
2017

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Vulnerability Detection in Device Drivers

Doutoramento em Informática

 Especialidade de Ciência da Computação

Manuel José Ferreira Carneiro Mendonça

Tese orientada por:

Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

Documento especialmente elaborado para a obtenção do grau de doutor

2017

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Vulnerability Detection in Device Drivers

Doutoramento em Informática

 Especialidade de Ciência da Computação

Manuel José Ferreira Carneiro Mendonça

Tese orientada por:

Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

Júri:

Presidente:

● Doutor Luís Manuel Pinto da Rocha Carriço

Vogais:

● Doutor Marco Paulo Amorim Vieira

● Doutor André Ventura da Cruz Marnoto Zuquete

● Doutor Nuno Fuentecilla Maia Ferreira Neves

● Doutor António Casimiro Ferreira da Costa

● Doutora Ana Paula Boler Cláudio

Documento especialmente elaborado para a obtenção do grau de doutor

Abstract

The constant evolution in electronics lets new equipment/devices to be regularly

made available on the market, which has led to the situation where common

operating systems (OS) include many device drivers (DD) produced by very diverse

manufactures. Experience has shown that the development of DD is error prone, as

a majority of the OS crashes can be attributed to flaws in their implementation.

This thesis addresses the challenge of designing methodologies and tools to

facilitate the detection of flaws in DD, contributing to decrease the errors in this kind

of software, their impact in the OS stability, and the security threats caused by them.

This is especially relevant because it can help developers to improve the quality of

drivers during their implementation or when they are integrated into a system.

The thesis work started by assessing how DD flaws can impact the correct

execution of the Windows OS. The employed approach used a statistical analysis

to obtain the list of kernel functions most used by the DD, and then automatically

generated synthetic drivers that introduce parameter errors when calling a kernel

function, thus mimicking a faulty interaction. The experimental results showed that

most targeted functions were ineffective in the defence of the incorrect parameters.

A reasonable number of crashes and a small number of hangs were observed

suggesting a poor error containment capability of these OS functions.

Then, we produced an architecture and a tool that supported the automatic

injection of network attacks in mobile equipment (e.g., phone), with the objective of

finding security flaws (or vulnerabilities) in Wi-Fi drivers. These DD were selected

because they are of easy access to an external adversary, which simply needs to

create malicious traffic to exploit them, and therefore the flaws in their

implementation could have an important impact. Experiments with the tool

uncovered a previously unknown vulnerability that causes OS hangs, when a

specific value was assigned to the TIM element in the Beacon frame. The

experiments also revealed a potential implementation problem of the TCP-IP stack

by the use of disassociation frames when the target device was associated and

authenticated with a Wi-Fi access point.

Next, we developed a tool capable of registering and instrumenting the

interactions between a DD and the OS. The solution used a wrapper DD around the

binary of the driver under test, enabling full control over the function calls and

parameters involved in the OS-DD interface. This tool can support very diverse

testing operations, including the log of system activity and to reverse engineer the

driver behaviour. Some experiments were performed with the tool, allowing to record

the insights of the behaviour of the interactions between the DD and the OS, the

parameter values and return values. Results also showed the ability to identify bugs

in drivers, by executing tests based on the knowledge obtained from the driver’s

dynamics.

Our final contribution is a methodology and framework for the discovery of errors

and vulnerabilities in Windows DD by resorting to the execution of the drivers in a

fully emulated environment. This approach is capable of testing the drivers without

requiring access to the associated hardware or the DD source code, and has a

granular control over each machine instruction. Experiments performed with Off the

Shelf DD confirmed a high dependency of the correctness of the parameters passed

by the OS, identified the precise location and the motive of memory leaks, the

existence of dormant and vulnerable code.

Keywords: Device drivers; Dependability & security; Automated error detection;

Emulation.

Resumo

A constante evolução da eletrónica tem como consequência a disponibilização

regular no mercado de novos equipamentos/dispositivos, levando a uma situação

em que os sistemas operativos (SO) mais comuns incluem uma grande quantidade

de gestores de dispositivos (GD) produzidos por diversos fabricantes. A experiência

tem mostrado que o desenvolvimento dos GD é sujeito a erros uma vez que a causa

da maioria das paragens do SO pode ser atribuída a falhas na sua implementação.

Esta tese centra-se no desafio da criação de metodologias e ferramentas que

facilitam a deteção de falhas nos GD, contribuindo para uma diminuição nos erros

neste tipo de software, o seu impacto na estabilidade do SO, e as ameaças de

segurança por eles causadas. Isto é especialmente relevante porque pode ajudar a

melhorar a qualidade dos GD tanto na sua implementação como quando estes são

integrados em sistemas.

Este trabalho inicia-se com uma avaliação de como as falhas nos GD podem

levar a um funcionamento incorreto do SO Windows. A metodologia empregue usa

uma análise estatística para obter a lista das funções do SO que são mais utilizadas

pelos GD, e posteriormente constrói GD sintéticos que introduzem erros nos

parâmetros passados durante a chamada às funções do SO, e desta forma, imita a

integração duma falta. Os resultados das experiências mostraram que a maioria

das funções testadas não se protege eficazmente dos parâmetros incorretos.

Observou-se a ocorrência de um número razoável de paragens e um pequeno

número de bloqueios, o que sugere uma pobre capacidade das funções do SO na

contenção de erros.

Posteriormente, produzimos uma arquitetura e uma ferramenta que suporta a

injeção automática de ataques em equipamentos móveis (e.g., telemóveis), com o

objetivo de encontrar falhas de segurança (ou vulnerabilidades) em GD de placas

de rede Wi-Fi. Estes GD foram selecionados porque são de fácil acesso a um

atacante remoto, o qual apenas necessita de criar tráfego malicioso para explorar

falhas na sua implementação podendo ter um impacto importante. As experiências

realizadas com a ferramenta revelaram uma vulnerabilidade anteriormente

desconhecida que provoca um bloqueio no SO quando é atribuído um valor

específico ao campo TIM da mensagem de Beacon. As experiências também

revelaram um potencial problema na implementação do protocolo TCP-IP no uso

das mensagens de desassociação quando o dispositivo alvo estava associado e

autenticado com o ponto de acesso Wi-Fi.

A seguir, desenvolvemos uma ferramenta com a capacidade de registar e

instrumentar as interações entre os GD e o SO. A solução usa um GD que envolve

o código binário do GD em teste, permitindo um controlo total sobre as chamadas

a funções e aos parâmetros envolvidos na interface SO-GD. Esta ferramenta

suporta diversas operações de teste, incluindo o registo da atividade do sistema e

compreensão do comportamento do GD. Foram realizadas algumas experiências

com esta ferramenta, permitindo o registo das interações entre o GD e o SO, os

valores dos parâmetros e os valores de retorno das funções. Os resultados

mostraram a capacidade de identificação de erros nos GD, através da execução de

testes baseados no conhecimento da dinâmica do GD.

A nossa contribuição final é uma metodologia e uma ferramenta para a

descoberta de erros e vulnerabilidades em GD Windows recorrendo à execução do

GD num ambiente totalmente emulado. Esta abordagem permite testar GD sem a

necessidade do respetivo hardware ou o código fonte, e possuí controlo granular

sobre a execução de cada instrução máquina. As experiências realizadas com GD

disponíveis comercialmente confirmaram a grande dependência que os GD têm nos

parâmetros das funções do SO, e identificaram o motivo e a localização precisa de

fugas de memória, a existência de código não usado e vulnerável.

Palavras-Chave: Gestores de dispositivos; Confiabilidade & segurança; Deteção

automática de erros; Emulação.

Resumo Alargado

Os computadores são ferramentas comuns na vida moderna. Ao longo dos anos a

arquitetura dos sistemas operativos (SO) evoluiu de forma a ser o mais

independente possível do hardware, acomodando a constante evolução da

tecnologia. Esta flexibilidade e extensibilidade é obtida através dos gestores de

dispositivos, componentes chave do sistema que atuam como interface entre o SO

e o hardware.

Devido à constante evolução da eletrónica de consumo, aparecem

continuamente novos gestores de dispositivos. Paralelamente, os SO tendem a

manter a compatibilidade com diferentes gerações de gestores devido à

impossibilidade prática de os reescrever. Ambos aspetos contribuem para que os

gestores de dispositivos sejam um dos componentes de software mais dinâmicos e

em maior número nos SO atuais.

O desenvolvimento de um gestor de dispositivo é uma tarefa complexa que exige

variados conhecimentos sobre a estrutura do SO e do hardware, algo que não é

normalmente compreendido na sua totalidade pela maior parte dos programadores.

Além disso, a manutenção e teste deste tipo de software é uma das tarefas mais

onerosas na produção e manutenção dos SO.

Na maior parte dos casos os gestores de dispositivos são considerados parte

integrante do SO, e como tal, um erro neste tipo de software normalmente traz

consequências catastróficas para o sistema. No entanto, muitos dos utilizadores e

administradores de sistemas arrisca a instalação de gestores de dispositivos sem

verificação prévia da sua confiabilidade. Estas razões levam a que os gestores de

dispositivos apareçam como uma das principais causas na falha dos sistemas,

devido à existência de erros de implementação.

O teste de software é um dos principais mecanismos na descoberta de erros.

Todavia, a procura de erros em aplicações e hardware é um processo minucioso e

demorado que, dada a complexidade dos sistemas de hoje em dia, se torna

bastante difícil de ser realizado por seres humanos. Assim tem-se recorrido à

automatização dos processos de teste, recorrendo a técnicas de análise automática

do código ou de injeção de faltas durante o processo de implementação. No

entanto, no caso dos gestores de dispositivos, a tarefa de procura de erros é

dificultada pelo facto de que na maioria dos casos este tipo de software é

disponibilizado sem acesso ao código fonte. Além disso a estimulação do código do

gestor de dispositivo requer normalmente a montagem dum sistema de testes com

alguma complexidade.

Este trabalho centra-se nos desafios relacionados com a deteção de erros em

gestores de dispositivos, desejando contribuir para a redução de erros neste tipo de

software, do seu impacto na estabilidade do SO e das ameaças de segurança

causadas pela sua exploração por agentes maliciosos. Isto torna-se especialmente

relevante porque permite aos programadores melhorar a qualidade dos gestores de

dispositivos durante o seu desenvolvimento ou quando estes são integrados no SO.

O trabalho visa contribuir com diferentes abordagens na identificação e localização

de erros, sabendo de antemão que a construção deste tipo de soluções requer que

se ultrapassem várias dificuldades. Houve um enfoque no Windows por ser um dos

SO mais utilizados, e por trazer desafios adicionais devido à típica inacessibilidade

ao código fonte dos seus componentes, funções e gestores de dispositivos.

Numa fase inicial do trabalho pretendeu-se perceber o nível de resiliência do

Windows quanto à passagem de parâmetros incorretos às funções que o SO

disponibiliza aos gestores de dispositivos. A abordagem utilizou uma análise

estatística para a elaboração duma lista das funções mais utilizadas pelos gestores

de dispositivos presentes no SO. Essa informação foi empregue na geração de

forma automática de um conjunto de gestores de dispositivos sintéticos que

introduzem parâmetros incorretos nas chamadas a essas funções do SO, imitando

desta forma uma falta na chamada à função. A análise dos resultados permitiu

determinar quais das funções testadas eram as mais vulneráveis aos erros nos

parâmetros, quais as consequências em termos de integridade do SO,

nomeadamente no sistema de ficheiros, assim como a capacidade do SO em

identificar a causa das paragens e bloqueios (quando existiram).

Numa outra fase deste trabalho procedeu-se ao desenvolvimento de uma

metodologia e ferramenta para a injeção de ataques em gestores de dispositivos de

comunicação sem fios (Wi-Fi). Uma vez que o hardware de comunicações e os seus

gestores estão diretamente expostos ao meio de transmissão, violações no

protocolo de comunicação são primariamente processadas por este tipo de

software. A exequibilidade desta técnica de injeção depende da capacidade de

manipulação do conteúdo de todos os campos das mensagens, uma vez que muitos

deles são utilizados na manutenção da integridade do estado do protocolo. A

arquitetura desenvolvida envolveu a automatização do desenho dos casos de teste,

recorrendo a uma técnica de fuzzing para determinar os valores a utilizar em cada

campo das mensagens. Adicionalmente, procedeu-se à automatização do processo

de execução dos casos de teste e recolha de resultados.

As experiências executadas com gestores de dispositivos da rede Wi-Fi

demonstraram vulnerabilidades face à violação da especificação do protocolo,

permitindo determinar quais os valores, campos e em que estado do protocolo era

possível gerar situações de bloqueio do SO.

Apesar do sucesso demonstrado pelos resultados alcançados, o sistema

anterior não era capaz de determinar com exatidão a localização do erro no código

do gestor de dispositivo ou o motivo pelo qual este acontecia.

Na seguinte fase do trabalho desenhou-se a ferramenta Intercept para registar

todas as interações existentes entre o SO e o gestor de dispositivo. Na sua

essência, o Intercept usa um gestor de dispositivo envelope capaz de envolver, em

tempo de execução, o código binário de um gestor de dispositivo alvo. Desta forma

o gestor de dispositivo alvo nunca interage diretamente com o SO, e todas as

funções chamadas a partir do SO ou pelo gestor de dispositivo podem ser

intercetadas pelo gestor envelope. Esta técnica permitiu-nos registar e interpretar

os dados envolvidos nas interações entre o gestor de dispositivo e o SO, permitindo

atividades como a análise reversa do código binário, e a determinação de alguns

erros nos gestores de dispositivos.

Na última fase do nosso trabalho, desenvolvemos uma metodologia que permite

a localização de erros em gestores de dispositivos sem recurso ao código fonte ou

a hardware específico. A metodologia assenta na ideia de que a estrutura de um

gestor de dispositivo difere substancialmente da estrutura de uma aplicação. Na

estrutura atual do Windows, o gestor de dispositivo regista funções no SO que

obedecem a uma especificação pré-determinada, e a partir das quais o SO solicita

a realização de serviços ao gestor. Por outro lado, o gestor de dispositivos utiliza

um conjunto de rotinas do SO, por exemplo, para obter e libertar recursos, para

interagir com o hardware, ou para manipular cadeias de valores. Além disso, existe

uma sequência lógica na forma como o SO evoca as funções do gestor, desde o

seu carregamento na memória até à sua terminação. Esta estrutura permite

assumir, entre outras coisas, que o gestor dispositivo disponibiliza vários pontos de

entrada com propósitos bem definidos, e limita o tipo de interação que o SO pode

ter com o gestor. Existem vários outros aspetos que se devem verificar, incluindo a

execução célere das funções disponibilizadas ao SO; a validação dos valores

devolvidos pelo SO, a circunscrição aos recursos disponibilizados pelo SO (e.g.,

memória e identificadores de recursos) assim como a utilização dos recursos na

sequência e momentos apropriados. Como resultado destes pressupostos, é

possível construir um sistema que, imitando o comportamento SO, consegue de

forma controlada e sistemática estimular o gestor de dispositivos de forma a tornar

evidente potenciais erros.

A ferramenta Discovery realiza esta metodologia recorrendo à emulação da

execução do código binário do gestor de dispositivo, de forma a ultrapassar os

constrangimentos da ausência do código fonte. Para além disso, usufrui das

vantagens de realizar este tipo de análise sem necessidade de hardware especifico,

assim como ter a capacidade de determinar a localização exata dos erros e as suas

manifestações. Ela define um conjunto de validadores, algum deles com a

granularidade de uma instrução máquina, permitindo a descoberta de erros ao mais

baixo nível. Um outro conjunto de validadores garante a identificação de erros nas

chamadas às funções do SO. Finalmente, um terceiro conjunto de validadores

consegue aferir desequilíbrios nos recursos do SO (e.g., memória não devolvida ao

SO) e encontrar código que não é executado. Os testes realizados com alguns

gestores de dispositivos disponíveis comercialmente permitiram identificar algumas

situações de erro, código não usado e vulnerável que demonstram o potencial deste

tipo de ferramenta.

Acknowledgements

The research, development and writing of this work was performed at the same time

that I was keeping a full-time demanding job in an International company. Being a

worker-student, I’ve jumped with my laptops and research equipment from hotel to

hotel, between Algeria, Mozambique, Nigeria, Portugal and Poland in the past few

years.

As it is possible to understand, I must give big thanks to a few, but very important

people that without their help, but mostly their support, this work would not have

been possible.

First and foremost, I want to recognize my advisor, Professor Nuno Ferreira

Neves, for his vision, knowledge, believe and constant support even though I was

far away. Friends and colleagues at my work, Rui Meneses for giving me the

opportunity for being his “right arm” but also allowing me to fly away when it came

the time. Alexandre Freire, Domingos Mateus, Jerónimo Ferreira and Ricardo

Godinho for keeping me part of the band while abroad. Antonio Botelho, Gonçalo

Veras, Grant Ezeronye and José Martins for enduring my bad moods and be left

aside while writing my thesis in foreign countries – together we have crossed a long

way.

This document is dedicated to my young daughters, Ana Rita and Mariana, for

their love and brave heart, for being able to keep their tears away from me while

speaking through Skype, but specially as proof of not giving up. For my parents and

sister for their proud and support, but above all, to my wife Susana Mendonça for

loving me, being the pillar that sustained our family while I was away, supporting my

dreams, keeping always a smile for me when we were face to face in different

computer screens and receiving me with wide arms open every time I arrived home.

This work was my desert crossing!

“Space Shuttle Discovery (…) is one of the orbiters from NASA's Space Shuttle

program and the third of five built. (…). Over 27 years of service it launched and

landed 39 times, gathering more spaceflights than any other spacecraft to date.”

Space Shuttle Discovery in Wikipedia, June 2016

“We choose to go to the moon in this decade and do the other things, not because

they are easy, but because they are hard…”

John F. Kennedy 12 of September 1962

To my family, with all my love.

CONTENTS

LIST OF FIGURES .. xv

LIST OF TABLES ... xvii

LIST OF ALGORITHMS AND LISTINGS ..xix

LIST OF ACRONYMS ...xxi

LIST OF PUBLICATIONS ..xxv

CHAPTER 1 INTRODUCTION ... 1

1.1 The Inherent Complexity of DDs ... 2

1.2 Objective and Overview of the Work ... 4

1.3 Structure of the Thesis .. 6

CHAPTER 2 DEVICE DRIVERS .. 9

2.1 Introduction .. 10

2.2 Windows Device Drivers ... 12

2.3 Linux Modules ... 16

2.4 Microkernels .. 20

2.5 Microdrivers ... 22

2.6 Virtual Machines .. 24

2.7 Summary ... 29

CHAPTER 3 RELATED WORK.. 33

3.1 Preparatory Concepts ... 34

3.2 Fault Injection .. 37

xii CONTENTS

3.3 Robustness Testing .. 47

3.4 Instrumentation and Dynamic Analysis ... 50

3.5 Isolation of Device Driver Execution ... 52

3.6 Static Analysis ... 56

3.7 Driver Programming Model ... 61

3.8 Summary ... 65

CHAPTER 4 ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 69

4.1 The Test Methodology .. 70

4.2 Selecting the Candidate List ... 71

4.3 Tested Faulty Values .. 74

4.4 Expected Failure Modes ... 75

4.5 Experimental Setup ... 76

4.6 Discussion of Results .. 77

4.7 Summary ... 86

CHAPTER 5 ATTACKING WI-FI DRIVERS ... 87

5.1 Wdev-Fuzzer Architecture ... 88

5.2 Using Wdev-Fuzzer in 802.11 ... 90

5.3 Tested Faulty Values .. 92

5.4 Tested Scenarios .. 93

5.5 Expected Failure Modes ... 93

5.6 The Testing Infra-structure .. 94

5.7 Experimental Results .. 97

5.8 Summary ... 102

CHAPTER 6 INTERCEPT .. 103

6.1 Intercept Architecture .. 104

6.2 Using Intercept .. 105

6.3 Tracing the Execution of the DUT ... 107

6.4 Experimental Results .. 108

6.5 Summary ... 117

CHAPTER 7 SUPERVISED EMULATION ANALYSYS 119

7.1 Methodology .. 120

7.2 Assumptions on Device Driver Structure .. 121

7.3 Device Driver Flaw Classes .. 123

7.4 Detecting Flaws with Validators .. 124

7.5 Platform Architecture ... 126

7.6 Procedures .. 128

CONTENTS xiii

xiii

7.7 Discovery Framework ... 131

7.8 Discovery Emulation Execution Mechanisms 140

7.9 Detection of Flaws ... 142

7.10 Experimental Results .. 150

7.11 Summary ... 167

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 169

8.1 Conclusions ... 169

8.2 Future Work ... 171

ANNEX I – Robustness Testing of the Windows DDK sample code 173

ANNEX II – Discovery ... 183

BIBLIOGRAPHY ... 187

xiv CONTENTS

xv

LIST OF FIGURES

Figure 2-1: Xen architecture. .. 26

Figure 2-2: Xen network driver organization. .. 27

Figure 2-3: VMware architecture. .. 28

Figure 3-1: Basic components of a fault injection system. 46

Figure 4-1: Test DD generation. ... 71

Figure 4-2: Experimental setup. .. 77

Figure 4-3: Relative robustness (FM1/#DD). .. 79

Figure 4-4: File System sensitiveness (FM4/(FM3+FM4))...................................... 83

Figure 4-5: Source identification OK (M1). .. 84

Figure 4-6: Source identification error (M2). ... 85

Figure 4-7: Source of crash unidentified (M3)... 85

Figure 5-1: Wdev-Fuzzer block diagram. .. 89

Figure 5-2: Generic Wi-Fi MAC frame format. .. 90

Figure 5-3: Relationship between messages and services in Wi-Fi. 91

Figure 5-4: Fuzzer Wi-Fi test infrastructure. ... 95

Figure 6-1: Intercept architecture. ... 105

Figure 6-2: Drive initialization – Call to NdisMRegisterMiniportDriver. 110

Figure 6-3: Call to MPInitializeEx to initialize the hardware (excerpt). 111

xvi LIST OF FIGURES

Figure 6-4: Call to NdisGetBusData / SetBusData. .. 112

Figure 6-5: Looking in detail at a particular packet (excerpt). 113

Figure 6-6: DD disabling process (excerpt). ... 114

Figure 7-1: Discovery Framework Architecture... 132

Figure 7-2: Example of Discovery Memory organization. 137

Figure AnII-1: Discovery Main Window (general view). .. 183

Figure AnII-2: Discovery5 Console. .. 184

Figure AnII-3: DCPU and integrated debugger windows. 184

Figure AnII-4: Example of Driver Entry Call Graph (pre-Expanded) 185

Figure AnII-5: Example of Driver Entry Call Graph (Expanded) 186

Figure AnII-6: Dynamic Report ... 186

xvii

LIST OF TABLES

Table 4-1: Drivers in a Windows OS installation. .. 72

Table 4-2: Top 20 called DDK functions. .. 73

Table 4-3: Top 20 functions driver coverage. ... 73

Table 4-4: Fault type description. .. 74

Table 4-5: Expected failure modes. .. 75

Table 4-6: Observed failure modes. .. 78

Table 4-7 Return error (RErr) values. ... 81

Table 4-8 Return OK (ROk) values. .. 82

Table 5-1: Tested Wi-Fi frames. ... 91

Table 5-2: Tested Faulty Values. .. 92

Table 5-3: Expected failure modes. .. 94

Table 5-4: Detailed F1 failure mode. ... 94

Table 5-5: Observed Failure Modes in Scenario A. .. 99

Table 5-6: Observed Failure Modes in Scenario B and C. 101

Table 6-1: Device drivers under test. .. 108

Table 6-2: Average file transfer time and speed values. 109

Table 6-3: Statistics of resource allocation/deallocation. 114

xviii LIST OF TABLES

Table 6-4: Statistics of resource allocation/deallocation. 114

Table 6-5: Top 5 most used functions by each driver. .. 115

Table 7-1: Summary of Implemented Windows Emulator functions. 138

Table 7-2: List of Primitive Checkers. ... 143

Table 7-3: List of implemented validators and detectable flaws. 144

Table 7-4: DITC test values. ... 146

Table 7-5: IFTC combination values. .. 147

Table 7-6: Applicable call sequence test conditions (not exhaustive). 148

Table 7-7: Expected failure modes. .. 149

Table 7-8: Count of Lines of Code of Discovery. .. 150

Table 7-9: Characteristics of the BT DD. .. 151

Table 7-10: Imported functions test cases for BT. .. 152

Table 7-11: Discarded import functions test cases for BT (not exhaustive). 153

Table 7-12: BT Driver Interface and test cases. ... 153

Table 7-13: Example Test Set for BT and execution time. 154

Table 7-14: Detail of BT_TS1 Test Set ... 155

Table 7-15: Test Results for BT. ... 156

Table 7-16: Relation between the test sets and the identified errors. 157

Table 7-17: Characteristics of the SR DD. .. 158

Table 7-18: SR imported functions test cases. ... 159

Table 7-19: SR Driver Interface and test cases. ... 160

Table 7-20: SR Driver Interface and test cases (continued). 161

Table 7-21: Test Set for SR. ... 162

Table 7-22: Test Set for SR (continued). .. 163

Table 7-23: Test Results for SR. ... 164

Table 7-24: Execution time of Discovery during the loading process. 165

Table 7-25: Performance of Discovery during execution. 166

xix

LIST OF ALGORITHMS AND LISTINGS

List 2-1: DriverEntry prototype. ... 14

List 2-2: DRIVER_OBJECT definition (subset). .. 14

List 2-3: Struct device in Linux (sample). .. 17

List 2-4: Functions to register and unregister devices. ... 18

List 2-5: Struct device_driver in Linux (subset). .. 18

List 2-6: Functions to register and unregister DDs ... 19

List 7-1: TDiscoveryMemory definition (sample). .. 134

List 7-2: DCPU structure (sample). ... 135

List 7-3: TFuncTranslation – Linkage of imported functions. 139

xx LIST OF ALGORITHMS AND LISTINGS

LIST OF ACRONYMS

AP Access Point

API Application Programming Interface

BIOS Basic Input/Output System

BSS Basic Service Set

CWE Common Weakness Enumeration

DD DD

DDK DD Kit

DFI Dynamic Fault Injection

DMA Direct Memory Access

DPI Driver Programming Interface

DS Distribution System

ELF Executable and Linkable Format

EMI Electro-magnetic interference

xxii LIST OF ACRONYMS

FIS Fault Injection System

FL Fixed Length

FPGA Field Programmable Gate Array

FT Fault Tree

FTP File Transfer Protocol

GUI Graphical User Interface

HDL Hardware Description Language

HID Human Interface Device

IBSS Independent BSS

IC Integrated Circuit

ICs Integrated Circuits

IRQL Interrupt Request Level

IDE Integrated Drive Electronics

IMM Integrated Memory Management

I/O Input/Output

IP Internet Protocol

IPC Inter-process Communication

IRP I/O Request Packet

IRQ Interrupt Request

IRQL Interrupt Request Level

ISR Interrupt Service Routine

LLVM Low Level Virtual Machine

MAC Media Access Controller

MC Markov Chain

MMU Memory Management Unit

MTU Maximum Transmission Unit

LIST OF ACRONYMS xxiii

NAT Network Address Translation

NDIS Network Driver Interface Specification

NIC Network Interface Card

OS Operating System

PCC Proof-Carrying Code

PCI Peripheral Component Interconnect

PEF Portable Executable File Format

PnP Plug and Play

POSIX Portable Operating System Interface

RPC Remote Procedure Call

RTL Register Transfer Level

SCSI Small Computer System Interface

SMP Symmetric Multi-Processing

STA Member Station

SUT System Under Test

SWIFI Software Implemented Fault Injection

TAP Test Access Ports

TCP Transmission Control Protocol

TLV Tag Length Value

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

VM Virtual Machine

VMM Virtual Machine Monitor

WDD Windows DD

xxiv LIST OF ACRONYMS

WDM Windows Driver Model

WLAN Wireless Local Area Network

xxv

LIST OF PUBLICATIONS

International Conferences

[P1] “Robustness Testing of the Windows DDK”, Manuel Mendonça and Nuno

Neves, In Proceedings of the 37th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, pp. 554-563, June 2007

[P2] “Fuzzing Wi-Fi Drivers to Locate Security Vulnerabilities”, Manuel Mendonça

and Nuno Neves, In Proceedings of the Seventh European Dependable

Computing Conference, pp. 110-119, May 2008

[P3] “Intercept – Profiling Windows Network Device Drivers”, Manuel Mendonça and

Nuno Neves, In Proceedings of the 14th European Workshop on Dependable

Computing, pp. 61-75, May 2013

National Conferences

[P4] “Testes de Robustez ao DDK do Windows XP”, Manuel Mendonça e Nuno

Neves, Actas da 2ª Conferência Nacional Sobre Segurança Informática nas

Organizações (SINO06), Aveiro, Portugal, October, 2006.

xxvi LIST OF PUBLICATIONS

[P5] “Localização de Vulnerabilidades de Segurança em Gestores de Dispositivos

Wi-Fi com Técnicas de Fuzzing”, Manuel Mendonça e Nuno Neves, Actas da

3ª Conferência Nacional Sobre Segurança Informática nas Organizações

(SINO07), Lisboa, Portugal, October, 2007.

Waiting submission result

[P6] “Discovery – Finding vulnerabilities in windows DDs without source code”,

Manuel Mendonça and Nuno Neves, manuscript.

1

CHAPTER 1 INTRODUCTION

Computers are common tools in modern life. In their short history, they have suffered

huge improvements achieving a very important role in our society, being used in a

wide variety of activities ranging from work to leisure.

Over the years, operating systems (OS) evolved their architectures to become,

as much as possible, independent from hardware in order to accommodate the

constant evolution of motherboards and connected devices. Their flexibility and

extensibility is achieved by the inclusion of device drivers (DD), which act as the

interface between the OS and the hardware.

Given the typical short life cycle of consumer electronics, system designers have

to constantly program new drivers. In parallel, OS developers have to maintain

compatibility with legacy DD, as it is practically impossible to rewrite them for a new

architecture, given that their design is normally dependent on low level details. To

accommodate the large number of devices that can be connected to a computer [1],

it is usually possible to find thousands of drivers included in an OS installation. These

aspects contribute to make DD the most dynamic and largest part of the OS

nowadays.

2 CHAPTER 1 - INTRODUCTION

Even though current drivers are mostly written in a high level language (e.g., C

or C++), they continue to be difficult to build and verify. Their development requires

knowledge from a set of disparate areas, including Integrated Circuits (ICs), OS

interfaces, compilers, and timing requirements, to name a few, which are often not

mastered simultaneously by programmers. In addition, maintaining such wide

variety of hardware makes DD development, maintenance and testing a very

expensive task.

Due to the above factors, it is not surprising that drivers can contain flaws in their

implementation. In some drivers, this can be particularly worrisome. For example, in

DD dedicated to assist communication hardware, errors may be remotely exploited.

In addition, users normally accept the installation of DDs without checking their

reliability, given that they are necessary to solve an immediate problem (e.g., being

able to use a certain device for which no driver was provided). Moreover, almost any

flaw in DD has a catastrophic impact because they run in the OS kernel.

Consequently, despite the efforts performed by both free and commercial OS

organizations, DD have been traditionally one of the most important causes of

failures in popular systems, such as Linux [2][3] and Windows [5].

It should be possible to design tools to identify errors in drivers, which users and

system administrators could rely on to evaluate DDs. However, the growing

complexity of both hardware and software tends to make the evaluation of

dependability attributes a hard task. The use of an analytical model is even more

difficult as the mechanisms involved in the fault activation and error propagation are

quite intricate and may not be completely understood. In order to make the analysis

feasible, sometimes simplifying assumptions have to be employed, with the cost of

reducing the applicability of the final results.

1.1 The Inherent Complexity of DDs

In most commodity OS, such as Windows and Linux, DD are passive objects build

as a collection of entry points that are invoked by the kernel when it needs a

particular service. The driver executes in the context of external OS threads. Even

if the driver creates one or more threads to handle auxiliary tasks, the driver logic is

invoked from the OS. This model enables the kernel to efficiently communicate with

the driver by invoking function calls, but it complicates driver programming as it

needs to be designed to handle multiple concurrent executions. DD are state-full

objects whose reaction to a request depends on the history of previous requests and

CHAPTER 1 - INTRODUCTION 3

replies. Thus, a driver must maintain its execution state across invocations using

state variables, which need to be stored in memory regions requested from the OS.

Additional constraints in timings and non-blocking further complicates the

management of the concurrency.

The development of DDs is nowadays performed using high-level languages

such as C or C++. The set of header files, source-code and other libraries requires

multiple files to be maintained, which can lead to complex makefiles (or projects). In

monolithic designs, such as in commodity OS, all the kernel functions run in

privileged mode. DD are extensions of the kernel code and they can perform direct

memory access operations (i.e., they can write in arbitrary locations of physical

memory), including over kernel data structures. Therefore, any bug in a DD can

potentially corrupt the entire system.

Debugging and testing a DD requires often the associated piece of hardware to

be present and to be responsive. The complexity associated with DD’s testing is

aggravated as most vendors do not release openly the hardware specification.

When they do, the specification many times contains inaccuracies and errors. In

most OS, the debugging and testing tasks usually involves the use of two machines

where one runs the debugger and the other is the target system where the driver is

executed. Often many hours of work are needed just to setup this debugging

environment. The debugging process itself is mostly done using a trial and error

approach, setting up break points and conditions that make the driver fail, and

restarting the target machine each time it hangs or crashes.

Maintaining driver code is also an issue. Due to the difficulties in driver

development, many times the code is adapted to new OS versions without taking

into consideration the novel features, which would recommend significant rework to

be performed. Sometimes there are even changes in the new OS versions that do

not maintain retro compatibility.

DD are complex to code, to debug and to maintain, and therefore are viewed by

even experienced programmers, system administrators and users as an obscure

and complex section of the OS. Over the year’s various initiatives and tools have

been created to assist in DD testing (many of them are reviewed later on in this

document). However, even in carefully tested DD, often it is still possible to find

flaws.

4 CHAPTER 1 - INTRODUCTION

1.2 Objective and Overview of the Work

This thesis is primarily motivated by the existence of errors in DD, their impact in the

OS stability and the security threats that these flaws may represent. It aims on one

side to assess how a faulty driver can compromise the correct execution of an OS,

and on the other side to develop mechanisms capable of discovering DD flaws. This

is especially relevant because it can help developers to build DD that operate in a

more dependable manner. Users and system administrators can also benefit from

such tools to both evaluate existing systems or before doing upgrades.

In our approach, we assume that all interactions with other drivers and

applications are performed with the OS acting as an intermediary. The detection of

DD flaws is performed mainly using techniques that do not require access to the

driver source code. Our solutions use as input the binary image of the DD and output

the set of problems that were identified. We are especially interested in supporting

systems where the source code is not available because it makes our solutions

applicable to a wider set of testing scenarios. We have chosen to focus the work on

Windows as it is one of the most widely used OS and in the majority of the cases

the source of the DD is not available.

We started the work with an investigation with the aim to understand how DD

flaws can impact the correct execution of an OS. To accomplish this, we have

performed a statistical analysis of the DD that exist in a Windows installation, and

then we have obtained the list of the most used OS functions. Next, we have

developed a mechanism that automatically builds DD and injects faults when those

drivers make function calls to the kernel. This approach differs from other robustness

tests performed in the past (see for instance [53][54]), in the sense that it does not

use an existing DD to insert the faults. Since we use synthetic drivers, our approach

ensures that the fault is always activated. The obtained results confirmed that a DD

can cause serious damage to the OS only by calling functions with invalid arguments

and provided insights of the most common DD bugs.

