Zilog, and other major players competing for the emerging
Personal Computer (PC) market. Intel releases its 8086 CPU, the logical successor to the 8-bit
8080 described as “the first truly useful microprocessor”, and the direct predecessor to 8088 used
in the very first IBM PC.
With Intel 8086, the x86 Instruction Set Architecture (ISA) first comes into being. Even

though x86 is widely considered inelegant and many attempts were made to replace it with better
instruction sets (including attempts by Intel itself with its iAPX432 and recently Itanium), it
remains the dominant family of ISAs to this day, with only one notable rival – RISC-based ARM.
The x86 design follows the Complex Instruction Set Computing (CISC) model, meaning that a

1Contents of this and the following sections are based on data from wikipedia.org and intel.com.
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single x86 instruction can execute several micro-operations, e.g., the inc mem-addr reads a value
from memory, increments it, and stores it back at the same memory address. The prominent
feature of x86 is its 100% backwards-compatibility, such that a modern 64-bit x86 incarnation
(aka x86-64 aka x64) is still able to run unmodified 16-bit programs written in 1978.

Intel 8086 possessed 8 16-bit general-purpose registers, with familiar labels of AX, BX, SI,
DI, etc. 8086 also featured x86 memory segmentation to access up to 1MB of memory. For
performance, 8086 introduced the first step towards instruction pipelining: the fetch and execution
stages were separated with the help of a prefetch queue, allowing to execute a previous instruction
simultaneously with fetching a next one. Still, 8086 lacked many features we take for granted in
modern CPUs: no security and isolation (privilege levels or rings in the protected mode arrived
later with Intel 80286) and no CPU caches.
Another milestone in the processor design was Intel 80386 aka i386 aka 386 released in 1985.

At that time, IBM PC already popularized affordable personal computers, and 80386 became the
heart of many high-end PCs of the 1980s (in fact, Intel ceased its production only in 2007 because
of the chip’s astonishing success in the embedded market). In 80386, the major improvement over
state-of-the-art was the debut of the 32-bit x86 ISA: its instruction set, programming model, and
binary encodings are the de-facto standard of x86 CPUs to this day. 32-bit word sizes enabled
native support for 4GB address space, single-precision floating point arithmetic, and integers up
to several billions – enough for a vast majority of applications during 1980s and 1990s. Other
important innovations included the addition of a fully-fledged Memory Management Unit (MMU)
to support virtual memory, four privilege rings in protected mode allowing for clear separation
of user/kernel spaces, and debug registers serving as hardware breakpoints.
After word sizes plateaued at 32 bits for the next two decades, CPU designers switched

to solving the issues of growing CPU–RAM performance disparity and of Instruction-Level
Parallelism (ILP). To solve the CPU–RAM disparity, first CPU caches were introduced in Intel
80386, with different chips containing up to 16KB of first (and only) level cache. The iconic Intel
80486 microprocessor aka i486 aka 486 introduced two-level CPU caches: two internal level-1 (L1)
caches, one for instructions and one for data, and one off-chip L2 cache. It also introduced the
first of the many developments towards high ILP – the tightly-coupled instruction pipeline. This
pipeline introduced the usual five stages of x86 instruction execution: (1) instruction fetch, (2)
main instruction decode, (3) operand prefetch and memory address computation, (4) execution,
and (5) write-back. Thanks to this, up to five instructions could be executed tightly one after
another, each occupying one of the above stages.

Instruction pipelining can significantly boost CPU throughput, roughly doubling CPU perfor-
mance at the same clock rate. Moreover, pipelines can be made “deeper” by adding more and
more stages; modern Intel CPUs have 14-16 stages. However, they still have two bottlenecks.
(1) The execution stage may require much more than one CPU cycle to execute a computation-
intensive instruction, thus holding off other pipeline stages. (2) A data dependency between two
consecutive instructions – so-called hazard – may delay the processing of the second instruction.
The next ten years of CPU evolution saw the solutions to both these issues.

The first bottleneck stemmed from the fact that Intel 80486 and its predecessors had only
one execution unit (EU). In 1993, to solve the bottleneck, the first Pentium (dubbed P5, i.e.,
the fifth generation of Intel microarchitecture) introduced superscalar execution. Superscalar
CPUs contain more than one EU and thus can execute several instructions simultaneously. In
particular, Intel Pentium duplicated the whole instruction pipeline, with one pipeline able to
handle any x86 instruction but the other one only the most common simple instructions. Modern
CPUs have a more intricate design, with one pipeline and several buffers to pass instructions
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and their data in-between stages. The number of execution units also increased dramatically – a
modern Intel Skylake has four integer arithmetic EUs, three floating-point arithmetic EUs, two
branch EUs, two EUs for loads, and one for store.
Two years later, in 1995, the Pentium Pro CPU (with a P6 microarchitecture) introduced a

solution to the bottleneck of data hazards in the pipeline – out-of-order execution. Recall that
a program is nothing more but a sequential stream of instructions. In this sequential mode of
execution, if one instruction’s input is the output of the preceding instruction, the whole pipeline
has to stall and dispatches the second instruction only after the first one wrote-back its output in
the final stage. Out-of-order execution breaks this paradigm and allows to execute instructions
in the order other than the original order in a program. Achieving out-of-order execution is
non-trivial and requires register renaming in hardware, reservation stations for execution units,
and a re-order buffer to store instructions with unresolved dependencies. However, this technique
drastically reduces the number of stalls and increases ILP.
The last bottleneck of instruction pipelining comes from branches: earlier CPUs had to halt

the pipeline whenever a conditional branch instruction was executed since it was impossible to
predict which instruction should be dispatched next. In 1999, Pentium III (based on the same
P6 microarchitecture) added speculative execution to the arsenal of mechanisms designed to
increase ILP. Speculative execution relies on branch prediction: the CPU simply guesses which
branch will be taken and dispatches instructions from that branch in the pipeline. If the guess
is correct, the CPU can continue its “speculated” execution path. If the guess was wrong, the
CPU needs to flush the wrongly speculated instructions and start executing the right branch.
Fortunately, most branches in programs are easily predictable, and branch predictors of current
CPUs are correct in 97% of cases.

With this final invention, the flow of ideas to increase instruction-level parallelism stopped. In
comparison to primitive CPU designs of 40 years ago which could achieve a maximum of 0.2
IPC, a modern Intel Skylake CPU has a theoretical maximum of around 5 IPC. Nowadays, even
though each new generation of Intel CPUs increases the number of stages in the instruction
pipeline, number of instructions held in decode queues and reorder buffers, number of execution
ports, as well as the quality of branch predictors, these incremental improvements came to a
point of diminishing returns.

One of the final advances in CPU design came with the advent of Simultaneous Multithreading
(SMT) and multi-core CPUs. SMT – or Hyperthreading in Intel parlance – was introduced
in 2000 in Pentium 4 (with a NetBurst microarchitecture) and allows to multiplex two logical
threads of execution on a single physical core. This technique is completely oblivious to the
software running on top: the CPU reports to the operating system that it has two cores instead
of only one. SMT builds on a simple observation: normal programs do not exhibit a high level of
instruction parallelism and thus cannot occupy all stages and execution units of a CPU pipeline.
Thus, a superscalar CPU becomes underutilized. However, with SMT, instructions from two
different programs are multiplexed on a single CPU and can be executed in any given pipeline
stage at a time. SMT-enabled CPUs can see up to 30% performance improvement in comparison
to non-SMT ones.
In contrast to SMT where a CPU “pretends” to have two physical cores, multi-core CPUs –

first released in 2005 – actually integrate two or more separate cores in a single chip package.
In a true dual-core CPU, two programs or two threads of the same program actually execute
in parallel, not sharing any resources except for the L3 cache. Similar to Instruction-Level
Parallelism (ILP), multi-core designs enable Thread-Level Parallelism (TLP) where multiple
application threads pinned to separate cores increase performance several-fold. Modern Intel
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CPUs such as Xeon Phis have up to 60 cores.
In parallel to the ILP/TLP chase, Intel CPUs slowly transitioned to the 64-bit architecture

called x86-64 or x64, starting from 2003 and the NetBurst microarchitecture.2 64-bit wide words
solved the problem of limited address space for long (in fact, modern CPUs use no more than 48
bits for memory addresses). It seems unlikely that commodity CPUs will require a switch to
128-bit word sizes in the near future.

Finally, one of the last significant innovations in CPUs was dynamic voltage scaling – the Turbo
Boost technology for Intel CPUs introduced in 2009 in Core i5 processors. Turbo-Boost-enabled
processors can automatically raise CPU’s operating frequency depending on the workload. Under
intensive load, the operating system requests higher frequency. During prolonged idle states, the
operating system decreases the CPU’s frequency to the minimum. This allows to conserve power
and the amount of heat produced by the processor, at the same time achieving peak throughput
when needed.

There are several new trends in CPU designs such as open-source hardware movements and
tight integration of CPUs with GPUs and FPGAs (accelerators). However, we will not discuss
them, since they are not relevant for the purposes of this thesis. In fact, the CPU features that will
be important for us are (1) 64-bit word sizes, (2) multi-core processors, and (3) instruction-level
parallelism via deep pipelines and superscalar out-of-order execution.

1.2 Brief history of CPU extensions

We have seen in the previous section how Intel CPUs evolved into high-performance high-
complexity chips. The evolution was driven by two main factors. First, the increase in word size
was the main source of innovation in the 1970s–1980s. However, with the advent of 32-bit CPUs,
it took 20 years to move to 64 bits, and it will take another 30–50 years to 128-bit CPUs be
required to meet our demands. Second, the pursuit of higher and higher instruction-level and
thread-level parallelism (ILP and TLP) drove the innovation in 1990s and 2000s. However, with
the ILP wall evident in the late 1990s and the extensive development of multi-core CPUs in the
2000s, CPU manufacturers moved to another design option: CPU extensions.

CPU extensions (or ISA extensions) are different from the CPU advancements reviewed in
the previous section in the following. First, CPU extensions are limited, self-contained sets of
new instructions with a clearly defined usage domain (in contrast to general-purpose instructions
of the x86 ISA). For example, Intel MPX introduces 7 instructions for fast bounds-checking of
memory ranges. Second, CPU extensions usually provide a set of new CPU registers targeted for
use by this extension’s instructions. Continuing the same example, Intel MPX provides 4 new
registers to store bounds; they can be accessed only via MPX instructions. Third, CPU extensions
are “opt-in”: only a subset of CPUs from the same generation may support a specific extension,
any CPU extension is fully compatible with other x86 instructions and other extensions, and a
program may be built with or without a CPU extension without the need to rewrite its code (in
the ideal case).
The timeline of CPU extensions is shown in Figure 1.2. Names of extensions are given in

bold, their categories (usage domains) in italics, and the first CPU architecture that supported a
particular extension is given in brackets. We concentrate only on Intel CPU extensions.

2Though we concentrate solely on Intel microarchitectures in this section, we must note that the first x86-64
architecture was actually developed by Intel’s rival – AMD (that is why x86-64 is also sometimes called
AMD64).
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Floating-point: x87
(8087)

'80

'96

SIMD: MMX
(Pentium/P5)

'99

SIMD: SSE
(Pentium III/P6)

'01

SIMD: SSE2
(Pentium 4/NetBurst)

'04

SIMD: SSE3
(Pentium 4/Prescott)

'05

Virtualization: VT-x
(Pentium 4/Prescott 2M)

'06

SIMD: SSE4   Security: TXT
(Core)

'11

SIMD: AVX
(Sandy Bridge)

'10

Security: AES
(Westmere)

'13

SIMD: AVX2   Transactions: TSX
(Haswell)

'14

Debug: PT
(Broadwell)

'15

SIMD: AVX-512   Security: MPX SGX
(Skylake)

'16

Virtualization: CAT
(Broadwell-EP)

'17

Security: MPK CET
(Skylake-SP)

Figure 1.2 – Timeline of extensions introduced in commodity-hardware CPUs. Name of the
first microarchitecture where a particular extension was implemented is given in brackets.
For simplicity, only Intel CPUs are shown.

Arguably, the first CPU extension was the x87 floating-point instruction set, released in 1980
as a companion to the Intel 8086 CPU. x87 was quite literally a CPU extension – it was delivered
as an optional floating point coprocessor. As any other CPU extension, x87 introduced a set
of new registers and instructions, and was not strictly needed to run programs. Instead, with
the help of a compiler, it allowed x87-enabled assembly to run much faster when executing
math-heavy workloads. x87 extension lived through several generations and became redundant
with the advent of SIMD extensions like SSE and AVX.

The most ubiquitous and widely used CPU extensions is the Single Instruction Multiple Data
(SIMD) family of extensions. SIMD is a paradigm to execute the same instruction on several
data points in parallel. For example, a 256-bit SIMD addition operates on four 64-bit pairs of
integers and produces four 64-bit sums, all in parallel and in one CPU cycle. SIMD extensions
introduce wide registers that keep more than one data point and wide instructions operating on
these registers. Strictly speaking, SIMD extensions are not required to run programs, but they
are so prevalent that even modern Linux kernels assume their presence by default.
The first incarnation of SIMD in Intel processors was Intel MMX in 1996. MMX introduced

eight 64-bit registers able to hold two 32-bit integers, four 16-bit, or eight 8-bit ones (recall that
at that time all CPUs were 32-bit). MMX also defined 40 new instructions to operate on these
registers. Note that MMX did not provide floating-point operations and thus CPUs still relied
on a slow x87 coprocessor.
The second incarnation of SIMD was Intel Streaming SIMD Extensions (SSE), first released

in 1999 as an extension to Pentium III. Intel SSE contained 70 new instructions, with most
of them targeted to single-precision (32-bit) floating point data (floats). It also added eight
128-bit registers XMM0–XMM7 able to hold either four floats or two 64-bit/four 32-bit/eight
16-bit/sixteen 8-bit integers. Intel SSE had four versions, with SSE2 introduced in 2001, SSE3
in 2004, and SSE4 in 2006. Each new version added new instructions and new registers, with
SSE4 totaling 300 instructions and 16 registers.
The current SIMD incarnation is Intel Advanced Vector Extensions (AVX) first supported

in Intel SandyBridge CPUs shipped in 2011. Intel AVX introduced 16 256-bit-wide YMM
registers and a new three-operand instruction format. The second version of AVX, AVX2, added
more instructions, and AVX-512 introduced 32 512-bit-wide ZMM registers. The number of
instructions in AVX-512 is far above 500. Chapter 4 covers Intel AVX in more detail.
In-between new versions of SIMD extensions, in 2005, Intel released a set of instructions for

better support of virtualization called VT-x. Intel VT-x adds 10 new instructions to enter and
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exit a virtual execution mode in which the Virtual Machine Monitor (VMM) runs. Another
recent extension for virtualization is Intel Cache Allocation Technology (CAT) that allows to
dynamically partition the last-level cache (LLC) among several applications. This partitioning
improves performance for workloads with real-time guarantees and strict isolation of data among
several Virtual Machines (VMs). Both Intel VT-x and Intel CAT are out of scope of this thesis.
A rather small CPU extension called Intel Transactional Synchronization Extensions (TSX)

was released in 2013 as part of the Haswell microarchitecture. Intel TSX implements Hardware
Transactional Memory (HTM) – a technique to simplify concurrent programming by executing
a sequence of load/store instructions in an atomic way [100]. TSX provides two interfaces for
transactional execution: Hardware Lock Elision (HLE) and Restricted Transactional Memory
(RTM). HLE adds two instruction prefixes (not new instructions!) which can be used with a
subset of common x86 instructions with memory operands. RTM is an alternative to HLE that
introduces three explicit instructions to start, abort, and end a hardware transaction. Both
interfaces allow for optimistic transactional execution and can lead to 40% higher performance
in comparison to traditional lock-based solutions. We provide detailed discussion of Intel TSX in
Chapter 5.

The rest CPU extensions we examine serve debugging and security purposes. Intel had its first
and largely unsuccessful attempt in security extensions with Intel Trusted Execution Technology
(TXT) in 2006. Intel TXT allowed to attest the authenticity of a computer and its operating
system to the end user and used a Trusted Platform Module (TPM) technology coupled with
cryptographic techniques. For this, a single TXT instruction must be executed at boot-loading
time: this instruction triggers the authentication process of TXT that securely measures code,
data, configuration, and other information loaded into memory. Intel TXT was shown to be
prone to various attacks and did not gain momentum; it is now superseded by a more elegant
Intel SGX technology.
In 2010, Intel proposed a small Advanced Encryption Standard (AES) instruction set. Intel

AES has 7 instructions that accelerate encryption and decryption operations of the Advanced
Encryption Standard. This CPU extension was quickly incorporated in major crypto-libraries
and showed performance improvements of up to 8 times.

Another interesting CPU extension was released in 2014 with Broadwell CPUs and targets the
root cause of most security vulnerabilities – bugs in applications. Intel Processor Trace (PT)
dynamically builds a detailed trace of all activity happening during program execution, including
branches taken and memory accessed. Intel PT can be triggered on specific actions and can be
configured with filtering capabilities to dump only the desired information. This thesis does not
utilize the above three extensions, and we refer reader to appropriate Intel documentation for
details.
The year 2015 witnessed several promising CPU extensions released as part of Intel Skylake

microarchitecture. Two of them concerned security of applications: Intel Memory Protection
Extensions (MPX) and Software Guard Extensions (SGX). The first of these two, Intel MPX,
aims to protect legacy C/C++ applications from their bugs being exploited. In particular, Intel
MPX includes 7 new instructions to perform explicit bounds checks on memory addresses and
four registers that store these bounds. The second, Intel SGX, is a much broader extension that
allows to create an opaque region of memory cryptographically protected from any other software
(including privileged software like the operating system and the hypervisor) and remotely attest
it. Thus, Intel SGX introduces a new mode of operation: user code and data can be completely
protected even if executed in a malicious environment with compromised OS and physical attacks
on RAM, network, and hard drive. We cover Intel SGX in Chapter 6 and Intel MPX in Chapter 7.
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Finally, two very recent CPU extensions are Intel Memory Protection Keys (MPK) and
Control-flow Enforcement Technology (CET). Intel MPK augments each page in the page table
with four bits so each page can be assigned one of 16 “key” values. For example, one page
may have an associated key write-disabled and another read-disabled. Thus, the application
can dictate access permissions at the level of separate pages. The other extension, Intel CET,
copes with the problem of Return-, Call-, and Jump-Oriented Programming (ROP, COP, and
JOP) attacks. CET introduces a hardware-based shadow stack that negates ROP attempts
and indirect branch tracking that negates COP- and JOP-based attacks. These two security
extensions were not available at the moment of this writing and are not covered in the thesis.

Looking at Figure 1.2, we note two trends. The first one is that CPU extensions prior to 2010s
were largely confined to the SIMD domain. In fact, these extensions are so common nowadays
that they are frequently considered an integral part of CPUs. The second trend shows that prior
to around 2013, all extensions (with an exception of an ill-fated Intel TXT) served to increase
performance by optimizing certain operations. However, in the last five years, Intel released six
CPU extensions that provide isolation, debugging, and security guarantees (PT, MPX, SGX,
CAT, MPK, and CET). This trend reaffirms our conclusion that starting from 2010s, CPU
designers shifted their focus to novel CPU extensions.
We must note that even though we discussed only Intel CPUs and their evolution of CPU

extensions, other companies provide similar technologies. For example, SIMD extensions can
be found in all other CPUs: IBM’s AltiVec for PowerPC, AMD’s 3DNow! and SSE/AVX
implementations, and ARM’s NEON. As another example, AMD revealed its answer to Intel
SGX: Secure Memory Encryption (SME), Secure Encrypted Virtualization (SEV), and hardware-
based SHA-powered security coprocessor. ARM released its attempt on security extensions called
TrustZone already in 2005. Thus, it is generally possible to port programs written for a specific
Intel extension to other CPUs and architectures, e.g., from AMD and ARM.
In this thesis, we build on the following Intel CPU features and extensions:
• ∆-encoding (Chapter 3) uses Instruction-Level Parallelism in the form of superscalar

out-of-order execution with branch predictors and deep pipelines.
• Elzar (Chapter 4) uses Intel AVX to detect and mask CPU faults using triple modular

redundancy.
• HAFT (Chapter 5) uses Intel TSX to detect and roll-back CPU faults using transactional

memory.
• SGXBounds (Chapter 6) uses Intel SGX to protect applications from outsider (privileged-

level) and insider (software bugs) attacks.
• “MPX Explained” (Chapter 7) discusses how Intel MPX detects buffer overflows in legacy

applications.

1.3 Scope and goals

In this thesis, we propose and evaluate hardware-assisted systems that bring dependability
guarantees to applications. We limit our scope to two specific problems in dependability: (1)
hardware faults occurring in CPUs and leading to silent data corruptions, and (2) software faults
(bugs) leading to memory errors that can be exploited in a hacker attack. As we described above,
both these problems are ubiquitous in real world and lead to disastrous consequences.
We concentrate specifically on CPU hardware faults leading to data corruptions because

these faults are the ones with no established protection mechanisms [85]. In contrast, hardware
faults that lead to crashes are extensively researched, and numerous techniques are adopted in
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practice, including consensus protocols like Paxos [47], ZooKeeper’s Zab [102], and Raft [176], and
redundant nodes for fail-over when one machine fails [2, 115]. Hardware faults happening in RAM,
storage, and networks are also thoroughly investigated and have settled protection mechanisms:
parity bits and Error-Correcting Codes (ECC) for RAM [103], Redundant Array of Independent
Disks (RAID) for storage [180], retransmission protocols for networks, and checksums for all
three kinds of faults. Thus, we target the class of faults not covered by previous techniques –
hardware faults occurring in CPUs. Chapters 3–5 of this thesis describe our proposed solutions
to prevent CPU faults.

We also concentrate specifically on memory corruption software bugs which are exploitable by
malicious attackers [225, 233]. Memory corruption bugs (or memory-safety bugs) such as buffer
overflows and out-of-bounds reads/writes are among the top-3 security risks according to the
MITRE ranking [1]. Even though there are many proposals to protect against these bugs both
from academia [6, 17, 63] and industry [110, 162, 207], the “silver-bullet” solution is yet to be
developed. Chapters 6–7 describe two techniques to detect memory corruption bugs.

All dependability systems described in this thesis aim to achieve three major goals:
• Transparency. Most software that requires dependability guarantees is written in C/C++

and has a long history of development. Thus, we aim to develop systems that can be applied
to legacy software, without any modifications to the code base. For this, we implemented
our systems as compiler passes which transparently “harden” existing application code
against hardware faults and software bugs.

• Practicality. Many previous approaches to detect hardware and software faults failed to
gain attention either because of too-high overheads or unrealistic assumptions of special
hardware/operating system support [85, 225]. Realizing this, we developed techniques that
can work on existing OSes and CPUs and require no specialized hardware.

• Efficiency. As we described in previous sections, modern commodity-hardware CPUs
possess features and extensions that can be beneficial for fault tolerance and security.
Therefore, instead of developing generic systems that would work on a variety of hardware
platforms but with high performance costs, we build solutions tailored to exercise and/or
re-purpose existing CPU extensions with low overhead. This way we achieve efficient
hardware-assisted execution without sacrificing practicality of our techniques.

1.4 Contributions
The contributions of this thesis are as follows:

• Design, implementation, and evaluation of three systems for fault tolerance:
– ∆-encoding: source-to-source compiler to detect transient and permanent CPU faults

in legacy C programs utilizing unused ILP resources of modern CPUs (Chapter 3);
– Elzar: LLVM compiler pass to detect and mask transient CPU faults in multithreaded

legacy C/C++ programs using Intel AVX extension (Chapter 4);
– HAFT: LLVM compiler pass to detect and tolerate transient CPU faults in multi-

threaded legacy C/C++ programs using Intel TSX extension (Chapter 5);
• Design, implementation, and evaluation of two systems for security:

– SGXBounds: LLVM-based bounds checker to detect and tolerate security bugs in
multithreaded legacy C/C++ programs inside Intel SGX enclaves (Chapter 6);

– MPX Explained: detailed analysis of Intel MPX and discussion of its applicability
in comparison to other bounds-checking approaches (Chapter 7).
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Dependability of software systems has a long history.
On the one hand, dependability in the form of protection against hardware faults (i.e., fault

tolerance) can be traced back to the very first, analog general-purpose computing devices. The
first known fault-tolerant computer was built in 1951 in Czechoslovakia – the SAPO, “automatic
computer” [215]. This computer used triple modular redundancy to vote on the outcomes of
three Arithmetic Logic Units (ALUs) running in parallel. Since then, many fault-tolerant designs
were proposed and implemented, especially for spacecrafts of NASA [18, 215]. Even though
protection against hardware errors is most important in safety-critical systems such as aircrafts,
nuclear power plants, and railroad systems, fault-tolerant features slowly made their way into
commodity computers. Nowadays, commodity-hardware systems may include ECC-protected
memory, store their data on RAID hard drives, and communicate via a reliable TCP/IP network
stack. The only part of hardware for which there is no common fault-tolerant solution is the
CPU itself. We devoted the first part of this thesis to exactly this remaining problem, where we
presented ∆-encoding, Elzar, and HAFT techniques to combat sporadic CPU faults.

On the other hand, dependability in the form of protection against software faults (i.e., systems
security) developed much later, as a reply to the quick spread of computer viruses [145]. Arguably,
the first malicious program to exploit software bugs was the Morris worm, spread by Robert
Tappan Morris in 1988 [177]. The Morris worm exploited several known vulnerabilities in Unix
command-line tools such as “sendmail”, “finger”, and “rexec” to infect the victim computer
and propagate it further on the Internet. Nowadays, the unsolved problem of zero-day exploits
and ubiquitous software vulnerabilities leads to high-profile attacks such as Heartbleed [12] and
Cloudbleed [185] that can affect 17% of all Internet’s web servers and cost up to $500 million
[227]. Among different kinds of software bugs exploited, memory corruption bugs that violate
memory safety are the most important and disastrous ones [225]. The second part of this thesis
describes memory-safety solutions to detect and tolerate memory corruptions, with SGXBounds
and Intel MPX techniques discussed in detail.
In what follows, we introduce common terminology used throughout this thesis and briefly

discuss the current landscape of techniques to defend against hardware and software faults.

2.1 Common terminology

For the sake of completeness, we introduce the terminology and taxonomy of dependable systems
used throughout this thesis. For definitions and discussions, we heavily rely on the classic paper
“Basic Concepts and Taxonomy of Dependable and Secure Computing” by Avizienis et al. [19].
For the purposes of this thesis, we present only a minimally needed subset of all definitions and
illustrate them with examples directly related to our work. On several occasions, we cite directly
from this paper, since some definitions are impossible to formulate better.
Throughout this thesis, we casually assume that dependability is an umbrella term for fault

tolerance to protect against hardware faults and systems security to protect against software
faults. Loosely, we could code it in math terms: “dependability = fault tolerance + systems
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security”. We provide more rigorous definitions for these terms and their applicability to our
work below. First, however, we need to introduce the necessary concepts of a computing system,
its service and its state, as well as the defitions for faults, errors, and failures.

2.1.1 Computing system, its service, and its states
In this thesis, we develop techniques that add dependability guarantees to existing, unmodified
C/C++ programs. More rigorously, our developed techniques provide the dependability property
to existing computing systems.
Computing system is a single entity interacting with other entities (other systems). We call
other systems the environment of our system; these other systems include the physical world,
other hardware, software, and humans. The computing system can be characterized by several
fundamental properties: functionality, performance, dependability, and cost.

In this thesis, we present techniques that add dependability guarantees to arbitrary unmodified
C/C++ programs. Thus, for our purposes, a computing system is a legacy C/C++ program
that receives inputs from its environment (network, command-line arguments, files, or humans),
processes them, and sends outputs back to the environment.
The properties most relevant to our thesis are performance and dependability. By the

performance property we imply performance and memory overheads with respect to original,
unmodified programs. In particular, we measure performance overhead as the overhead in
runtime (in seconds, for standalone programs) or in throughput and latency (in messages/second
or seconds respectively, for server programs). We measure memory overhead as the overhead of
peak actively used (i.e., working set size) or reserved (i.e., total allocated) memory of a program.
By the dependability property we imply the ability of the system to continue its correct execution
in presence of faults. We measure dependability qualitatively as integrity/security guarantees
(well-known, representative faults being prevented by our techniques) and quantitatively as fault
coverage (number of faults successfully prevented). We are not interested in the functionality
and cost properties mentioned above because we do not develop programs and do not change
their original functions, but rather transparently add dependability.
Service delivered by a system is the way the system implements its functionality as perceived
by user. Strictly speaking, to deliver its service, the system moves through a sequence of states.
One state encompasses all computation, stored information, communication, and physical
condition of the system. For example, the C program’s state is comprised of the currently
executed instruction, all CPU registers and the state of CPU execution units (computation),
CPU caches, internal CPU buffers, RAM, files on a hard drive (stored information), open
sockets for input/output, network connections and packets currently sent through network
(communications), and the state of all involved peripherals (physical condition).

The part of the system state that is visible to the user and can be modified by him/her is
called external state, while the part hidden from the user and environment is called internal state.
In our example of the C program’s state, the external state comprises open sockets, connections,
and files; the internal state comprises CPU registers, caches, RAM, etc.

2.1.2 Faults, errors, and failures
The ultimate goal of dependability is to ensure correct service of the system, i.e., the system
executes correct functions on correct data at all times. Unfortunately, systems may sometimes
misbehave: the system can experience a failure – an event when the delivered service deviates
from correct service. In real world, a failure of a system always has a root cause (a fault) that
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corrupts the state of the system (an error) and ultimately manifests itself in the observable
failure.
Fault is an initial cause of an error in the system state. There are many kinds and classifications
of faults; here we give an overview of only the most relevant ones.
Development faults are the faults occurring during system development. The typical example

of a development fault is a software bug – an accidental mistake in code done by a careless
programmer. Opposite to development faults, operational faults occur during service delivery
by the system. A spurious bit-flip in a DRAM cell is an example of an operational fault during
execution of a program.
Internal faults are faults originating inside the system itself, due to its internal defects. Software

bugs are internal faults since they lurk in the incorrectly written program code. Faults due to
hardware aging (e.g., stuck-at bits in CPU registers) are also internal faults since the system
includes the CPU chip in its boundary. External faults originate outside the system and penetrate
it via communication channels or interference. Bit-flips in memory chips due to cosmic rays
are examples of external faults. We refer to internal faults that enable external faults to harm
the system as vulnerabilities. For example, a software bug (internal fault) that is triggered by
malicious input from an attacker (external fault) is escalated to a security vulnerability.
Transient faults occur sporadically and randomly for a brief moment in time. They affect

different parts of the system state, i.e., they activate uniformly random errors. In contrast,
permanent faults occur in the system and do not disappear with time. Somewhere in-between
lie intermittent faults which occur sporadically and stay for a short time, possibly re-occurring
again later. Permanent faults activate deterministic errors, infinitely affecting the same part of
the state. Hardware bit-flips are examples of transient faults, while hardware stuck-at bits and
software memory corruption bugs are permanent faults.
Soft faults are faults which are hard to impossible to reproduce. Hard faults, on the contrary,

are faults which are reproducible. Most transient faults are soft, and most permanent faults are
hard. However, this matching becomes blurred in complex software, when permanent faults can
lead to spontaneous, non-reproducible errors (thus, they are soft faults).

Faults can be further classified into natural and human-made, hardware and software, malicious
and non-malicious faults. With this classification, we can give rigorous definitions of faults that
we examine in this thesis:

• Hardware CPU/RAM faults are operational external natural hardware non-malicious
faults occurring in CPU and RAM components of the computing system. They can be
both transient, intermittent, and permanent in nature. They also can be soft or hard.

• Software memory-corruption bugs are development internal human-made software
malicious permanent hard faults occurring during execution of the computing system.
Their root causes are mistakes in program code.

Error is an incorrect state (part of the total state) of the system. One example of an error
is execution of a wrong instruction in the program due to a hardware fault in the Instruction
Pointer (IP) CPU register. Another example of an error is a wrong value of some critical variable
in the program due to a software memory corruption bug.

Faults are the root causes of errors: faults are said to activate errors. Note that not every fault
leads to an error; such faults are called dormant. For example, a bit-flip in a CPU register that
is not used by the program does not do any harm to the system.

It is important to note that errors can propagate through successive states of the system and
corrupt greater and greater parts of state. For example, a single buffer overflow bug may be
exploited multiple times to eventually dump all program memory through a network (this can
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result in a huge data leak such as Heartbleed [227]).
Failure is a visible to the user deviation from correct service behavior. Crash or hang of a
computing system is a common kind of failure: the system does not respond to user requests
and is thus useless. Systems that exhibit only this kind of failure are called fail-stop. More
insidious kind of failure is a Silent Data Corruption (SDC): the system continues its execution
but provides incorrect results to the user. Systems that never crash and never produce SDCs are
called fail-safe.
Errors (corrupted system states) are causes of system failures: errors are said to propagate

to failures. As with faults, not every error leads to a failure; such errors are called latent. One
example is when a buffer overflow bug is neutralized by a subsequent sanity check in the program.
Failures can be classified as content failures and timing failures. Content failures mean that

the content delivered to the user is incorrect and deviates from the expected results. Timing
failures mean that the content is delivered to the user either too early or too late. In this thesis,
we only consider content failures and neglect timing ones.

For dependability, all failures happening in the system must possess the detectability property:
the system must signal to the user that a failure occurred. It is important that dependable
systems do not have false positives (false alarms) and false negatives (unsignaled failures). In
this thesis, we develop techniques that always provide detectability of failures.

Failures can also by classified by their consequences. Some failures may affect only availability,
i.e., the duration of outage of the system before it runs again. Other failures may compromise
confidentiality, i.e., leak confidential data. Yet other failures may reduce integrity of the system
state, i.e., corrupt state and force the system to produce nonsense data. In this thesis, we mainly
aim to preserve system integrity in spite of failures.

Finally, failures can be minor or catastrophic. Minor failures entail consequences of similar cost
to the benefits provided by the service. Catastrophic failures, in contrast, entail consequences
that are very harmful: they are orders of magnitude higher than the benefits provided by the
service. Techniques in this thesis concentrate on preventing catastrophic failures like the ones
mentioned in Chapter 1.

2.1.3 Dependability, fault tolerance, and systems security

Now that we introduced all necessary definitions, we can discuss the concepts of dependability,
fault tolerance, and systems security.
Dependability of a system is “the ability to avoid service failures that are more frequent and
more severe than is acceptable” [19]. Dependability is a broad concept that encompasses the
following characteristics of the system:

• Availability is readiness for correct service.
• Reliability is continuity of correct service.
• Safety is absence of catastrophic consequences for the user of the service.
• Integrity is absence of incorrect state and corrupt data.
• Maintainability is ability to undergo repairs and modifications.
Security is another concept that includes availability and integrity characteristics from de-

pendability and adds confidentiality – absence of unauthorized disclosure of information. Note
that even though we discuss confidentiality in SGXBounds (Chapter 6), our primary goal is
never to develop protocols for confidentiality. In fact, by enforcing integrity in SGXBounds, we
automatically enforce confidentiality.
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In this thesis, we concentrate only on the reliability, safety, and integrity attributes of de-
pendability (hence the title of this thesis). In particular, we develop techniques that enforce (1)
reliability in the sense of tolerating faults and continuing correct execution, (2) safety in the
sense that the service never leads to catastrophic loss of data, money, or lives, and (3) integrity
in the sense that the service is always correct and never produces corrupt results.

We make a distinction between two kinds of dependability: fault tolerance and systems security.
In case of fault tolerance, we assume only hardware CPU/RAM faults. Therefore, reliability,
safety, and integrity of our fault-tolerance techniques guarantee correct and continuous execution
of the program in spite of hardware faults. In case of systems security, we deal with software
memory-corruption bugs. Thus, reliability, safety, and integrity of our systems-security techniques
imply correct and continuous execution of the program in spite of software bugs.

Being it fault tolerance or systems security, we must separate two phases of protection against
faults: fault detection and fault recovery. Fault detection is the first phase when a fault/error is
detected by some form of redundancy built-in in the program execution. Fault recovery is the
second phase when a detected fault/error is removed or masked to allow continuous execution.
In this thesis, ∆-encoding and Intel MPX provide only fault detection, while Elzar, HAFT, and
SGXBounds additionally support fault recovery.
Lastly, this thesis employs only one means to attain dependability: fault tolerance. Strictly

speaking, fault-tolerance techniques avoid service failures in the presence of faults. Other means
include fault prevention (preventing occurrence of faults), fault removal (reducing the number
and severity of occurred faults), and fault forecasting (estimating the future likelihood and
consequences of faults). All these means are out of scope of this thesis; refer to [19] for their
discussion.

2.2 Hardware faults and fault tolerance

In the first part of this thesis, we introduce defenses against hardware faults such as bit-flips
and stuck-at bits. In particular, we concentrate on faults in CPU and RAM as discussed in the
previous chapter.

Hardware faults in CPU and RAM are probabilistic and occur in random parts of the program
at random execution moments. This dictates uniform protection of the whole program during
the whole execution. To provide such protection, a form of redundancy needs to be introduced
at some level of the software-hardware stack. Protection against hardware faults using some
form of redundancy is generally referred to as fault tolerance.

Two classes of redundancy are possible: spatial or temporal redundancy. Spatial redundancy
implies replication of some hardware component of the system, e.g., running two or three separate
machines that compute over the same data. Temporal redundancy implies replication in time,
i.e., one hardware component computes over the same data twice or thrice, one computation after
the other. (In fact, there is no strict division of techniques on only-spatial and only-temporal,
e.g., a single technique can repeat the computation twice on one CPU but using different sets of
CPU registers.) In either case, at some critical points in computation the outputs of replicas
must be compared: if they are the same, then no fault happened and the system may continue
its execution, otherwise the system must signal an error and crash (fail-stop) or try to tolerate it
(fail-safe).

There are several classic approaches to detect hardware faults in CPUs and RAM: dual and
triple modular redundancy, lock step CPUs, state machine replication, and local software-based
hardening. In what follows, we briefly describe each of these approaches. Note though that the
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defenses we develop in this thesis – ∆-encoding, Elzar, and HAFT – fall under the local-hardening
class of techniques with mostly temporal redundancy.

2.2.1 Dual and Triple Modular Redundancy

Dual and Triple Modular Redundancy (DMR and TMR) are classical approaches for achieving
fault tolerance in safety-critical systems [144]. Initially they were used only at hardware level,
but later were also adapted to software applications.

DMR employs two separate replicas that perform the same computation on the same inputs and
periodically compares outputs before critical operations. For example, DMR can be implemented
using two CPUs working in tight lock step (see next section). Another example of DMR is the
system with two cores on the same CPU chip which execute the same program and periodically
synchronize before outputting results. No matter what the implementation, a DMR system
assumes that only one of two replicas can be faulty at any moment in time, and that this
discrepancy in the output is detected by simple comparison. Consequently, DMR can only detect
hardware faults but not tolerate them.
TMR, on the other hand, runs three replicas and detects faults by comparing three replicas’

outputs and additionally performs fault recovery by majority voting, i.e., by detecting which
replica differs from the other two and correcting its state. It imposes an obvious restriction on
the fault model: only one replica is assumed to be affected by the fault. In certain circumstances,
any two or even all three replicas may be incorrect. In this case, TMR can only perform detection
of faults but cannot tolerate them since replicas cannot agree upon one correct state.

2.2.2 Lock step CPUs

Traditionally, hardware faults such as bit-flips were detected via lock step CPUs, where two
CPUs execute the same program in parallel and synchronize and compare their outputs. Clearly,
lock step CPUs are a specific form of dual modular redundancy. Lock step CPUs are still actively
used for critical applications in the embedded domain and on mainframes. As an example, HP
NonStop [28] divides a multi-core in multiple logical single core systems and maps programs to
two cores with the help of binary rewriting and support from specialized hardware.

Unfortunately, lock-stepping requires deterministic core behavior and is not readily applicable to
modern CPUs that have become increasingly more non-deterministic [28]. Therefore, applications
running in lock step cannot harness the power of multiple cores (which would lead to non-
deterministic execution of multi-threaded programs).
Moreover, lock step CPUs provide only fault detection, requiring a separate mechanism for

fault recovery. Finally, the cycle overhead of lock step CPUs/cores is at least 100%, i.e., we need
twice the number of CPU cycles to execute a program. This overhead is usually prohibitively
expensive in cloud and data center environments.

It must be noted that the same issues pertain to three CPUs working in lock step (a form of
triple modular redundancy): it is impossible to run non-deterministic multithreaded programs
and performance overhead becomes prohibitive.

2.2.3 State Machine Replication

To achieve high availability, many systems [22, 41, 102] use State Machine Replication (SMR)
[201]. These systems typically assume a fail-stop model, where the only type of faults happening
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are machine or process crashes. Unfortunately, this model does not cover transient faults which
might lead to arbitrary state corruptions, which is the main focus of this thesis.
On the other hand, Byzantine Fault Tolerance (BFT) [45] tolerates machine crashes as

well as transient hardware faults that lead to state corruptions (and even malicious attacks).
Unfortunately, BFT incurs prohibitive overheads because of the overly pessimistic fault model.
For example, PBFT [45] requires 3f + 1 replicas to tolerate f faults. To reduce the number of
replicas, systems like MinBFT [235] and CheapBFT [118] use a hybrid fault model and require
only 2f + 1 nodes. To additionally decrease the performance overhead of BFT, researchers
explored the use of specialized trusted hardware [118, 235], relaxed network assumptions [181,
182], speculative execution of requests [124], and OS support [122]. Nonetheless, BFT techniques
are still considered too expensive and are not used in practice.
A common challenge for all SMR solutions is multithreading. To support multithreaded

programs, SMR techniques require some form of deterministic execution. For example, Crane [61]
builds on top of deterministic multithreading [139, 175], Eve [119] speculatively executes requests
and falls back to deterministic re-execution in case of conflicts, and Rex [89] enforces deterministic
replay of the primary’s trace on secondary replicas. Unfortunately, all these approaches are
cumbersome and introduce additional performance overheads.

2.2.4 Local Software-Based Hardening

Local software-based hardening techniques can be broadly divided into three categories: Thread-
Level Redundancy (TLR) also called Redundant Multithreading (RMT), Process-Level Redun-
dancy (PLR), and Instruction-Level Redundancy (ILR).
Redundant Multithreading (RMT). In RMT approaches [153, 257], a hardened program
spawns an additional trailing thread for each original thread. During runtime, trailing threads
execute on separate spare CPU cores or take advantage of the Simultaneous Multithreading
(SMT) capabilities of modern CPUs. RMT allows keeping only one memory state among replicas
(assuming that memory is protected via ECC). Unfortunately, RMT approaches heavily rely on
the assumption of spare cores or unused SMT, which is commonly not the case in multithreaded
environments where programs tend to use all available CPU cores.

RMT approaches make use of multiple execution blocks available in modern CPUs by running
redundant copies of a program on multiple threads. Before each memory operation, its operands
have to be checked for consistency among threads, which causes a significant performance
overhead (roughly 200%). DAFT [257] reduces the effect of this issue by having non-blocking
memory accesses, that is, by executing memory operations asynchronously with checks. Its
successor RAFT [258] goes even further and monitors replicas’ behavior only at the system call
level. This technique shows only 2.8% average overhead. That being said, all approaches from
this category still require deterministic behavior of the program to perform consistency checking.
Process Level Redundancy (PLR). PLR implements the similar idea as RMT, but at the
level of separate processes [214, 258]. In PLR, each process replica operates on its own memory
state, and all processes synchronize on system calls. In multithreaded environments, allocating a
separate memory state for each process raises a challenge of non-determinism because memory
interleavings can result in discrepancies among processes and lead to false positives. Some PLR
approaches resolve this challenge by enforcing deterministic multithreading [65]. PLR might incur
a lower performance overhead than RMT but it still requires spare cores for efficient execution.
Instruction-Level Redundancy (ILR). In contrast to RMT and PLR, ILR performs replica-
tion inside each thread and does not require additional CPU cores [170, 191]. This is achieved by
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replicating instructions of the original program and weaving them in the same thread for parallel
execution. These instructions do not change the functionality of the program, but a fault in one
replica will lead to a different result of the computation which can be detected by comparing
replicas’ results (checking). This in-thread replication seamlessly enables multithreading and
requires no spare cores for performance.
EDDI [170] was the first implementation of ILR and exploited unused Instruction-Level

Parallelism (ILP) available in modern processors to run replicated instructions in parallel. SWIFT
[191] was the logical continuation of EDDI, adding control-flow protection and eliminating memory
state replication by assuming an ECC-protected memory. With this set of optimizations, Swift
showed impressively low performance overhead of 40% but used a VLIW-based Intel Itanium
2 processor1. Later research re-implemented Swift in x86 and observed overheads of 116% on
average [255]. This high overhead indicates that ILR imposes high pressure on the CPU backend.
Even worse, these numbers are reported for duplicated instructions, implying that instruction
triplication results in significantly higher performance impact.
We should note that the techniques introduced in the first part of this thesis – ∆-encoding,

Elzar, and HAFT – all rely on instruction-level redundancy for hardware fault detection.

2.3 Software faults and systems security
In the second part of this thesis, we develop and discuss defenses against software faults aka
software bugs. In contrast to hardware faults, which are uniformly random and probabilistic in
their nature, software faults are localized and deterministic: if a programmer introduced a bug
in the program, then this bug will be triggered each time vulnerable code is executed. Thus,
protection against software faults generally falls under the umbrella term of systems security.
The most common and arguably most important software bugs are memory corruption bugs

[225]. This class of bugs pertains to unsafe languages such as C/C++ and covers all cases when
a pointer in the program incorrectly points to a wrong object or to a garbage value. Whenever
such a “poisoned” pointer is dereferenced, the value loaded from/stored to the pointed address
is incorrect, i.e., this value is not what the programmer originally intended and not what the
program expects. The result can be a segmentation fault and consequent crash of the program.
Hackers can use this to launch Denial-Of-Service attacks (DOS attacks) and make programs
unresponsive. However, a much worse result of an incorrectly dereferenced pointer is when the
program continues execution but with the wrong loaded/stored value. In such cases, hackers
can launch an attack to subvert execution, escalate their privileges to seize control of the whole
system, or leak confidential data [185, 227]. Typical examples of memory corruptions include
buffer overflows, off-by-one errors, direct and indirect out-of-bounds accesses, dangling and NULL
pointers, use-after-free, etc.

To prevent memory corruption bugs, memory safety must be enforced: each and every pointer
dereference (i.e., each and every memory access) must be checked that it still points to the valid
and intended object in memory. Unsafe languages like C/C++ do not provide any means to add
such checks per se, thus these checks must be retrofitted in legacy programs using a separate
technique. In the second part of this thesis, we introduce two such memory safety techniques:
SGXBounds (Chapter 6) and Intel MPX (Chapter 7).
In what follows, we give a quick overview of existing memory safety techniques as well as of

other approaches to prevent (some subclasses of) memory corruptions.
1HP, the primary customer of Intel Itanium CPUs, switched to Intel Xeon in 2014. This effectively marks the
end of the era of Itanium CPUs.
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2.3.1 Memory safety

Memory-safety approaches prevent the very first step in any attack – exploiting a vulnerability,
such as overflowing a buffer or freeing an already freed object. Thus, a comprehensive memory-
safety defense can deterministically eliminate all memory corruption attacks.
Since we concentrate on memory corruptions in unsafe languages like C and C++, we focus

solely on spatial and temporal bugs due to incorrect use of pointers to objects [225].
By spatial bugs we imply pointers going out of bounds of their initial object – buffer over-

/underwrites and buffer over-/underflows (or simply buffer overflows) [158]. In the simplest
cases, buffer overflows are caused by a pointer incremented past the initial object: the overflow
is contiguous, because it can only read/write to immediately adjacent objects in memory. In the
more complex cases, buffer overflows can corrupt objects located far away from the initial object,
e.g., if there is a pointer arithmetic with an index variable that (maliciously) experiences integer
overflow.
By temporal bugs we imply pointers which become dangling – dangling pointer dereferences,

double frees, and invalid frees [157, 217]. In general, temporal bugs occur when an initial
pointed-to object is deallocated and thus the pointer points to some invalid memory address.
Dangling pointer dereferences access a memory region that probably contains a new object, and
thus the new object may be maliciously overwritten or leaked. Double frees and invalid frees are
more subtle but can also result in incorrect overwrites of objects.