Secondly, we researched how to externally attack a DD. For this purpose, we

have developed the Wdev-Fuzzer architecture. Although it was built for Wi-Fi

networks, Wdev-Fuzzer can be easily adapted to other wireless network

technologies. The methodology consisted in injecting potential erroneous values in

the fields of the Wi-Fi frames, thus simulating an external attack. This allowed an

evaluation of the behaviour of a target system in the presence of frames that violate

the Wi-Fi specification. Our experiments with an HP PDA device revealed the

CHAPTER 1 - INTRODUCTION 5

existence of several types of problems, showing that this device could be

successfully attacked by a remote adversary.

Next, we wanted to understand the type of interactions that exist between a DD

and the OS. We developed a technique to control and interfere in the binary

execution of the DD under test (DDUT). For this, we have developed Intercept, a

system that wraps the execution of a Windows DD. A wrapper DD (WRDD) is used

to provide an execution environment for the DDUT, supporting the load of the DDUT

binary image into the address space of the WRDD and dynamically linking the DDUT

to the OS. The WRDD mediates all interactions between the DDUT and the OS and

is capable of recording the exchanged information and interfere with them. The

information collected by Intercept documents and clarifies the correct order of the

function calls, the parameters contents and return values. Additionally, Intercept

maintains statistical information of several OS objects usage, such as memory

allocation/deallocation and spinlocks. This type of information is useful in debugging

and reverse engineering the DD and OS. The interference capability of Intercept

supports the modification of parameters and return values passed in the function

calls (from the OS to the DDUT and vice-versa). This was used to test the DDUT,

but the likelihood of hanging or crashing the system is very high since an incorrect

parameter or return value could corrupt the kernel.

The results showed the profiling capability to inspect network traffic by accessing

with Intercept the data packets available in function parameters. It helped to

understand complex interactions with the OS, clarifying for instance the order of their

execution. Statistics maintained by Intercept helped to evaluate resource usage and

potential resource leakages during the DD activity. Using the interference

capabilities of Intercept, it was possible to test the behaviour of a Wi-Fi DD when

incorrect parameters are passed by the OS (in a simulated environment) and

uncover an incorrect order of parameter validations.

To overcome the difficulties related with the absence of the DD source code and

associated hardware, we have designed the Supervised Emulation Analysis

methodology. The methodology uses emulation with granular control over the

machine instructions and a set of validators capable of capturing low level errors.

Another set of validators acts whenever the DDUT calls an (emulated) OS function

to check the parameters against several constrains. A test manager stimulates the

DDUT at the exposed interfaces, mimicking the OS and controlling the return and

parameter values of the OS functions as well as the different DDUT code paths.

Tests performed with some off the shelf Windows DD confirmed the feasibility of the

6 CHAPTER 1 - INTRODUCTION

methodology and the capability in capturing DD errors (e.g., memory leaks) and

finding dormant and vulnerable code.

1.3 Structure of the Thesis

This thesis is organized as follows.

Chapter 2 provides an overview of the device driver organization. We start by

briefly describing Windows and Linux drivers to explain their structure and

relationship with the OS. The chapter continues by making references to

microkernels to get some insights on other alternative solutions. Microdrivers give

us another approach with the benefit of reducing the effects of faulty DD. The

chapter concludes with virtual machines, focusing on understanding how they

address the isolation of DD.

Chapter 3 is dedicated to the related work. It starts by providing some

introductory concepts and describes some of the key research areas to which this

thesis relates, such as fault injection, robustness testing, instrumentation, static and

dynamic analysis. It helps to understand some of the decisions taken during our

implementations as well as how the developed works position it in terms of

contributions.

Chapter 4 describes a solution for testing the Windows OS and its interfaces

through the Windows DD Kit. We present a novel technique to automatically build

test campaigns taking as input an XML description of the Windows functions. The

result of this research contributed to understand how the Windows OS handles faulty

DD, what are the main causes for the observed hangs and crashes, and the effects

on the file system.

Chapter 5 addresses attacks on Wi-Fi drivers using a new fuzzer architecture

that is able to build malformed packets and execute test cases against a target

system. The results revealed some disturbing conclusions over the possibility of

causing crashes in remote machines just by sending malformed packets with the

Wi-Fi protocol.

Chapter 6 takes us deeper in the interactions between the OS kernel and the DD,

and presents some of the necessary techniques to build a layer that can stand in

between these two components. Intercept is the resulting tool supporting the

discovery of flaws in DDs.

CHAPTER 1 - INTRODUCTION 7

Chapter 7 presents a methodology and framework that enable researchers to

locate errors and vulnerabilities in DD through the emulation of the OS and

hardware. We present the results obtained with some off the shelf Windows DD.

We conclude the thesis in chapter 8 with a summary of the investigation and a

description of future work.

8 CHAPTER 1 - INTRODUCTION

CHAPTER 2 DEVICE DRIVERS

Nowadays the three most used operating systems for personal computers are

Windows (88%), OSX (4%) and Linux (2%) [4]. However, OSX is a proprietary

operating system based in the Open Darwin Unix, thus having the same roots as

Linux. On the emerging market of mobile phones, tablets and other similar devices,

the share is around: Android (69%), iOS (26%) and Windows Phone (2%). Since

iOS is based on Open Darwin (Unix) and Android has its origins in Linux kernel 6

the same is to say that both platforms are based on Unix like systems. This justifies

the argument that nowadays Windows and Linux/Unix constitute the two major

families of devices drivers in the computer industry. There are however other

approaches to OS structure. For instance, instead of placing the DD as part of the

kernel code it can be implemented like any other user-space application, allowing

the driver to be started and stopped just as any other program.

This chapter starts with a short section on DDs organization. We will describe

what a DD is and focus the presentation on the structure and operation of DDs on

the more popular operating systems (Windows and Linux). This will help to

understand the internal architecture of this kind of software, its complexity and

reliability issues. More detailed information about Windows DDs can be obtained in

10 CHAPTER 2 - DEVICE DRIVERS

[163][160][161][162] and for Linux, information about drivers can be found in

[117][118][119].

The chapter continues with DD organization in Microkernels, as a solution to

provide the necessary level of isolation between the kernel and the DDs. We will

also describe Microdrivers as another proposal for isolating the DDs, while keeping

the performance of the system mostly unaffected. Finally, we will address Virtual

Machines as a new trend to abstract resources and how DDs play an important role

on the dependability of such systems.

2.1 Introduction

A device is a hardware piece attached to the computer, such as the keyboard, a

network card or a display card. A DD is operating system code that allows the

computer to communicate with a specific device. A DD consists of a set of functions

implementing its logic and provides services to the rest of the OS. On monolithic OS,

such as Windows and Linux, DDs can access the whole set of functions of the

kernel, not only those that are used to carry out operations in the kernel space, but

also in the application space.

DDs can be organized in several functional classes, like Memory Management,

Interrupt Management, File System Management, and Control Block Management.

Two main categories of drivers can be distinguished:

• Software drivers that have no direct access to the hardware layer of the

devices, but rather to an abstraction (e.g., TCP/IP stack or file system);

• Hardware drivers that interact with hardware devices, either peripheral (e.g.,

network, disk, printer, keyboard, mouse or screen) or internal to the

motherboard (e.g., bus or RAM).

In either case the drivers provide an abstract interface for the OS to interact with

the hardware and the environment. A DD can thus be considered as the lowest level

of software as it is directly bound to the hardware features of the device. Each driver

manages one or more pieces of hardware while the kernel handles process

scheduling, interrupts, etc. The operating system kernel can be considered a

software layer running on top of DDs.

Depending on the type of device, the DD can operate in two different ways. In the

first one, the driver accesses the device in a periodic fashion (pooling) - the driver

programs a timer with a pre-defined value and whenever the timer expires the device

is checked to see if it needs servicing. In the second way, the device triggers an

CHAPTER 2 - DEVICE DRIVERS 11

interrupt to request the processor’s attention. Each interrupting device is assigned

an identifier called the interrupt request (IRQ) number. When the processor detects

that an interrupt has been generated on an IRQ, it stops the current execution and

invokes an interrupt service routine (ISR) registered by the associated driver to

attend to the device. In either case, these critical pieces of code must be quickly

executed to prevent the whole system from being stopped.

The communication between the driver and the device is performed through read

and writes in a set of registers. These may be mapped onto the memory of the

computer or use a special set of read and write functions. The rules that dictate when

a register can be accessed often include specific conditions on the logical state of

the device. Some registers cannot be accessed when the device interrupts are

turned on. Others do not have meaningful information unless other registers are

read or written first.

A register may be readable, writable or both. Registers have specific length, and

each bit may have particular meanings that may change depending on a read or

write operation. The number of bytes that can be written and read simultaneously

depends on the physical architecture of the computer.

A readable register may have a specified set of values that might be read from it.

Correspondingly, a writable register may only safely accept a specific set of values.

Outside of that interval the value might cause unknown or unwanted behaviour.

When a driver fails to meet the specification for its associated device, the device can

be placed in an invalid state where it becomes damaged or restarts potentially

causing data loss.

Typically, the kernel features three main interfaces with the environment:

• The hardware layer where interactions are made via the raising of hardware

exceptions and transferring data through registers;

• The Application Programming Interface (API) where the main interactions

concern the application to kernel calls and,

• The interface between the drivers and the kernel, offered by the Driver

Programming Interface (DPI).

In most popular operating systems, the kernel and drivers are executed in

privileged mode, whereas application processes are run in a restricted address

space in non-privileged mode. This reduces the risk of an application process to

corrupt the kernel address space. On the other hand, since DDs execute in kernel

space, any faulty behaviour is likely to impact the operation of the system.

12 CHAPTER 2 - DEVICE DRIVERS

Programming drivers with languages (such as C) that use pointer arithmetic without

Integrated Memory Management (IMM) represent a special threat because it is easy

to make unnoticed mistakes that corrupt the kernel.

2.2 Windows Device Drivers

The Windows Driver Model (WDM) defines a unified approach for all kernel-mode

Windows drivers. It supports a layered driver architecture in which every device is

serviced by a driver stack. Each driver in this chain isolates some hardware-

independent features from the drivers above and beneath it, avoiding the need for

the drivers to interact directly with each other. The driver manager is in charge of

automatically detecting the match between installed devices and the drivers.

Moreover, it finds out the dependencies between drivers such that it is able to build

the stack of drivers.

The WDM has three types of DDs, but only a few driver stacks contain all kinds:

• Bus driver – There is one bus driver for each type of bus in a machine (such

as PCI, PnP and USB). Its primary responsibilities include: the identification

of all devices connected to the bus; respond to plug and play events; and

generically administer the devices on the bus. Typically, these DDs are

provided by Microsoft;

• Function driver – It is the main driver for a device. Provides the operational

interface for the device, handling the read and write operations. Function

drivers are typically written by the device vendor, and they usually depend

on a specific bus driver to interact with the hardware;

• Filter drivers – It is an optional driver that modifies the behaviour of a device.

There are several kinds of filter drivers such as: lower-level and upper-level

filter drivers that can change input/output requests to a particular device.

The WDM specifies an architecture and design procedures for several types of

devices, like display, printers, and interactive input. For network drivers, the Network

Driver Interface Specification (NDIS) defines the standard interface between the

layered network drivers, thereby abstracting lower-level drivers that manage the

hardware from upper-level drivers implementing standard network transports (e.g.,

the TCP protocol).

CHAPTER 2 - DEVICE DRIVERS 13

Three types of kernel-mode network drivers are supported in Windows:

• Miniport drivers - A Network Interface Card (NIC) is normally supported by

a miniport driver that has two basic functions: manage the NIC hardware,

including the transmission and reception of data; interface with higher-level

drivers, such as protocol drivers through the NDIS library. The NDIS library

encapsulates all operating system routines that a miniport driver must call

(functions NdisMXxx() and NdisXxx()). The miniport driver, in turn,

exports a set of entry points (MPXxx() routines) that NDIS calls for its own

purposes or on behalf of higher-level drivers to send packets.

• Protocol Drivers - A transport protocol (e.g., TCP) is implemented as a

protocol driver. At its upper edge, a protocol driver usually exports a private

interface to its higher-level drivers in the protocol stack. At its lower edge, a

protocol driver interfaces with miniport drivers or intermediate network

drivers. A protocol driver initializes packets, copies data from the application

into the packets, and sends the packets to its lower-level drivers by calling

NdisXxx() functions. It also exports a set of entry points

(ProtocolXxx() routines) that NDIS calls for its own purposes or on

behalf of lower-level drivers to give received packets.

• Intermediate Drivers - These drivers are layered between miniport and

protocol drivers, and they are used for instance to translate between

different network media. An intermediate driver exports one or more virtual

miniports at its upper edge. A protocol driver sends packets to a virtual

miniport, which the intermediate driver propagates to an underlying miniport

driver. At its lower edge, the intermediate driver appears to be a protocol

driver to an underlying miniport driver. When the miniport driver indicates

the arrival of packets, the intermediate driver forwards the packets up to the

protocol drivers that are bound to its miniport.

Windows DD structure

Windows DDs expose functions that provide services to the OS. However, only one

function is directly known by the OS, as it is the only one that is retrieved from the

binary file when the driver is loaded. By convention, the function name is

DriverEntry() and is defined as represented in List 2-1.

14 CHAPTER 2 - DEVICE DRIVERS

1 NTSTATUS DriverEntry(

2 _In_ struct _DRIVER_OBJECT *DriverObject,

3 _In_ PUNICODE_STRING RegistryPath

4)

List 2-1: DriverEntry prototype.

This function is called when the OS finishes loading the binary code of the driver,

and its role is to initialize all internal structures of the driver and hardware, and

register to the OS the exported driver functions.

The DriverObject parameter contains the fields that DriverEntry must fill

in order to register the functions to the OS. A subset of the DriverObject type

parameters is represented in List 2-2.

1 typedef struct _DRIVER_OBJECT {

2 //Sample of the structure with several fields omitted

3 //Driver name

4 UNICODE_STRING DriverName;

5

6 //Registry support

7 PUNICODE_STRING HardwareDatabase;

8

9 //For registering the unloading function

10 PDRIVER_UNLOAD DriverUnload;

11

12 //For registering the dispatch routines

13 PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION

14 + 1];

15 } DRIVER_OBJECT

List 2-2: DRIVER_OBJECT definition (subset).

The DriverUnload function from the above structure is set with the address

of the function that should be called when the operating system decides to unload

the driver. Typically, this routine is in charge of returning to the operating system all

the resources that are held by the driver.

The MajorFunction field is a dispatch table consisting of an array of entry

points for the driver's DispatchXXX routines. The array's index values are the

IRP_MJ_XXX values representing each I/O Request Packet (IRP) major function

code. Each driver must set entry points in this array for the IRP_MJ_XXX requests

that the driver handles.

CHAPTER 2 - DEVICE DRIVERS 15

The Windows kernel sends IRP to the drivers containing the information of the

desired dispatch function to be executed. The following are examples of the IRP

codes and intended execution functions (not exhaustive):

• IRP_MJ_WRITE: Transfers data from the system to the drivers’ device;

• IRP_MJ_READ: Transfers data from the device to the system;

• IRP_MJ_PNP: Plug and play support routine.

In the case of miniport drivers following the NDIS specification, the

DriverEntry()function, in addition to what was described previously, initializes

all internal structures of the driver and hardware, and calls the

NdisMRegisterMiniportDriver() of the OS to indicate the supported driver

functions. Examples of miniport driver functions that are registered in the NDIS are

MPInitialize() and MPSendPackets(). The first is used to initialize NDIS

structures and functions’ registrations and the second is used to send packets

through the NIC.

Windows DDs file structure

Windows normally organizes a DD as a group of several files. Files with the

extension .inf contain plain text and are divided in several sections. They have

relevant context data such as the identifier of the vendor of the driver, the type and

the compatibility with devices, and start-up parameter values. They are used during

driver installation to match devices with drivers and to find the associated .sys files.

Files with the extension .sys are the binary executable images of the driver and

they are loaded to memory to provide services to the OS. The binary files follow the

Portable Executable File (PEF) format [62], the same format used to represent

applications .exe and dynamic link libraries .dll.

The PEF file structure contains binary code and dependencies from other

software modules (organized as tables). The binary code is mostly ready to be

loaded into memory and run. However, since it can be placed anywhere in memory,

there is the need to fix up the relative addresses of the function calls. Functions that

refer to external modules are located in the imported functions table. This table

contains the names of the external modules (DLLs, .sys, .exe), the function

names and the address location in the memory of the running system. The

addresses are resolved by the driver loader when it brings the driver in memory.

16 CHAPTER 2 - DEVICE DRIVERS

The driver is placed in execution by calling the DriverEntry() function. The

address of this function is also obtained from the PEF file, and is located in the

AddressOfEntryPoint field of the Optional Header section of the .sys file.

Knowing this structure allows external systems to interface the driver code without

having its source code, which is useful when designing solutions to discover

vulnerabilities and other defects in DDs (as is our case).

2.3 Linux Modules

The Linux kernel is a Unix-like operating system kernel initially created in 1991 that

rapidly accumulated developers and users, who adapted code from other free

software projects for use with the new OS. The Linux kernel is released under the

GNU General Public License version 2, making it free and open source software.

Linux has the ability to extend the set of features offered by the kernel at run time.

Each piece of code that can be added to the kernel at runtime is called a module.

Each module is made up of object code (not linked into a complete executable) that

can be dynamically linked to the running kernel by the insmod program and can be

unlinked by the rmmod program.

Linux distinguishes three fundamental device types. Each module usually

implements one of these types, and thus is classified as a char module, a block

module, or a network module. This division is not rigid as programmers can choose

to build modules implementing different drivers in a single piece of code. However,

good programming practices advice that a different module should be created for

each new functionality that is implemented, since decomposition is a key element of

scalability and extendibility.

A character (char) device is one that can be accessed as a stream of bytes (like

a file). A char driver is in charge of implementing this behaviour. Such a driver usually

implements at the least the open, close, read and write system calls. Char

devices are accessed by means of file system nodes, such as /dev/tty1. The

distinguishing difference between a char device and a regular file is that in a regular

file it is always possible to move back and forth, whereas most char devices are just

data channels and therefore it is only possible to access them sequentially1.

1 There are however devices where it is possible to move back and forth. This usually applies

to frame grabbers where the applications can access the whole data using mmap or

lseek.

CHAPTER 2 - DEVICE DRIVERS 17

Like char devices, block devices are accessed by file system nodes in the /dev

directory. A block device is a device that can host a file system. In most Unix

systems, a block device can only handle I/O operations that transfer one or more

blocks of data. However, Linux allows applications to read and write a block device

like a char device permitting the transfer of any number of bytes at a time. Block and

char devices only differ in the way data is managed internally by the kernel, as they

have a different kernel/driver software interface.

Any network transaction is made through a device that is able to exchange data

with other hosts. A network interface is in charge of sending and receiving data

packets driven by the network subsystem of the kernel, without knowing how

individual transactions map to the actual packets being transmitted. Network devices

are, usually, designed around the transmission and receipt of packets, although

many network connections are stream-oriented.

Some types of drivers work with additional layers of kernel support functions for

a given device, and thus can be classified in other ways. For instance, one can talk

about the USB modules, serial modules or SCSI modules.

Linux module structure

The 2.6 Linux device model provides a unified device model for the kernel,

introducing abstractions that feature out commonalities from DDs. The device model

is composed by different components such as udev, sysfs, kobjects, and

device classes having effect on key kernel subsystems such as /dev node

management, power management and system shutdown, communication with user

space, hotpluging, firmware download, and module auto load.

At the lowest level, every device in a Linux system is represented by an instance

of the struct device as represented in List 2-3.

1 struct device{

2 struct device *parent;

3 struct kobject kobj;

4 char bus_id[BUS_ID_SIZE];

5 struct bus_type *bus;

6 struct device_driver *driver;

7 void *driver_data;

8 void (*release)(struct device *dev);

9 /*Other fields omitted*/

10 };

List 2-3: Struct device in Linux (sample).

18 CHAPTER 2 - DEVICE DRIVERS

Next, we will perform a brief description of the fields of this structure for a better

understanding of the device model of Linux. There are many other struct device

fields but for simplicity they were omitted.

The device’s parent represents the device to which it is attached to. In most cases

a parent device is a bus or host controller. The kobject is a structure that

represents this device and links it into the hierarchy of devices. The

bus_id[BUS_ID_SIZE] is a string that uniquely identifies this particular device on

the bus. PCI devices use the standard PCI ID format containing the domain, bus,

device and function numbers. The struct bus_type *bus identifies the kind of

bus the device sits on. The struct device_driver *driver is the driver that

manages the device. The void *driver_data is a private data field that may be

used by the DD and the void (*release)(struct device *dev) is the

method that is called when the last reference to the device is removed.

At the least, the parent, bus_id, bus, and release fields must be set

before the device structure can be registered. Devices are registered and

unregistered using the functions device_register and device_unregister whose

signatures are represented in List 2-4.

1 int device_register (struct device *dev);

2

3 void device_unregister(struct device *dev);

List 2-4: Functions to register and unregister devices.

The device model tracks all the drivers known to the system to enable the match

between drivers with new devices.

A DD is defined by the structure listed in List 2-5.

1 struct device_driver{

2 char *name;

3 struct bus_type *bus;

4 struct list_head devices;

5 int (*probe)(struct device *dev);

6 int (*remove)(struct device *dev);

7 void (*shutdown)(struct device *dev);

8 /*Other fields omitted*/

9 };

List 2-5: Struct device_driver in Linux (subset).

CHAPTER 2 - DEVICE DRIVERS 19

The main fields of the struct device_driver have the following use: The

name is the name of the driver that shows up in the sysfs; bus is the type of bus

that this driver works with; devices is a list of all devices currently bound to this

driver. The structure also contains some functions used to manage the device. For

example, probe is called to query the existence of a specified device and whether

this driver can work with it; remove is called when the device is removed from the

system; and shutdown is called at shutdown time to inactivate the device.

Drivers are registered and unregistered using the functions listed in List 2-6.

1 int driver_register (struct device_driver *drv);

2

3 void driver_unregister(struct device_driver *dev);

List 2-6: Functions to register and unregister DDs

As an example, we are going to briefly describe how the PCI subsystem interacts

with the driver model, introducing the basic concepts involved in adding and

removing a driver from the system. These concepts are also applicable to all other

subsystems that use the driver core to manage their drivers and devices.

A Linux DD needs to have at least a function that is called when the driver is

loaded (e.g., enter_func), and another when the driver is unloaded (e.g.,

exit_func). During the compilation of the code, the compiler identifies the

initialization function when it finds the directive module_init(init_func).

Similarly, the compiler identifies the unloading function when the

module_exit(exit_func) directive is processed.

The init_func() is where the DD initializes the peripherals and ties the driver

to the rest of the system, by registering the functions that the DD offers to the OS in

the available interfaces. The OS calls the init_func, which in turn will call the

function __pci_register_driver(struct pci_driver*, struct

*module, const char *mod_name) to link the driver with the system. Therefore,

all PCI drivers must define a struct pci_driver variable that specifies the

various functions that the PCI driver can support during the driver loading.

The struct pci_driver contains two important members used for completing

the connection of the DD with the OS:

• .id_table: A structure that holds elements that the OS uses to match the

identification of the vendor and device with the driver;

20 CHAPTER 2 - DEVICE DRIVERS

• .probe: A function called by the OS to announce to the DD that it should

complete the matching process and tell to the OS if the DD can handle the

PCI device. This function is called right after the registration process of the

driver with the system when it finds a device that may be served by the

recent register DD.

Depending on the hardware of the PCI card, the DD registers other structures

with the OS for managing the device, for instance, struct ethtool_ops is used

for the OS to control the PCI communication cards, and struct iw_handler_def

to control the Wi-Fi structure. The OS uses other functions assigned to struct

pci_driver, such as open(), read(), ioctl() and write(), through which

it can interact with the driver in a standardized way.

Removing a driver starts when the OS calls the exit_func. The driver then calls

the pci_unregister_driver operation, which merely calls the driver core

function driver_unregister. The driver_unregister function handles some

basic housekeeping, such as cleaning up some sysfs attributes that were attached

to the driver’s entry in the sysfs tree. It then contacts all devices that were attached

to the driver and calls the respective release function.

2.4 Microkernels

Microkernels were developed with the idea that traditional operating system

functionality, such as DDs, protocol stacks and file systems, would be implemented

as a user-space program, allowing them to be executed like any other process. This

would not only simplify the implementation of these services but also support

performance tuning without worrying about unintended side effects. Additionally,

robustness and reliability could be enhanced because these services would no

longer be able to perform direct memory access operations into the OS, writing to

arbitrary locations of physical memory, including over kernel data structures.

There are many good reasons for running DDs at user level, such as:

• Ease of development: If a driver is a normal user process it can be developed

and debugged with well-known and common tools. On the contrary, in-kernel

driver development requires a specific development and debugging environment

(typically involving more than one machine). Furthermore, since in-kernel drivers

can cause kernel malfunctions in unrelated kernel components, identifying the

source of the fault can be much difficult.

CHAPTER 2 - DEVICE DRIVERS 21

• Maintainability: In systems like Linux, where the kernel and its internal

interfaces change quickly, keeping drivers that depend on these interfaces can

be a challenge due to the large number of dependencies that many DDs have

[107]. A user-level API that formally isolates the driver interface reduces (or

eliminates) these dependencies and at the same time would make them more

portable across kernel versions. User-level drivers could also be written in any

high-level language.

• Dependability: An in-kernel driver handles interrupts running on the stack of

the process that was interrupted, and since it may not block, this requires very

careful resource management to avoid unfairly blocking the current process or

dead locking the kernel. User-level drivers run in their own context avoiding the

issue of blocking in the interrupt handler and simplifying dead lock prevention.

Additionally, normal OS resource management, including better control over

resource consumption and protection against resource leaks, can be applied to

user-level drivers. Hence, user-level drivers have the potential to improve system

reliability. Moreover, in case of problems, a system may be able to survive a

crashed user-level driver as the arguments made in favour of recursive restart

apply to user-level drivers [108].

• Portability: In-kernel drivers have to be compiled for a particular kernel; when

the kernel is updated, the end-user has to either recompile the driver (in case of

Linux where source code is more likely to be available) or obtain a new one from

the vendor. If the driver is in user space, it depends only on the user-driver API

and so the same driver binary can continue to be used.

Mach [104][105] and Chorus [106] are two early examples of microkernel

systems to take this approach.

MINIX3 [69][70] wanted to mitigate systems crashes due to buggy DDs, through

the design and implementation of a fully compartmentalized operating system. The

approach was to reduce the kernel to an absolute minimum and running each driver

as a separate, unprivileged user-mode process.

The microkernel of MINIX3 is responsible for the low-level and privileged

operations such as programming the CPU and MMU, handling the interrupts and

perform inter-process communication. Servers provide the file system, process

management and memory management functionalities. A database server is used

to keep information about system processes with publish-subscribe functionalities.

System processes can use it to store some data privately, for example, a restarting

22 CHAPTER 2 - DEVICE DRIVERS

system service can request state that it lost when it crashed. The system also

contains a server that keeps track of all other servers and drivers running that can

transparently repair the system when certain failures occur. System calls are

transparently targeted to the right server by the system libraries.

The publish-subscribe mechanism decouples producers and consumers. A

producer can publish data with an associated identifier. A consumer can subscribe

to selected events by specifying the identifiers or regular expressions it is interested

in. Whenever a piece of data is updated it automatically broadcasts notifications to

all dependent components.

On top of the kernel a POSIX-conformant multi-server operating system was

implemented. All servers and drivers run as independent user-mode processes and

are highly restricted in what they can do, just like ordinary user applications. The

servers and drivers can cooperate using the kernel’s Inter-Process Communication

(IPC) primitives to provide the functionality of an ordinary UNIX operating system.

Several drivers were implemented running as an independent user-mode

process to prevent faults from spreading and make it easy to replace a failing driver

without a reboot. Although not all driver bugs can be cured by restarting the failing

driver, the authors of MINIX3 assume that the majority of driver bugs are related with

timing and memory leaks for which a restart is usually enough.

Although conceptually microkernels are to provide the necessary level of

isolation, it can come with the price of performance degradation and difficulties in

porting the approach to other architectures. None of the early attempts to run drivers

outside of the kernel, as unprivileged user code, has made a lasting impact.

Therefore, user-level drivers remain an exception in conventional systems and used

only for devices where performance is not critical or where the number of context

switches is small compared with the work that it does (for instance, the Linux X

server or some printer drivers in Windows, to name a few).

2.5 Microdrivers

The common approach taken by commodity monolithic operating systems is for the

kernel to execute in privileged mode, controlling all system resources and isolating

them from the user application behaviour.

Traditionally, DDs have been implemented as part of these kernels and there are

many reasons that justify this approach: they had full access to all system resources

which typically simplifies implementation and minimizes overhead; use of the

CHAPTER 2 - DEVICE DRIVERS 23

operating system mechanisms for multitasking, synchronization, memory

management, I/O transfer and others. However, as previously described, this model

allows a fault in a DD to potentially crash the whole system.

Taking into consideration that most driver code moves data between memory

and an external device it is possible to partition the DD. In the Microdrivers

architecture [71], a DD is split into a kernel-level k-driver and a user-level u-driver.

Critical path code, such as I/O, and high-priority functions, such as interrupt

handling, are implemented in the k-driver. This code enjoys the full speed of a purely

kernel driver. The remaining code, which is invoked infrequently, is implemented in

the u-driver and executes outside the kernel in a user-mode process. When

necessary, the k-driver may invoke the u-driver.

The authors propose the use of a tool, DriverSlicer, to transform existing drivers

into a Microdriver architecture. In the first phase, the tool partitions an existing code

such that performance critical functions remain in the kernel. The split aims to

minimize the cost of moving data and control along the performance critical path.

Rarely used functions, such as those for start-up, shutdown and device configuration

are relegated to the u-driver.

The slicing operation is performed using as input a programmer-supplied

interface specification to identify the set of critical root functions for the driver. These

are driver entry points that must execute in the kernel and include high priority

functions or functions called along the data path. Because these functions typically

have a standard prototype, the programmer supplies interface specifications as type

signatures. The splitter automatically marks functions that match these type

signatures as critical root functions.

In the second phase Driver Slicer uses the output of the splitter where each node

of a call graph is marked kernel or user, based upon whether the corresponding

function must execute in the k-driver or the u-driver. The code generator identifies

interface functions and generates code to transfer control. An interface function is a

function marked user that can potentially be called by a function marked kernel, or

vice-versa. Non-interface functions are never called by functions implemented on

the other side of the split, and thus does not need stubs for control or data transfer.

The final transformation of the existing code into the Microdriver approach

requires the programmer to complement the driver code which can be performed

using user-level debugging and instrumentation aids. In fact, the costs of the

Microdrivers architecture are the burden on programmers to convert existing drivers

to Microdriver’s, in the form of annotating driver and kernel code.

24 CHAPTER 2 - DEVICE DRIVERS

Over the years, the Microdriver architecture was further extended. Security

mechanism were introduced in Microdrivers architecture mediating and checking the

communication between the u-driver and the corresponding k-driver [72]. In this

model, the authors introduced a technique to automatically infer data structure

integrity constraints to be enforced by the Remote Procedure Call (RCP). A u-driver

communicates with the corresponding k-driver through RPC. When the k-driver

receives a request from the kernel to execute functionality implemented in the u-

driver, such as initializing or configuring the device, it forwards this request to the u-

driver. Similarly, the u-driver may also invoke the k-driver to perform privileged

operations or to invoke functions that are implemented in the kernel. However, the

u-driver is untrusted and all requests that it sends to the k-driver must be monitored.

The RPC monitor ensures that each message conforms to a security policy and

checks both data values and function call targets in these messages. The RPC

monitor also ensures that the k-driver function calls that are invoked by the u-driver

are allowed by a control transfer policy that is extracted using static analysis of the

driver.

Decaf drivers [73] further extends the Microdrivers architecture to allow existing

Linux kernel drivers to be incrementally converted to Java programs in user mode.

The aim is to improve driver reliability through simplifying driver development and

allowing most driver code to be written in user level languages, to take advantage

of the language’s type and memory protections.

2.6 Virtual Machines

Virtualization is the simulation of a hardware platform, storage devices and network

resources. It has been a subject of research for more than forty years [113].

Nowadays, where computers are sufficiently powerful, virtualization can be used to

present the illusion of running several operating systems instances in one single

machine. IBM VM/370 [109] was one of the first systems to use virtualization to

support the execution of legacy code.

Platform virtualization is performed on a given hardware by a Virtual Machine

Monitor (VMM) or Hypervisor, which creates a simulated computer environment –

the Virtual Machine (VM). In a virtualized environment, it is desirable to run DDs

inside the VM, rather than in the VMM, for reasons of error containment and

reduction in the software engineering effort. By running the drivers in a VM, a bug in

the driver does not compromise the VMM or the others VM. It also avoids the re-

CHAPTER 2 - DEVICE DRIVERS 25

implementation of the entire driver infrastructure in the VMM, and instead, there is

simply a reuse of the driver support already present in the guest operating system.

One of the major sources of performance degradation in virtual machines is the

cost of virtualizing I/O devices to allow multiple guest VMs to securely share them.

While the techniques used for virtualizing CPU and memory present near native

performance [110][111][112], it is challenging to efficiently virtualize most I/O

devices. Each interaction between a guest OS and an I/O device needs to undergo

a costly interception and validation by the virtualization layer (VMM and VM) to

ensure isolation, data multiplexing and demultiplexing.

Xen [110] is an x86 VMM that can run many instances of different operating

systems in parallel on a single physical machine (host). The XEN VMM runs

immediately after the bootloader during the machine start-up. It executes directly on

the host hardware and is responsible for handling CPU, memory and interrupts.

Supervised by the VMM, XEN runs several instances of domains (VM) totally

isolated from the hardware, which means that they have no privilege to access the

existing devices or I/O functionalities. However, Domain 0 is a specialized VM with

special privileges to directly access the hardware, handling access to the system’s

I/O functions and interaction with other VM. The Domain 0 kernel contains the

drivers for all the devices in the system and also has a set of control applications to

manage the creation, destruction and configuration of VM. Figure 2-1 depicts the

XEN architecture.

Xen supports two virtualization techniques: i) hardware assisted virtualization

and ii) paravirtualization. The first approach resorts to extensions recently

introduced in the machines, namely the Intel VT or AMD-V hardware extensions. In

this mode, XEN uses Qemu [168] to emulate the PC hardware, including the BIOS,

IDE disk controller, VGA graphic adapter, and other devices. This technique does

not require any change on the OS that runs in the VM. However, due to the full

emulation overhead, virtualized VM are usually slower.

Paravirtualization is a virtualization technique that presents a software interface

to virtual machines that is similar, but not identical to that of the underlying hardware.

The intention is to reduce the portion of the guest's execution time spent performing

operations that are substantially more difficult to run in a virtual environment

compared to a non-virtualized environment. The paravirtualization provides specially

defined routines to allow the guest and host to request and acknowledge these

tasks, which would otherwise be executed in the virtual domain degrading

performance. A paravirtualized platform may allow the VMM to be simpler, shifting

26 CHAPTER 2 - DEVICE DRIVERS

the execution of critical tasks from the virtual domain to the host domain, and/or

reduce the overall performance degradation of machine-execution inside the virtual-

guest.

Figure 2-1: Xen architecture.

Paravirtualization requires a XEN paravirtualized-enabled kernel and

paravirtualized drivers so that the VM is aware of the VMM and can run efficiently

without virtual emulation of the hardware. The same is to say that changes need to

be performed to the OS running on paravirtualized VM. XenoLinux was the first

paravirtualized enabled kernel.

The Xen VMM uses an I/O architecture that is similar to the hosted VMM

architecture [114]. As depicted in Figure 2-2, it employs privileged domains, called

Driver Domains, which uses a Linux native DD to access I/O devices directly, and

perform I/O operations on behalf of other unprivileged domains, called Guest

Domain. The guest domains resort to virtual I/O devices controlled by paravirtualized

drivers to request the driver domain for access to devices.

To virtualize network access, Xen provides each Guest Domain with a number

of virtual network interfaces, which the Guest Domain uses for all its network

communication. Each virtual interface in the Guest Domain is connected to a

corresponding backend network interface in the Driver Domain, which in turn is

XEN VMM

Scheduler

Domain 0 Domain 1

Domain 0 kernel Domain 1 OS

MMU

H/W (I/O, memory, CPUs)

Control tools Applications

Domain N

Domain N OS

Applications...

CHAPTER 2 - DEVICE DRIVERS 27

connected to the physical network interfaces trough bridging, IP routing or NAT

based solutions.

Figure 2-2: Xen network driver organization.

Data transfer between the virtual and backed network interface is achieved over

an “I/O channel”, which uses a zero-copy page remap mechanism to implement the

data transfer. The combination of page remapping over the I/O channel and packet

transfer over the bridging provides a communication path for multiplexing and

demultiplexing packets between the physical interface and the guest’s virtual

interface.

Several research works showed that Driver Domains run with poor performance

[74][75] and therefore, there were alternatives proposals for XEN aiming to improve

efficiency. For example, TwinDrivers [75] semi-automatically partitions DDs into a

performance-critical part and a non-performance-critical part. In this approach, Xen

runs the performance-critical part of the DD inside the VMM and the no-

performance-critical part in the Driver domain.

Despite the advantages of a virtualized system a fault in a VMM’s DD can affect

all other VMs. Although the VMM is relatively reliable because it is developed and

published by a closed group, and subject to a lot of tests, the DD codes, used either

by the VMM or privileged VM are mostly unreliable, since most DDs are developed

independently by other groups.

Bridge

Driver Domain

NIC driver
Backend
Interface

Guest Domain

Virtual
Interface

Guest Operating System
kernel

I/O Channel

XEN VMM

Hardware
Physical

NIC

28 CHAPTER 2 - DEVICE DRIVERS

Figure 2-3: VMware architecture.

VMware [111][112] is one of the most popular software platform that allows

multiple virtual machines to share hardware resources on a single hardware. The

execution schedule and the sharing of resources give the illusion that each VM is

running directly on a dedicated hardware platform. Unlike Xen, where the VMM

relies on a separate operating system in the Domain 0, VMWare was designed

specifically for virtualization with no need for another operating system.

The architecture of VMware is depicted in Figure 2-3. The implementation for I/O

was designed taking into consideration the need to handle performance critical

devices such as the network and disk. In this architecture, an I/O request issued by

a guest OS is first handled by the driver of the guest operating system in the VM.

Since the VMware emulates specific hardware controllers, the corresponding drivers

will be loaded in the guest VM.

The privileged IN and OUT instructions used by the virtual devices to request I/O

accesses are trapped by the VMM and handled by the device emulation code based

on the specific I/O ports being accessed. The VMM then calls the device

independent network or disk code to process the I/O request.

CPU Memory NIC Disk

Hardware

Server

NIC Driver Disk Driver

Memory
emulation

NIC
emulation

Disk
emulation

CPU
emulation

Virtual Machine

Drivers

Virtual Machine

Drivers

Virtual Machine

Drivers

Other
hardware
emulation

Other
hardware

Guest Operating System Guest Operating System Guest Operating System

VMM

CHAPTER 2 - DEVICE DRIVERS 29

This approach, allows for unmodified operating systems to run in each VM:

• The drivers used by the guest operating system will most likely be always

the same, since the architecture always presents the same emulated

devices. Since these drivers will be used by most, if not all implementation

solutions, a bug present in these drivers can potentially affect all such

systems.

• The drivers used by the VMM are designed targeting specific hardware and

maintaining the same upper interface and these drivers need to be

developed and maintained by VMware.

2.7 Summary

The Windows OS defines the WDM which provides a unified approach for all kernel-

mode DD. It consists in a layered driver architecture where every device is serviced

by a driver stack. The WDM specifies an architecture and design procedures for

several types of devices which implies a well-defined structure from which the DD

and the OS can interact.

Windows DDs expose functions that provide services to the OS. However, only

one function is directly known by the OS, as it is the only one that is retrieved from

the binary file when the driver is loaded. Other interface functions are registered by

the DD in the OS to service specific purposes depending on the DD type.

The executable file of a DD follows the same format used to represent

applications and dynamic link libraries. The executable file contains the binary code,

relocation information and dependencies of the DD from other software.

In Linux, a DD is named a “module” and consists in a piece of code that can be

added to the kernel at runtime. Linux modules follows a unified device model for the

kernel and contains abstractions that feature out commonalities from DDs. Similarly

to the Windows OS, the binary transport file of a Linux module is known and can be

interpreted to identify the sections of the binary machine code, relocation information

and dependencies.

30 CHAPTER 2 - DEVICE DRIVERS

In monolithic OS, DD share the same privileges as the remaining kernel

components. Therefore, an error in a DD (or module) can compromise the

dependability of a system. Microkernels were developed with the idea that OS

functionality, such as DDs, protocol stacks and file systems, would be implemented

as a user-space program, allowing them to be executed like any other process which

could minimize the consequence of errors in this type of software. Mach [104][105],

Chorus [106] and MINIX3 [69][70] are examples of microkernel systems to take this

approach.

In the Microdrivers architecture [71], a DD is split into a kernel-level k-driver and

a user-level u-driver. The critical path code, such as I/O, and high-priority functions,

such as interrupt handling, are implemented in the k-driver. This code enjoys the full

speed of a pure kernel driver. The remaining code, which is invoked infrequently, is

implemented in the u-driver and executes outside the kernel in a user-mode process.

When necessary, the k-driver may invoke the u-driver. Microdrivers is an approach

to isolate DD execution and minimize the effects of bugs in this type of software in

the dependability of the entire system.

Virtualization is the simulation of several system components, including the

hardware platform, storage devices and network resources. Platform virtualization

is performed on a given hardware by a Virtual Machine Monitor (VMM) which creates

a simulated computer environment – the Virtual Machine (VM). In a virtualized

environment, DDs run inside the VM, rather than in the VMM, for reasons of error

containment and reduction in the software engineering effort. By running the drivers

in a VM, a bug in the driver does not compromise the VMM or the others VM. Despite

the advantages of a virtualized system a fault in a VMM’s DD can affect all other

VMs. Although the VMM is relatively reliable because it is developed and published

by a closed group, and subject to a lot of tests, the DD codes, used either by the

VMM or privileged VM are mostly unreliable, since most DDs are developed

independently by other groups. Xen [110] is an x86 VMM that can run many

instances of different operating systems in parallel on a single physical machine

(host).

VMware [111][112] is a popular software platform that allows multiple virtual

machines to share hardware resources on a single hardware. Unlike Xen, where the

VMM relies on a separate OS in the Domain 0, VMWare was designed specifically

for virtualization with no need for another operating system. Since the VMware

emulates specific hardware controllers, the corresponding drivers will be loaded in

the guest VM. The privileged IN and OUT instructions used by the virtual devices to

CHAPTER 2 - DEVICE DRIVERS 31

request I/O accesses are trapped by the VMM and handled by the device emulation

code based on the specific I/O ports being accessed. The VMM then calls the device

independent network or disk code to process the I/O request.

The approach taken by VMware allows for unmodified operating systems to run

in each VM. The drivers used by the guest OS will most likely be always the same,

since the architecture always presents the same emulated devices. However, since

these drivers will be used by most, if not all implementation solutions, a bug present

in these drivers can potentially affect all such systems. Additionally, the drivers used

by the VMM are designed targeting specific hardware and maintaining the same

upper interface which requires these drivers to be developed and maintained by

VMware.

32 CHAPTER 2 - DEVICE DRIVERS

CHAPTER 3 RELATED WORK

The detection of vulnerabilities in DDs is related to several different research areas.

This chapter starts with a revision of some preparatory concepts, namely the ones

related to failures and vulnerabilities of systems. More detailed descriptions about

the basic concepts and taxonomy of dependable and secure computing can be

obtained in [6], and other definitions can be found in [7][8].

Then, the chapter gives an overview of fault injection techniques. We will see how

fault injection has been used as a methodology to evaluate systems dependability

at various development stages and a few selected works will be briefly explained.

We conclude this section with a description of the components that compose a

generic fault injection system.

The study on robustness testing is dedicated to the explanation of several

systems used in the measurement of how well a system operates when subjected

to the presence of exceptional inputs or a stressful environment.

We also talk about instrumentation and dynamic analysis. This is relevant for

understanding what kind of techniques can be employed to interact with DDs at

function level as well as how to control their execution.

34 CHAPTER 3 - RELATED WORK

The section related to DD execution isolation complements the study about DD

execution control, a trend that has been followed to increase the dependability of

systems by protecting them from malfunctioning drivers.

Static analysis addresses an approach for the verification of the reliability

properties of drivers by analysing the code without executing it while, at the same

time, inferring misbehaviours along the program’s control flow.

When addressing driver programming we overview some of the proposed

changes on DD construction as an approach to eliminate the root causes that lead

to driver failures, instead of dealing with their consequences.

3.1 Preparatory Concepts

A system is an entity that interacts with other entities, including, hardware, software,

humans, and the physical world. These other entities are the environment of the

given system. The common interface between the system and its environment is the

system boundary.

The function of a system is what the system is intended to do and is described,

in terms of functionality and performance, by its functional specification. The

behaviour of a system is what the system does to implement its function and is

described by a sequence of states. The state of a given system is composed by:

computation, communication, stored information, interconnection, and physical

condition. The external state is the part of the system that is perceived at the system

interface. The remaining is its internal state. The sequence of the system’s external

states, as it is perceived by the users, is the service delivered by that system. A

system can assume a role as a provider of services to other components and can

assume a role as a client that expects services from system providers. A system can

sequentially or simultaneously act as provider and client to other systems. The

structure of a system is the set of elements that is composed of and connected in a

specific manner. Thus, the system behaviour is a result of each component

individual behaviour combined according to its structure. This recursive

decomposition stops when an atomic element is found, i.e., an element that cannot

be decomposed in other systems or its composition can be ignored.

According to the Federal Standard 1037C, a fault is an accidental condition that

causes a functional unit to fail to perform its required function, a system defect [8].

In most cases, a fault causes an error in the internal state of a component and,

eventually may affect the external state. A fault is active when it causes an error,

otherwise it is dormant.

CHAPTER 3 - RELATED WORK 35

Faults can be characterized as a vector definition of several dimensions,

including:

• System boundary: internal or external to the system

Faults can be originated inside or outside the system’s boundary and can

result in errors propagated into the system by interaction or interface.

• Dimension: hardware or software

Hardware faults are related with the physical structure of the system,

electronic components and power. Software faults are related to programs

and logical conditions.

• Persistence: transitory, periodic or permanent

Faults can be transitory and therefore happen only when certain conditions

are meet and with a certain degree of probability. They may also be periodic,

and thus possible to forecast, or permanent and usually easier to detect.

• Level: degree of the manifestation

Fault levels are dependent on the fault dimension. For hardware faults, the

fault level measures the degree of a physical manifestation or

characterization of the system, such as tension, current, power, radiation or

environmental conditions. In software, the fault level measures the value of

a parameter or a return value, and depends on the parameter or return type

definition (integer, long, other value type).

A fault experiment is the insertion of one fault in the system under test (SUT) and

the registration of its behaviour and impact. A fault injection campaign is the set of

fault experiments used to exercise the SUT in order to achieve statistical confidence

in the analysis of its behaviour. The faultload is the set of faults that are used in the

fault injection campaign and the workload is the set of tasks that the SUT has to

perform during the experiment.

An error is a discrepancy between the intended system behaviour and its actual

behaviour. Errors occur at runtime when the system enters some undesired system

state due to the activation of a fault.

A failure is the temporary or permanent termination of the ability of an entity to

perform its required function. Failures happen because of hardware or software

problems. Hardware failures are originated by physical phenomena, provoked by a

faulty component that does not work like it should. Software failures are provoked

by errors in the program code or data.

Modern societies depend on computers for communications, banking systems,

social care, healthcare, and so many other different areas. The Dependability is

36 CHAPTER 3 - RELATED WORK

defined by the IFIP 10.4 Working Group on Dependable Computing and Fault

Tolerance [9] as:

"[...] the trustworthiness of a computing system which allows reliance to be

justifiably placed on the service it delivers [...]"

Dependability is therefore a fundamental attribute, and it can be characterized by

several properties, such as, availability – the readiness for correct service, reliability

– continuity of correct service, and safety – absence of consequences to the users

and the environment, Integrity – Absence of improper system alteration and

Maintainability – Ability to undergo modifications and repair.

Robustness is defined as the degree to which a system operates correctly in the

presence of exceptional inputs or stressful environmental conditions [37].

The term vulnerability, in computer security, can be explained as a weakness

that allows an attacker to compromise a system. In order to occur a security failure,

it is necessary a conjunction of a vulnerability fault and an attack that exploits this

weakness, leading to an error in the system. From this viewpoint, a vulnerability

represents a reduction of the system dependability attributes.

To exploit a vulnerability an attacker needs to have at least one tool and/or

technique that allow him to explore the vulnerability in the system. This may be

achieved either by gaining local physical access to the system or having a remote

link.

Vulnerabilities are usually expressed by a product vendor as a defect requiring a

patch, upgrade or a configuration change. This is the type of information that

attackers search to profile an attack. Once a vulnerability is discovered, it is only a

matter of time before an attacker develops a tool (worm, virus, file, information

packet, etc.) that can take advantage of the fault. Exploits created to take advantage

of these security vulnerabilities can lead to system compromise, non-availability,

data loss, exposure of confidential information, and other losses.

Vulnerability management is the process in which vulnerabilities in information

technology are identified and the risks of these vulnerabilities are evaluated. This

evaluation leads to correcting the vulnerabilities and removing the risk or a formal

risk acceptance by the management of an organization (e.g., in case the impact of

an attack would be low or the cost of correction does not outweigh possible damages

to the organization). The term vulnerability management is often confused with

vulnerability scanning. Despite the fact both are related, there is an important

difference between the two. Vulnerability scanning consists of using a computer

CHAPTER 3 - RELATED WORK 37

program to identify vulnerabilities in networks, computer infrastructure or

applications. Vulnerability management is the process surrounding vulnerability

scanning, also considering other aspects such as risk acceptance, remediation, etc.

3.2 Fault Injection

This section briefly reviews some of the work related with fault injection. A few of the

techniques and ideas introduced in this area were used in our research to uncover

DDs’ vulnerabilities.

Fault injection is the deliberate introduction of faults into a SUT to experimentally

validate its dependability. It is an important experimental technique that helps

researchers and system designers to study the behaviour of the system in the

presence of faults without having to wait for them to occur (which can take a long

time because they are typically infrequent). This approach can be applied during all

phases of the development process, including design, prototype and production

phases.

To take an experimental approach, it is essential to understand the system’s

architecture, structure, and behaviour, including the incorporated mechanisms for

fault detection and recovery. In what concerns to fault injection, the target system

may be classified in one of the following major types: i) Axiomatic models, ii)

Empirical processing models and iii) Physical systems.

Axiomatic models are used to describe the structure, dependability and

performance of the system behaviour in the form of reliability block diagrams, fault

trees, Markov graphs [148] or stochastic nets. Fault Trees (FT) are one of the most

used models for reliability analysis because they represent a high-level abstraction

of the system and can be solved using Binary Decision Diagram techniques.

However static FT cannot handle sequential and functional dependencies between

components. To overcome this lack of modelling power, a number of dynamic

methodologies have been developed and used for dependability analysis of dynamic

systems based on Markov Chains (MC) formalisms. On the other hand, as systems

being built are increasingly complex and large, they are becoming more difficult to

model and analyse. Manually generating an MC describing the system’s behaviour

is a daunting and an error prone task. Furthermore, MC are faced with state space

explosion problem where the states to be generated grows exponentially with the

number of components comprised in the system.

Empirical processing models incorporate complex or detailed behavioural and

structural descriptions that require a simulation approach to process them. When

systems are at the conceptual and design stages, simulation-based fault injection

38 CHAPTER 3 - RELATED WORK

tools can be used to evaluate the dependability of the system. In some cases, this

is the most suitable approach because it enables the testing of the system using

cost-effective tools. The results from the evaluation allow the design team to review

their implementation options, without having to compromise the project, as it might

happen at a more advanced phase. At this point, the system is a series of

abstractions and assumptions where most of the implementation details are still to

be defined.

Physical systems can correspond to prototypes or final systems that are

implemented in hardware and/or software. In this case, systems can be

distinguished as being composed of hardware-only, software-only, hardware and

software. The results obtained with simulation-based fault injection tools are often

biased by some design assumptions, since there are usually differences between

the model and the final implementation. When evaluating a prototype or final setup

system this effect usually disappears because the SUT corresponds to an instance

of the final version. This is important since the actual workload can impact on the

performance of the error handling mechanisms as pointed out by several studies

[10][11].

Simulation-Based Fault Injection

Computational models of systems and their implementation in simulation software

are used in testing during the early design phases, without the expense of

developing a prototype. They may present different levels of abstraction, such as,

device level, functional block-level, protocol level or system level. The level of detail

of the model influences the accuracy of its behaviour. Highly detailed models may

take too much time to simulate due to the size of the system’s activity. On the other

hand, lighter models may be faster to run but may not accurately represent the

systems mechanisms due to the implemented abstractions.

Simulation-based fault injection can be performed in simulators of the

computational models of the systems [13][14]. Here, the injection software may act

at different levels of abstraction, modifying the structural organization of the SUT,

the communication links between components, or the component models.

One representative solution that implemented simulation-based fault injection is

DEPEND [12]. It is an integrated simulation environment for the design and

dependability analysis of fault-tolerant systems. It provides facilities to rapidly model

a fault-tolerant architecture and conduct extensive fault injection studies. DEPEND

is a functional process-based simulation tool, where the system behaviour is

described by a collection of processes that interact with one another. To develop

CHAPTER 3 - RELATED WORK 39

and execute a model, the user writes a control program in C++, using the objects

available from the DEPEND library that simulate the hardware components (e.g.,

CPUs, communication channels and disks). The fault-tolerant characteristics of an

object, the type and the method by which faults are injected are also specified by

the user. The program is then compiled and linked with the DEPEND objects, and

the resulting model is executed in the simulated run-time environment. Here, the

assortment of objects, including the fault injectors, CPUs and communication links,

run simultaneously to simulate the functional behaviour of the complete system.

Faults are injected, according to the user's specification, and a report containing the

essential statistics of the simulation is produced. The results are then used by the

development team to perform the necessary corrections in the developing project.

Hardware Emulation Based Fault Injection

Simulation-based fault injection can be too time consuming as the system models

become excessively complex and detailed. Field Programmable Gate Array (FPGA)

circuits allow the implementation, with a high degree of accuracy, of emulation

models of hardware components. Since hardware circuit design normally uses some

kind of Hardware Description Language (HDL), the FPGA can be programmed to

mimic the intended hardware. This opens a window of opportunity for the execution

of fault injection experiments into system models within a reasonable time and

having most of the advantages of simulation-based fault injection.

One of the first approaches based on FPGA emulation systems employed the

concept of Dynamic Fault Injection (DFI) [15]. A typical use of the FPGA involves

the following steps: 1) Provide an HDL of the circuit to implement; 2) Generate the

connection list (netlist) with all the connections defined; 3) Transfer the netlist to the

FPGA and 4) Use the FPGA. To perform a fault experiment using an FPGA, the

above sequence of steps must be performed reconfiguring the HDL to include the

fault. DFI explores the possibility of reducing the number of FPGA reconfigurations

in a fault campaign by previously identifying which faults are dependent of using

extra hardware. The extra hardware is connected to input ports of the FPGA and

acts as demultiplexer activating, one at a time, each dependent fault.

Hardware-Implemented Fault Injection

Hardware-implemented fault injection refers to the process of injecting faults in a

physical system. In most cases, a processor was chosen as the target because the

system behaviour is mainly determined by this component. In addition to this

40 CHAPTER 3 - RELATED WORK

argument, the following reasons also justify the interest of the fault injection at the

processor pins:

• Faults injected in the processor pins can reproduce not only internal

processor faults but also memory and bus faults, and most of the faults in

peripheral devices. For instance, faults in a peripheral device can be

duplicated by injecting faults in the processor pins during the cycles in which

the processor is reading data from the peripheral device;

• It is possible to cause errors in other parts of the target system by injecting

faults in the processor pins. For example, a fault injected in the processor

data bus, during a memory write cycle, will cause an error to be stored in

the addressed memory cell.

Hardware implemented fault injection comprehends several techniques, among

them pin-level fault injection [16][17][18][19], test access port fault injection

[23][24][25], electro-magnetic interference fault injection [21][22] and radiation

based fault-injection [26][149][150]. We will briefly describe each of these

techniques in the following sections.

Pin-level Fault Injection

Pin-level fault injection is one of the most common methods of hardware

implemented fault injection [16][17][18][19][20][153]. Here the injector probe has

physical contact with the target Integrated Circuit (IC) and directly interferes with the

electric signals of the system. Since the faults are created at the pin level, they are

not identical to traditional faults that occur inside the IC. Nevertheless, many of the

same effects can be observed.

The change of the electrical currents and voltages at the IC pins can be achieved

through two main techniques: i) Active probes and ii) Socket insertion. Active probes

add an electrical current to the circuit attaching the probe to the pins of the IC,

without removing the chip from the system board. This method can provide stuck-at

faults (maintaining a certain current level in the pin) or bridging faults by placing a

probe across two or more pins of the IC.

With socket insertion, a socket is placed between the target hardware and the

system board. The contact between the IC pins and the circuit board, provided by

the socket, is controlled by the fault injector. This technique extends the faults that

can be performed, supporting the insertion of signals that are the result of a logic

operation involving previous signals of the pin itself or any other pin. The main

CHAPTER 3 - RELATED WORK 41

advantage of the socket insertion technique over the active probes is the level of

isolation that can be achieved relative to the surrounding circuitry.

MESSALINE is an example of a tool for physical pin-level fault injection [16]. It

has the ability of creating faults at the IC pin level such as: i) IC pins disconnected

from the system board; ii) IC pins connected to a specific electric voltage level; iii)

IC pins are connected together and iv) other complex logical signal combination as

the result of a logic combination of other electric signals. It is a composition of four

modules. The Fault Injection Module enables the generation of faults at the IC pins.

The Activation Module uses physical output interfaces to initialize and control the

target system. The ReadOut Module is responsible for reading the values present

on selected target IC pins as a result of the experiments and finally, the Software

Management Module creates the test sequence, does the run time control of its

execution and collects the results to be used in the post-test analysis.

Test Access Ports Fault Injection

The miniaturization of device packaging, the development of surface-mounted

packaging, and the associated development of the multi-layer board reduced the

physical access for insertion of probes. The advances in semiconductor industry

required software and hardware tools that could access critical functionalities of the

IC. The standards IEEE-ISTO 5001-2003 (Nexus) [23], IEEE 1149.1 Standard Test

Access Port and Boundary-Scan Architecture (JTAG) [24] and the proprietary

Background Debug Mode (BDM) [25] provide solutions to interface VLSI circuits

(microprocessors and FPGA) equipped with built-in debugging and testing features.

They define I/O Test Access Ports (TAP) that enables the observation of the IC

internal state, registers and other elements. Furthermore, TAP allows the injection

of faults into the pins and internal state elements of the IC. The type of faults that

can be injected depends on the debugging and testing features supported by the

target IC.

A fault injection experiment through TAP involves: a) defining a breakpoint and

then wait for the program to reach the breakpoint, b) read the value of the target

location, c) manipulate the value, d) write the new faulty value back to the target

location, and e) resume the program execution. The main advantage of TAP fault

injection is that faults can be inserted internally in IC without making any changes to

the system’s hardware or software. Examples of the Test Access Port fault injection

tools and applications can found in [151][152].

42 CHAPTER 3 - RELATED WORK

Electro-magnetic Interference Fault Injection

Electro-magnetic interference (EMI) is produced by a wide range of sources, such

as, motor cars, trains and industrial plants. Since computer systems are in

environments were such sources exist, electro-magnetic interference fault injection

has also been applied in various scenarios.

Typically, the EMI tests are conducted inside of an anechoic chamber with a

controlled RF environment where the SUT is placed (e.g., between two metal plates

which in turn are connected to the EMI generator). The isolation provided by the

anechoic chamber provides assurance that the observed results are resultant from

the EMI tests and not from an external source. The source of the EMI then combines

different signal power with focus in a particular signal frequency, systematically

swiping a large spectrum of inject random frequencies.

The impact of EMI is usually much more severe than the impact of other

commonly used injection techniques. Since EMI and in particular Power Supply

Disturbances tend to affect many bits, which can modify a larger part of the system

state [21][22][153].

Radiation-Based Fault Injection

As the dimensions and operating voltages of electronics are reduced, their

sensitiveness to radiation increases dramatically. There is a multitude of radiation

effects in semiconductor devices that vary in magnitude from data disruptions to

permanent damage. This is a primary concern for commercial terrestrial and space

applications.

Radiation based fault injection is a contactless hardware implemented fault

injection. Here the injector does not have direct contact with the target system, but

produces some physical phenomenon that potentially influences the behaviour of

the target electronics (e.g., by generating some sort of radiation).

Fault injection by heavy-ion radiation is a technique for creating faults in systems,

especially inside the ICs [26][149][153]. This method however is difficult to apply to

existing computers mainly because the target chip outputs have to be compared pin-

by-pin with a gold unit, in order to know whether the radiation has produced errors

inside the target IC or not. Since the heavy-ions are attenuated by molecules and

other materials in the irradiation path, the target circuit must be run in a vacuum.

Consequently, the packaging material that covers the target chip must be removed.

This is a major difficulty because commercial IC components are many times

destroyed during the removal of the packaging material.

CHAPTER 3 - RELATED WORK 43

A major feature of the heavy-ion fault injection technique is that faults can be

introduced into VLSI circuits at locations impossible to reach by other methods, such

as pin-level fault injection. The faults are also reasonably well spread within a circuit,

as there are many sensitive memory elements in most VLSI circuits. Thereby, the

injected faults generate a variety of error patterns which allow a thorough testing of

fault handling mechanisms.

Software-Implemented Fault Injection

Computer systems are nowadays too complex for the mechanisms associated with

fault activation and error propagation to be completely understood. This makes the

evaluation of dependability properties a very demanding task. Analytical modelling

becomes extremely hard and only possible if a great number of simplifying

assumptions is used. Although hardware fault injection evaluation is suitable to

validate specific fault handling mechanisms, the design of specialized tools is almost

impossible as their complexity is directly associated to the control and check of the

fault effects of the system being evaluated.

Software Implemented Fault Injection (SWIFI) is primarily motivated to avoid the

difficulties and cost inherent to physical fault injection approaches and is intended

to emulate both software and hardware faults. Compared to hardware fault injection

tools, it has lower complexity and development effort, as there is no need to build

specialized hardware. A SWIFI tool also presents a greater degree of portability,

since it can be applied to several different systems with little modifications.

SWIFI tools can emulate hardware faults using mainly two different approaches

applied to the software: i) at compile-time and ii) during runtime. In the compile-time

approach the injector modifies the target program source code to insert some errors,

which causes faults to be activated when the code is executed. The modified code

potentially alters the functional behaviour of the original program, while it emulates

the effect of hardware or software faults.

To inject faults at runtime one must use a mechanism that suspends the workload

in the SUT, calls the injector code and resumes the execution of the SUT’s software

in the point where it was stopped. This can be accomplished by using one of the

following mechanisms: a) timeout; b) exception-trap or c) code insertion. The timeout

mechanism is the simplest and corresponds to the occurrence of an event triggered

by a software or hardware timer that was set to expire at a certain instant. In

response to the event, a routine is called to produce the fault. In the exception-trap

mechanism the control of the system is transferred to the injector by means of a

software trap or hardware exception. The handler routine is then responsible for the

44 CHAPTER 3 - RELATED WORK

generation of the fault. In the code insertion mechanism, unlike the compile-time

code modification, the binary code of the target program is modified directly in

memory at runtime. This can be accomplished, for instance, by placing the injector

code in the handler routines of some advanced debugging features of modern

CPUs. The handler routine is then triggered, for example, whenever the CPU’s

program counter reaches some predefined value.

These techniques can be used to target applications and the OS. In case of an

application, the fault injector is inserted into the application itself or layered between

the application and the operating system. If the target is the OS, the fault injector

must be embedded in it, as it is very difficult to add a layer between the machine

hardware and the OS.

However, the SWIFI approach can have some limitations: It cannot inject faults

into locations that are inaccessible to software, e.g., peripheral devices; The

software instrumentation may disturb the workload running on the target system and

even change the structure of original software; and it usually has a poor time-

resolution making this approach unable to capture certain error behaviours

associated with low latency faults. This, however, can be minimized with careful

design of the injection environment or by adopting a hybrid software/hardware

solution (described later). The SWIFI approach can also have fidelity problems due

to poor time-resolution. For long latency faults, such as memory faults, the low time-

resolution may not be a problem. For short latency faults, such as bus and CPU

faults, the approach may fail to capture certain error behaviour, including some

forms of error propagation.

This problem can be solved by taking a hybrid approach, which combines the

versatility of software fault injection and the accuracy of hardware monitoring [35].

The hybrid approach is well suited for measuring extremely short latencies.

However, the hardware monitoring involved can have high costs and decrease

flexibility, by limiting observation points and data storage size.

Over the years, several tools have been proposed for SWIFI, such as FERRARI

[28], FIAT [27], FINE [29], DEFINE [30] (an evolution of FINE), DOCTOR [31],

FTAPE [32], GOOFI [34] and Xception [33]. As an example, we will describe in more

detail the Xception toll.

Xception is a fault injection and monitoring environment that introduces faults by

software and monitors their impact on the target system behaviour. This tool was

fundamentally designed to emulate hardware transient faults in functional units of

the target processor. It uses the advanced debugging and performance analysis

features that exist in most modern processors, such as performance counters and

CHAPTER 3 - RELATED WORK 45

breakpoint registers. The counter register can be programmed to record a number

of user defined events such as load, store, or floating point instructions. The

breakpoint register enables the programmer to specify where to break the program

for a wide range of situations such as load, store or fetch of data from a specified

address or even some instruction types (e.g., floating point instructions). Using a

combination of these mechanisms, faults can be injected when the instruction in a

specific address is fetched or when the data stored in some address is accessed. In

practice, the exception trigger that inserts the faults is programmed in the processor

debugging hardware before starting the target application. This allows the target

application to be left unchanged and be executed at normal speed (and not in some

special trace mode). When trigger is reached, the trigger handler creates the fault.

Since Xception operates at the exception handler level, and not through any service

provided by the operating system, the injected faults can affect any process running

on the target system including the OS.

Components of a Fault Injection System

Figure 3-1 represents the most relevant components usually employed in Fault

Injection Systems (FIS). These components implement activities such as disturb the

execution of the SUT, observe the behaviour and determine if the fault was tolerated.

The FIS actions are defined by the System Controller that is in charge of

coordinating the experiment and of synchronizing all other components. It can run

in the SUT itself or in a separate machine.

In each round of the fault injection campaign, the Setup Module prepares the

system to become operational and meet the desired initial conditions.

The Workload Generator stimulates the SUT to perform its tasks. This component

is used to exercise the system at normal or stressful conditions, depending on how

fast it demands/provides services at the SUT interface.

Faults are produced by the Fault Generator that either creates them at runtime,

commanded by the Controller, or prior to the experiment. In this later case, the faults

are stored in a Fault Library for later use. The Fault Injector injects the faults into the

SUT, either interacting physically and/or logically with it.

The Data Collection is in charge of capturing, processing and analysing the data

produced in the SUT. The collected information is saved in a Data Storage.

46 CHAPTER 3 - RELATED WORK

Figure 3-1: Basic components of a fault injection system.

The Fault Monitor observes the SUT behaviour and gives feedback to the System

Controller, allowing it to decide the next round in the injection campaign.

The Data Processing and Analysis component allows the analysis of the SUT

behaviour even after the fault campaign has finished. All FIS activity is registered in

a Log Database for complementary analysis (e.g., sequence of events).

Typically, there are 3 different phases in the activity of the FIS:

1. Preparation: The preparation phase is the stage where all the preliminary

conditions are setup. In the cases were the faults can be previously

generated it also involves the creation or loading of the Fault Library;

Fault
Injector

SUT
Workload
Generator

Setup
Module

Fault
Monitor

Data
Processing

and Analysis

System
Controller

Fault
Generator

Data
Collection

Fault Library

Log
Database

Data
Storage

Control flow

Data flow

Legend:

Data Processing
Phase

Preparation
Phase

Fault Injection
Phase

CHAPTER 3 - RELATED WORK 47

2. Fault Injection: The fault injection phase represents the stage where the fault

injection campaigns occur; The system is setup, including the workload,

faults are injected and the behaviour of the system is observed.

3. Data Processing: In this phase, the processing and analysis of the results

of the tests is performed.

3.3 Robustness Testing

In computer science, robustness is defined as the degree to which a system

operates correctly in the presence of exceptional inputs or stressful environmental

conditions. Robustness testing is an experimental evaluation technique which forces

incorrect inputs and/or stressful situations to systems or system components, trying

to activate faults that result in incorrect operation.

The acceptability of robustness testing is based on the ability to reproduce the

initial conditions, the observations and measurements of the experiments. Thus, an

important aspect of the robustness testing is the establishment of result metrics,

which form the basis for evaluation and comparison. For instance, the 5-point

CRASH [36] scale organizes the failures caused by the injection of faults, according

to the severity of their effect on an end system, being ‘C’ (catastrophic) the most

severe and ‘H’ (hindering) the less one. Others failure modes scales have also been

proposed, for instance [3][53][54][55].

Robustness testing has been employed in some proposals for dependability

benchmarking approaches [154][155]. One of the main targets of robustness testing

has been the OS interfaces, which have been tested with erroneous inputs being

inserted at the application interface (see for instance [38][43][46]). By creating

evaluation techniques that provide a direct, repeatable, quantitative assessment of

OS exception handling abilities, developers may obtain feedback, for instance,

about the capability of a new OS version to protect itself. Knowledge about the

exception handling weak spots of an OS enables system designers to take extra

precautions by increasing the type of validations they perform on input/outputs.

Additionally, quantitative assessment enables system designers to make

comparison whether it might be more robust to use a COTS OS than an existing

proprietary OS. For instance, some studies have shown that open source solutions

did not exhibit significantly more critical failure modes than commercial ones

[45][52]. Other studies on dependability benchmarking include CORBA middleware

implementations [67][68] and Online Transaction Processing (OLTP) systems [39].