Memory safety is the only approach that prevents the root cause of attacks, namely, memory
corruption bugs made by careless programmers [225]. It is no surprise that memory-safety
defenses made their way into specialized hardware [156] and recently culminated in Intel Memory
Protection Extensions (MPX) [109].
All memory-safety approaches rely on additional metadata stored in shadow memory.2 If

metadata is associated with objects in memory, we call it memory-safety object-based defenses,
e.g., AddressSanitizer [207], DieHard [27], Baggy Bounds [6]. In contrast, if metadata is associated
with individual pointers to objects in memory, we call it memory-safety pointer-based defenses,
e.g., SoftBound [158], CETS [157], Intel MPX [109].

Consider an example: a tiny program with one C struct object and ten different pointers into
it. An object-based approach allocates one entry in shadow memory, marking the bounds (and
liveness) of the object, usually by simply setting a bit for each 8-byte region of application memory.
A pointer-based approach allocates ten shadow-memory entries, each associated with a specific
pointer and containing its lower and upper bounds. For both object- and based-approaches, a
check is inserted into the original program code before each pointer dereference. This check loads
the corresponding metadata and compares the pointer value against the bounds and temporal
information. If a check fails, an exception is generated and usually the program is crashed.
For memory-safety approaches to work correctly, they need to propagate metadata correctly

throughout the whole program. It is rather straight-forward for object-based defenses: only
memory allocation and deallocation functions must be augmented to populate and clear shadow
memory. Since most C programs operate on memory using standard library functions “malloc”
and “free”, it is enough to wrap only these functions. Pointer-based approaches require more
instrumentation: each pointer-related instruction in the original program must be instrumented
to also propagate pointer bounds information. In general, object-based approaches are far easier

2“Shadow memory” denotes additionally allocated application memory to store metadata for security checks.
Usually, this is the dominant source of memory overhead exhibited by a particular defense. For some defenses,
the base address of such shadow region must be randomized to protect shadow memory against malicious
overwrites.
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to implement and scale, while pointer-based approaches require whole-program instrumentation.
In other words, pointer-based approaches suffer from worse modularity support and compatibility
issues (e.g., dynamic or third-party libraries) [225].
At this point it must be clear that object-based techniques incur less memory overhead but

are more coarse-grained than pointer-based ones. For example, Baggy Bounds Checking [6]
incurs less than 10% memory overhead, while the most comprehensive pointer-based approach
WatchdogLite [156] can require 4× more memory in the worst case. At the same time, object-
based approaches cannot protect against intra-object overflows, e.g., in a struct that has an
inner array. Pointer-based approaches allow so-called bounds narrowing to cope with exactly
these cases. Moreover, pointer-based approaches implement temporal checks in a disciplined
deterministic way, while object-based approaches resort to ad-hoc probabilistic protections.

2.3.2 Other approaches to prevent subclasses of memory corruption bugs

Memory safety is the only class of techniques to defend against all possible memory corruptions.
Therefore, this thesis focuses only on memory-safety defenses. For the broader discussion, however,
we mention other techniques that trade some security guarantees for better performance.
Address Space Randomization (ASR) [133, 225] is a very broad class of techniques that
change the original address space layout of the program in a random way. The key observation
is that many attacks require a precise knowledge of the address space, e.g., addresses of specific
functions for return-into-libc attacks, addresses of gadgets for ROP attacks, layouts of the stack
for stack-based attacks, etc. By randomizing the address space, we leave the attacker only tiny
chances of guessing the correct layout.
ASR techniques can be classified into coarse-grained and fine-grained. Coarse-grained ASR

randomizes only the base addresses of program and dynamic libraries segments. Its variants
are currently deployed in most operating systems under the name Address Space Layout Ran-
domization (ASLR). Fine-grained ASR, as the name suggests, performs much more fine-grained
randomization of the layout: replacing instruction sequences with equivalent sequences, inserting
garbage code (NOPs), permuting the order of basic blocks/functions, randomizing the layout of
stack variables, heap objects, and struct representations, splitting basic blocks and functions,
etc. [133].

Comparing these two classes, coarse-grained ASR incurs negligible performance overheads but
can be easily broken via information leaks or relative-addressing attacks, whereas fine-grained
ASR is harder to exploit but has observable overheads of 5 − 10%. Regarding coarse-grained
ASR, its obvious weakness stems from the fact that only base addresses are randomized. Thus, a
single leak of one address of a known-to-attacker function in the code segment is enough to reveal
the complete virtual space layout of this segment and launch an attack. Regarding fine-grained
ASR, this class significantly raises the bar for an attacker, since several information leaks are
required for a successful exploit. On the negative side, fine-grained ASR introduces substantial
memory overhead of up to 20− 40% [133].
In general, any ASR defense requires a high level of entropy so that the probability of an

attacker guessing the correct layout is very low. In addition, ASR cannot fully protect against
information leaks: the layout of data in memory can be changed, but the data is still stored in
plaintext.
Code Pointer Integrity (CPI) [129] is a compiler-based defense to protect against control-flow
hijacking attacks. Its main security goal is to prevent the attacker from modifying any code
pointer (or, transiently, any pointer that can point to a code pointer) in the program. This
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is achieved by splitting the whole address space of the application into disjoint safe region
and regular region. All memory accesses that are proven at compile-time to operate on code
pointers are redirected to the safe region and are instrumented with the usual memory-safety
checks. The key idea in CPI is that code pointers constitute a minority (e.g., 6% for SPEC2006)
of all pointers in the program. Thus, distinguishing these pointers and instrumenting only
them significantly decreases performance and memory overheads in comparison to complete
memory-safety approaches.

Performance overheads of complete CPI constitute 8% on average and up to 45% for pointer-
intensive applications. However, the real problem is the introduction of the safe region: in the
flat-array implementation and on x86-64, CPI requires doubling the size and also hiding the base
address of the safe region using ASLR [74]. Moreover, CPI detects only control-flow hijacking
and overlooks data-only attacks and information leaks.
Control-Flow Integrity (CFI) is a general approach to prevent ROP-style attacks and was
introduced in mid-2000’s by Abadi et al. [4]. In contrast to Code Pointer Integrity, CFI does not
prevent the modification of a code pointer, but the use (dereference) of a maliciously modified
pointer.

The initial workflow of CFI was as follows: (1) at compile-time, generate a precise control-flow
graph (CFG); (2) based on CFG, assign equivalence classes to code pointer targets; (3) embed
equivalence class identifier (a simple integer) in the code of each target; (4) insert a check
before each code pointer dereference that compares the current code pointer value against the
embedded-in-target equivalence class; (5) at run-time, the resultant executable self-checks itself.
This initial design assumes that the code is protected via Data Execution Prevention (DEP)

[225] and cannot be modified by the attacker (that is why it is safe to keep identifiers directly
in code). It also assumes that a fine-grained CFG can be obtained, which can only be satisfied
with whole-program analysis. Unfortunately, even if these assumptions are satisfied, static CFI
(also called forward-edge CFI ) is not sufficient to protect from dynamic stack-based attacks.
Original CFI suggests an additional shadow stack mechanism to prevent such dynamic attacks;
such defenses are sometimes called backward-edge CFI.
After the introduction of the CFI concept, many implementations of CFI were introduced:

some of them protect only forward edges, some add CFI at a binary level, some utilize virtual
machines [40]. The initial definition of CFI became blurred, and nowadays many control flow
hijacking defenses are referred to as CFI. For example, Cryptographically Enforced Control
Flow Integrity (CCFI) [146] does not even make use of CFG, instead encoding all pointers at
run-time. As of 2017, there are around 25 different CFI approaches, all with different design
choices affecting their applicability, compatibility, performance and security guarantees.3
In general, CFI approaches introduce low performance overhead of 1− 10%. Despite all CFI

implementations differing in their respective threat models and security guarantees, the general
consensus is that fine-grained CFI is a strong defense against ROP-attacks. Unfortunately, CFI
does not protect against data-only attacks or leaks of confidential data.
Data-Flow Integrity (DFI) defends against control flow and non-control data attacks by
instrumenting all writes and reads in the program [44]. DFI is a generalization of CFI because it
inserts checks not only on code pointer dereferences, but on all memory reads.
DFI works in three phases: (1) at compile-time, a static points-to whole-program analysis is

performed to identify sets of write-instructions for each read instruction; (2) the identified sets
are compiled together into one shadow-memory table; (3) an update to a corresponding entry in

3We refer the reader to a survey of state-of-the-art CFI approaches [40].
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the shadow-memory table is inserted before each write; (4) a check against the corresponding
entry in the shadow-memory table is inserted before each read; (5) at run-time, the resultant
executable detects all reads of incorrectly written objects.
Interestingly, even though DFI dictates checks only on reads, it must employ an additional

mechanism to be sure that unchecked writes do not intentionally overwrite the shadow-memory
table. Roughly speaking, a really protected DFI implementation must insert some form of checks
on writes as well.
DFI is a very strong technique to protect against control-flow hijacking or data-only attacks.

However, DFI cannot stop information leaks: even though a check is executed before an out-of-
bounds read, the read value was correctly written by the program, and no alarm is raised. In
addition, due to extensive instrumentation and the need to consult the shadow-memory table,
DFI exhibits performance overheads of 100% and more. Memory overhead can peak up to 50%
because of the shadow-memory table.
Data Integrity is a defense that (similar to Code Pointer Integrity) prevents the attacker from
modifying any variables in the program. Naturally, Data Integrity is a superset of CPI, adding
protection against non-control data attacks.
We are aware of only one implementation of Data Integrity, namely, Write Integrity Testing

(WIT) [7]. WIT is a compile-time technique that builds on a whole-program points-to analysis
to compute control-flow and data-flow graphs (CFG and DFG). Based on CFG and DFG, WIT
identifies sets of objects that can be written by each write instruction in the program. At each
write, WIT inserts a check to validate if a current written-to object belongs to the pre-calculated
set. This way, WIT enforces write integrity, i.e., no instruction in the program can modify
an incorrect object. To embrace dynamically allocated objects, WIT introduces a metadata
table (“color table”) which is stored in shadow memory and consulted on each appropriate write
instruction.
Interestingly, WIT is an improvement over Data-Flow Integrity (DFI) discussed above. In

contrast to DFI, WIT does not insert checks on read instructions but rather on writes. Thus,
WIT introduces no instrumentation on reads at all, which leads to better performance at the
cost of no protection against malicious reads.

WIT has average performance overheads of 15% and memory overheads of 13%. WIT does not
prevent out-of-bound reads and thus suffers from information leakage. Additionally, points-to
analyses may provide inaccurate over-approximated results and weaken WIT’s security guarantees
(similar to CFI).
Data Space Randomization (DSR) is a probabilistic defense that tries to prevent all possible
attacks including information leaks [30, 42]. In contrast to ASR which strives to randomize only
addresses where code and data reside, DSR randomizes the data itself in order to obfuscate it
for a malicious attacker. This randomization usually implies XORing all pieces of data with a
predefined secret mask on writes (XOR encryption) and XORing back with the same mask on
reads (XOR decryption). DSR can be thought of as a weak but sufficient form of cryptographic
encryption.

In contrast to other data-based defenses such as DFI and Data Integrity, DSR does not insert
checks which crash the program on attack detection. Instead, DSR instruments the program such
that all sensitive data is stored XOR-encrypted in memory and thus is useless for an attacker (she
cannot understand the read values and she cannot inject her own values other than randomly).
This interesting property of DSR allows for low-overhead instrumentation without any checks.

Ideally, DSR should generate a distinct XOR mask for each data object. However, due to
the same imprecisions of a static points-to analysis as in cases of Data Integrity and DFI, DSR
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introduces over-approximation of sets of data objects with the same mask.
Performance overhead of DSR is 10 − 15% [42]. DSR does not produce and maintain any

shadow-memory metadata and thus incurs no memory overhead.
One obvious limitation of DSR is its reliance on XOR masks being kept secret. If the attacker

is able to read XOR masks from the code segment (where they are kept), she can launch any
attack by injecting correctly XORed values. Likewise, the attacker can infer XOR masks by
analyzing the leaked obfuscated data, thus obtaining confidential data in plain-text. Another
issue is the treatment of dynamically allocated objects on heap. In general, these objects will
end up in the same equivalence class and assigned the same XOR mask. Thus, corruptions from
one heap object to another will not be detected.
Instruction Set Randomization (ISR) [120] is a class of binary-based defenses that obfuscate
the original assembly of the program. The key idea is to XOR each instruction’s opcode with a
secret integer such that the attacker cannot inject his own malicious assembly (without knowing
the secret, she can only inject some random instructions). This defense was invented to deflect
code injection vectors. However, modern defenses such as Data Execution Prevention (DEP)
[225] allow for non-writable code pages and non-executable data pages, which already removes
any possibility of code injection. Therefore, ISR defenses became obsolete and we mention them
here only for completeness.
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3 ∆-encoding: Leveraging Instruction Level
Parallelism

The first class of faults we concentrate on in this thesis are hardware CPU and RAM faults. More
specifically, we are interested in those faults that lead to silent data corruptions (SDCs) without
crashing the computer. Faults that result in a crash or a hang are out of scope of our research:
these faults are trivially detected by a watchdog and tolerated by a simple reboot of a machine.
As mentioned in the previous chapters, there is no established commodity-hardware solution

to protect against CPU faults—these faults are considered too rare and too insignificant to be
worthy of attention. RAM faults, in contrast, are widely acknowledged as one of the major
contributors to hardware glitches and wrong computations, with Error Correcting Codes (ECC)
being a conventional technique to tolerate them. However, as we show in the next section, current
assumptions about the rates and effects of CPU and RAM faults are routinely violated. CPU
faults are more common than one would expect and their rate is predicted to increase drastically
in the near future. RAM faults too are more intricate than one would anticipate, and ECC alone
does not provide sufficient level of protection.
Thus, the first technique we describe in this thesis is ∆-encoding to detect transient, inter-

mittent, and permanent CPU and RAM faults in legacy C programs. ∆-encoding provides
very high (four-nines) fault coverage even in case of hard errors in CPU and error bursts in
RAM. To achieve this, ∆-encoding relies on underutilized Instruction Level Parallelism (ILP)
resources of modern CPUs, in particular, on deep instruction pipelining, out-of-order execution,
and sophisticated branch prediction. In short, ∆-encoding effectively employs advanced features
of commodity-hardware CPUs described in §1.1.

The content of this chapter is based on the paper “∆-encoding: Practical Encoded Processing”
presented at DSN’2015 [125]. The paper was a joint collaboration with Christof Fetzer.

3.1 Rationale

A dramatic decrease in hardware reliability, most importantly in CPUs and RAM, was forecast
already in the 2000s [35]. This is due to the decrease of feature sizes with each new hardware
generation, causing variations in transistor behavior. These variations, if not masked at the
hardware level, can lead to silent data corruptions (SDCs) in a program. Moreover, additional
effects such as transistor aging and soft errors (due to alpha particles and cosmic rays hitting
silicon chips) increase the probability of a program to produce wrong results.

Recent studies provide supporting evidence for this forecast. Google analyzed DRAM failure
patterns across its server fleet [203]. The research concluded that (1) DRAM failure rates are
higher than previously expected1, (2) memory errors are strongly correlated, and (3) memory
errors are dominated by hard errors rather than by soft errors. Another study shows that even

1One third of machines under study experienced at least one correctable memory error per year; the annual rate
of uncorrectable errors amounted to a significant 1.3%. Note that all memory modules were equipped with
error correcting codes (ECC).
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ECC-enabled DRAM chips do not provide adequate protection from the emerging problem of
disturbance errors, when accesses to one DRAM row corrupt data in adjacent rows [123].

Similar findings were revealed in regard to modern CPUs. Microsoft conducted analysis of
hardware failures on a fleet of 950,000 machines [165]. This work showed that (1) failure rates
of modern CPU subsystems are non-negligible2, (2) failure rates increase with the increasing
CPU speed, and (3) CPU faults tend to be intermittent rather than transient. Unfortunately,
the study considers only crash failures and not data corruptions in applications; other studies,
however, indicate that CPU faults result in a non-trivial number of SDCs [137].
Many hardware errors, either in CPU or in memory, lead to a process or machine crash.

Still, some hardware faults induce programs to output incorrect results, which can propagate
further and lead to catastrophic consequences. One anecdotal evidence is the famous Amazon
S3 unavailability incident, when a single bit corruption in a few messages caused an 8-hour
outage [8].
The consequences are even more disastrous in safety-critical applications. As one example,

Toyota Motor Corporation was forced to recall its automobiles in the years 2009–2011 after
several reports that Toyota cars experienced unintended acceleration [243]. The number of
victims was estimated to be 37, and financial loss for Toyota $2,470 million. Though the exact
causes of the problem were not found out, insufficient protection against hardware errors could
be one of them:

“Michael Barr of the Barr Group testified that . . . Toyota did not follow best
practices for real-time life-critical software, and that a single bit flip which can be
caused by cosmic rays could cause unintended acceleration.”

Detecting hardware faults of all types is a necessity for applications from different domains.
Tolerating faults once they are found can often be achieved by simply restarting the process or
rebooting the machine: in most cases it is enough that incorrect computation results are not
propagated to the outside. Therefore, we concentrate on hardware error detection in this chapter.
(More precisely, we concentrate on detection of data corruptions that occur due to hardware
errors changing a program’s data flow.)

The conservative error detection approach, widely used in automotive and aerospace systems,
is to employ some form of hardware-based fault tolerance. Usual mechanisms include triple/dual
modular redundancy (TMR/DMR), flip-flop hardening, watchdogs, etc. [23]. The hardware-based
approach, however, implies higher hardware costs and lower performance in comparison to modern
commodity hardware. For example, Intel conjectures that future self-driving cars will require
greater computing power and suggests to use commodity CPUs [104].
Another approach called Software-Implemented Hardware Fault Tolerance (SIHFT) [85]

achieves fault tolerance via software-only methods; thus, it does not require specialized hardware.
However, in spite of the experimental studies clearly indicating the prevalence of permanent and
intermittent errors in CPU and memory, most SIHFT techniques assume only transient errors.
In this sense, these techniques favor performance over fault coverage and cannot be relied upon
in safety-critical systems.

One notable SIHFT technique that can detect both permanent and transient errors in underlying
hardware is encoded processing [198]. It is based on the theory of arithmetic codes (AN-encoding)
and was used in fault-tolerant computing [80]. Unfortunately, pure AN-encoding has limited
fault coverage. Advanced variants of AN-encoding exist [198], but programs encoded with

2For example, the chance of a crash is 1 in 190 for machines with the total CPU time of 30 days.
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them – namely with the ANBD variant – experience slowdowns of up to 250×. Thus, though
ANBD-encoding yields very high fault coverage, it is impractical in terms of performance.

As a result, existing SIHFT techniques either do not detect all possible hardware errors or
incur prohibitive performance penalties. This work makes a step towards hardening critical
computations against permanent and transient hardware errors with a moderate performance
penalty.

Our approach, called ∆-encoding, is based on the combination of AN-encoding and duplicate
execution of instructions. The original program data flow is duplicated and AN-encoded at
compile-time; at run-time, the program effectively works on two copies of data encoded in two
different ways. The careful choice of AN-encoding parameters coupled with execution duplication
greatly simplifies AN-encoded operations, improving the performance; moreover, the combination
of approaches facilitates detection of all types of hardware errors.

We implemented ∆-encoding as a source-to-source transformer. Our fault injection experiments
reveal that ∆-encoding can detect, on average, 99.997% of injected errors. Our performance
evaluation shows that ∆-encoding incurs an acceptable slowdown of 2–4× in comparison to
native execution.

3.2 Background

The ∆-encoding technique proposed in this chapter combines two existing approaches: AN-
encoding and duplicated instructions. In this section, we briefly discuss both of them.

3.2.1 AN-encoding

AN-encoding is a technique to protect program execution from transient and permanent errors in
the underlying hardware. It is based on AN codes – error correcting codes suitable for arithmetic
operations [37]. Schiffel [198] describes AN-encoding and its variants in detail.
With AN codes, to encode an integer n, one multiplies it by a constant A. The resultant

integer n̂ = A · n is called a code word; all words that are not multiples of A are invalid. If
a hardware error alters n̂, it becomes an invalid word with high probability; this probability
depends on A [198]. If n̂ is still a code word, n̂ mod A equals 0; if the result of this operation is
not 0, a hardware error is detected. To decode, a division n̂/A is used.
AN-encoding exploits information redundancy, i.e., additional bits are required to store an

encoded integer. In practice, the number of bits to represent encoded integers is doubled.
As an example, consider the addition of two integers 5 and 3 (see Figure 3.1a). For simplicity,

we choose A = 11. AN-encoded integers are thus A · 5 = 55 and A · 3 = 33. These code words can
be directly added and result in a code word: 55 + 33 = 88. Now, if a hardware error would cause
any of the terms to become invalid, the sum will also be an invalid code. Listing Figure 3.1b
shows an AN-encoded version of the original addition.
This example highlights two main properties of AN-encoding: first, operations on encoded

inputs directly produce encoded outputs, second, errors in inputs propagate to outputs. The
first property means that by substituting all original operations with encoded operations, the
data flow of a program is protected against hardware faults. The second property implies that
the encoded execution of a program does not require intermediate checks.
One drawback of AN-encoding is that not all operations on encoded values are easily imple-

mented. As the previous example shows, encoded addition corresponds to the usual arithmetic
addition; subtractions and comparisons are also trivial. However, encoded multiplication, division,
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(a) Native program
1 int32_t a = 5;
2 int32_t b = 3;
3 int32_t c = a + b;
4 printf("%d", c);

(b) AN-encoded program
1 #define A 11
2 int64_t a = 5 * A;
3 int64_t b = 3 * A;
4 int64_t c = a + b;
5 if (c % A != 0) raise_error();
6 printf("%d", c/A);

(c) Duplicated instructions program
1 int32_t a1 = 5; int32_t a2 = 5;
2 int32_t b1 = 3; int32_t b2 = 3;
3 int32_t c1 = a1 + b1; int32_t c2 = a2 + b2;
4 if (c1 != c2) raise_error();
5 printf("%d", c1);

(d) ∆-encoded program
1 #define A1 9 #define A2 7
2 int64_t a1 = 5 * A1; int64_t a2 = 5 * A2;
3 int64_t b1 = 3 * A1; int64_t b2 = 3 * A2;
4 int64_t c1 = a1 + b1; int64_t c2 = a2 + b2;
5 if (c1 % A1 != 0 || c2 % A2 != 0 || c1/A1 != c2/A2) raise_error();
6 printf("%d", (c1 - c2) >> 1);

Figure 3.1 – Example illustrating how a native program (a) is transformed using (b)
AN-encoding, (c) duplicated instructions, and (d) our ∆-encoding.

bitwise operations, etc. require more sophisticated implementations. These complex encoded
operations can hamper performance and/or require intermediate decoding of operands.

Another drawback of pure AN-encoding is that it does not detect all types of hardware errors.
In our previous example, if the addition operation is erroneously substituted by subtraction, the
result is still a code word, since 55− 33 = 22. Moreover, if one of the operands is replaced by
some other code word (due to a fault on the address bus), the result is also a code word, e.g.,
55 + 11 = 66. To detect these types of errors, variants of AN-encoding were developed, namely
ANB- and ANBD-encodings [199]. Unfortunately, they incur very high performance penalties
(up to 250×) rendering them impractical in most use cases.

AN codes should not be confused with conventional linear codes such as Hamming codes or
Reed-Solomon codes. Firstly, the linearity property does not hold in AN codes; secondly, linear
codes are suitable for storage and transmission whereas AN codes are used in data processing.

In general, AN-encoding has the advantage of detecting both transient and permanent errors
during program execution; a severe disadvantage is its low performance. Pure AN-encoding
cannot detect all kinds of hardware errors and thus it does not provide high fault coverage. ANB-
and ANBD-encodings do provide full fault coverage, but at the price of even higher performance
overheads.
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3.2.2 Duplicated Instructions

Fault tolerance can also be achieved by duplicating all original instructions in a program. The
duplicates work with a second set of registers and variables, i.e., all data is also duplicated.
During execution, “master” and “shadow” instructions are issued on the same processor; their
results are compared periodically to check for hardware errors. Oh, Shirvani and McCluskey [170]
provide detailed information about error detection by duplicated instructions.

Concerning our previous example of 5 + 3, the addition operation is issued twice on the CPU,
such that two copies use two different sets of registers. The check operation makes sure that both
copies calculated 8, and if not, a hardware error is detected. Listing Figure 3.1c illustrates this.
The duplicated instructions approach assumes that hardware faults are transient and affect

only one data-flow copy. For example, this approach cannot detect hard errors in the CPU. If
the addition operation is permanently faulty, then 5 + 3 can result in an incorrect value for both
copies.
The duplicated instructions technique incurs only modest performance penalty of 60% [191],

since additional instructions can be effectively scheduled by the compiler and executed by the
CPU in an out-of-order fashion. Indeed, since “master” and “shadow” execution paths are
independent of each other and require synchronization only at rare check points, the execution
runs essentially in parallel on modern super-scalar processors.

On the whole, the approach of duplicated instructions enables comprehensive protection from
transient errors, incurring only modest execution slowdowns. However, this approach cannot
cope with permanent errors affecting both “master” and “shadow” copies of data flow.

3.3 Fault Model

We adopt a data-flow software-level symptom-based fault model from [198]. This model provides
an abstraction of the underlying hardware and works on the “symptoms” caused by hardware
errors at the software level. Such a model has several advantages: (1) it is independent from
specific hardware models and thus applies to any combination of CPU/RAM, (2) it does not
account for masked hardware faults, i.e., faults that are neutralized at hardware level, and (3)
this fault model can be easily adapted for fault injection campaigns.
The model consists of the following symptoms:

Modified operand: One operand is modified, e.g., 55 + 33 is changed to 51 + 33. This happens
due to a bit flip in memory/CPU register.

Exchanged operand: A different but valid operand is used, e.g., 55 + 33 is changed to 55 + 11.
This happens due to a fault on the address bus.

Faulty operation: An operation produces incorrect results on specific inputs, e.g., 55 + 33 results
in 87. A CPU design flaw can lead to such a fault.

Exchanged operation: An operation that was not intended is executed, e.g., 55 + 33 is changed
to 55− 33. This happens due to a fault in the CPU’s instruction decoder.

Lost update: A store operation is omitted, e.g., the result of 55+33 is not stored in memory/CPU
register; an outdated value from the memory/register is then erroneously used. This happens
due to a fault on the address bus.

Many fault-detection approaches assume a Single Event Upset (SEU) fault model, where
exactly one bit is flipped throughout program execution; in contrast, we make no assumptions
on the number of bits affected by a hardware error or on the number of hardware errors during
execution.
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Figure 3.2 – ∆-encoded program.

We argue that the SEU model is unrealistic. First, as studies show ([203], [123]), modern RAM
experiences not only transient bit flips, but also permanent faults. Second, another study [197]
reveals that about 17% of hardware faults affecting the combination logic result in double or
multiple bit errors. These results motivate the adoption of a fault model that has no error rate
assumption: any number of errors of any type can happen during program execution. Our only
assumptions are that errors occur randomly and corrupt a random number of bits.

Our fault model does not cover control flow errors, when a corrupted instruction pointer (IP)
points to an unintended instruction address. Such faults have a very low probability of resulting
in SDC. Nevertheless, our approach can be coupled with a control flow checker to detect both
data and control flow errors.

Finally, the sphere of replication (SoR) [189] assumed in this work is the CPU and the memory
directly used by the encoded program (or the encoded part of a program). The operating system
as well as the disk and network subsystems are out of SoR; errors in these systems cannot be
detected.

3.4 ∆-encoding

In this section, we describe ∆-encoding, a novel technique that combines AN-encoding and
duplicated instructions. ∆-encoding borrows the ability to detect hard errors from AN-encoding;
it uses the idea of duplicated instructions to achieve full fault coverage without sacrificing
performance. Moreover, a clever combination of approaches allows to simplify AN-encoding,
improving its performance.

Conceptually, ∆-encoding performs two compile-time transformations on the original program:
first, all data is AN-encoded and all original operations are substituted by AN-encoded operations,
second, all encoded data and operations are duplicated and checks are inserted at synchronization
points. The result is a hardened program with two copies of a completely encoded data flow, as
shown in Figure 3.2.

3.4.1 Encoded Data

To encode data in ∆-encoding, we set two different constants for the two copies of data: A1
for the first encoded copy and A2 for the second copy. Thus, the two copies of data flow
operate on different values, i.e., our approach employs data diversity, which is beneficial for fault
tolerance [10]. In particular, if a hard CPU fault triggers on some specific inputs, it will corrupt
only one copy of the data, but not the other.
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The key idea behind ∆-encoding is a smart choice of A1 and A2:

A1 −A2 = 1 (3.1)

This choice of the constants enables us to decode values quickly, by subtracting the second
encoded copy n̂2 from the first encoded copy n̂1 (hence the name ∆-encoding):

n = n̂1 − n̂2 = n ·A1 − n ·A2 = n · (A1 −A2) (3.2)

Note that this decoding requires only one instruction cycle; in contrast, decoding in pure AN-
encoding is much more expensive, since it requires a division instruction. The division instruction
is one of the most costly operations in modern CPUs. For example, according to the Intel IA-64
architecture manual, division takes 60-80 cycles to finish [107]. Our quick decoding is especially
beneficial for programs that make heavy use of pointers because all pointers are kept encoded
and must be decoded at each pointer dereference.

The choice of A1 and A2 in Equation 3.1 has a drawback: both copies of a value are decoded
in the same way (by subtracting the A2-encoded copy from the A1-encoded copy). This can lead
to SDC since a permanent fault affects both decoding operations in the same way. Thus, we
push the idea further and use the following scheme to choose A1 and A2:

A1 = 2k + 2i A2 = 2k − 2i (3.3)

where k and i are non-negative integers, k > i.
We notice that:

A1 −A2 = 2k + 2i − 2k + 2i = 2i+1 (3.4)
A1 +A2 = 2k + 2i + 2k − 2i = 2k+1 (3.5)

Based on Equations 3.4 and 3.5, there are two ways to decode a value:

n = (n̂1 − n̂2)/2i+1 = n · (A1 −A2)/2i+1 (3.6)
n = (n̂1 + n̂2)/2k+1 = n · (A1 +A2)/2k+1 (3.7)

The division by a power of 2 corresponds to the right shift instruction. Since we fix k and
i beforehand, the number of bits to shift by is known at encoding time. As a result, decoding
schemes 3.6 and 3.7 require only two cycles: one for subtraction/addition and one for right shift.
For example, let k = 3 and i = 0. Then A1 = 9 and A2 = 7; their difference is A1 − A2 = 2

and their sum is A1 +A2 = 16, and to decode one needs to shift right by i+ 1 = 1 and k+ 1 = 4
correspondingly. Our original code snippet from Figure 3.1a can be ∆-encoded with these
parameters and results in an encoded program from Figure 3.1d.

∆-encoding uses this scheme, with A1 and A2 chosen as in Equation 3.3 and decoding as in
Equations 3.6 and 3.7. This scheme has two advantages: (1) decoding is much faster than in
pure AN codes and (2) two different ways to decode a value will fail differently in reaction to the
same permanent error.

In our final implementation, we chose k = 13, i = 0 and thus A1 = 8193, A2 = 8191 and shifts
of 1 and 14. We introduce these parameters here for clarity of description; the justification for
the parameters is given in §3.5.1.
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(a) Encoding
1 int64_t encode(int32_t n, int64_t a) {
2 return n * a;
3 }

(b) Decoding
1 int32_t decode(int64_t n1_enc, int64_t n2_enc, int64_t a) {
2 if (a == A1)
3 return (n1_enc - n2_enc) >> 1;
4 else
5 return (n1_enc + n2_enc) >> 14;
6 }

Figure 3.3 – Encoding and decoding operations in ∆-encoding.

(a) Fully encoded operations: Addition
1 int64_t add_enc(int64_t x_enc, int64_t y_enc) {
2 return x_enc + y_enc;
3 }

(b) Partially encoded operations: Left shift
1 int64_t shl_enc(int64_t x1_enc, int64_t x2_enc, int64_t y1_enc, int64_t y2_enc, int64_t a)
2 {
3 if (a == A1) {
4 int32_t y = (y1_enc - y2_enc) >> 1;
5 return x1_enc << y;
6 }
7 else {
8 int32_t y = (y1_enc + y2_enc) >> 14;
9 return x2_enc << y;
10 }
11 }

(c) Fully decoded operations: XOR
1 int64_t xor_enc(int64_t x1_enc, int64_t x2_enc, int64_t y1_enc, int64_t y2_enc, int64_t a)
2 {
3 if (a == A1) {
4 int32_t x = (x1_enc - x2_enc) >> 1;
5 int32_t y = (y1_enc - y2_enc) >> 1;
6 }
7 else {
8 int32_t x = (x1_enc + x2_enc) >> 14;
9 int32_t y = (y1_enc + y2_enc) >> 14;
10 }
11 int32_t res = x ^ y;
12 return res * a;
13 }

Figure 3.4 – Encoding and decoding operations in ∆-encoding.

3.4.2 Encoded Operations

∆-encoding works on AN-encoded values. This implies that all original operations – addition,
subtraction, multiplication, bitwise AND, OR, XOR, shifts, comparisons, etc. – are substituted
with the corresponding encoded operations. In this section, we provide examples of some typical
∆-encoded operations. For clarity, we introduce them as functions in the C language.

Encoding and decoding operations were already described conceptually. Figure 3.3 shows their
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practical implementations. It is worth mentioning that encoding could be implemented through
shifts and addition/subtraction, as shown by Equation 3.3; however a simple multiplication
exhibits similar performance. The decoding operation corresponds to Equations 3.6 and 3.7.

Most arithmetic operations stay the same in AN codes and also in ∆-encoding; the operations
include addition, subtraction, comparisons, modulo, etc. Figure 3.4a exemplifies this. Note that
since no encoding/decoding takes place, there is no notion of A in the code snippet.
Some operations require partial decoding. One example is a left shift operation: the number

of bits by which an integer is shifted to the left must be decoded, but the integer itself can stay
encoded (see Figure 3.4b). Another example is multiplication, where it is enough to decode only
one operand.
Finally, bitwise operations (AND, OR, XOR, one’s complement) as well as division are

notoriously slow if implemented using encoding. In these cases, the only reasonable strategy
is to decode operands, perform the original operation, and re-encode the result. Figure 3.4c
exemplifies this using the XOR operation.
Encoded operations must be not only fast, they must also propagate possible errors to the

resultant integer. This holds for operations like addition. Operations like left shift and XOR rely
on duplicated instructions, since it is unlikely that the result of the first operation execution (with
A1) will be corrupted exactly in the same way as in the second execution (with A2). Moreover,
the sum of two encoded copies x̂1 + x̂2 has zeros in the lower 14 bits by Equation 3.5 (otherwise
it indicates that an error occurred during the operation); we use this property to propagate
errors in some operations.

3.4.3 Accumulation of Checks
As any fault detection mechanism, ∆-encoding inserts periodic checks of calculated values. An
example of such a check is shown in Figure 3.1d, Line 5. It includes checking if both copies
of a variable are code words and if they correspond to the same original value. If any of the
conditions fails, then an error must have happened, and the execution is terminated.
A naive approach to detect errors would be to check the result of each encoded operation.

This would lead to a tremendous slowdown, since each operation would then be accompanied by
a heavy-weight check with divisions and branches.
On the other side, one could check only final results, i.e., check only output values right

before decoding them. Indeed, if the property of error propagation would hold for all encoded
operations, it would be sufficient to check only the results of the computation. In real-world
scenarios, however, this property is frequently violated; the XOR operation from Figure 3.4c is
one example.

The practical solution would be to analyze the program’s data flow and insert checks only at
critical points (e.g., after each XOR operation, but not after additions). Even in this case, the
number of inserted checks incurs significant overhead.
To achieve a better trade-off between performance and fault coverage, we introduce the

accumulation of checks. We allocate a pair of integers called accumulators and we substitute
all intermediate checks with a simple addition to the accumulators. The principle is illustrated
in Figure 3.5. The original program performs two operations: addition x+ y and subtraction
x− y. The encoded program adds two accumulations and one subsequent check instead of two
expensive checks.

Using accumulators instead of direct checks is beneficial for performance: accumulation requires
only two additions instead of several divisions and branches. Moreover, it does not decrease
the error detection capabilities of ∆-encoding, because the addition operation propagates any
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1 int128_t accu1 = 0;
2 int128_t accu2 = 0;
3 void accumulate(int64_t n1_enc, int64_t n2_enc) {
4 accu1 += n1_enc;
5 accu2 += n2_enc;
6 }
7 ...
8 a1_enc = x1_enc + y1_enc;
9 a2_enc = x2_enc + y2_enc;
10 accumulate(a1_enc, a2_enc);
11 b1_enc = x1_enc - y1_enc;
12 b2_enc = x2_enc - y2_enc;
13 accumulate(b1_enc, b2_enc);
14 if (accu1 %A1 != 0 || accu2 % A2 != 0 || accu1/A1 != accu2/A2) raise_error();

Figure 3.5 – Example of checks’ accumulation in ∆-encoding.

erroneous value to the accumulator. One last non-obvious advantage is that accumulations are
less susceptible to the “who guards the guardians” problem: a check could be erroneously skipped
due to a single CPU fault, but quietly skipping both accumulator updates is highly improbable.

3.4.4 Fault Coverage

∆-encoding provides very high fault coverage. Here we explain how our approach covers all
symptoms from the symptom-based fault model described in §3.3. We provide a quantitative
analysis only for the case of modified operand; other symptoms can be analyzed in a similar way.

Modified operand: AN codes guarantee that, given a modified operand fault, the probability of
a SDC is 1/A ([198]). In duplicated instructions, given that a random fault (corrupting a
random number of bits) affected both copies of the operand, the probability of a SDC is
1/2n, where n is the number of bits of the operand.
With ∆-encoding, given that a fault affected both copies of the operand, a SDC may
happen only if (1) the first copy is a code word and (2) the second copy corresponds to
the first copy (i.e., produces the same original value when decoded). Combining these
requirements together and taking into account that AN codes double the number of bits in

operands, we get the probability of a SDC equal to
1

A · 22n
.

Exchanged operand: Since ∆-encoding performs each operation twice, SDC happens only if two
exchanged operand faults substitute two correct copies with two incorrect but valid copies.
The probability of such chain of events is negligible.

Faulty operation: Two copies of data are encoded differently (with A1 and A2) in ∆-encoding;
thus, two executions of a faulty operation would work on different operands and would fail
in different ways. This means that the probability that two faulty operations produce two
corresponding code words is negligible.

Exchanged operation: Since ∆-encoding performs each operation twice, two copies of the oper-
ation must be substituted by two exactly the same non-intended operations. This scenario
is highly improbable.

Lost update: In ∆-encoding, two store operations are used to update two copies of data; thus,
two stores must be omitted to result in a lost update. Such scenario has negligible
probability.

As this analysis shows, ∆-encoding provides high fault coverage for all types of faults. Notice
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that modified operand faults happen more frequently than other types, because the underlying
hardware errors – memory and CPU register bit-flips – occur with perceptible regularity. But
other types of faults, however improbable they are, must also be accounted for in safety-critical
systems.
The combination of duplicated instructions, AN codes and heuristic accumulation of checks

also provides high guarantees against intermittent and permanent errors. For example, using
duplicated instructions alone, it is possible that both copies of a variable are stored in the same
physical CPU register which experiences a stuck-at fault, and thus the fault remains undetected.
In ∆-encoding, a stuck-at fault in a register results in an invalid word (with high probability).
Interestingly, the approach of duplicated instructions cannot detect permanently faulty op-

erations. If the same inputs are fed to two executions of a faulty operation, both executions
produce the same incorrect output. In ∆-encoding, the two copies of data are diverse, leading to
two different incorrect results. Thus, ∆-encoding can detect permanent faults which would lead
to a SDC in the case of simple duplicate execution.

3.5 Implementation
We implemented ∆-encoding as a source-to-source C transformer in Python (see Figure 3.6).
Original C programs are encoded at the level of an Abstract Syntax Tree (AST) built by
PycParser3. Our transformer walks through the AST, substituting all inputs and constants
by encoded values and all original C operators by the corresponding encoded operations. The
transformer also produces function-wrappers to perform libc/system calls from encoded source
(e.g., malloc()) and vice versa.

∆-encoded programs preserve the original code structure, i.e., original control flow as well
as variable and function names. This is possible because our transformer does not employ any
code optimizations, working as close to the original source as possible. Preserving the original
information greatly facilitates debugging and manual changes in encoded programs.

The ∆-encoded code emitted by the transformer does not rely on a specific compiler and is not
influenced by compiler optimizations. The structure of ∆-encoding itself prevents the compiler
from optimizing duplicate instructions away. (Compiler optimizations are a constant threat for
fault-tolerant high-level transformations, since they can be very efficient at eliminating code and
data redundancy; some techniques even require all compiler optimizations to be disabled, as
in [188].) As an example, consider the decoding operation from Figure 3.3b: the compiler has no
knowledge of inherent interdependency between two encoded copies and cannot figure out that
the two ways of decoding produce the same original value.

The ∆-encoded code can be intermingled with unencoded sources. First, the programmer can
manually add calls to unencoded functions in the emitted encoded code (e.g., adding printf()
calls for debug purposes). Second, the transformer generates wrappers for unencoded functions
used by the encoded code (e.g., libc functions such as malloc() and free()).

3.5.1 Encoding Data

Since ∆-encoding expands the original domain of values to accommodate all encoded values, our
implementation restricts all integer variables to be at most 48 bits wide. We chose A1 = 8193,
A2 = 8191 such that the encoded values never exceed the 64-bit range, since the maximum
encoded value (248 − 1) · 8193 is less than 64 bits wide.

3https://github.com/eliben/pycparser
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Figure 3.6 – ∆-encoding implementation.

In general, original integer types are limited by at most 32-bit data types. 64-bit types are
also supported, but the original program must guarantee that the values never exceed the 48-bit
bound. This is the case for pointer types: on modern 64-bit systems, pointers are 64 bits wide
but virtual address formats use only the 48 low-order bits [9]. Therefore, our implementation
supports pointer types on current 64-bit architectures.
The ∆-encoding transformer implements two copies of variables as two-item arrays. For

example, int32_t n is transformed into int64_t n_enc[2]. This implementation is not optimal
with respect to fault detection, because the two copies of the variable are adjacent to each
other, and one fault changing bits in-between can corrupt both copies. A better implementation
would require separate “shadow” stack and heap for second copies of data. Unfortunately,
such separation would require compiler support and thus is impossible in our current C-to-C
transformer approach.

One interesting feature of ∆-encoding is the prohibition of silent integer over- and underflow.
AN codes modulo arithmetic is not isomorphic to the original modulo arithmetic, e.g., 232 ·A
would not wrap to 0; ∆-encoding would therefore require expensive checks to support integer
overflow behavior. Wishing to keep ∆-encoded programs as fast as possible, we disallow all silent
under- and overflows. If a programmer wishes to support such wraparounds, she is required to
implement them explicitly. Our decision is also partially justified by security reasons: many
integer overflows are unintended and can be a source of vulnerabilities [38]. In ∆-encoding, silent
integer over- and underflows raise a run-time error.

There is one subtle issue when encoding local loop variables. Modern compilers are particularly
good at optimizing loops; in several occasions we noticed that the compiler removed the second
copy of a loop variable, weakening the protection. Indeed, the compiler has full right to perform
such an aggressive optimization: it knows an initial value and the complete data flow of a loop
variable and ascertains uselessness of the second copy. To prevent the compiler from removing
the variable, we insert inline pseudo-assembly that clobbers both copies of the loop variable. This
example illustrates how careful one should be when enabling fault tolerance without changing
the compiler behavior.

3.5.2 Encoding Operations

Some of the encoded operations were already described in §3.4.2. The final implementations
follow closely the examples from Figure 3.3a to Figure 3.4c. The ∆-encoding transformer provides
the complete set of encoded C operators, including arithmetic, comparison, logical, bitwise,
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member and pointer operators, casts, etc.
All encoded operations are inlined in the final executable. This enables the compiler to choose

the specific computation path. For example, the decode() operation from Figure 3.3b will be
inlined two times in the code (first with A1 and then with A2): first time stripped to Line 3,
second time – to Line 5.

The code emitted by the ∆-encoding transformer must be compiled with the SSE extensions
disabled. Otherwise the compiler can glue two move-to-memory instructions of adjacent data
copies into one SSE-move. If a hardware error affects this SSE-move, both copies of data are
affected, which can lead to undetected SDCs. This flaw in our data representation, where
variables are encoded as two-item arrays, was already described in the previous subsection. Note
that if copies of data would be completely decoupled, SSE extensions could be enabled again.
The AN codes approach is not able to detect incorrect branching resulting from faults in

branching logic. Indeed, the decision of which branch to take is based on the flag bit values
of a status register. Flag bits cannot be encoded, and a single bit-flip can lead to an incorrect
branch. Fortunately, duplicated instructions suggest a way to detect errors in branching logic:
our transformer inserts a “shadow” branch for each original branch. The original branch is
encoded to work on the first copy of data, the “shadow” branch works on the second copy. If the
branching decisions differ in the two branches, an error is detected.

3.5.3 Accumulation of Checks

The idea of accumulation was defined in §3.4.3; here we describe some implementation issues.
As explained previously, accumulations are a low-overhead substitute for checks, such that the

frequency of the checks themselves is significantly decreased. In fact, our experiments showed
that checks can be done in the very end of computation, and all intermediate steps are sufficiently
protected via accumulations. In the final implementation, we introduced checks only at the end
of encoded computations and in wrapper functions.
In its turn, the frequency of accumulations can be tuned. Ideally, data flow analysis must be

done to pinpoint critical places. Currently, we adopt a simple strategy: accumulations are inserted
after each assignment in original C code. This straightforward technique yields satisfactory
results.
As shown in Figure 3.5, accumulation corresponds to one addition operation. Accumulators

are 128-bit integers. We use int128_t data type provided by gcc; under the hood, this data type
is treated as two 64-bit integers. It is tempting to use 64-bit accumulators, but they overflow fast;
the accumulation operation would require an additional overflow check. We opted for 128-bit
accumulators instead. Since encoded values can be maximum 64 bits wide, 264 accumulations
must happen before the accumulators overflow in the worst case. This number of accumulations
is enough for any conceivable program; overflow checks are not required for 128-bit accumulators.
Unfortunately, signed 128-bit addition is much slower than its 64-bit counterpart on modern

CPUs. It requires one sign extension, one 64-bit addition and one 64-bit add-with-carry – 3
operations in total. Our performance evaluation highlights this slowdown.
Interestingly, it can be meaningful to remove all accumulations completely and perform only

one check in the very end of the encoded computation. Remember that ∆-encoding (ideally)
propagates all hardware errors to outputs. One can rely on this property and get rid of all
intermediate accumulations, in the hope that any error will be detected by the final check. Our
evaluation shows that such a trade-off between performance and fault tolerance is acceptable in
some scenarios.
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Figure3.7–Performanceoverheadincomparisontonativeexecution.