48 CHAPTER 3 - RELATED WORK

Robustness testing can also be used to evaluate the dependability of systems at

the DD level. It can be employed for instance to verify how well the DD software can

cope with erroneous inputs. During the course of our research we have explored

some of the ideas related to this area to build a system capable of measuring the

robustness of the OS when subject to DD malfunction. In the rest of this section, we

review in more detail several robustness testing tools and describe some of the

experimental results that were obtained. A particular focus will be given to tools that

address the robustness of DDs.

Operating System Robustness Testing

FUZZ was an early attempt to perform OS robustness testing, and it targeted the

system utility applications [40]. FUZZ was capable of producing random printable

and control characters, which were then used as input to the utility applications.

Automatic testing was achieved by utilizing a script that initiated the applications and

passed the random data.

This tool was used to test a large collection of utilities running on several versions

of the Unix OS (and was later applied to other OS) [47]. Three types of failure modes

were considered in the test campaigns:

1. Crash - the program ended abnormally producing a core file;

2. Hang - the program appeared to loop indefinitely, or

3. Succeed - the program terminated normally.

The first results showed a surprising number of programs that would crash or

hang. Pointer/array errors, unchecked return codes, input functions, were pointed

as some of the root causes of the observed behaviour. Although the problems

affected a large number of regularly used OS utilities, many of the discovered

problems were still present in new OS versions several years later [41]. In the recent

years, other researchers have extended these ideas into more intelligent and less

random tools, capable of testing different kinds of software components (see for

example [48][49][50]).

An example of an early method for automatically testing OS for robustness is the

CRASHME tool [42]. It operates by writing random data values to memory, and then

it spawns a large number of tasks that attempt to execute those random bytes as

concurrent programs. While many tasks terminate almost immediately due to illegal

instruction exceptions, on occasion a single task or a confluence of multiple tasks

can cause an operating system to fail. If run long enough CRASHME may eventually

get lucky and find some way to crash the system.

CHAPTER 3 - RELATED WORK 49

The Random and Intelligent Data Design Library Environment (RIDDLE) was

used to stress testing the Windows NT software [51]. RIDDLE generates input for

the application being tested using the grammar of the component under analysis,

rather than simply creating random input. It can combine for instance random field

values with boundary value conditions to evaluate a program behaviour under

anomalous conditions. RIDDLE was employed to compare the reliability of native

Windows NT utilities with the Cygnus Win32 port of the widely-distributed GNU

utilities. The results show that the native Windows NT utilities had far fewer failures

due to anomalous input than the GNU Win32 utilities, which revealed that errors may

arise when porting a stable program from one platform to another.

Another example of a software robustness testing system tool that automatically

tests the exception handling capabilities of the OS is BALLISTA [43]. While it can be

used for testing APIs beyond OS (e.g., a simulation framework), much of the focus

of the evaluation was on POSIX OS interfaces. BALLISTA testing methodology

involves automatically generating sets of exceptional parameter values that are

used as arguments when calling software modules. The results of these calls are

examined to determine whether the software module detected and notified the

calling program of an error, or whether the task (or even the system) suffered a crash

or hang as the result of a call.

The evaluation of Microkernels fault handling mechanisms was the target of the

Microkernel Assessment by Fault Injection Analysis and Design Aid (MAFALDA)

[44]. MAFALDA takes advantage of the debugging features of most modern

microprocessors to inject faults by software and monitor their effects (as in Xception

[33]). One form of fault injection implemented by MAFALDA consists in the

corruption of the input parameters. It simulates the propagation of an error from the

application level to executive level of the microkernel, aiming to evaluate the

robustness properties of the microkernel interface. It traps the target kernel so that

an exception is automatically raised whenever there is a call to an entry point of the

microkernel. The handler for this exception is responsible for the corruption of the

input parameters and once injected the handler lets the call proceed to the kernel.

Device Driver Robustness Testing

Device Path Exerciser (DPE) is a tool for testing the reliability and security of drivers

[59]. It calls drivers through a variety of user-mode I/O interfaces with valid, invalid,

and poorly-formatted data that will cause some error in the driver execution if not

managed correctly. These tests can reveal improper driver design or implementation

that might result in system crashes or might make the system vulnerable to malicious

50 CHAPTER 3 - RELATED WORK

attacks. During a test, DPE sends an enormous quantity of calls (hundreds of

thousands) to the driver in rapid succession. The calls include changes in data

access methods, valid and invalid buffer lengths and addresses, and permutations

of the function parameters that might be misinterpreted by a flawed parsing or error-

handling routine. The tool verifies that calls sent to the driver are completed correctly

and do not cause system crashes, system memory pool corruption, or memory

leaks. The driver is expected to handle each of the requests properly, either by

returning valid data or by rejecting the request.

IoSpy and IoAttack are tools that perform IOCTL and Windows Management

Interface (WMI) tests on kernel-mode drivers [60]. These tools help to ensure that

the drivers’ IOCTL and WMI code validate data buffers and buffer lengths correctly,

avoiding buffer overruns that can lead to system instability. When a device is

enabled for testing, IoSpy captures the IOCTL and WMI requests sent to the driver

of the device, and records the attributes of these requests within a data file. IoAttack

then reads the attributes from this data file, and uses these attributes to fuzz, or

randomly change the IOCTL or WMI requests in various ways, before sending them

to the driver. This allows further entry into the driver’s buffer validation code without

writing IOCTL or WMI-specific tests.

Plug and Play (PnP) related code paths in the driver and user-mode components

can have their robustness evaluated by the Plug and Play Driver Test Tool [61]. This

tool forces a driver to handle almost all the PnP IRP, and more specifically it stresses

three main areas: removal, rebalance, and surprise removal. The tool provides a

mechanism to test each of these separately or to test them all together. This PnP

testing is accomplished by using a combination of user-mode API calls (through the

test application) and kernel-mode API calls (through an upper filter driver).

3.4 Instrumentation and Dynamic Analysis

Analysing the dynamic behaviour, performance, and correctness of software and

systems is invaluable to software developers and hardware designers.

Instrumentation is done by inserting debugging and profiling information. It supports

monitoring and measurement of the level of performance of the application and

writes execution traces to the display or files to help the diagnose of errors. In fact,

the ability to interfere with systems and software is the building block for software

fault injection and robustness testing presented in the previous sections. Having

access to appropriate source code, it is often trivial to insert new instrumentation or

extensions by rebuilding the applications or the OS to provide necessary insights

about its execution. When no source code is available, the ability to instrument

CHAPTER 3 - RELATED WORK 51

unmodified binaries facilitates the analysis of commercial applications in realistic

scenarios.

Next, we will briefly introduce some of the existing tools that address

instrumentation and dynamic analysis. We are especially interested in

understanding what techniques and challenges are involved in instrumenting DDs.

Detours [90] is a library for intercepting arbitrary Win32 binary functions on x86

machines. The interception code is applied dynamically at runtime by replacing the

first few instructions of the target function with an unconditional jump to a user-

provided detour function. The removed instructions from the target function are

preserved in a trampoline function, which also has an unconditional branch to the

remainder of the target function. The detour function can either completely replace

the target function or extend its semantics by invoking the target function as a

subroutine through the trampoline. Detours experiments were based on Windows

applications and DLLs, but were not applied to DDs.

A software system that performs run-time binary instrumentation of Windows

applications is PIN [91]. PIN collects data by running the applications in a process-

level virtual machine. It intercepts the process execution at the beginning and injects

a runtime agent that is similar to a dynamic binary translator. To use PIN, a

developer writes a “Pintool” application in C++ using the PIN API consisting of

instrumentation, analysis and call-back routines. The “Pintool” describes where to

insert instrumentation and what it should do. Instrumentation routines walk over the

instructions of an application and insert calls to analysis routines. Analysis routines

are called when the program executes an instrumented instruction, collecting data

about the instruction or analysing its behaviour. Call-backs are invoked when an

event occurs, such as a program exit. Several applications were instrumented using

PIN, such as Excel and Illustrator. PIN executes in user level ring3, and therefore

can only capture user-level code. Another example of a dynamic binary translation

technique similar to the one used by PIN is implemented by DynamoRio [103].

NTrace [102] is a dynamic tracing tool for the Windows kernel capable of tracing

system calls, including the ones involving drivers. The used technique is based on

code modification and injection of branch instructions to jump to tracing functions. It

relies on the properties introduced by the Microsoft Hot patching infrastructure,

which by definition start with a mov edi, edi instruction. NTrace replaces this

instruction with a two-byte jump instruction. However, due to the space constraints,

the jump cannot direct control into the instrumentation routine. It rather redirects to

the padding area preceding the function. The padding area is used as a trampoline

into the instrumentation proxy routine.

52 CHAPTER 3 - RELATED WORK

DDT [81] combines virtualization with a specialized form of symbolic execution

to test DDs. This tool uses a modified QEMU [168] machine emulator together with

a modified version of the Klee symbolic execution engine [147]. DDT runs a

complete, unmodified, binary software stack, comprising of the Windows OS, the

drivers to be tested, and all associated applications. DDT forces the loading of the

driver of interest, determines the driver’s entry points, coerces the OS into invoking

them, and then symbolically executes the DD of interest using an adapted version

of Klee.

3.5 Isolation of Device Driver Execution

Commodity operating systems are built using a monolithically design where all the

operating system functions run in kernel mode. To simplify the design of the kernel,

components such as DDs, dispatcher and file systems share the same address

space without isolation. However, with this unconstrained access, every bug in these

components can potential compromise the system correctness.

The isolation of the kernel from other operating system components could

increase system dependability. Once the kernel has been well tested, a flaw in any

other component, especially the ones that change often (such as DDs), could no

longer compromise the entire system. Furthermore, the kernel could integrate

recovery procedures to restore the faulty component by restarting the service,

eventually with minor or no losses in data or context.

CPU manufacturers have incorporated in their architectures hierarchical domains

to protect data from functionality faults. Unfortunately, mainstream operating

systems do not take fully advantage of these features. In this section, we are going

to give an overview of the mechanisms aiming to isolate DDs. We will focus our

attention in techniques involved in the protection of the system from DD failures,

used in testing a DD without corrupting the entire system, and employed to record

DD faults whenever they occur.

Runtime Protection

Software fault isolation (SFI) [78] is a software technique used to isolate the

execution of individual applications and prevent faults from these applications to

contaminate the remaining system. In this technique, the untrusted software is

placed inside a fault domain consisting on a contiguous region of memory within an

address space. The virtual address space of the untrusted software is divided into

CHAPTER 3 - RELATED WORK 53

aligned segments such that all virtual addresses within a segment share the same

segment identifier.

Two mechanisms were proposed to enforce the execution of the code within its

fault domain: i) segment matching and ii) address sandboxing. In the first

mechanism, the binary of the application to be isolated is modified to include some

checking code before every unsafe instruction. If the checking code determines that

the target address is safe, it lets the application to proceed. Otherwise, the inserted

code traps to a system error routine outside the distrusted module’s fault domain.

The second mechanism employs address sandboxing, which consists in inserting

some code before each unsafe instruction to set the value of the segment identifier,

forcing it to stay inside the same fault domain. Although it cannot catch the illegal

addresses, it prevents the untrusted code to affect any other domain. The prototype

used in SFI targeted user applications, but the proposed ideas could also be

applicable to isolate DDs into SFI segments.

In an alternative approach, the OS could be divided into inner kernel and

application resources, as suggested by VINO [115]. The inner kernel cannot be

modified by applications but processes can override the behaviour of the application

resources. Files, directories, threads, transactions, physical memory pages, virtual

memory pages and queues are example of resources each one includes properties

and default operations implementation. New resource types are added to VINO by

compiling them it into the kernel.

VINO, uses a trusted compiler that generates code with either bounds checking

or sandboxing to ensure code safety [82]. The generated code is digitally signed so

that all code installed in the kernel can be verified to be from the trusted source. The

compiler also ensures that the generated code does not mask interrupts or modifies

itself. Each graft receives its own heap and stack, and when a graft changes kernel

state (e.g., by opening a file), the kernel records the fact so that any such

modifications can be undone if the graft misbehaves. If the process is aborted, the

corresponding transaction is aborted, and the system is returned to a consistent

state.

Static Verification and Runtime Memory Protection

XFI [83] is a protection mechanism designed for Windows running on the x86

hardware platform that combines static verification with run-time software guards for

memory access control and system state integrity.

The XFI-rewriter produces XFI binary modules from Windows x86 executable

(EXE, DLL or SYS). It makes use of debug information (PDB files), to distinguish

54 CHAPTER 3 - RELATED WORK

code from data and to add structured guards and verification hints to be used later

during the loading process.

Guards consists on code added to the binary modules intent to enforce that an

XFI module complies with the policies that dictate interaction with its system

environment: memory access constraints, control flow (the code can never flow

outside the module’s code, except via calls to a set of prescribed support routines,

and via returns to external call-sites); stack integrity; authorized instruction

execution; system-environment integrity (e.g., segment registers cannot be

modified).

In addition to restricting interactions between a module and its host, XFI places

constraints on the execution of the module through: control-flow integrity (execution

follow a static, expected control-flow graph); program-data integrity (Certain module-

global and function-local variables can be accessed only via static references from

the proper instructions in the module); Assured self-authentication (a module

authenticates itself to the host system).

The correctness of XFI protection depends on the load time verification of the

XFI module. XFI-verifier makes a linear pass over the bytes of an XFI module

checking statically that each XFI module has the appropriate structure and the

necessary guards. Verification also considers the execution of machine-code

instructions abstractly; it manipulates verification states which are predicates that

describe concrete execution states. A trusted XFI module requires that it passes all

verifications of a defined policy and that those policies hold during its execution. It

can be seen as an example of proof-carrying code (PCC) [116], even though they

do not include logical proofs.

LXFI [86] isolates faults in a DD by checking its accesses to kernel API, according

to programmer-specified integrity rules. LXFI uses a compiler plug-in to instrument

the generated code to grant, check, and transfer capabilities between kernel

modules.

The main goal of LXFI is to prevent an adversary from exploiting vulnerabilities in

kernel modules in a way that leads to a privilege escalation attack. LXFI protection

relies in the control of the functions that a module is allowed to call, in the verification

of its control flow and in the data structure integrity used by the module. The

application of LXFI is a four step process where: i) developers annotate core kernel

interfaces to enforce API integrity between the core kernel and modules, ii) module

developers annotate certain parts of their module where they need to switch

privileges between different module instances; iii) LXFI’s compile time rewriter

instruments the generated code to perform API integrity checks at runtime and iv)

CHAPTER 3 - RELATED WORK 55

LXFI’s runtime is invoked at the instrumented points, and performs checks to uphold

API integrity (if the checks fail, the kernel panics).

Low Level Driver Execution Isolation

One reason that explains many failures in commodity operating systems, is the close

integration between untrusted extensions and the core kernel, which violates the

principle of least authority. In particular, since new DDs are often introduced in the

system, it is difficult to ensure that all of them behave correctly. Therefore, some

proposals have suggested the use of low level isolation mechanisms to prevent

failures in the drivers from propagating to the rest of the system. Some examples of

these solutions are presented next.

One of the first approaches to provide isolation of DDs on a commodity operating

system was Nooks [76]. It seeks to achieve: i) DD execution isolation, ii) automatic

recovery of the DD with iii) minimum changes to existing systems.

The isolation performed by Nooks is achieved by memory management to

implement lightweight protection domains with virtual memory protection, and the

Extension Procedure Call (XPC), to transfer the control safely between DDs and the

kernel.

The memory management ensures that the kernel has read-write access to the

entire memory space while DD is restricted to read-only access. The XPC

mechanism provides a function to pass control from the kernel to the DD and another

to pass control from the DD to the kernel. These transfer routines save the caller’s

context on the stack, find a stack for the calling domain (which may be newly

allocated or reused when calls are nested), change page tables to the target domain,

and then call the function. The reverse operations are performed when the call

returns.

Nooks interposes on extension/kernel control transfers with wrapper stubs to

perform the following tasks: i) check parameters for validity by verifying with the

object tracker and memory manager that pointers are valid; ii) implement call-by-

value-result semantics for XPC, by creating a copy of kernel objects on the local

heap or stack within the extension’s protection domain and iii) perform a XPC into

the kernel or extension to execute the desired function.

Nooks recovers from a DD failure by recording all resources that are held and

when a failure is detected, the isolation components releases the resources and

then tries to restart the driver.

 Herder et al. [79] suggest a way to isolate DDs by enforcing least authority and

refining the driver by extensive software-implemented-fault-injection testing. These

56 CHAPTER 3 - RELATED WORK

principles, intent to limit the damage that can result from accidents or errors. It also

reduces the number of potential interactions among privileged programs so that

unintentional, unwanted, or improper uses of privilege are less likely to occur.

Another example of a fault isolation technique is proposed in Byte Granularity

Isolation (BGI) [77]. BGI is implemented as a compiler plug-in that generates

instrumented code for DDs and links it to an interposition library that mediates the

communication between the DDs and the kernel.

BGI runs DDs in controlled memory regions (domains) separated from the kernel

and trusted DDs. It associates an Access Control List (ACL) with each byte of the

virtual memory to the domains that can access it and how they can access it. Access

rights are granted and revoked by code inserted by BGI compiler and by the

interposition library according to the semantics of the operation being invoked. The

protection is enforced by inline checks inserted by BGI and by checks performed by

the interposition library.

The interposition library contains kernel wrappers that are called by the DD and

DD function wrappers that are called by the kernel.

The kernel wrapper checks the rights to the arguments supplied by the DD, can

revoke the rights to some of those arguments, it calls the wrapped kernel function,

and it may grant rights to some objects returned by the function. The DD function

wrapper may grant rights to some arguments, it calls the wrapped DD function, it

may revoke rights to some arguments, and it checks values returned by the DD.

This way BGI can grant access to the bytes that a domain should access and it

can check accesses to these bytes regardless where they are in memory.

Additionally, it controls when a domain is allowed to access these bytes because it

grants and revokes the access to the specified bytes.

BGI required modifications to the kernel to reserve virtual address space for the

kernel table when the system boots, and to reserve virtual address space in every

process when process are created to create the domains.

3.6 Static Analysis

For long the development of applications has been made easier because of

compilers that are able to identify program errors related to syntax, type violations,

and mismatches between a function’s formal and actual parameters. More

sophisticated checking includes looking at pointers and uninitialized variables.

However, most of the analysis is done intra-procedurally, and consequently

problems caused by the interactions between functions are not detected.

Additionally, these techniques are not applicable to many categories of defects, such

CHAPTER 3 - RELATED WORK 57

as memory leaks, buffer overflows, resource consumption and NULL pointer

assignments to name a few. Another form of more sophisticated testing must

therefore be applied to increase the quality and reliability of the software.

Static analysis techniques analyse a program without executing it, but follow all

paths while building an internal representation of the program’s control flow. Over

the years many tools have appeared, and one way to classify them is based on the

type of flaws that are searched for as the ones enumerated by the Common

Weakness Enumeration (CWE) classes [131] or the Seven Pernicious Kingdoms

taxonomy [132].

• Input validation and representation: Input validation and representation

problems are caused by metacharacters, alternate encodings and numeric

representations. Security problems result from trusting input.

• API abuse: An API is a contract between a caller and a callee. The most

common forms of API abuse are caused by the caller failing to honour its

end of this contract. For example, if a program fails to call a correct

sequence of functions.

• Security features: Incorrect handling of security features in topics such as

authentication, access control, confidentiality, cryptography, and privilege

management.

• Time and state: Defects related to unexpected interactions between

threads, processes, time, and information, deadlocks, race conditions.

• Errors: Errors related with error handling.

• Code quality: Poor code quality of the code leading to unpredictable

behaviours, especially under system stress.

• Encapsulation: Poor software boundaries leading to data leakage between

users and debug code leftovers.

• Environment: Everything that is outside of the source code but is still critical

to the security of the product that is being created.

The Input Validation and Representation category looks into bugs that are

caused by meta characters, alternate encodings and numeric representations, and

security problems resulting from trusting input. Examples of bugs in this category

are buffer overflows, command injection, cross-site scripting, format string, integer

overflow, SQL injection, etc. This category includes several of the bugs normally

58 CHAPTER 3 - RELATED WORK

reported as security vulnerabilities by tool vendors. Tools that support both timing

and state, and input validation and representation bugs include:

• Coverity [133][134][146], a C, C++ and Java checker;

• Jlint [135][136], a checker of Java class files that is based on data flow and

abstract interpretation;

• PREfast [56], a C, C++ checker based on intra-procedural analysis and

statistics;

• Splint [137], a C lint prototype for security vulnerability analysis based on

taint annotations;

• Archer [138], a C array checker that uses symbolic analysis;

• FindBugs [139], a Java checker that uses bug-patterns and data flow

analysis on Javaclass-files;

• Gramma Tech's CodeSonar [140], a C,C++ checker that performs whole-

program, inter procedural analysis.

The Timing and State category looks into bugs that are due to distributed

computation via the sharing of state across time. Examples of bugs in this category

are dead locks and race conditions. Tools that support this category of bugs include:

• JPF [95][128], a Java programming language checker that model-checks

annotated Java code;

• PREfix [141], a C/C++ checker based on inter-procedural data flow analysis;

• ESP [142], a C checker that focuses on scalability of analysis and

simulation;

• Goanna [143], a C/C++ checker that model-checks static properties of a

program.

The Security Features category is concerned with authentication, access control,

confidentiality, cryptography and privilege management. Examples of bugs in this

category are insecure randomness, least privilege violation, missing access control,

password management and privacy violation. A tool that supports timing and state,

input validation, and security features is Veracode [144], a binary/executable code

checker based on data flow analysis that performs penetration testing on the binary

code.

The API Abuse category is concerned with the violation of the (API) contract

between a caller and a callee. Examples of bugs in this category are dangerous

CHAPTER 3 - RELATED WORK 59

functions that cannot be used safely, directory restrictions, heap inspection, and

various often misused language or operating system features. Tools that support

timing and state, as well as API abuse bugs include:

• SLAM [58][144], a C/C++ DD checker that model-checks and verifies code

against a specification of a DD;

• A tool that support timing and state, input validation, security features and

API abuse bugs is Static Code Analysis [14].

• Other uses of static analysis approaches have been applied to the detection

of viruses and worms [93][123][124][125]. Also, it has been applied to the

detection of rootkits [126] and spyware-like behaviour [127].

The research on static analysis tools is by far exhaustive. However, from the

sample, it can be apprehended that most of the static analysis tools requires access

to the source code or annotations. Binary static analysis tools also exist but they

face additional challenges since need to deal with machine code representation

which difficult the analysis. In this kind of tools typically a pre-processing phase is

performed to translate the binary code to its internal representations as is the case

of [94] (see also RevGen [97] and LLVM [96] representation).

Our interest in these tools is quite clear, static analysis tools can play a role in

the detection of vulnerabilities and errors of DDs. However, many of the static

analysis tools require changes in the source code to be effective, which is something

not easy to get for commercial operating systems. There are however a few

techniques that can operate over binary code.

We will describe some of the existing work related with static analysis and

understand how we may benefit from static analysis to help us find vulnerabilities in

DDs.

Compile time static analysis

PREfast is a static verification tool that examines each function of the driver code

independently, for the detection of general syntax and coding errors, such as

unchecked return values [55]. The driver-specific features detect subtler errors, such

as leaving uninitialized fields in a copied I/O Request Packet (IRP) and failing to

restore a changed Interrupt Request Level (IRQL) by the end of a routine.

PREfast has to know additional information about the source code in the form of

annotations. These annotations are special macros that are expanded into

meaningful definitions only when PREfast runs. General-purpose and driver-specific

annotations are defined in header files that must be included in the code. The

60 CHAPTER 3 - RELATED WORK

annotations extend function prototype and describe the contract between the

function and its caller. This enables for PREfast to analyse the code more

accurately, with significantly fewer false positives and false negatives. Annotations

also make the code easier to read, forming a documentation that does not drift apart

from the code.

Static Driver Verifier (SDV) is a source level compile-time tool that explores code

paths in a DD by symbolically executing the source code [57][58][121]. SDV

automatically creates an alternative program that is an abstraction of the original

program. The alternative program is then checked against API usage rules using a

state machine. The program abstraction is expressed as a Boolean program that

has all the control-flow constructs of the original code (including procedures and

procedure calls) but only Boolean variables. SDV uses a symbolic model checking

algorithm based on binary decision diagrams [122] to determine if the Boolean

program obeys to the API usage rule. SDV places a driver in a hostile environment

and systematically tests all code paths looking for violations of WDM usage rules.

The symbolic execution makes very few assumptions about the state of the OS or

the initial state of the driver, so it can exercise situations that are difficult to analyse

by traditional testing.

Runtime Checking

Static analysis has also been employed to detect implementation flaws or

deficiencies in input validation or device responsiveness as is the case of Carburizer

[80]. It uses CIL [130] and intermediate language and tool set for analysis and

transformation of C programs to read the pre-processed C code of the driver and

produce an internal representation of the code suitable for static analysis that locates

dependencies on inputs from the device. When it finds in the code a control decision,

such as a branch or a function call, based on data from the device, the analyser

marks the data as sensitive because it is dependent on the correct functioning of the

device. Similarly, if the driver code uses a value originating from a device in an

address calculation, such as an array index, the use of the address is also

dependent on the device and thus marked as possibly unsecure.

Carburizer inserts the necessary code to report a failure if the data is incorrect.

Additional code is also generated aiming to detect stuck interrupts and non-

responsive devices. In the case of problems with the device, the added code invokes

a generic recovery service that can reset the device using shadow drivers [129] to

provide this service.

CHAPTER 3 - RELATED WORK 61

Static verification of binary code

In [94] is described an approach for the identification of use of data coming from

untrusted sources in x86 executables in ELF binary format. It performs the analysis

of the binary program assembly level representation of the program. During the

analysis of the program, indirect call and jump instructions are attempted to be

resolved to help in the identification of functions and the derivation of a complete

control flow graph. To resolve the jump-table-based branches, the code is

backtracked in the code until the instruction that set up the jump table access is

reached, thus recovering the base location and the number of entries in the table.

Mechanisms are applied to detect loops. Recursive function calls are identified

by applying a standard topological sort algorithm on the function call graph of the

program.

The resolution of the library functions used in the program to test is performed by

combining the information contained in the Procedure Linkage Table and the

relocation table of the binary.

The analysis technique uses symbolic execution of functions to determine a set

of possible targets and approximates all possible concrete executions and focus on

identifying insecure uses of the standard C library functions.

3.7 Driver Programming Model

Among the main reasons behind buggy drivers are low-level programming

language, poorly-defined communication protocols between the DD and the OS, a

complex driver execution infrastructure and a multithreading computational model.

To address these difficulties, efforts were made to provide safer programming

languages and a friendlier driver execution infrastructure.

Commodity OS such as Windows and Linux and their extensions are built using

mainly the C language, which gives a high level of freedom to the programmers

namely to make mistakes.

To be effective the driver programming model approach needs to be adopted by

DD writers and sponsored by both OS and device manufacturers since they require

changes in the current development paradigm as well as access to protected

information.

Introducing changes to existing programming languages can improve the quality

of driver building, with an increase of the overall dependability. However, requiring

the use of totally different languages and building procedures may be a challenge.

62 CHAPTER 3 - RELATED WORK

Formal specification is a way to have a clear and well defined contract between

the DD and the rest of the system. It relies on the accurate and detailed information

to minimize bugs. Eventually, automatic tools can then formally analyse the resulting

code and identify specification violations either statically or dynamically.

The replacement of the multi-threaded model with an event-based model can be

a solution to reduce (or eliminate) some of the difficulties related with concurrency,

one of the most common problems in driver development.

In this section we will describe some example works that aim to achieve

correctness by construction as opposed to fault detection and isolation. The goal is

to eliminate the root causes that lead to faults instead of dealing with their

consequences.

Type Based Checking and Restart Capabilities

SafeDrive [85] aims to improve DD reliability by adding type-based checking and

restart capabilities to existing DDs written in C language. The primary goal of

SafeDrive is to detect memory and type errors ensuring that data of the correct type

is used in kernel API calls and in shared data structures, preventing the kernel or

devices from receiving incorrect data.

To transform a driver written in C into one that obeys stricter type safety

requirements there is the need to fix the C languages constructs that can cause

violations without requiring extensive rewrites. SafeDrive uses Deputy, a type

system for pointers that can enforce memory safety by using annotations in header

files for APIs and shared structures. The annotations express known relationships

between variables and fields (e.g., int * count(len) buf means that the

variable len holds the number of elements in buf). Programmers are responsible

for inserting type annotations that describe pointer bounds expressing known

relationships between variables and fields

Deputy is implemented as a source-to-source transformation that runs

immediately after pre-processing. During compilation the annotations are

transformed into appropriate run-time checks. At run time a SafeDrive extension is

loaded into the same address space as the host system and is linked to both the

host system and the SafeDrive runtime system. The SafeDrive runtime system

checks the compliance with the assertions and tracks the use of resources that are

being requested by the driver to the OS. If assertions fail, SafeDrive invokes the

recovery subsystem that will use its internal data structures to restore the resources

used by the driver.

CHAPTER 3 - RELATED WORK 63

Laddie [88] introduced a type-safe language that enables driver writers to create

I/O interfaces between a driver and its device so that these I/O interfaces cannot be

easily misused. A Laddie specification consists in a set of declarations that form I/O

rules for reading and writing into the registers of a device. The rules are pre-

conditions and post-conditions for reading and writing each register. Each

specification is organized in two different sections. The first one is where the

components for the logical state of the device are declared. The second part is

where the I/O rules for communicating with the device are set.

To produce a DD a programmer need to go through the following stages: i)

produce a Laddie specification; ii) compile the Laddie specification and produce Clay

output files [120]; iii) write the body of the DD in Clay language and iv) compile Clay

files to obtain the driver. During this compilation stage a series of verifications are

run to ensure that all types are declared and that rules are consistent. The

consistency tests will catch errors where no inputs could satisfy the conditions.

Clay’s compiler will do all the compile time checking and inform the programmer

if any run-time checks are still necessary to be included in the driver code.

Formal Specification

Writing formal specifications has associated challenges since they derive from the

device and OS specifications and documentations itself that seldom undergoes

adequate quality assurance causing the formal specification derived from such

information to reproduce defects in addition to extra ones introduced during the

formalisation process.

Distilling device specifications from existing driver implementations is another

possible approach to construct a device specification. However, access to source

code is usually not the case for commercial OS. Besides, a DD may contain errors,

which may be carried over to the resulting specification. A third approach to

construct a device specification is to derive it from the register transfer level (RTL)

description of the device written in a hardware description language while

abstracting away most of internal logic and modelling only interface modules.

However, access to the RTL description is usually not viable since it is part of the

device manufacturer’s intellectual property.

Termite [87] is a DD synthesis tool that uses a combination of formal

specifications of the device’s registers and behaviour and the interface between the

device and the OS to produce a less error prone working DD.

The device interface specification describes the programming model of the

device, including its software-visible states and behaviours. The OS interface

64 CHAPTER 3 - RELATED WORK

specification defines the services that the driver has to provide to the rest of the

system, including the services available from the OS to the driver.

Given the specifications, the Termite algorithm implements a driver in C language

that satisfies two main requirements: i) safety (the driver shall not violate the

specified order of operations) and ii) liveness (the driver is required to perform all its

actions within a finite number of steps).

The construction of a device is performed in three steps. The first step combines

individual driver interface specifications into a single specification. The second step

produces a driver state machine that has safety and liveness properties. The third

step translates the state machine into a driver implementation in C.

The formal specification of a DD is written in a high-level language and is

therefore not as error-prone as developing the DD itself. Errors in specifications can

be reduced by using model checking techniques. Thus, generating the code

automatically from the formal specifications reduces programming errors in drivers

since a bug in the driver can only occur as a result of an error in the specification.

Event Based Model

Currently in modern OS the driver functions are mainly called by the kernel when it

needs to perform an I/O or deliver an interrupt notification to the driver. However,

since kernels are multithreaded, the driver needs to be prepared to handle

concurrent invocations by multiple threads. This increases complexity since the

functions of the driver need to be constructed in such a way that do not deadlock

the all system and have synchronization mechanisms to hold these evocations.

As an alternative to the traditional multithreading approach, Dingo proposes the

use of an event driven model [84]. Dingo also provides Tingu, a formal language for

describing driver software protocols for a clear and unambiguous description of

requirements of driver behaviour.

In Dingo, a driver software protocol is the collection of protocols that regulates

the communication between the driver and the hardware device and the OS. This

communication occurs over ports, which are bidirectional message-based

communication points. Each port is associated with one protocol that defines the

messages that can be exchanged, constraints on ordering, time control and

contents. A protocol is violated if, after entry into a state, the given amount of time

passes without triggering a transition leading to a different state.

The Tingu compiler generates a protocol observer from the Tingu specification of

its ports. It intercepts all messages exchanged by the driver and keeps track of the

CHAPTER 3 - RELATED WORK 65

state of all its protocols. Whenever the driver or the OS fails to comply with the

messages timings and/or contents the observer notifies the OS about the failure.

While Dingo does not eliminate bugs caused by an incorrect implementation of

the protocol, the presence of a clear and complete specification of the protocol tends

to reduce the occurrence of these bugs.

Another example system that proposes to reduce the complexity of driver

development by changing to an active event-driven model is the Active DD

architecture [89]

The active DD architecture [89], similar to Dingo, deals with synchronization

issues as well as provides a clear driver control flow by assigning a dedicated thread

to a DD. This driver thread receives requests from the kernel via message passing

in an event-based way.

3.8 Summary

Fault injection deliberately introduces faults into a SUT to experimentally validate its

dependability. In what concerns to fault injection, the target system may be classified

in one of the following major types: i) Axiomatic models, ii) Empirical processing

models and iii) Physical systems.

Simulation-based fault injection involves computational models of systems and

their implementation in simulation software. Highly detailed models may take too

much time to simulate due to the size of the system’s activity. On the other hand,

lighter models may be faster to run but may not accurately represent the systems

mechanisms due to the implemented abstractions. A representative tool of

implemented simulation-based fault injection is DEPEND [12].

Field Programmable Gate Array (FPGA) circuits allow the implementation of

Hardware Emulation Based Fault Injection through emulation models of hardware

components. The FPGA can be programmed to mimic the intended hardware

opening a window of opportunity for the execution of fault injection experiments into

system models within a reasonable time and having most of the advantages of

simulation-based fault injection.

Hardware-implemented fault injection refers to the process of injecting faults in a

physical system. In most cases the processor was chosen as the target because the

system behaviour is mainly determined by this component. Several hardware-

implemented fault injection techniques were developed such as: i) Pin-level fault

injection where the injector probe has physical contact with the target Integrated

Circuit (IC) and directly interferes with the electric signals of the system (see for

instance [16][17][18][19]); ii) Test Access Ports Fault injection uses I/O Test Access

66 CHAPTER 3 - RELATED WORK

Ports (TAP) allows the injection of faults into the pins and internal state elements of

the IC [23][24][25]; iii) Electro-magnetic interference fault injection uses a wide range

of sources to produce electro-magnetic interference into the systems [21][22]; and

iv) Radiation-Based fault injection that uses radiation (e.g.; heavy-ion) to potentially

influences the behaviour of the target electronics [26][149][150].

Software-Implemented Fault Injection (SWIFI) is primarily motivated to avoid the

difficulties and cost inherent to physical fault injection approaches and is intended

to emulate both software and hardware faults. It presents lower complexity and

development effort than hardware fault injection tools and can emulate hardware

faults with high degree of control. Some proposed SWIFI tools include FERRARI

[28], FIAT [27], FINE [29], DEFINE [30], DOCTOR [31], FTAPE [32], GOOFI [34]

and Xception [33].

Robustness testing is an experimental evaluation technique which forces

incorrect inputs and/or stressful situations to systems or system components, trying

to activate faults that result in incorrect operation. One of the main targets of

robustness testing has been the OS interfaces, which have been tested with

erroneous inputs being inserted at the application interface (see for instance [38]

[40][42][43][44][46][51][59][60][61]).

Instrumentation is done by inserting debugging and profiling information into the

system. It supports monitoring and measurement of the level of performance of the

application and capture execution traces to help the diagnose of errors. Having

access to appropriate source code, it is often trivial to insert new instrumentation or

extensions into systems. When no source code is available, the ability to instrument

unmodified binaries facilitates the analysis of commercial applications in realistic

scenarios. Some example of instrumentation tools include, Detours [90], NTrace

[102] and DDT [81].

Commodity operating systems are built using a monolithically design where all

the operating system functions run in kernel mode. However, with this unconstrained

access, every bug in these components can potential compromise the system

correctness. The isolation of the execution of kernel components have been

proposed using Runtime Protection [115], Static Verification and Runtime Memory

Protection [83][86] and Low Level Driver Execution Isolation [76][77][79].

Static analysis techniques analyse a program without executing it. Static analysis

tools follow all paths while building an internal representation of the program’s

control flow. Most of the static analysis tools requires access to the source code or

annotations. Complex systems can take too long or being impossible to analyse.

Binary static analysis tools also exist but they face additional challenges since need

CHAPTER 3 - RELATED WORK 67

to deal with machine code representation which difficult the analysis. Examples of

static analysis tools were given in the following categories: i) compile time static

analysis; ii) runtime checking and static verification of binary code. The following are

examples of static analysis tools, Coverity [133][134][146], Jlint [135][136], PREfast

[56], Splint [137] (see also [95][128][138][139][140][141][142][143]).

Among the main reasons behind buggy drivers are low-level programming

language, poorly-defined communication protocols between the DD and the OS, a

complex driver execution infrastructure and a multithreading computational model.

Introducing changes to existing programming languages can improve the quality of

driver building, with an increase of the overall dependability.

Formal specification is a way to have a clear and well defined contract between

the DD and the rest of the system. It relies on the accurate and detailed information

to minimize bugs. Eventually, automatic tools can then formally analyse the resulting

code and identify specification violations either statically or dynamically.

The replacement of the multi-threaded model with an event-based model can be

a solution to reduce (or eliminate) some of the difficulties related with concurrency,

one of the most common problems in driver development.

68 CHAPTER 3 - RELATED WORK

CHAPTER 4 ROBUSTNESS TESTING OF THE
WINDOWS DRIVER KIT

Device Drivers are one of the major sources for system malfunctions. Previously we

have explained a series of potential causes that contribute for this situation. In the

case of monolithic OS architectures, the main reason for these problems can be

attributed to the fact that the driver executes with the same privileges as the OS

kernel. Since it is very difficult to change the existing software architecture,

researches have proposed solutions to minimize the effects of faults in the drivers

either by executing the driver code in a separate environment (from the kernel) or

by wrapping the code with enough controls to prevent faults from compromising the

overall system execution. The success of these solutions depends on how effective

are the designed mechanisms to cope with all sorts of flaws that a DD may have.

The undeniable fact is that DDs are becoming the most dynamic and larger part

of the OS code and, with new devices released frequently, this problem can grow

exponentially. In this chapter, we study in some detail the effect of DD faults on the

dependability of a system and determine how the OS is prepared to cope with them.

This study can help us identifying some common types of faults that may lead to

system failure and contribute to devise solutions that could prevent them more

effectively.

In this part of our investigation we focus on the interface between the DD and the

OS. As we are especially interested in dealing with Windows DDs we designed a

70 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

methodology to evaluate the robustness of the DD Kit (DDK) functions. We also built

a tool that implements the methodology, which has its roots in the Ballista [43]

approach. In our tool several test drivers are generated, containing DDK function

calls with erroneous arguments. The argument values were selected specifically for

each function, and they emulate seven classes of typical programming errors.

4.1 The Test Methodology

In a robustness testing campaign one wants to understand how well a certain

interface withstands erroneous input to its exported functions. Each test basically

consists on calling a function with a combination of good and bad parameter values,

and on observing its outcome in the system execution. As expected, these

campaigns can easily become too time consuming and extremely hard to perform,

especially if the interface has a large number of functions with various parameters,

since this leads to a combinatory explosion on the number of tests that has to be

carried out.

This kind of problem occurs with the Windows DDK because it exports more than

a thousand functions. However, from the group of all available functions, some of

them are more commonly used than others, and therefore these functions potentially

have more impact in the system. Moreover, in most cases, (good) parameter values

are often restricted to a small subset of the supported values of a given type.

Based on these observations, we developed a methodology to test the Windows

DDK. It has several steps that are implemented by a set of tools, as represented in

Figure 4-1. The DevInspector tool performs an automatic analysis of the target

system to obtain a list of available DDs. Then, it measures the presence of each

imported function from the DDK by each driver.

Using this data, one can select a group of functions for testing, the candidate list.

A XML file is manually written to describe the prototype of each function, which also

includes the fault load (e.g., the bad values that should be tried).

Next, the DevBuilder tool takes as input the information contained in the XML file,

a template of a DD code, some compilation definitions, and generates the workload

utilized to exercise the target system and to observe its behaviour. The workload

includes for each function test a distinct DD that injects the faulty input.

Other approaches could have been employed to implement the tests (e.g., a

single DD injects all faulty data). However, the selected solution was chosen

because: i) the control logic of each driver and management tool becomes quite

simple; ii) the interference between experiments basically disappears because an

OS reboot is performed after a driver test, iii) last, one can determine if the DD

loading and unloading mechanisms are damaged by the injected faults.

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 71

Figure 4-1: Test DD generation.

The study has looked in a comparative basis at aspects such as error

containment, influence of the file system type, and the diagnosis capabilities of

minidump files.

4.2 Selecting the Candidate List

Windows stores drivers in the portable executable file format [62], which contains a

table with the functions that are exported from the driver and imported from the OS.

In the case of drivers, the imported functions are the ones provided by the DDK.

Therefore, one can discover the DD currently available in a system by looking for

.sys files placed in \system32\drivers. Then, by examining the table of

imported functions of the existing drivers, one can collect statistics about which DDK

functions are utilized in practice.

In our experiments, we have performed several installations of Windows XP and

Windows Server 2003 to use FAT32 and NTFS file systems. Windows Vista was

installed only with NTFS file system. These OS and file system combinations were

installed in a DELL Optiplex 170L computer. Table 4-1 shows the number of drivers

found for each of our Windows installations.

DevInspector

Device Driver 1

Device Driver 2

Device Driver N

... List with canditate
functions

Compilation
definitions

DD
Template XML

signature
description

DevBuilder

Test DD1 Test DD2 Test DDn

...

Legend:

Binary file carrying fault

Text file

XML file

72 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

Each line in the table identifies the OS name and file system, the number of

drivers that were found in the OS installation and that were running when the boot

sequence completed, and the number of functions imported by these drivers. As it

is possible to observe, Windows Vista imports many more functions than Windows

Server 2003 for roughly the same number of drivers (2400 instead of 1463).

Table 4-1: Drivers in a Windows OS installation.

OS File System

Drivers # of
different
functions
in running
Drivers

Total Running

Windows XP
FAT32 259 93 1490

NTFS 260 94 1494

Server 2003
FAT32 189 93 1463

NTFS 189 92 1463

Vista NTFS 250 113 2400

From the analysis of these drivers (both total and running), it was possible to

conclude that a small group of functions was commonly present in the majority of

the DD, and that most of the rest of the functions were infrequently utilized (e.g.,

around 900 functions were only called by 1 or 2 drivers). These results indicate that

if one of the most common imported functions unsafely treats its parameters, then

almost every DD is potentially affected.

For this work, the functions that were chosen for the candidate list were the ones

commonly imported by the majority of the drivers. Being impossible to test every

function in a reasonable time, it was used the following selection criterion:

“The tested functions had to be present in at the least 95% of all running drivers”.

Table 4-2 displays the first group of the most used functions that satisfied this

criterion. In each line, the table presents our internal identifier, the name of the

function and its alias (to reduce the size of the rest of the tables). We have found

out that this list changes very little when this criterion is applied to all existing drivers

and not only the running ones.

Table 4-3 displays the driver coverage by this group of functions in each OS

configuration.

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 73

Table 4-2: Top 20 called DDK functions.

ID Name Alias

1 ntoskrnl::RtlInitUnicodeString InitStr

2 ntoskrnl::ExAllocatePoolWithTag AllocPool

3 Ntoskrnl::KeBugCheckEx BugCheck

4 ntoskrnl::IofCompleteRequest CompReq

5 Ntoskrnl::IoCreateDevice CreateDev

6 Ntoskrnl::IoDeleteDevice DeleteDev

7 ntoskrnl::KeInitializeEvent InitEvt

8 ntoskrnl::KeWaitForSingleObject WaitObj

9 ntoskrnl::ZwClose ZwClose

10 ntoskrnl::IofCallDriver CallDrv

11 ntoskrnl::ExFreePoolWithTag FreePool

12 ntoskrnl::KeSetEvent SetEvt

13 ntoskrnl::KeInitializeSpinLock InitLock

14 HAL::KfAcquireSpinLock AcqLock

15 HAL::KfReleaseSpinLock RelLock

16 ntoskrnl::ObfDereferenceObject DerefObj

17 ntoskrnl::ZwOpenKey OpenKey

18 ntoskrnl::ZwQueryValueKey QryKey

19 IoAttachDeviceToStack AttachDev

20 ntoskrnl::memset Memset

Table 4-3: Top 20 functions driver coverage.

OS File System Driver Coverage

Windows XP
FAT32 96,7%

NTFS 96,8%

Server 2003
FAT32 96,7%

NTFS 96,7%

Vista NTFS 97,3%

Other selection criteria were considered, such as the static or dynamic frequency

of function calls. Static frequency picks functions that appear many times in the code

without taking into account the logic under it – a function may appear repeatedly in

the code but may never be executed.

Dynamic frequency chooses the functions that are called most often during the

execution of a given workload. Therefore, if the workload has a high file activity then

disk drivers would run more, and their functions would be selected for the candidate

list. This will bias the analysis towards the elected workload, which is something we

decided to avoid in these experiments.

74 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

4.3 Tested Faulty Values

The main responsibility of the DevBuilder tool is to write DD based on the template

code, each one carrying out a distinct function test (see Figure 4-1). To accomplish

this task, all relevant data about the functions is provided in a XML signature file,

and a DD source code template with special marks that identify where to place the

information translated from XML into source code.

The signature file includes the function name, parameter type and values that

should be tried out as well as the expected return values. In addition, for certain

functions, it also contains some setup code that is inserted before the function call,

to ensure that all necessary initializations are performed. Similarly, some other code

can also be included, which is placed after the function call, for instance to evaluate

if some parameter had its value correctly changed or to check the returned value of

the performed call.

In order to obtain the relevant data about the functions, we had to resort to the

Windows DDK documentation. From the point of view of a DD developer, this

documentation corresponds to the specification of the DDK functions. Therefore, if

there are errors in the documentation, then they may be translated into bugs in the

drivers’ implementations (and also in our tests). Nevertheless, in the worst case, if

a problem is observed with a test, at least it indicates that the function description

contains some mistake.

The signature file defines seven types of correct and faulty inputs. These values,

summarized in Table 4-4, emulate the outcomes of some of the most common

programming bugs.

Table 4-4: Fault type description.

Fault Type Description

Acceptable Value Parameter is initialized with a correct value.

Missing local variable initialization Parameter with a random initial value.

Forbidden values
Uses values that are explicitly identified in the DDK
documentation as incorrect.

Out of bounds value Parameters that exceed the expected range of values.

Invalid pointer assignment Invalid memory locations.

NULL pointer assignment NULL value passed to a pointer parameter.

Related function not called
This fault is produced by deliberately not calling a setup
function, contrarily to what is defined in the DDK
documentation.

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 75

4.4 Expected Failure Modes

The list displayed in Table 4-5 represents the possible scenarios that are expected

to occur after a DD injects a fault into the OS. Initially we started with a much larger

list of failure modes, which was derived from various sources, such as the available

works in the literature and expert opinion from people that administer Windows

systems. However, as the experiences progressed, we decided to reduce

substantially this list because several of the original failure modes were not observed

in practice.

Generally speaking, there are two major possible outcome scenarios: either the

faulty input produces an error (e.g., a crash) or it is handled in some manner. Since

the fault handling mechanisms can also have implementation problems, the FM1

failure mode was divided in three subcategories. In order to determine which

subcategory applies to a given experiment, the DD verifies the correctness of the

return value (if it was different from void) and output parameters of the function.

• Returns ERROR (RErr): The return value from the function call indicates

that an error was detected possibly due to invalid parameters. This means

that the bad input was detected and was handled properly.

• Returns OK (ROk): The return value of the call indicates a successful

execution. This category includes two cases: even with some erroneous

input, the function executed correctly or did not run but returned OK; all input

was correct, for instance because only good parameter values were utilized

or the random parameters ended up having acceptable values.

• Invalid return value (RInv): Sometimes several values are used to indicate

a successful execution (a calculation result) or an error (reason of failure).

When the return value is outside the range of possible output values (at least

from what is said in the DDK documentation), this means that either the

documentation or the function implementation has a problem.

Table 4-5: Expected failure modes.

ID Description

FM1 No problems are detected in the system execution.

FM2 The applications or even the whole system hangs.

FM3
The system crashes and then reboots; the file system is checked and NO corrupted
files are found.

FM4 Same as FM3, but there are corrupted files.

76 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

The experimental system was configured such that whenever a crash occurs,

Windows generated a minidump file to describe the execution context of the system

when the failure took place. The analysis of this file is very important because it

allows developers to track the origin of crashes. Although several efforts have been

made to improve the capabilities of crash origin identification, still some errors

remain untraceable or are detected incorrectly.

Whenever an experiment caused a crash, the minidump files were inspected to

evaluate their identification capabilities. Four main categories of results were

considered:

• Identification OK (M1): The minidump file correctly identifies the faulty

driver as the source of the crash.

• Identification ERROR (M2): The minidump file identifies other module as

the cause of failure.

• Unidentified (M3): The minidump file could not identify either the driver or

other module as the source of the crash.

• Memory Corruption (M4): The minidump file detected a memory

corruption.

4.5 Experimental Setup

Since the experiments were likely to cause system hangs or crashes, and

sometimes these crashes corrupted files, two machines were used to automate most

of the tasks (see Figure 4-2). The target machine hosts the OS under test and the

DD workload, and the controller machine is in charge of selecting which tests should

be carried out, collecting data and rebooting the target whenever needed.

After booting the targeting machine, the DevInject contacts the DevController to

find out which driver should be used in the next experiment. Then, DevInject loads

the driver, triggers the fault, checks the outcome and, if everything went well,

removes the driver.

The DevController is informed of each step of the experiment, so that it can

instruct the DevInject what actions should be performed next. This way, the target

file system is not used to save any intermediate results or keep track of the

experience, since it might end up being corrupted. The target file system is however

utilized to store the minidump files and the corrupted files that were found. After a

reboot, the DevInject transfers to the DevController all this information using FTP.

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 77

Figure 4-2: Experimental setup.

All measurements were taken on a prototype system composed by two x86 PCs

linked by an Ethernet network. The target machine was a DELL Optiplex computer

with 512Mb and 2 disks.

Three OS versions and two distinct file systems, FAT32 and NTFS, were

evaluated. The outcome was five different configurations (Vista was not tested with

FAT32). The exact OS versions were: Windows XP Kernel Version 2600 (SP 2),

built: 2600.xpsp_sp2_gdr.050301-1519, Windows Server 2003 Kernel Version 3790

(SP 1), built: 3790.srv03_sp1_rtm.050324-1447 and Windows Vista Kernel Version

5600, built: 5600.16384.x86fre.vista_rc1.060829-2230.

Microsoft provides an equivalent DDK for all OS. This way the same set of drivers

that have been synthetically produced could be used to test the various OS. In every

target configuration the initial conditions were the same, the OS were configured to

produce similar types of dump files, and the DevInject tool was basically the only

user application running.

The experiments were performed without load to ensure that results were highly

repeatable, and therefore to increase the accuracy to the conclusions.

4.6 Discussion of Results

The observed failure modes are displayed in Table 4-6. The first three columns

present the function identifier ID, its alias name and the number of experiments

carried out with each function. The failure modes for the various OS configurations

are represented in the next four groups of columns, under the headings FM1 to FM4.

Each column group presents one value for each OS configuration.

Test DD1

Test DD2

Test DDn

OS

Trigger

FTP Client

Script

FTP Server

Next DD Log

Log

Files

Instructions

Log
DevControllerDevInject

Target Machine Controller Machine

78 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

T
a
b

le
 4

-6
:

O
b

s
e
rv

e
d

 f
a
il
u

re
 m

o
d

e
s

.

F

M
4
:

C
ra

s
h

 &
 F

C
o

rr
u

p
t

V

N
tF

s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2
0
0
3

N
tF

s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F
A

T
 1

1
1

9

2
5

4
0

2

5

1
6

0

5

7

1

1

4

3
5

1

4

0

6

9

1
8
2

1
3
,9

X
P

 N
tf

s
 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F
A

T
 1

1
0

6

5
1

1
9

4

4

3

0

9

1
4

3

1

4

2
7

0

2
6

0

2

8

1
9
2

1
4
,7

F
M

3
:

C
ra

s
h

V

N
tF

s

3

2
0

1
2

5
1

4
8

4

1
2

1
8

0

9

1
5

1
5

1

6

4
7

3

5
1

0

8

2
4

3
4
7

2
6
,5

2
0
0
3

N
tF

s
 3

2
4

1
2

5
1

4
8

4

1
2

1
8

0

9

1
5

6

1

6

4
7

1

5
1

0

8

2
1

3
3
7

2
5
,7

F
A

T
 2

1
3

3

2
6

8

2

7

2

0

4

8

5

0

2

1
2

0

4
7

0

2

1
2

1
5
5

1
1
,8

X
P

 N
tf

s
 3

2
4

1
2

5
1

4
8

4

1
2

1
8

0

9

1
5

1
8

1

6

4
5

1

5
1

0

8

3
0

3
5
6

2
7
,2

F
A

T
 2

1
4

6

0

2
9

0

8

1
5

0

0

1

1
5

0

2

1
8

1

2
5

0

6

2
2

1
6
4

1
2
,5

F
M

2
:

H
a
n

g
s

V

N
tF

s
 0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

3

0
,2

2
0
0
3

N
tF

s
 0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

3

0
,2

F
A

T
 0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

3

0
,2

X
P

 N
tf

s
 0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

3

0
,2

F
A

T
 0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

0

3

0
,2

F
M

1
:

E
x
e
c
u

ti
o

n
 O

K

V

N
tf

s

9

4
2
0

0

0

4
8

0

6

1
8

3

0

1

9

2

0

1

0

1
0
4

3
1
5

0

2
4

9
6
0

7
3
,3

2
0
0
3

N
tF

s
 9

4
1
6

0

0

4
8

0

6

1
8

3

0

1

1
8

2

0

1

2

1
0
4

3
1
5

0

2
7

9
7
0

7
4
,0

F
A

T
 9

4
1
6

0

0

4
8

0

6

1
8

3

0

1

1
8

2

0

1

2

1
0
4

3
1
5

0

2
7

9
7
0

7
4
,0

X
P

 N
tf

s
 9

4
1
6

0

0

4
8

0

6

1
8

3

0

1

6

2

0

3

2

1
0
4

3
1
5

0

1
8

9
5
1

7
2
,6

F
A

T

9

4
1
6

0

0

4
8

0

6

1
8

3

0

1

6

2

0

3

2

1
0
4

3
1
5

0

1
8

9
5
1

7
2
,6

#
D

D

1
2

4
4
0

1
2

5
1

9
6

4

1
8

3
6

3

9

1
6

2
4

3

8

4
8

3

1
5
5

3
1
5

9

4
8

1
3
1
0

T
o

ta
l
/

#
 D

D

(%
)

A
li
a
s

In
it
S

tr

A
llo

c
P

o
o
l

B
u
g
C

h
e
c
k

C
o
m

p
R

e
q

C
re

a
te

D
e
v

D
e
le

te
D

e
v

In
it
E

v
t

W
a
it
O

b
j

Z
w

C
lo

s
e

C
a
llD

rv

F
re

e
P

o
o
l

S
e
tE

v
t

In
it
L
o
c
k

A
c
q
L
o
c
k

R
e
lL

o
c
k

D
e
re

fO
b
j

O
p
e
n
K

e
y

Q
ry

K
e
y

A
tt

a
c
h
D

e
v

m
e

m
s
e
t

T
o

ta
l

ID
 1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 79

Figure 4-3: Relative robustness (FM1/#DD).

In the 20 functions that were tested, several of them were able to deal at least

with a subset of the erroneous input. There were however a few cases where results

were extremely bad, indicating a high level of vulnerability.

By computing the formula FM1/#DD for each FM1 entry, one can have an idea

about the relative robustness of the functions (see Figure 4-3). The results obtained

using Windows XP with FAT and NTFS files systems were the same. This also

happened in the case of Windows 2003. For these reason, we are showing a more

simplified view of the results. As displayed in the graph, only two functions were

100% immune to the injected faults, ZwClose and QryKey. On the other hand, eight

functions had zero or near zero capabilities to deal with the faults.

One reason for this behaviour is that some of these functions are so efficiency

dependent (e.g., CompReq and AcqLock) that developers probably have avoided

the implementation of built in checks. Another reason is related to the nature of the

function, which in the case of BugCheck is to bring down the system in a controlled

manner, when the caller discovers an unrecoverable inconsistency. In this case, the

developers probably preferred to reboot the system even if some parameters were

incorrect (but notice that this reboot sometimes was not done in a completely

satisfactory way since files ended up being corrupted).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
it

St
r

A
llo

cP
o

o
l

B
u

gC
h

ec
k

C
o

m
p

R
eq

C
re

at
eD

e
v

D
e

le
te

D
ev

In
it

Ev
t

W
ai

tO
b

j

Zw
C

lo
se

C
al

lD
rv

Fr
e

eP
o

o
l

Se
tE

vt

In
it

Lo
ck

A
cq

Lo
ck

R
e

lL
o

ck

D
e

re
fO

b
j

O
p

en
K

ey

Q
ry

K
e

y

A
tt

ac
h

D
e

v

m
em

se
t

XP

2003

Vista

80 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

Observing again Table 4-6 from the various functions it is possible to conclude

that only two caused the system to hang (vertical section FM2: Hangs). Functions

AcqLock and AttachDev caused hangs in all OS configurations, when an invalid

pointer was passed as argument. Most of the erroneous inputs that caused failures

end up crashing the system (vertical section FM3 and vertical section FM4). From

the various classes of faults that were injected, the most malicious were invalid

pointer assignments and NULL values passed in pointer parameters. The first class,

invalid pointers, is sometimes difficult to validate, depending on the context (e.g., a

buffer pointer that was not properly allocated but has a different value than NULL).

On the other hand, NULL pointers can be easily determined and for this reason it is

difficult to justify why they are left un-checked, allowing them to cause so many

reliability problems.

In all experiments, it was never observed any file corruption with the NTFS file

system after a reboot. However, the FAT32 file system displayed in many instances

cases of corruption. Traditionally, NTFS has been considered much more reliable

than FAT32, and our results contribute to confirm this. The reliability capabilities

integrated in NTFS, like transactional operations and logging, have proven to be

quite effective at protecting the system during abnormal execution. The overall

comparison of the 3 operating systems, if we restrict ourselves to NTFS or FAT32,

shows a remarkable resemblance among them.

The last two rows of Table 4-6 present an average value for the failure modes

and OS configurations. On average, OSs had an approximately equivalent number

of failures in each mode, with around 73% testes with no problems detected during

the system execution. Hangs were a rare event in all OSs. If a finer analysis is made

on a function basis (see Figure 4-3), we observe a similar behaviour for most

functions. There were only two functions where results reasonably differ, SetEvt and

memset. From these results, there is reasonable indication that the 3 operating

systems use comparable levels of protection from faulty inputs coming from drivers.

These results reinforce the idea that although the Windows NT system has

undergone several name changes over the past several years, it remains entirely

based on the original Windows NT code base. However, as time went by, the

implementation of many internal features has changed. We expected that newer

versions of the Windows OS family would become more robust; in practice, we did

not see this improvement at the driver’s interface. Of course, this conclusion needs

to be better verified with further experiments.

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 81

Return Values from Functions

As explained previously, even when the system executes without apparent

problems, the checking mechanisms might not validate the faulty arguments in the

most correct manner and produce fail-silent violations. Therefore, FM1 can be

further divided in three sub-categories to determine how well the OS handled the

inputs.

Table 4-7 shows the results of the experiments obtained when the function

execution returned a value in the RErr category, i.e., an error was detected by the

function. Since some functions do not return any values, their corresponding table

entries were filled with “-”. The “# Faulty Drivers” column refers to the number of

drivers produced by DevBuilder that contained at least one bad parameter.

Comparing this column with the following five columns, one can realize that only two

functions have a match between the number of faulty drivers and the number of RErr

values. The other functions revealed a limited parameter checking capability.

Table 4-7 Return error (RErr) values.

ID Alias
#Faulty
Drivers

RErr

XP 2003 Vista

Fat Ntfs Fat Ntfs Ntfs

1 InitStr 9 0 0 0 0 0

2 AllocPool 200 20 20 20 20 12

3 BugCheck 12 - - - - -

4 CompReq 51 - - - - -

5 CreateDev 76 0 0 0 0 0

6 DeleteDev 4 - - - - -

7 InitEvt 14 - - - - -

8 WaitObj 36 0 0 0 0 0

9 ZwClose 3 3 3 3 3 3

10 CallDrv 9 0 0 0 0 0

11 FreePool 15 - - - - -

12 SetEvt 20 0 0 0 0 0

13 InitLock 2 - - - - -

14 AcqLock 8 0 0 0 0 0

15 RelLock 48 - - - - -

16 DerefObj 3 - - - - -

17 OpenKey 155 104 104 104 104 104

18 QryKey 315 315 315 315 315 315

19 AttachDev 9 0 0 0 0 0

20 memset 39 0 0 0 0 0

82 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

To complement this analysis, Table 4-8 presents the results for the ROk category

(i.e., the return value of the call is a successful execution). Column “Non Faulty

Drivers” shows the number of drivers with only correct arguments. Comparing this

column with the remaining ones, it is possible to conclude that functions return a

successful execution more often than the number of non-faulty drivers. However, in

some cases this might not mean that there is a major problem. For instance,

consider function 2-AllocPool that receives three parameters: the type of pool (P0);

the pool size (P1); and a tag value (P2). Depending on the order of parameter

checking, one can have the following acceptable outcome: P1 is zero, and 2-

AllocPool returns a pointer to an empty buffer independently of the other parameters

values.

On the other hand, by analysing the execution log, we found out that when P1

was less than 100.000*PAGE_SIZE, Windows returned ROk even when a forbidden

value was given in P0 (at least, as stated in the DDK documentation). This kind of

behaviour means that an error was (potentially) propagated back to the driver, since

it will be using a type of memory pool different from the expected thus causing a fail

silent violation. The table also reveals another phenomenon -- the three versions

of Windows handle the faulty parameters differently.

Table 4-8 Return OK (ROk) values.

ID Alias

Non
Faulty
Drivers

ROk

XP 2003 Vista

Fat Ntfs Fat Ntfs Ntfs

1 InitStr 3 9 9 9 9 9

2 AllocPool 240 396 396 396 396 408

3 BugCheck 0 - - - - -

4 CompReq 0 - - - - -

5 CreateDev 20 48 48 48 48 48

6 DeleteDev 0 - - - - -

7 InitEvt 4 - - - - -

8 WaitObj 0 18 18 18 18 18

9 ZwClose 0 0 0 0 0 0

10 CallDrv 0 0 0 0 0 0

11 FreePool 1 - - - - -

12 SetEvt 4 6 6 18 18 9

13 InitLock 1

14 AcqLock 0 0 0 0 0 0

15 RelLock 0 - - - - -

16 DerefObj 0 - - - - -

17 OpenKey 0 0 0 0 0 0

18 QryKey 0 0 0 0 0 0

19 AttachDev 0 1 1 1 1 1

20 memset 9 18 18 27 27 22

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 83

For example, there were several cases in Vista where function 2-AllocPool

succeeded while in XP and Server 2003 it caused a crash. In function 12-SetEvt,

Server 2003 does not crash when TRUE was passed in one of the parameters, while

the other did so (the documentation says that when this value is used, the function

execution is to be followed immediately by a call to one of the KeWaitXxx routines,

which was not done in either OSs).

In all experiments, we did not observe any return values belonging to the RInv

category (i.e., values outside the expected return range).

Corrupted Files

The last group of results in Table 4-6 corresponding to FM4, displays the number of

times Windows found corrupted files while booting. The Chkdsk utility is called

during the booting process to detect these files.

Corrupted files were found only in the configurations that used the FAT32 file

system. Using the formula FM4/(FM3+FM4) one can have a relative measure of how

sensitive is the file system when a crash occurs, i.e., crashes resulting in corrupt

files / crashes. The results presented in Figure 4-4 shows that when using FAT32

in general, Windows Server 2003 is more sensitive than Windows XP in a majority

of the cases (since there were no observed crashes for Windows XP using NTFS,

Windows Server 2003 NTFS and Windows Vista these results were omitted from

the graph for simplicity).

Figure 4-4: File System sensitiveness (FM4/(FM3+FM4)).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
it

St
r

A
llo

cP
oo

l

B
ug

C
he

ck

Co
m

pR
eq

Cr
ea

te
D

ev

D
el

et
eD

ev

In
it

Ev
t

W
ai

tO
bj

Zw
Cl

os
e

Ca
llD

rv

Fr
ee

Po
ol

Se
tE

vt

In
it

Lo
ck

A
cq

Lo
ck

R
el

Lo
ck

D
er

ef
O

bj

O
pe

nK
ey

Q
ry

Ke
y

A
tt

ac
hD

ev

m
em

se
t

XP

2003

84 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

Minidump Diagnosis Capabilities

The analysis of the minidump files produced during a system crash allows us to

determine how well they identify a driver as the culprit of the failure. These files are

fundamental tools for the Windows development teams because they help to

diagnose system problems, and eventually to correct them. We have used the

Microsoft’s Kernel Debugger [101] to perform the analysis of these files, together

with a tool, DevDump, that automates most of this task. DevDump controls the

debugger, passes the minidumps under investigation, and selects a log where

results should be stored. After processing all files, DevDump generates various

statistics about the detection capabilities of minidumps.

In the experiments, all Windows versions correctly spotted the faulty DD in the

majority of times. Figure 4-5 show the relationship between the number of crashes

and the correct identification of the source of the crash (M1). The accuracy of the

error source determination seems to be independent of the file system used. Only

in very few cases there was a difference between the two file systems, such as for

the 7-InitEvt function where Server 2003 FAT32 identified a different source of crash

from Server 2003 NTFS. In general, the results show that Windows XP is more

accurate than the others OS (see 7-InitEvt, 14-AcqLock and 15-RelLock). However,

there were cases where other kernel modules were incorrectly identified (functions

1-InitStr, 14-AcqLock and 15-RelLock).

Figure 4-5: Source identification OK (M1).

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

In
it

St
r

A
llo

cP
o

o
l

B
u

g
C

h
ec

k

C
o

m
p

R
e

q

C
re

a
te

D
e

v

D
e

le
te

D
ev

In
it

Ev
t

W
ai

tO
b

j

Zw
C

lo
se

C
al

lD
rv

Fr
ee

P
o

o
l

Se
tE

vt

In
it

Lo
ck

A
cq

Lo
ck

R
e

lL
o

ck

D
e

re
fO

b
j

O
p

en
K

e
y

Q
ry

K
ey

A
tt

ac
h

D
e

v

m
em

se
t

XP Fat

XP Ntfs

2003 Fat

2003 Ntfs

Vista

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 85

Figure 4-6: Source identification error (M2).

Figure 4-7: Source of crash unidentified (M3).

These errors are particularly unpleasant because they can lead to waste of time

while looking for bugs in the wrong place, and they can reduce the confidence on

the information provided by minidumps. In some other cases, Windows was unable

to discover the cause of failure. This happened in Vista more frequently than the

other OS configurations, for instance in functions 12-SetEvt and 15-RelLock (see

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

In
it

St
r

A
llo

cP
o

o
l

B
u

g
C

h
ec

k

C
o

m
p

R
e

q

C
re

a
te

D
e

v

D
e

le
te

D
ev

In
it

Ev
t

W
ai

tO
b

j

Zw
C

lo
se

C
al

lD
rv

Fr
ee

P
o

o
l

Se
tE

vt

In
it

Lo
ck

A
cq

Lo
ck

R
e

lL
o

ck

D
e

re
fO

b
j

O
p

en
K

e
y

Q
ry

K
ey

A
tt

ac
h

D
e

v

m
em

se
t

XP Fat

XP Ntfs

2003 Fat

2003 Ntfs

Vista

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

In
it

St
r

A
llo

cP
o

o
l

B
u

g
C

h
ec

k

C
o

m
p

R
e

q

C
re

a
te

D
e

v

D
e

le
te

D
ev

In
it

Ev
t

W
ai

tO
b

j

Zw
C

lo
se

C
al

lD
rv

Fr
ee

P
o

o
l

Se
tE

vt

In
it

Lo
ck

A
cq

Lo
ck

R
e

lL
o

ck

D
e

re
fO

b
j

O
p

en
K

e
y

Q
ry

K
ey

A
tt

ac
h

D
e

v

m
em

se
t

XP Fat

XP Ntfs

2003 Fat

2003 Ntfs

Vista

86 CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT

Figure 4-7). In function 12-SetEvt, Vista was the only system that could not diagnose

the cause of failure. Only Windows Server 2003 detected memory corruption

situations (in functions 14-AcqLock and 15-RelLock). Windows Server 2003 (FAT32

and NTFS) located memory corruptions when faults were injected in functions 14-

AcqLock and 15-RelLock.

4.7 Summary

This investigation focused on a robustness testing experiment that evaluates

Windows XP, Windows Server 2003 and Windows Vista. The main objective of this

study was to determine how well Windows protects itself from faulty drivers that

provide erroneous input to the DDK routines. Seven classes of typical programming

bugs were simulated.

The analysis of the results shows that most interface functions are unable to

completely check their inputs - from the 20 selected functions, only 2 were 100%

effective in their defence. We observed a small number of hangs and a reasonable

number of crashes. The main reason for the crashes was invalid or NULL pointer

values. Corruption of files was only observed with the FAT32 file system. The

analysis of the return values demonstrates that in some cases Windows completes

without generating an error for function calls with incorrect parameters, in particular,

Windows Server 2003 seems to be the most permissible one. This behaviour

suggests a deficient error containment capability of the OS. In most cases, the

examined minidump files provided valuable information about the sources of the

crashes, something extremely useful for the development teams. However,

Windows Vista seems to have more troubles in this identification than the other OS.