Moreover,accumulationsandcheckscouldbedoneinparalleltotheprogram’sexecution.The
programcouldsendencodedvaluesforaccumulation/checkasynchronouslyandimmediately
continueexecution.Accumulation/checkfunctionalitycouldrunonanotherCPUcoreorinthe
dedicatedhardwaremodule.Ifthesystemallowscertainlatencybetweentheactualcorruptionof
dataanditsdetection,thisparallelapproachcouldbeused.Forexample,automotiveembedded
systemsallowforsuchlatencyandareusuallyequippedwithaspecialhardwarewatchdog4;it
wouldbereasonabletoaddtheaccumulation/checkfunctionalityinthewatchdogandrunthe
encodedprogramonthemainCPU.

3.6Evaluation

Inthissection,weevaluateasetofprogramsencodedwiththe∆-encodingtransformerin
termsofperformanceandfaultcoverage.Thesetofprogramsundertestconsistsofseveral
microbenchmarksandtwousecases. Microbenchmarksgiveanestimationoftheprovidedfault
coverageversusperformanceslowdown.Thefirstusecaseistakenfromthefieldofdistributed
systemsandexemplifiestheso-calledtrustedmodules–smallsafety-criticalpartsofapplications
whichneedtoberobustagainsthardwareerrors.Thesecondusecasecomesfromthefieldof
automotiveembeddedsystemsandexemplifiesX-by-wiresystems,whereaprogramprocesses
datafromsensorsandcontrolsactuatorssuchascarbrakes.

3.6.1 Methodology

PerformanceExperiments

AllperformanceexperimentswererunonacomputerwithIntelCorei5-3470CPU(IvyBridge
architecture),4GBRAM,L1,L2andL3cachesof32KB,256KBand6MB.Allprogramsand
theirvariants(includingnative)werecompiledusinggccversion4.8.2,withalloptimizations
enabledexceptforSSE(flags-O3-mno-sse).Forallprograms,executiontimewascalculated
asthenumberofcyclestoperformtheprocessingofdata.Allprogramswererunforatleast
onesecond,withpredefinedinputs.Thefinalresultsareanaverageof5runs.Allperformance
figuresshowaslowdowncomparedtothenativeexecution.

Each∆-encodedprogramwastestedin3variants: with128-bitaccumulation,without
accumulation,andwithparallelaccumulation(simulation).Thesevariantsweredescribedin

4TheautomotiveE-GasMonitoringConcepthas3levelsofdesign,withthethird,“controllermonitoring”level
implementedasanindependenthardwaremodule(watchdog)[70].
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Faults Program Variant masked OS-det Hang ∆-detected SDC
Transient Bubblesort native 18.265 13.208 0.000 — 68.527

∆-stripped 11.488 17.776 0.002 70.730 0.004 (4)
∆-full 16.588 19.541 0.001 63.866 0.004 (4)

HardCore native 16.488 52.300 0.011 — 31.201
∆-stripped 18.728 26.033 0.220 55.019 0.000 (0)
∆-full 20.416 26.068 0.520 52.996 0.000 (0)

Industrial native 43.945 19.652 0.041 — 36.362
∆-stripped 39.163 21.111 0.000 38.991 0.735 (735)
∆-full 28.308 18.100 0.001 53.588 0.003 (3)

Intermittent Bubblesort native 58.315 5.265 0.010 — 36.410
∆-stripped 53.000 19.170 0.000 27.825 0.000 (0)
∆-full 55.710 11.395 0.000 32.880 0.015 (3)

HardCore native 59.675 29.155 0.000 — 11.165
∆-stripped 57.725 19.345 0.130 22.795 0.000 (0)
∆-full 57.020 15.705 0.305 26.970 0.000 (0)

Industrial native 68.940 12.630 0.045 — 18.385
∆-stripped 64.250 13.700 0.000 21.580 0.470 (94)
∆-full 58.050 12.075 0.000 29.875 0.000 (0)

Permanent Bubblesort native 61.645 5.540 0.290 — 32.525
∆-stripped 49.110 22.375 0.665 27.840 0.010 (2)
∆-full 53.510 14.470 0.000 32.015 0.005 (1)

HardCore native 59.415 29.475 0.060 — 11.045
∆-stripped 56.905 21.975 0.725 20.395 0.000 (0)
∆-full 54.310 19.175 0.645 25.870 0.000 (0)

Industrial native 49.935 13.310 1.005 — 35.750
∆-stripped 48.005 20.635 0.110 30.865 0.385 (77)
∆-full 44.215 19.190 0.075 36.520 0.000 (0)

Table 3.1 – Fault injections: transient multi-bit, intermittent with duration of 100 instruc-
tions, and permanent with stuck-at faults. Results are shown as percentages of all injected
faults. In SDC column, parentheses show absolute numbers of silent data corruptions.

§3.5.3. The variant with 128-bit accumulation (∆-full) provides full-fledged protection from
hardware errors. The variant with no accumulation (∆-stripped) reduces fault coverage and
increases performance, and can be an appropriate trade-off for some scenarios. Finally, “parallel
accumulation” (∆-parallel) is a simulation of hardware-implemented accumulation; we simulate
it by moving encoded values to a predefined memory address instead of adding them to the
accumulator.

Fault Injection Experiments

For fault injection campaigns, we used Intel Pin5 and the BFI plug-in6. BFI is able to inject
random faults and was used in other research [25]. We improved BFI to also inject stuck-at
intermittent/permanent faults.
BFI injects single- and multiple-bit faults in: CPU register file, memory cells, address bus,

and code segment. These hardware faults trigger software-level symptoms of our fault model.
Modified operands are caused by bit-flips in registers and memory. Exchanged operands are due
to faults on the address bus or in registers holding addresses. A faulty operation is represented
as a fault in operation’s output register/memory cell. Exchanged operations are transient faults

5http://www.intel.com/software/pintool
6https://bitbucket.org/db7/bfi
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3 ∆-encoding: Leveraging Instruction Level Parallelism

in the code segment. A lost update is a direct consequence of address corruption during a move
instruction.

We conduct three fault injection campaigns:
Transient Faults: A single multiple-bit transient fault is injected per run, with 100, 000 runs in

total. This is similar to the Single Event Upset model, but the fault can corrupt multiple
adjacent bits.

Intermittent Faults: The same stuck-at fault is triggered for the duration of 100 instructions,
with 20, 000 runs in total. For example, it simulates an intermittent stuck-at-1 fault in a
RAX register.

Permanent Faults: The same stuck-at fault is triggered for the whole duration of the computa-
tion, with 20, 000 runs in total. For example, it simulates a permanent stuck-at-1 fault in a
RAX register.

We inject hardware errors at random and uniformly distributed. In the case of intermittent
faults, the fault is injected at a random instruction and reoccurs in 100 subsequent instructions.
In the case of permanent faults, the fault is injected at a random instruction and reoccurs until
the computation is finished.

The results of fault injections are sorted in 5 categories: masked faults (do not affect execution),
OS-detected (detected by OS, e.g., segmentation fault), hang (the program hanged because of the
fault), ∆-detected (detected by ∆-encoding), SDC (undetected; led to silent corruption of data).

Each ∆-encoded program was tested in 2 variants: with accumulation (∆-full) and without it
(∆-stripped).

3.6.2 Microbenchmarks

As a proof of concept, we chose several microbenchmarks: bubblesort, quicksort, linked list,
CRC32, dijkstra, and patricia trie. CRC32, Dijkstra, and patricia trie are taken from MiBench [91].
These three benchmarks perform a significant number of I/O operations to read inputs; in contrast,
bubblesort, quicksort and linked list work purely on memory values.
The performance results of the benchmarks are shown on Figure 3.7 (first six). ∆-full ver-

sions incur the overhead of 4.08× on average, ∆-stripped and ∆-parallel – 2.26× and 2.59×
correspondingly. ∆-parallel performs two times better than ∆-full on some benchmarks, which
indicates that a hardware-assisted approach of ∆-parallel could bring a significant performance
improvement.

As for fault coverage, we performed fault injection experiments on one representative benchmark
– bubblesort. The results are shown in Table 3.1. The native program experiences a significant
number of SDCs (from 32% for permanents up to 68% for transients). ∆-encoding variants
drastically reduce the rate of SDCs to almost 0%.

It is interesting to examine the few SDCs not detected by ∆-encoding. In the case of transient
faults, all 8 undetected faults happened on the address bus such that the injected corrupted bits
were written in-between two copies of data, corrupting them both in the same way. This issue
was discussed in §3.5.1 and is a deficiency of our implementation.

In the case of intermittent and permanent faults, all 6 SDCs resulted from the same corrupted
register. This register was allocated by the compiler for the same encoded operation on two
copies of data, such that two copies were affected by the same permanent fault. This is yet
another disservice of a compiler (the first one was discussed in §3.5.1); these faults could be
detected if we would have control over the compiler’s backend.
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Variant 2AN ∆-full ∆-parallel ∆-stripped

Leader 42.0 6.3 4.6 4.2
Follower 32.7 3.5 2.8 2.6

Table 3.2 – HardCore’s performance overhead in comparison to native.

3.6.3 Use Case: Trusted Modules

The first use case, the HardCore trusted module, comes from the field of dependable distributed
systems. HardCore is a small safety-critical part of a bigger system – HardPaxos [25]. HardPaxos
is a version of the Paxos consensus protocol which enables the service on top to tolerate hardware
errors; fault tolerance of the whole service depends solely on HardCore. That is, HardCore is
required to have very high fault coverage.
We encoded HardCore using ∆-encoding and reproduced the experiments from [25]: for the

leader and for the follower scenarios. Note that the version of HardCore described in [25] was
hardened with a variant of AN-encoding called 2AN, incurring very high overheads compared to
native execution. The performance numbers for 2AN and our ∆-encoding are shown in Table
3.2; the slowdown for the worst case-scenario (for leader) is presented in Figure 3.7. HardCore’s
slowdown is higher in comparison to microbenchmarks: HardCore makes heavy use of small loops
which the compiler unrolls for the native version but not for ∆-encoded versions (see 3.5.1). In
general, our evaluation shows that the ∆-encoded HardCore is one order of magnitude faster
than the 2AN-encoded version.

The results of fault injections can be seen in Table 3.1. The native version has a significant num-
ber of SDCs (31% in case of transients, 11% in case of permanents), while the ∆-encoded HardCore
detects all injected errors in all experiments. Note that ∆-stripped performs no worse than
∆-full: the reason is the small size of HardCore functions, such that the injected error propagates
directly to the outputs. This means that the ∆-stripped version provides complete fault coverage
with the average performance benefit of 70% compared to the ∆-full encoding.

3.6.4 Use Case: Safety-Critical Embedded Systems

Our second use case, which we refer to as industrial, is a real-world X-by-wire controller from the
automotive embedded systems domain. The program makes heavy use of arithmetic operations,
working on a small set of variables and spanning over 900 lines of code. We consider this program
a typical example of safety-critical embedded applications which can benefit from ∆-encoding.
The performance slowdown is shown in Figure 3.7. We would like to stress the slowdown

of 4.7× for the ∆-parallel variant: parallel accumulation on a separate hardware module is
well-suited for embedded systems, since this functionality can be put in the already existing
hardware watchdog. The relatively high slowdown is due to division operations, which require
decoding to the original values, their division and subsequent encoding (see §3.4.2).
Table 3.1 shows the fault injection results for the industrial program. The ∆-full variant

shows very high fault coverage, with 3 SDCs in the case of transients and 0 in other cases. The
∆-stripped variant, however, results in a significant number of SDCs: the industrial program has
a long and complex execution path such that errors do not propagate to the outputs. This is in
contrast to HardCore where ∆-stripped had the same fault coverage as ∆-full. The reasons for
SDCs are the same as for bubblesort and HardCore.

41



3 ∆-encoding: Leveraging Instruction Level Parallelism

DI ∆-stripped ∆-parallel ∆-full ANBD

1.6 2.1 2.4 4.4 16.0

Table 3.3 – Quicksort’s performance overhead: comparison of approaches.
Characteristic Program native ∆-full ∆-parallel ∆-stripped

Instructions/cycle Bubblesort 1.25 2.27 2.34 2.26
HardCore 1.78 2.73 2.61 2.70
Industrial 1.46 2.70 2.75 2.82

Branch misses, % Bubblesort 9.31 4.82 6.14 6.00
HardCore 0.00 0.00 0.00 0.00
Industrial 3.08 1.02 0.92 0.77

Table 3.4 – Performance characteristics.

3.6.5 Discussion

∆-encoding was developed to provide a high level of fault tolerance. In this sense, we favor
fault coverage over performance. ∆-encoded programs must be protected from all error types:
transient, intermittent and permanent, single-bit and multiple-bit, single faults and multiple
faults. Our experiments show that ∆-encoding (namely the ∆-full variant) achieves an average
fault coverage of 99.997%.
We consider performance slowdowns of 3–4× acceptable for our use cases. First of all,

safety-critical computations are usually limited in size and not resource-demanding. Second, a
software-only encoded processing approach is inherently slow, and a slowdown of several times is
a significant improvement compared to the previous works on AN-encoding.
Unfortunately, we could not obtain the implementations of AN-encoding [198] or duplicated

instructions [170]. However, we can perform an indirect comparison on the mutual quicksort
benchmark to put ∆-encoding into perspective (see Table 3.3). The duplicated instructions
approach (DI in the table) reveals a slowdown of 1.6× in the best case [170]; the ANBD-variant
of AN-encoding has a slowdown of 16× [198]. ∆-encoding shows performance numbers closer to
duplicated instructions, with the slowdowns of 2–4×. This indicates that ∆-encoding outperforms
previous AN-encoding techniques, adding only a moderate overhead on top of duplicate execution.

For performance, our approach relies on deep instruction pipelining, out-of-order execution and
sophisticated branch prediction in modern CPUs. All these techniques enable effective scheduling
of instructions. Programs usually do not utilize instruction pipeline and branch prediction fully.
∆-encoding takes advantage of an underutilized pipeline and branch predictor, such that the
two copies of data can be processed in parallel. Table 3.4 shows that the number of instructions
per cycle roughly doubles in ∆-encoded programs, while the number of branch misses drops
drastically. In case of HardCore, branch predictor shows perfect results, and there are 0% of
branch misses even in native execution. These numbers prove that ∆-encoding benefits from
heavily utilized pipeline and branch predictor.

3.7 Related Work

Local error detection research has a long history. It began in 1960s with pure hardware approaches
used in highly available servers and space industry; starting from late 1990s, research focus
shifted to software-only approaches, commonly known as software-implemented hardware fault
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tolerance (SIHFT).

3.7.1 Hardware-based approaches

Hardware-implemented error detection is exemplified by the evolution of two mainframe systems:
IBM S/360 (now called IBM System z) and Tandem NonStop (now HP NonStop) [23]. These
systems provide massive redundancy to achieve high availability: lockstepped proprietary CPUs,
redundant CPU logic, ECC-protected memory and caches, and redundant hardware components
and paths. The two systems guarantee very high fault coverage, but hardware implementation
implies very high economic costs. ∆-encoding can be seen as a much cheaper alternative to
harden only a small subset of software stack run on commodity hardware.
A cost-effective hardware approach is to use simple checkers which observe activities of com-

modity hardware units and raise exceptions in case of errors. For example, the DIVA checker [16]
commits CPU outputs only after it verified their correctness. Argus [149] implements four
independent checkers to validate four CPU/memory tasks: control flow, data flow, computation,
and memory accesses. Nostradamus [159] is yet another checker that compares an instruction’s
expected impact on the CPU state to the actual impact on the state. Though the approaches
incur low performance overhead (5-10%), they require significant changes in hardware, whereas
∆-encoding is purely software-based and provides the same error detection guarantees.

Symptom-based detection (e.g., ReStore [239]) analyzes anomalous behavior of hardware such
as memory access exceptions, mispredicted branches and cache misses. However, the approach
cannot offer adequate fault coverage required in safety-critical systems, detecting only about a
half of propagated faults.

3.7.2 Software-based approaches

Redundant Multithreading (RMT) [153] protects from transient faults by executing two copies of
the program on two cores, periodically comparing their outputs. However, the technique assumes
existence of a spare core, therefore typical embedded systems with single-core CPUs cannot
benefit from RMT. In contrast, ∆-encoding requires only one core for computations.
In duplicated instructions approach, program flow executes twice on the same core. The

approach was first proposed in EDDI [170] and later refined in SWIFT [191]. Both solutions
concentrate on transient errors and favor performance over fault coverage; moreover, SWIFT has
an assumption of ECC-protected memory which does not hold for commodity and embedded
hardware. Interestingly, EDDI’s offshoot called ED4I [169] is similar to ∆-encoding: it combines
data diversity and duplicated instructions, protecting from permanent faults. Unfortunately, ED4I
was a theoretical attempt and was not even evaluated for performance, whereas ∆-encoding is a
complete and practical solution.

Encoded processing uses AN codes theory and was first used as a pure hardware approach; an
example is a STAR computer designed for spacecrafts [18]. Forin [80] laid the foundations of
software-implemented encoded processing, which was later extensively researched by Schiffel [198].
However, AN-encoding and variants thereof, which were used in these works, reveal imbalance
in fault coverage versus performance: pure AN encoding has low fault coverage, ANB- and
ANBD-variants have low performance. Our proposed ∆-encoding provides balance between the
two metrics.

43



3 ∆-encoding: Leveraging Instruction Level Parallelism

3.8 Conclusion
We presented ∆-encoding, a fault detection mechanism that covers not only commonly assumed
Single Event Upsets, but also multiple-bit, intermittent and permanent faults. To achieve high
fault coverage, ∆-encoding combines two approaches: AN codes and duplicated instructions. As
our evaluation shows, ∆-encoding achieves fault coverage of 99.997% at the cost of an average
slowdown of 2–4×.
Our prototype is a source-to-source transformer. As we mentioned before, it would be more

beneficial to implement ∆-encoding as a compiler plug-in. In this way, we would be able to
perform sophisticated data flow analysis to remove redundant accumulations and make the
compiler ∆-encoding-aware.

Another interesting direction is a software-hardware ∆-encoding approach. Accumulations and
checks can be moved out of the critical path and encapsulated in a separate hardware module.
∆-encoding could also benefit from additional instructions in Instruction Set Architecture (ISA).

Another interesting implication of ∆-encoding is the recovery ability. If a fault affected only
one copy of data, it is detected via AN codes. The second copy of data can be used to recover
the first copy, masking the fault, and the execution can continue.

We envisage security-related applications of ∆-encoding. Data diversity and the ability to use
different pairs of As for different parts of a program could enable protection against malicious
attacks.
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Extensions

While ∆-encoding introduced in the previous chapter covers all kinds of CPU and RAM faults, it
also exhibits high overheads of 2–4×. These overheads are acceptable in safety-critical embedded
domains, but are prohibitive for large-scale online services.

Thus, in the following two chapters we concentrate only on the prevailing subclass of hardware
faults – transient CPU faults that result in silent data corruptions (SDCs). We omit all
other subclasses of faults from our fault model since they do not usually occur in data center
environments (in contrast to aerospace and land transport which are exposed to a wide range
of external factors). In particular, we assume that intermittent and permanent CPU faults
ultimately exhibit themselves as machine crashes and are trivially tolerated (by rebooting a
machine). We also assume that all memory is sufficiently protected via some form of error
detecting/correcting codes: DRAM and Last-level CPU cache are usually protected by Single-
Error Correcting and Double-Error Detecting (SECDED) Hamming codes, and Level-1 CPU
cache is protected by parity bits. Therefore, our solutions need to protect only against transient
bit-flips in CPU registers and execution units.
In this chapter, we present our first attempt to tolerate transient CPU faults with low

performance overhead – Elzar. (As we shall see, this first attempt was not very successfull.) Elzar
achieves fault tolerance by utilizing Intel Advanced Vector Extensions (AVX) to provide triple
modular redundancy for legacy C/C++ applications. In other words, Elzar relies on Intel AVX
– the latest implementation of the Single Instruction Multiple Data (SIMD) family of extensions
described in §1.2.
The content of this chapter is based on the paper “Elzar: Triple Modular Redundancy using

Intel AVX” presented at DSN’2016 [126]. The paper was a joint collaboration with Oleksii
Oleksenko, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.

4.1 Rationale

Transient faults in CPUs can cause arbitrary state corruption during computation. Therefore,
they pose a significant challenge for software systems reliability [197]. The causes for transient
faults are manifold, including radiation/particle strikes, dynamic voltage scaling, manufacturing
variability, device aging, etc. [35]. Moreover, the general trend of ever-decreasing transistor sizes
with lower operating voltages only worsens the reliability problem [98, 211].

The unreliability of CPUs is especially threatening at the scale of data centers, where tens of
thousands of machines are used to support modern online services. At this sheer scale, CPU faults
happen at a surprisingly high rate and tend to increase in frequency after the first occurrence,
as reported by a number of large-scale in-the-field studies [88, 165, 202]. Since the machines in
data centers operate in tight collaboration, a single CPU fault can propagate to the entire data
center, leading to catastrophic consequences [8, 163].

To overcome the problem of transient CPU faults, large-scale online services started using ad-hoc
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Figure 4.1 – Performance improvement with SIMD vectorization enabled (maximum run-
time speedup for Phoenix and PARSEC benchmarks, maximum throughput increase for
Memcached, SQLite3, and Apache).

mechanisms such as integrity checks, checksums, etc. For instance, Mesa [2], a data warehousing
system at Google, makes use of application-specific integrity checks to detect transient faults
during computation. Unfortunately, ad-hoc mechanisms have two major limitations: (1) they
require manual effort to design and implement application-specific integrity checks, and (2) they
can only protect from errors that are anticipated by the application programmer.
As an alternative to ad-hoc checking techniques, one can make use of a principled approach

like Byzantine Fault Tolerance (BFT). BFT-based systems do not only tolerate transient faults,
but also malicious adversaries. Unfortunately, BFT yields high performance and management
overheads because of its broad assumptions on the type of faults and the power of the adversary
[222]. Since most online services run behind the security perimeter of a data center, the
“pessimistic” BFT fault model is considered overkill. Therefore, BFT-based systems are rarely
adopted in practice.

To find a good compromise between ad-hoc mechanisms and BFT-based systems, a number of
light-weight hardening techniques were proposed (see §4.2). These hardening techniques transform
the original program to locally detect and correct faults. A well-known hardening approach
is Instruction-Level Redundancy (ILR) [127, 170, 191]. ILR is a compile-time transformation
that replicates original instructions to create separate data flows and inserts periodic checks to
detect divergence caused by transient faults in these data flows. In particular, ILR duplicates
instructions to achieve fault detection [170, 191] and triplicates them to tolerate faults by majority
voting [190].

As a result, with ILR the CPU executes the same instruction two or three times on several
data copies. We notice that, in fact, this corresponds to the very definition of Single Instruction
Multiple Data (SIMD) processing. SIMD exploits data level parallelism, i.e., a single instruction
operates on several pieces of data in parallel. Given that most modern CPUs have support for
SIMD processing (Intel x86’s SSE and AVX, IBM Power’s AltiVec, and ARM’s Neon), we can
naturally ask the following question: Can we utilize SIMD instructions to tolerate transient CPU
faults and achieve better performance than ILR with three copies?

Before answering this question, we first need to understand how much of the SIMD potential
of modern CPUs is actually being used in real-world applications. To investigate this, we tested
applications from the Phoenix [187] and PARSEC [32] benchmark suites, as well as several
real-world applications, namely Memcached, SQLite, and the Apache web server. We compiled all
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applications in two versions: “native” with all optimizations enabled, and “no-SIMD” where we
disable SSE, AVX, and all vectorization optimizations in LLVM. The performance improvements
of native over no-SIMD, shown in Figure 4.1, indicate that most applications do not utilize the
benefits of SIMD processing. Indeed, most of them exhibit less than 10% improvement, with
only string match significantly benefiting from AVX.1 One can therefore conclude that SIMD
processing units are currently largely underutilized CPU resources and could hence be used for
fault tolerance.
To this end, we propose Elzar,2 a compiler framework to harden unmodified multithreaded

programs by leveraging SIMD instructions available in modern CPUs (§4.3). Elzar is built on
the Intel AVX technology to achieve triple modular redundancy. Since AVX possesses 256-bit
wide registers and regular programs operate on at most 64-bit ones, it is possible to operate with
four replicas in parallel, which is more than enough to harden applications and mask faults with
majority voting. Consequently, if a hardware fault affects one of the four replicas in an AVX
register, it can be detected and outvoted by the other correct replicas.

We implemented Elzar as an extension of the LLVM compiler framework (§4.4). It executes
as a pass of the usual build process right before the final code generation. In particular, Elzar
transforms all the regular instructions of an application into their AVX-based counterparts,
replicating data throughout AVX registers. To achieve such transparent transformation, we use
a mix of LLVM vectors and low-level AVX intrinsics.

We evaluated our approach by applying Elzar to the Phoenix and PARSEC benchmark suites
(§4.5), as well as three real-world case-studies: Memcached, SQLite3, and Apache (§4.6). To
our disappointment, our evaluation showed mostly negative results, with an average normalized
runtime slowdown of 4.1–5.6× depending on the number of threads. When compared against a
straightforward instruction triplication approach [190], Elzar performed 46% worse on average.
At the same time, Elzar was better on CPU-intensive benchmarks with few memory accesses
and many floating-point operations.
We attribute poor performance of Elzar to two main causes. First, there is a significant

discrepancy between the regular CPU instructions and their AVX counterparts. This discrepancy
forced us to introduce additional wrapper instructions that significantly hamper performance.
Second, AVX instructions in general have higher latencies and are less optimized than the regular
CPU instructions. Nonetheless, we believe there is potential in using AVX for fault tolerance,
and discuss how future implementations of this technology could boost Elzar’s performance
via minor modifications to the AVX instruction set (§4.7). Our rough estimation suggests that
Elzar could achieve overheads as low as 48% with the changes we propose.

4.2 Background and Related Work

Our approach is based on three ideas: software-based hardening for fault detection, triple modular
redundancy for fault recovery, and Intel AVX technology for SIMD-based fault tolerance.

1Some applications (e.g., kmeans and swaptions) actually perform worse when SIMD is enabled. This counter-
intuitive result is explained by the fact that compilers have only rough cycle-cost models and sometimes produce
suboptimal instruction sequences.

2Named after a four-armed character of Futurama. Similarly, Intel AVX has 4× 64-bit wide registers for SIMD
processing.
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4.2.1 Software-Based Hardening
Software-based hardening techniques can be broadly divided into three categories: Thread-Level
Redundancy (TLR) also called Redundant Multithreading (RMT), Process-Level Redundancy
(PLR), and Instruction-Level Redundancy (ILR).
Redundant Multithreading (RMT). In RMT approaches [153, 257], a hardened program
spawns an additional trailing thread for each original thread. At runtime, trailing threads are
executed on separate spare cores or take advantage of the Simultaneous Multithreading (SMT)
capabilities of modern CPUs. Similar to Elzar, RMT allows keeping only one memory state
among replicas (assuming that memory is protected via ECC). However, RMT approaches
heavily rely on the assumption of spare cores or unused SMT, which is commonly not the case in
multithreaded environments where programs tend to use all available CPU cores.
Process Level Redundancy (PLR). PLR implements the similar idea as RMT, but at the
level of separate processes [214, 258]. In PLR, each process replica operates on its own memory
state, and all processes synchronize on system calls. In multithreaded environments, allocating a
separate memory state for each process raises a challenge of non-determinism because memory
interleavings can result in discrepancies among processes and lead to false positives. Some PLR
approaches resolve this challenge by enforcing deterministic multithreading [65]. PLR might incur
a lower performance overhead than RMT but it still requires spare cores for efficient execution.
Instruction-Level Redundancy (ILR). In contrast to RMT and PLR, ILR performs repli-
cation inside each thread and does not require additional CPU cores [170, 191]. This in-thread
replication seamlessly enables multithreading and requires no spare cores for performance. We
present ILR in detail in §4.3.2.

Recent work on ILR mainly concentrated on optimizations to trade-off fault coverage for lower
overheads [75, 255]. In contrast to these new approaches, Elzar aims to utilize SIMD technology
available on modern CPUs to achieve low performance overhead without compromising on fault
coverage. A recent proposal has shown promising initial results when applying SIMD instructions
to parallelize ILR [51]. The scope of the work is however limited: (1) it only detects faults
and does not provide recovery; (2) it only protects the floating-point unit; (3) it targets only
single-threaded programs; and (4) hardening is performed manually at the level of the program’s
source code. In contrast, Elzar targets detection and recovery of transient CPU faults for
unmodified multithreaded programs. Furthermore, Elzar protects the whole CPU execution
including pointers, integers, and floating-point numbers.
Our own HAFT approach is a fault tolerance technique that couples ILR with Hardware

Transactional Memory (HTM) (see Chapter 5). In this work, instructions are duplicated to
provide fault detection, and an HTM mechanism roll-backs failed transactions to provide fault
recovery. Elzar does not rely on a separate rollback mechanism, but rather masks faults using
Triple Modular Redundancy.

4.2.2 Triple Modular Redundancy
Triple Modular Redundancy (TMR) is a classical approach for achieving fault tolerance in
mission-critical systems [144]. TMR detects faults by simple comparison of three replicas and
performs fault recovery by majority voting, i.e., by detecting which replica differs from the other
two and correcting its state. Consequently, it imposes an obvious restriction on the fault model:
only one replica is assumed to be affected by the fault.
While most of the software-based hardening techniques discussed above utilize only Dual

Modular Redundancy (DMR), i.e., they can only detect but not correct faults, there are still a

48



4.2 Background and Related Work

... ...

RAX
RBX
RCX

R15

YMM0
YMM1
YMM2

YMM15

64 bit 256 bit

Figure 4.2 – General purpose (GPR) and AVX (YMM) registers.

r1 r1 r1 r1
+

r2 r2 r2 r2

r1+r2 r1+r2 r1+r2 r1+r2

r r r r

shuffle

r r r r

431 2

12 34

Figure 4.3 – AVX addition (left): original values r1 and r2 are replicated throughout the
AVX registers; AVX shuffle (right): original values are rearranged.

number of techniques based on TMR [65, 190]. In the context of ILR, SWIFT-R [190] extends
the fault detection mechanisms of SWIFT [191] by inserting three copies (instead of two) for
each instruction and performing periodic majority voting to detect and correct faults. Elzar,
in contrast, implements TMR without an increase in the number of instructions, since AVX
registers are large enough to hold at least 4 copies of the data.

4.2.3 Intel AVX

Our solution relies heavily on the Single Instruction Multiple Data (SIMD) technology and its
specific implementation, Intel AVX. The main idea behind it is to perform the same operation
on multiple pieces of data simultaneously (data level parallelism). Figure 4.3 illustrates this
concept and how it relates to replication for fault tolerance. AVX adds new wider registers (YMM
registers) that are capable of storing several elements and the corresponding new instructions
that operate on these elements in parallel. Initially, AVX was targeted for applications that
perform parallel data processing such as image or video processing; in this work, we (ab)use it for
fault recovery. Note that we do not use the previous generation of Intel’s SIMD implementation,
SSE, since it can only operate on two 64-bit values and we need at least three copies to be able
to correct faults.
Hardware implementation. The x86-64 architecture provides 16 256-bit wide YMM registers
available for AVX instructions. Figure 4.2 compares them with general-purpose registers (GPRs).
It should be noted, however, that even though only 16 registers are visible at the assembly level,
many more registers are implemented physically and used at runtime (e.g., 168 YMM registers
in Intel Haswell).
In modern implementations, AVX has several dedicated execution units. It provides a high

level of parallelism and allows programs to avoid some common bottlenecks.
Instruction set. The AVX instruction set consists of a large number of instructions, including
special-purpose extensions for cryptography, multimedia, etc. Elzar uses only a subset of AVX
instructions, which we discuss in the following.
Most arithmetic and logic operations are covered by AVX, except for integer division and

modulo. For example, Figure 4.3 (left) illustrates how addition is performed with AVX.
AVX-based comparisons act differently than their counterparts in the general instruction set.
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Instead of directly affecting the flags in the x86 FLAGS register as normal comparisons do,
AVX comparisons return either all-1 (if result is “true”) or all-0 (“false”) values for each YMM
element. This behavior is explained by the fact that the comparison is performed in parallel on
multiple pieces of data, with possibly conflicting outcomes that would affect the flags differently.
On the other hand, there are no control flow instructions in the general instruction set that could
operate on such sequences of 1s and 0s. Therefore, a ptest AVX instruction was introduced that
sets the ZF and CF flags in FLAGS by performing an and/andn operation between its operands.
(We omit the detailed explanation of how ptest works for the sake of simplicity and refer the
reader to the Intel architecture manuals.) As a result, a branch is encoded in AVX as a sequence
of an AVX comparison followed by a ptest and a subsequent jump based on the ZF and CF
flags.
In this work, we use shuffle, a specific AVX operation that performs data rearrangement

inside a YMM register. One example of a shuffle is shown in Figure 4.3 (right). In combination
with other operations, it allows us to get much of the functionality that is not implemented in
hardware. For example, we can get a horizontal test for equality using a combination of shuffle,
xor and ptest (see §4.3.3 for more details).

4.3 Design

In this section, we introduce the design of Elzar and describe the principle of ILR upon which
it is based.

4.3.1 System Model

Fault model. Elzar uses the Single Event Upset (SEU) fault model [191], where only one
bit-flip in a CPU is expected to occur during the whole execution of a program. A bit-flip means
an unexpected change in the state of a CPU register or a wrong result of a CPU operation. The
SEU is transient, i.e., it does not permanently damage the hardware and lasts only for several
clock cycles.

We fully protect the AVX register file and the AVX operations; recall that they are completely
decoupled from the regular GPR registers and scalar instructions (§4.2.3). We do not consider
faults in the memory subsystem since it is assumed to be protected by ECC. Our fault model
also does not cover control flow errors, assuming some orthogonal control flow checker.
In general, Elzar protects from more than single faults. Indeed, four copies of data can

tolerate two independent SEUs with a high probability: If any two copies agree and each of the
other two copies disagree with the former ones, the majority voting can still mask the faults in
the latter copies (we elaborate more on that in §4.3.3). In what follows, we focus on tolerating
single faults for simplicity.

Memory and synchronization model. Elzar imposes no restriction on the underlying
memory and synchronization model, and even works with programs containing data races.
Elzar does not replicate nor modify the original memory-related operations (loads, stores,
atomics) in any way, therefore the program’s memory access behavior is unchanged. As a result,
Elzar allows for arbitrary thread interleavings in multithreaded programs and supports all
kinds of synchronization primitives.
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(a) Native
1 loop:
2 r1 = add r1, r2
3
4
5
6
7 cmp r1, r3
8
9
10 jne loop

(b) ILR
loop:

r1 = add r1, r2
r1’ = add r1’, r2’
r1’’ = add r1’’, r2’’
majority(r1, r1’, r1’’)
majority(r3, r3’, r3’’)
cmp r1, r3

jne loop

(c) Elzar
loop:

y1 = add y1, y2

y4 = cmpeq y1, y3
ptest y4
ja recover(y4)
je loop

Figure 4.4 – Original loop (a) increments r1 by r2 until it is equal to r3. Usual ILR
transformation (b) triplicates instructions and adds majority voting before comparison.
AVX-based Elzar (c) replicates data inside YMM registers, inserts ptest for comparison,
and jumps to majority voting only if a discrepancy is detected in y4.

4.3.2 Instruction-Level Redundancy

We base Elzar on Instruction-Level Redundancy (ILR) [170, 190, 191], a software-based
technique to detect and tolerate transient hardware faults. As other software-based approaches,
ILR transforms the original program by replicating its computation and inserting periodic checks
on computation results. An example of an ILR-transformed code snippet is shown in Figure 4.4b.
Replication. ILR replicates programs at the level of instructions. At compile-time, ILR inserts
“shadow” copies for each instruction except for a few instructions classified as “synchronization”
instructions. The shadow copies operate on their own set of shadow registers. At runtime,
the program effectively executes the original and the shadow instructions, creating mostly
independent original and shadow data flows which synchronize only on specific instructions.
The synchronization instructions include all memory-related operations (loads, stores, atom-

ics) and control-flow operations (branches, function calls, function returns). Memory-related
operations are not replicated for two reasons: (a) the memory subsystem contains only one copy
of the state and there is no need to store twice, and (b) ILR keeps the memory access behavior
unmodified in order to allow for non-determinism in multithreaded applications. Control-flow
operations are not replicated because ILR protects only data integrity and assumes no control-flow
faults. Note that by not replicating function calls, ILR requires no changes in function signatures
and no wrappers for system calls and third-party non-hardened libraries.
To create a shadow data flow, ILR replicates all inputs: values loaded from memory, values

returned by function calls, and function arguments. This is achieved by a simple move of an
input value in one of the shadow registers.

If only fault detection is required, it is sufficient to duplicate the instructions and signal an error
or simply crash if two data flows diverge [170, 191]. If fault tolerance is needed, the instructions
must be triplicated and majority voting must be used to mask faults in one of the three data
flows (see Figure 4.4b) [190].
Checks. To be able to detect faults, ILR additionally inserts checks right before synchronization
instructions. As one example, a load address must be checked before the actual load, otherwise a
wrong value could be undetectably loaded and used by the subsequent instructions. As another
example, all function arguments must be checked before the function call to prevent the callee
from computing with wrong values. Finally, it is important to check the branch condition before
branching or else the program could take a wrong path.
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Figure 4.5 – Elzar load (left): original load is wrapped by AVX-based extract and
broadcast; Elzar branching (right): original cmp for equality is transformed in a sequence
of cmpeq and ptest.

The checks themselves are straightforward. If crash-stop behavior is sufficient, a check compares
two copies of data and crashes the program if the copies diverge. For availability (fault tolerance),
ILR requires majority voting on three replicas to mask a possible fault (as depicted in Figure 4.4b).
During majority voting, three copies of data are compared to each other, and if one copy differs
from the other two it is overwritten with the majority value.

4.3.3 Elzar

As appears clearly in Figure 4.4, ILR requires three times more instructions than the original
program plus expensive majority voting on synchronization events. As a result, a simple 3-
instruction loop may require around 13 instructions under ILR. Such a blow-up in instructions
can quickly saturate CPU resources and result in high performance overhead.

Elzar, on the other hand, does not replicate instructions but rather data and thus increases
the total number of instructions only modestly. Figure 4.4c shows that Elzar inserts only 2
additional instructions to perform a check on a branch condition. The replication is achieved by
utilizing wide YMM registers, with y1–y4 each containing four copies of the original values. The
add and cmp instructions in this snippet are actually AVX instructions which operate on four
copies inside the YMM registers in parallel. The somewhat peculiar check consists of the ptest
AVX instruction and a subsequent jump to recovery code if a discrepancy in branch condition
y4 is detected; we cover AVX-based checks in detail below.

In general, Elzar transforms a program as follows: it (1) replicates the data in YMM registers,
(2) inserts periodic checks, and (3) inserts recovery routines. In the following, we discuss each of
these steps in detail.
Step 1: Replication. AVX provides an almost complete set of arithmetic and logical instruc-
tions: addition, subtraction, multiplication, bitwise operations, shifts, etc. For floating point
data, all the usual instructions are present in AVX. For integers, the only missing instructions
are integer division and modulo; Elzar falls back to basic ILR in these cases. In general, Elzar
achieves replication by simply replacing the original arithmetic and logical instructions with their
AVX counterparts, as in Figure 4.3.

The situation is more complicated for (most) non-replicated synchronization instructions.
These are the regular loads, stores, function calls, etc., which do not operate on YMM registers.
Thus, Elzar has to extract one copy of each instruction’s argument from YMM registers and
use this copy in the instruction. If a synchronization instruction returns a value (e.g., load), this
value must then be replicated inside a YMM register. AVX provides dedicated instructions for
such purposes: extract and broadcast. Unfortunately, these additional instructions must wrap
every single load, store, etc., which leads to high overheads. An example of such “wrapping” for
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Figure 4.6 – Checks on synchronization instructions (left) and on branches (right).

a load is shown in Figure 4.5 (left).
A special case of a synchronization instruction is a branch. A typical x86 branching sequence

consists of one comparison (cmp) which toggles the FLAGS register and the subsequent jump
instruction (je for “jump if equal”, jne for “jump if not equal”, etc.). This is exemplified in
Lines 7–10 of Figure 4.4a. Unfortunately, as explained in §4.2.3, AVX lacks instructions affecting
control flow except for ptest. Moreover, the AVX-based comparison instructions (e.g., cmpeq)
do not toggle the FLAGS register but instead fill the elements of a YMM register with true/false
values. Therefore, Elzar inserts an additional ptest to examine the result of cmpeq and only
then proceeds to a jump (see Figure 4.5 and also Figure 4.4c, Lines 7, 8, and 10).
Step 2: Adding checks. In order to detect faults, Elzar inserts checks before each synchro-
nization instruction. If a check succeeds, i.e., all copies of a YMM register contain the same value,
the program continues normally, otherwise the YMM register must be recovered via majority
voting. Note that the check itself must be as efficient as possible since it executes on the fast
path. The recovery routine, however, resides on the slow path and can hence be less efficient.
Similar to replication, Elzar distinguishes between branches and all other synchronization

instructions. Because of implementation choices in AVX, checks turn out to be very effective
for branches but not for other operations. To support efficient checks in Elzar, we rely on the
assumption that a fault corrupts only one copy in a YMM register (see §4.3.1).
In general, a check on the arguments of a synchronization instruction requires a pair-wise

(horizontal) comparison of copies inside a YMM register. For example, upon a function call,
all function arguments replicated in the corresponding AVX registers must be checked for
discrepancies. Interestingly, AVX provides a horizontal subtraction instruction called hsub, but
it is not implemented for 64-bit integers and is generally slow. Hence, we opted for another
implementation of checks that involves a shuffle and a subsequent xor. This idea is illustrated
in Figure 4.6 (left). In an error-free case, xor produces all-0s which is easily ruled out by ptest.
In the case of a fault in one of the copies, the result of xor is a mix of 0s and 1s, which triggers
the jne path and leads to recovery.
A check on a branch is cheaper and conceptually simpler. As evident in Figure 4.5 (right),

branching in AVX already requires an AVX-based comparison and a ptest. We notice that in
error-free case, comparisons in Elzar can produce only all-true or all-false results (see §4.2.3).
Thus, a mix of true and false indicates a fault. Fortunately, ptest is a versatile instruction that
allows us to check for an all-true, all-false, or true-false mix outcome simultaneously, as shown
in Figure 4.6 (right). Therefore, to add a check before a branch, it is sufficient to augment the
AVX-based branching with just a single jump instruction, ja (“jump if above”), as shown in
Figure 4.4c, Line 9.
Step 3: Adding recovery. Checks on branches and other synchronization instructions trigger
a recovery routine when a fault is detected. The task of this routine is to mask a fault. Because
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of the assumption that a fault is localized in only one copy of the YMM register (see §4.3.1), it is
sufficient to identify two identical replicas in the register and blindly broadcast their value to the
whole register. This can be performed efficiently by a single comparison of the low elements of
the faulty YMM register (depicted in gray in Figure 4.6) and, depending on the result of the
comparison, copying either the lowest or the highest element to the rest of the register.
We note, however, that we can easily implement a smarter recovery strategy that would

support more complex fault patterns involving multiple bit flips. As the recovery procedure is on
the slow path, i.e., it is triggered only rarely, it does not need to be optimized for speed and this
added reliability can be implemented without compromising performance.
The idea of the extended recovery procedure is to check all four elements and consider three

scenarios: (1) if three elements are identical, then the last one is faulty and can be overwritten
with the value of the former; (2) if two elements are identical and the other two have each a
different value, then the latter elements are both faulty and can be overwritten with the value of
the former; finally, (3) if we have two groups of two elements, with each group agreeing on a
different value, then the same fault has affected two elements and we have no majority, hence
program execution must stop. This recovery strategy can tolerate all single bit flips, all flips of
two bits of different order in the replicas, as well as a wide variety of more complex fault patterns
that leave at least two elements identical.

4.3.4 Data Types Support

AVX natively supports 8-, 16-, 32-, and 64-bit integers as well as single- and double-precision
floating points. However, up to this moment the discussion implied 64-bit integers replicated
four times across a 256-bit YMM register.
There are three options to support smaller types: (1) cast all smaller integer types to 64-bit

integers and 32-bit floats to 64-bit doubles, (2) replicate all types only four times in the low bits of
YMM registers, leaving upper bits nullified, or (3) replicate smaller types so many times as to fill
up the whole YMM register. The first approach obviously breaks semantics of integer overflows
and floating point precision, possibly leading to unexpected computation results. The second
approach is better but requires additional care for AVX instructions that compute across the
whole YMM register, e.g., results of comparisons may differ in lower and upper bits. Therefore
we chose the third approach which leads to extreme settings of up to 32-modular redundancy for
8-bit integers but is conceptually clean.
Compilers like LLVM sometimes produce esoteric integer types like 1-bit or 9-bit integers,

usually for sign-extension and truncation purposes. Such data types are rare but still present in
many applications, therefore we extend them to the AVX-supported bit width and treat them as
“usual” integers. We take special care whether to zero- or sign-extend them, depending on the
associated semantics.

4.4 Implementation

We implemented Elzar as an LLVM compiler pass [134] that takes unmodified source code of
an application and emits an AVX-hardened executable. We also implemented a fault injection
framework to be able to test Elzar’s fault tolerance capabilities.
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4.4.1 Compiler Framework

Tool chain. We developed Elzar as a compiler pass in LLVM 3.7.0 (∼ 600 LOC). Additionally,
we extract the implementation of checks and recovery in a separate LLVM IR file (∼ 250 LOC).
This separation allowed us to write the pass in a (mostly) target-independent way, i.e., AVX
can be substituted by another similar technology (e.g., ARM Neon) by rewriting only the IR file
with checks and recovery.

Elzar is plugged in the usual build process of an application, i.e., there is no need to modify
the source code or the makefiles/configuration scripts. To achieve this, we employ the LLVM
gold linker plugin that can save the final optimized and linked LLVM bitcode to a file. Elzar
takes this file as input, adds AVX-based redundancy, and emits the hardened executable. Thus,
Elzar performs its transformation after all optimization passes and right before assembly code
generation.
In order to be able to use AVX for replication, we disallow any vectorization in original

programs. All other optimizations are enabled. Additionally, we run the scalarrepl pass to
replace all aggregate data types (structs, arrays) because they are not natively supported by
LLVM vectors we employ.

Pass details. The usual way to write AVX-enabled programs is to use AVX intrinsics or
directly AVX inline assembly. This approach is the closest to “bare metal” and allows for fine
performance tuning, but it is also time-consuming and error-prone. Moreover, using intrinsics or
inline assembly would make it impossible to directly port Elzar to a different technology than
Intel AVX.

Fortunately, LLVM provides first-class vector types that were specifically introduced for SIMD
programming and come with an extensive support for vector operations. The x86 code generator
recognizes vectors and transforms them into AVX instructions. LLVM also introduces three special
instructions to work with vectors, extractelement, insertelement, and shufflevector that
are respectively mapped to AVX’s extract, broadcast, and shuffle. Generally, we found
vectors to be a very powerful abstraction, with the quality of the generated AVX code improving
with each LLVM release.

With LLVM vectors, the process of AVX hardening becomes fairly trivial: (1) all data types of
a program are transformed into corresponding vector types, (2) each of the synchronization in-
struction’s arguments is extracted from a vector using extractelement, (3) each synchronization
instruction’s return value is broadcast to the whole vector using insertelement, (4) all other
instructions are substituted to work on the corresponding vectors, and (5) checks and recovery
routines are inserted before synchronization instructions. An example of Elzar-transformed
program is shown in Figure 4.7.