The experiments made with Windows Vista revealed that it behaves in a similar way

to Windows XP and Server 2003.

CHAPTER 5 ATTACKING WI-FI DRIVERS

WLAN were originally employed to provide networks elements with the ability to

roam across facilities. They give individuals the freedom to stay connected to the

network while moving from one coverage area to another. They can be used to

extend a wired infrastructure or to replace the existing ones, and save costs not only

due to the falling price of the wireless components but primarily with savings with

power and data cables installation.

WLAN offer many advantages but also weaken the security perimeter. In many

places, like airports and shopping malls, there are dozens of rogue networks just

waiting to entrap unsuspecting travellers. Every time someone logs on to a public

WLAN, it is transmitting its login name and password over open airwaves, and when

accessing the Internet possibly its credit card number.

Individual home networks may be attractive to malicious neighbours wanting to

steal the bandwidth or passers-by snooping around one’s hard disk. Corporate

networks may be of increased interest to hackers willing to steal business secrets,

credit card transactions, personal data or health care records. This happens

because many public and private WLAN use poor or no encryption at all, meaning

88 CHAPTER 5 - ATTACKING WI-FI DRIVERS

that anyone with a laptop and a WLAN card could intercept and read data packets

being sent or received by legitimate users.

Although many security failures are due to incorrect configuration, some are

caused by implementation errors. In this chapter, we are particularly interested in

locating this sort of bugs (or vulnerabilities) in DD of WLAN, to allow their removal.

In the majority of situations, the code of the DD is closed. Therefore, the most

common way for vulnerabilities to be discovered by hackers is to use a black box

testing methodology using random inputs, sometimes called fuzzers [63]. It consists

on presenting malformed data injection to the interface and observe the outcomes.

This technique may require further refinements to catch more complex bugs, due to

protocol specificities, but it can be very effective discovering most obvious ones, like

TCP-IP stack problems and OS hangs.

This chapter presents the design of a new fuzzer architecture that is able to build

malformed packets and perform attacks against target systems, independently of

the communication media. The current implementation of the architecture, called

Wdev-Fuzzer, supports the Wi-Fi protocol but it can be extended to other

communication protocols, such as IrDA and Bluetooth. The tool was utilized to study

the behaviour of a Wi-Fi DD of a smart phone running Windows Mobile 5. The tested

scenarios simulate an attack against the Wi-Fi device, either when it is just looking

for an Access Point (AP) to connect or when it is already connected.

Experimental results demonstrated that in most cases Windows is capable of

handling correctly the malicious packets. However, in one situation, a specific

Beacon packet always caused the system to hang. This implies that the DD has a

critical vulnerability which was previously unknown. Wdev-Fuzzer was also

successfully applied to uncover other potential problems. For example, it was used

to reproduce denial of service attacks with Disassociation and Deauthentication

frames.

5.1 Wdev-Fuzzer Architecture

The Wdev-Fuzzer is divided in 8 modules (see Figure 5-1). The Message

Specification is a text file that defines packets as a group of fields. Each packet field

is also specified in the same file using basic data types that are intrinsic to the Wdev-

Fuzzer. For each basic type there is a fuzz operator that assigns specific values

according to some given rules. During the construction of the packets, the Packet

Generator takes the packet description as input, and uses these operators to fill in

the values of the fields.

CHAPTER 5 - ATTACKING WI-FI DRIVERS 89

Figure 5-1: Wdev-Fuzzer block diagram.

The result is a ready-to-be-send potentially bogus packet. By extending the basic

types and the fuzz operators, it is possible to build newer types and values, in order

to meet specific protocol requirements.

The Packet Injector sends the packets to the SUT. And the Packet Listener

receives and analyses all responses that arrive from the SUT. The Monitor

Application and corresponding Monitor Listener are optional components that

exchange information about the state of the SUT. They are used to help to find out

if an attack was successful and contribute to the decision of which attack should be

performed next. The Attack Controller controls the activity of the Packet Injector. It

decides which next packet (attack) should be transmitted, based on the feedback

given by the Monitor Listener and Packet Listener, using predetermined criteria.

The Traffic Generator is used to create and exchange good packets between the

Access Point (AP) and the SUT. This way we can observe the system behaviour

when subject to an attack while correct data is being transmitted by a non-malicious

AP.

Wi-Fi
Propagation
Medium

Message
Specification

Attack Controller

Packet Generator

Test Builder

Monitor
Listener

Packet
Listerner

Packet
Injector

Application
Monitor*

Wi-Fi Traffic
Generator*

* Optional componentes
Data flow

Legend

System Under Test (SUT)

90 CHAPTER 5 - ATTACKING WI-FI DRIVERS

The basic architecture of Wdev-Fuzzer can be tailored to several communication

protocols, still some changes will have to be performed. For example, a new

Message Specification has to be carried out and the Packet Injector and Packet

Listener implementations have to be updated to use the specific functions for

sending and receiving raw packets from the media.

5.2 Using Wdev-Fuzzer in 802.11

The IEEE 802.11 architecture consists of several interacting components to provide

a WLAN that supports station mobility transparently to upper layers. The basic

service set (BSS) is the fundamental building block of an IEEE 802.11 LAN. The

BSS coverage area is where the member stations (STA) of the BSS may remain in

communication. If a STA moves out of its BSS, it can no longer directly communicate

with the other members.

The independent BSS (IBSS) is the most basic type of a Wi-Fi LAN, and consists

of only two STA that are able to exchange data directly with each other. Since this

type of network is often formed without pre-planning it is usually referred to as an

ad-hoc network.

A BSS, instead of operating independently, may also be part of an extended form

of network that is built with multiple BSSs and is interconnected by a distribution

system (DS). In this setting, an AP gives access to the DS by providing DS services

in addition to act as a STA.

Figure 5-2 shows the Medium Access Control (MAC) message frame format for

the 802.11 protocol. These frames may be composed by Fixed Length (FL) and Tag

Length Value (TLV) field types.

To facilitate message parsing, when FL and TLV fields appear in the same

message, FL fields always come first. A FL field appears at a fixed location relative

to the beginning of the frame and it always has the same length. A TLV field has

three elements, a Tag which uniquely identifies the field, a size element which

determines the length of the data and the data itself.

Figure 5-2: Generic Wi-Fi MAC frame format.

Frame Control Duration / ID Addr 1 Addr 2 Addr 3 Seq Addr 4 Body FCS

Version Type SubType To DS
From

DS
More Flags Retry Power

More
Data

WEP Order

MAC Header

Frame Control

CHAPTER 5 - ATTACKING WI-FI DRIVERS 91

Examples of FL fields are all the contents of the Frame Control. Examples of TLV

fields are for instance the Traffic Information Map (TIM) field in a Beacon frame.

Figure 5-3: Relationship between messages and services in Wi-Fi.

Table 5-1: Tested Wi-Fi frames.

Frame Type SubType To AP From AP Class

Association Request Mgt 0 - 2

Association Response Mgt 1 - 2

Reassociation Request Mgt 2 - 2

Reassociation Response Mgt 3 - 2

Probe Request Mgt 4 - 1

Probe Response Mgt 5 - 1

Beacon Mgt 8 - 1

Disassociation Mgt 10 2

Authentication Mgt 11 1

Deauthentication Mgt 12 1,3

Power Save Ctrl 10 - 3

Request to Send Ctrl 11 - 1

Clear to Send Ctrl 12 - 1

Acknowledgment (Ack) Ctrl 13 1

Contention Free (CF) End Ctrl 14 - 1

CF-End+CF-Ack Ctrl 15 - 1

Data Data 0 1,3

 Field included in the message

State 1
Unauthenticated

Unassociated

State 2
Authenticated
Unassociated

State 3
Authenticated

Associated

Deauthentication
Notification

Disassociation
Notification

Successful
Authentication

Successful
Association

Class 1
Frames

Class 1 & 2
Frames

Class 1,2 & 3
Frames

92 CHAPTER 5 - ATTACKING WI-FI DRIVERS

The MAC frame types that may be exchanged between a pair of STAs depend

on their state. The state of the sending STA, given by Figure 5-3, is defined with

respect to the intended receiving STA. The allowed frame types that can be

transmitted in a given state are grouped into classes. In State 1, only Class 1 frames

are allowed. In State 2, either Class 1 or Class 2 frames are acceptable. In State 3,

all frames are permitted (Classes 1, 2, and 3). The frame classes are shown in Table

5-1.

In this work, we utilize the Wdev-Fuzzer to evaluate the Wi-Fi implementation of

a Windows Mobile 5 smart phone. Since these type of equipment are mostly used

as a STA rather than as an AP, the device will be configured as an STA. The

evaluation of an AP is left out for future work. Additionally, we will not use the IBSS

configuration because handheld devices are many times operated in a connected

BSS. In the tested scenarios, the Wdev-Fuzzer is going to simulate a malicious AP

that sends potentially erroneous frames to a SUT.

Table 5-2: Tested Faulty Values.

Fuzz Operator Fixed Length Field Tag Length Value Field

Not Present -

Repeated -

All bits Zero

MIN-1

MIN

MIN+1

Random

Specific Value

MAX-1

MAX

MAX+1

All bits One

 Tested condition

5.3 Tested Faulty Values

Table 5-2 displays the fuzz operators that are applied to each field type, to build Wi-

Fi frames in the experiments. The ‘ ’ character indicates that the operator was

applied to the field and the ‘-‘ the opposite. The operator “Not present” omits an

element from the frame. The “Repeated” operator produces multiple occurrences of

the same field in the frame. The operators “All bits Zero” and “All bits One” are self-

CHAPTER 5 - ATTACKING WI-FI DRIVERS 93

explanatory. The “MIN” and “MAX” operators produce the minimum and maximum

values that a field might contain, as stated in the 802.11 specification.

Often, the “All bits Zero” and “MIN” operators produce equal values, whenever

the minimum value is zero. The same applies for operators “MAX” and “All bits One”.

In these cases, the “MIN” or “MAX” operators are not utilized, since they create test

results equivalent to the “All bits Zero” and “All bits One” (respectively).

The “Random” operator generates random values that are between the values

produced by the “MIN” and “MAX” operators. At last, the “Specific Value” operator

places a pre-defined value in a field. This operator is used for example to force

certain frames to have SUT’s MAC address.

5.4 Tested Scenarios

At first, we considered testing the SUT in all 3 states represented in Figure 5-3.

However, since in real situations State 2 is only available for shorts periods of time,

only States 1 and 3 were considered.

Tests were carried out in 3 different scenarios (A, B and C). In scenario A, the

SUT was in State 1, meaning that it was not associated or authenticated with any

AP. In scenario B, the SUT was in State 3, linked to a Real AP using no

authentication. At last, in scenario C, the SUT was also at State 3 but using

authentication. In scenarios B and C, the Traffic Generator forced the exchange of

data packets between the SUT and the Real AP to stress the communication stack

by opening a TCP-IP socket and transmitting packets between the SUT and the Real

AP.

5.5 Expected Failure Modes

The Packet Generator uses the Message Specification and the fuzz operators to

build Wi-Fi frames. Depending on the values produced, the SUT is going to receive

good and bad Wi-Fi frames, which may be handled correctly or may lead to some

failure. Table 5-3 summarizes the expected failure modes of the SUT when it

receives Wi-Fi frames. It was elaborated after some preliminary experiments and

also based on information provided in the literature [53][54].

F1 represents the case where the system appears to continue to work without

any problems. However, in general, it does not mean that the injected fault was

handled correctly. Whenever a test uses Beacon or Probe frames, the SUT Monitor

returns some feedback to the Controller, saying which APs have been detected.

94 CHAPTER 5 - ATTACKING WI-FI DRIVERS

Table 5-3: Expected failure modes.

ID Description

F1 No problems were detected in the system execution.

F2 Packet Listener detects invalid frame.

F3 SUT was disassociated.

F4 SUT was de-authenticated.

F5 Monitor hangs.

F6 OS hangs.

F7 The system crashes and then reboots.

Table 5-4: Detailed F1 failure mode.

ID Description

F1A Device provides correct information about AP (either detecting it or not).

F1B Device does not detect the AP but it should.

F1C Device detects the AP but it should not.

In these cases, we are able to further extend F1 in three other categories, as

represented in Table 5-4. For instance, the F1A value represents the scenario when

the Monitor correctly reports the information about the AP, either because it was

detected (the packet was well-formed) or because it was not detected (the packet

was incorrectly formed, and therefore, the SUT discarded it and the report indicates

no AP). The F1B value applies to the cases where the Monitor does not detect the

AP but it should, and F1C corresponds to the cases where the AP is detected but it

should not.

The F2 failure mode represents the situations where the SUT detected an invalid

frame.

When the SUT is at State 3, the F3 failure mode means that the device became

disassociated from the AP, as a result of some attack. Likewise, the F4 mode

indicates that the attack successfully deauthenticated the SUT from the AP.

The F5 failure mode signals that the Monitor Application hangs as a

consequence of an attack, denoting that some problem with the DD has propagated

to the application. Whenever the OS hangs, the F6 mode is used. The F7 failure

mode corresponds to the situation when the system crashes and then reboots.

5.6 The Testing Infra-structure

In the Windows OS family, NDIS is an API for Network Interface Cards (NIC's). The

details of a NIC hardware implementation can be wrapped by a Media Access

CHAPTER 5 - ATTACKING WI-FI DRIVERS 95

Controller (MAC) DD, in such a way that all NIC's for the same media (e.g., Ethernet)

are accessed using a common API. Applications interact with NIC's through a stack

of DDs, where each driver adds functionality to the entire communication

infrastructure.

Probably, the main difficulty in building a Wi-Fi test infrastructure is the

implementation of the operations for injecting and capturing the Wi-Fi raw frames.

Our first attempt to address the problem utilized a filter DD that was placed in the

lower parts of the driver stack, hoping to intercept packets sent and received by each

NIC (as well as control instructions given by the OS to the DD). Windows, however,

implements the Wi-Fi protocol in the MAC DD, which emulates the Ethernet protocol

to the drivers above it. Therefore, the DD was only able to capture Ethernet frames

and not Wi-Fi raw frames.

Still there are other possible ways for capturing Wi-Fi frames in Windows, neither

of them very easy to achieve. One approach is using an internal interface to the

MAC DD. Another consists in developing our own MAC DD, but this would require

a direct interaction with the NIC and complete knowledge of its specification

(something that usually is not available). A commercial solution based on this idea

is Airpcap [64], which uses a proprietary MAC DD and their own capture hardware.

Figure 5-4: Fuzzer Wi-Fi test infrastructure.

Controller Machine

Attack Controller

Logs Attacks

Monitor
Listner

Packet
Listner

Injector

Lorcon

OS

Ethernet
Driver

MadWi-Fi
Driver

Ethernet
NIC

Wi-Fi NIC

Mobile Device (SUT)

Traffic
Generator

OS

Wi-Fi
Driver

USB Driver

WI-FI NIC USB NIC

Monitor
Application

Host PC

Traffic
Generator

OS

USB Driver
Ethernet

Driver

USB NIC
Ethernet

NIC

Monitor
Application

Real Access Point

Traffic
Generator

OS
Wi-Fi
Driver

Wi-Fi NICMonitor Info Wi-Fi Traffic

Fault

Interprocess communication

Wi-Fi

Ethernet

Read/Write

Ethernet

96 CHAPTER 5 - ATTACKING WI-FI DRIVERS

In the end, it was decided to build a heterogeneous testing infrastructure, since

in Linux there are several cards and open drivers that support Wi-Fi frame injection

and capture (although not every NIC can be used due to hardware limitations). One

simple way to find them is to search in the Internet for Wi-Fi sniffers and look for

compatible NICs.

Figure 5-4 displays the current testing infrastructure that is composed by 4

components: the Controller Machine, the Mobile Device (SUT), the Host PC and the

Real Access Point. We will detail these components in the next sections.

Controller Machine and SUT

The Controller Machine generates the Wi-Fi packets containing malicious data (e.g.,

out-of-bound values, repeated tags) and sends them through the Wi-Fi interface to

the SUT. Each packet is sent several times to assure that the SUT is able to receive

it.

This element also monitors the outcomes of the tests, and saves the collected

data in the disk for future analysis. Currently, the Controller is installed in a Linux OS

machine, with the MadWi-Fi driver [65] for wireless LAN chipsets from Atheros. The

Packet Injector uses a modified version of Lorcon [66] as a generic library for

injecting Wi-Fi frames. The Monitor Listener receives any incoming frames from the

Monitor installed in the SUT and forwards this information to the Attack Controller to

synchronize the next attack. The Packet Listener informs the Attack Controller of

each incoming packet sent by the SUT. These packets have to be carefully

examined to detect any unexpected behaviour.

The SUT is the target Wi-Fi device of the experiments. It runs a Monitor

Application that regularly connects to the Monitor Listener of the Controller,

informing the current list of detected AP and the status of any existing connection.

This data is especially useful when testing Beacon and Probe frames, as the

detection of the AP is crucial to determine the correction of the error handling

mechanisms.

Host PC and Real AP

The SUT is physically attached to the Host PC through an USB port. This way, the

Monitor Application can reach the Attack Controller through an out of band link,

leaving the Wi-Fi medium free for the experiments. The Host PC runs Windows XP

and Microsoft’s ActiveSync, allowing the communication between the SUT and the

Host PC with TCP over USB, which is then followed by TCP over Ethernet in the

connection between the Host PC and the Controller Machine.

CHAPTER 5 - ATTACKING WI-FI DRIVERS 97

To keep the complexity of the code of the Controller manageable, a Real AP is

utilized to take the SUT through the various states of the Wi-Fi protocol. This way,

specific frames can be injected in every state. The Real AP was implemented in

Windows XP using an off-the-shelf AP application.

5.7 Experimental Results

This section presents the results of the various experiments carried out with the

Wdev-Fuzzer in an 802.11b network. The test bed was composed by a Controller

Machine implemented in a Dell Optiplex 170L Pentium IV computer, installed with

Fedora Core 6. It used a NetGear WPN311 wireless PCI card and the built-in

Ethernet card as communication means.

The SUT was an HP iPAQ hw6915 PDA running Windows Mobile 5 and equipped

with a built-in Texas Instruments Wi-Fi chip. The Host PC machine was a

HighScreen Pentium IV computer with Windows XP Professional Edition. The SUT

was attached to an USB port on the Host and uses ActiveSync 4.1 build 4841 to

establish the connection. This machine was also equipped with an Ethernet card,

which was connected to the Controller Machine with a 100Mbits link. It also hosts

the Real AP using a GigaByte AirCruiser GN-WP01GS wireless PCI card and the

companion AP application. The SUT was attached to an USB port on the Host PC

and placed at about 2m distance from the Controller Machine and the Real AP.

The results of the test campaigns are displayed in Table 5-5 and Table 5-6. A

total of 89489 attacks were carried out for each of the three scenarios. The tables

only show the outcomes for frames that flow from the AP to the SUT (see Table 5-1),

since frames on the other direction never caused any problems (i.e., the failure mode

was always of type F1). The first column of the tables shows the field type being

tested, and the second column displays how many different values were tried. The

following columns display the results obtained for the various different frames. An

empty cell is used to indicate that the corresponding field does not belong to the

frame being tested otherwise it is filled with the code of the observed failure mode

(see Table 5-3).

Since in most cases the result was F1, to make the table reading simpler, the

number of times that it occurs is omitted (it is equal to number of tried values

displayed in the second column). For failure modes different than F1, the table

presents in the cell the number of tests that caused a problem.

98 CHAPTER 5 - ATTACKING WI-FI DRIVERS

Failure Modes in Scenario A

The SUT is in State 1 in the test campaign of scenario A. The SUT is placed in this

state by powering on the Wi-Fi component of the device and by making sure that no

association exists with any STA or AP. The test results for this scenario are

displayed in Table 5-5. It shows that in general the SUT was able to handle correctly

the malicious frames. Nevertheless, some interesting outcomes were observed for

certain specific scenarios, which are summarized in the following points.

Since Beacon frames are directed to everybody in the coverage area, APs should

announce themselves using the broadcast MAC address (FF:FF:FF:FF:FF:FF)

as the Destination Address. Windows Mobile, however, reports a new AP when the

Destination Address uses a distinct MAC address (see row DA). This occurs even

when the Destination Address is different from the MAC address of the SUT. This

behaviour is an implementation issue and does not seem to be a problem.

SSID is the identifier of the AP, and it has a maximum size of 32 characters. The

experiments show that the SUT does not report an existing AP if the SSID field has

‘0x00’ as one of the ASCII characters of the identifier (see row SSID). The same

behaviour was also seen when we run an equivalent test with another Windows

Mobile equipment, which gives evidence that this problem may extend to several

other implementations. From a security perspective, this behaviour is undesirable

since it allows the creation of networks which are hidden from certain devices (e.g.,

a group of hackers could keep a network secret if they found out that the security

officers use a Windows Mobile-based solution for diagnosing Wi-Fi networks).

When multiple SSID fields are sent in a given frame, the SUT assumes the last

value as the correct one. If other vendors take a different view, and choose for

instance the first SSID, then this could lead to incompatibility problems. The 802.11

specification does not address this particular issue.

Whenever the SUT receives a Beacon frame with a TLV field with TAG = 5 (TIM),

Length = 255 and Value = 0xFF, the OS hangs at the first user interaction with the

device (see F6 value in row TIM). The same kind of failure also occurred when the

SUT was in States 2 and 3, as shown in Table 5-6. When a similar test was made

with different Windows Mobile equipment, everything went fine and no hangs were

felt.

CHAPTER 5 - ATTACKING WI-FI DRIVERS 99

Table 5-5: Observed Failure Modes in Scenario A.

Field

#
T

e
s
ts

 &

R
e
s

u
lt

s

C
T

S

A
c
k

C
F

-E
n

d

C
F

-E
n

d
 C

F
-

A
c
k

D
a
ta

A
s
s
o

c
.

R
e
s
p

R
e
a
s
s
.

R
e
s
p

P
ro

b
.

R
e
s
p

B
e
a
c
o

n

D
is

a
s
s
.

A
u

th
.

D
e
a
tu

th
.

Protocol*
Version

4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

To/From* DS 4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

More
Flags*

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Power
Management*

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

More Data* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

RA/Addr1 8 F1 F1 F1 F1 F1

TA/Addr2 8 F1

DA 8 F1 F1
7x

F1C
7x

F1C
F1 F1 F1

SA 8 F1 F1 F1A F1A F1 F1 F1

AID 15 F1 F1

BSS ID 8 F1 F1 F1 F1 F1 F1 F1 F1 F1

Addr3 8 F1

Sequence
Control

10 F1 F1 F1 F1 F1 F1 F1 F1

Addr4 7 F1

Frame
Body

7 F1

Timestamp 6 F1A F1A F1

Beacon**
Interval

2700 F1A F1A F1

Capabilities** 2050 F1 F1 F1 F1 F1

SSID** 1275 F1 F1
32x
F1B

32x
F1B

F1 F1 F1

Supported**
Rates

256 F1 F1 F1A F1A F1 F1 F1

FH**
Parameter

256 F1 F1 F1A F1A F1 F1 F1

DS**
Parameter

256 F1 F1 F1A F1A F1 F1 F1

CF**
Parameter

256 F1 F1 F1A F1A F1 F1 F1

IBSS**
Parameter

256 F1 F1 F1A F1A F1 F1 F1

TIM** 256 F1 F1 F1
1X
F6

F1 F1 F1

Reason
Code

15 F1 F1

Status
Code

5 F1 F1 F1

Auth. Algorithm
Nbr.

5 F1

Auth. Trans.
Nbr.

5 F1

Other
TLV**

1255 F1 F1 F1 F1 F1 F1 F1

*Frame Control; **Tag Length Value

100 CHAPTER 5 - ATTACKING WI-FI DRIVERS

This probably means that the flaw is in HP iPAQ DD. Even so, the vulnerability

is critical from an availability standpoint because exploitation is simple (e.g., since

Beacon frames are processed in all states, a hacker would only need to walk around

with a malicious AP to hang all vulnerable devices in a surrounding area).

The Probe Response failure modes were identical to the Beacon frame, with the

exception of the TIM field where no OS hangs were seen.

Failure Modes in Scenario B

To perform the experiments corresponding to the scenario B, the SUT was

associated and authenticated to the Real AP using no encryption protocol. The

results are shown in Table 5-6. The outcomes for the Beacon and Probe Response

frames are equivalent to those obtained in scenario A, which is not surprising, as

the process of detecting APs while connected to another AP remains the same.

Fuzzing Disassociation and Deauthentication frames confirmed a known

problem with the Wi-Fi protocol. Since the various fields of the frame are not

cryptographically protected with some authentication data (e.g., a message

authentication code), a rogue AP can transmit Disassociation and Deauthentication

frames and cause the Wi-Fi communication to be disrupted (i.e., the Wi-Fi protocol

is vulnerable to a Denial of Service (DoS) attack). This can happen if the Destination

Address (DA) is equal to the address of the associated STA or the broadcast

address. Nevertheless, we found out that several checks are made before accepting

the frames, making the attack harder to execute. Several flags of the frame control

part of the packet are verified (To/From DS, More Flags, Retry, Power Management,

More Data, WEP and Order), reducing significantly the combinations that break the

communication.

We also discovered that, whenever the SUT became disassociated and got

associated after terminating the attack, the Traffic Generator could not recover the

TCP-IP communication. This aspect reveals that some implementation problems

may exist in the TCP-IP stack. Contrarily, whenever the SUT become deauthenticate

and got authenticated at the end of the attack, the Traffic Generator always

recovered the TCP-IP communication. This shows that the DoS attacks performed

with Dissassociation frames can be more harmful than the ones made with

Deauthentication frames.

CHAPTER 5 - ATTACKING WI-FI DRIVERS 101

Table 5-6: Observed Failure Modes in Scenario B and C.

Field

#
T

e
s
ts

 &

R
e
s

u
lt

s

C
T

S

A
c
k

C
F

-E
n

d

C
F

-E
n

d
 C

F
-

A
c
k

D
a
ta

A
s
s
o

c
.

R
e
s
p

R
e
a
s
s
.

R
e
s
p

P
ro

b
.

R
e
s
p

B
e
a
c
o

n

D
is

a
s
s
.

A
u

th
.

D
e
a
tu

th
.

Protocol*
Version

4 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

To/From* DS 4 F1 F1 F1 F1 F1 F1 F1 F1A F1A
3x
F3

F1
3x
F4

More
Flags*

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

Power
Management*

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

More Data* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x
F3

F1
1x
F4

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A
3500x

F3
F1

3500x
F4

RA/Addr1 8 F1 F1 F1 F1 F1

TA/Addr2 8 F1

DA 8 F1 F1
7x

F1C
7x

F1C
2x
F3

F1
2x
F4

SA 8 F1 F1 F1A F1A
1x
F3

F1
1x
F4

AID 15 F1 F1

BSS ID 8 F1 F1 F1 F1 F1 F1
1x
F3

F1
1x
F4

Addr3 8 F1

Sequence
Control

10 F1 F1 F1 F1 F1
1x
F3

F1
1x
F4

Addr4 7 F1

Frame
Body

7 F1

Timestamp 6 F1A F1A F1

Beacon**
Interval

2700 F1A F1A F1

Capabilities** 2050 F1 F1 F1A F1A F1

SSID** 1275 F1 F1
32x
F1B

32x
F1B

1275x
F3

F1
1275x

F4

Supported**
Rates

256 F1 F1 F1A F1A
256x
F3

F1
256x
F4

FH**
Parameter

256 F1 F1 F1A F1A
256x
F3

F1
256x
F4

DS**
Parameter

256 F1 F1 F1A F1A
256x
F3

F1
256x
F4

CF**
Parameter

256 F1 F1 F1A F1A
256x
F3

F1
256x
F4

IBSS**
Parameter

256 F1 F1 F1A F1A
256x
F3

F1
256x
F4

TIM** 256 F1 F1 F1
1x
F6

256x
F3

F1
256x
F4

Reason
Code

15
15x
F3

15x
F4

Status
Code

5 F1 F1 F1

Auth. Algorithm
Nbr.

5 F1

Auth. Trans.
Nbr.

5 F1

Other
TLV**

1255 F1 F1 F1 F1
1255x

F3
F1

1255x
F4

*Frame Control; **Tag Length Value

102 CHAPTER 5 - ATTACKING WI-FI DRIVERS

Failure Modes in Scenario C

In scenario C, the test campaign was performed with the SUT associated and

authenticated to the Real AP using shared key mode encryption protocol. The

results observed in scenario C were equal to the ones obtained in the scenario B.

5.8 Summary

The Wdev-Fuzzer tool is a fuzzer that targets DDs of communication protocols. The

proposed architecture is quite generic, allowing a detailed description of the

protocol’s messages. Therefore, the generated attacks are very effective at

discovering new vulnerabilities and at verifying known issues. Additionally, the tool

can also help to perform some of the tasks of conformance testing, by detecting

misbehaviours of the DD’s implementation with respect to the specification of the

protocols.

The presented version of the tool was utilized to evaluate a Wi-Fi DD of a smart

phone running Windows Mobile 5. The results demonstrated that in most cases,

Windows was able to handle correctly the malicious frames. They also showed that

Wdev-Fuzzer can be successfully applied to reproduce denial of service attacks

using Disassociation and Deauthentication frames. The tool revealed that there

might be a problem in the implementation of the TCP-IP stack, uncovered by the

use of disassociation frames when the SUT was associated and authenticated with

an AP. Finally, it discovered a previously unknown vulnerability that causes OS

hangs, using the TIM element in the Beacon frame.

CHAPTER 6 INTERCEPT

There is a significant difference between being able to trigger an error and locate

the vulnerability behind the error. Locating the flaw requires access to the system

under test in such a way that it is possible to pinpoint the part of the code that is

responsible for the observed behaviour. In the case of Windows DDs (WDD) this is

a challenge. In most times, it is impossible for independent researchers to have

access to the source code of the DD, making it hard to understand the reasons

behind a faulty behaviour.

This chapter describes the Intercept tool that focus on DD involved with

communications that can instrument WDD by logging data about the interactions

with the OS. It operates without access to the driver's source code and with no

changes to the driver’s binary file. As its name indicates, the tool intercepts all

function calls between the DD and the OS, ensuring that various information can be

collected, such as the name of the functions that are invoked, their parameters and

return values, and the content of particular areas of memory. Although simple in

concept, it enables the users to expose a DD behaviour and data structures, which

provide a practical approach towards its understanding.

Intercept can be used as a building block of other tools by providing the contents

of packets and the context of their arrival/departure. For this purpose, Intercept can

log the network traffic information in the format used by Libpcap [98], which can then

be analysed by popular tools such as WireShark [99]. Intercept can be very helpful

104 CHAPTER 6 - INTERCEPT

in debugging processes since it gives a higher level vision of what is happening

between the OS and the driver, and at the same time offering information on the

parameter contents and address locations. Combined with debugging tools from

Microsoft, such as WinDbg [101], this data is useful to reduce the time for locating

functions, OS resources and global variables.

Intercept logs information about the interactions between the OS core and the

DD under test (DUT). The data is collected during the whole period of execution,

starting when the driver is loaded and ending when it is uninstalled. It includes

among others, the list of functions that are used, the order by which they are called,

and parameter and return values. This information is quite comprehensive, and it

helps not only to understand the driver-OS interactions, but also to realize how

drivers deal with the hardware in terms of programming and access to specific

storage areas.

Intercept uses an approach to instrument DDs in Windows that requires no

changes to the binary code. It resorts to a proxy DD that points all imported functions

from a driver to its own interception layer. Call-back functions registered by the driver

are also captured and directed to the interception layer. No extra code needs to be

developed for normal operation - a complete log is generated describing how the

driver behaves as a result of the experiments. However, extensibility is achieved by

changing the actions performed by the interception layer, allowing more complex

operations to be carried out.

6.1 Intercept Architecture

The architecture of Intercept is represented in Figure 6-1. It can be divided in two

main components: The Intercept Windows DD (IWDD) and the Intercept User

Interface (IUI). The first is a Windows driver that provides all the necessary functions

to load, execute and intercept the DUT. The second is an application that allows

users to setup the interception process and control the IWDD activity.

The components of IWDD are the following. The Controller provides an interface

for the IUI application to control the behaviour of the IWDD, allowing for instance the

definition of the level of detail of logging and the selection of which functions should

be logged.

The Loader & Connector (LC) is responsible for loading the “DUT.sys” file into

the memory space of IWDD. It also links all functions that the DUT calls from external

modules to the functions offered by the Interception layer.

CHAPTER 6 - INTERCEPT 105

Figure 6-1: Intercept architecture.

The Interception Layer provides the environment for the DUT to run, and

intercepts all calls performed by the OS to the DUT and the other way around. The

Log Unit (LGU) receives the log entries from the Interception layer and saves them

to a file. This is performed in a separate task to decouple the write delays from the

remaining processing, and therefore increase the system performance.

6.2 Using Intercept

Intercept is installed by replacing in the system the DUT with its own driver (the

IWDD). When the OS attempts to load the DUT, in fact it ends up loading IWDD.

Later on, IWDD brings to memory the DUT for execution. Setting up the interception

of a DUT involves the following steps:

1. The user indicates the DUT of interest through the IUI interface, where a list of

devices present in the OS is displayed;

2. The IUI locates the DUT.inf and DUT.sys files, and makes a copy of them to a

predefined folder. A copy of the IWDD.sys file is also placed in the same folder;

3. The IUI replaces in the DUT.inf file all references to DUT.sys with IWDD.sys.

The IUI also removes references to the security catalogue, since IWDD is not

currently digitally signed. This way, when the OS interprets the DUT.inf file, it

will install IWDD.sys instead;

Controller

Loader &
Connector

(LC)
Interception Layer

Interceptor Layer

Intercepted Functions

Driver Under Test
(DUT)

Imported
Functions

Registration
Functions

Imported
Functions Log

Intercept Windows Device Driver (IWDD)

Intercept User Interface (IUI)

Kernel Space

DUT

User Space

Log Unit
(LGU)

ntoskrnl.exe Hal.dll Ndis.sys

File R/W

Interception

106 CHAPTER 6 - INTERCEPT

4. The Windows Device Manager (WDM) is used to uninstall the DUT.sys, and then

it is asked to check for new hardware, to detect that there is a device without a

driver. At that time, the location of the predefined folder is provided, and Windows

interprets the modified DUT.inf file. Since there is a match with the hardware

identification of the device, it proceeds to load the IWDD.sys file.

After loading IWDD.sys, the following sequence of actions occurs:

1. The WDM calls the DriverEntry(DriverObject *drvObj,

PUNICODE_STRING RegPath) function of IWDD, so that it can initialize and

register the call-back functions. Parameter *drvObj is a complex structure where

some of the exported call-back functions can be registered. Parameter RegPath

is the path of the Windows Register location where the driver should store

information. Since the DD functionality is to be provided by the original DUT

implementation, at this stage the control is given to the LC unit to load the DUT’s

code;

2. The LC unit interprets the DUT.sys file contents, relocates the addresses, and

goes through the table of imported functions to link them to the Interception layer.

Technically this is achieved by having in the Interception layer a table containing

entries with a ‘name’ and an ‘address’ for each function. The ‘name’ is the

Windows function name that can be found in the imported table of the DUT and

the ‘address’ is a pointer to the code of the function. The ‘address’ of the function

in the Interception layer is placed in the imported function table of the DUT's. In

the end, all imported functions of the DUT point to functions in the IWDD.

3. Next, the DUT.sys binary is merged and linked to the IWDD. The LC unit also

finds the address of the DUT’s DriverEntry(), which is then executed. As

with any other driver, the DUT has to perform all initializations within this function,

including running NdisMRegisterMiniportDriver() to register its exported

functions to handle packets. However, since the DUT's imported functions were

substituted by IWDD functions, a call to NdisMRegisterMiniportDriver()

in fact corresponds to a call to _IWDD_NdisMRegisterMiniportDriver()2.

In the particular case of this function, the DUT gives as parameters the call-back

functions to be registered in the NDIS library. In the Interception layer, the

implementation of this function swaps the function addresses with its own

functions, making the interception effective also for functions that will be called by

the OS to the DUT.

2 The prefix _IWDD_ is used to identify a function provided by the IWDD.

CHAPTER 6 - INTERCEPT 107

4. When the DUT's DriverEntry()finishes, it returns a drvObj parameter

containing potentially also some pointers to call-back functions. Therefore, before

giving control back to the OS, IWDD replaces all call-back entries in drvObj with

its own intercept functions, which in turn will call the DUT’s routines. This way this

type of call-back function is also intercepted.

6.3 Tracing the Execution of the DUT

The DUT starts to operate normally, but every call performed by the OS to the DUT,

and vice versa, is intercepted. The Interception layer traces all execution of the DUT,

recording information about which and when functions are called, what parameter

values are passed, which return values are produced and when the function exits.

The log uses a plain text format and data is recorded to a file.

All functions implemented in the Interception layer make use of routines

_IWDD_DbgPrint() and _IWDD_Dump(char *addr, long size). The first

works like the C language printf() function, and is used to write formatted data

to the log file, such as strings and other information types. The second function is

used to dump into the log file the contents of memory of a certain range of bytes

starting at a given memory addresses. Together, these two functions can give a

clear insight of the DUT’s and OS’s interaction.

Typically, the Interception layer creates a log entry both when entering and

leaving a function. Whenever input parameter values are involved, they are also

logged before calling the intended function, either in the DUT’s code or in the OS.

Output parameters and return values are saved before the function ends execution.

Complex structures, such as NetBuffers, NetBufferLists or MDLs, are

decomposed by specific routines so that the values in each field of the structure can

be stored.

The interception of functions and the trace of its related information is a time-

consuming activity that may interfere with the DUT and the overall system

performance. To reduce overheads, the storage process is handled by a separate

thread. During the IWDD start-up process, the LGU unit creates a queue and a

dedicated thread (DThread), whose task is to take elements from the queue and

write them into the log file. The queue acts as a buffer to adapt to the various speeds

at which information is produced and consumed by the thread. The access to the

queue is protected by a lock mechanism to avoid race conditions. A call to

_IWDD_DbgPrint() or _IWDD_Dump() copies the contents of the memory to the

queue, and signals the thread to wake up and store the information.

108 CHAPTER 6 - INTERCEPT

In the standard mode of operation, the log file is created when the thread is

initiated. Each time the thread awakes, the data is removed from the queue and

written to the file. When the file reaches a pre-determined value, it is closed and a

new one is created. However, in case of a crash, the information in cache can be

lost. To cope with this situation, the thread can also be configured to open, write

synchronously and close the file each time it consumes data from the queue.

However, this comes at the expense of a higher overhead.

6.4 Experimental Results

The objective of the experiments is twofold. First, we want to get some insights into

the overheads introduced by Intercept, while a DD executes a common network task

- a file transfer by FTP. Second, we want to show some of the usage scenarios of

the tool, such as determining which functions are imported by the drivers and what

interactions occur while a driver runs.

Test environment

The experiments were performed with three standard drivers, implementing different

network protocols, namely Ethernet, Wi-Fi and Bluetooth. Table 6-1 summarizes the

installation files for each DUT.

The corresponding hardware devices were connected to a Toshiba Satellite

A200-263 Laptop computer. The Ethernet and Wi-Fi cards were built-in into the

computer, while the Bluetooth device was a SWEEX Micro Class II Bluetooth

peripheral [100] linked by USB. In the tests, we have used Intercept both with

Windows Vista and Windows 8.

Table 6-1: Device drivers under test.

Driver Type Info File Binary file

Ethernet netrtx32.inf rtlh.sys

Wi-Fi netathr.inf atrh.sys

Bluetooth netbt.inf btnetdrv.sys

The overhead experiments were based on the transmission of a file through FTP.

The FTP server runs in an HP 6730b computer. The FTP client was the Microsoft

FTP client application, which was executed in the laptop together with Intercept.

Different network connections were established depending on the DUT in use. For

the Ethernet driver an Ethernet network of 100Mbps using a TP-Link 8 port

CHAPTER 6 - INTERCEPT 109

10/100Mbps switch was setup to connect the two systems. For the Wi-Fi and

Bluetooth drivers an ad-hoc connection was established.

Overhead of Intercept

To evaluate the overheads introduced by Intercept, we have run a set of experiments

consisting on the transfer of a file of 853548 byte length between a FTP server and

a client. Any file could have been used for the transfer. We selected this file because

it was the first log produced by Intercept during the experiments.

For each driver five FTP transfers were performed, and the average results are

presented in the tables. Table 6-2 summarizes the results for the execution time and

transfer speeds. Column “Driver ID” represents the DUT, either in Windows Vista

(xx_Vista) or in Windows 8 (xx_Win8). The columns under the label “Intercept off”

display the average transfer time and average speed when the Intercept tool is not

installed in the client system. The columns under label “Intercept on” correspond to

the case when the Intercept tool is being used.

The results between Intercept off and on show a performance degradation, which

was expected as Intercept records all the activity of the drivers, and performs tasks

such as decoding parameter structures and return values of all functions.

Nevertheless, these overheads are relatively small: between 2% and 7% for the

Ethernet driver, 2% to 3% for the Bluetooth driver and 14% to 15% for the Wi-Fi

driver. These observations were more or less expected since the Wi-Fi drivers have

more imported functions, are longer in size and require more processing when

compared with the other drivers. The same Bluetooth driver was used in both OS

which can explain the similarity of the degradation.

Table 6-2: Average file transfer time and speed values.

Driver ID

FTP Transfer

Intercept Off
(average)

Intercept On
(average) Time

overhead

Time* Speed** Time* Speed**

Eth_Vista 0,198 6238 0,202 6204 2%

Eth_Win8 0,136 6503 0,146 5963 7%

Wi_Fi Vista 9,300 97 10,650 84 15%

WiFi_Win8 0,276 3076 0,314 2872 14%

Bth_Vista 5,890 145 6,012 142 2%

Bth_Win8 5,612 152 5,760 148 3%

Note: *time in seconds, **speed in Kbytes/second

110 CHAPTER 6 - INTERCEPT

The differences between the overheads on the Ethernet and Wi-Fi networks can

be related to changes in the drivers, since we have used the standard drivers that

came with the Windows installation.

During the experiments, we saw that for each transmitted byte, Intercept

generated between 9 to 23Kbytes of data. Not surprisingly the Wi-Fi driver was the

one that generated a higher amount of data, which can be interpreted as a

synonymous of increased complexity.

Understanding how drivers are initialized

Although there is plenty literature about Windows DDs (see for

instance[157][158][159][160][161][162]) and source code examples (see for

instance [163][164][165][166]), programming this type of modules is not an easy

task. Intercept contributes to understanding the DD behaviour since the moment the

DD is loaded and initialized. As an example, Figure 6-2, shows the moment when

the DD registers its call back functions on Windows using function

NdisMRegisterMiniportDriver.

Obtaining this type of information allows one to understand some of the DDs

characteristics (such as versioning information) and map the location of the DD’s

call-back functions and objects, which can be useful during debugging or reverse

engineering processes.

Figure 6-2: Drive initialization – Call to NdisMRegisterMiniportDriver.

CHAPTER 6 - INTERCEPT 111

Understanding how drivers interact with the hardware

Intercept can also help to understand how specific hardware interactions are

performed. The NDIS Library provides a set of I/O functions that a miniport driver

calls to access I/O ports. These calls provide a standard portable interface that

supports the various operating environments for NDIS drivers. For instance,

functions are offered for mapping ports, for claiming I/O resources, and for reading

from and writing to the mapped and unmapped I/O ports. Taking the Wi-Fi driver as

an example, one can use Intercept to learn how the hardware initialization process

happens. It starts when the OS invokes the drivers’ call-back function

MPInitializeEx (see Figure 6-3).

The OS passes several parameters to this function. One of them is the

MiniportAdapterHandle so that whenever there is the need for the driver to call

for some function, the OS is able to know which hardware the driver is referencing

to (in this case, the reference is 0x8b34a438). All subsequent functions related with

this driver will use this reference.

Figure 6-3: Call to MPInitializeEx to initialize the hardware (excerpt).

Another parameter is the resources allocated for the hardware. This allocation

was performed automatically by the system according to the PCI standard, which

releases the programmers from doing it. However, the driver only gets to know it

when this function is called. In this example, some of resources assigned to the Wi-

Fi hardware were: Memory start: 0xd4000000 and Memory length: 0x00010000.

ENTER – NewMPInitializeEx

MiniportAdapterHandle.....: 0x8b34a438

MiniportDriverContext.....: 0x00000000

MiniportInitParameters....: 0x8c36b6c0

Header.Revision...................................: 0x00000001

Header.Size.......................................: 0x00000028

Header.Type.......................................: 0x00000081

Flags...: 0x00000000

IMDeviceInstanceContext...........................: 0x00000000

MiniportAddDeviceContext..........................: 0x00000000

IfIndex...: 0x0000003f

NetLuid...: 0x00000000

NetLuid.Info......................................: 0x00000000

NetLuid.Value.....................................: 0x00000000

AllocatedResources................................: 0x8815ccd4

AllocatedResources->Version.......................: 0x00000001

AllocatedResources->Revision......................: 0x00000001

AllocatedResources->Count.........................: 0x00000003

AllocatedResources->PartialDescriptors[00000000].Type.........................: 0x00000003

AllocatedResources->PartialDescriptors[00000000].ShareDisposition.............: 0x00000001

AllocatedResources->PartialDescriptors[00000000].Flags........................: 0x00000080

CmResourceTypeMemory

AllocatedResources->PartialDescriptors[00000000].u.Memory.Start...............: 0xd4000000

AllocatedResources->PartialDescriptors[00000000].u.Memory.Length..............: 0x00010000

112 CHAPTER 6 - INTERCEPT

Figure 6-4: Call to NdisGetBusData / SetBusData.

Other examples of interaction with the hardware can give insights of specific

register and available ports as is the case of Figure 6-4 that shows the moment that

the DD receives data from the PCI bus (using NdisMGetBusData) and programs

the device by writing some data using NdisMSetBusData.

Inspecting data packets

Intercept can also be employed when particular information needs to be collected.

As an example, we wanted to find out what data is returned by the FTP server after

the client connects. Figure 6-5 shows a call performed by the DUT to the OS

notifying NDIS that a new frame has just arrived. In this case, it is possible to observe

the banner received from the FTP server, i.e., 220-Welcome to Cerberus FTP

Server.

This type of inspection is possible because Intercept knows the kind of structures

involved in each OS function and is able to decompose them. The interpretation and

decomposition of complex structures (as data packets) can be extended in Intercept

to cope with evolutions of the OS and protocols. A file with the description of the

structures and the type of the elements that compose the structure is all that is

needed to change the behaviour of the interpreter.

CHAPTER 6 - INTERCEPT 113

Figure 6-5: Looking in detail at a particular packet (excerpt).

Understanding complex interactions with the OS

Intercept can be used to comprehend how certain complex operations are performed

by the driver. For example, in Windows, a driver can remain installed but disabled.

By analysing the log produced by Intercept during the disabling process, it is

possible to observe that the OS first calls the drivers’ MiniportPause to stop the

flow of data through the device. Second, the OS calls MiniportHalt to obtain the

resources that were being utilized. Both these two functions were registered during

the initialization process, at the time using the NdisMRegisterMiniportDriver

function. Finally, the OS calls the Unload function to notify the driver that is about

to be unload. The Unload function was also registered by the driver in the OS when

the DriverEntry routine returned, by setting the address of this function in the

DriverUnload field of the Driver_Object structure. As soon as the Unload

function starts it is possible to observe in the log that the driver calls the

MPDriverUnload call-back function (see Figure 6-6). When this function ends the

unload process ends and the driver is disabled.

Another example corresponds to uninstalling the driver. With the information

logged by Intercept, it was found that there is no difference between disabling and

uninstalling a driver, except from the fact that uninstalling the driver removes it from

the system.

114 CHAPTER 6 - INTERCEPT

Figure 6-6: DD disabling process (excerpt).

Determining resource leakage

The detailed information stored by Intercept in the log also helps to determine if all

resources allocated by the driver are returned to the OS core. This can assist for

instance to detect drivers with bugs. Table 6-3 represents the list of five resources

allocation functions utilized by the Wi-Fi driver and Table 6-4 represents the list of

five corresponding de-allocation functions utilized by the same driver. As it is

possible to observe, there is a match between the number of resource allocations

and releases which shows no resource leakage during the DD execution.

Table 6-3: Statistics of resource allocation/deallocation.

Function Number of Calls

_IWDD_NdisAllocateIoWorkItem 1158

_IWDD_NdisMAllocateNetBufferSGList 1041

_IWDD_NdisMAllocateSharedMemory 803

_IWDD_NdisAllocateNetBuffer 256

_IWDD_NdisAllocateNetBufferList 256

Table 6-4: Statistics of resource allocation/deallocation.

Function Number of Calls

_IWDD_NdisFreeIoWorkItem 1158

_IWDD_NdisMFreeNetBufferSGList 1041

_IWDD_NdisMFreeSharedMemory 803

_IWDD_NdisFreeNetBuffer 256

_IWDD_NdisFreeNetBufferList 256

CHAPTER 6 - INTERCEPT 115

Understanding the dynamics of function calls

The dynamics of function calls during a driver’s execution is determined by its work

load. Intercept can support various kinds of profiling analysis about the usage of

functions by a certain DD under a specific load. For example, in our FTP transfer

scenario, Table 6-5 represents the top 5 most called functions by each DUT from

installation and until deactivation (in Windows Vista).

Table 6-5: Top 5 most used functions by each driver.

Function Eth_Vista WiFi_Vista Bth_Vista

NdisMSynchronizeWithInterruptEx - 69301 -

InterruptHandler 880 33931 -

MiniportInterruptDpc - 32774 -

NdisAcquireReadWriteLock - 6345 -

NdisReleaseReadWriteLock - 6345 -

NdisMIndicateReceiveNetBufferLists - - 1032

NdisAllocateMdl 1096 - -

NdisFreeMdl 1096 - -

NdisAllocateNetBufferAndNetBufferList 1024 - -

NdisFreeNetBufferList 1024 - -

NdisAllocateMemoryWithTagPriority - - 520

NdisFreeMemory - - 520

MPSendNetBufferLists - - 503

NdisMSendNetBufferListsComplete - - 503

Based on the number of function calls it becomes clear that the Wi-Fi driver is

the one that shows more activity in the system. Focusing on the top 3 functions from

this driver, the NdisMSynchronizeWithInterruptEx is the most used function.

Drivers must call this function whenever two threads share resources that can be

accessed at the same time. On a uniprocessor computer, if one driver function is

accessing a shared resource and is interrupted, to allow the execution of another

function that runs at a higher priority, the shared resource must be protected to

prevent race conditions. On an SMP computer, two threads could be running

simultaneously on different processors and attempting to modify the same data.

Such accesses must be synchronized.

116 CHAPTER 6 - INTERCEPT

InterruptHandler is the second most executed function. This function runs

whenever the hardware interrupts the system execution to notify that attention is

required. From the 33931 interrupts, 32774 calls were deferred for later execution

with MiniportInterruptDpc. By inspecting the remaining functions used by the

Wi-Fi driver, which are lock related, it becomes evident that the driver is relying

heavily on multithreading and synchronization operations.

Several other metrics can be obtained with Intercept, such as the minimum,

average and maximum usage of each individual resource, DMA transfers, restarts,

pauses, most used sections of the code, to name only a few.

Using Intercept as a Testing Tool

Due to the detailed logs provided by Intercept, a tester can fully understand the

driver’s dynamics, and thus plan and design tests that target specific and elaborated

conditions. During the call to a function Intercept can identify the presence of specific

conditions specified by the tester to interfere with parameters and return values.

For instance, the Wi-Fi driver in Windows 8 calls the NdisMMapIoSpace during

the initialization. This function maps a given bus-relative “physical” range of device

RAM. When successful, this function returns NDIS_STATUS_SUCCESS and the

value of the output parameter VirtualAddress contains the start of the memory

map. Other outcomes are exceptions that should be handled quietly.

We have performed a series of experiments when the DD called

NdisMMapIoSpace during the initialization. Four test scenarios where planned by

returning to the DD exceptional values (as described in Microsoft documentation)

NDIS_STATUS_RESOURCE_CONFLICT, NDIS_STATUS_RESOURCES,

NDIS_STATUS_FAILURE and one unspecified value

(NDIS_STATUS_FAILURE+1), while maintaining the VirtualAddress equal to

NULL. The DUT handled correctly the tests and ended quietly, and appropriately

deallocated all resources, as confirmed by the Intercept logs.

Four additional test scenarios were performed with the same return values but

assigning a specific value to VirtualAddress. These tests all resulted in a crash

of the system with the DUT being the culprit. It was concluded that the driver is using

the value of VirtualAddress before checking the return value, which is worrisome

in case Windows does not clear the VirtualAddress field.

CHAPTER 6 - INTERCEPT 117

6.5 Summary

This chapter presents Intercept, a tool that instruments WDD by logging the driver

interactions with the OS at function level. It uses an approach where the WDD binary

is in full control and the execution traced to a file recording all function calls,

parameter and return values. The trace is directly generated in clear text with all the

involved data structures.

An experiment with three network drivers was used to demonstrate some of the

instrumentation capabilities of Intercept. The performance of the tool was also

evaluated in a FTP file transfer scenario, and the observed overheads were small

given the amount of information that is logged, all below 15%.

As is, Intercept gives a clear picture of the dynamics of the driver, which can help

in debugging and reverse engineering processes with low performance degradation.

Intercept is also a building block for a testing tool. Results show the ability to

identify bugs in drivers, by executing tests based on the knowledge obtained from

the driver’s dynamics.

118 CHAPTER 6 - INTERCEPT

CHAPTER 7 SUPERVISED EMULATION ANALYSYS

Experimentally testing a DD typically requires a target host setup composed by a

computer running the full OS installation and the hardware driven by the DD under

test. To manage the experiments, it is usually required a second system that controls

the tests and monitor the results. This is necessary because a bug in the DD can

corrupt the execution environment of the experiments as well as the collection of the

results. The delays introduced by the need to restart the host system and setup the

initial conditions can slow the testing campaign. One way to speed up the

restauration process and avoid some of the effort required to manage all the restart

actions is to use virtual machine execution. In this case, the virtual machine contains

a snapshot image of the system under test which, in the case of a crash or hang,

can allow the system to reinitiate from a previous saved starting point (see for

instance [53][54]). However, the required setup is still there. One needs the full OS

installation, ensuring that the DD of interest is loaded and that the appropriate

workload is produced. Moreover, it is required that the hardware driven by the DD is

present. To determine the root cause of a problem, typically further analysis is

needed, most of the times relying on the ability of the OS to locate the origins of the

problem, which sometimes cannot be performed adequately (see for instance [92]).

In this chapter we define the Supervised Emulation Analysis methodology that

supports the identification and location of errors in DDs without the need of the

source code and the hardware component. Since testing is carried out with the

120 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

binary of the DD, a series of problems related with the dependency of the source

code are solved. In addition, inaccuracies introduced by compiler optimizations are

detected improving the overall precision of the approach. Another aspect that is

addressed is related with the target architecture. Often programmers tend to

maintain a single source code for different target architectures by introducing

conditional compilation flags that are instantiated for the various deployments.

During the compilation process bugs may be introduced, as the final target

specificities may not be properly taken into consideration at the time of the driver

writing. Finally, the binary of the driver to be installed could have suffered malicious

changes after its final compilation, and therefore, testing the DD version that is going

to be utilized would allow the discovery of the added weaknesses.

In summary, the motivation for this work originates from the following ideas: i)

only use the binary of the DD; ii) no specific hardware is needed and iii) resort to an

emulation machine. The combination of these ideas potentiates the implementation

of systems that perform DD testing as a service where a distributed and collaborative

platform available through the web could allow a faster detection of DD flaws,

something especially important for previously unknown code.

7.1 Methodology

In modern systems, user applications cannot communicate directly with the

hardware. DDs give support to this task and export interfaces that the OS and the

applications can use to access devices creating a uniform layer that abstracts the

details of the different hardware.

In the case of the two most popular OS, both, Windows and Linux, share a similar

approach in the way that the OS kernel deals with the hardware (this approach is

also common to iOS). The similarities found between both OS in the platforms that

they run and in the approach taken to address kernel extensions can definitively be

used as an argument for the development of a common methodology for the

discovery of bugs and vulnerabilities in DDs. However, unlikely to Linux where the

majority of the source code is available, on Windows the source code of the DD is

usually kept confidential. The Supervised Emulation Analysis is a methodology for

the detection and location of flaws in DDs. This methodology is based on the

definition of the following elements:

• The assumptions on the DD structure that allows for the methodology to be

applied;

• The specification of the DD bug classes that are going to be detected and

located;

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 121

• The definition of the validators that will be employed to discover the

considered bug classes;

• The platform architecture that should be followed by tools implementing this

methodology to achieve the desired detection objectives;

• The procedures to be executed to locate flaws in the DDs.

The next sections describe in more detail each of the previous enumerated

elements.

7.2 Assumptions on Device Driver Structure

DDs are built according to a DD model determined by the OS internal organization.

The driver model (among other things) establishes the internal structure of the DD,

defines the interface between the OS and the DD (and vice versa), and the logic

sequence of the calls. Additionally, the OS supports the file structure that transports

the DD binary code to be loaded into memory for execution.

Device Driver Model

Generically speaking a DD contains several functions that can be grouped in

different classes: i) interface, ii) entry point, iii) unloading, iv) internal, v) interrupt and

vi) imported. Each of these groups plays a specific role in the work cycle of the driver

and understanding them can help to design solutions for testing them.

• Interface functions. The interface functions implement services that the

DD makes available to the OS. It is included in this category functions such

as read, write, power management and IOCTL. These are the functions that

the OS interfaces directly to request specific operations.

• Entry point function. The driver contains one entry point function

responsible for initializing the internal structures of the DD. It is the unique

interface function know right after the DD loading. In the majority of OS, the

execution of the driver initialization function registers other interface

functions made available by the DD to the OS.

• Unloading function. This is a special interface function that performs the

opposite of the initialization function. It detaches the driver from the

hardware, unregisters the DD from the OS and performs all the necessary

clean-up, such as returning all the resources that were acquired during the

driver working period.

122 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

• Internal functions. The code of the DD is implemented using a series of

internal functions that should simplify the code organization as well as

maintainability. These functions cannot be directly interfaced by the OS but

are used by some of the interface functions and other internal functions.

• Interrupt functions. A driver that deals with hardware typically has

associated functions that are called as a result of an external event that

triggers them. Typically, the OS already has typified interrupt vectors for

each type of device that will be attached to the DD interrupt handlers.

Interrupt functions are a special kind of interface functions and are typically

registered by the driver initialization routine.

• Imported functions. A driver depends on functions typically provided by

the kernel. These are the functions provided by the OS that form the API

that the DD can use.

Based on the previous information it should be possible to build a system that can

interface the DD code and perform the same tasks as the OS. This system could

then test the driver through the various functions identified above and be able to

locate errors by using test cases that addresses:

• The parameters of the interface;

• The parameters of the interrupt functions and the trigger timings;

• The output return value and output parameters of Imported Functions.

Binary Transport File

The binary image of the DD is normally stored in a file and envelops the binary

executable code. Using the appropriate file format and interpreting it according to

the specification (e.g., COFF, ELF or EFI) allows the different sections of the DD to

be correctly identified. This maps the contents of the file into binary code, and

subsequently to memory addresses that will hold the executable code region, data

regions, relocation tables and external dependencies of the driver code.

Using this knowledge, it is possible to build a system that processes the DD

binary file and performs the tasks that the OS does to prepare the driver for

execution.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 123

7.3 Device Driver Flaw Classes

A flaw is a malfunction in a program that makes it to produce incorrect outputs,

behave in an undesired way, such as terminate unexpectedly. When bugs are not a

consequence of a programming error, they are usually a consequence of design

flaws.

Although software can be affected by an enormous quantity of flaws (see for

instance the Common Weakness Enumeration (CWE) classes [131] or the Seven

Pernicious Kingdoms taxonomy [132]), the typical error classes affecting the DD

code is a more restrictive subset. The goal of identifying the bug classes that may

affect DDs is to characterize the kinds of flaws that a given tool is able to identify

and the instruments that need to be built to detect them.

Flaw classes are intrinsically connected to the underlying design of the execution

platform and architecture of the OS. For instance, in a x86 platform running

Windows, there are several calling conventions that determine the usage of the

stack to pass arguments to functions. In the x64 platform also with Windows,

parameters are passed using registers instead. This correlation between the calling

convention and the execution platform changes the type of bugs that can affect the

target platform where the DD is executed and consequently the type of mechanisms

necessary to detect them.

The following sections describe typical flaw classes that commonly affect DDs.

Uninitialized/ Nonvalidated/ Corrupted Pointers

Whenever a pointer is dereferenced, it is retrieved the value contained at the

memory address location hold by the pointer. For example, the C language standard

defines that a static uninitialized pointer has a NULL (0x00) value. If a kernel path

attempts to dereference a NULL pointer, it will try to access the memory address

0x00, which likely will result in a halt or hang condition, since the protection

mechanism of the platform knows that nothing is mapped there.

NULL pointer dereference vulnerabilities are a subset of a larger class of bugs

known as uninitialized/ nonvalidated/ corrupted pointer dereference. This category

covers all situations in which a pointer is used while its content has been changed,

was never properly set or was not correctly validated. This class covers also

incorrect sequence of function calls. For instance, many resources can only be used

by the DD if they are properly initialized and allocated. Access to memory through

pointers without a proper initialization will normally refer to an incorrect memory

area. Corrupted pointers can also be a consequence of some other type of bugs,

124 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

such as buffer overflows, which change one or more of the bytes where the pointer

is stored.

Stack Related Flaws

The kernel stack implementation follows conventions that include the growth

direction (from higher addresses to lower addresses, or vice versa), the register that

keeps track of its top address, the location where local variables are saved, how

parameters are passed, and how a sequence of function calls is linked together.

Kernel stack vulnerabilities are usually the consequence of writing past the

boundaries of a stack allocated buffer. This kind of situation can occur as a result of

using unsafe C functions, such as strcpy() or sprintf(), since these functions

keep writing to their destination buffer, regardless of its size, until a 0x00 terminating

character is found in the source string. An incorrect termination condition in a loop

that populates an array is also an example of how such situation can occur. Another

example is in the use of one of the safe C functions, such as strncpy(),

memcpy(), or snprintf(), but incorrectly calculating the size of the destination

buffer.

The stack plays a critical role in the application binary interface and the detection

of stack vulnerabilities can be heavily architecture-dependent.

Heap Vulnerabilities

The kernel implements a virtual memory abstraction, creating the illusion of a large

and independent virtual address space. The kernel continuously manages space for

a large variety of small objects and temporary buffers. The vulnerabilities that can

affect the kernel heap are usually a consequence of buffer overflows, triggered by

the use of unsafe functions, incorrect loop termination, and incorrect use of safe

functions as explained before. The probable outcome of such an overflow is to

overwrite some random kernel memory or paging metadata, causing some

undesirable behavior.

7.4 Detecting Flaws with Validators

A validator is a mechanism that is called during the DD code execution to perform a

check over an intended action. Validators can be defined at the lowest execution

level in the platform (such as instruction machine level), at the function interface

level or at the end of a sequence of function calls. When a validator is triggered the

execution of the code is halted and an error is signalled.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 125

The methodology identifies three different kinds of validator classes:

• Machine Level Validators (MLV): These validators are triggered during the

execution of a machine instruction and the objective is to check the

parameters involved in the machine instruction. The machine instruction is

not executed if the validator returns false.

• Function Level Validators (FLV): They are triggered during the execution

call from the DD to the OS, therefore embedded in the imported functions

code. The implementation of the FLV depends on the type of the called

function. Some of these validators may focus on parameter values, while

others may be related with the status of a state machine of OS objects.

• Post Execution Validators (PEV): They are triggered after the execution

of a sequence of DD interface functions to detect abnormal situations such

as, the status of the resources allocated/released or the existence of

dormant code.

These types of Validator classes represent different execution levels involved in

the analysis of the DD code. While MLV act at the machine instruction level, FLV

operate at the interface of DD with the OS. This distinction is necessary, for example:

while at the machine level there is nothing wrong in assigning the value NULL to a

variable and pass the variable value to function fx, at the function level the NULL

value in a handler parameter of function fx (that is expecting a valid handler from

the OS), may be synonymous of a flaw. Finally, PEV act at the top of the execution

level as it depends on the order of calls performed.

Next are several examples of basic validators that should be available to detect

the identified flaw classes in the previous section. Tools implementing this

methodology should however keep open the possibility to extend these validators.

• MLV1-Source operand validation. Checks that the source operand

address of an instruction is valid in the context of the operation. Valid source

addresses include: i) stack addresses assigned to the function holding the

instruction, ii) memory requested by the DD using the imported functions, iii)

objects created by the OS Emulator and, iv) hardware location map. The

call and jmp instructions are not covered by this validator.

• MLV2-Destination operand validation. Performs the same validations

detailed for the source operand validation but applicable to the destination

address of the instruction. The call and jmp instructions are not covered

by this validator.

126 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

• MLV3-Call, jmp and ret destination addresses. The call, conditional

and unconditional jump and ret instructions are subject to a special

validation. The destination address of these instructions must fall into the

beginning of an internal function of the driver, a jump table located at the

DD executable code or into one of the imported functions of the OS.

• FLVx-Function validators. Checks inside each of the imported functions

to verify the conformity of the parameter values according to the context of

the invoked function. Such checks include the parameter type and the

allowed interval of values. It is also the responsibility of this type of

validators to determine if the prerequisites for executing a function are met.

For instance, they should ensure that before calling function B, function A

has been called.

• PEV1-Memory Balance. Checks, after a determined sequence of interface

function calls, the balance of memory allocations, guaranteeing that all

allocated memory in function X was freed at function Z.

7.5 Platform Architecture

The objective of defining a platform architecture in the methodology is to identify

which components should exist and what are the roles of each of them in achieving

the detection goals. Next, we present some of the identified components: i)

Execution platform; ii) OS Emulator; iii) Device Emulation and iv) Test Manager.

Execution Platform

The execution platform consists of an emulated environment where the DD code is

loaded and executed. The environment emulates the architecture where the DD

would run (x86, x86-64, other). The execution of each instruction is subject to the

action of validators to ascertain the correctness of the execution.

The emulation ensures that there is no need for the hardware of the platform or

the device. The level of independency achieved with an execution platform based

on emulation allows to test binary code not originally designed for the target platform,

i.e., the execution platform may run in Linux and analyse Windows DD code.

Additionally, the stability of the testing platform is not compromised by the tests

being performed on the driver code because the detection of the errors is made

before the execution takes place.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 127

Since the execution platform is emulated, the discovery of the flaws can be

distributed over different systems contributing for gains of efficiency using

parallelism.

OS Emulator

DDs require the support of the OS for their execution. The OS Emulator provides an

API that allows for the implementation of the driver code. The implementation of this

methodology requires that all the functions imported by the DD are available at the

execution platform. It is necessary that the output parameters and return values are

in control of the Test Manager to allow the generation of particular test conditions.

The OS Emulator is also the primary interface with the DD and mimics the tasks

of the OS. This component is in charge of loading the DD and maintaining the data

structures that support the driver executions, such as kernel objects. It is also in

charge of the calls to the initialization functions and interfaces with all the functions

made available from the DD accordingly to the instructions of the Test Manager.

Device Emulation

The role of the Device Emulation is to react to the input/output requests performed

by the DD code whenever it interfaces with the hardware, giving appropriate

responses such that the execution of the DD code can continue. A DD interacts with

the hardware component using two different mechanisms: i) directly through in/out

machine code instructions and ii) using OS API functions as intermediate.

When the DD uses in/out instructions, it specifies the address of the device and

issues the instruction expecting to read/write some type of information. Similarly,

when using an API function as intermediate to the hardware, the involved

parameters will transport the data from/to the device using the specified signature

of the API function.

Device emulation consists on returning to the driver information to be processed

through the interface mechanism (in/out instructions or API function) whose contents

and results (successful/unsuccessful access) are controlled by the Test Manager.

Without knowing the details of the hardware it becomes challenging to emulate

its behavior. For instance, the DD may look for a particular value in a buffer returned

by the device to determine proper initialization. The independency of the hardware

is achieved by ensuring that the internal functions of the DD that deal with hardware

interfaces have all code paths tested. This guarantees that a code path that expects

some kind of device behavior is also tested.

128 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Test Manager

The Test Manager is the component in charge of exercising the DD by conducting

the execution of the binary code. It uses a set of test cases to exercise the driver

according to a predefined testing strategy.

At the function level, it is the Test Manager that sets the conditions for the tests

and interacts with the DD. The Test Manager for instance instructs the entry point

function of the driver to be called or the interrupt functions to be processed. It is also

the Test Manager that defines what should be the behavior of imported functions

when called by the driver (e.g., return values and/or output parameters) and controls

the OS Emulator and the Device Emulation.

7.6 Procedures

The next sections describe at high level what are the procedures involved in the

identification of flaws in the drive code following the proposed methodology.

Preparation

At the preparation stage, the DD binary file structure is analyzed and loaded in the

execution platform to become ready to be used at subsequent stages.

The preparation stage comprises the following steps:

• Binary file interpretation. Consists in the identification of the binary file

format by reading the file contents and matching it with one of the supported

structures, e.g., COFF, ELF or EFI. Using the appropriate file format, the

process continues with decoding and locating in the binary file of all internal

structures and sections, such as the machine code, data regions, relocation

tables and external dependencies.

• Binary file loading. The binary file is analyzed and mapped in the memory

of the execution platform. Each byte is linked to a metadata structure that

holds information about the byte contents, such as the section where it

belongs. The bytes that belong to code sections are interpreted to form

instructions. Each instruction is linked to a metadata structure that

represents the machine code in a higher level language (e.g., assembler),

keeps track of the address location of the bytes in the executable memory,

the section the instruction belongs to, and the access privilege (read, write,

execute). A counter is also maintained to keep track of how many times the

instruction has been executed.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 129

The mentioned metadata guarantees that enough information exists to

detect attempts to access the executable memory in the middle of an

instruction during the dynamic execution. This is necessary because in

CISC architectures the instructions have different sizes and it is allowed to

start execution from any address (which may be the middle of a particular

instruction). Therefore, it is possible to have a new set of interpreted

instructions starting from the middle of a multiple byte instruction which can

be useful for exploits. On the contrary, in RISC architectures this is not

possible because each instruction is not spawn in multiple bytes.

• Relocation and linkage. Ensures that all data and code can be correctly

accessed. Links to imported functions are taken care, guaranteeing that

they reference the imported functions provided by the execution platform.