A nice feature of this vector-based approach is that one can abstract away from the underlying
AVX implementation. As such, we do not need to care about most corner cases like vector-based
integer division which is not implemented in AVX. We can still write it in an LLVM vector form,
and the x86 code generator automatically converts it to four regular division instructions.
The careless use of vectors, however, may seriously hamper performance in some cases. For

example, a straightforward implementation of branches with LLVM vectors results in a convoluted
and ineffective instruction sequence; this is related to the fact that Elzar uses ptest in an
unusual manner that was not anticipated by the developers of the x86 code generator and is not
efficiently supported in the pattern-matching rules. For such corner cases, we explicitly insert
boilerplate code patterns as shown in gray in Figure 4.7b. This code actually generates the
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(a) Native
1 loop:
2 r1 = add i64 r1, r2
3 c = cmp eq i64 r1, r3
4
5
6
7 br i1 c, exit, loop

(b) Elzar
loop:

r1 = add <4 x i64> r1, r2
c1 = cmp eq <4 x i64> r1, r3
c64 = sext c1 to <4 x i64>
t = call ptest(<4 x i64> c64)
c = cmp eq i32 t, 0
br i1 c, exit, loop

Figure 4.7 – Example from Figure 4.4 as represented in simplified LLVM IR. Original
code (a) operates on i64 64-bit integers. Elzar (b) transforms the code to use <4 x i64>
vectors of four integers. Since LLVM-based comparisons do not directly map to AVX, Elzar
inserts some boilerplate code (shown in gray).

ptest-je instruction sequence in the final executable, exactly as in Figure 4.4c.3
As discussed previously (§4.3.3), AVX natively supports only 8-, 16-, 32-, and 64-bit integers

and 32- and 64-bit floating points. Since LLVM sometimes produces types with unsupported
widths, we have no other choice but to extend them to supported types. In the case of integers,
we take special care to sign- or zero-extend them. In some other cases (e.g., for SQLite3), we
had to switch off the long-double type using predefined macros in the source code.
Libraries support. Most previous research in the area of ILR focused on hardening only the
program’s source code and left third-party libraries unprotected [75, 190, 191, 255]. This leads
to better performance but also to lower fault coverage, because a fault in library code can go
undetected. We notice however that many programs from the Phoenix and PARSEC benchmark
suites, which are used in our evaluation, heavily utilize the standard C (libc) and math (libm)
libraries. Therefore, to report more accurate numbers, we also harden a significant part of
libc and libm. We decided not to harden the I/O, OS, and pthreads-related functions for our
prototype implementation because their execution takes less than ∼ 5% of the overall time. As a
reference implementation, we chose the musl library with inline assembly disabled.
Limitations. Our prototype does not support inline assembly because LLVM treats assembly
code as calls to undefined functions and provides no information about such code. Furthermore,
our prototype does not have support for C++ exceptions.

4.4.2 Fault Injection Framework

For time budget reasons, we ran our fault injection experiments on a medium-sized cluster of
computers without AVX installed. We therefore needed a fault injection tool that can emulate
Intel AVX. Since available tools do not provide such support, we developed our own binary-level
fault injector (∼ 320 LOC) using Intel Software Development Emulator (SDE), which provides
support for AVX instructions and gdb debugger. In the following, we give a high-level overview
of our fault injector.

Basically, a fault injection campaign for each program proceeds in two steps. First, a program
instruction trace is collected via the Intel SDE debugtrace tool. This preparatory step is
required to automatically find and demarcate the boundaries of the hardened part of the program
(remember that Elzar does not harden external libraries and we do not want to inject faults

3To construct the boilerplate LLVM code, we consulted the source code of LLVM codegen’s regression tests.
These tests gave us a good understanding of how specific LLVM constructs are mapped to AVX assembly.
This was literally a “test-driven development” experience.
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FI outcome Description System
Hang Program became unresponsive CrashedOS-detected OS terminated program

Elzar-corrected Elzar detected and corrected fault CorrectMasked Fault did not affect output

SDC Silent data corruption in output Corrupted

Table 4.1 – Fault injection outcomes classified.

into them). Knowing these boundaries, our fault injection tool can narrow down the set of
instructions in which the fault can be injected.

Second, the program is executed repeatedly and, in each run, a single fault is injected (§4.3.1).
To that end, a program-under-test is started under Intel SDE with a gdb process attached. To
inject a fault, we dynamically create a new gdb script that sets a random breakpoint for a given
occurrence of a particular instruction (otherwise gdb would always stop at the first occurrence
of the instruction). When the program runs under Intel SDE with gdb attached, it stops at
the breakpoint, the fault injection happens, and the now-faulty program continues execution.
After the program terminates, our fault injection tool examines the program output, assigns a
corresponding outcome (see below), and proceeds to another fault injection run.
Each fault injection run results in one of the outcomes listed in Table 4.1. To distinguish

between the correct and corrupted system states, each program-under-test is run first without
fault injections to produce a reference output (“golden run”). Consequently, after each run, the
program output is compared against this reference output, and a SDC is signaled if two outputs
differ.

We inject faults by overwriting an output register of an instruction where the breakpoint was
set. We inject not only in AVX (YMM) registers but also in regular (GPR) registers. For YMM
registers, we inject faults only in one element of the register to match our fault model (§4.3.1).

4.5 Evaluation
In this section, we answer the following questions:

• What is the performance overhead incurred by Elzar, and what are the causes for high
overheads (§4.5.2)?

• How many faults are detected and corrected by Elzar during fault injection experiments
(§4.5.3)?

• How does Elzar perform compared to a state-of-the-art ILR implementation (§4.5.4)?

4.5.1 Experimental Setup

Applications. Elzar was evaluated on two benchmark suites: Phoenix 2.0 [187] and PARSEC
3.0 [32]. Results are reported for all 7 Phoenix benchmarks and 7 out of 13 PARSEC benchmarks.
The remaining 6 benchmarks from the PARSEC suite were not evaluated for the following reasons:
bodytrack and raytrace use C++ exceptions not supported by Elzar, facesim crashes with a
runtime error when built with LLVM, freqmine is based on OpenMP and does not compile under
our version of LLVM, canneal has inline assembly and vips has long-double floats not supported
by Elzar.
All applications were built with LLVM 3.7.0 and Elzar as described in §4.4.1. The native

versions were built with msse4.2 and mavx2 flags to enable SIMD vectorization. The Elzar
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Figure 4.8 – Performance overhead over native execution with the increasing number of
threads.
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Figure 4.9 – Performance overheads breakdown by disabling checks (with 16 threads).

versions were built with all vectorization disabled, i.e., with no-sse, no-avx, fno-vectorize,
and fno-slp-vectorize flags. For all versions, all other compiler optimizations were enabled
(O3 flag). Additionally, we used the fno-builtin flag to transparently link against our versions
of libc and libm.

Note that we compare Elzar against the native version with all AVX optimizations enabled.
As Figure 4.1 indicates, most benchmarks do not benefit from AVX. However, string match
shows a 60% increase in performance. Therefore, we decided to also show how Elzar performs
in comparison to the native version with AVX optimizations disabled; we refer to this experiment
as smatch-na (for “string match no AVX”).
Datasets. For the performance evaluation, we use the largest available datasets provided by
Phoenix and PARSEC. However, for the fault injection experiments, we use the smallest available
inputs due to the extremely slow fault injection runs.
Testbed. The performance evaluation was done on a machine with two 14-cores Intel Xeon
processors operating at 2.0 GHz (Intel Haswell microarchitecture4) with 128 GB of RAM, a
3.5 TB SATA-based SDD, and running Linux kernel 3.16.0. Each core has private 32 KB L1 and
256 KB L2 caches, and 14 cores share a 35 MB L3 cache. For performance measurements, we
report an average of 10 runs.
For fault injections, we used a cluster of 25 machines to parallelize the experiments. We

injected a total of 2, 500 faults in each program. All programs-under-test were run with two
threads to account for the impact of multithreading.

4.5.2 Performance Evaluation

Impact of Elzar and scalability. The performance overheads incurred by Elzar are shown
in Figure 4.8. There is significant variability in behavior across benchmarks, with some showing

4We also performed experiments on Intel Skylake but the results were similar to Intel Haswell. Therefore, we
omit them in our evaluation.
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Benchmark L1-miss br-miss loads stores branches
hist 0.66 0.01 53.21 26.67 9.56
km 1.48 0.33 20.83 0.48 14.96
linreg 2.05 0.01 18.02 0.21 3.82
mmul 62.39 0.14 40.16 0.07 10.10
pca 12.19 0.27 14.21 0.21 3.79
smatch 0.12 0.70 11.61 14.35 22.40
wc 10.94 3.31 29.75 23.63 13.67
black 0.40 1.21 9.38 2.84 15.63
dedup 4.30 3.80 30.08 13.55 12.01
ferret 4.69 12.65 14.47 2.28 17.42
fluid 1.17 14.70 11.77 2.58 14.29
scluster 4.17 1.47 32.60 0.43 9.33
swap 0.82 0.97 30.98 4.80 11.05
x264 0.34 0.31 26.83 8.32 21.00

Table 4.2 – Runtime statistics for native versions of benchmarks with 16 threads: L1D-cache
and branch miss ratios, and fraction of loads, stores, and branches over executed instructions
(all numbers in percent).

overheads as low as 10% (matrix multiplication) and some exhibiting up to 20× worse performance
(string match). On average, the normalized runtime of Elzar is 4.1–5.6× depending on the
number of threads.
For some benchmarks, there is also variability across the number of threads. Ideally, if a

program has linear scalability, Elzar should incur exactly the same performance overhead with
any number of threads, e.g., as in case of word count or ferret. However, some benchmarks such
as dedup are well-known to have poor scalability, i.e., with many threads they spend a lot of
time on synchronization [29]. Thus, Elzar’s overhead is partially amortized by the sub-linear
scalability of these benchmarks.
To gain better understanding on the causes of high overheads as well as the causes of high

variability across benchmarks, we gathered runtime statistics for native and Elzar versions of
all benchmarks. The results are shown in Tables 4.2 and 4.3. The benchmarks were run with 16
threads (and in the case of Elzar, with all checks enabled) and profiled using perf-stat to collect
hardware counters of raw events such as the number of loads, stores, branches, all instructions
and AVX instructions only, etc.
Based on the information from Tables 4.2 and 4.3, we can highlight several causes of high

performance overheads. Firstly, as Table 4.3 shows, Elzar leads to an increase in the total
number of executed instructions of 4–8× on average. This disappointingly high number is
explained by the fact that Elzar adds wrapper instructions for loads, stores, and branches, as
well as expensive checks on synchronization instructions (see §4.3.3).

Second, looking at the achieved Instruction-Level Parallelism (ILP) in Table 4.3, we notice that
current x86 CPUs provide much better parallelization for regular instructions as compared to AVX
instructions. As one example, linear regression achieves a high ILP of 6.51 instructions/cycle in
native execution, but the AVX-based version reaches only a disappointing ILP of 1.7. Combined
with the 10.49× increase in number of instructions for the AVX-based version, it is no surprise
that linear regression exhibits an overhead of ∼ 5–8×.
Two benchmarks that show the lowest overheads are matrix multiplication and blackscholes.

In the case of matrix multiplication, almost all of Elzar’s overhead is amortized by a very
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Instruction-Level Parallelism Increase in # of instr
(ILP), instr/cycle w.r.t. native

Benchmark Native Elzar SWIFT-R Elzar SWIFT-R
hist 1.59 2.13 4.30 8.56 6.17
km 3.48 2.58 3.85 6.37 4.34
linreg 6.51 1.70 3.46 10.49 4.33
mmul 0.22 0.96 1.71 4.47 7.77
pca 2.61 2.28 3.89 6.82 9.45
smatch 2.38 3.26 3.46 32.72 11.56
wc 1.31 2.24 3.05 6.14 3.42
black 1.83 1.77 2.97 1.70 5.18
dedup 1.04 1.75 2.00 4.64 3.68
ferret 1.11 1.81 2.57 4.32 6.33
fluid 1.22 1.54 2.77 2.43 6.02
scluster 0.68 1.22 1.34 3.77 3.87
swap 1.97 2.06 2.68 3.50 4.40
x264 2.11 2.00 3.44 3.26 3.71

Table 4.3 – Runtime statistics for Elzar and SWIFT-R versions of benchmarks with 16
threads: Instruction-Level Parallelism (ILP) and increase factor in the number of executed
instructions w.r.t. native.

poor memory access pattern that leads to 62.39% of all memory references missing L1 cache;
in other words, matrix multiplication spends more time in waiting for memory than in actual
computation. In the case of blackscholes, the main cause for low overheads is the small fraction
of loads/stores (12.22%) and branches (15.63%).
Finally, we inspected the causes for extremely high overheads in string match. First of all,

string match by itself significantly benefits from AVX vectorization (see Figure 4.1). Indeed,
Elzar is ∼ 15–20× slower than the native version, but ∼ 10–14× slower than native with AVX
vectorization disabled. Second of all, Elzar increases the total number of executed instructions
by a factor of 32. Upon examining the source code of string match, we noticed that it spends
most of the time in bzero to nullify some chunks of memory. LLVM produces a very effective
assembly for this helper routine, but Elzar inserts wrappers and checks for the store and branch
instructions in bzero, leading to much longer and slower assembly code.
Impact of checks. We also investigated the impact of checks inserted by Elzar (see §4.3.3).
Figure 4.9 shows the results of successively disabling checks on loads, stores, branches, and all
other instructions (e.g., function calls, function returns, atomics). Note that the results are
shown for benchmarks run with 16 threads.
We observe that checks constitute a significant part of the overall performance overhead of

Elzar. For example, disabling checks on loads and stores decreases the overhead from 4.2 to
2.7× on average, a difference of 55%. Disabling checks on branches leads to a negligible overhead
reduction of 4%, which proves that our branch checking scheme is very efficient (§4.3.3).

We also observe that disabling checks on loads and stores respectively reduces the overhead by
11% and 40%, i.e., checks on stores have higher overheads than checks on loads. The reason is
that stores require to check both the address and the value to store whereas loads only need to
check the address.
Floating point-only protection. As AVX was initially developed to accelerate floating-point
calculations, it is interesting to study the overheads when applying Elzar only to floating-
point data. We thus developed a stripped-down version of Elzar that replicates floats and
doubles but not integers and pointers, and ran tests on several PARSEC benchmarks that
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Figure 4.10 – Reliability of Elzar (fault injections done on benchmarks with 2 threads).

contain sufficiently many floating-point operations: blackscholes (47% of all instructions are
floating-point), fluidanimate (32%), and swaptions (34%) [32].
Our results prove that Elzar hardens floating points with a low overhead. Depending on

the number of threads, we observe a 9–35% performance overhead over native for blackscholes,5
10–18% for fluidanimate, and 40–60% for swaptions. The overhead is mainly caused by the
checks on synchronization instructions.

4.5.3 Fault Injection Experiments

The results of the fault injection experiments are shown in Figure 4.10. On average, Elzar
reduces the SDC rate from 27% to 5% and the crash rate from 18% to 6%.
Histogram has the worst result with 12% SDC. It highlights Elzar’s window of vulnerability:

address extractions before loads and stores. If a fault occurs in the extracted address, it will be
used to load a value from the wrong address, and this value will then be broadcast to all replicas.
In other words, the fault will remain undetected and may lead to SDC (similarly, such a fault
may lead to a segmentation fault and therefore to a system crash). Indeed, Table 4.2 tends to
confirm this observation since histogram has the highest number of memory accesses among all
benchmarks. Similarly, blackscholes has the least number of loads/stores and thus has only 1%
SDC.

4.5.4 Comparison with Instruction Triplication

Lastly, we compare Elzar against a common ILR approach based on triplication of instructions.
More specifically, we compare Elzar against SWIFT-R [190] as shown in Figure 4.11. We
re-implemented SWIFT-R because its source code was not publicly available; we employed
manual assembly inspection to make sure our implementation of SWIFT-R produces fast and
correct code.
In general, SWIFT-R incurs lower overheads than Elzar, 2.5× against 3.7× on average.

Interestingly, Elzar performs better in three benchmarks, namely kmeans, blackscholes, and
fluidanimate. To understand the differences between these approaches, we also report runtime
statistics of SWIFT-R (Table 4.3).

5This is in line with the numbers reported by Chen et al. [51] where a single-threaded, manually written
SSE-based version of blackscholes exhibits ∼ 30% overhead.
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Figure 4.11 – Performance comparison of Elzar and SWIFT-R (with 16 threads).

We can draw two conclusions. First, SWIFT-R benefits from higher ILP, which is the key
for its low performance overhead. As discussed before, Elzar takes a different stance and
replicates not instructions but data; that is why it exhibits lower ILP but still performs on par
with SWIFT-R in many cases.

Second, SWIFT-R significantly increases the number of instructions, which hampers its
performance. Elzar has a smaller increase, proving our hypothesis that AVX-based ILR leads to
less code blow-up. For example, Elzar outperforms SWIFT-R on blackscholes and fluidanimate
exactly for this reason: even though SWIFT-R’s ILP is almost 2× higher than Elzar, SWIFT-R
produces ∼ 2.5–3× more instructions.
At the same time, SWIFT-R significantly outperforms Elzar in benchmarks that are

dominated by memory accesses. In these cases, Elzar inserts a plethora of checks and wrappers,
which results in a much higher number of instructions compared to SWIFT-R. This is exemplified
by histogram, string match, and word count.

4.6 Case Studies
In this section, we report our experience on applying Elzar to three real-world applications:
Memcached, SQLite3, and Apache.
Memcached key-value store. We evaluated Memcached v1.4.24 with all optimizations en-
abled, including atomic memory accesses. The evaluation was performed locally on the same
Haswell machine used for other experiments, with 1–16 cores dedicated to the Memcached server
and all other cores to the YCSB clients [56] for generating workload. We opted to show the local
performance of Memcached because the performance in a distributed environment is limited by
the network and not by the CPU.

Figure 4.12a shows the throughput of native and Elzar versions of Memcached run with two
extreme YCSB workloads: A (50% reads, 50% writes, Zipf distribution) and D (95% reads, 5%
writes, latest distribution). We observe that Elzar scales on par with native, achieving up to
72% of native throughput for workload A and up to 85% for workload D. We also observed in
our experiments that the latency of Elzar is ∼ 25% worse than native (not shown here). Such
good results are explained partially by Memcached’s poor memory locality, which amortizes the
costs of Elzar.
SQLite database. We evaluated SQLite3 using an in-memory database and YCSB workloads,
similar to Memcached. We should note that SQLite3 has a reverse scalability curve because it was
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Figure 4.12 – Throughput of case studies: (a) Memcached key-value store, (b) SQLite3
database, and (c) Apache web server. Two extreme YCSB workloads are shown for Mem-
cached and SQLite3: workload A (50% reads, 50% writes, Zipf distribution) and workload D
(95% reads, 5% writes, latest distribution).

designed to be thread-safe and not concurrent. Therefore, SQLite3 exhibits worse throughput
with higher numbers of threads.

The performance results are shown in Figure 4.12b. Elzar performs poorly, achieving only
20–30% of the throughput of the native version. This overhead comes from the high number of
locally near loads and stores, as well as function calls and function pointers. In all these cases,
Elzar inserts additional checks and wrappers that significantly degrade performance.
Apache web server. We evaluated the Apache web server using its “worker multi-processing
module” with a single running process and a varying number of worker threads. As a client, we
used the classical ab benchmark which repeatedly requests a static 1MB web page.

Figure 4.12c shows the throughput with varying number of threads. Elzar performs very well,
with an average throughput of 85% compared to native. We attribute this good performance to
the fact that Apache extensively uses third-party libraries that are not hardened by Elzar.

4.7 Discussion

In this section, we highlight performance bottlenecks in the current AVX implementation and
discuss the possible remedies.

4.7.1 Performance Bottlenecks

Loads, stores, and branches. Even not taking into account the overhead of checks, Elzar
still performs 160% worse than the native version (see Figure 4.9, “all checks disabled”). This
performance impact stems mainly from the three bottlenecks: loads, stores, and branches.

To understand the impact of each of the three main bottlenecks, we created a set of microbench-
marks. Each microbenchmark has two versions: one with the regular instruction (e.g., regular
load) and one with the AVX-based instruction (e.g., AVX-based load as shown in Figure 4.5).
In each microbenchmark, the instruction is replicated several times to saturate the CPU and
wrapped in a loop to get execution time of at least 1 second. We wrote the microbenchmarks
using volatile inline assembly to be sure that our instructions are not optimized away by the
compiler; all tests were performed on our Intel Haswell machine.
The results of microbenchmarks are shown in Table 4.4. We conclude that adding extract

and broadcast wrappers for AVX-based loads results in a ∼ 2× increase of load execution time.
Similarly, adding ptest for AVX-based branches leads to an overhead of ∼ 1.9×. Interestingly,
AVX-based stores do not exhibit high overhead, which is explained by the fact that our Intel
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Loads Stores Branches
average-case 1.96 1.00 1.86
worst-case 2.06 1.14 1.89

Table 4.4 – Normalized runtime of AVX-based versions of microbenchmarks w.r.t. native
versions.

Haswell has only one port to process data stores and thus the store operation itself is a bottleneck
even in the native version.
Checks on loads and stores. As can be seen from Figure 4.9, Elzar’s checks on synchroniza-
tion instructions contribute a significant amount of the overhead (39% on average). Specifically,
checks on loads and stores account for most of the overhead because of the complicated sequence
of check instructions. At the same time, checks on branches add only 5% overhead due to an
efficient re-use of ptest already needed for branching itself (see Figure 4.6).
Missing instructions. Our Intel Haswell supports the AVX2 instruction set. Though AVX2
provides instructions for almost all operations, some classes of operations are missing. Two
prominent examples are integer division and integer truncation. In the case of integer divisions,
Elzar generates at least four regular division instructions and the corresponding wrappers to
extract elements from the input YMM registers and insert elements in the output YMM register;
with truncations, the situation is similar. Clearly, emulating such missing instructions via a long
sequence of available AVX instructions can lead to tremendous slowdowns.6 For example, our
microbenchmark for truncation exhibits overheads of 8×.

4.7.2 Proposed AVX Instructions

Elzar could greatly benefit from a rather restricted set of new AVX instructions as proposed
next. The instructions we propose are not Elzar-specific and other applications can find use for
them. Moreover, some of them are already introduced in the AVX-512 instruction set which will
be available in Intel’s upcoming CPUs.
Loads and stores (gathers and scatters). As is clear from Figure 4.5, regular load instruc-
tions are restricted in that they require an address operand specified in a general-purpose register
(GPR). Elzar would need an instruction that can load the elements of an output YMM register
from several addresses specified in the corresponding elements of an input YMM register.
The current implementations of AVX already support a similar instruction called gather

(Figure 4.13, left). Unfortunately, gather instructions still require a base address from a GPR and
do not yet support all data types. Moreover, the current implementation is slower than a simple
sequence of several loads [101]. Nonetheless, we can expect that future AVX implementations
will provide better support for gathers so that they can be successfully exploited in Elzar.
Interestingly, introducing gathers could also close a window of vulnerability discussed in §4.5.3.

A similar argument can be made regarding stores. AVX-512 introduces scatter instructions
that can store elements from a YMM register based on the addresses in another YMM register.
Thus, Elzar could advantageously substitute current implementations of stores with scatters.
Comparisons affecting FLAGS. Currently, AVX exposes only one instruction, ptest, that
can affect control flow by toggling the FLAGS register. Accordingly, Elzar inserts an AVX-based

6One simple optimization would be to identify missing instructions and emit a sequence of only 3 divisions/trun-
cations. However, this solution still requires extracting elements and then combining them again. For our
prototype, we had no need to implement such an optimization because these instructions are rare.
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Figure 4.13 – Offloading checks to a FPGA accelerator via gather/scatter AVX instructions.

comparison followed by a ptest to implement branching, as shown in Figure 4.5. Table 4.4
indicates that this additional operation leads to an overhead of almost 2×.
The only way to improve performance of branches is to re-implement the logic of the usual

comparison instructions. In x86, a cmp instruction performs both the comparison and the toggling
of FLAGS. We would propose a similar family of AVX-based comparisons which could output
the result of comparison (§4.2.3) and set the corresponding flags in FLAGS. Such improved
comparisons could be also beneficial for vectorized applications that rely heavily on ptest.
Checks on loads and stores. Checks on loads and stores are implemented via an inefficient
shuffle-xor-ptest sequence (see Figure 4.6). Having a single comparison instruction similar
to the comparisons described above would greatly decrease the overheads of checks. Such an
instruction would perform a pair-wise comparison of neighboring elements in a YMM register
(so-called “horizontal” comparison) and toggle FLAGS. Thus, a long sequence of instructions
from Figure 4.6 would be replaced by a single instruction.
The benefits of such an instruction for other applications than Elzar are unclear. Thus, in

the next section we propose a more viable alternative involving an FPGA accelerator.
Truncations, divisions, and others. Curiously, a family of truncation operations (vpmov,
vcvt) is already implemented in AVX-512. Integer division and modulo operations are quite rare
and their absence is unlikely to lead to significant overheads; thus we believe these instructions
are no candidates for future AVX implementations. We probably missed some other instructions
that are not present in AVX, but we believe they are sufficiently uncommon to not provide much
benefit for Elzar.

4.7.3 Offloading Checks

In order to decrease the overhead of checks, we can take advantage of the upcoming FPGA
accelerators that will become part of CPUs [90]. These FPGAs will be tightly coupled with the
CPU and both will share the virtual memory of a process. As such, it will likely be possible to
offload some functionality from the CPU to the FPGA. As of the moment of this writing, details
on the Intel FPGA accelerators are not public and our speculations may prove wrong when the
final products are released.

We propose to offload the checks on loads and stores to the FPGA as follows (see Figure 4.13).
For an Elzar-hardened program, all loads and stores are tunneled through the FPGA. The
FPGA checks all copies of the address (for loads) and all copies of the value (for stores) and
implements majority voting to mask possible faults. After that, the FPGA performs a load from
a correct address or a store of a correct value. For loads, the FPGA also replicates the loaded
value and sends it back to the CPU.
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Figure 4.14 – Estimation of performance overhead of Elzar with the proposed changes to
AVX (with 16 threads).

4.7.4 Expected Overheads

To summarize, our proposed set of changes in the underlying hardware is as follows: (1) using
AVX-based gathers/scatters for loads/stores, (2) using AVX-based comparisons that can directly
toggle FLAGS, and (3) offloading checks on loads/stores onto an FPGA.
To understand the synergistic effect of the proposed changes, we performed the following

experiment. First, we note that it is not possible to substitute AVX-based loads, stores, and
branches with cheaper alternatives without disrupting the original flow of our benchmarks. Thus,
we do a “reverse” comparison, i.e., instead of accelerating Elzar, we decelerate the native
versions by adding dummy inline assembly around loads, stores, and branches. The assembly
we add consists of instructions that Elzar uses as wrappers (see §4.3.3), e.g., we add dummy
extract and broadcast for each load and a dummy ptest for each branch. (Adding dummy
assembly can affect code generation and the CPU pipeline, but on average produces an adequately
accurate estimation.) Consequently, the overhead of Elzar with regard to this impaired native
version serves as a rough estimate of Elzar overheads with our proposed changes.

The results of this experiment are shown in Figure 4.14. The average performance overhead
is estimated to be 48%, i.e., an improvement of 150% over current Elzar. Many benchmarks
exhibit very low overhead of 10–20%. The case of string match is peculiar, since it turns out to
be faster than the native version in our experiment. Upon reading the disassembly, we found out
that our dummy inline assembly in the “decelerated” native version prevented an optimization of
function inlining: this led to a faster execution time of the Elzar version than the “decelerated”
version.

4.8 Conclusion

We presented Elzar, an AVX-based implementation of ILR. Elzar achieves fault tolerance not
by replicating instructions, but by replicating data inside AVX registers. To our disappointment,
we found out that AVX suffers from several limitations that lead to poor performance when
used for ILR. The observed performance bottlenecks are primarily caused by the lack of suitable
control flow and memory access instructions in the AVX instruction set, which necessitates the
introduction of wrappers and ineffective checks for some types of instructions. We believe that
these limitations can be overcome by simple extensions to the AVX instruction set (see §4.7).
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4.8 Conclusion

We proposed improvements for the future generations of AVX that can lower the overheads of
Elzar down to ∼ 48% according to our study.
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5 HAFT: Leveraging Transactional
Synchronization Extensions

The previous chapter discussed Elzar that is able to detect and mask transient CPU faults. Elzar
has a high variance in performance overhead: while in some cases Elzar performs well, many
workloads suffer an unacceptable overhead of 4–5×. Therefore, in this chapter we introduce
our second and more successful attempt to tackle the same problem – Hardware-Assisted Fault
Tolerance (HAFT).

HAFT efficiently utilizes Intel Transactional Synchronization Extensions (TSX) to roll-back
erroneous program execution and exhibits only 2× slowdown on average. As we show in the
following, performance overhead of HAFT is significantly lower than other state-of-the-art
approaches to tolerate CPU faults. This is possible due to hardware-assisted nature of HAFT.

The content of this chapter is based on the paper “HAFT: Hardware-assisted Fault Tolerance”
presented at EuroSys’2016 [127]. The paper was a joint collaboration with Rasha Faqeh, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer.

5.1 Rationale

Transient faults, or soft errors, in CPUs can cause arbitrary state corruptions during computation.
Several studies suggest that transient errors are a pervasive cause of software systems failures [88,
165, 202]. These studies point to a wide range of reasons for such transient faults in CPUs,
including manufacturing problems, overheating, dynamic voltage scaling, hardware/software
incompatibility, or power supply faults.
These issues are amplified in the new processor architectures that are continuously boosting

performance with higher circuit density using ever-shrinking transistor sizes, and are simulta-
neously achieving higher energy efficiency by operating at lower voltages [35]. These trends
negatively affect the reliability of the underlying hardware [213]. Furthermore, the advancements
in the 7 nm chip technology with near-threshold computing (dim silicon) will only worsen the
reliability of CPUs [211].
The unreliability of CPUs becomes a particularly serious concern for modern online services

running in data centers. Given the sheer scale at which these services operate, the transient
faults occur at a surprisingly high rate and tend to reappear more frequently after the first
occurrence [88, 165, 202]. Anecdotal evidence indicates that a single transient fault in the
hardware can lead to process state corruption [47, 62], data loss [163], and in some unfortunate
cases, errors can propagate throughout the system causing outage of the entire service [8].
As a result, software systems running in modern data centers are being increasingly adapted

to tolerate transient faults. For instance, Mesa [2], a data warehousing system at Google, uses
application-specific integrity checks to deal with data corruptions during computation. In fact,
many large-scale systems employ ad-hoc mechanisms to detect data corruptions, such as source
code assertions, periodic background integrity checks, and message checksums throughout the
system [2, 8, 57, 115]. However, these ad-hoc solutions can only protect from errors anticipated
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by the programmer and may fail to detect arbitrary hardware faults.

Researchers have proposed a series of disciplined hardening approaches to protect software
systems against transient faults [126, 191, 214, 257, 258]. In particular, these hardening approaches
add redundancy at the level of program instructions, threads, or whole processes, and insert
periodic comparisons of redundant copies to detect transient faults. While these approaches
have been an active area of research for decades, almost all of the existing solutions in this
domain target sequential programs only, making them impractical for ubiquitously deployed
multithreaded software systems.

To support multithreaded programs, a few hardening systems have been recently proposed [26,
31, 65]. However, all these systems still have at least one of the following limitations: (i) they
require manual efforts to modify the application, e.g., to annotate the protected code regions,
(ii) they target restrictive programming models, e.g., assuming only event-based applications,
(iii) they rely on application-specific checks leveraging the high-level programming languages such
as Apache Pig [174], (iv) they require operating system support, deterministic multithreading
and/or spare cores for redundant execution, (v) they provide only fail-stop semantics without
providing recovery from faults.

In this chapter, we propose a Hardware-Assisted Fault Tolerance (HAFT) technique that over-
comes the aforementioned limitations. HAFT applies to unmodified applications on the existing
operating systems running on commodity hardware. HAFT targets the general shared-memory
multithreaded programming model supporting the full range of synchronization primitives. More-
over, HAFT neither enforces deterministic execution nor requires spare cores, and thereby, it
does not limit the available application parallelism, which is crucial for imposing low performance
overheads. Finally, HAFT achieves high availability by providing fault detection as well as
recovery from faults.

HAFT is a compiler-based hardening approach that leverages two techniques: Instruction-Level
Redundancy (ILR) [191] for fault detection and Hardware Transactional Memory (HTM) [254]
for fault recovery. To achieve fault tolerance, HAFT transforms an application in the following
way. First, the instructions of the application are replicated and periodic integrity checks are
inserted. The replicated instructions create a separate data flow along the original one, and
both flows are efficiently scheduled via instruction-level parallelism of modern CPUs. Next, the
whole execution of a program is covered with HTM-based transactions to provide fault recovery.
When a fault is detected by ILR, the transaction is automatically rolled back and re-executed.
The HTM implementation we employ is best-effort, which renders HAFT’s recovery guarantees
best-effort as well. Nonetheless, our evaluation shows that clever placement of transactions allows
HAFT to achieve high availability even in the presence of frequent faults.

We implemented HAFT as an extension of the LLVM compiler framework to transform
unmodified application code. In our evaluation, we applied HAFT to the Phoenix and PARSEC
benchmark suites. The fault injection experiments show that the average number of data
corruptions decreases from 26.2% to 1.1% and on average, 91.2% of the data corruptions can
be corrected. In terms of performance, applications hardened with HAFT run on average
2× slower than native versions. We also applied HAFT to a set of real-world applications
including Memcached, Apache, and SQLite. Furthermore, a comparative evaluation revealed
that HAFT imposes 30–40% less performance overhead than the state-of-the-art solution for
multithreaded programs [26].
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5.2 Background and Related Work

We discuss below existing approaches to fault tolerance and uses of hardware transactional
memory for fault recovery.

5.2.1 Fault Tolerance Approaches

State Machine Replication (SMR). To achieve high availability, some software systems [22,
41, 102] use State Machine Replication (SMR) [201]. These systems typically assume a crash
fault model. However, this model does not cover transient faults which might lead to arbitrary
state corruptions.

Byzantine Fault Tolerance (BFT) [45] tolerates not only crashes, but also transient hardware
faults (and even malicious attacks). Unfortunately, BFT incurs prohibitive overheads because of
the overly pessimistic fault model. To decrease the performance overhead of BFT, researchers
explored the use of specialized trusted hardware [118, 235], relaxed network assumptions [181,
182], speculative execution of requests [124], and OS support [122]. In contrast, HAFT imposes
low overheads by assuming a more restrictive fault model: it protects only against hardware
non-malicious faults.
To support multithreaded programs, all SMR solutions require some form of deterministic

execution. Crane [61] builds on deterministic multithreading [139, 175], Eve [119] speculatively
executes requests and falls back to deterministic re-execution upon conflicts, and Rex [89]
enforces deterministic replay of the primary’s trace on secondary replicas. HAFT supports
non-determinism because it requires no replicas, achieving fault tolerance locally.
Due to its local fault tolerance, we consider HAFT to be not a substitute for SMR, but

rather a complementary approach. Indeed, SMR is usually applied only to the “control path”
of distributed software systems, e.g., coordination services such as Chubby [41] and ZooKeeper
[102]. HAFT can, in particular, be used to protect the data path, ensuring that the main
computation itself is not affected by transient faults.
Local hardening approaches. Due to lack of adoption of BFT [222], researchers actively
explored local hardening approaches that protect against data corruptions. These approaches
harden programs by adding redundancy at the level of program instructions (see §5.3.2), threads,
or processes.
Redundant Multithreading (RMT) [153, 238, 257] spawns an additional, trailing thread for

each original thread in a program and redundantly executes it on a spare core. In the same spirit,
Process-Level Redundancy (PLR) [65, 214, 258] uses redundant processes instead of threads,
with processes-replicas having their own private memory space and synchronizing on system
calls. Both of these approaches require spare cores for redundant execution and are thus not
suitable for multithreaded programs that tend to occupy all available cores. Moreover, they only
support deterministic program executions.
Scalable Error Isolation (SEI) [26, 57], a recently proposed fault detection technique, is the

only approach we are aware of that does not require deterministic execution of multithreaded
programs. It assumes an event-driven programming model, executing each event handler twice
and appending a CRC signature to all output messages. Thereby, SEI guarantees end-to-end
protection from data corruptions in a distributed environment. Unfortunately, SEI requires
manual effort to adapt existing code bases. HAFT, in contrast, applies to unmodified programs
and targets the common shared-memory programming model. Finally, the authors of SEI assume
a broader fault model than HAFT, with no bound on the number of corrupted variables per
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one event handler, and formally prove the correctness of SEI under this model. HAFT provides
weaker guarantees with the benefit of better performance (§5.6.1).

Most of the approaches above only provide fault detection and fail-stop behavior. Coupling
them with fault recovery mechanisms [184, 190, 218, 223] is considered a non-trivial task. HAFT,
on the other side, seamlessly combines fault detection and fault recovery.
Lock step CPUs. Traditionally, incorrect execution of programs has been detected via lock step
CPUs, where two CPUs execute the same application in parallel and synchronize their outputs.
Lock step CPUs are still actively used for critical applications in the embedded domain and on
mainframes. By its very nature, lock-stepping requires deterministic core behavior and cannot be
applied to modern CPUs that have become increasingly more non-deterministic [28]. Moreover,
lock step CPUs provide only fault detection, requiring a separate mechanism for recovery. Being
a more light-weight technique, HAFT supports automatic recovery and non-determinism both
on the application as well as on core level.

5.2.2 Leveraging HTM for Fault Recovery

Transactional memory was first proposed as a better alternative for traditional lock-based
synchronization in concurrent shared-memory applications [100, 148]. However, it also provides
strong isolation guarantees and local rollback and can be exploited as a recovery technique [76].
Intel TSX. In this chapter, we focus on a recent HTM implementation called Intel Transac-
tional Synchronization Extensions (TSX) [254]. More specifically, we use the Intel Restricted
Transactional Memory (RTM) interface.

RTM introduces a set of new instructions to explicitly begin, commit, and abort transactions.
Applications can mark the boundaries of transactions using xbegin and xend, explicitly abort
them using xabort, and check if a CPU core is currently executing in a transaction using xtest.
In Intel TSX [135, 240, 254], transactions utilize the L1 data cache as a local buffer to track

their read- and write-sets. An optimized cache coherency protocol is used to detect collisions
between concurrent transactions. Read- and write-sets are implemented at the (64-byte) cache
line granularity. A cache line that is part of the read-set can be evicted without necessarily
causing the transaction to abort, while evicting a cache line that is part of the write-set always
aborts the transaction.
Internally, xbegin commands the core to take a snapshot of its register state and to start

tracking the changes done by the transaction in the read- and write-sets. If the core detects a
conflict with another transaction (or even with non-transactional code), it aborts its transaction.
Otherwise, upon execution of xend, the transaction commits by atomically flushing its write-set
to RAM. If the transaction was aborted (either implicitly or explicitly via xabort), its read-
and write-sets are discarded, the registers’ state is restored from the snapshot, and the execution
jumps to an abort handler specified as argument to xbegin. The abort handler is usually
implemented to retry a transaction several times before resorting to a fallback path.
Applicability to fault tolerance. Given that Intel TSX is targeted primarily for synchroniza-
tion, it is not immediately obvious whether it can be also used for fault tolerance. Although
some research has recently shown promising results when using HTM for recovery [92, 250, 251],
the question remains: can commodity-hardware HTM implementations provide efficient and
comprehensive support for fault recovery?
In HAFT, the whole application must be wrapped in hardware transactions to support

fault recovery. Yet, several design choices of Intel TSX are driven by the assumption that
transactions cover only a handful of small critical sections. This limits TSX’s applicability
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(a) Native
11
12 z = add x, y
13
14
15
16
17 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

Figure 5.1 – HAFT transforms original code (a) by replicating original instructions with
ILR for fault detection (b) and covering the code in transactions with Tx for fault recovery
(c). Shaded lines highlight instructions inserted by ILR and Tx.

for the whole-application fault recovery in the following ways. Firstly, Intel TSX provides no
guarantees that a transaction will eventually commit even when applied to sequential code [254].
Secondly, transaction size is limited by the CPU cache size and by the interval between timer
interrupts. For example, TSX has the following rough thresholds after which more than 10% of
transactions abort: 16 KB for the write set, 1024 KB for the read set, and 1 million CPU cycles
(approx. 0.3 ms) [135, 240]. Thirdly, all interrupts/signals (including page faults) and so-called
“unfriendly” instructions (x87 floating-point, TLB or EFLAGS manipulation, system calls) force
a core to abort any active transactions.
Thus, to guarantee forward progress, HAFT needs a non-transactional fallback path in case

transactional execution does not succeed. Consequently, if a fault happens during one of these
non-transactional fallbacks, it cannot be recovered. Moreover, a HAFT transaction must be
sufficiently small to finish before a timer interrupt happens or the L1 cache overflows. Finally,
several factors such as CPU hyper-threading, memory false sharing, and unfriendly instructions
also negatively affect HAFT’s recovery capabilities.

5.3 HAFT
HAFT is a compiler-based transformation that consists of two components: ILR for fault
detection and Tx for fault recovery. Figure 5.1 shows an example of HAFT transforming a
simple code snippet. ILR is applied first, replicating all instructions except control-flow ones
(Figure 5.1b). To achieve fault detection, ILR inserts a check before returning the result; if two
copies of data diverge, then a fault is detected and an error is reported by enforcing program
termination. To achieve fault recovery, Tx is applied next, covering the code in transactions and
substituting crashes by transaction aborts (Figure 5.1c). In this case, if a fault is detected at
run-time, the current transaction is rolled back and re-executed. HAFT attempts to re-execute
aborted transactions for a bounded number of times (three by default in our implementation),
after which the code executes non-transactionally until a new transaction begin is encountered.
If a fault occurs during such a non-transactional part of code, ILR has no other choice but to
terminate the program. Therefore, HAFT provides best-effort fault recovery, falling back to
fail-stop semantics in rare cases when the limit of re-executions is exhausted.

5.3.1 System Model
Before we explain the basic design of HAFT, we present the system model assumed in this work.
Fault model. HAFT protects against single event upsets (SEU), i.e., a corruption of a single
CPU register or a single miscomputation in a CPU execution unit that would otherwise lead to
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Silent Data Corruptions (SDC) [35]. The SEU model covers transient hardware faults due to
particle strikes, aging, dynamic voltage scaling, device variability, etc. We assume that at most
one SEU fault occurs during one hardware transaction. HAFT can probabilistically protect
against bursts of faults as long as duplicated data flows result in differing corrupted state. Due
to the choice of ILR for fault detection, HAFT cannot tolerate common-mode failures; however,
single uncorrelated bit-flips are considered to be the dominant cause of CPU faults [35].

Additionally, HAFT assumes that RAM and caches are already protected by ECC [191]. This
assumption usually holds for data center servers, e.g., our experimental machine has memory
ECC support and all cache levels are protected by ECC or parity.
The design of HAFT assumes correct execution of Intel TSX. The TSX transactional state

resides in the L1 cache and thus is protected by ECC. However, if xbegin, xend, or xabort
perform an erroneous operation (e.g., not all cache lines are flushed to RAM or rolled back), the
program state becomes inconsistent.
Memory model. HAFT relies on the Release Consistency (RC) memory model [83], which
requires that all shared memory accesses are done via synchronization primitives. The RC model
guarantees correctness for data-race free programs and enables the optimizations on shared
memory accesses (§5.3.3) which would not be feasible under stricter memory models such as
sequential consistency [132]. Indeed, a data race would lead to a discrepancy in results under
our optimized ILR that in turn would lead to either a transaction abort (if executed inside an
HTM transaction) or a program crash (if executed in non-transactional part of code). To allow
for the shared memory accesses optimization, we assume data-race free executions.
Synchronization model. Our current implementation supports POSIX threads API and
C/C++ atomic synchronization primitives. In fact, HAFT works with any synchronization
mechanism that maps directly to LLVM atomic instructions [140]. Thus, even lock-free program-
ming patterns are supported as long as they are explicitly implemented via atomics. Ad-hoc
synchronization mechanisms such as user-defined spin locks are not supported, but they are
error-prone and not recommended for use [247].

HAFT is not readily applicable to HTM-enabled applications. Our current prototype does
not expect TSX instructions in the native program and therefore could break semantics assumed
by the programmer. However, in §5.6.1 we show that HAFT can be efficiently expanded to
applications that use lock elision as their main synchronization primitive.

5.3.2 Basic Design

In the following, we describe the basics of ILR and Tx. For simplicity of presentation, we first
consider sequential applications. We then show in §5.3.3 that HAFT’s basic design naturally
extends to multithreaded programs and we further enhance it with optimizations to improve
performance and reliability.
Instruction Level Redundancy (ILR). HAFT utilizes Instruction Level Redundancy (ILR)
for fault detection [75, 126, 170, 191]. ILR operates on one copy of the memory state and checks
the results of computations before each update to memory. This way, ILR does not increase the
memory footprint and allows non-determinism in applications, selective hardening of functions,
and interoperability with legacy libraries.
To add redundancy, ILR creates a second, shadow data flow along the master flow, with

shadow instructions working on their own registers (see Figure 5.1b). Note that the shadow
instructions are executed in the same thread. Since there are no dependencies between master and
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int c = 123; ;; Original C code
void foo() { while (c < 1000) c++; }

1 entry: ;; Basic block 1
2 tx-begin()
3 dup c.init = load c.adr

4 loop: ;; Basic block 2
5 tx-cond-split()
6 dup c = phi [c.init, entry], [c.new, loop]
7 dup c.new = add c, 1
8 dup cnd = cmp eq c.new, 1000
9 tx-counter-inc(7)
10 br cnd, end, loop

11 end: ;; Basic block 3
12 store c.new, c.adr
13 c.tmp = load c.adr2 ;; ILR check e
14 d = cmp neq c.tmp, c.new2
15 br d, xabort c
16 tx-end()

Figure 5.2 – HAFT transactification example: original C code (top) and LLVM IR
generated for it (bottom). Lines 3 and 6-8 show original instructions replicated by ILR, lines
12-15 show a check on store inserted by ILR. Shaded lines highlight calls to HTM helper
functions inserted by Tx.

shadow instructions, they can execute in parallel, benefiting from the instruction-level parallelism
present in all modern CPUs.
The basic version of ILR replicates all instructions except control flow (branches, function

calls, returns) and memory-related (loads, stores, atomics) instructions. If a non-replicated
instruction returns a value, as in case of loads and function calls, this value is immediately
replicated for later use in the shadow data flow using a register-to-register move.
To achieve fault detection, ILR inserts checks on every instruction that updates memory or

control flow. Each check compares a master and shadow data copies, reporting an error upon
detecting a discrepancy (Figure 5.1b, lines 4-5). ILR has a few windows of vulnerability, i.e., it
cannot detect faults occurring in-between the checks and the checked instructions [191].
In the context of this work, the important advantages of ILR are its fine-grained checking

and in-thread redundancy. As we utilize HTM for recovery, we are restricted to transactions
of small size operating on a single core. The small size of transactions implies that the checks
must be inserted as close as possible to the potential sources of transient faults. The single-core
requirement implies that the fault detection mechanism must not use additional cores. ILR
fulfills both these requirements.
Transactification (Tx). In addition to ILR for fault detection, HAFT also employs transact-
ification (Tx) to achieve fault recovery. The Tx pass of HAFT inserts transaction boundaries
in an application so that it always executes inside HTM transactions. The challenge here is
to determine correct transaction boundaries. HTM is traditionally used to protect critical
sections, with tiny transactions scattered around the code. In that case, the programmer herself
assigns transaction boundaries and ensures the optimal transaction size. HAFT, however, is a
fully automated technique that transparently covers the whole application with transactions at
compile-time. Thus, an algorithm to efficiently put transaction boundaries—a transactification
algorithm—is required.

To best illustrate the mechanisms underlying the transactification process, consider the simple
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example shown in Figure 5.2.1 It consists of a single function incrementing a global variable
within a loop.2 Here, ILR is first applied on original code: instructions on lines 3 and 6-8 are
replicated, and a store instruction is augmented with a check on lines 12-15; for simplicity, we
omit the check before a branch on line 10; refer to §5.3.3 for details. Next, Tx is invoked to insert
transaction boundaries.

A simple transactification algorithm would be to insert boundaries only at the level of separate
functions (lines 2 and 16). But in reality functions can be arbitrarily large and can in turn call
other functions, whereas hardware transactions are severely restricted in size as discussed in
§5.2.2. Therefore, transactions are bound to abort under this naïve approach, i.e., the rate of
successfully committed transactions would be prohibitively low.
Another extreme is to cover each basic block (single entry single exit section of code) in a

separate transaction. In this case, since basic blocks usually contain just a handful of instructions,
all transactions should eventually commit. In our example, we would have three transactions
covering the three basic blocks (lines 1–3, 4–10, and 11–16). However, the second basic block
corresponds to the body of the loop that executes several hundreds of times, creating several
hundreds of tiny transactions at run-time. Unfortunately, producing that many transactions
introduces high performance penalty (see §5.5.3).
Therefore, to achieve high commit rate and low performance overhead, Tx takes a balanced

approach and inserts hardware transactions at the granularity of functions and loops. The
algorithm tries to maximize the size of transactions, while at the same time keeping it less than
a predefined threshold to avoid capacity aborts and ensure that the majority of transactions can
commit successfully. To that end, given that the size of transactions is not always known at
compile-time because the number of loop iterations is not always known statically, Tx keeps
track of the number of instructions executed inside transactions at run-time using per-thread
instruction counters.

Tx inserts transactions at compile-time by inspecting all functions in the application and
applying a transformation pass that adds transaction demarcations at specific locations. It
relies upon the following helper functions that embed the low-level HTM instructions necessary
for transactional execution:3 (i) tx-begin() starts a new hardware transaction and resets the
thread-local counter. If the transaction does not succeed after a number of retries (default is
three), the code executes non-transactionally. (ii) tx-end() commits the current transaction.
(iii) tx-cond-split() if the thread-local counter exceeds a predefined threshold, commits the current
transaction, starts a new hardware transaction, and resets the counter. (iv) tx-counter-inc()
increments the thread-local counter by the number of instructions given as parameter.
For each function in an application, Tx first inserts a transaction begin at function entry

(line 2) and a transaction end before function return (line 16).
After that, loops are transformed. For each loop, Tx inserts a conditional statement at the entry

point to commit the current transaction and start a new one only when the instruction counter
exceeds a predefined threshold (line 5). This optimization yields significant performance gains
since the counter check is significantly cheaper than systematically starting a new transaction at
each iteration.

The instruction counter is incremented at each loop latch, i.e., at each point where the execution
1We use a simplified LLVM IR notation; the phi instruction selects a value depending on the predecessor of the
current block.

2Note that, for the sake of illustration, we have simplified the generated LLVM code and discarded certain
compiler optimizations.

3The code of these functions consists of just a few instructions that are subsequently inlined by the optimizer for
performance reasons.
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(a) Unoptimized
;; Load (atomic)

1 d = cmp neq adr, adr2
2 br d, xabort
3 val = load adr
4 val2 = move val

;; Store (atomic)
5 d = cmp neq val, val2
6 br d, xabort
7 d = cmp neq adr, adr2
8 br d, xabort
9 store val, adr

(b) Optimized
;; Load (race-free)
val = load adr
val2 = load adr2

;; Store (race-free)
store val, adr
tmp = load adr2
d = cmp neq tmp, val2
br d, xabort

Figure 5.3 – Memory accesses in ILR. Unoptimized (a) is used for atomic accesses while
optimized (b) is safe for race-free programs. Shaded lines highlight instructions of the original
master flow.

can jump back to the entry point of the loop (line 9). The increment value is computed as the
longest path in the loop body leading to the latch, i.e., it corresponds to a worst-case scenario
and the counter represents an upper bound of the transaction size. In the example, the increment
value of 7 corresponds to 3 original instructions in the loop, 3 shadow instructions added by ILR,
and one branch instruction. Note that a fault in the instruction counter is benign: the corrupted
counter can force a transaction to prematurely commit or to unexpectedly abort. In either case,
the counter will be reset as soon as a new transaction starts.

Using this loop transformation, several loop iterations can be executed at run-time before the
threshold is reached and a new transaction begins. Thereby, this technique minimizes the number
of required hardware transactions. Note that these transformations are applied recursively to
nested loops.

Finally, Tx inserts transaction boundaries around function calls. In the general case, Tx does
not know which function is called and for how long it executes, therefore it pessimistically ends
the current transaction before the call and begins a new one after it.

5.3.3 Advanced Features and Optimizations

To reduce the performance overhead of HAFT and increase its reliability, we apply a number of
optimizations on ILR and Tx.
Shared memory accesses. In basic ILR, each load and store requires expensive checks
(Figure 5.3a). This can yield significant overheads since, in an average application, approximately
10% of instructions are stores and 30% are loads [32, 33]. In other words, around 40% of the
original instructions need checks under the naïve ILR interpretation.

To reduce the number of checks, previous research has assumed a very relaxed memory model
with two consecutive loads on the same address always returning the same value [191]. This
assumption holds for sequential applications but is violated in multithreaded environments. In
contrast, our refined ILR distinguishes between different types of memory accesses and applies
optimizations only when they are safe.
The key enabler for our optimizations is the RC memory model (see §5.3.1). Our design

assumes data-race free programs, where all accesses to shared memory are protected via locks
or done explicitly using atomics. As such, we can separate memory accesses into atomic and
regular ones. Atomic operations are not replicated and require (expensive) checks, while regular
memory accesses optimize away most checks by relying on (cheaper) memory loads.
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(a) Naïve
1 d = cmp neq cnd, cnd2
2 br d, xabort
3 br cnd, trueblk, falseblk
4
5

(b) Safe
br cnd, strueblk, sfalseblk
strueblk: ;; Shadow blocks
br cnd2, trueblk, xabort
sfalseblk:
br !cnd2, falseblk, xabort

Figure 5.4 – Control flow protection in ILR. The naïve approach (a) does not protect the
condition while the safe one (b) does.

This optimization is illustrated in Figure 5.3b. By replicating regular loads, we can eliminate
the checks of load addresses. Indeed, the data-race freedom assumption guarantees that both
master and shadow loads read the same value in the error-free case. A fault happening during
one of the loads will result in a wrong value being read and will propagate further until it is
detected at some later point. Since almost all loads are considered regular, this optimization
alone leads to up to 40% reduction in overhead (see §5.5.3). On the contrary, for the rare cases of
atomic loads, we cannot perform any optimizations and fall back to an expensive address check
and a shadow move for each load (Figure 5.3a, top).

The case of stores is more sophisticated. As atomic stores are considered irreversible external-
ization events, all checks must be performed before the store (Figure 5.3a, bottom). The effects
of regular stores are, however, thread-local or protected by locks, which enables us to place
the check after the store and simplify it with the help of an extra load (Figure 5.3b, bottom).
Performance-wise, the load and check operations are coalesced in an effective cmp x86-instruction,
and the additional load does not introduce any latency since it utilizes the store-buffer forwarding
feature available on modern CPUs.
Control flow protection. ILR protects against the important class of transient faults that
affect the status register (EFLAGS in x86) and result in taking incorrect branches. These faults
are especially threatening in control flow intensive applications. For example, 20% of data
corruptions in one of the benchmarks (linearreg in Figure 5.9, right) are due to such faults.
Since there is no way to replicate the status register, the basic version of ILR checks branch

conditions before a branch instruction (Figure 5.4a). However, if the condition variable cnd
becomes faulty in-between the check and the actual branch, the program flow can diverge
undetectably and lead to further data corruptions.
Our refined ILR removes an explicit check on the condition and substitutes it with shadow

basic blocks that evaluate the shadow condition and signal an error if a mismatch is detected
(Figure 5.4b). The strueblk shadow basic block is taken if the master condition cnd evaluates to
true, and therefore the shadow condition cnd2 must also evaluate to true; otherwise an error
is signaled. The same reasoning applies to the sfalseblk block, which operates on an inverse
shadow condition. The destinations of the original branch are rewired to the shadow blocks and
a transient fault in the status register cannot remain undetected.
Note that ILR does not protect against arbitrary control-flow errors, in particular transient

faults that set the program counter (PC) register to some invalid value. Saggese et al. [197] show
that a random value in the PC virtually never leads to data corruptions, i.e., there is no need to
protect the PC.
Fault propagation check. The design of HAFT assumes that a fault happening in a transaction
is quickly detected and handled. There is, however, one corner case when the fault can propagate
to a subsequent transaction: the compiler can move stores as part of the loop hoisting optimization,
as the example in Figure 5.2 shows. Here the global variable c is incremented in a loop. For
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performance reasons, the compiler has moved the load of the initial value before the loop (line 3)
and the store of the final value after the loop (line 12).

In this scenario, a fault corrupting c in one transaction may propagate to the next transaction
if the fault happens during loop execution. This problematic case arises from the fact that ILR
inserts a check on c only at the final store (lines 12–15).

To limit the propagation of faults inside such loops, we developed the following optimization,
called a fault propagation check. ILR analyzes each loop induction variable and, if it is not covered
by in-loop checks, adds an explicit check at the loop entry. Tx recognizes these additional checks
and moves them inside the conditional transaction split, such that the checks are performed
directly before committing the previous transaction. In this case, if a fault corrupts a variable,
it will be detected by the newly added checks and the transaction will abort without the fault
propagating further.

Local function calls. As described in §5.3.2, Tx inserts unconditional transaction begins and
ends at each function entry, function call, and function return. This is a very conservative stance
which does not rely on any knowledge of the relationship between different program functions.
We notice, however, that most program functions are local, i.e., they are always called from other
HAFTed program functions. At the same time, there are some functions that are called from
third-party libraries, e.g., main.

Tx exploits this distinction between local and externally called functions by performing the
following optimization. If a function is marked as local, calls to this function are surrounded
merely by a counter increment and a follow-up conditional transaction split. Similarly, a local
function uses a conditional transaction split at its entry and a counter increment upon return.
With this caller-callee interaction in place, Tx eliminates two unnecessary transactions at each
function call. In our current implementation, the developer is required to provide a black-list of
externally called functions for this optimization.

Lock elision. HAFT also supports an original approach for lock elision, which consists in
substituting (eliding) locks with hardware transactions to gain better performance [186]. The
key observation is that at run-time locks are often unnecessary because many critical sections do
not overlap in time and could execute safely without locks. In this case, speculative execution of
a critical section in a transaction is faster than lock-based execution.
The lock elision optimization in HAFT relies on the fact that hardware transactions can be

used for fault recovery and lock elision at the same time. We implement this optimization in the
following way. Whenever HAFT detects a call to a lock function (acquire or release), it does
not surround it with a transaction end and begin, but instead it calls a corresponding wrapper.
The wrapper checks if a thread already executes in a transaction. If so, the critical section is
executed under the protection of the active transaction without acquiring the lock. Otherwise,
HAFT falls back to the original conservative locking scheme. We found this optimization to be
particularly helpful in case of Memcached, and we investigate its gains in §5.6.1.

5.4 Implementation

We implemented HAFT as a LLVM-based compiler framework [134] that takes unmodified
source code of an application and produces a HAFTed executable (§5.4.1). Additionally, we
implemented a software-based fault injection framework compatible with Intel TSX (§5.4.2).
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5.4.1 HAFT Compiler Framework

Tool chain. We developed HAFT based on LLVM 3.7.0. In particular, we implemented HAFT
as two independent LLVM passes: ILR to add fault detection capabilities (∼830 LOC) and
Tx to add fault recovery (∼540 LOC). Both passes abstract away the underlying details of the
architecture; the architecture-specific functionality is extracted in separate LLVM IR files that
are queried during compilation.
Overall, the build process proceeds as follows. First, all source files are compiled separately

and linked to produce a single LLVM bitcode file [134]. Thereafter, all regular LLVM compiler
optimizations are performed on the bitcode representation. We then take the optimized bitcode
and pass it through the two implemented compiler passes, namely, ILR followed by Tx. Finally,
the target machine code is generated. Note that we neither impose restrictions on the traditional
compiler optimizations, nor do we require changes to the build parameters.
ILR pass. For the implementation of the ILR compiler pass, we had to modify the LLVM
CodeGen module. In particular, since ILR introduces redundant shadow registers and shadow
instructions, the LLVM compiler is free to optimize away these shadow copies. To prevent LLVM
from doing it, we decouple the master and shadow data flows by introducing CodeGen-level move
pseudo-instructions and corresponding LLVM intrinsics. These instructions and intrinsics are
opaque to all LLVM optimization passes and are replaced by real x86 register moves only at the
very last stage of code generation.

Furthermore, the LLVM optimizer can also remove shadow loop induction variables in cases
when the initial (constant) value for the variable is known. We prevent this optimization by
moving the initial value to a global volatile variable and reading it before the loop body. This
trick has negligible performance impact since the initial value is loaded only once before the loop.
For the shared memory access optimization of ILR described in §5.3.3, we insert a volatile

shadow load to prevent the compiler from optimizing it away or moving it around other memory-
related operations.
Tx pass. The Tx pass follows closely the description in §5.3.2. We introduce thread-local
instruction counters and four helper functions, as well as wrappers for the acquire and release
functions from the lock elision optimization in §5.3.3, in a separate LLVM IR file. The Tx pass
queries this file during compilation. This way, we can abstract the Tx pass from the underlying
hardware and pthreads implementation.

The threshold for transaction sizes (§5.3.2) and a black-list of non-local functions (§5.3.3) are
specified using additional LLVM compiler flags.
Collaboration of ILR and Tx. The fault propagation check described in §5.3.3 requires a
tight collaboration between otherwise independent ILR and Tx. To achieve this, ILR adds
checks with associated LLVM metadata in the loop. Tx recognizes these checks and moves
them in a conditional transaction split right before the previous transaction’s commit. The fault
propagation check currently works only on innermost loops. Only induction variables from the
loop header that are not checked in the loop body are covered by this check.
Both ILR and Tx introduce some basic peephole optimizations, e.g., ILR removes checks

that immediately follow a creation of a shadow copy and Tx removes pairs of transaction starts
followed immediately by transaction ends.
Libraries support. HAFT can transform only the source code available during compilation.
This becomes a problem for applications that rely heavily on external libraries such as libc
or libstd++. In such case, these unprotected libraries constitute a significant part of runtime
execution and faults happening in their code go undetected. To increase fault coverage for C/C++
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FI result Description System

Hang Program became unresponsive
CrashedOS-detected OS terminated program

ILR-detected ILR detected, Tx did not recover

HAFT-corrected ILR detected, Tx recovered CorrectMasked Fault did not affect output

SDC Silent data corruption in output Corrupted

Table 5.1 – Classification of fault injection results.

Crashed Corrupted

λ masked

λ sdcλ crashed
ρ manual-reboot ρ manual-recovery

Correct HAFT-correctable
λ HAFT-correctable

ρ HAFT-recovery

Figure 5.5 – HAFT probabilistic model. System transits from correct state to other states
at predefined fault rates λ and returns back to correct state at predefined recovery rates ρ.

applications, we applied HAFT to a part of the libc library and link it to the final executable.
We use the musl library [154] with assembly support disabled as reference implementation. We
opted not to include dynamic memory allocation, I/O, OS, and pthreads-related functions for
our prototype. Firstly, they account for a small fraction of runtime (less than 5%) for most
programs, and secondly, they use system calls and unfriendly instructions prohibited in hardware
transactions. Notice that most previous systems [75, 190, 191] did not apply their hardening
techniques to external libraries, which impedes a direct comparison.
Limitations. Our HAFT prototype does not transform inline assembly code nor assembly
functions: LLVM treats assembly as black-box function calls with no additional knowledge
of their behavior. Furthermore, our prototype does not protect the C++ exception handling
mechanism which requires a tight collaboration of LLVM IR and libstd++.

5.4.2 HAFT Fault Injection Framework

Fault injection tool. For conducting fault injection experiments of HAFT, we need a software-
based fault injection tool that works with Intel TSX. As other tools [26, 200, 241] do not have
such support, we developed our own binary-level fault injector (∼320 LOC).
Our fault injector is based on the Intel SDE emulator [111], which allows us to attach the

GDB debugger to an emulated program. We leveraged this feature to design a simple GDB
script-based fault injection tool. Intel SDE emulates all TSX instructions and thus enables us
to perform fault injections on machines that do not have hardware support for TSX. It has
an additional benefit that attaching GDB during a hardware transaction does not lead to a
transaction abort.

The fault injection experiments proceed in two steps. In the first preparatory step, a reference
execution trace of a tested program is generated using Intel SDE’s debugtrace tool. This trace
contains all the instructions executed by the program and all the registers updated by these
instructions. Additionally, the program is run without any fault injections to produce a reference
output.

81



5 HAFT: Leveraging Transactional Synchronization Extensions

From the obtained execution trace, at each fault injection, we choose a random occurrence of
a random instruction that updates at least one register. We use weighted random numbers to
inject faults uniformly across the whole execution of a program. After the specific occurrence of
an instruction is chosen, one of its output registers is randomly selected to inject a fault into.
The injection of a fault is simulated by XORing the value of this register with a random integer.
Such faults imitate both sporadic corruptions of CPU registers and miscomputations in CPU
execution units. The fault occurs right after the selected instruction. Faults are injected in
general-purpose registers, as well as in the status and x86-64-specific registers.
In the second step, we start the program under Intel SDE with GDB attached and inject a

single fault. To inject a fault, we construct a GDB script to set a conditional breakpoint in the
program based on the specified instruction address and its occurrence number. Whenever the
breakpoint is triggered by any thread, the script injects a fault and resumes execution. After
the program terminates, the output is examined to study the effect of the fault injection (see
Table 5.1). The second step is repeated until a sufficient number of runs (fault injections) is
reached.
Fault injection probabilistic model. Our fault injection tool injects only one fault per run
and requires smallest inputs to finish one experiment in a reasonable amount of time. Hence, we
also built a probabilistic fault injection framework to investigate reliability of HAFTed programs
working for a longer time and under different fault rates. We use a probabilistic model checker
tool called PRISM [130] to construct a continuous-time Markov chain model of HAFT (∼130
LOC) and verify its properties probabilistically. Figure 5.5 represents the model for the native,
ILR, and HAFT architectures. The architectures differ in the transition rates, which are selected
from our fault injection experiments (see §5.5.5).

The system starts with a correct state. A transient fault can transfer the system to a correct,
corrupted, crashed, or HAFT-correctable state. If a system is not in a correct state, then it is
unavailable and needs recovery. A crashed system can be recovered by rebooting, and a corrupted
system by manual recovery. The system in a HAFT-correctable state is recovered by restarting
a transaction; this state exists only in the HAFT architecture.

5.5 Evaluation
Our evaluation answers the following questions:

• What are the performance overheads of HAFT? (§5.5.2)
• How effective are the optimizations in improving the performance and reliability of HAFT?

(§5.5.3)
• What is the effect of hyper-threading on HAFT? (§5.5.4)
• What is the level of fault tolerance achieved by HAFT, and how efficient is it under

different fault rates on long-running programs? (§5.5.5)
• What is the code coverage provided by HAFT, i.e., what fraction of the run-time execution

is protected? (§5.5.6)

5.5.1 Experimental Setup

Applications. We evaluated HAFT with applications from two multithreaded benchmark
suites: Phoenix 2.0 [187] and PARSEC 3.0 [32]. We report results for all 7 applications in the
Phoenix benchmark and 8 out of 13 applications in the PARSEC benchmarks. The remaining
five applications are not supported for the following reasons: bodytrack and raytrace make use
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Figure 5.6 – Performance overhead over native execution with the increasing number of
threads (on a machine with 14 cores).
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Figure 5.7 – Performance overhead over native execution with different optimizations (with
14 threads).

of C++ exceptions, which are currently not supported by our implementation; freqmine is an
application based on OpenMP, which did not compile under our version of LLVM; fluidanimate
produces nondeterministic output and thus makes it impossible to check the correctness of the
results; and finally, the native version of facesim crashes with a runtime error when compiled
with LLVM.

All applications were compiled with the HAFT compiler based on LLVM 3.7.0 with -O3,
-mrtm (to support Intel TSX), and -fno-builtin (to transparently link against our own version
of libc) flags and linked using the LLVM gold plugin.
Modified applications. Two applications from the Phoenix benchmark, wordcount and kmeans,
have a high level of cache conflicts, which results in frequent transaction aborts. Therefore, we
modified 47 LOCs in the former and 5 LOCs in the latter to mitigate this problem. We report
results for both modified and unmodified versions. We refer to the modified (“no sharing”)
versions as wordcount-ns and kmeans-ns.
Datasets. For the performance evaluation, we used the largest available datasets provided by
Phoenix and PARSEC benchmark suites. However, fault injection experiments were carried out
using the smallest available input because they are extremely time consuming.
Testbed. We carried out the performance evaluation experiments on a machine with two
14-cores Intel Xeon processors operating at 2.0 GHz with hyper-threading enabled (Intel Haswell
microarchitecture) with 128 GB of RAM, a 3.5 TB SATA-based SDD, and running Linux kernel
3.16.0. Each core has private 32 KB L1 and 256 KB L2 caches, and 14 cores share a 35 MB L3
cache. Due to hyper-threading, two logical threads sharing the same core also share the L1 and
L2 caches. For fault injections, we used a cluster of 25 machines to parallelize the experiments.
Methodology. For all measurements, we confined our experiments to one processor, thus
the maximum number of threads is restricted to 14 for all benchmarks. Note that we pinned
application threads to separate physical cores in all experiments to avoid the effects of hyper-
threading. In addition, we conducted an experiment to estimate how hyper-threading affects
abort rates of HAFT (see §5.5.4).
For performance experiments, we ran programs with 1–14 threads. For fault injections, we
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Overheads
Benchmark ILR Tx HAFT Hyperthreading Coverage (%)

histogram 1.46 1.02 1.55 1.0 95.7
kmeans 1.60 1.28 1.86 2.6 95.8
kmeans-ns 1.63 1.28 1.93 5.4 —
linearreg 2.03 1.12 2.16 1.2 97.2
matrixmul 1.04 1.01 1.04 377 88.9
pca 1.35 1.14 1.78 2.4 95.1
stringmatch 1.50 1.46 2.26 1.8 98.7
wordcount 1.35 1.39 1.92 1.5 95.1
wordcount-ns 1.45 1.31 1.93 8.9 —
blackscholes 1.17 1.06 1.30 2.9 93.9
canneal 1.16 1.13 1.36 1.3 67.6
dedup 0.99 1.02 1.13 1.1 75.1
ferret 1.32 1.25 1.99 12.6 96.9
streamcluster 1.46 1.18 1.59 1.9 92.7
swaptions 1.98 1.57 2.64 11.4 89.6
vips 2.16 2.29 4.21 1.5 85.1
vips-nc 2.19 1.46 2.68 1.3 —
x264 2.32 1.33 2.86 4.9 85.5
mean 1.52 1.27 1.89 24.5 90.2

Table 5.2 – First three columns: Normalized runtime w.r.t. native of HAFT and its
components (§5.5.2). Fourth column: Increase in abort rate when moving from the non-
hyper-threaded to the hyper-threaded configuration (§5.5.4). Fifth column: Code coverage
of HAFT in % (§5.5.6). All experiments with 14 threads.

fixed the number of threads to two. For each Phoenix benchmark, we performed a warm-up run
to load input files into the main memory to stress-test the CPU overheads of HAFT (otherwise
Phoenix benchmarks would be dominated by I/O). For PARSEC benchmarks, we reused the
provided framework.
Measurements. For all performance measurements, we report the average over 10 runs. Fault
injection experiments were conducted by injecting 2,500 faults for each program.

5.5.2 Performance Overheads

We first present the performance overheads of HAFT over the native execution. Figure 5.6
shows the overheads for a varying number of threads ranging from 1 to 14 threads.
The average overhead across all applications is 2× (see bar mean). The best case for HAFT

is matrixmul due to the very low instruction-level parallelism (ILP) of 0.2 instructions/cycle
for the native execution; thereby, HAFT effectively utilizes these spare ILP resources, with a
runtime overhead of just 5%. The worst case for HAFT is vips, which incurs a slowdown of 4×,
where two factors negatively affect HAFT’s performance. First, the native version already has
high ILP of 2.6 instructions/cycle such that there are no spare cycles left for HAFT. Second,
vips has many calls to tiny functions such that the Tx local function calls optimization leads to
a high performance penalty. If we disable this optimization, the performance overhead drops to
2.5× (vips-nc in Figure 5.6; see also next section).
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Figure 5.8 – Performance overhead over native execution (top) and percentage of aborts
(bottom) vs. transaction size (with 14 threads).

HAFT benefits from the suboptimal scalability of native versions of programs. For example,
the native version of ferret scales linearly, so the overhead of HAFT stays at the same level with
the increasing number of threads. In contrast, the native version of dedup scales poorly with
more than 2 threads and the overhead of HAFT is amortized in this case.
Table 5.2 (first three columns) highlights the contribution of HAFT components: ILR and

Tx. ILR alone incurs performance overhead of 52% on average; this low overhead indicates that
ILR efficiently uses spare ILP to hide additional instructions and checks inserted at compile-time.
Tx incurs 27% overhead on average. Interestingly, the overhead of Tx is higher than that of
ILR in the case of vips; as explained in the previous paragraph, this is due to the high number
of calls to tiny functions. As soon as we remove this bottleneck, the overhead of Tx decreases by
60% (vips-nc).

5.5.3 Effectiveness of Optimizations

Impact of optimizations. The impact of different optimizations (§5.3.3) on performance is
shown in Figure 5.7. We compare HAFTed benchmarks without any optimizations and then
apply the following optimizations successively: ILR shared memory accesses, ILR control flow
protection, Tx local function calls, and fault propagation check. Note that the fault propagation
check is targeted to increase reliability at the price of some performance degradation.
This set of optimizations leads to an average performance improvement of 20% and in some

cases achieves 70%. Interestingly, the addition of control flow checks, which are introduced
to increase reliability, has a positive impact on performance: this happens because the check
of a condition is substituted by a sequence of jumps, thus decreasing the number of executed
instructions and benefiting from branch prediction.
Another somewhat surprising result is the Tx local function calls optimization: performance

of most benchmarks improves significantly, whereas it degrades for vips. In the case of vips,
the overhead of updating and checking the dynamic counter turns out to be higher than simply
starting a new transaction on each function call. We decided to also show the results of vips
with this optimization disabled (vips-nc) in other experiments.
Impact of transaction size.
We show the impact of different transaction sizes (maximum number of instructions in one

transaction) on the performance overhead and the number of aborts in Figure 5.8 respectively.
Note that the number of threads is fixed to 14 in these experiments. Performance overhead
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Abort causes (%)
Benchmark Abort rate (%) Capacity Conflict Other

histogram 1.10 0.48 30.16 69.36
kmeans 4.51 0.01 99.90 0.09
kmeans-ns 2.40 0.03 95.68 4.29
linearreg 0.58 0.00 0.13 99.87
matrixmul 1.05 66.21 0.06 33.73
pca 4.82 0.72 82.97 16.31
stringmatch 0.15 2.53 0.32 97.15
wordcount 14.60 1.27 94.90 3.83
wordcount-ns 2.42 16.24 20.80 62.96
blackscholes 0.08 2.20 0.50 97.30
canneal 0.28 1.34 2.70 95.96
dedup 9.84 16.29 1.50 82.21
ferret 2.75 80.40 0.62 18.98
streamcluster 23.40 0.11 99.89 0.00
swaptions 3.78 90.87 0.01 9.12
vips 1.78 40.40 41.75 17.85
vips-nc 0.33 2.36 97.64 0.00
x264 2.86 64.22 6.72 29.06

Table 5.3 – Transaction abort rate and causes (with 14 threads). The worst-case transaction
size of 5, 000 is fixed for each benchmark.

decreases with greater transaction sizes, from 2.2× to 1.8× on average, due to the lower number
of transactions. At the same time, the number of aborts grows with increasing transaction
sizes. Aborts happen due to the following two reasons: first, longer transactions overflow the L1
cache more often, and second, longer transactions lead to higher probability of conflicts between
threads.
Peculiarly, increasing transaction sizes (and thus higher abort rates) does not result in any

clear pattern of performance overheads. Indeed, with increasing transaction sizes, two factors
compete: (1) longer transactions amortize the cost of Tx instrumentation, and (2) the number
of aborts increases because transactions start to overflow or conflict. The first factor decreases
performance overhead while the second factor increases it.

This is evident from Figure 5.8. In the case of streamcluster, the number of aborts goes up to
23.4%, but longer (and fewer) transactions counterbalance this factor, and thus the performance
overhead stays roughly the same. Compare it with histogram, where the number of aborts is
low and the amortization factor dominates, thus decreasing the overhead. Finally, in the case
of x264, the number of aborts drastically increases with transaction sizes greater than 1000,
resulting in a change of the performance pattern.

The huge negative impact of cache sharing is clearly seen when comparing kmeans and kmeans-
ns (removed true sharing), as well as wordcount and wordcount-ns (removed false sharing). In a
demonstrative case of wordcount, rewriting the application with no cache sharing results in a 7×
decrease of transaction aborts.

Table 5.3 shows the breakdowns of abort rates and their causes for each benchmark, measured
with the worst-case transaction size of 5,000. The low abort rates (less than 1%) are largely
dominated by the residual spontaneous (“other”) aborts. Higher abort rates are caused either
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Figure 5.9 – Reliability of HAFT (left) and impact of different optimizations on two
benchmarks (right) with 2 threads.

Fault probabilities Native ILR HAFT
Masked (%) 61.3 24.2 24.2
SDC (%) 26.2 0.8 1.1
Crashed (%) 12.5 75.0 7.7
HAFT-correctable (%) — — 67.0

Table 5.4 – Parameters for the HAFT model.

mostly by capacity overflows or by conflicts among simultaneous transactions. For example, all
aborts in kmeans are due to high conflict rates, whereas matrixmul experiences many capacity
overflows due to its cache-unfriendly behavior.
For all other plots, we set for each benchmark the transaction size to the greatest value such

that the percentage of aborts is sufficiently low, in order to achieve the best trade-off between
performance and reliability. For example, we set transaction size to 1000 for kmeans and pca,
and to 5000 for stringmatch and blackscholes.

5.5.4 Effect of Hyper-threading

To estimate the effect of hyper-threading on HAFT, we conduct the experiment with 14 threads
(similar to Figure 5.6, last bar). However, in this experiment we pin 14 logical threads to 7
physical cores. Thus, each pair of threads shares CPU execution units and L1 and L2 caches.
Table 5.2 (fourth column) highlights the increase in abort rates compared to the baseline

configuration of 14 logical threads on 14 physical cores. Many benchmarks still have low abort
rates (histogram, linearreg, canneal, etc.), but some exhibit dramatic increase in transaction
aborts (matrixmul, ferret, swaptions, etc.). In the former case, transactions are sufficiently small
to peacefully co-exist in the shared L1 cache. In the latter case, transactions compete for the
limited capacity of the cache and abort each other.

The case of matrixmul is peculiar, with an abort rate increasing by 377× from negligible 0.07%
aborts in non-hyper-threaded scenario to 24% with hyper-threading. Our analysis indicates
that aborts happen due to frequent overflows of a cache on read accesses – matrixmul is cache-
unfriendly, and the sharing of L1- and L2-caches by two threads only exacerbates this problem.

5.5.5 Fault Injections

Fault injection experiments. The results of our fault injection experiments are shown in
Figure 5.9. The faults were injected uniformly at random across the whole execution trace of
each benchmark, including the parts not protected by HAFT (§5.4.1). Note that we were not
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Figure 5.10 – HAFT fault injection modeling. Plots show fractions of time when system is
available (left) or corrupted (right) in a time span of one hour w.r.t. the fault rate.

able to perform fault injections into vips as injecting one fault under Intel SDE took more than
an hour even under the smallest inputs.

We also performed the experiment where the faults were injected only in the protected parts
of the benchmarks, with very similar outcomes. This is expected: Our statistics indicates that
the faults landing in unprotected parts constitute less than 1% of all injected faults in almost all
cases except for wordcount and x264. Therefore, we do not show the results of this experiment.

Even in native execution, most of the faults (61.3%) are masked and programs remain correct
after a fault is injected. However, around 26% of faults lead to data corruptions (see bar mean).
When applying ILR, almost all faults (99.2%) are detected, but programs exit prematurely 75%
of the time, leading to low availability (this can be explained by the fact that ILR sometimes
detects also those faults that would be masked in native execution). Finally with HAFT, program
reliability increases to approximately 91.2%. (Program reliability with HAFT reaches 92% on
average if the faults are injected only in the protected parts of benchmarks.)
Figure 5.9 (right) shows the impact of different optimizations on the reliability of HAFT.

As conducting these experiments is highly time-consuming, we chose only one benchmark from
Phoenix (linearreg) and one from PARSEC (canneal). Note that the non-optimized versions
(N) have a non-negligible number of data corruptions. In the case of canneal optimizations
only slightly decrease the number of data corruptions, while for linearreg the shared memory
optimization (S) and the addition of control flow protection (C) lead to SDC-free executions, but
also slightly increase the proportion of crashes. The local calls optimization (L), which is only
intended for performance improvement, has no effect on reliability. Finally, the fault propagation
check (F) improves the availability of linearreg dramatically, reducing the number of crashes
from 50% to less than 5%.
Fault injection modeling. To measure the reliability of HAFT, we use the model from
§5.4.2 and parameters from Table 5.4. Fault probabilities are extracted from the fault injection
experiments. We choose the following recovery rates: 6 hours for manual recovery, 10 seconds for
machine reboot, and 2.5 µs for transactional recovery in HAFT. The rate of manual recovery is
based on the Amazon report where it took 6 hours between the first noticed corruption and the
renewal of processing of requests [8]. The rate of machine reboot is based on the time needed
for a complete reboot of our server. The rate of HAFT recovery is based on the maximum
transaction size of 5, 000 instructions, which corresponds to the maximum latency of recovery of
2.5 µs on a 2.0 GHz CPU.

Figure 5.10 (left) shows the fraction of time when the system is available in a time span of
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one hour with regard to the fault rate. The fault rate varies from once every hour to once every
second (0.00028 to 1 fault/second). HAFT significantly increases program availability compared
to ILR and native. For example, under a fault rate of 1.0, HAFT’s availability is around 50%,
i.e., 30 minutes out of one hour. In contrast, availability of native and ILR versions is 0% and
10% (6 minutes) respectively. In addition, Figure 5.10 (right) indicates that ILR and HAFT
drastically reduce the number of data corruptions. Native spends more than 80% of the time in
a corrupted state, while both ILR and HAFT stay in this state for less than 20%.

5.5.6 Code Coverage
Lastly, we analyzed what fraction of the run-time execution is protected with HAFT. Remember
that our prototype of HAFT does not protect external libraries except for partial support
of libc (see §5.4.1). To this end, we measured the fraction of dynamic execution spent inside
transactional execution (Table 5.2, fifth column). The fraction is calculated as the number of
cycles executed in transactions to the number of all cycles executed, as reported by the perf tool.
Each program was built with all HAFT optimizations enabled and with the number of threads
fixed to 14; the number of retries was set to three. The mean code coverage across all benchmarks
is 90.2% indicating a high level of protection for almost all applications. Two exceptions are
canneal and dedup: the former extensively uses containers from libstd++ while the latter spends
many cycles in unprotected parts of libc for thread management and dynamic allocation.

5.6 Case Studies
We successfully applied HAFT on five real-world applications without any source code modifica-
tions. We present detailed results for Memcached (§5.6.1) and present summarized results for
the others (§5.6.2). All applications were run in a local deployment on a single Haswell machine:
we deployed each server application on one 14-core processor and its client applications on the
other processor.

5.6.1 Memcached Key-Value Store
We evaluated Memcached [78] v1.4.24 using workloads from the YCSB benchmark [56] with 1
million key-value queries, each key being 16 B and each value 32 B. Figure 5.11 (left two graphs)
shows the throughput of Memcached increasing with the number of threads, with two extreme
YCSB workloads corresponding to the best and worst case for HAFT: A (50% reads, 50% writes,
Zipf distribution) and D (95% reads, 5% writes, latest distribution). We evaluated Memcached
with all available variants for synchronization using pthreads locks and atomic operations. For
both native and HAFT, we tested two versions, one with locks only (native-lock and HAFT-lock)
and one with atomics enabled (native-atomics and HAFT-atomics). Note that HAFT-lock has
the optimization of lock elision (see §5.3.3). We also show the version with this optimization
disabled (HAFT-lock-noelision).
The lock elision optimization allows HAFT-lock to perform 30% better than HAFT-lock-

noelision and on par with native-lock, i.e., the overhead of HAFT is completely amortized
by this optimization. Indeed, when configured to use locks, Memcached spends most of the
time acquiring and releasing the locks. Since HAFT already uses transactions for recovery,
removing the overhead of these locks comes for free. Moreover, HAFT-lock performs similar to
HAFT-atomics, indicating that an application can achieve the same performance improvement
with lock elision as when using atomics.
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Figure 5.11 – Memcached throughput. Left two graphs: workloads A and D. Right graph:
comparison of HAFT and SEI using a mcblaster client, a key range of 1,000, and values of
size 128 B (same experimental setup as in [26]).

Our experiments also show that the latency of HAFT is 30% worse than in native on average
and the percentage of committed transactions remains above 95% in all runs. Finally, the fault
injection experiments indicate that HAFT decreases the percentage of data corruptions from 2%
to 0.09% (two SDCs). Both lingering data corruptions happened in the very beginning of two
functions responsible for shaping a reply message (namely, add_bin_header and add_iov). In
both cases, the “length” function argument was corrupted exactly before its shadow copy was
created; as a result, the reply string was incorrectly truncated.
Comparison with SEI. We also compared HAFT against SEI [26], another state-of-the-art
approach, using Memcached.4 We deployed SEI locally on our Haswell machine and reproduced
the experiments from the SEI paper with the mcblaster client, a key range of 1,000, and values
of size 128 B. Since SEI performs modifications to Memcached, we apply HAFT on the modified
version.

Figure 5.11 (right graph) shows that HAFT performs on par with the native version (similar to
graphs on the left) and outperforms SEI by 30–40%. The lower performance of SEI is explained
by the local deployment; in the experiments with remote clients in the original paper [26], SEI’s
overhead was amortized by the network. Also note that the lock elision optimization of HAFT
provides no benefit in this experiment. This is due to an older version of Memcached (namely,
version 1.4.15) that supports only coarse-grained locks and thus is not amenable to our simple
lock-elision heuristics.

We conclude with an indirect comparison of fault coverage, based on the numbers reported in
[26].5 As shown earlier, HAFT leaves 0.09% of data corruptions, whereas SEI with a similar
configuration cannot detect 0.15% of corruptions.

5.6.2 Additional Case-Studies

LogCabin (RAFT). LogCabin [141] is an implementation of a consistent storage mechanism
built on the RAFT [176] consensus protocol. For the evaluation, we used the benchmark shipped
together with LogCabin that repeatedly writes 1,000 values into a memory-mapped file.
Apache web server. Apache is a popular web server [14]. For multithreading, we use a “worker
multi-processing module” with a single running process and a varying number of worker threads.
We used the Apache ab benchmark tool that queries a static 1 MB Web page for the evaluation.
LevelDB key-value store. LevelDB is a fast embedded key-value storage library developed by
Google [136]. We evaluated LevelDB on an in-memory database using the same YCSB workloads

4Note that Memcached is the only multithreaded application evaluated in [26].
5These numbers should be treated with care because of the differences in Memcached versions, fault models and
fault injection frameworks used.
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Figure 5.12 – Throughput of additional case-studies: LogCabin (RAFT), Apache web
server, LevelDB key-value store, and SQLite database. Two extreme workloads are shown for
LevelDB and SQLite: workload A (50% reads, 50% writes, Zipf distribution) and workload
D (95% reads, 5% writes, latest distribution).

used for Memcached (workloads A & D).
SQLite database. SQLite is an SQL database engine implemented as an embeddable software
library [179]. We evaluated SQLite on an in-memory database using again YCSB workloads A
and D.
The scalability plots are shown in Figure 5.12. LogCabin and LevelDB are well-behaved

applications, performing 25–35% worse than native versions. Apache exhibits an overhead of
just 10%; this good result is due to Apache’s extensive use of external libraries that are not
transformed by HAFT. SQLite shows the poorest results, with HAFT performing 3–4× worse
than the native version. We attribute this poor performance mainly to the extensive use of
function pointers that are conservatively treated as external functions by HAFT.
We performed fault injection experiments on LevelDB and SQLite. Though their native

versions are already tolerant to data corruptions, the faults lead to a high number of crashes,
42% and 28% respectively. HAFT decreases these numbers to only 10% and 3.7%, providing
significantly higher availability.

5.7 Conclusion and Future Work

Many software systems require very high level of reliability. Alas, adding fault tolerance
capabilities to existing applications inevitably degrades their performance. Fortunately, modern
commodity hardware with its increased instruction level parallelism and new extensions such
as hardware transactional memory enables cheap and efficient fault tolerance solutions. In this
chapter, we presented HAFT, a novel approach to software hardening that provides low-cost
fault detection via instruction-level redundancy and fast fault recovery via HTM. Our evaluation
shows that HAFT significantly increases reliability and availability at the cost of 2× performance
overhead.
In the current design of the transactification algorithm, a single threshold value is chosen for

the entire execution of a program (§5.3.2). In reality, different code paths of the same program
exhibit different behavior with respect to hardware transactions. In this case, some form of
static/dynamic adjustment of the threshold could prove beneficial.
Our current implementation of HAFT does not protect all program code. While adding

protection to the most of the functionality that standard libraries provide seems straightforward,
supporting inline assembly and the C++ exception mechanism would require substantial engineer-
ing effort. Another problem is unfriendly instructions which inevitably lead to TSX transaction
aborts. We believe this can be fixed in the future implementations of TSX. Fortunately, once
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these issues are resolved, all programs written in LLVM-backed programming languages could be
transparently hardened.

Hardware transactional memory can be found in architectures other than x86-64. For example,
IBM POWER8 [43] provides not only regular TSX-like transactions, but also rollback-only
transactions which buffer stores without detecting data conflicts. Moreover, transactions in
POWER8 can be suspended and resumed to avoid aborting on interrupts.
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6 SGXBounds: Leveraging Software Guard
Extensions

The previous three chapters of this thesis presented three solutions to one specific class of faults
– hardware faults occurring in CPU and RAM and manifesting in incorrect execution of the
program and erroneous outputs. In particular, we introduced ∆-encoding to detect transient,
intermittent, and even permanent faults in CPU and RAM (Chapter 3), Elzar to detect and mask
only transient CPU faults (Chapter 4), and HAFT to detect and roll-back transient CPU faults
(Chapter 5). These three techniques constitute the first part of this thesis: protecting against
hardware faults. We can conclude that ∆-encoding is an efficient solution for safety-critical
embedded applications, while HAFT is tailored for cloud environments with lower requirements
on fault coverage. (Elzar can be considered an efficient replacement for HAFT if future versions
of Intel AVX incorporate our modifications proposed in §4.7.)
Now we switch our attention to the second class of faults detailed in this thesis – software

faults aka software bugs, manifesting in incorrect execution of the program, erroneous outputs,
and potential leaks of confidential data. In other words, in this and the following chapters, we
shift our focus from fault tolerance to systems security.
As mentioned in §1.3, we concentrate on a specific subclass of software bugs – memory

corruption bugs. Recall that memory corruption bugs occur in unsafe languages like C/C++,
when a developer writes erroneous code that incorrectly manipulates pointers in the program.
Buffer overflows, out-of-bounds memory accesses, off-by-one errors, dangling pointers, use-
after-free errors are all examples of memory corruptions. In many cases, these bugs trigger
a segmentation fault and crash the program; this is annoying since the program needs to be
restarted with all intermediate data lost, but not too harmful. In other cases, memory corruption
bugs can be exploited by hackers to modify program behavior, gain root privileges to the
underlying system, or steal confidential data. Such bugs are called software vulnerabilities. In
this and the following chapters, we discuss solutions to memory corruption vulnerabilities; these
solutions enforce memory safety by protecting each and every memory access by a bounds check
to detect potential bugs.

The first approach we discuss is SGXBounds: a bounds checker to detect and tolerate security
vulnerabilities in multithreaded legacy C/C++ programs inside Intel SGX enclaves. SGXBounds
is specifically tailored to Intel SGX (described in §1.2) and provides a fast and simple means to
protect against memory corruptions such as buffer overflows.

The content of this chapter is based on the paper “SGXBounds: Memory Safety for Shielded
Execution” presented at EuroSys’2017 [128]. The paper was a joint collaboration with Oleksii
Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.

6.1 Rationale

Software security is often cited as a key barrier to the adoption of cloud services [53, 54, 226]. In
this context, trusted execution environments provide mechanisms to make cloud services more
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Figure 6.1 – Performance and memory overheads of SQLite.

resilient against security attacks [147, 204].
In this chapter, we focus on Intel Software Guard Extensions (SGX) [147], a recently proposed

set of ISA extensions for trusted execution. Intel SGX provides an abstraction of secure enclave—
a memory region opaque to other software including the hypervisor and the OS—that can be
used to achieve shielded execution for unmodified legacy applications on untrusted infrastructure.

Shielded execution aims to protect confidentiality and integrity of applications when executed
in an untrusted environment [15, 24]. The main idea is to isolate the application from the rest of
the system (including privileged software), using only a narrow interface to communicate to the
outside, potentially malicious world. Since this interface defines the security boundary, checks
are performed to prevent the untrusted environment from attacks on the shielded application in
an attempt to leak confidential data or subvert its execution.

Shielded execution, however, does not protect the program against memory safety attacks [225].
These attacks are wide-spread, especially on legacy applications written in unsafe languages such
as C/C++. In particular, a remote attacker can violate memory safety by exploiting the existing
program bugs to invoke out-of-bounds memory accesses (aka buffer overflows). Thereafter, the
attacker can hijack program control flow or leak confidential data [87, 227].
To validate our claim, we reproduced many publicly available memory safety exploits inside

the secure enclave (see §6.7 for details), including the infamous Heartbleed attack in Apache
with OpenSSL [227] as well as vulnerabilities in Memcached [151], Nginx [164], and in 16 test
cases from the RIPE security benchmark [244]. These examples highlight that a single exploit
can completely compromise the integrity and confidentiality properties of shielded execution.
To prevent exploitation of these bugs, a number of memory safety approaches have been

proposed to automatically retrofit bounds checking in legacy programs [6, 17, 39, 63, 155, 162].
Among these, we experimented with two prominent software- and hardware-based memory
protection mechanisms in the context of shielded execution: AddressSanitizer [207] and Intel
Memory Protection Extensions (MPX) [110], respectively.
Unfortunately, these approaches exhibit high performance and memory overheads, thus ren-
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dering them impractical for shielded execution. For instance, consider the motivating example
of SQLite evaluated against the speedtest benchmark (shipped with SQLite) with increasing
working set items. Figure 6.1 compares the performance and memory overheads of SQLite
hardened with AddressSanitizer and Intel MPX running inside an SGX enclave.
The experiment shows that Intel MPX performs so poorly that it crashes due to insufficient

memory already after tiny working set of 100 (corresponding to memory consumption of 60MB
for the native SGX execution). AddressSanitizer is more stable, but performs up to 3.1× slower
than SGX on larger inputs (with virtual memory consumption of 700− 800MB for the native
SGX execution). Additionally, AddressSanitizer consumes 3.1× more virtual memory which can
quickly exhaust available memory inside the enclave.

These overheads illustrate a drastic mismatch between memory needs of current memory-safety
approaches and the architectural limitations of Intel SGX (high encryption overheads and limited
enclave memory, as explained in §6.2.1). In particular, both AddressSanitizer and Intel MPX
incur high memory overheads due to additional metadata used to track object bounds, which in
turn leads to poor performance. (We detail the reasons behind the SQLite overheads in §6.2.3.)
In this chapter, we present SGXBounds—a memory-safety approach for shielded execution.

Our design takes into account architectural features of SGX and reduces performance and
memory overheads to the levels acceptable in production use. For instance, in the case of SQLite,
SGXBounds outperforms both AddressSanitizer and Intel MPX, with performance overheads of
no more than 35% and almost zero memory overheads with respect to the native SGX execution.

The SGXBounds approach is based on a simple combination of tagged pointers and efficient
memory layout to reduce overheads inside SGX enclaves. In particular, we note that SGX
enclaves routinely use only 32 lower bits to represent program address space and leave 32 higher
bits of pointers unused.1 We utilize these high bits to represent the upper bound on the referent
object (or more broadly the beginning of the object’s metadata area); the lower bound value is
stored right after the object. Such metadata layout requires only 4 additional bytes per object
and does not break cache locality—unlike Intel MPX and AddressSanitizer. Additionally, our
tagged pointer approach requires no additional memory lookups for simple loop iterations over
arrays—one of the most common cases for memory accesses [52].

Furthermore, we show that our design naturally extends for: (1) “synchronization-free” support
for multithreaded applications, (2) increased availability instead of the usual fail-stop semantics
by tolerating out-of-bounds accesses based on failure-oblivious computing [193, 194], and lastly,
(3) generic APIs for objects’ metadata management to support new use-cases.

SGXBounds is targeted but not inherently tied to SGX enclaves. Our approach is also
applicable to programs that use 64-bit registers to hold pointers but can fit in 32-bit address
space. However, as we show in our evaluation, SGXBounds provides no tangible benefits in
traditional, unconstrained-memory environments in comparison to other techniques.

We implemented SGXBounds as an extension to the LLVM compiler with several optimizations
for performance. Our compiler framework targets unmodified legacy multithreaded applications
and thus requires no source code modifications. We evaluated SGXBounds using two multi-
threaded benchmark suites, Phoenix and PARSEC, and four real-world applications: SQLite,
Memcached, Apache, and Nginx. On this set of benchmarks, AddressSanitizer and Intel MPX
exhibit high performance overheads of 51% and 75% respectively; memory consumption is 8.1×
and 1.95× higher than native SGX. In contrast, SGXBounds shows an average performance
slowdown of 17% and an increase in memory consumption by just 0.1%. At the same time, it

1Current SGX implementations allow 36-bit address space. However, we believe that SGX enclaves spanning
more than 4GB of memory are improbable.
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Figure 6.2 – Memory hierarchy and relative performance overheads of Intel SGX w.r.t.
native execution [15].

provides similar security guarantees. Additionally, we evaluated SGXBounds on a CPU-intensive
SPEC CPU2006 suite, both inside and outside SGX enclaves.

6.2 Background and Related Work

6.2.1 Shielded Execution

Our work builds on SCONE [15], a shielded execution framework to run unmodified applications.
SCONE utilizes Intel SGX to provide confidentiality and integrity guarantees.
Intel SGX is a set of ISA extensions for trusted computing released with recent Intel processors
[58, 147]. Intel SGX provides an abstraction of enclave—a memory region for which the CPU
guarantees confidentiality and integrity.
A distinctive trait of Intel SGX is the use of a memory encryption engine (MEE). Enclave

pages are located in the Enclave Page Cache (EPC)—a dedicated memory region protected by
the MEE (Figure 6.2). While in main memory, EPC pages are encrypted. When such a page
is accessed, the processor verifies that the access originates from the enclave code, fetches the
requested data and copies it into the CPU cache. The MEE performs decryption and verifies the
integrity of the data. This allows protecting enclaves from attacks launched by privileged software
(e.g., by the OS or hypervisor) as well as from physical attacks (e.g., memory bus snooping),
thus reducing the Trusted Computing Base (TCB) to the enclave code and the processor.
The EPC is a limited resource and is shared among all enclaves. Currently, the size of the

EPC is 128 MB. Approximately 94 MB are available to the user while the rest is reserved for the
metadata. To enable creation of enclaves with sizes beyond that of the EPC, SGX features a
paging mechanism. The operating system can evict EPC pages to an unprotected memory using
SGX instructions. During eviction, the page is re-encrypted. Similarly, when an evicted page is
brought back, it is decrypted and its integrity is checked. Paging incurs high overhead, from 2×
for sequential memory accesses and up to 2000× for random ones [15].
SCONE is a shielded execution framework that enables unmodified legacy applications to take
advantage of the isolation offered by SGX [15]. With SCONE, the program is recompiled against
a modified standard C library (SCONE libc), which facilitates the execution of system calls.
The address space of an application is confined to only enclave memory, and the untrusted
memory is accessed only via the system call interface. Special wrappers copy arguments of system
calls inside and outside the enclave and provide functionality to transparently cryptographically
protect any data that might otherwise leave the enclave perimeter in plaintext (so-called shields).
Clearly, the combination of SCONE and SGX is not a silver bullet. As we showcase in §6.7,

bugs in the enclave code itself can render these mechanisms useless: we reproduced bugs in
Memcached, Nginx, and the infamous Heartbleed attack, all inside the SGX enclave and running
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CF DO IL
Control Flow Integrity [40, 73, 146, 256] 4 8 8

Code Pointer Integrity [129] 4 8 8

Address Space Randomization [121, 133, 142, 206, 210] 4* 8 8

Data Integrity [7] 4 4 8

Data Flow Integrity [44] 4 4 8

Software Fault Isolation [73, 237] 4 4 4

Data Space Randomization [30, 42] 4* 4* 4*
Memory safety [6, 17, 39, 63, 110, 155, 162, 207] 4 4 4

*SGX enclaves do not provide sufficient bits of entropy in random offsets/masks

Table 6.1 – Current defenses against attacks [225]. CF – control flow hijack, DO – data-only
attack, IL – information leak.

under SCONE. Thus, it is necessary to defend against data leaks such that the attacker cannot
reveal confidential information even in the presence of exploitable vulnerabilities.
To choose the right defense against information leaks, we first discuss the applicability of

state-of-the-art defenses for shielded execution and SGX (based on the classification by Szekeres
et al. [225]). Table 6.1 highlights that most state-of-the-art defenses target control-flow hijack
attacks only. Even if a proposed defense claims to protect against information leaks, it usually
implies that the attacker can obtain confidential data in plaintext but cannot launch a hijacking
attack based on these leaks [20, 60, 210, 219, 224]. Also note that Address Space Randomization
(ASR) and its fine-grained variants [49, 60, 84, 142] do not have sufficient bit entropy in SGX
enclaves (recall that SGX restricts enclave address space to only 36 bits) and thus can be easily
broken [210, 219]. Concurrent and independent from our work, SGX-Shield investigated the use
of fine-grained ASR in the context of small enclaves [206].
Most of the listed approaches do not prevent information leaks. The only exceptions are

Software Fault Isolation (SFI) [73, 237], Data Space Randomization (DSR) [30, 42] and memory-
safety techniques [6, 17, 63, 158, 162, 166, 196, 248]. Unfortunately, SFI requires manual
separation of the enclave address space into fault domains and is too coarse-grained to guarantee
high security (nevertheless, our preliminary evaluation using Intel MPX instructions indicates
overheads of 3%, making it a viable low-cost alternative). DSR techniques rely on a simple XOR
mask to obfuscate data, and a determined attacker can infer these masks by analyzing leaked
data.
Therefore, we concentrate on memory-safety approaches proved to completely prevent data

leaks and other attacks [225]. These approaches prevent the very first step in any attack—
exploiting a vulnerability, such as overflowing a buffer or freeing an already freed object. We
must note that even though we concentrate on memory safety, there are other, insider attack
vectors (orthogonal to our work) where a malicious OS tries to deceive the shielded application
[48, 171, 212, 249].

6.2.2 Memory Safety

The foundation of all memory attacks is getting access to a prohibited region of memory [150, 233].
Hence, memory safety can be achieved by enforcing a single invariant: memory accesses must
always stay within the bounds of originally intended (referent) objects. For legacy applications
written in C/C++, this invariant is enforced by changing (hardening) the application to perform
additional bounds checks.
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Figure 6.3 – Memory protection mechanisms.

A number of memory-safety approaches have been implemented either in software [6, 68,
162, 166, 207] or in hardware [110, 114, 131, 245]. We analyze two open-source and stable
approaches in order to put our own results into perspective: software-based AddressSanitizer
and hardware-based Intel MPX.
AddressSanitizer is an extension to GCC and Clang/LLVM that detects the majority of
object bounds violations [207]. It keeps track of all objects, including globals, heap, and stack
variables, and checks whether the address is within one of the used objects on each memory
access. For that, it utilizes shadow memory – a separate memory region that stores metadata
about main memory of an application (shown in pale-blue in Figure 6.3a). In particular, shadow
memory shows which regions are allocated and used (i.e., safe to access) and which are not.
AddressSanitizer does that by allocating redzones around all main memory objects and marking
them inaccessible in the shadow memory. Hence, if an application tries to read or write out of
object limits, this can be detected by checking the corresponding shadow address. On top of
that, AddressSanitizer provides a quarantine zone for freed objects, thereby detecting temporal
errors such as use-after-free and double free.
Execution of the hardened program is supported by a run-time library that initializes the

shadow region and replaces memory management functions. It redefines memory-allocation
functions (e.g., malloc) to allocate redzones and mark them unaddressable (poisoned) in shadow
memory and memory-deallocation functions (e.g., free) to poison the whole object after it has
been freed. The library also maps 1/8th of virtual address space for the shadow memory at
startup.
The hardening is performed by a compile-time instrumentation pass. To understand how it

works, consider an example in Figure 6.4a, which copies elements of one array (“s” for source) to
another (“d” for destination). The first task of the pass is to set metadata for global, heap, and
stack variables. In this example, it creates shadow objects for both arrays and sets the redzones
by calling init_shadow (Figure 6.4b, lines 2–3). The pass also enforces the memory access
correctness by computing the shadow addresses of all pointers (lines 7 and 11) and checking if
they are within a redzone (lines 8 and 12). If a violation is detected, the application is crashed
with a debugging message (lines 9 and 13).
Intel MPX is a recent set of ISA extensions of Intel x86-64 architecture for memory protection
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(a) Original
1 int *s[N], *d[N]
2
3
4 for (i=0; i<M; i++):
5 si = s + i
6 di = d + i
7
8
9
10 val = load si
11
12
13
14 store val, di
15

(b) ASan
int *s[N], *d[N]
init_shadow(s, N)
init_shadow(d, N)
for (i=0; i<M; i++):

si = s + i
di = d + i
ssi = get_shadow(si)
if *ssi != 0:

crash(si)
val = load si
sdi = get_shadow(di)
if *sdi != 0:

crash(di)
store val, di

(c) Intel MPX
int *s[N], *d[N]
sbnd = bnd_create s
dbnd = bnd_create d
for (i=0; i<M; i++):

si = s + i
di = d + i

if bnd_check si, sbnd:
crash(si)
val = load si
val_bnd = bnd_load si
if bnd_check di, dbnd:
crash(di)

store val, di
bnd_store val_bnd, di

(d) SGXBounds
int *s[N], *d[N]
s = specify_bounds(s, s + N)
d = specify_bounds(d, d + N)
for (i=0; i<M; i++):

si = s + i
di = d + i
sp, sLB, sUB = extract(si)
if bounds_violated(sp, sLB, sUB):

crash(si)
val = load si
dp, dLB, dUB = extract(di)
if bounds_violated(dp, dLB, dUB):

crash(di)
store val, di

Figure 6.4 – Memory safety enforcement of original code in (a) via: (b) AddressSanitizer,
(c) Intel MPX, and (d) SGXBounds.

[110]. By design, Intel MPX detects all possible spatial memory vulnerabilities including intra-
object ones (when one member in a structure corrupts other members). The approach to achieving
this goal is different from AddressSanitizer—instead of separating objects by unaddressable
redzones, Intel MPX keeps bounds metadata of all pointers and checks against these bounds
on each memory access. Since metadata bookkeeping and checking is implemented partly in
hardware, such protection is supposed to be highly efficient.

From the developer perspective, Intel MPX adds new 128-bit registers for keeping upper and
lower addresses (bounds) of a referent object. It also provides instructions to check if a pointer is
within these bounds, along with instructions to manipulate them. To illustrate how Intel MPX
works in practice, consider an example in Figure 6.4c. After the objects are created (line 1),
their bounds have to be stored for future checks (lines 2–3). Then, on each memory access, we
check if the accessed address is within the bounds of the referent object (lines 8 and 12) and
crash if the check fails (lines 9 and 13). Unlike AddressSanitizer, we have to copy not only the
arrays’ elements but also their bounds (lines 11 and 15), which causes additional performance
overhead. Note that this copying of bounds is required because the elements of arrays are pointers
themselves.
One major limitation of the current Intel MPX implementation is a small number of bounds

registers. If an application contains many distinct pointers, it will cause frequent loads and stores
of bounds in memory. To make this interaction more efficient, bounds are stored in tables with an
index derived from the pointer address, similar to a two-level page table structure in x86: a 2GB
intermediate table (Bounds Directory) is used as a mediator to the actual 4MB-sized Bounds
Tables, which are allocated on-demand by the OS when bounds are created (see Figure 6.3b).
Thus, the constant memory overhead is minimal and the total overhead depends mainly on the
number of pointers in the application.
Other memory-safety approaches. Apart from AddressSanitizer and Intel MPX, relevant
memory-safety approaches include Baggy Bounds [6] and Low Fat Pointers [67, 68].

Baggy Bounds [6] solves the problem of high memory consumption and broken cache locality by
enforcing allocation bounds via buddy allocator. Thus, all objects become power-of-two aligned,
allowing simple and efficient checks against the base and bounds. The approach maintains
minimal metadata for the bounds table, and the authors introduce tagged pointers with 5 bits
holding the size. However, even with tagged pointers Baggy Bounds incurs perceivable overheads:
70% performance and 12% memory (on SPECINT 2000) [6].
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Low Fat Pointers [67, 68] are conceptually similar to Baggy Bounds: they also introduce a
special allocator that divides the virtual address space in regions of fixed sizes and derive base
and bounds from the unmodified pointer. Overheads are also comparable to Baggy Bounds: 54%
performance and 12% memory [68]. Yet, to support sparse memory regions, Low Fat Pointers
assume a complete 64-bit address space, incompatible with the current version of SGX. Also, the
prototype of Low Fat Pointers protects only stack and heap but not globals.
Given their tagged-based nature and low memory consumption, Baggy Bounds and Low Fat

Pointers seem proper candidates for usage in SGX enclaves. Unfortunately, neither of them are
publicly available.

6.2.3 Memory Safety for Shielded Execution

Now that we have covered the necessary background, we explain the overheads for the SQLite
case study introduced in §6.1.
In the normal environment—outside of the SGX enclave—Intel MPX exhibits performance

overheads of up to 2.5× and AddressSanitizer of up to 2.1× (not shown in Figure 6.1). These
are reasonable overheads expected from these approaches.
Inside the enclave the picture changes dramatically (Figure 6.1). Intel MPX crashes due to

insufficient memory even on tiny input sizes. The cause for this behavior is the amount of bounds
tables created to support pointer metadata (800 − 900 tables each 4MB in size), leading to
memory exhaustion. We should note however that SQLite is a worst-case example for MPX since
it is exceptionally pointer-intensive; pointerless programs, e.g., those using flat arrays, perform
significantly better under MPX (see §6.6).

AddressSanitizer performs up to 3.1× slower than the native SGX execution on bigger inputs.
Performance deteriorates mainly due to the EPC thrashing caused by additional metadata
accesses to shadow memory. Moreover, AddressSanitizer also has a constant memory overhead of
512MB for shadow memory plus some overhead for redzones around objects. This can lead to
situations when the application prematurely suffers from insufficient memory.

For the same experiment, SGXBounds shows performance comparable to native SGX (30−35%
slower) with almost no memory overhead. This motivates our case for a specialized memory
safety approach for shielded execution.

6.3 SGXBounds

We built SGXBounds based on the following three insights. First, as shown in §6.2.1, shielded
application memory (more specifically, its working set) must be kept minimal due to the very
limited EPC size in current SGX implementations. This is in sharp contrast to the usual
assumption of almost endless reserves of RAM for many other memory-safety approaches [6,
27, 68, 110, 143, 158, 207]. Second, applications spend a considerable amount of time iterating
through the elements of an array [52], and a smartly chosen layout of metadata can significantly
reduce the overhead of bounds checking. Third, we rely on the SCONE infrastructure [15] with its
monolithic build process: all application code is statically linked without external dependencies,
which removes the requirements for compatibility and modularity. The first and second insights
dictate the use of per-object metadata combined with tagged pointers [6, 39] to keep memory
overhead minimal, and thanks to the monolithic application assumption, SGXBounds avoids
problems of interoperability with uninstrumented code [225].
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Figure 6.5 – Tagged pointer representation in SGXBounds.

6.3.1 Design Overview
All modern SGX CPUs operate in a 64-bit mode, meaning that all pointers are 64 bits in size.
In SGX enclaves, however, only 36 bits of virtual address space are currently addressable [108],
and even this amount of space is not likely to be used due to performance penalties. Thus,
SGXBounds relies on the idea of tagged pointers: a 64-bit pointer contains the pointer itself in
its lower 32 bits and the referent object’s upper bound in the upper 32 bits (Figure 6.5). Note
that with SCONE, all application code and data are stored inside the enclave address space and
thus all addressable memory is confined to 32 bits and all original pointers can be replaced by
their tagged counterparts.
The value stored in the higher 32 bits (UB) serves not only for the upper-bound check, but

also as a pointer to the object’s other metadata (lower bound or LB). The metadata is stored
right after the referent object.

This metadata layout has important benefits: (1) it minimizes amount of memory for metadata,
(2) it requires no additional memory accesses while iterating over arrays with a positive increment,
and (3) it alleviates problems of fat pointers concerning multithreading and memory layout
changes (see §6.4.1).
Figure 6.4d shows how SGXBounds instruments memory accesses. First, global arrays s

and d are initialized with their respective bounds, and s and d pointers are transformed into
tagged pointers (lines 2–3). For the sake of clarity, we show pointer increments on lines 5–6
uninstrumented (details are in §6.3.2). Next, before the first memory access at line 10, SGX-
Bounds inserts a bounds check. For this, the original pointer value and its upper bound are
extracted from the tagged si as well as the lower bound, and the bounds check is performed
(lines 7–9). The second memory access (line 14) is instrumented in the same way.

Looking at Figure 6.4, we can highlight the differences between SGXBounds, AddressSanitizer
and Intel MPX. Unlike AddressSanitizer, SGXBounds does not rely on a vast amount of shadow
memory, allocating only 4 additional bytes per object. Also, AddressSanitizer requires adjacent
objects to be separated by fixed-size unaddressable redzones and checks whether the memory
access lands on one of these redzones. In contrast, SGXBounds extracts pointer bounds and
compares the current value of the pointer against them—similar to Intel MPX. But unlike Intel
MPX, SGXBounds does not maintain a bounds table and does not explicitly associate each
pointer with its own bounds metadata: the newly created pointer implicitly inherits all associated
metadata.

6.3.2 Design Details

Pointer creation. Whenever an object is created, SGXBounds associates a pointer with the
bounds of this object.
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For global and stack-allocated variables, we change their memory layout so they are padded
with 4 bytes and initialize them at run-time. More specifically, we wrap such variables in
two-member structures, e.g., int x is transformed into struct xwrap {int x; void* LB}
(similar to [207]). At program initialization, we set the lower and upper bounds of each object
with specify_bounds(&xwrap, &xwrap.LB):

void* specify_bounds(void *p, void *UB):
LBaddr = UB

*LBaddr = p
tagged = (UB << 32) | p
return tagged

For dynamically allocated variables, SGXBounds wraps memory-management functions such
as malloc, calloc, etc. to append 4 bytes to each newly created object, initialize these bytes
with the lower-bound value, and make the pointer tagged with the upper bound:

void* malloc(int size):
void *p = malloc_real(size + 4)
return specify_bounds(p, p + size)

Note that there is no need to instrument free as the 4 bytes of metadata are removed together
with the object itself.

Lastly, a pointer can be assigned a value of another pointer. If we would use fat pointers or
pointers with disjoint metadata, we would need to instrument such pointer assignments, as in
Intel MPX (see Figure 6.4c). However, in SGXBounds no instrumentation is needed, since the
newly assigned pointer will also inherit the upper bound and thus all associated object metadata.
Run-time bounds checks. SGXBounds inserts run-time bounds checks before each memory
access: loads, stores, and atomic operations (we revise this statement in §6.4.4). For this, first the
original pointer and the upper and lower bounds are extracted. To extract the original pointer,
it is enough to use only the lower 32 bits:
void* extract_p(void* tagged):

return tagged & 0xFFFFFFFF

Similarly, to extract the upper bound, the higher 32 bits of the tagged pointer must be extracted:
void* extract_UB(void* tagged):

return tagged >> 32

If a check against a lower bound is also required then this bound is read from the memory at the
upper-bound’s address:
void* extract_LB(void* UB):

return *UB

Finally, SGXBounds adds the bounds check which crashes the application in case the bounds
are violated (in the implementation, we take into account the size of the accessed memory while
checking against the upper bound; here we omit it for clarity):
bool bounds_violated(void* p, void* LB, void* UB):

if (p < LB or p >= UB):
return true

Pointer arithmetic. There is a subtle issue with tagged pointers when it comes to pointer
arithmetic. Take, for example, increment of a pointer as shown in Figure 6.4d, lines 5–6. In the
ordinary case, pointer arithmetic affects only the lower 32 bits of a tagged pointer. However, it
is possible that a malicious/buggy integer value overflows 32 bits and changes the upper bound
bits. In this case, the attacker can manipulate the upper bound value and bypass the bounds
check. To prevent such corner cases, SGXBounds instruments pointer arithmetic so that only
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32 low bits are affected:
UB = extract_UB(si)
si = s + i
si = (UB << 32) | extract_p(si)

Type casts. Pointer-to-integer and integer-to-pointer casts are a curse for fat/tagged pointer
approaches. Some techniques break applications with such casts [6, 117], others suffer from
worse performance or lower security guarantees [39, 110, 158]. Unfortunately, arbitrary casts are
common in real-world [52].

SGXBounds proved itself immune to arbitrary type casts. It does not perform any instrumen-
tation on type casts and survives integer-to-pointer casts by design. Indeed, when a tagged pointer
is casted to an integer, the integer inherits the upper bound. Unless the integer deliberately
alters its high 32 bits, the upper bound will stay untouched and the later cast back to a pointer
will preserve this bound.
Function calls. SGXBounds does not need to instrument function calls or alter calling
conventions. Unlike other approaches [6, 39, 64, 110, 158], SGXBounds is not required to
interoperate with possibly uninstrumented, legacy code: the only uninstrumented code is the
standard C library (libc) for which we provide wrappers. This implies that any tagged pointer
passed as a function argument will be treated as a tagged pointer in the callee. In other words,
bounds metadata travels across function and library boundaries together with the tagged pointer.

As already mentioned, we leave libc uninstrumented and introduce manually written wrappers
for all libc functions, similar to other approaches [6, 110, 158, 207]. Most wrappers follow a
simple pattern of extracting original pointers from the tagged function arguments, checking them
against bounds, and calling a real libc function. Others require tracking and extracting the
pointers on-the-fly (e.g., the printf family), writing proxies for callbacks (qsort), or iterating
through complex objects (scandir).

6.4 Advanced Features of SGXBounds

6.4.1 Multithreading support

Bounds checking approaches usually hamper multithreaded applications. AddressSanitizer does
not require any specific treatment of multithreading, but, as we illustrate in §6.6.4, it can
negatively affect cache locality if a multithreaded application was specifically designed as cache-
friendly (recall that AddressSanitizer inserts redzones around objects). On the other hand,
current implementations of Intel MPX instrumentation may suffer from false positives and false
negatives in multithreaded environments, introducing a possibility of false alarms or, even worse,
of undetected attacks [52, 173].
In fact, all fat-pointer or disjoint-metadata techniques similar to Intel MPX suffer from

multithreading issues [52, 157]. An update of a pointer and its associated metadata must be
implemented as one atomic operation which requires some synchronization mechanism. This
inevitably hampers performance as this is necessary for each pointer/metadata update.
For example, in Figure 6.4c, lines 10–11, the pointer val and its bounds metadata val_bnd

are copied to di. After the first thread loaded val on line 10, the second thread can jump in
and change val to point to some other object. This will also change val_bnd. Next, the first
thread continues its execution and loads the wrong val_bnd on line 11. Now val and val_bnd
do not match, which might result in a false positive. This is a realistic failure scenario for current
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Figure 6.6 – Boundless memory blocks for SGXBounds.

implementations of Intel MPX since it does not enforce atomicity of metadata updates.2
SGXBounds does not experience this problem. Indeed, the pointer and the upper bound are

always updated atomically since they are stored in the same 64-bit tagged pointer. Additionally,
the lower bound is written only once (at object creation) and is read-only for the whole object’s
lifetime.

6.4.2 Tolerating Bugs with Boundless Memory

Up to this point, we assumed that an application crashes with a diagnostic error whenever
SGXBounds detects an out-of-bounds access. This fail-fast strategy is simple and prevents
hijacks and data leaks, but lowers availability of the system. Even in benign cases of off-by-one
buffer overflows, the whole application is crashed and must be restarted.

To allow applications to survive most bugs and attacks and continue correct execution, SGX-
Bounds reverts to failure-oblivious computing [194] by using the concept of boundless memory
blocks [193]. In this case, whenever an out-of-bounds memory access is detected, SGXBounds
redirects this access to a separate “overlay” memory area to prevent corruption of the adjacent
objects, creating the illusion of “boundless” memory allocated for the object (see Figure 6.6).

This overlay area is implemented as a bounded least-recently-used (LRU) cache—a hash table
that maps out-of-bounds memory addresses to spare chunks of memory (similar to [193]). These
chunks are allocated on-demand, each being 1KB in size. The whole LRU cache is bounded,
i.e., it cannot grow more than a certain predefined size (in our implementation, 1MB). This is
required to prevent bugs and attacks that span gigabytes of out-of-bounds memory—a frequent
consequence of integer overflows due to negative buffer sizes.
Consider an example of a classical off-by-one bug from Figure 6.4d. If M is greater than N by

one, the last iteration of the loop will trigger bound violations on lines 8 and 12.
With boundless memory feature enabled, SGXBounds consults the LRU cache and redirects

the load from si (line 10) to a load from an overlay address that corresponds to si. If there is
no hit for si in the cache, SGXBounds falls back on a failure-oblivious approach and simply
returns zero values.

Additionally, SGXBounds redirects the store to di (line 14) to a corresponding overlay address.
If there is no overlay address in the LRU cache, then a new chunk of overlay memory is allocated
and is associated with this address. If there is no space left for a new chunk in the LRU cache,
the least recently used chunk is evicted (freed) and the new chunk is added instead.

2We demonstrate how multithreaded code fails in MPX and discuss this and other issues in more detail in the
next chapter.
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on_create(objbase, objsize, objtype)
called after object creation (globals, heap, or stack)

on_access(address, size, metadata, accesstype)
called before memory access (read, write, or read-write)

on_delete(metadata)
called before object destruction (only for heap)

Table 6.2 – SGXBounds metadata management APIs.

6.4.3 Metadata Management Support

So far, we discussed only one metadata type kept per object—the lower bound (see Figure 6.5).
However, our memory layout allows us to add arbitrary number of metadata items for each
object to implement additional functionality.

All instrumentation in SGXBounds is implemented as calls to auxiliary functions described in
§6.3.2, which we refer to as instrumentation hooks. One can think of these hooks as a metadata
management API (see Table 6.2). The API consists of only three functions: (1) on_create is
called at run-time whenever a new object is created, either a global variable during program
initialization or a local variable during stack frame creation or a dynamically allocated variable,
e.g., via malloc. In the context of SGXBounds, it corresponds to the specify_bounds function
which initializes our only metadata (lower bound). (2) on_access is called at each memory
access, be it a write, read, or both (for atomic instructions such as compare-and-swap). In
SGXBounds, the hook roughly corresponds to the bounds_violated function. (3) on_delete
is called whenever an object is deallocated; we support this hook only for heap-allocated objects,
since global variables are never deleted and there is no way to track deallocation of variables on
stack. SGXBounds does not use this hook because we do not focus on temporal safety (also
note that the metadata is removed automatically with the object).
With this API, it is straightforward to implement additional functionality. For example,

SGXBounds can be expanded to probabilistically protect against double-free bugs using an
additional metadata item acting as a “magic number” to compare with. Another example would
be providing debug information about where a detected out-of-bounds access originates from.

6.4.4 Optimizations

Safe memory accesses. Many pointer arithmetic operations and memory accesses are always-
safe. For example, the calculation of the member’s offset in a structure is guaranteed to be
in-bounds and never overflows 32 low bits. The memory access at a predefined index in a
fixed-size array is also safe.

In these cases, there is no need for instrumentation of pointer arithmetic or bounds checks on
memory accesses. We employ the built-in compiler analysis to detect all safe cases and do not
instrument them. This is a standard optimization for many approaches [6, 64, 207] and yields
significant performance gains for some applications, up to 20% (§6.6.5).
Hoisting checks out of loops. Many programs spend a lot of time iterating over arrays in
simple loops. The array-copy example in Figure 6.4a is a good illustration.
The straightforward instrumentation with SGXBounds, as depicted in Figure 6.4d, inserts

bounds checks before each memory access (on lines 7–9 and 11–13). It is immediately obvious
from the code that the lower-bound check is useless: si and di start from the base addresses of
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the corresponding arrays and increment on each iteration. Thus, it is safe to remove the check
against the lower bound, which renders the extraction of the lower bound redundant. In the end,
this optimization can save two memory accesses per iteration (to extract LBs).
The upper-bound check cannot be removed: in general case the value of M is unknown and

can exceed the upper bound of the two arrays (N). But it is sufficient to perform only one check
for each array outside of the loop, namely, the check of s+M and of d+M against their respective
upper bounds.

Such optimization is applied only for loops with small increments (up to 1,024 bytes) – which
is virtually all loops encountered in regular applications. We mark the last 4K page of an enclave
as unaddressable, which protects from integer over- and underflows of the loop counter variable.
These simple precautions protect against overflowing pointer arithmetic inside loops when lower-
or upper-bound checks are hoisted out.
To perform these optimizations, we reused classical scalar evolution analysis. We observed

performance gains of up to 22% in some cases (§6.6.5).

6.5 Implementation

6.5.1 SGXBounds Implementation

SGXBounds is a compile-time transformation pass implemented in LLVM 3.8. For greater
modularity, we implement the functionality outlined in §6.3.2 as always-inlined functions in a
separate C file. The pass inserts calls to these functions during instrumentation. We refer to this
set of auxiliary C functions as the run-time for SGXBounds.
We do not alter the usual build process of an application, but rather use the Link-Time

Optimization feature of LLVM.
Compiler support. SGXBounds compiler pass works under LLVM 3.8 [134] and was imple-
mented in 951 lines of code (LOC). Its functionality closely follows the description in §6.3.
We treat inline assembly as an opaque memory instruction: all pointer arguments to inline

assembly are bounds checked. To minimize the risk of misbehaving assembly, we disabled inline
assembly in all tested applications which had such a flag.
To support C++, we opted to instrument the whole C++ standard library. We used libcxx

(libc++) implementation for this purpose. SGXBounds does not yet completely support C++
exception handling: it runs C++ applications correctly only if they do not throw exceptions at
run-time.
Run-time support. Next we describe implementation details of the SGXBounds auxiliary
functionality. The complete implementation of the run-time functions spans 320 LOC, and the
libc wrappers contain 4289 LOC.

We implemented boundless memory feature (§6.4.2) completely in the run-time support library
in 68 LOC. It is based on uthash lists which we extend to a simple LRU cache [231]. To prevent
data races, all read/update operations on the cache are synchronized via a global lock. Such
implementation is slow, but since it is triggered on supposedly rare events of out-of-bounds
memory accesses (and thus it lies on a slow path), we can ignore this possible performance
bottleneck.

Furthermore, SGXBounds does not fall back to a failure oblivious approach for libc function
wrappers, but rather returns an error code through errno where applicable (e.g., EINVAL for
the recv function). This allows applications to quickly drop offending requests.

106



6.5 Implementation

For the tagged pointer scheme, SGXBounds relies on SGX enclaves (and thus the virtual
address space) to start from 0x0. To allow this, we set the Linux security flag vm.mmap_min_addr
to zero for our applications. We also modified the original Intel SGX driver (5 LOC) to always
start the enclave at address 0x0.

6.5.2 AddressSanitizer, Intel MPX, and SGX Enclaves

To integrate AddressSanitizer and Intel MPX into SGX enclaves, we had to solve three main
issues. (1) SCONE disallows dynamic linking against shared libraries, so AddressSanitizer and
Intel MPX must be compiled statically into the application. (2) The virtual address space is
restricted to 32 bits. (3) The OS is not allowed to peek into the address space of the enclave.
Adapting AddressSanitizer for SGX enclaves. We had to solve issues (1) and (2) for
AddressSanitizer. First, the current implementation of AddressSanitizer relies on libc being
dynamically linked at application start-up (the usual function interposition scheme). Trying
to statically link libc into the application would result in a compilation error due to multiple
definitions of the same function.
Every function in SCONE libc has an alias (a second name which is used to denote the real

function). We modified the interception layer of AddressSanitizer such that its wrapper functions
call aliases (real libc functions), therefore solving the problem of multiple definitions. This is
similar to SGXBounds (see malloc in §6.3.2).

Second, by default AddressSanitizer is compiled in 64-bit mode and reserves ∼ 16TB of memory
for its shadow space. Fortunately, it also has a 32-bit mode where only 512MB of memory is
carved for shadowing. We changed the build system of AddressSanitizer to always use the 32-bit
mode. Also, we disabled “leak detection” flag that broke SCONE.
Adapting Intel MPX for SGX enclaves. To put Intel MPX inside SGX, we solved issues
(2) and (3). Intel MPX operates in the 64-bit mode, and this affects its address translation
to store and load bounds (Figure 9 in [110]). In the 64-bit mode, Intel MPX allocates a 2GB
Bounds Directory (BD) table at start-up and 4MB-sized Bounds Tables (BT) on-demand.
We discovered that this address translation also works with 32-bit addresses. In the 32-bit

address case, only 12 bits are used for indexing in the BD table, and the rest for BT tables.
Thus, we were able to restrict the size of BD to 32KB by changing the corresponding constants
in the MPX compiler pass and run-time libraries. We did not change the address translation
logic of BT allocation.
For issue (3), we had to move the kernel logic into the SGX enclave. In the normal case,

on-demand allocation of BTs requires support from the Linux kernel. Whenever an application
fires a “bounds store” exception (meaning the application needs to allocate a new BT to store
some pointer metadata), the kernel handles it: it examines the pointer address that raised the
exception, calculates the correct BT, and allocates it on behalf of the application. Then the
execution of the application continues, and the metadata is stored in the newly allocated BT.
This kernel-application cooperation is impossible in SGX. The kernel cannot examine the

failing pointer and cannot peek into or modify memory inside the SGX enclave. To alleviate
this problem, we moved all the BT-allocation logic from the kernel into the Intel MPX run-time
library. We also instructed the kernel not to try to cooperate with the application, but only to
forward the exception to the application itself. At this point the enclave takes control and handles
the exception. Note that this logic does not compromise security because SGX double-checks the
exceptions forwarded by the kernel. Our adaptation also does not influence performance since
BT-allocation is a rare event, and the kernel-to-application forwarding adds negligible overhead.
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6 SGXBounds: Leveraging Software Guard Extensions

6.6 Evaluation

Our evaluation answers the following questions:
• What are the performance and memory overheads of SGXBounds and how do they compare

to AddressSanitizer and Intel MPX? (§6.6.2)
• How does the increasing working set affect the performance of SGXBounds? (§6.6.3)
• How does multithreading affect the performance? (§6.6.4)
• How effective are the optimizations in improving the performance? (§6.6.5)
• What level of security is achieved by SGXBounds according to the RIPE benchmark?

(§6.6.6)
• How does the performance of SGXBounds change outside of SGX enclaves? (§6.6.7)

6.6.1 Experimental Setup

Applications. We evaluated SGXBounds using Fex [172] with applications from two multi-
threaded benchmark suites: Phoenix 2.0 [187] and PARSEC 3.0 [32], as well single-threaded
SPEC CPU2006 [99]. We report results for all 7 applications in the Phoenix benchmark, 9
out of 13 applications in PARSEC, and 13 out of 19 in SPEC. The remaining applications are
not supported for the following reasons: raytrace depends on the dynamic X Window System
libraries not shipped together with the benchmark; freqmine is based on OpenMP, facesim and
canneal fail to compile under SCONE due to position-independent code issues, dealII, omnetpp,
and povray fail due to incomplete support of C++, perlbench triggered an unsupported corner
case of a specific loop optimization, and gcc and soplex violate C memory model and cannot be
protected via bounds-checking [173].
Methodology. In all experiments (except §6.6.3) the numbers are normalized against the native
SGX version, i.e., a version compiled under the SCONE infrastructure and not instrumented
with any memory-safety techniques. For all measurements, we report the average over 10 runs
and geometric mean for the “gmean” across benchmarks. For memory measurements, since the
Linux kernel does not provide statistics on the Resident Set Size inside SGX enclaves, we show
the maximum amount of reserved virtual memory.
Testbed. We used the largest available datasets provided by Phoenix, PARSEC, and SPEC
benchmark suites. The experiments were carried out on a machine with a 4-core (8 hyper-threads)
Intel Xeon processor operating at 3.6 GHz (Skylake µarchitecture) with 64GB of RAM, a 1TB
SATA-based SDD, and running Linux kernel 4.4. Each core has private 32KB L1 and 256KB L2
caches, and all cores share a 8MB L3 cache.
Compilers. We used LLVM 3.8 for native SGX, AddressSanitizer, and SGXBounds versions
and gcc 5.3 for the Intel MPX version. We use default options for AddressSanitizer but disable
leak detection (see §6.5.2). We also disable “narrowing of bounds” feature in Intel MPX to
remove false positives in some programs.

6.6.2 Performance and Memory Overheads

Figure 6.7 shows performance and memory overheads of Intel MPX, AddressSanitizer, and
SGXBounds normalized against the uninstrumented SGX version. All benchmarks were run
with 8 threads to fully utilize our machine.

Performance overheads of Intel MPX significantly vary across benchmarks, reaching up to
5− 6× in some cases. For example, consider pca. Its working set is 70MB (77MB for Intel MPX
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Figure 6.7 – Performance (top) and memory (bottom) overheads over native SGX execution
(with 8 threads).

due to additional metadata), thus all data fits into EPC and performance is dominated by the
on-die characteristics like CPU cache accesses and number of retired instructions. Indeed, Intel
MPX leads to 10× more instructions, 5× more branches, and 25× more L1 cache accesses (pca
operates on a large array-of-pointers and is thus pointer-intensive). Together, this leads to an
overhead of 6.3×. On the other hand, pointer-free benchmarks like histogram and blackscholes
exhibit almost zero overhead (observe that memory overheads in these cases are also close to
zero).

Memory overheads of Intel MPX also vary. For benchmarks working with large arrays and/or
using no pointer-based structures (almost all Phoenix benchmarks), pointer bounds metadata
occupies relatively small amount of space and overheads are negligible. However, for pointer-
intensive cases like bodytrack and fluidanimation, Intel MPX allocates a lot of metadata, leading
to ∼ 4× memory overhead. In degenerate cases, overheads can reach up to 13× (swaptions) or
even crash the application (dedup, note the missing MPX bar).
AddressSanitizer has more reasonable and expected performance overhead of around 51%.3

The kmeans benchmark has one of the highest overheads of 2.2×. Since the working set of
kmeans is only 5MB (AddressSanitizer blows it up to 643MB but does not use most of it), the
overhead is dominated by the CPU instructions and cache: 2.4× more instructions, 2.6× more
branches, and 2.2× more L1 cache accesses.
In terms of memory usage, AddressSanitizer is a poor choice for SGX enclaves. By reserving

512MB of memory for its shadow space, AddressSanitizer reduces the available memory to 3.5GB
(§6.2.2). Moreover, AddressSanitizer pads objects with redzones and uses so-called “quarantine”
which obstructs reuse of memory [207]. All this can lead to memory blow-ups of 50− 100×.

The most dramatic example of memory overheads is swaptions. This benchmark has a working
set of only 3.3MB, but it constantly allocates and frees tiny objects. For Intel MPX, it results in
a flood of pointers and a constant need for more and more bounds tables (12 BTs or 48MB).
For AddressSanitizer with its quarantine feature, the reuse of memory is restricted and new
objects are allocated in more and more pages (103, 250 pages or 413MB). Note that the excessive
amount of metadata does not seriously hamper performance of Intel MPX because the working
set still fits into EPC, but AddressSanitizer suffers from EPC thrashing and thus exhibits poor
performance.

3Except dedup which performs better than the baseline SGX version. Our investigation revealed that Address-
Sanitizer accidentally changes the memory layout of dedup such that it has much less LLC cache misses at
runtime.
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Figure 6.8 – Performance overheads over SGXBounds execution with increasing sizes of
working sets (with 8 threads).

Working set (MB) LLC misses (%) Page Faults (×) # of
ASan MPX ASan MPX BTs

kmeans
XS (17) 5.8 -0.3 3.9 1.2 6
S (34) 12.4 1.3 3.1 2.0 9
M (68) 17.2 9.7 3.9 44 15
L (135) 19.7 1.3 1.2 2.9 27
XL (270) 11.3 1.5 1.2 1.9 52

matrixmul
XS (2) 1.7 1.0 9.4 1.5 1
S (7) -0.5 -1.2 5.8 1.4 1
M (26) -3.6 -13.8 2.9 1.2 1
L (103) 125 -11.5 1.9 1.0 1
XL (412) 4367 -0.1 1.2 1.0 1

Table 6.3 – Overheads w.r.t. SGXBounds for experiment of increasing working set size.
Col. 4–5: page faults due to EPC thrashing. Col. 6: num. of bounds tables allocated in
MPX.

Finally, SGXBounds performs the best, with an average performance overhead of 17% and
average memory overhead of 0.1%. In comparison to Intel MPX, SGXBounds does not choke on
pointer-intensive programs (pca, wordcount, x264 ). In comparison to AddressSanitizer, SGX-
Bounds has much better memory consumption. It also does not exhibit corner-case performance
drops like AddressSanitizer in swaptions and does not eat up all memory like Intel MPX in dedup.

6.6.3 Experiments with Increasing Working Set

To understand the behavior of different approaches with increasing sizes, we created five input
sizes ranging from tiny (XS) to extra-large (XL) for several benchmarks (Figure 6.8). Note that
we normalize against SGXBounds for clarity; SGXBounds itself performs ∼ 15% worse than
native SGX and has a maximum deviation of 2.1% across different sizes. We observed different
patterns across approaches and benchmarks. In most cases, increasing the size did not influence
the overheads of AddressSanitizer and Intel MPX in comparison to SGXBounds, indicating no
changes in memory access patterns due to CPU cache or EPC thrashing. Next, we elaborate on
the patterns for some other cases.
Kmeans has the following pattern: the overheads over SGXBounds grow until a certain point
(“M”), reach a maximum and then drop. Looking at Table 6.3, we note that the working set fits
completely in EPC at first and then spills out to RAM at large inputs. This means that before
the “L” value, overheads are dominated by the on-die characteristics, and after it by the paging
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Figure 6.9 – Performance overheads of AddressSanitizer and SGXBounds over native SGX
with different number of threads.
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Figure 6.10 – Performance overheads of SGXBounds over native SGX execution with
different optimizations (with 8 threads).

mechanism. In the case of kmeans—a benchmark which iteratively goes through its working
set—the number of page faults explains the spikes and subsequent drops in both Intel MPX and
AddressSanitizer.

Note the outlier number of page faults for “M” in Intel MPX: the working set increases to
127MB due to bounds tables. At the same time, the original SGX version and SGXBounds both
have the working set of 68MB. Thus, SGXBounds fits completely into EPC while Intel MPX
must evict and load-back pages (AddressSanitizer also has a working set that fits into EPC).
Since such constant EPC thrashing is expensive (§6.2.1), performance of Intel MPX becomes
8.3× worse.

On “L” and “XL” sizes, all approaches do not fit into EPC and experience EPC thrashing,
and this dominates the performance overheads of all of them. Note how the number of page
faults from Table 6.3 correlates with the overhead in Figure 6.8.

Matrixmul performs a simple (cache-unfriendly) multiplication of two matrices and writes the
result into a third matrix.

Intel MPX performs on par with SGXBounds. Looking at the number of bounds tables
allocated (Table 6.3), we see that only one table was enough for any input size. This is trivially
explained by the fact that matrixmul requires only three bounds entries—one for each matrix.
Moreover, Intel MPX holds these bounds in CPU registers such that there are no additional
memory accesses and thus no overhead.

Note that matrixmul exhibits sequential pattern of memory accesses. This implies that even
when the working set does not fit in EPC, there is no EPC thrashing (old EPC pages are evicted
and never accessed again) – in other words, page faults do not dominate performance overheads.
In this scenario, CPU cache misses play a major role. AddressSanitizer breaks cache locality
since it inserts additional accesses to shadow memory. On “XL” size, this effect is exacerbated
by matrices not fitting in EPC, leading to 44× more LLC cache misses. This explains the 40×
spike in overhead in Figure 6.8.
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6 SGXBounds: Leveraging Software Guard Extensions

Approach Prevented attacks
MPX 2/16 (except return-into-libc on heap & data)
AddressSanitizer 8/16 (except in-struct buffer overflows)
SGXBounds 8/16 (except in-struct buffer overflows)

Table 6.4 – Results of RIPE security benchmark.

6.6.4 Effect of Multithreading

As discussed in §6.4.1, SGXBounds supports multithreading by design. To highlight the fact
that SGXBounds does not impose additional performance overhead with more threads, we
conducted an experiment with one and four threads (Figure 6.9). Also, the overheads with 8
threads are shown in section 6.6.2. We compare SGXBounds with AddressSanitizer which also
has an efficient support for multithreading. We do not compare against Intel MPX since it lacks
real support for multithreading; we believe that future versions of MPX might have deteriorated
performance due to synchronization overheads.

On average, overhead of AddressSanitizer increases from 35% with one thread to 49% with four
threads while overhead of SGXBounds decreases from 17% to 16%. In most cases however, both
SGXBounds and AddressSanitizer do not exhibit any additional overhead. This is reasonable since
both approaches do not require additional synchronization primitives and introduce lightweight
wrappers around pthreads.

However, AddressSanitizer can break (1) memory layout due to redzones around objects,
and (2) cache locality due to additional memory accesses to shadow memory. This happens in
matrixmul: AddressSanitizer worsens cache locality on four threads and has 6.7× more LLC
cache misses than SGXBounds. Note that SGXBounds adds only 12 bytes in matrixmul (4B for
each matrix) which preserves the original memory layout. Thanks to this, SGXBounds performs
70% better than AddressSanitizer on 4 threads. A similar explanation holds true for swaptions.

6.6.5 Effect of Optimizations

We evaluated gains of optimizations as detailed in §6.4.4. The results are shown in Figure 6.10.
On average, applying all optimizations yields a modest performance improvement of 2%.
Unfortunately, our optimizations are limited in scope. Our implementation relies on Scalar

Evolution and SizeOffsetVisitor LLVM analyses. However, they do not yet support inter-
procedural (whole-program) analysis. Therefore, the results turned out to be not as impressive as
we originally hoped; we believe that enabling inter-procedural analysis in future implementations
could greatly improve performance.
Nonetheless, our optimizations can give significant performance boost in some cases. For

example, the hoisting checks optimization is helpful for kmeans and matrixmul, with performance
improvements of up to 20%. Similar gains are seen for x264 when the safe checks optimization is
applied.

6.6.6 Security Benchmark (RIPE)

To evaluate security guarantees of SGXBounds, we employed the RIPE security benchmark
[244]. RIPE claims to perform 850 working buffer-overflow attacks. However, under our native
configuration, only 46 attacks were successful: through the shellcode that creates a dummy file
and through return-into-libc. When building RIPE under SCONE infrastructure, this number
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Figure 6.11 – SPEC inside of SGX enclave: Performance (top) and memory (bottom)
overheads over native SGX execution.

decreased to 16 attacks: the shellcode attacks failed because SGX disallows the int instruction
used in shellcode.
Table 6.4 shows the security results of all approaches. Intel MPX could not detect 14 out of

these 16 attacks: the two attacks detected were both stack-smashing attacks trying to overwrite
an adjacent function pointer. AddressSanitizer detected 8 out of 16 attacks: the remaining 8
attacks were all in-struct buffer overflows, when the same object contained a vulnerable buffer
and a target-of-attack function pointer. Finally, SGXBounds showed the exact same results as
AddressSanitizer. The in-struct overflows could not be detected because both AddressSanitizer
and SGXBounds operate at the granularity of whole objects.

6.6.7 SPEC CPU2006 Experiments

To facilitate comparison with other approaches, we also report the overheads of SGXBounds
over the SPEC CPU2006 benchmark suite. Note that all programs in SPEC are single-threaded
and more CPU-intensive than Phoenix and PARSEC, such that the restrictions of SGX have
less impact for SPEC. We performed two experiments to measure performance and memory
consumption: inside of SGX enclaves (similar to previous evaluation) and outside them (to
understand overheads in normal, unconstrained environments).

SGXBounds, being a bounds-checking approach, has false positives in some legitimate programs
that implement custom memory management. For example, we could not run soplex because
it directly updates referent objects of pointers. SGXBounds can also break on programs that
manipulate high bits of pointers, e.g., gcc contains unions of pointers-ints and manipulates high
bits. Note that other approaches have the same problems with these programs, e.g., MPX
[173], Baggy Bounds [6], and Low Fat Pointers [131] – they all require manual modifications to
misbehaving programs.
Figure 6.11 shows the results for our in-enclave scenario. In agreement with experiments on

Phoenix and PARSEC (see Figure 6.7), SGXBounds shows the lowest performance and memory
overheads on average, 41% and 0.4% respectively. Again, SGXBounds adds negligible overhead
in memory consumption which in many cases leads to better cache and EPC locality. Consider
mcf : AddressSanitizer exhibits performance overhead of 2.4× whereas SGXBounds–only 1%.
This is explained by EPC thrashing: AddressSanitizer has 3, 400× more page faults than both
original and SGXBounds versions. Similar explanations hold for other extreme cases such as
milc, sjeng, and xalanc.
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Figure 6.12 – SPEC outside of SGX enclave (normal unconstrained environment): Perfor-
mance overhead over native execution.

Intel MPX performed slightly better than AddressSanitizer (52% performance and 110%
memory overhead against 76% and 10× respectively) but failed to finish on astar, mcf, and
xalanc. Just like in cases of SQLite and dedup, these programs crash due to insufficient memory
for MPX Bounds Tables.
In addition, we show results for outside-enclave, unconstrained environment in Figure 6.12.

As expected, SGXBounds performs not that well outside of enclaves, with a higher average
performance overhead (55%) than AddressSanitizer (38%).4 In unrestricted-memory environ-
ments, the benefits of a cache-friendly layout of SGXBounds are effectively wiped out, even
though the memory consumption of SGXBounds is only 0.1% in contrast to 2− 4× of MPX and
AddressSanitizer (not shown on plots). Also, the 55% performance overhead of SGXBounds is
comparable to the ones incurred by Baggy Bounds (70%) and Low Fat Pointers (43%)5; see also
§6.2.2.

6.7 Case Studies

In addition to SQLite, we evaluated three other applications. Our evaluation of the case-studies is
based on: (1) performance and memory overheads; and (2) security guarantees. All applications
were evaluated on the machine described in §6.6; clients connected via a 10Gb network.
Memcached. We evaluated Memcached v1.4.15 [78] using the memaslap benchmark shipped
together with libmemcached v1.0.18 client [138]. Performance and memory overheads are shown
in Figure 6.13 and Table 6.5. The uninstrumented SGX version performs significantly worse
than the native version (60− 75% throughput of native). This is due to the Memcached working
set not fitting in the CPU cache; SGX spends some cycles on encrypting and decrypting data
leaving the cache as well as checking its integrity. AddressSanitizer performs very close to SGX;
even though it introduces additional memory accesses, the original memory latency is already
high enough to hide this overhead. The performance of SGXBounds can be explained similarly.
Finally, Intel MPX has an abysmal drop in throughput: MPX bounds tables consume so much
memory that the working set exceeds the EPC and requires paging (we observed 100× more
page faults than for SGXBounds).

For security evaluation, we reproduced a denial-of-service attack, CVE-2011-4971 vulnerability
[151], in the SGX environment. All approaches—AddressSanitizer, Intel MPX, and SGX-
Bounds—detected buffer overflow in the affected function’s arguments. AddressSanitizer and
Intel MPX halted the program, while SGXBounds with its boundless memory feature discarded
the overflowed packet’s content but went into an infinite loop due to a subsequent bug in the

4lbm and namd under AddressSanitizer perform better than the native version. This is due to changes in memory
layout and similar to dedup; also see [173].

5For Low Fat Pointers, we took the same subset of 13 programs as in our evaluation and calculated the geomean.
For Baggy Bounds, we resorted to specifying the reported mean over SPEC CPU2000.
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Figure 6.13 – Throughput-latency plots and peak memory usage of case studies: (a)
Memcached, (b) Apache, and (c) Nginx.

Memcached Apache Nginx

SGX 71.6 15.4 0.9
MPX 641 144 37.0
ASan 649 598 893
SGXBounds 71.8 23.2 1.0

Table 6.5 – Memory usage (MB) for peak throughput of case studies.

program’s logic.
Apache. We evaluated Apache v2.4.18 [14] with OpenSSL v1.0.1f using the ab benchmark [3].
The performance results are plotted in Figure 6.13b; the memory usage is shown in Table 6.5.
The SGX version of Apache performs slightly and consistently better than the native version.
We attribute this to the SCONE features of user-level scheduling and asynchronous system calls
[15]. Intel MPX quickly deteriorates with more clients; looking at the number of page faults,
we conclude that this is due to the increasing overheads of bounds tables. (In Apache, each
new client requires around 1MB of memory which bloats the bounds metadata for Intel MPX.)
AddressSanitizer performs 2% worse than SGX, and SGXBounds—on par with SGX.

The unexpected 50% increase in memory use for SGXBounds in comparison to SGX is due to
the custom memory allocator of Apache. It allocates only page-aligned amounts of memory, and
the additional 4B of metadata forces our mmap wrapper to allocate a whole additional page.
To evaluate security, we looked at the infamous Heartbleed bug [12, 227]. AddressSanitizer,

Intel MPX, and SGXBounds all detect Heartbleed attack. Additionally, SGXBounds does not
crash the application, but—thanks to boundless memory—copies zeros into the reply message in
accordance to the failure-oblivious computing policy. Thus, SGXBounds prevents confidential
data leaks, at the same time allowing Apache to continue its execution.
Nginx. We evaluated Nginx v1.4.0 [164] using the ab benchmark. Figure 6.13c and Table 6.5
show performance and memory overheads. The 5− 20% difference in throughput between the
native version and SGX is due to the overhead of copying the 200KB web page twice, first to
the SCONE’s syscall thread and then further to the socket. Note that this overhead was hidden
by the overhead of thread synchronization in Apache (Apache uses 25 threads while Nginx is
single-threaded).

AddressSanitizer performs the worst, achieving only 65− 70% throughput of that of SGX. In
comparison to Apache, Intel MPX performs better than AddressSanitizer. The reason for this
is a smarter memory management policy of Nginx, with as little memory copying as possible
[164]. Because of this, Intel MPX does not spill bounds metadata as extensively as in Apache,
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and gains better performance as a result. Finally, SGXBounds achieves 80− 85% throughput of
SGX thanks to its efficient metadata scheme.

For security evaluation, the bug under test was a stack buffer overflow CVE-2013-2028 that can
be used to launch a ROP attack [11]. All three approaches detect this bug. With SGXBounds
boundless memory feature, Nginx can drop the offending request and continue its execution.

6.8 Discussion and Concluding Remarks
In this work, we presented SGXBounds—a memory-safety approach tailored to the specifics
of Intel SGX. We conclude by discussing the limitations of our approach, future work, and
peculiarities of SGX and MPX.
EPC Size. SGXBounds mandates the use of a limited 32-bit address space. This is in accordance
with current SGX implementations which allow only 36-bit address space. SGXBounds could
be refined to allow 36-bit pointers, hinged on the correct alignment of newly allocated objects
(which is already provided by compilers and memory allocators).

It is possible that future SGX enclaves will have larger address spaces, decreasing the number
of spare bits in pointers and negating the premise of SGXBounds. We believe enclaves spanning
more than 4GB of memory are doubtful as they will suffer huge performance penalty. In addition,
SGX is best suited for programs with small TCB and working sets.
Limitation of static linking. SGXBounds and the underlying SCONE infrastructure currently
require the program to be statically linked. There is a decades-long debate on static vs dynamic
linking [13, 195, 229, 232]. We strongly believe that dynamic linking is detrimental for security
for a variety of reasons, including LD_PRELOAD issues, ldd and linker exploits. In addition, static
linking enables powerful whole-program optimizations. Yet, SGXBounds could be used with
dynamic libraries, though it would require additional wrapper functions for interoperability with
them.
Catching intra-object overflows. SGXBounds keeps bounds for whole objects and therefore
cannot detect intra-object overflows (similar to AddressSanitizer). Researchers currently explore
the ability to catch such overflows using narrowing of bounds: whenever SGXBounds detects an
access through a struct field, it updates the current pointer bounds to the bounds of this field.
The main difficulty here is to keep additional lower-bound metadata for each object field; for
this, we extend our metadata space and utilize metadata hooks.
Intel MPX. Considering that Intel MPX is a hardware extension, its low performance was
surprising to us. Intel MPX performs well if the protected application works only with a small
portion of pointers, but in the opposite case the overheads may get very high. To understand
the underlying reasons of poor MPX performance, we conducted a more extensive and rigorous
evaluation, results of which can be found in the next chapter.
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In the previous chapter we noticed that Intel MPX exhibits high overheads in a restricted
SGX environment. In particular, MPX showed performance overheads of up to 5 − 6× in
our experiments (§6.6.2). Even when we analyzed the performance of MPX in a normal,
non-SGX environment, we were surprised to see overheads of 2.4× on average, way higher
than AddressSanitizer and SGXBounds (§6.6.7). Given that Intel MPX is a hardware-assisted
technique, with all heavy bounds checking replaced by presumably fast CPU instructions, these
performance numbers were underwhelming.

To understand the reasons behind such poor performance, this chapter analyzes Intel MPX in
greater detail and discusses its applicability in comparison to other bounds-checking approaches.
We identify the root causes for performance problems of MPX, ranging from contention on a
single execution port while performing bounds checks to poor software-level support in GCC and
ICC compilers. Even worse, we show how MPX can have false positives (false alarms) and false
negatives (undetected bugs) in multithreaded programs. We conclude this chapter with lessons
learned and a set of guidelines on the usage of this technique.

The content of this chapter is based on the paper “Intel MPX Explained: An Empirical Study
of Intel MPX and Software-based Bounds Checking Approaches” [173]. The paper was a joint
collaboration with Oleksii Oleksenko, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.

7.1 Rationale

The majority of systems software is written in low-level languages such as C or C++. These
languages allow complete control over memory layout, which is especially important for systems
development. Unfortunately, the ability to directly control memory often leads to violations of
memory safety, i.e., illegal accesses to unintended memory regions [233].

In particular, memory-safety violations emerge in the form of spatial and temporal errors.
Spatial errors—also called buffer overflows and out-of-bounds accesses—occur when a program
reads from or writes to a different memory region than the one expected by the developer.
Temporal errors—wild and dangling pointers—appear when trying to use an object before it was
created or after it was deleted.
These memory-safety violations may result in sudden crashes, data losses, and other nasty

bugs [233]. Moreover, these vulnerabilities can also be exploited to build a memory attack—a
scenario when an adversary gets access to an illegal region of memory and can hi-jack the system
or steal confidential data. This attack vector is prevailing among low-level languages, with almost
1,200 memory vulnerabilities published only in 2016 according to the US National Vulnerability
Database [160].

Given the importance of the problem, there are numerous solutions for enforcing memory safety
in unsafe languages, ranging from static analysis to language extensions [6, 27, 64, 114, 128,
131, 152, 158, 161, 162, 166, 207, 246]. In this work, we concentrate on deterministic dynamic
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bounds-checking since it is widely regarded as the only way of defending against all memory
attacks [155, 225]. Bounds-checking techniques augment the original unmodified program with
metadata (bounds of live objects or allowed memory regions) and insert checks against this
metadata before each memory access. Whenever a bounds check fails, the program is aborted
and thus the attack is prevented. Unfortunately, state-of-the-art bounds-checking techniques
exhibit high performance overhead (50–150%) which limits their usage to development stages
only.

To lower runtime overheads, Intel recently released a new ISA extension—Memory Protection
Extensions (Intel MPX). Its underlying idea is to provide hardware assistance, in the form of
new instructions and registers, to software-based bounds checking, making it more efficient.
Yet, to our knowledge, there is no comprehensive evaluation of Intel MPX, neither from the

academic community nor from Intel itself. Therefore, the goal of this work was to analyze
Intel MPX in three dimensions: performance, security, and usability. Performance is important
because only solutions with low (up to 10–20%) runtime overhead have a chance to be adopted in
practice [225]. It was also crucial to investigate the root causes of the overheads to pave the way
for future improvements. Security assessment on a set of real-world vulnerabilities was required
to verify advertised security guarantees. Usability evaluation gave us insights on Intel MPX
production quality and—more importantly—on application-specific issues that arise under Intel
MPX and need to be manually fixed.

To fully explore Intel MPX’s pros and cons, we put the results into perspective by comparing
with existing software-based solutions. In particular, we compared Intel MPX with three
prominent techniques that showcase main classes of memory safety: trip-wire Address Sanitizer
[207], object-based SAFECode [64], and pointer-based SoftBound [158] (see §7.2 for details).

Our investigation reveals that Intel MPX has high potential, but is not yet ready for widespread
use. Some of the lessons we learned are:

• New Intel MPX instructions are not as fast as expected and cause up to 4× slowdown in
the worst case, although compiler optimizations amortize it and lead to runtime overheads
of ~50% on average.

• The supporting infrastructure (compiler passes and runtime libraries) is not mature enough
and has bugs, such that 3–10% programs cannot compile/run.

• In contrast to other solutions, Intel MPX provides no protection against temporal errors.
• Intel MPX may have false positives and false negatives in multithreaded code.
• By default, Intel MPX imposes restrictions on allowed memory layout, such that 8–13%

programs do not run correctly without substantial code changes. In addition, we had to
apply (non-intrusive) manual fixes to 18% programs.

Though the first three issues can be fixed in future versions, the last two can be considered
fundamental design limits. We project that adding support for multithreading would inevitably
hamper performance, and relaxing restrictions on memory layout would go against Intel MPX
philosophy.

7.2 Background

All spatial and temporal bugs, as well as memory attacks built on such vulnerabilities, are caused
by an access to a prohibited memory region. To prevent such bugs, memory safety must be
imposed on the program, i.e., the following invariant must be enforced: memory accesses must
always stay within the originally intended (referent) objects.
Memory safety can be achieved by various methods, including pure static analysis [66, 246],
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based (SAFECode), and pointer-based (SoftBound).

hardware-based checking [131, 156, 234, 245], probabilistic methods [27, 143, 167], and extensions
of the C/C++ languages [116, 152, 161]. In this work, we concentrate on deterministic runtime
bounds-checking techniques that transparently instrument legacy programs (Intel MPX is but
one of them). These techniques provide the highest security guarantees while requiring little to
no manual effort to adapt the program. For a broader discussion, please refer to [225].
Existing runtime techniques can be broadly classified as trip-wire, object-based, and pointer-

based [155]. In a nutshell, all three classes create, track, and check against some bounds metadata
kept alongside original data of the program. Trip-wire approaches create “shadow memory”
metadata for the whole available program memory, pointer-based approaches create bounds
metadata per each pointer, and object-based approaches create bounds metadata per each object.

For comparison with Intel MPX, we chose a prominent example from each of the aforementioned
classes: AddressSanitizer, SAFECode, and SoftBound. Figure 7.1 highlights the differences
between them.
Trip-wire approach: AddressSanitizer [207]. This class surrounds all objects with regions
of marked (poisoned) memory called redzones, so that any overflow will change values in this—
otherwise invariable—region and will be consequently detected. In particular, AddressSanitizer
reserves 1/8 of all virtual memory for the shadow memory which is accessed only by the
instrumentation and not the original program. AddressSanitizer updates data in shadow memory
whenever a new object is created and freed, and inserts checks on shadow memory before memory
accesses to objects. The check itself looks like this:
shadowAddr = MemToShadow(ptr)
if (ShadowIsPoisoned(shadowAddr))

ReportError()

In addition, AddressSanitizer provides means to detect temporal errors via a quarantine zone: if
a memory region has been freed, it is kept in the quarantine for some time before it becomes
allowed for reuse.
AddressSanitizer was built for debugging purposes and is not targeted for security. It is

sometimes used in in this context for lack of a better alternatives [34, 155]) but such use is
discouraged [236] (e.g., because attackers may abuse the debugging features in AddressSanitizer’s
run-time library). For example, it may not detect non-contiguous out-of-bounds violations.
Nevertheless, it detects many spatial bugs and significantly raises the bar for the attacker. It is
also the most widely-used technique in its class, comparing favorably to other trip-wire techniques
such as Light-weight Bounds Checking [166], Purify [96], and Valgrind [162].

119



7 Intel MPX Explained: Leveraging Memory Protection Extensions

Object-based approach: SAFECode [63, 64]. This class’s main idea is enforcing the intended
referent, i.e., making sure that pointer manipulations do not change the pointer’s referent object.
In SAFECode, this rule is relaxed: each object is allocated in one of several fine-grained
partitions—pools—determined at compile-time using pointer analysis; the pointer must always
land into the predefined pool. This technique allows powerful optimizations and simple runtime
checks against the pool bounds:
poolAddr = MaskLowBits(ptr)
if (poolAddr not in predefinedPoolAddrs)

ReportError()

On the downside, SAFECode provides worse guarantees than AddressSanitizer—buffer overflow
to an object in the same pool will go undetected.
We also inspected and discarded other object-based approaches. CRED [196] has huge

performance overheads, mudflap [71] is deprecated in newer versions of GCC, and Baggy Bounds
Checking [6] is not open sourced.
Pointer-based approach: SoftBound [157, 158]. Such approaches keep track of pointer
bounds (the lowest and the highest address the pointer is allowed to access) and check each
memory write and read against them. Note how SoftBound associates metadata not with an
object but rather with a pointer to the object. This allows pointer-based techniques to detect
intra-object overflows (one field overflowing into another field of the same struct) by narrowing
bounds associated with the particular pointer.

Intel MPX closely resembles SoftBound; indeed, a hardware-assisted enhancement of SoftBound
called WatchdogLite shares many similarities with Intel MPX [156]. For our comparison, we
used the SoftBound+CETS version which keeps pointer metadata in a two-level trie—similar to
MPX’s bounds tables—and introduces a scheme to protect against temporal errors [157]. The
checks in this version are as follows:
LoBound, UpBound, key, lock = TrieLookup(ptr)
if (ptr < LoBound or ptr > UpBound or key != *lock)

ReportError()

As for other pointer-based approaches, MemSafe [217] is not open sourced, and CCured [161]
and Cyclone [116] require manual changes in programs.

7.3 Intel Memory Protection Extensions
Intel Memory Protection Extensions (Intel MPX) was first announced in 2013 [109] and introduced
as part of the Skylake microarchitecture in late 2015 [106]. The sole purpose of Intel MPX is
to transparently add bounds checking to legacy C/C++ programs. Consider a code snippet in
Figure 7.2a. The original program allocates an array a[10] with 10 pointers to some buffer
objects of type obj (Line 1). Next, it iterates through the first M items of the array to calculate
the sum of objects’ length values (Lines 3–8). In C, this loop would look like this:
for (i=0; i<M; i++) total += a[i]->len;

Since M is a variable, a bug or a malicious activity may set M to a value that is larger than
obj size and an overflow will happen. Also, note how the array item access a[i] decays into a
pointer ai on Line 4, and how the subfield access decays to lenptr on Line 6.

Figure 7.2b shows the resulting code with Intel MPX protection applied. First, the bounds for
the array a[10] are created on Line 3 (the array contains 10 pointers each 8 bytes wide, hence
the upper-bound offset of 79). Then in the loop, before the array item access on Line 8, two
MPX bounds checks are inserted to detect if a[i] overflows (Lines 6–7). Note that since the
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(a) Original code
struct obj { char buf[100]; int len }

1 obj* a[10] ;; Array of pointers to objs
2 total = 0
3 for (i=0; i<M; i++): ;; M may be greater than 10
4 ai = a + i ;; Pointer arithmetic on a
5 objptr = load ai ;; Pointer to obj at a[i]
6 lenptr = objptr + 100 ;; Pointer to obj.len
7 len = load lenptr
8 total += len ;; Total length of all objs

(b) Intel MPX
1 obj* a[10]
2 total = 0
3 a_b = bndmk a, a+79 ;; Make bounds [a, a+79]
4 for (i=0; i<M; i++):
5 ai = a + i
6 bndcl a_b, ai ;; Lower-bound check of a[i]
7 bndcu a_b, ai+7 ;; Upper-bound check of a[i]
8 objptr = load ai
9 objptr_b = bndldx ai ;; Bounds for pointer at a[i]
10 lenptr = objptr + 100
11 bndcl objptr_b, lenptr ;; Checks of obj.len e
12 bndcu objptr_b, lenptr+3 c
13 len = load lenptr
14 total += len

Figure 7.2 – Example of bounds checking using Intel MPX.

protected load reads an 8-byte pointer from memory, it is important to check ai+7 against the
upper bound (Line 7).

Now that the pointer to the object is loaded in objptr, the program wants to load the obj.len
subfield. By design, Intel MPX must protect this second load by checking the bounds of the
objptr pointer. Where does it get these bounds from? In Intel MPX, every pointer stored in
memory has its associated bounds also stored in a special memory region accessed via bndstx
and bndldx MPX instructions (see next subsection for details). Thus, when the objptr pointer
is retrieved from memory address ai, its corresponding bounds are retrieved using bndldx from
the same address (Line 9). Finally, the two bounds checks are inserted before the load of the
length value on Lines 11–121.
Intel MPX requires modifications at each level of the hardware-software stack2:
• At the hardware level, new instructions as well as a set of 128-bit registers are added. Also,

a bounds violation exception (#BR) thrown by these new instructions is introduced.
• At the OS level, a new #BR exception handler is added that has two main functions: (1)

allocating storage for bounds on-demand and (2) sending a signal to the program whenever
a bounds violation is detected.

• At the compiler level, new Intel MPX transformation passes are added to insert MPX
instructions to create, propagate, store, and check bounds. Additional runtime libraries
provide initialization/finalization routines, statistics and debug info, and wrappers for
functions from C standard library.

• At the application level, the MPX-protected program may require manual changes due to

1Note that narrowing of bounds is not shown for simplicity, see §7.3.3.
2Henceforth, we focus on 64-bit Linux-based support of Intel MPX.
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unconventional C coding patterns, multithreading issues, or potential problems with other
ISA extensions. (In some cases, it is inadvisable to use Intel MPX at all.)

In the following, we detail how Intel MPX support is implemented at each level of the
hardware-software stack.

7.3.1 Hardware

At its core, Intel MPX provides 7 new instructions and a set of 128-bit bounds registers. The
current Intel Skylake architecture provides four registers named bnd0-bnd3. Each of them stores
a lower 64-bit bound in bits 0–63 and an upper 64-bit bound in bits 64–127.
Instruction set. The new MPX instructions are: bndmk to create new bounds, bndcl and
bndcu/bndcn to compare the pointer value against the lower and upper bounds in bnd respectively,
bndmov to move bounds from one bnd register to another and to spill them to stack, and bndldx
and bndstx to load and store pointer bounds in special Bounds Tables respectively. Note that
bndcu has a one’s complement version bndcn which has exactly the same characteristics, thus
we mention only bndcu in the following. The example in Figure 7.2b shows how most of these
instructions are used. The instruction not shown is bndmov which serves mainly for internal
rearrangements in registers and on stack.
Intel MPX additionally changes the x86-64 calling convention. In a nutshell, the bounds for

corresponding pointer arguments are put in registers bnd0-bnd3 before a function call and the
bounds for the pointer return value are put in bnd0 before return from the function.

It is interesting to compare the benefits of hardware implementation of bounds-checking against
the software-only counterpart—SoftBound in our case [157, 158]. First, Intel MPX introduces
separate bounds registers to lower register pressure on the general-purpose register (GPR) file,
something that software-only approaches suffer from. Second, software-based approaches cannot
modify the calling convention and resort to function cloning, when a set of function arguments
is extended to include pointer bounds. This leads to more cumbersome caller/callee code and
problems with interoperability with legacy uninstrumented libraries. Finally, dedicated bndcl
and bndcu instructions substitute the software-based “compare and branch” instruction sequence,
saving one cycle and exerting no pressure on branch predictor.

The prominent feature of Intel MPX is its backwards-compatibility and interoperability with
legacy code. On the one hand, MPX-instrumented code can run on legacy hardware because
Intel MPX instructions are interpreted as NOPs on older architectures. This is done to ease
the distribution of binaries—the same MPX-enabled program/library can be distributed to
all clients. On the other hand, Intel MPX has a comprehensive support to interoperate with
unmodified legacy code: (1) a BNDPRESERVE configuration bit allows to pass pointers without
bounds information created by legacy code, and (2) when legacy code changes a pointer in
memory, the later bndldx of this pointer notices the change and assigns always-true (INIT)
bounds to it. In both cases, the pointer created/altered in legacy code is considered “boundless”:
this allows for interoperability but also creates holes in Intel MPX defense3 [5].
Storing bounds in memory. The current version of Intel MPX has only 4 bounds registers,
which is clearly not enough for real-world programs—we will run out of registers even if we have
only 5 distinct pointers. Accordingly, all additional bounds have to be stored (spilled) in memory,

3x264 from PARSEC highlights this issue: its x264_malloc function internally calls memalign which has no
corresponding wrapper. Thus, the pointer returned by this function is “boundless”. Since all dynamic objects
are created through this function, the whole program operates on “boundless” pointers, rendering Intel MPX
protection utterly useless.
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Figure 7.3 – Loading of pointer bounds using two-level address translation.

similar to spilling data out of general-purpose registers. A simple and relatively fast option is to
copy them directly into a compiler-defined memory location (on stack) with bndmov. However,
it works only inside a single stack frame: if a pointer is later reused in another function, its
bounds will be lost. To solve this issue, two instructions were introduced—bndstx and bndldx.
They store/load bounds to/from a memory location derived from the address of the pointer itself
(see Figure 7.2b, Line 9), thus making it easy to find pointer bounds without any additional
information, though at a price of higher complexity.
When bndstx and bndldx are used, bounds are stored in a memory location calculated

with two-level address translation scheme, similar to virtual address translation (paging). In
particular, each pointer has an entry in a Bounds Table (BT), which is allocated dynamically
and is comparable to a page table. Addresses of BTs are stored in a Bounds Directory (BD),
which corresponds to a page directory in our analogy. For a specific pointer, its entries in the
BD and the BT are derived from the memory address in which the pointer is stored.
Note that our comparison to paging is only conceptual; the implementation side differs

significantly. Firstly, the MMU is not involved in the translation and all operations are performed
by the CPU itself. Secondly and most importantly, Intel MPX does not have a dedicated cache
(such as a TLB cache), thus it has to share normal caches with application data. In some cases,
it may lead to severe performance degradation caused by cache thrashing.

The address translation is a multistage process. Consider loading of pointer bounds (Figure 7.3).
In the first stage, the corresponding BD entry has to be loaded. For that, the CPU: 1O extracts
the offset of BD entry from bits 20–47 of the pointer address and shifts it by 3 bits (since all
BD entries are 23 bits long), 2O loads the base address of BD from the BNDCFGx4 register, and 3O
sums the base and the offset and loads the BD entry from the resulting address.

In the second stage, the CPU: 4O extracts the offset of BT entry from bits 3–19 of the pointer
address and shifts it by 5 bits (since all BT entries are 25 bits long), 5O shifts the loaded entry—

4In particular, BNDCFGU in user space and BNDCFGS in kernel mode.
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which corresponds to the base of BT—by 3 to remove the metadata contained in the first 3 bits,
and 6O sums the base and the offset and 7O finally loads the BT entry from the resulting address.
Note that a BT entry has an additional “pointer” field—if the actual pointer value and the value
in this field mismatch, Intel MPX will mark the bounds as always-true (INIT). This is required
for interoperability with legacy code and only happens when this code modifies the pointer.

This operation is expensive—it requires approximately 3 register-to-register moves, 3 shifts, and
2 memory loads. On top of it, since these 2 loads are non-contiguous, the protected application
has worse cache locality.
Interaction with other ISA extensions. Intel MPX can cause issues when used together
with other ISA extensions, e.g., Intel TSX and Intel SGX. Intel MPX may cause transactional
aborts in some corner cases when used inside an Intel TSX hardware transaction (see [108] for
the details). Also, since Bounds Tables and #BR exceptions are managed by the OS, Intel MPX
cannot be used as-is in an Intel SGX enclave environment. Indeed, the malicious OS could
tamper with these structures and subvert correct MPX execution. To prevent such scenarios,
Intel MPX allows to move this functionality into the SGX enclave and verify every OS action
[128]. Finally, we are not aware of any side-channel attacks that could utilize Intel MPX inside
the enclave.
Microbenchmark. As a first step in our evaluation, we analyzed latency and throughput
of MPX instructions. For this, we extended the scripts used to build Agner Fog’s instruction
tables—a de-facto standard for evaluating CPU instructions [79]. For each run, we initialize all
bnd registers with dummy values to avoid interrupts caused by failed bound checks.

Table 7.1 shows the latency-throughput results, and Figure 7.5 depicts which execution ports
can MPX instructions use. As expected, most operations have latencies of one cycle, e.g., the
most frequently used bndcl and bndcu instructions. The serious bottleneck is storing/loading
the bounds with bndstx and bndldx since they undergo a complex algorithm of accessing bounds
tables, as explained in the previous section.
In our experiments, we observed that Intel MPX protection does not increase the IPC

(instructions/cycle) of programs, which is usually the case for memory-safety techniques (see
Figure 7.11). This was surprising: we expected that Intel MPX would take advantage of
underutilized CPU resources for programs with low original IPC. To understand what causes
this bottleneck, we measured the throughput of typical MPX check sequences. (We originally
blamed an unjustified data dependency between bndcl/u and the protected memory access but
this proved wrong.)

Our measurements pointed to a bottleneck of bndcl/u b,m instructions due to contention on
port 1. Without checks (Figure 7.6a), our original benchmark could execute two loads in parallel,
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Instruction Description Lat Tput
bndmk b,m create pointer bounds 1 2
bndcl b,m check mem-operand addr against lower 1 1
bndcl b,r check reg-operand addr against lower 1 2
bndcu b,m check mem-operand addr against upper 1 1
bndcu b,r check reg-operand addr against upper 1 2
bndmov b,m move pointer bounds from mem 1 1
bndmov b,b move pointer bounds to other reg 1 2
bndmov m,b move pointer bounds to mem 2 0.5
bndldx b,m load pointer bounds from BT 4-6 0.4
bndstx m,b store pointer bounds in BT 4-6 0.3

Note: bndcu has a one’s complement version bndcn, we skip it for clarity

Table 7.1 – Latency (cycles/instr) and Tput (instr/cycle) of Intel MPX instructions;
b—MPX bounds register; m—memory operand; r—general-purpose register operand.

port 0

Int ALU
VEC

Branch

port 1

Int ALU
VEC
ALU

port 2

Load
Store

port 3

Load
Store

port 4

Store

port 5

ALU
VEC
LEA

port 6

ALU
Shift

port 7

Store

①②③④

①  bndmk  ②  bndcl/bndcu  ③  bndmov  ④  bndldx  ⑤  bndstx   

③④⑤ ③⑤ ①②③④

③⑤①③④③④⑤①②③④⑤
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achieving a throughput of 2 IPC (note that the loaded data is always in a Memory Ordering
Buffer). After adding bndcl/u b,r checks (Figure 7.6b), IPC increased to three instructions per
cycle (3 IPC): one load, one lower-, and one upper-bound check per cycle. For “bndcl/u b,m”
checks (Figure 7.6c), however, IPC became less than original: two loads and four checks were
scheduled in four cycles, thus IPC of 1.5. In summary, the final IPC was ~1.5–3 (compare to
original IPC of 2), proving that the MPX-protected program typically has approximately the
same IPC as the original.

As Figures 7.9 and 7.10 show, it causes major performance degradation. It can be fixed,
however; if the next generations of CPUs will provide the relative memory address calculation on
other ports, the checks could be parallelized and performance will improve. We speculate that
GCC-MPX could perform on par with AddressSanitizer in this case, because the instruction
overheads are similar. Accordingly, ICC version would be even better and the slowdowns might
drop lower than 20%. But we must note that we do not have any hard proof for this speculation.
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Figure 7.6 – Bottleneck of bounds checking illustrated: since relative memory addresses
can be calculated only by port 1, a contention appears and bounds checks are executed
sequentially.

7.3.2 Operating System
The operating system has two main responsibilities in the context of Intel MPX: it handles
bounds violations and manages BTs, i.e., creates and deletes them. Both these actions are hooked
to a new class of exceptions, #BR, which has been introduced solely for Intel MPX and is similar
to a page fault, although with extended functionality.
Bounds exception handling. If an MPX-enabled CPU detects a bounds violation, i.e., if a
referenced pointer appears to be outside of the checked bounds, #BR is raised and the processor
traps into the kernel (in case of Linux). The kernel decodes the instruction to get the violating
address and the violated bounds, and stores them in the siginfo structure. Afterwards, it
delivers the SIGSEGV signal to the application together with information about the violation in
siginfo. At this point the application developer has a choice: she can either provide an ad-hoc
signal handler to recover or choose one of the default policies: crash, print an error and continue,
or silently ignore it.
Bounds tables management. Two levels of bounds address translation are managed differently:
BD is allocated only once by a runtime library (at application startup) and BTs have to be created
dynamically on-demand. The later is a task of OS. The procedure is presented in Figure 7.4.
Each time an application tries to store pointer bounds 1O, the CPU loads the corresponding
entry from the BD and checks if it is a valid entry 2O. If the check fails, the CPU raises #BR and
traps into the kernel 3O. The kernel allocates a new BT 4O, stores its address in the BD entry 5O
and returns in the user space 6O. Then, the CPU stores bounds in the newly created BT and
continues executing the application in the normal mode of operation 7O.

Since the application is oblivious of BT allocation, the OS also has to free these tables. In Linux,
this “garbage collection” is performed whenever a memory object is freed or, more precisely,
unmapped. OS goes through the elements of the object and removes all the corresponding BT
entries. If one of the tables becomes completely unused, OS will free the BT and remove its
entry in the BD.
Microbenchmark. To illustrate the additional overhead of allocating and de-allocating BTs,
we manufactured two microbenchmarks that showcase the worst case scenarios. The first one
stores a large set of pointers in such memory locations that each of them will have a separate
BT, i.e., this benchmark indirectly creates a large number of bounds tables. The second one
does the same, but in addition, it frees all the memory right after it has been assigned, thus
triggering BT de-allocation. Our measurement results are shown in Table 7.2 (note that we
disabled all compiler optimizations to showcase the influence of OS alone). In both cases, most
of the runtime parameters (cache locality, branch misses, etc.) of the MPX-protected version
are equivalent to the native one. However, the slowdown is noticeable—more than 2 times. It
is caused by a single parameter that varies—the number of instructions executed in the kernel
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Increase in # of instructions (%)
Type Slowdown User space Kernel space
allocation 2.33× 7.5 160
+ de-allocation 2.25× 10 139

Table 7.2 – Worst-case OS impact on performance of MPX.

space. It means that the overhead is caused purely by the BT management in the kernel. From
this, we can conclude that OS itself can make an MPX-protected application up to 2.3× slower,
although this scenario is quite rare.
In this section, we discussed only Linux implementation. However, all the same mechanisms

can also be found in Windows. The only significant difference is that Intel MPX support on
Windows is done by a daemon, while on Linux the functionality is implemented in the kernel
itself [113].

7.3.3 Compiler and Runtime Library

Hardware Intel MPX support in the form of new instructions and registers significantly lowers
performance overhead of each separate bounds-checking operation. However, the main burden of
efficient, correct, and complete bounds checking of whole programs lies on the compiler and its
associated runtime.
Compiler support. As of the date of this writing, only GCC 5.0+ and ICC 15.0+ compilers
have support for Intel MPX [72, 113]. To enable Intel MPX protection of applications, both
GCC and ICC introduce the new compiler pass called Pointer(s) Checker. Enabling Intel MPX
is intentionally as simple as adding a couple of flags to the usual compilation process:
>> gcc -fcheck-pointer-bounds -mmpx test.c
>> icc -check-pointers-mpx=rw test.c

In a glance, the Pointer Checker pass instruments the original program as follows. (1) It
allocates static bounds for global variables and inserts bndmk instructions for stack-allocated
ones. (2) It inserts bndcl and bndcu bounds-check instructions before each load or store from a
pointer. (3) It moves bounds from one bnd register to another using bndmov whenever a new
pointer is created from an old one. (4) It spills least used bounds to stack via bndmov if running
out of available bnd registers. (5) It loads and stores the associated bounds via bndldx and
bndstx respectively whenever a pointer is loaded/stored from/to memory.

One of the advantages of Intel MPX—in comparison to AddressSanitizer and SAFECode—is
that it supports narrowing of struct bounds by design. Consider struct obj from Figure 7.2. It
contains two fields: a 100B buffer buf and an integer len right after it. It is easy to see that an
off-by-one overflow in obj.buf will spillover and corrupt the adjacent obj.len. AddressSanitizer
and SAFECode by design cannot detect such intra-object overflows (though AddressSanitizer
can be used to detect a subset of such errors [183]). In contrast, Intel MPX can be instructed to
narrow bounds when code accesses a specific field of a struct, e.g., on Line 10 in Figure 7.2b. Here,
instead of checking against the bounds of the full object, the compiler would shrink objptr_b
to only four bytes and compare against these narrowed bounds on Lines 11–12. Narrowing of
bounds may require (sometimes intrusive) changes in the source code, and is enabled by default.

By default, the MPX pass instruments both memory writes and reads: this ensures protection
from buffer overwrites and buffer overreads. The user can instruct the MPX pass to instrument
only writes. The motivation is twofold. First, instrumenting only writes significantly reduces
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Compiler & runtime issues GCC ICC
– Poor MPX pass optimizations * 22/38 3/38
– Bugs in MPX compiler pass:

– incorrect bounds during function calls – 2/38
– conflicts with auto-vectorization passes – 3/38
– corrupted stack due to C99 VLA arrays – 3/38
– unknown internal compiler error 1/38 –

– Bugs and issues in runtime libraries:
– Missing wrappers for libc functions all all
– Nullified bounds in memcpy wrapper all –
– Performance bug in memcpy wrapper – all

*One compiler has > 10% worse results than the other

Table 7.3 – Issues in the compiler pass and runtime libraries of Intel MPX. Columns 2 and
3 show number of affected programs (out of total 38).5

performance overhead of Intel MPX (from 2.5× to 1.3× for GCC). Second, the most dangerous
bugs are those that overwrite memory (classic overflows to gain privileged access to the remote
machine), and the only-writes protection can already provide sufficiently high security guarantees.
At least in GCC implementation, the pass can be fine-tuned via additional compilation flags.

In our experience, these flags provide no additional benefit in terms of performance, security, or
usability. For a full list of supported flags, refer to the official documentation of Intel MPX [113].

For performance, compilers must try their best to optimize away redundant MPX code. There
are two common optimizations used by GCC and ICC (also used, for example, in Baggy Bounds
[6]). (1) Removing bounds-checks when the compiler can statically prove safety of memory
access, e.g., access inside an array with a known offset. (2) Moving (hoisting) bounds-checks
out of simple loops. Consider Figure 7.2b. If it is known that M<=10, then optimization (1) can
remove always-true checks on Lines 6–7. Otherwise, optimization (2) can kick in and move these
checks before the loop body, saving two instructions on each iteration.
Runtime library. As a final step of the MPX-enabled build process, the application must be
linked against two MPX-specific libraries: libmpx and libmpxwrappers (libchkp for ICC).
The libmpx library is responsible for MPX initialization at program startup: it enables

hardware and OS support and configures MPX runtime options (passed through environment
variables). Most of these options concern debugging and logging, but two of them define security
guarantees. First, CHKP_RT_MODE must be set to “stop” in production use to stop the program
immediately when a bounds violation is detected; set it to “count” only for debugging purposes.
Second, CHKP_RT_BNDPRESERVE defines whether application can call legacy, uninstrumented
functions in external libraries; it must be enabled if the whole program is MPX-protected.
By default, libmpx registers a signal handler that either halts execution or writes a debug

message (depending on runtime options). However, this default handler can be overwritten
by the user’s custom handler. This can be useful if the program must shutdown gracefully or
checkpoint its state.

Another interesting feature is that the user can instruct libmpx to disallow creation of BTs by
the OS (see §7.3.2). In this case, the #BR exception will be forwarded directly to the program
which can allocate BTs itself. One scenario where this can come handy is when the user completely

5All bugs were acknowledged by developers.
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Figure 7.7 – Intel MPX overheads in 3 possible scenarios: application is dominated by
bounds-checking (arraywrite and arrayread), by bounds creation and narrowing (struct),
and by bounds propagation (ptrcreation).

distrusts the OS, e.g., when using SGX enclaves [128].
The libmpxwrappers library in GCC (and its analogue libchkp in ICC) contain wrappers for

functions from C standard library (libc). Similar to AddressSanitizer, Intel MPX implementations
do not instrument libc and instead wrap all its functions with a bounds-checking counterparts.
Issues. For both GCC and ICC, the compiler and runtime support have a number of issues
summarized in Table 7.3.
Concerning performance, current implementations of GCC and ICC take different stances

when it comes to optimizing MPX code. GCC is conservative and prefers stability of original
programs over performance gains. On many occasions, we noticed that the GCC MPX pass
disables other optimizations, e.g., loop unrolling and autovectorization. It also hoists bounds-
checks out of loops less often than ICC does. ICC, on the other hand, is more aggressive in
its MPX-related optimizations and does not prevent other aggressive optimizations from being
applied. Unfortunately, this intrusive behavior renders ICC’s pass less stable: we detected three
kinds of compiler bugs due to incorrect optimizations.

We also observed issues with the runtime wrapper libraries. First, only a handful of most widely-
used libc functions are covered, e.g., malloc, memcpy, strlen, etc. This leads to undetected
bugs when other functions are called, e.g., the bug with recv in §7.5.2. For use in production,
these libraries must be expanded to cover all of libc. Second, while most wrappers follow a
simple pattern of “check bounds and call real function”, there exist more complicated cases. For
example, memcpy must be implemented so that it copies not only the contents of one memory
area to another, but also all associated pointer bounds in BTs. GCC library uses a fast algorithm
to achieve this, but ICC’s libchkp has a performance bottleneck (see also §7.4).
Microbenchmarks. To understand the impact of different compiler flags and optimizations,
we wrote four microbenchmarks, each highlighting a separate MPX feature. Two benchmarks—
arraywrite and arrayread—perform writes to/reads from memory and stress bndcl and bndcu
accordingly. The struct benchmark writes in an inner array inside a struct and stresses the
bounds-narrowing feature via bndmk and bndmov. Finally, the ptrcreation benchmark constantly
assigns new values to pointers and stresses bounds propagation via bndstx. Figure 7.7 shows
the performance overheads over native versions.
We can notice several interesting details. First, arraywrite and arrayread represent bare

overhead of bounds-checking instructions (all in registers), 50% in this case. struct has a higher
overhead of 2.1− 2.8× due to the more expensive making and moving of bounds to and from the
stack. The 5× overhead of ptrcreation is due to storing of bounds—the most expensive MPX
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Application-level issues GCC ICC
– Flexible or variable-sized array (arr[1] / arr[]) 7/38 7/38
– Accessing struct through struct field * 1/38 3/38
– Custom memory management 2/38 2/38

* GCC affects less programs due to milder rules w.r.t. first field of struct

Table 7.4 – Applications may violate memory-model assumptions of Intel MPX. Columns 2
and 3 show number of misbehaving programs (out of total 38).

operation (see §7.3.1). Such high overhead is alarming because pointer-intensive applications
require many loads and stores of bounds.
Second, there is a 25% difference between GCC and ICC in arraywrite. This is the effect

of optimizations: GCC’s MPX pass blocks loop unrolling while ICC’s implementation takes
advantage of it. (Interestingly, the same happened in case of arrayread but the native ICC
version was optimized even better, which led to a relatively poor performance of ICC’s MPX.)

Third, the overhead of arrayread becomes negligible with the only-writes MPX version: the
only memory accesses in this benchmark are reads which are left uninstrumented. Finally, the
same logic applies to struct—disabling narrowing of bounds effectively removes expensive bndmk
and bndmov instructions and lowers performance overhead to a bare minimum.

7.3.4 Application

At the application level, we observed two main issues of Intel MPX. First, Intel MPX cannot
support several widely-used C programming idioms (some by design, some due to implementation
choices) and thus can break programs. Second and more importantly, there is no support for
multithreaded programs.
Not supported C idioms. As discussed previously, one of the main features of Intel MPX—
narrowing of bounds—can increase security because the code that explicitly works with one field
of a complex object will not be able corrupt other fields. Unfortunately, our evaluation reveals
that narrowing of bounds breaks many programs (see Table 7.4). The general problem is that
C/C++ programs frequently deviate from the standard memory model [52, 150].

A common C idiom (before C99) is flexible array fields with array size of one, e.g., arr[1]. In
practice, objects with such array fields have a dynamic size of more than one item, but there is
no way of MPX knowing this at compile-time. Thus, Intel MPX attempts to narrow bounds
to one-item size whenever arr is accessed, which leads to false positives. A similar idiom is
variable-sized arrays also not supported by Intel MPX, e.g., arr[]. These idioms are frequently
seen in modern programs, see Table 7.4, row 1. Note that the C99-standard arr[0] is acceptable
and does not break programs.

Another common idiom is using a struct field (usually the first field of struct) to access other
fields of the struct. Again, this breaks the assumptions of Intel MPX and leads to runtime #BR
exceptions (see Table 7.4, row 2). GCC makes an exception for this case since it is such a popular
practice, but ICC is strict and does not have this special rule.
Finally, some programs introduce “memory hacks” for performance, ignoring restrictions of

the C memory model completely. The SPEC CPU2006 suite has two such examples: gcc has its
own complicated memory management with arbitrary type casts and in-pointer bit twiddling,
and soplex features a scheme that moves objects from one memory region to another by adding
an offset to each affected pointer (Table 7.4, row 3). Both these cases lead to false positives.
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char* arr[1000] ;; Array with MPX data race
char obj1 ;; Two adjacent objects e
char obj2 c

17 while (true): ;; Background thread
18 for (i=0; i<1000; i++) arr[i] = &obj1
19 for (i=0; i<1000; i++) arr[i] = &obj2

20 while (true): ;; Main thread
21 for (i=0; i<1000; i++) *(arr[i] + offset)

Figure 7.8 – This program breaks Intel MPX. If offset=0 then MPX has false alarms,
else — undetected bugs.

Ultimately, all such non-compliant cases must be fixed (indeed, we patched flexible/variable-
length array issues to work under Intel MPX). However, sometimes the user may have strong
incentives against modifying the original code. In this case, she can opt for slightly worse security
guarantees and disable narrowing of bounds via a fno-chkp-narrow-bounds flag. Another
non-intrusive alternative is to mark objects that must not be narrowed (e.g., flexible arrays) with
a special compiler attribute.
Multithreading issues. Current Intel MPX implementations may introduce false positives
and negatives in multithreaded programs [52]. The problem arises because of the way Intel
MPX loads and stores pointer bounds via its bndldx and bndstx instructions. Recall from §7.3
that whenever a pointer is loaded from main memory, its bounds must also be loaded from the
corresponding bounds table (Figure 7.2b, Lines 8-9).

Ideally, the load of the pointer and its bounds must be performed atomically (same for stores).
However, nor the current hardware implementation neither GCC/ICC compilers enforce this
atomicity. This lack of proper multithreading support in Intel MPX can lead to (1) correct
programs crashing due to false alarms, or (2) buggy programs being exploited even if protected
by Intel MPX.
Consider an example in Figure 7.8. A “pointer bounds” data race happens on the arr array

of pointers. The background thread fills this array with all pointers to the first or to the second
object alternately. Meanwhile, the main thread accesses a whatever object is currently pointed-to
by the array items. Note that depending on the value of the constant offset, the original
program is either always-correct or always-buggy: if offset is zero, then the main thread always
accesses the correct object, otherwise it accesses an incorrect, adjacent object. The second case,
if found in a real code, introduces a vulnerability which could be exploited by an adversary.
With Intel MPX, additional bndstx instruction is inserted in Line 2 to store the bound

corresponding to the first object (same for Line 3 and second object). Also, a bndldx instruction
is inserted in Line 5 to retrieve the bound for an object referenced by arr[i]. Bound checks
bndcl and bndcu are also added at Line 5, before the actual access to the object. Now, the
following race can occur. The main thread loads the pointer-to-first-object from the array
and—right before loading the corresponding bound—is preempted by the background thread.
The background thread overwrites all array items such that they point to the second object, and
also overwrites the corresponding bounds. Finally, the main thread is scheduled back and loads
the bound, however, the bound now corresponds to the second object. The main thread is left
with the pointer to the first object but with the bounds of the second one.

We implemented this test case in C and compiled it with both GCC and ICC. As expected,
the MPX-enabled program had both false positives and false negatives.
In case of a correct original program (i.e., with offset=0), such discrepancy leads to a false

positive when actually accessing the object at Line 5. Indeed, the pointer to the object is
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correct but the bounds were overwritten by the background thread, so MPX triggers a false-alarm
exception. Debugging the root cause of such non-deterministic pseudo-bugs would be a frustrating
experience for end users.
The case of an originally buggy program (with offset=1) is more disconcerting. After all,

Intel MPX is supposed to detect all out-of-bounds accesses, but in this example Intel MPX
introduces false negatives! Here, the pointer to the first object plus offset incorrectly lends into
the second object. But since the main thread checks against the bounds of the second object, this
bug is not caught by Intel MPX. We believe that this implementation flaw—that out-of-bounds
bugs can sometimes go unnoticed—can scare off users of multithreaded applications. We also
believe that a resourceful hacker would be able to construct an exploit that, based on these
findings, could overcome Intel MPX defense with a high probability [252].
We must note however that we did not observe incorrect behavior in Phoenix and PARSEC

multithreaded benchmark suites—we were lucky not to encounter programs that break Intel
MPX.
For safe use in multithreaded programs, MPX instrumentation must enforce atomicity of

loading/storing pointers and their bounds. At the software (compiler) level, this dictates the use
of some synchronization primitive around each pair of mov-bndldx/bndstx, being it fine-grained
locks, hardware transactional memory, or atomics. Whatever primitive is chosen, we conjecture
a significant drop in performance of Intel MPX.
A solution at a microarchitectural level would be to merge the pairs mov-bndldx/bndstx

and assure their atomic execution. The instruction decoder could detect a bndldx, find the
corresponding pointer mov in the instruction queue, and instruct the rest of execution to handle
these instructions atomically. However, we believe this solution could require intrusive changes
to the CPU front-end. Moreover, it would significantly limit compiler optimization capabilities.

7.4 Measurement Study

In this section we answer the following questions:
• What is the performance penalty of Intel MPX?

– How much slower does a program become?
– How does memory consumption change?
– How does protection affect scalability of multithreaded programs?

• What level of security does Intel MPX provide?
• What usability issues arise when Intel MPX is applied?

7.4.1 Experimental Setup

All the experimental infrastructure was build using Fex [172] benchmarking framework with cor-
responding changes for the required build types, measurement tools, and for certain experimental
procedures.
Testbed. The machines we used are equipped with an Intel Skylake 3.40GHz CPU with 4
physical cores (8 hyper-threads), 32KB L1, 256KB L2, and 8MB shared L3 caches, 64 GB of
RAM, and run a Docker container on top of Ubuntu 16.04 (Linux 4.4.0). The compilers we used
are GCC 6.1.0, ICC 17.0.0, and Clang/LLVM 3.8.0. For experiments on case studies, we used
two machines with the network bandwidth between them equal to 938 Mbits/sec as measured by
iperf.

132



7.4 Measurement Study

Measurement tools. We used perf stat to measure all CPU-related parameters: number of
cycles and instructions in user-space and kernel-space, L1 and L3 load/store misses, and TLB
misses. Not to introduce additional measurement error, we measured these parameters in parts,
8 parameters at a time. Since perf does not provide capabilities for measuring physical memory
consumption of a process, we used time -verbose and collected maximum resident set size. To
gather Intel MPX instruction statistics, we developed a Pin tool.
Benchmarks. We used three benchmark suits in our evaluation: PARSEC 3.0 [32], Phoenix
2.0 [187], and SPEC CPU 2006 [99]. To remove some of the previously found bugs, we applied a
patch to SPEC suite. Also, during our work, we found and fixed a set of bugs in them.
All the benchmarks were compiled together with the libraries they depend upon (except

raytrace from PARSEC which requires X11 libraries).
Experiments. Each program was executed 10 times, and the results were averaged using
arithmetic mean (note, we made sure that variance is very low and it is safe to use arithmetic
mean). The mean across different programs in the benchmark suite was calculated using geometric
mean. Geometric mean was also used to calculate the “final” mean across three benchmark
suites.

7.4.2 Performance

To evaluate overheads incurred by Intel MPX, we tested it on three benchmark suites: Phoenix
2.0 [187], PARSEC 3.0 [32], and SPEC CPU2006 [99]. To put the results into context, we
measured not only the ICC and GCC implementations of Intel MPX, but also AddressSanitizer,
SAFECode, and SoftBound (see §7.2 for details).
Runtime overhead. We start with the single most important parameter: runtime overhead
(see Figure 7.9).

First, we note that ICC-MPX performs significantly better than GCC-MPX. At the same
time, ICC is less usable: only 30 programs out of total 38 (79%) build and run correctly, whereas
33 programs out of 38 (87%) work under GCC (see also §7.4.4).

AddressSanitizer, despite being a software-only approach, performs on par with ICC-MPX and
better than GCC-MPX. This unexpected result testifies that the hardware-assisted performance
improvements of Intel MPX are offset by its complicated design and suboptimal instructions.
Although, AddressSanitizer provides worse security guarantees than Intel MPX (§7.4.3).

SAFECode and SoftBound show good results on Phoenix programs, but behave much worse—
both in terms of performance and usability—on PARSEC and SPEC. First, consider SAFECode
on Phoenix: due to the almost-pointerless design and simplicity of Phoenix programs, SAFECode
achieves a low overhead of 5%. However, it could run only 18 programs out of 31 (58%) on
PARSEC and SPEC and exhibited the highest overall overheads. SoftBound executed only 7
programs on PARSEC and SPEC (23%). Moreover, both SAFECode and SoftBound showed
unstable behavior: some programs had overheads of more than 20×.
Instruction overhead. In most cases, performance overheads are dominated by a single factor:
the increase in number of instructions executed in a protected application. It can be seen if we
compare Figures 7.9 and 7.10; there is a strong correlation between them.
As expected, the optimized MPX (i.e., ICC version) has low instruction overhead due to its

HW assistance (~70% lower than AddressSanitizer). Thus, one could expect sufficiently low
performance overheads of Intel MPX once the throughput and latencies of Intel MPX instructions
improve (see §7.3.1).
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Figure 7.9 – Performance (runtime) overhead with respect to native version.
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Figure 7.10 – Increase in number of instructions with respect to native version.
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Figure 7.11 – IPC (instructions/cycle) numbers for native and protected versions.
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Figure 7.12 – CPU cache behavior of native and protected versions.

Instruction overhead of Intel MPX may also come from the management of Bounds Tables
(see §7.3.2). Our microbenchmarks show that it can cause a slowdown of more than 100% in the
worst case. However, we did not observe a noticeable impact in real-world applications. Even
those applications that create hundreds of BTs exhibit a minor slowdown in comparison to other
factors.
IPC. Many programs do not utilize the CPU execution-unit resources fully. For example, the
theoretical IPC (instructions/cycle) of our machine is ~5, but many programs achieve only
1–2 IPC in native executions (see Figure 7.11). Thus, memory-safety techniques benefit from
underutilized CPU and partially mask their performance overhead.
The most important observation here is that Intel MPX does not increase IPC. Our mi-

crobenchmarks (§7.3.1) indicate that this is caused by contention of MPX bounds-checking
instructions on one execution port. If this functionality would be available on more ports, Intel
MPX would be able to use instruction parallelism to a higher extent and the overheads would be
lower.
At the same time, software-only approaches—especially AddressSanitizer and SoftBound—
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Figure 7.13 – Shares of Intel MPX instructions with respect to all executed instructions.
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Figure 7.14 – Memory overhead with respect to native version.

significantly increase IPC, partially hiding their performance overheads.
Cache utilization. Some programs are memory-intensive and stress the CPU cache system.
If a native program has many L1 or LLC cache misses, then the memory subsystem becomes
the bottleneck. In these cases, memory-safety techniques can partially hide their performance
overhead.
It can be illustrated with the wordcnt example compiled with ICC-MPX (Figure 7.12). It

has a huge instruction overhead of 4×, IPC close to native, and (as we will see next) many
expensive bndldx and bndstx operations. And still its performance overhead is only 3×. Why?
It appears the native version of wordcnt has a significant number of cache misses. They have
high performance cost and therefore can partially mask the overhead of ICC-MPX.
Intel MPX instructions. In the case of Intel MPX, one of the most important performance
factors is the type of instructions that are used in instrumentation. In particular, storing
(bndstx) and loading (bndldx) bounds require two-level address translation—a very expensive
operation that can break cache locality (see §7.3.1). To prove it, we measured the shares of MPX
instructions in the total number of instructions of each program (Figure 7.13).

As expected, a lion share of all MPX instructions are bounds-checking bndcl and bndcu. Addi-
tionally, many programs need bndmov to move bounds from one register to another (bndmovreg)
or spill bounds on stack (bndmovmem). Finally, pointer-intensive programs require the use of
expensive bndstx and bndldx to store/load bounds in Bounds Tables.
There is a strong correlation between the share of bndstx and bndldx instructions and

performance overheads. For example, matrixmul under ICC-MPX almost exclusively contains
bounds checks: accordingly, there is a direct mapping between instruction and performance
overheads. However, the GCC-MPX version is less optimized and inserts many bndldxs, which
leads to a significantly higher performance overhead.

The ICC-MPX version of wordcnt has a ridiculous share of bndldx/bndstx instructions. This
is due to a performance bug in libchkp library of ICC that uses a naive algorithm for the memcpy
wrapper (see §7.3.3).
Memory consumption. In some scenarios, memory overheads (more specifically, resident set
size overheads) can be a limiting factor, e.g., for servers in data centers which co-locate programs
and perform frequent migrations. Thus, Figure 7.14 shows memory overhead measurements.
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Figure 7.15 – Impact of MPX features—narrowing and only-write protection—on perfor-
mance.
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Figure 7.16 – Impact of MPX features—narrowing and only-write protection—on memory.

On average, Intel MPX has a 2.1× memory overhead under ICC version and 1.9× under GCC.
It is a significant improvement over AddressSanitizer (2.8×). There are three main reasons for
that. First, AddressSanitizer changes memory layout of allocated objects by adding “redzones”
around each object. Second, it maintains a “shadow zone” that is directly mapped to main
memory and grows linearly with the program’s working set size. Third, AddressSanitizer has
a “quarantine” feature that restricts the reuse of freed memory.6 On the contrary, Intel MPX
allocates space only for pointer-bounds metadata and has an intermediary Bounds Directory that
trades lower memory consumption for longer access time. Interestingly, SAFECode exhibits even
lower memory overheads because of its pool-allocation technique. Unfortunately, low memory
consumption does not imply good performance.
Influence of additional Intel MPX features. Intel MPX has two main features that influence
both performance and security guaranties (§7.3.3). Bounds narrowing increases security level
but may harm performance. Only-write protection, on the other side, improves performance by
disabling checks on memory reads.

The comparison of these features is presented in Figures 7.15 and 7.16. As we can see, bounds
narrowing has a low impact on performance because it does not change the number of checks.
At the same time, it may slightly increase memory consumption because it has to keep more
bounds. Only-write checking has the opposite effect—having to instrument less code reduces the
slowdown but barely has any impact on memory consumption.
Multithreading. To evaluate the influence of multithreading, we measured execution times of
all benchmarks on 2 and 8 threads (see Figure 7.17). Note that only Phoenix and PARSEC are
multithreaded (SPEC is not). Also, both SoftBound and SAFECode are not thread-safe and
therefore were excluded from measurements.
As we can see from Figure 7.17, the difference in scalability is minimal. For Intel MPX, it is

caused by the absence of multithreading support, which means that no additional code is executed
6Quarantine is a temporal-protection feature and, in principle, it gives an unfair advantage to Intel MPX which
lacks this kind of protection. Indeed, if quarantine zone is disabled, AddressSanitizer’s memory overhead drops
on average to ~1.5× for both PARSEC and SPEC, although the performance overhead is not influenced. We
did not include this number into our main results because the goal of our study was to compare the solutions
in their default configuration, without any tweaks from the side of end user.
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Figure 7.17 – Relative speedup (scalability) with 8 threads compared to 2 threads.
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Figure 7.18 – Performance (runtime) overhead with respect to native version on a Haswell
CPU that does not support Intel MPX. All MPX instructions are executed as NOPs.

in multithreaded versions. For AddressSanitizer, there is no need for explicit synchronization—the
approach is thread-safe by design.
Peculiarly, GCC-MPX experiences not speedups but slowdowns on linearreg and wordcnt.

Upon examining these cases, we found out that this anomaly is due to detrimental cache line
sharing of BT entries.

For swaptions, AddressSanitizer and Intel MPX scale significantly worse than native. It turns
out that these techniques do not have enough spare IPC resources to fully utilize 8 threads in
comparison to the native version (the problem of hyperthreading). Similarly, for streamcluster,
Intel MPX performs worse than AddressSanitizer and native versions. This is again an issue with
hyperthreading: Intel MPX instructions saturate IPC resources on 8 threads and thus cannot
scale as good as native.
Varying inputs sizes. Different input sizes (working sets) may cause different cache behaviors,
which in turn causes changes in overheads. To investigate the extent of such effects, we ran
several benchmarks with three inputs—small, medium, and large. The results do not provide
any unexpected insights and thus omitted from here. The general trend is that the input size
has very little impact on performance overhead.
Runtime overhead on older CPU architectures. As we mention in §7.3.1, MPX-protected
applications can be executed even on older Intel CPUs that do not support Intel MPX. In
this case, MPX instructions will be executed as NOPs and consequently, no protection will be
provided. Yet, NOPs are not free—each NOP takes 1 cycle to execute, they take space in caches,
in the instruction pipeline, etc. It means that in such a scenario the application will be slowed
down but will not get any additional security guaranties. To evaluate this effect, we run the
same set of benchmarks on a Haswell machine. The results are presented in Figure 7.18.

7.4.3 Security

RIPE testbed. We evaluated all approaches against the RIPE security testbed [244]. RIPE is
a synthesized C program that tries to attack itself in a number of ways, by overflowing a buffer
allocated on the stack, heap, or in data or BSS segments. RIPE can imitate up to 850 attacks,
including shellcode, return-into-libc, and return-oriented programming. In our evaluation, even
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Approach Working attacks
MPX (GCC) default * 41/64 (all memcpy and intra-object overflows)
MPX (GCC) 0/64 (none)
MPX (GCC) no narrow 14/64 (all intra-object overflows)

MPX (ICC) 0/34 (none)
MPX (ICC) no narrow 14/34 (all intra-object overflows)

AddressSanitizer (GCC) 12/64 (all intra-object overflows)
SoftBound (Clang) 14/38 (all intra-object overflows)
SAFECode (Clang) 14/38 (all intra-object overflows)

*Without -fchkp-first-field-has-own-bounds and with BNDPRESERVE=0

Table 7.5 – Results of RIPE security benchmark. In Col. 2, “41/64” means that 64 attacks
were successful in native GCC version, and 41 attacks remained in MPX version.

under relaxed security flags—we disabled Linux ASLR, stack canaries, and fortify-source and
enabled executable stack—modern compilers were susceptible only to a small number of attacks.
Under native GCC, only 64 attacks survived, under ICC—34, and under Clang—38. RIPE is
specifically tailored to GCC, thus more attacks are possible under this compiler.
The results for all approaches are presented in Table 7.5. Surprisingly, a default GCC-MPX

version showed very poor results, with 41 attacks (or 64% of all possible attacks) succeeding.
As it turned out, the default GCC-MPX flags are sub-optimal. First, we found a bug in the
memcpy wrapper which forced bounds registers to be nullified, so the bounds checks on memcpy
were rendered useless (see Table 7.3). This bug disappears if the BNDPRESERVE environment
variable is manually set to one. Second, the MPX pass in GCC does not narrow bounds for the
first field of a struct by default, in contrast to ICC which is more strict. To catch intra-object
overflows happening in the first field of structs–the case of RIPE code—one needs to pass the
-fchkp-first-field-has-own-bounds flag to GCC. When we enabled these two flags, all
attacks were prevented; all next rows in the table were tested with these flags.
Other results are expected. Intel MPX versions without narrowing of bounds overlook 14

intra-object overflow attacks, where a vulnerable buffer and a victim object live in the same struct.
The same attacks are overlooked by AddressSanitizer, SoftBound, and SAFECode. Interestingly,
AddressSanitizer has 12 working attacks, i.e., two attacks less than other approaches. Though
we did not inspect this in detail, AddressSanitizer was able to prevent two shellcode intra-object
attacks on the heap.
We performed the same experiment with only-writes versions of these approaches, and the

results were exactly the same. This is explained by the fact that RIPE constructs only control-flow
hijacking attacks and not information leaks (which could escape only-writes protection).
Other detected bugs. During our experiments, we found 6 real out-of-bounds bugs (true
positives). Five of these bugs were already known, and one was detected by GCC-MPX and was
not previously reported.
The bugs found are: (1) incorrect black-and-white input pictures leading to classic buffer

overflow in ferret, (2) wrong preincrement statement leading to classic off-by-one bug in
h264ref, (3) out-of-bounds write in perlbench, (4) benign intra-object buffer overwrite in
x264, (5) benign intra-object buffer overread in h264ref, and (6) intra-object buffer overwrite
in perlbench.
All of these bugs were detected by GCC-MPX with narrowing of bounds. Predictably, three
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Figure 7.19 – Number of MPX-broken programs rises with stricter Intel MPX protection
rules (higher security levels). Level 4 is default.

intra-object bugs and one read-only bug could not be detected by the no-narrowing and only-
writes versions of Intel MPX respectively. ICC-MPX detected only three bugs in total: in
other cases programs failed due to MPX-related issues (see §7.3.3 and §7.3.4). An interesting
correlation emerged: the programs that contain real bugs are also the ones that break most often
under Intel MPX.
As expected, AddressSanitizer found only three of these bugs—it checks bounds at the level

of whole objects and cannot detect intra-object overflows. SAFECode found bugs (2) and (3),
the others either could not be detected due to coarse-grained granularity of bounds-checking or
SAFECode could not compile the programs. Unfortunately, SoftBound left bug (2) undetected
and broke on other three programs with bugs: ferret and x264 are multithreaded and thus not
supported by SoftBound, and perlbench would not run correctly.

7.4.4 Usability

As we showed in §7.3.4, some programs break under Intel MPX because they use unsupported C
idioms or outright violate the C standard. Moreover, as shown in §7.3.3, other programs even
fail to compile or run due to internal bugs in the compiler MPX passes (one case for GCC and 8
for ICC).

Figure 7.19 highlights the usability of Intel MPX, i.e., the number of MPX-protected programs
that fail to compile correctly and/or need significant code modifications. Note that many
programs can be easily fixed (see Table 7.4); we do not count them as broken. MPX security
levels are based on our own classification and correspond to the stricter protection rules, where
level 0 means unprotected native version and 6—the most secure MPX configuration (see §7.6).
In total, our evaluation covers 38 programs from the Phoenix, PARSEC, and SPEC benchmark
suites.
As can be seen, around 10% of programs break already at the weakest level 1 of Intel MPX

protection (without narrowing of bounds and protecting only writes). At the highest security
level 6 (with enabled BNDPRESERVE), most of the programs fail.

As for other approaches, no programs broke under AddressSanitizer. For SAFECode, around
70% programs executed correctly (all Phoenix, half of PARSEC, and 3/4 of SPEC). SoftBound—
being a prototype implementation–showed poor results, with only simple programs surviving
(all Phoenix, one PARSEC, and 6 SPEC). These results roughly correspond to the ones in the
original papers [64, 158].
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Figure 7.20 – Throughput-latency for (a) Apache web server, (b) Nginx web server, and
(c) Memcached caching system.

7.5 Case Studies

To understand how Intel MPX affects complex real-world applications, we experimented with
three case studies: Apache and Nginx web servers and Memcached memory caching system.
Similar to the previous section, we evaluated these programs along three dimensions: performance
and memory overheads, security guarantees, and usability.
We compare default Intel MPX implementations of both GCC and ICC against the native

version, as well as AddressSanitizer. We were not able to compile any of the case studies
under SoftBound and SAFECode: in most cases, the Configure scripts complained about an
“unsupported compiler”, and in one case (Apache under SoftBound) the compilation crashed
due to an internal compiler error. The native version we chose to show is GCC: native ICC and
Clang versions have almost identical results, with an exception of Nginx explained later. For the
same reasons, we show only the GCC implementation of AddressSanitizer.

All experiments were performed on the same machines as in the previous section (§7.4). One
machine served as a server and a second one as clients, connected with a 1GB Ethernet cable
and an actual bandwidth of 938 Mbits/sec. We configured all case studies to utilize all 8 cores of
the server (details below). For other configuration parameters, we kept their default values.

All three programs were linked against their dependent libraries statically. We opted for static
linking to investigate the complete overhead of all components constituting each program.

7.5.1 Apache Web Server

For evaluation, we used Apache version 2.4.18 linked against OpenSSL 1.0.1f [14]. This OpenSSL
version is vulnerable to the infamous Heartbleed bug which allows the attacker to leak confidential
information such as secret keys and user passwords in plain-text [227]. Since both AddressSanitizer
and Intel MPX do not support inline assembly, we disabled it for all builds of Apache. To fully
utilize the server, we used the default configuration of Apache’s MPM event model.
The classic ab benchmark was run on a client machine to generate workload, constantly

fetching a static 2.3K web-page via HTTP, with a KeepAlive feature enabled. To adapt the load,
we increased the number of simultaneous requests at a time.

Unfortunately, while testing against Heartbleed, we discovered that ICC-MPX suffers from a
run-time Intel compiler bug7 in the x509_cb OpenSSL function, leading to a crash of Apache.

7https://software.intel.com/en-us/forums/intel-c-compiler/topic/700550
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Apache Nginx Memcached

Native 9.4 4.3 73
MPX 120 18 352
ASan 33 380 95

Table 7.6 – Memory usage (MB) for peak throughput. (GCC-MPX and ICC-MPX showed
identical results.)

This bug triggered only on HTTPS connections, thus allowing us to still run performance
experiments on ICC-MPX.
Performance. As Figure 7.20a shows, GCC-MPX, ICC-MPX, and AddressSanitizer all show
minimal overheads, achieving 95.3%, 95.7%, and 97.5% of native throughput. Overhead in
latency did not exceed 5%. Such good performance is explained by the fact that our experiment
was limited by the network and not CPU or memory. (We observed around 480− 520% CPU
utilization in all cases.)
In terms of memory usage (Table 7.6), AddressSanitizer exhibits an expected 3.5× overhead.

In contrast, Intel MPX variants have dramatic 12.8× increase in memory consumption. This is
explained by the fact that Apache allocates an additional 1MB of pointer-heavy data per each
client, which in turn leads to the allocation of many Bounds Tables.
Security. For security evaluation, we exploited the infamous Heartbleed bug [12, 227]. In a
nutshell, Heartbleed is triggered when a maliciously crafted TLS heartbeat message is received
by the server. The server does not sanity-check the length-of-payload parameter in the message
header, thus allowing memcpy to copy the process memory’s contents in the reply message. In
this way, the attacker can read confidential memory contents.
AddressSanitizer and GCC-MPX detect Heartbleed8.

7.5.2 Nginx Web Server

We tested Nginx version 1.4.0—the last version with a stack buffer overflow vulnerability [164].
Nginx was configured with the “autodetected” number of worker processes to load all cores and
was benchmarked against the same ab benchmark as Apache. ab was also used as a client.

To successfully run Nginx under GCC-MPX with narrowing of bounds, we had to manually
fix a variable-length array name[1] in the ngx_hash_elt_t struct to name[0]. However, ICC-
MPX with narrowing of bounds still refused to run correctly, crashing with a false positive in
ngx_http_merge_locations function. In a nutshell, the reason for this bug was a cast from
a smaller type, which rendered the bounds too narrow for the new, larger type. Note that
GCC-MPX did not experience the same problem because it enforces the first struct’s field to
inherit the bounds of the whole object by default—in contrast to ICC-MPX which takes a more
rigorous stance. For the following evaluation, we used the version of ICC-MPX with narrowing
of bounds disabled.
Performance. With regards to performance (Figure 7.20b), Nginx has a similar behavior to
Apache. AddressSanitizer reaches 95% of native throughput, while GCC-MPX and ICC-MPX lag
behind with 86% and 89.5% respectively. Similar to Apache, this experiment was network-bound,

8The actual situation with Heartbleed is more contrived. OpenSSL uses its own memory manager which partially
bypasses the wrappers around malloc and mmap. Thus, in reality memory-safety approaches find Heartbleed
only if the length parameter is greater than 32KB (the granularity at which OpenSSL allocates chunks of
memory for its internal allocator) [97].
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with CPU usage of 225% for native, 265% for Intel MPX, and 300% for AddressSanitizer. (CPU
usage numbers prove that HW-assisted approaches impose less CPU overheads.)
As a side note, Nginx has predictable behavior only under GCC. Native ICC version reaches

only 85% of the GCC’s throughput, and native Clang only 90%. Even more surprising, the ICC-
MPX version performed 5% better than native ICC; similarly, the AddressSanitizer-Clang version
was 10% better than native Clang. We are still investigating the reasons for this unexpected
behavior.

As for memory consumption (Table 7.6), the situation is opposite as with Apache: Intel MPX
variants have a reasonable 4.2× memory overhead, but AddressSanitizer eats up 88× more
memory (it also has 625× more page faults and 13% more LLC cache misses). But then why Intel
MPX is slower than AddressSanitizer if their memory characteristics indicate otherwise? The
reason for the horrifying AddressSanitizer numbers is its “quarantine” feature—AddressSanitizer
employs a special memory management system which avoids re-allocating the same memory
region for new objects, thus decreasing the probability of temporal bugs such as use-after-free.
Instead, AddressSanitizer marks the used memory as “poisoned” and requests new memory
chunks from the OS (this explains huge number of page faults). Since native Nginx recycles the
same memory over and over again for the incoming requests, AddressSanitizer experiences huge
memory blow-up. When we disabled the quarantine feature, AddressSanitizer used only 24MB
of memory.
Note that this quarantine problem does not affect performance. Firstly, Nginx is network-

bound and has enough spare resources to hide this issue. Secondly, the rather large overhead of
allocating new memory hides the overhead of requesting new chunks from the OS.
Security. To evaluate security, the bug under test was a stack buffer overflow CVE-2013-2028
that can be used to launch a ROP attack [11]. Here, a maliciously crafted HTTP request forces
Nginx to erroneously recognize a signed integer as unsigned. Later, a recv function is called
with the overflown size argument and the bug is triggered.

Perhaps surprisingly, AddressSanitizer detects this bug, but both versions of Intel MPX do not.
The root cause is the run-time wrapper library: AddressSanitizer wraps all C library functions
including recv, and the wrapper—not the Nginx instrumented code—detects the overflow. In
case of both GCC-MPX and ICC-MPX, only the most widely used functions, such as memcpy
and strlen, are wrapped and bounds-checked. That is why when recv is called, the overflow
happens in the unprotected C library function and goes undetected by Intel MPX.
This highlights the importance of full protection—not only protecting the program’s own

code, but also writing wrappers around all unprotected libraries used by the program. Another
interesting aspect is that this overflow bug is read-only and cannot be caught by write-only
protection. No matter how tempting it may sound to protect only writes, one must remember
that buffer-overread vulnerabilities will slip away from such low-overhead bounds checking.

7.5.3 Memcached Caching System

Lastly, we experimented with Memcached version 1.4.15 [78]. This is the last version susceptible
to a simple DDoS attack [151]. In all experiments, Memcached was run with 8 threads to fully
utilize the server. For the client we used a memaslap benchmark from libmemcached with a
default configuration (90% reads of average size 1700B, 10% writes of average size 400B). We
increased the load by adapting the concurrency number.

After some vexing debugging experiences with Nginx and Apache, we were pleased to experience
no issues instrumenting Memcached with GCC-MPX and ICC-MPX.
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RIPE Unfound Broken Perf (×)
L Description GCC ICC GCC ICC GCC ICC GCC ICC

0 native program (no protection) 64 34 6 3 0 0 1.00 1.00
1 MPX only-writes and no narrowing of bounds 14 14 3 0 3 5 1.29 1.18
2 MPX no narrowing of bounds 14 14 3 0 2 8 2.39 1.46
3 MPX only-writes and narrowing of bounds 14 0 2 0 4 7 1.30 1.19
4 MPX narrowing of bounds (default) 14 0 0 0 4 9 2.52 1.47
5 + fchkp-first-field-has-own-bounds* 0 – 0 – 6 – 2.52 –
6 + BNDPRESERVE=1 (protect all code) 0 0 0 0 34 29 – –

AddressSanitizer [207] 12 – 3 – 0 – 1.55 –
* except intra-object overflows through the first field of struct; L5 removes this limitation (relevant for GCC)

Table 7.7 – The summary table with our classification of Intel MPX security levels—from
lowest L1 to highest L6—highlights the trade-off between security (number of unprevented
RIPE attacks and other Unfound bugs in benchmarks), usability (number of MPX-Broken
programs), and performance overhead (average Perf overhead w.r.t. native executions).
AddressSanitizer is shown for comparison in the last row.

Performance. Performance-wise, Memcached turned out to be the worst case for Intel MPX (see
Figure 7.20c). While AddressSanitizer performs on par with the native version, both GCC-MPX
and ICC-MPX achieved only 48− 50% of maximum native throughput.
In case of native and AddressSanitizer, performance of Memcached was limited by network.

But it was not the case for Intel MPX: Memcached exercised only 70% of the network bandwidth.
The memory usage numbers in Table 7.6 help understand the bottleneck of Intel MPX. While
AddressSanitizer imposed only 30% memory overhead, both Intel MPX variants used 350MB of
memory (4.8× more than native). This huge memory overhead broke cache locality and resulted
in 5.4× more page faults and 10 − 15% LLC misses, making Intel MPX versions essentially
memory-bound. (Indeed, the CPU utilization never exceeded 320%.)
Security. For security evaluation, we used a CVE-2011-4971 vulnerability [151]. In this denial-
of-service attack, a specially crafted packet is received by the server and passed to the handler
(conn_nread) which tries to copy all packet’s contents into another buffer via the memmove
function. However, due to the integer signedness error in the size argument, memmove tries to
copy gigabytes of data and quickly segfaults. All approaches—AddressSanitizer, GCC-MPX,
and ICC-MPX—detected buffer overflow in the affected function’s arguments and stopped the
execution.

7.6 Lessons Learned

Table 7.7 summarizes the results of our work. For convenience, we introduce six Intel MPX
security levels to highlight the trade-offs between security, usability, and performance.

In general, Intel MPX is a promising technology: it provides the strongest possible security
guarantees against spatial errors, it instruments most programs transparently and correctly, its
ICC incarnation has moderate overheads of ~50%, it can interoperate with unprotected legacy
libraries, and its protection level is easily configurable. However, our evaluation indicates that it
is not yet ready for widespread use because of the following issues:
Lesson 1: New instructions are not as fast as expected. First, current Skylake processors
perform bounds checking mostly sequentially. Our microbenchmarks indicate this is caused
by contention of bounds-checking instructions on one execution port. We project that, if this
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functionality would be available on more ports, Intel MPX would be able to use instruction
parallelism to a higher extent and the overheads would be lower. Secondly, loading/storing bounds
registers from/to memory involves costly two-level address translation, which can contribute a
significant share to the overhead. Together, these two issues lead to tangible runtime overheads
of ~50% even with all optimizations applied (in the ICC case).
Lesson 2: The supporting infrastructure is not mature enough. Intel MPX support is
available for GCC and ICC compilers. At the compiler level, GCC-MPX has severe performance
issues (~150%) whereas ICC-MPX has a number of compiler bugs (such that 10% of programs
broke in our evaluation). At the runtime-support level, both GCC and ICC provide only a small
subset of function wrappers for the C standard library, thus not detecting bugs in many libc
functions.
Lesson 3: Intel MPX provides no temporal protection. Currently, Intel MPX protects
only against spatial (out-of-bounds accesses) but not temporal (dangling pointers) errors. All
other tested approaches—AddressSanitizer, SoftBound, and SAFECode—guarantee some form
of temporal safety. We believe Intel MPX can be enhanced for temporal safety without harming
performance, similar to SoftBound.
Lesson 4: Intel MPX does not support multithreading. An MPX-protected multi-
threaded program can have both false positives (false alarms) and false negatives (missed bugs
and undetected attacks). Until this issue is fixed—either at the software or at the hardware
level—Intel MPX cannot be considered safe in multithreaded environments. Unfortunately, we
do not see a simple fix to this problem that would not affect performance adversely.
Lesson 5: Intel MPX is not compatible with some C idioms. Intel MPX imposes
restrictions on allowed memory layout which conflict with several widespread C programming
practices, such as intra-structure memory accesses and custom implementation of memory
management. This can result in unexpected program crashes and is hard to fix; we were not able
to run correctly 8–13% programs (this would require substantial code changes).

In conclusion, we believe that Intel MPX has a potential for becoming the memory protection
tool of choice, but currently, AddressSanitizer is the only production-ready option. Even though
it provides weaker security guarantees than the other techniques, its current implementation is
better in terms of performance and usability. SoftBound and SAFECode are research prototypes
and they have issues that restrict their usage in real-world applications (although SoftBound
provides higher level of security).
We expect that most identified issues with Intel MPX will be fixed in future versions. Still,

support for multithreading and restrictions on memory layout are inherent design limitations of
Intel MPX which would require sophisticated solutions, which would in turn negatively affect
performance. We hope our work will help practitioners to better understand the benefits and
caveats of Intel MPX, and researchers—to concentrate their efforts on those issues still waiting
to be solved.
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This thesis introduced five hardware-assisted techniques for dependability. Each of these tech-
niques chooses its own trade-off between performance and level of dependability. In the realm
of fault tolerance, ∆-encoding provides very high hardware-fault coverage at the cost of high
performance overhead, whereas Elzar and HAFT are more light-weight techniques, trading some
fault coverage for better performance. Similarly, in the realm of security, design of SGXBounds
substantially decreases performance and memory overheads, whereas the heavy-weight Intel
MPX provides better security guarantees. Nonetheless, the distinctive feature of all introduced
approaches is hardware assistance, i.e., CPU features that allow to improve performance. In
particular, these features include unused IPC of modern CPUs in case of ∆-encoding, Intel
AVX technology for Elzar, Intel TSX for HAFT, Intel SGX for SGXBounds, and Intel MPX for
efficient pointer-based bounds-checking.
We conclude the thesis with a brief summary of each technique, limitations of CPU features

they rely on, impact of the techniques, and directions for future work.

8.1 Summary of techniques
This thesis described five hardware-assisted techniques for dependability: ∆-encoding, Elzar,
and HAFT for protection against hardware faults, and SGXBounds and “MPX Explained” for
protection against software memory-corruption bugs. In the following, we briefly summarize each
of these techniques:

∆-encoding is a heavy-weight technique to detect all kinds of hardware CPU and RAM faults
with a very high probability of 99.997% (Chapter 3). It is able to detect transient, intermittent,
and permanent faults in CPU registers, CPU execution units, CPU cache lines, and DRAM
memory. We implemented ∆-encoding as a source-to-source compiler that transparently hardens
unmodified C programs. ∆-encoding utilizes unused IPC resources of modern CPUs and relies on
CPU features such as superscalar out-of-order execution, branch predictors, and deep pipelines.

Elzar is a light-weight technique that detects a particular kind of CPU faults – transient bit-flips
in CPU registers and CPU execution units (Chapter 4). Due to its simplified fault model, Elzar
achieves lower performance and memory overheads in comparison to ∆-encoding, though it
still exhibits overheads of 4–5× and thus is not practical. We implemented Elzar as an LLVM
compiler framework to transparently instrument unmodified C/C++ programs. Elzar abuses
Intel AVX technology to introduce triple modular redundancy using Single Instruction Multiple
Data (SIMD) vectors.

HAFT is another light-weight technique to detect transient CPU faults, i.e., bit-flips in CPU
registers and execution units (Chapter 5). HAFT tackles the same problem as Elzar, but
exhibits better performance overhead of only 2× due to its superior design. Similar to Elzar,
we implemented HAFT as an LLVM compiler framework that hardens unmodified C/C++
programs. For performance, HAFT re-uses Intel TSX technology to allow efficient roll-backs to
the previous correct state.
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SGXBounds is a memory-safety technique that detects and tolerates memory corruption bugs
such as buffer overflows, out-of-bounds accesses, and off-by-one errors (Chapter 6). SGXBounds
introduces a novel, simple design to store lower and upper bounds of referent objects for each
pointer in the program and insert efficient bounds checks before original memory accesses.
SGXBounds’ design is influenced by limitations and peculiarities of Intel SGX technology, which
allows it to significantly outperform other state-of-the-art approaches to memory safety.

“MPX Explained” is a deep investigation of the recent Intel MPX technology (Chapter 7).
Based on our analysis, Intel MPX proved to be sub-optimal in terms of runtime performance
and memory overheads, as well as dangerous to use in multithreaded environments. Similarly to
SGXBounds, Intel MPX detects memory corruption bugs such as buffer overflows. It is assumed
to be faster than software-only competitors since it performs heavy-weight bounds-checking
completely in hardware, with the help of new instructions and CPU registers. However, as our
evaluation shows, MPX does not live up to its promise and needs a redesign.

8.2 Limitations of CPU features and our proposals
Each of the five techniques detailed in this thesis shows promising results, achieving lower
performance overheads and detecting more faults that other state-of-the-art solutions. However,
as we have seen with each technique, even though utilizing specific CPU features vastly improves
performance, these features come with their own limitations. Below is a short list of our findings.

x86-64 ISA. For ∆-encoding, we rely heavily on the instruction-level parallelism provided by
modern Intel CPUs. However, as we discussed in Chapter 3, ∆-encoding could significantly
benefit from two CPU modifications. First, accumulations and checks of ∆-encoding could be
moved out from the critical path of ∆-encoded operations of a program; these accumulations
and checks could be done in parallel either by a specialized CPU coprocessor (watchdog) or even
programmed in a paired FPGA [46]. Second, ∆-encoding operations could be greatly sped up if
x86-64 ISA would introduce a one-cycle “add–shift” instruction.

Intel AVX. For Elzar, we re-purpose Intel AVX vector instructions (Chapter 4). Unfortunately,
Intel AVX misses some instructions that would be beneficial for our fault-tolerance purposes,
as we argued in §4.7.1. In particular, we propose AVX load/store instructions which use an
address operand from a YMM register rather than from a general-purpose one. We also propose
a cmp-like family of AVX instructions to speed up the execution of comparisons. Finally, similar
to ∆-encoding, we suggest offloading checks to an FPGA. All these enhancements to current
CPU designs would lead to an improvement of 150% over the current Elzar version.

Intel TSX. In case of HAFT, we use Intel TSX extension to wrap the whole program execution
in hardware transactions (Chapter 5). In our experience, TSX transactions have a rather short
timespan of no more than 5,000 instructions. In addition, TSX transactions spuriously abort
without any reason. Thus, if a future implementation of TSX would allow for longer and more
stable transactions, this would increase fault coverage of HAFT and decrease its performance
overhead. In addition, TSX could benefit from rollback-only suspendable transactions ideal
for the HAFT scenario, where stores are buffered without aborting on data conflicts and a
transaction could be frozen on interrupts (as done in IBM POWER8 [43]).

Intel SGX. SGXBounds builds on an observation of small address space and restricted memory
capabilities inside Intel SGX enclaves (Chapter 6). Our findings are twofold. On the one hand,
if future implementations of Intel SGX increase the size of EPC, the appeal of our approach
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may diminish. On the other hand, SGXBounds crams metadata in the 32 upper bits of a 64-bit
register, limiting addressable memory to only 4 GB. If Intel CPUs would introduce 96- or 128-bit
registers, SGXBounds could permit larger address spaces and put more metadata in registers
themselves.

Intel MPX. As our analysis of Intel MPX shows (Chapter 7), there are several opportunities to
improve the design and performance of MPX. For instance, adding an additional execution port
would decrease contention of bounds-checking instructions on CPU resources and thus boost
performance. Another example is loads/stores of bounds: the current design involves costly
two-level address translation and allocates too many bounds tables. If these bottlenecks of Intel
MPX are fixed in future versions, we expect around 50% decrease in performance overhead.

8.3 Impact on academia and industry

In the past two years, from 2015 when ∆-encoding was first published and until 2017 when
this thesis was finalized, our work gained recognition in academia as well as in industry. In the
following, we describe how our techniques and papers influenced other researchers and companies.

∆-encoding. ∆-encoding was evaluated in a BMW controller safety concept that argues to
move redundant computations from specialized hardware DMR/TMR components to software-
implemented fault tolerance [82]. The authors prove by means of stochastic model checking that
relying on a primary controller running ∆-encoded software provides better performance with a
comparable level of fault coverage. ∆-encoding was also mentioned in a recent survey of fault
tolerance approaches published at ARCS’2017 [178]. Finally, ∆-encoding was recognized by the
scientific community via the Best Student Paper award at DSN’2015.

Elzar. Concurrently and independently, a group from University of California, Irvine developed
a technique for SIMD-based detection of CPU faults that is very similar to Elzar. First the
group published a small feasibility study (discussed in Chapter 4) [51] and later a full-fledged
LLVM-based compiler framework [50]. This work has many striking similarities with our project,
including the use of the LLVM IR level to insert vector instructions, the same motivation of
improving performance of trivial instruction duplication, and the insight that the developed
technique works especially well for floating-point applications. The main differences between
Elzar and their work are as follows. (1) Elzar uses Intel AVX for Triple Modular Redundancy
(TMR) while [50] relies on Intel SSE for Dual Modular Redundancy (DMR); thus, Elzar can
transparently tolerate single faults, while the approach in [50] requires separate error correction.
(2) Elzar works on both integer and floating-point data and targets a broad range of applications,
while [50] concentrates only on floating-point data; this explains drastically different evaluation
results between two works. (3) Elzar targets multithreaded environments and includes extensive
evaluation of multithreaded applications, while [50] works only on single-threaded programs
but additionally includes evaluation of energy overhead. (4) Finally, we propose tweaks and
improvements for the future implementations of Intel AVX, while [50] lacks such a discussion.
We found it fascinating how two independent groups of researchers tackled the same problem in
very similar ways, coming to comparable conclusions.

HAFT. Similar to HAFT, Haas et al. proposed to use Intel TSX for transaction roll-back to
tolerate CPU faults [93]. Unlike HAFT, their work does not use duplicated instructions for fault
detection but rather process-level redundancy (PLR). Due to the more complicated design of
PLR, the average performance overhead is slightly higher than of HAFT, 2.4× vs 2×. In contrast
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to HAFT, the approach by Haas et al. does not support multithreaded applications. Meanwhile,
other researchers propose to use HAFT as a building block for safe and secure microservices [77].
Finally, Baier et al. examine the fault injection probabilistic model presented in HAFT in more
detail [21].

SGXBounds. SGXBounds was presented at Eurosys’2017 were it received the Best Paper
Award. Since then, the paper was covered in the famous “The Morning Paper” blog by Adrian
Colyer [209] and was chosen as one of the influential papers on SGX at the technical seminar in
Korea Advanced Institute of Science and Technology (KAIST) [216]. In the meantime, novel
approaches to memory safety appeared, proposing new ways to mitigate memory corruption
bugs: HardScope [168], MPXK for the Linux kernel [192], and Meds [95]. These approaches do
not run inside SGX enclaves and thus do not supersede SGXBounds, being orthogonal to our
work.

“MPX Explained”. Even though our “Intel MPX Explained” project was published only
as a technical report [173], it gained significant attention from both academia and industry.
For example, we received flattering reviews from the maintainers of Google AddressSanitizer,
developers of GCC, and Intel itself (private correspondence). To the best of our knowledge, “Intel
MPX Explained” was the first work to empirically prove the drawbacks of the MPX technology
and was helpful to numerous researchers in the security field, e.g., profs. Herbert Bos and Don
Porter hold our work in high regard (private correspondence). New research papers that use or
discuss Intel MPX frequently cite our technical report instead of the official documentation from
Intel [36, 69, 205].

8.4 Future work

Even though this thesis shows effective approaches to fault tolerance and security, they are
applied separately and do not necessarily augment each other. Thus, an intriguing question
arises naturally: is there a way to effectively combine protection against hardware faults and
software bugs in one synergic approach?
In a first approximation, both hardware faults and software bugs are essentially errors in

execution and manifest in the same way: either by crashing the application/node or causing it to
produce incorrect results. Thus, it may seem that a single approach treating both these kinds of
errors in a unified way would be our “silver bullet”. Unfortunately, the only solution that follows
this path is Byzantine Fault Tolerance (BFT), notorious for its high performance overheads and
impracticality [222].
However, it turns out that hardware faults and software bugs differ in one crucial detail.

Hardware CPU faults are random and transient by nature: they can occur at any point of program
execution and they usually do not reappear in the same component. Therefore, the frequently
executed parts of the program are the most vulnerable, and comparison of two copies of the same
data is the best strategy to ensure correctness. On the contrary, software memory-corruption
bugs are not random and not transient: they lurk in the “cold” code of a program and they
always manifest themselves if hit multiple times. The best strategy to ensure correctness in this
case is to check that specific invariants still hold, e.g., that a memory address still points inside a
valid object. Note that comparing two copies of the same corrupted address will always succeed
and thus useless for detecting memory bugs.

Hence, the question of whether one can combine fault tolerance and security in one practical
solution remains open. Are CPU faults and memory corruption bugs fundamentally different?
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Or is there a property common to them both that we overlook? We hope that this thesis outlines
several approaches to these issues and leave the development of a “silver bullet” solution for the
next generation of researchers.
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