Binary Code Pre-processing

The second stage of the methodology uses the metadata obtained at the previous

stage to perform a pre-processing of the binary code of the DD. This pre-processing

builds meta data that represents the internal functions of the DD, such that they can

be dynamically exercised at a later stage. The identification of the precise location

of the internal functions may need to resort to several interactions because of

dependencies on the target architecture, instruction set, compiler options, code

optimization and the existence/absence of parameters and local variables. The

reason for this is related with the prolog/epilog of each function that can differ,

influenced by the previous factors, potentially leading to difficulties in locating the

beginning/ending of functions in a single iteration.

As a last resort, the analysis of the DD code described at the next stage may

commence without knowing the location of any internal function, except the entry

point function of the DD. Starting from the entry point, and every time a call to an

internal function is detected, a new round of binary code pre-processing is performed

(if necessarily recursively) to identify the remaining functions.

Another objective of this stage is to identify the use of potentially insecure

functions. It may not be possible at this stage to determine which internal functions

make use of these potential threats because of the impossibility to correctly

determine the internal function location (due to the reasons explained previously) or

due to call indirections.

The final objective of this stage is to identify for each internal function all possible

code paths and the decision points that form them, as soon as the internal function

location is determined. This is achieved by building the execution tree that

130 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

corresponds to the function code and then follow all code paths from the root of the

tree until all the branch leaf’s. The tree is formed based on the following ideas (not

exhaustive):

• Each instruction (not a jump and not a return instruction) is stored at the left

branch of the tree;

• Whenever a conditional jump instruction is identified a node is built;

• The left branch of a node is taken if the conditional jump condition is false;

• The right branch of the node is taken if the conditional jump condition is true;

• The branch ends (a leaf is detected):

o whenever a return instruction is identified, or;

o whenever an unconditional jump instruction refers to an address

of an instruction already existing in any of the branches from the

current location up to the tree root.

Next, starting from the root of the function tree until all branch leaf’s, determines

all possible code path combinations. During the formation of all the code paths

potential loops are also detected and noted in the metadata structures.

Supervised Emulation Analysis

The objective of the Supervised Emulation Analysis procedure is to exercise the DD

binary code and determine if there are errors, where they are located and what are

the conditions for triggering them. The reason for the need to execute the DD code

is related with the difficulties in establishing a direct relation between the internal

functions of the driver, the input parameters, return values from function calls

performed inside the driver code and the driver state that can lead to flaws being

triggered. These combinations may result in complex formulas that cannot be easily

resolved with static analysis.

A complete driver dynamic analysis involves the verification of the compliance of

the driver code with multiple OS mechanisms starting at its initialization, going

through all its available services and finishing with its removal. The supervised

emulation analysis starts with the invocation of the entry point function of the DD

and continues with the execution through each of the exposed services. For

instance, if the driver has registered dispatch functions during its initialization, then

the driver IRP handling mechanism is one of the target of the analysis. On the other

hand, if the driver implements the plug and play mechanism then a strategy for

dynamically executing this facility should be implemented. Using this knowledge,

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 131

one can direct the analysis of the DD to target the interfaces that process external

data either from unprivileged applications or from communication devices (for

instance, interrupt routines) and look for errors that may be exploited.

During the emulation analysis, the Test Manager uses scripts that detail the

sequence of the driver interface functions that should be tested. The Test Manager

may use the facilities offered by the Execution Platform to parallelize execution of

different code paths and achieve faster results. Additionally, by using automatic state

snapshots of the emulated machine, which can be restored at a later time (for

instance, before any conditional jump or before any call), the analysis can continue

in other code paths after uncovering an error.

Whenever a Validator signals a flaw, all the information about the location of the

flaw in the driver code can be reported. Irrespectively of the kind of flaw, the platform

should be able to provide the faulty instruction, faulty parameters, initial conditions

and sequence of events that triggered the fault.

By resorting to the information about the execution code tree and the

determination of all possible code paths (determined at the previous stage), it is

possible know the code coverture of the tests as well as determine potential dormant

code.

Reporting and knowledge storage

The final procedure consists in reporting the encountered flaws, which includes

providing information about: the involved Validators, the preconditions that triggered

them, the location in the code, the involved functions, parameters and return values.

A signature of a digest of the DD can also be associated with the report to form a

knowledge base for future reference.

7.7 Discovery Framework

Discovery is an implementation of the Supervised Emulation Analysis methodology.

The use of an emulated platform allows independency over the hardware setup

usually required to test a DD. Emulation also avoids stability issues related with

hangs and crashes in case of DD malfunctions in the testing platform. Through the

control of the emulation machine, Discovery offers the possibility to detect errors

and vulnerabilities at machine instruction level, function level and post execution

level.

Discovery has granularity control over the machine code execution of the DD

supporting very detailed checks at the level of each instruction execution. This way

it is possible to catch platform dependent flaws such as buffer overflows, incorrect

132 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

pointer dereferences, invalid jumps and calls. In Discovery, all the functions imported

by the DD are also emulated by the platform. Checks embedded at each imported

function allows the detection of flaws at a higher execution level such as, incorrect

handlers, incorrect pointers and invalid use of OS objects. Finally, by performing

post execution checks, Discovery can find resource leakages, deadlocks and other

complex conditions.

In the next sections, we are going to detail the framework with focus in the

architecture components.

Architecture

Figure 7-1 depicts the architecture of Discovery. Starting from the top of the figure,

an Application dynamically links to the framework and has access to the functions

exposed at the Application Interface Layer. The Application provides to the users

(and/or systems) an interface through which they control the behaviour of the

framework. Once the DD of interest is identified, the Application passes it to

Discovery for analysis using the Application Interface Layer. The DD is loaded in the

framework (marked by the dashed arrow in the figure) and the analysis can start.

Figure 7-1: Discovery Framework Architecture.

Discovery Framework

Driver Manager

Windows Function Emulator

DCPU

Instruction
Execution

Engine

Registers

Hardware Stack

TDiscovery
Memory

Driver Loader

Test Manager

ntoskrnl.exe

HAL.sys

NDIS.sys

Database

Application Interface Layer

Application

Device Driver
(binary file)

Legend:
Logical control interface
Driver loading process
Dynamic linkage

Report

Storage

Interrupt
Generator

Input/Output

Execution trace

Test results

Test cases

OS resources

Configuration

Execution context

Discovery
Emulation
Machine

OS Emulator Device
Emulator

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 133

The Discovery Emulation Machine group of components offers an environment

where the DD machine instructions are analysed. The OS Emulator group provides

all interfaces, mechanisms, and objects that are required by the DD from the OS.

The Device Emulator enhances the abstraction of the framework by managing the

input/output information, managing the interrupt generation and storage of

information related to the device driven by the DD. The Database group is used to

store the execution context of the framework, configuration information, the OS

resources managed by the OS Emulator, test cases and results, the execution trace

of the framework, and the data for reporting. All the activity of the analysis is

controlled by the Test Manager which oversees the orchestration of the components.

Discovery Emulation Machine

The Discovery Emulation Machine (DEM) implements a simplified x86-64 platform

where the DD code analysis occurs. It follows a modified Harvard architecture, which

contains a processing unit with an arithmetic logic unit and processor registers, a

control unit with an instruction register and program counter, a memory to store both

data and instructions and input and output mechanisms. By implementing an x86-

64 type of architecture, Discovery addresses one of the most popular computer

architectures which is used in modern personal computers and servers. In any case,

the approach taken by Discovery can be extended to support other types of

architectures.

We have considered using existing virtual platforms such as Bochs [167] or

QEmu [168], but in the end, we opted to develop our own emulation platform

because of the complexity of stripping out all the unnecessary components (e.g.,

BIOS, IO Bus, bridges) to execute the DD code. Instead of investing time in

understanding how these architectures would fit our needs and the required changes

to such systems, we built something more suitable for our needs.

TDiscoveryMemory

In an x86-64 conventional system, the memory can be considered as an array of

consecutive cells distinguished from each other by their address location. During the

code execution, the CPU reads the memory contents pointed by the instruction

register, decodes the instruction and executes the associated algorithm. In CICS

CPU architectures, as it happens in x86-64, instructions may occupy more than one

memory cell which may require the CPU to perform multiple memory accesses to

complete the execution of one instruction.

134 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Physical memory constraints have been resolved by resorting to mechanisms

that virtualize the memory space, giving the illusion that memory is many times

greater than what exists.

In our implementation, we have defined the TDiscoveryMemory structure to

represent the executable memory of the platform (see List 7-1).

Each TDiscoveryMemory cell contains the address where the first byte of the

machine instruction would be positioned in conventional memory, the assembly

instruction already decrypted in text format, the number of parameters of that

instruction and the characterization of each parameter in the instruction.

1 typedef struct {

2 um64 address; //instruction address

3 char asmInstruction[50]; //decoded instruction

4 char byteCodes[20]; //raw instruction

5 int nbrParams; //number of parameters

6 TTValue param[MAX_PARAM]; //parameters

7 int execCounter; //number of executions

8 …

9 } TDiscoveryMemory;

List 7-1: TDiscoveryMemory definition (sample).

During the loading process of a DD’s binary file into the DEM, the binary code is

pre-processed and transformed into assembler instructions using NASM [156].

Then, a representation of that information is stored in TDiscoveryMemory cells.

This organization was followed for the following main reasons: it reduces the

efforts on interpretation of the CPU instruction set during code analysis and code

emulation execution; it maintains a metadata structure about each instruction,

parameters and number of executions; it can detect attempts of executing different

instructions sequences as a result of landing in the middle of variable sized

instructions (a technique used to exploit the architecture of CISC architecture).

We are aware that from the point of view of memory space efficiency,

TDiscoveryMemory is by far less efficient than the conventional x86-64 memory

organization, but our objectives are quite different from just running the executable

program. Additionally, since the average dimension of a DD is usually small, the use

of such memory organization is consequently not a concern.

Discovery CPU

The Discovery CPU (DCPU) is an emulation of an x64 CPU architecture organized

in two main components. The first component is a “C” structure where each field

holds the status of the individual DCPU registers (see List 7-2). The second

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 135

component is the Instruction Execution Engine (IEE) that implements the DCPU

internal mechanics and the machine instructions according to the algorithms of the

various instructions. The instructions follow the descriptions found in [170] and

although the current instruction set is not complete (for instance MMX instructions

were not implemented) they have been proved to be enough to execute the off-the-

shelf drivers from our experiments. In each step, the IEE uses the value of the

instruction pointer rip register to locate the next instruction stored in a

TDiscoveryMemory cell and execute the machine instruction algorithm.

1 typedef struct {

2 um64 rax, rbx, rcx,rdx,r8,r9,…//registers

3 um64 cpuflags; //flags

4 um64 rbp,rsp; //stack pointers

5 um64 rdi,rsi,rip; //index registers

6 int cpuMode; //operation mode

7 …

8 } DCPU;

List 7-2: DCPU structure (sample).

Hardware Stack

In most computer architectures, a Hardware Stack is an area of the computer

memory with a fixed origin and variable size that is involved in the execution of

functions, transport of parameters and allocation of local variables of functions. In

Discovery, the Hardware Stack is implemented detached from the executable

memory hold by TDiscoveryMemory cells. The Hardware Stack is simply an array

of bytes managed through the rsp and rbp registers of the DCPU. Similar to what

happens with a conventional x86-64 architecture, the Hardware Stack gives support

to push, pop, call and ret instructions.

Operating System Emulator

The Operating System Emulator (OSE) is the functional interface to the DD. The

OSE is: i) in charge of loading the DD and maintain data structures that support the

DD execution, ii) provide all the imported functions called by the DD, and iii) call the

DD call-back functions using the appropriate function signatures and parameters.

These three main tasks are provided respectively by the Driver Loader, the Windows

Function Emulator and the Driver Manager components. The following sub sections

explains the implementation of these components and the role they perform in the

overall architecture.

136 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Driver Loader

In the Windows OS, a DD installation package usually contains at least an “.inf”

and one or more “.sys” files. The “.inf” file is a text based file organized into

several sections used during the installation of the DD in the system. The OS

employs this file to match devices with drivers whenever a new device is found in

the hardware platform. The “.inf” file contains information about the appropriate

“.sys” filename to be used to drive the device.

The “.sys” file is the binary image of the DD and contains the machine

instructions that must be loaded in memory to execute and control the device. It

follows the PEF [32] format for the file structure, the same utilized by applications

and DLLs, which includes in a single file the machine code of the DD and

dependences from other software modules organized in the form of tables. The

imported functions table contains the name of the functions and the name of the

external modules (DLLs or other software modules) from which the DD depends.

The OS uses this information during the software loading process to link the DD

code to other software modules necessary for correct execution. In some cases, the

required modules may not yet be present in the system. When this happens, the OS

has to perform additional loadings that may result in some kind of recursion process.

In Discovery, the Driver Loader (DL) is the component responsible for the loading

process of the DD intended for analysis in the emulation machine. The loading

process is performed in two phases:

• Phase 1 – File read and preparation: The DL reserves temporary regular

memory space in the Discovery application and reads the “.sys” file to that

memory. Following the specification of the PEF format, the DL interprets the

contents of the temporary memory and locates the various sections. The

code section is prepared for execution by fixing the relocation addresses

and linking the imported functions discriminated in the import section table

to the functions provided by the Windows Function Emulator. At the end of

phase 1, the DL has an image of the DD loaded in temporary memory where

all imported functions used by the DD are already linked to the functions

provided by the framework;

• Phase 2 – Building the executable memory contents: The DL walks

through the temporary memory to disassemble the machine instructions in

the code section. For each instruction, the DL allocates and builds a

TDiscoveryMemory memory cell with the corresponding metadata. During

this process, the existing internal functions are identified by matching the

processed instructions with the prologue and epilogue machine instruction

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 137

sequences that form the start and end of functions. To complement this

identification, call instructions are interpreted and the destination address

identified. Destination addresses embedded in the instruction (e.g., call

dword [dword 0x0800ABCD]) are easy to check for either an internal

function or an imported function. New previously unidentified internal

functions are then dynamically formed. Indirect calls (e.g., call esi)

should be checked later.

Figure 7-2 illustrates the memory organization of a TDiscoveryMemory

*discoveryMemory array used to represent the binary code of a DD. As an

example, the cell discoveryMemory[0] represents the first instruction of the

binary code and discoveryMemory[1] represents the second instruction of the

binary code. Each of these cells already contains a series of metadata necessary

for the DEM to execute.

Figure 7-2: Example of Discovery Memory organization.

address 0x25001

instruction mov ebp,esp

nbrParameters 2

TValue

Flags

RegName

Value

Expression

isRegister

ebp

n.d.

n.a.

TValue

Flags

RegName

Value

Expression

isRegister

esp

n.d.

n.a.

0

1

Index Contents

address 0x25000

instruction push ebp

nbrParameters 1

TValue

Flags

RegName

Value

Expression

isRegister

ebp

n.d.

n.a.

discoveryMemory[0]

discoveryMemory[1]

Device Driver
Disassembled file

00025000 <INIT>:

25000: 55 push ebp

25001: 8b ec mov ebp,esp

25003: 83 ec 4c sub esp, 0x4c

138 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Windows Function Emulator

A Windows DD depends on functions provided by the OS. These functions are

described in the DDK, and form the API provided by the OS to the DD. They are

used by the DD to register the call-back functions in the OS, to request and free

resources from the OS and to perform various other operations.

Table 7-1: Summary of Implemented Windows Emulator functions.

Import
library

Function
group

Description File modules
Number

of
Functions

Ntoskrnl.exe

I/O manager Service functions NtosKrnlIoManagerRtl 16

Memory
manager

Page table control NtosKrnlMemortyMgr 6

Executive
Heap
management and
synchronisation

NtosKrnlExecutiveLib 11

Power
Management

Power control NtosKrnlPoMgr 4

Runtime
(prefix Rtl)

Utility and
management
routines replacing
ANSI-standard
routines

NtosKrnlRtl

NtosMutextInterface

NtosKrnlMgr

NtosKrnlList

22

Zw routines
File and registry
access

ZwXxxRoutines 10

Windows
kernel

Low-level
synchronization
functions

NtosKrnlCoreKrnlLibRtl 32

Hal.sys
Hardware
abstraction
layer

Provides an
abstraction of the
hardware

Hal 23

Ndis.sys
Network driver
interface

Network support Ndis 148

WMiLib.sys IoManager
Windows
Management
Instrumentation

WMI 2

In Discovery, the Windows Function Emulator (WFE) is the module that

implements the functions listed in the “.import” section of the DD. Table 7-1 gives

a summary of the type and number of the currently implemented functions that can

be linked to the DD.

The WFE defines the TFuncTranslation structure (see List 7-3) to establish

the correspondence between the name of an imported function (fxName) and the

address of the corresponding function implemented at the WFE (*_My_fxAddr).

Other attributes such as the calling convention (callingConvention) and the

number of parameters (nbrParams) of the function are also represented in the

structure. All Windows functions implemented in WFE are arranged in an array of

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 139

TFuncTranslation elements which is used during the linkage process of the

DUT to correctly locate the address of imported function and connect the imported

functions of the DD with Discovery.

1 typedef struct{

2 char fxName[255]; //name of the function

3 DWORD *_My_fxAddr; //address of the function

4 int callingConvention;//function calling convention

5 int nbrParams; //Number of parameters

6 }TFuncTranslation;

List 7-3: TFuncTranslation – Linkage of imported functions.

Driver Manager

The Driver Manager (DM) is the component of the OS Emulator in charge of invoking

the DD interface functions and maintaining the resources that the DD requires from

the OS Emulator for execution. It is for instance the Driver Manager that holds the

struct _DRIVER_OBJECT *DriverObject parameter on the call to the

DriverEntry function. Besides maintaining all the necessary structures, it is the

DM that passes the parameters to the DD according to the calling convention in use

by the target platform (either using the Hardware Stack or the registers) and setups

the registers of the DCPU such that the execution context can switch to the DEM

and the code of the DD.

Device Emulator

It becomes challenging to emulate any device without knowing the details of the

hardware. For instance, the DD may look for specific values read from a specific port

to determine its state and continue operation. The hardware independency is

achieved by ensuring that the code paths depending on in and out instructions are

covered, something delegated to the Test Manager. More sophisticated devices use

abstract ways to deal with input/output. In these cases, the Device Emulator

interprets and processes complex structures such look-a-side buffers and DMA

memory representations, which typically occurs with most of the modern DD that

deal with PCI, USB and NDIS specifications. In this case the import functions

provided by the OS Emulator are involved

The Device Emulator manages information related to input/output requests

performed by the DD code whenever it interfaces with the hardware either directly

using In and out instructions or indirectly when intermediated by the OS Emulator.

140 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

The objective of this component is not to emulate a replica of the device managed

by the DD (it will be impossible since Discovery does not know which device is

involved), but rather to provide the mechanisms to analyse the DD code.

Database

Discovery uses a database to keep track of test cases and test results. The database

also maintains the content of the execution of the DEM, the resources managed by

the OS Emulator and the information to generate reports. This way, Discovery

ensures that it contains all the data to be able not only to reproduce results, but also

to accurately report the detected flaws.

Test Manager

The Test Manager is the component in charge of supervising the strategy employed

to find the errors in the DD code. It uses the internal structure of the DD under test

to dynamically generate the test cases and implement a testing strategy (see section

7.9).

7.8 Discovery Emulation Execution Mechanisms

This section describes a few mechanisms that glue all the components of the

framework enabling the analysis of the DD.

Execution Context Switch

The DEM has two main modes of operation distinguished by the code that is being

executed. The DEM is running in emulation mode when a DD function is being

executed. The DEM is running in true mode when the DD calls a WFE function, a

DD function execution finishes or a flaw in the DD has been detected. Whenever a

change from true mode to emulation mode occurs (and vice versa) it is said that an

execution context switch has occurred. It is important to understand in which

execution mode the DEM is running to comprehend what are the techniques

involved in the detection of DD flaws.

Calling DD Interface Functions

DDs comply with a defined structure and, as explained before, the DriverEntry

function is the entry point to the driver code. The DD exposes other functions either

by filling in the address of the call-back functions in the DRIVER_OBJECT data

structure (when DriverEntry returns) or by registering call-back functions to the

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 141

OS using appropriate registration functions, such as,

NdisMRegisterMiniportDriver in the case of a NDIS DD.

The Driver Manager is the component of Discovery that directly calls the DD

Interface functions. When a DD function is called, there is a switch on the execution

mode of DEM from true mode to emulation mode. The switching algorithm can be

described as follows:

• Determine which function of the DD to call and obtain the signature of the

DD function;

• Prepare the parameter values and pass the parameters to the DEM

according the type of execution platform (i.e., 32 bit or 64 bit);

• Force the return address in the Hardware Stack to a Driver Manager

function, ensuring that when the DD function ends the DD switches the

context of the DEM to true mode in a controlled way;

• Setup the rip register value of the DCPU to the address of the DD function

to be executed;

• Enter into emulation mode by transferring the execution control to the DCPU

with a call to cpu_run() function.

Although the call of the DD functions is performed by the Driver Manager, it is

the Test Manager that instructs it. The DEM continues to run in emulation mode until

one of the following events occurs:

• The DD calls a WFE function;

• The DD code execution finishes by returning the execution to the address

of the Driver Manager entry function;

• A flaw is detected by one of the validators during the computation of a binary

instruction.

Executing WFE Functions

The DEM executes the DD code in emulation mode. Whenever a jmp, call or ret

instruction targets the address of a WFE function, the execution of the DEM changes

from emulation mode to true mode. The algorithm of this context switch is

implemented at the cpu_step function and can be described as follows:

• Obtain the next instruction address and verify if it refers to a

TDiscoveryMemory cell:

o In the affirmative case, continue the execution at that address;

142 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

o Otherwise, verify if the address belongs to a WFE function. In

this case perform the context switch by calling

cpu_executeWFEFunction;

else, raise a flaw exception.

Returning Control to Driver Manager

Under normal circumstances, when the execution of a DD function ends, the Driver

Manager entry point function is called. When this happens, the Driver Manager

returns control to the Test Manager so that it decides what should be the conditions

to perform the next test.

On the contrary, if a flaw is detected, the Driver Manager entry point will not be

called. The emulation (or the execution of a WFE function) will end because one of

the Validators signals a fault event to the Test Manager.

7.9 Detection of Flaws

This section describes the mechanisms involved in the detection of flaws, how they

are triggered and what kind of flaws it is possible for Discovery to find. We start this

section by presenting Primitive Checkers, a set of functions responsible for the

detection of basic errors in the DD code. These are the building blocks for

constructing more complex verifications. Then, we explain the Validators embedded

in Discovery and group them in two different classes. Next, we present the adopted

testing strategy. Finally, we conclude the section by enumerating the type of flaws

that can be detected with the currently implemented Validators.

Primitive Checkers

In Discovery, a primitive checker is a function that evaluates an input parameter and

returns true or false depending if the parameter satisfies or not the success

criterion. Table 7-2 includes the list of currently implemented primitive checkers.

As an example, primitive checker PC3, isValidStackAddr(um64 address,

int range), returns true if the parameter address and address+range is

within the range of the Hardware Stack. This primitive is suitable to check if a certain

address is a plausible local variable. In this checker, the range parameter gives

the possibility to check an interval of consecutive addresses starting at address.

This is the basic mechanism for buffer overflows detection in the Hardware Stack,

as a result of consecutive mov instructions (including movsd, movsw, movsx).

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 143

Another example, PC4, isValidWFEAddress, verifies is the address

parameter corresponds to the address of a function provided by the Windows

Function Emulator. This primitive checker is useful to verify if a call to the specified

address parameter can be performed.

Table 7-2: List of Primitive Checkers.

ID Name
Input

Parameter
Description

PC1 isValidSourceRegister
instruction,
regName

Returns true if regName is a valid
instruction source register operand.

PC2 isValidDestinationRegister
instruction,
regName

Returns true if regName is a valid
instruction destination register.

PC3 isValidStackAddr
address,

range

Returns true if address and address+range
belongs to the address interval of the
Hardware Stack.

PC4 isValidWFEAddr address
Returns true if address corresponds to an
address of a WFE function.

PC5 isValidDriverManagerAddr address
Returns true if address is the address of the
entry point of the Driver Manager.

PC6 isValidTDiscoveryCell address
Returns true if address is an address of a
TDiscoveryMemory cell.

PC7 isValidMemoryFromOS
address,

range
Returns true if address and address+range
belongs to memory managed by the OSE.

PC8 isValidOSObjectHandler Handler
Returns true if handler is and identifier
provided by the OSE.

PC9 isValidDataSegment
address,

range

Returns true if address and address+range
belongs to the address interval of the DD
data segment.

Validators

Discovery uses Validators during the DD code analysis to perform a check over an

intended action. The output value of a Validator may be true, which means that no

flaw was detected and the intended action is harmless, or false, which indicates

that a flaw has been found.

Table 7-3 presents the list of the currently implemented Validators and flaws that

can be detected. The first column, contains the identifier of the Machine Level

Validator (MLV), Function Level Validator (FLV) and Post Execution Validator (PEV).

Column “Name” gives a designation to the Validator and establishes an implicit

relationship between the name and the target of the check that is performed. Column

“Flaw” describes the type of flaws that the Validator can detect. Column “Possible

Causes” gives a non-exhaustive list of possible causes for the flaw.

Finally, the last column gives a non-exhaustive list of the possible consequences

of not catching the flaw.

144 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Validators are built using Primitive checkers. For instance, MLV1 Source operand

is built using PC1, PC3, PC4, PC5, PC6, PC7, PC8 and PC9.

Table 7-3: List of implemented validators and detectable flaws.

ID Name Flaw Possible causes
Possible

consequences

MLV1 Source operand
Invalid
source
operand

• Uninitialized variable

• Corrupted pointer

• Buffer overflow

• Hang

• Crash

MLV2 Destination operand
Invalid
destination
operand

• Uninitialized variable

• Corrupted pointer

• Buffer overflow

• Hang

• Crash

MLV3
Call, jmp and ret
destination address

Invalid
address for
execution

• Uninitialized variable

• Corrupted pointer

• Privilege
elevation

• Hang

• Crash

MLV4
Unconditional jump
destination address

Invalid
address for
execution

• Corrupted pointer

• Privilege
elevation

• Hang

• Crash

FLV1 MemoryRange
Invalid
address

• Uninitialized variable

• Corrupted pointer

• Buffer overflow

• Hang

• Crash

FLV2 Handler
Invalid
handler

• Uninitialized variable

• Corrupted pointer

• Hang

• Crash

FLV3 ParameterRange
Invalid value
for
parameter

• Uninitialized variable

• Corrupted pointer

• Hang

• Crash

FLV4 DeadLock Dead lock

• Uninitialized variable

• Corrupted pointer

• Incorrect control of
resources

• Hang

• Crash

FLV5 IRQL
Invalid IRQL
for function

• Invalid function
context control

• Hang

• Crash

FLV6
Return Value
Evaluation

Non
validation of
function
return value

• Incorrect function
context control

• Hang

• Crash

FLV7
Explicit call to crash
function

Bug check
function
called

• Explicit call from the
DD to a function that
crashes the OS.

• Crash

PEV1 ResourceLeakage
Resource
leakage

• Uninitialized variable

• Corrupted pointer

• Incorrect control of
resources

• Hang

• Crash

PEV2 DormantCode
Code
dormant

• Compilation errors

• Backdoors

• Hang

• Crash

• Disclosure of
confidential
information

Testing Strategy

The Test Manager uses the internal structure of the DD under test to dynamically

generate the test cases based on: 1) The entry point of the driver; 2) The remaining

interface functions exposed by the DD to the OS (registered by the DD during its

execution); 3) The possible return values/output parameters of the imported

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 145

functions called by the DD; and 4) The documented calling sequences performed

by the OS to the interface functions of the DD.

The objective of the Test Manager is to execute all test cases defined for an

interface function, import function (i.e., output/return values) and be able to either

reach the end of the execution or to find an error.

The test campaign starts at the DriverEntry function and once the tests

determined for this function are finished, the Test Manager moves to another

interface function exposed by the DD to the OS. For this, the Test Manager uses the

functions that were registered by the DD using the MajorFunction array of the

Driver_Object parameter of DriverEntry or by calling specific OS functions

(either still in the execution context of the DriverEntry function or in the execution

context of other interface functions).

The order used by the Test Manager to test each interface function mimics the

way the OS uses such functions, thus avoiding sequences that do not make sense

for the DD. Otherwise, if executed, these sequences could lead to false positives

(for instance, calling the AddDevice function after calling the DriverUnload

function).

Since the interface functions exported by the DD to the OS are known and

documented, it is possible to build calls to these functions with diverse parameter

values that should be handled correctly by the DD.

While testing an interface function, whenever a call is performed to an internal

function of the DD, the Test Manager changes the test focus and initiates the test

campaign of such function. This happens recursively, until the Test Manager finds

an internal function that does not call any internal function. Whenever it finishes the

test campaign of an internal function it changes the focus to the preempted testing

function.

The Test Manager maintains control over each call performed by the DD code to

external functions keeping track about each code path where the call was

performed, what was the returned result and the value of the output parameters.

This way, the Test Manager can run diverse tests within an internal function of the

DD and change the return value (or output parameter value) of any called WFE

function in each test case.

Tests Cases

From the point of view of the tests, Discovery interfaces the DUT at two different

levels: i) at the DUT interface functions and ii) at the provision of the OS functions

(in this case the functions implemented by the WFE component). Therefore, the

146 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

following group of test cases can be identified: i) driver interface test cases (DITC)

acting at the DUT’ interface and ii) imported function test conditions (IFTC) that

control the return values and output parameters of the WFE functions. The selection

and usage of each of the test cases is controlled by the Test Manager during the

analysis of the DUT.

Driver Interface Tests Cases

Table 7-4 represents the test cases at the driver interface of the DUT. DITC1

represents a normal situation where the Test Manager calls a function of the DUT

with valid parameters. DITC2 represents a situation where the Test Manager passes

invalid parameters to the DUT. Although DITC2 represents an uncommon situation

(because typically the OS does not pass invalid parameters to the DD) it was

included to demonstrate the level of dependency that usually DD have from the OS

in what regards to the correctness of the input parameters.

Table 7-4: DITC test values.

ID
Parameter passed
to DUT function

Description

DITC1 Valid value
The Test Manager passes valid parameters to an
interface function of the driver.

DITC2 Invalid value
The Test Manager passes invalid parameters to an
interface function of the driver.

Import Function Tests Conditions

An imported function falls into one of the following signatures: i) have no return value

and no output parameters, ii) have return value and no output parameters, iii) have

no return values but have output parameters and iv) have both return value and

output parameters. Table 7-5 represents the applicable test cases that simulate the

possible outcomes on the usage of the imported functions called by the DUT during

its operation. For instance, IFTC1 represents a situation where function Fx called by

the DD has a successful outcome. On the contrary, IFTC2, represents a situation

where function Fx had an unsuccessful outcome. Naturally, functions that do not

return values and do not have output parameters are not considered for test

conditions. In these cases, the Test Manager has to guarantee the correct outcome

for the tests to be meaningful.

Currently, Discovery has over 260 imported functions defined and over 390

imported functions test conditions in its database.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 147

Table 7-5: IFTC combination values.

ID
 WFE return

value
WDE output
parameter

Description

IFTC1 Success No output parameters

The DUT calls a WDE function and
the WDE function return value
informs successful execution.

The WDE function does not have
any output parameters.

IFTC2 Fail No output parameters

The DUT calls a WDE function and
the WDE function return value
informs an unsuccessful execution.
The WDE function does not have
any output parameters.

IFTC3 Success Min Valid Value

The DUT calls a WDE function and
the WDE function return value
informs successful execution.

Output parameters have minimum
value for the involved type.

IFTC4 Success Valid Value

The DUT calls a WDE function and
the WDE function return value
informs successful execution.

Output parameters are valid (e.g.,
memory allocation pointers are
valid).

IFTC5 Success Max Valid Value

The DUT calls a WDE function and
the WDE function return value
informs successful execution.

Output parameters have maximum
value for the involved type.

IFTC6 Success Invalid Value

The DUT calls a WDE function and
the WDE function return value
informs successful execution.

Output parameters have invalid
values.

IFTC7 Fail Invalid value

The DUT calls a WDE function and
the WDE function return value
informs an unsuccessful execution.
Output parameters contain values
susceptible to cause problems if
used (e.g., NULL pointers).

IFTC8 No return value Valid value

The DUT calls a WDE function and
the WDE function does not have a
return value. The output parameters
contain values usable by the DD
(i.e., not susceptible to cause any
problem, e.g. memory allocations
are valid).

IFTC9 No return value Invalid value

The DUT calls a WDE function and
the WDE function does not have a
return value. Output parameters
informs unsuccessful execution of
the function (e.g., NULL pointer in
memory allocations).

148 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Test Sets

In a real environment, the way that the OS calls the exposed interface of the DD is

not arbitrary. Although it depends on external events, it follows a specific pattern.

Therefore, for the analysis of the DD to be meaningful, whenever dynamically

emulating the execution of the DUT code, the Test Manager must mimic the OS

sequence of calls. Otherwise, in most the cases calling the DD interface arbitrarily

can lead to false positive results.

Table 7-6 presents the considered test set used by the Test Manager for the

experiments. The applicability of each of the sequences is determined by the Test

Manager and dependent on the exposed interface of the DUT.

Table 7-6: Applicable call sequence test conditions (not exhaustive).

Sequence ID Call Sequence

S1
• DriverEntry

• DriverUnload

S2

• DriverEntry

• AddDevice

• DriverUnload

S3

• DriverEntry

• AddDevice

• IRP_MJ_XXXX functions

• DriverUnload

S4

• DriverEntry

• AddDevice

• Ndis initialization routines

• IRP_MJ_XXXX functions

• Interrupt Routines

• DriverUnload

S1 represents the case where the DD is installed in the OS and is removed

immediately. In S2, the AddDevice function is called after DriverEntry, and the

DD removed right after. In S3, the IRP_MJ_XXXX functions are called after

AddDevice. Calling IRP_MJ_XXXX functions without AddDevice can lead to

errors because the IRP_MJ_XXXX function may try to access the

driverExtension fields before it has been created (typically) in AddDevice

function. S4 contains calls to interrupt routine functions. The sequences can have

more complex combinations, but the current version of Discovery only contains

these ones for now.

At the end of each of the test sets, the Test Manager can assess the balance of

the resources used by the DUT and determine situations that can be caught by Post

Execution Validators.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 149

Expected failure modes

The detection of errors during the analysis is performed using the Validators

described previously. In Discovery, there is a one to one correspondence between

the Validators and the expected failure modes as structured in Table 7-7.

Table 7-7: Expected failure modes.

ID Flaw Validator

FM-MLV1 Invalid source operand in instruction. MLV1

FM-MLV2 Invalid destination operand in instruction. MLV2

FM-MLV3
Invalid address for execution in call, unconditional jump and return
instructions.

MLV3

FM-MLV4 Invalid address for execution in conditional jump. MLV4

FM-FLV1 Invalid address passed to WFE function. FLV1

FM-FLV2 Invalid handler passed to WFE function. FLV2

FM-FLV3 Invalid value for parameter. FLV3

FM-FLV4 Dead lock. FLV4

FM-FLV5 Invalid IRQL for function. FLV5

FM-FLV6 Non validation of function return value. FLV6

FM-FLV7 Explicit call to crashing function FLV7

FM-PEV1 Resource leakage. PEV1

FM-PEV2 Dormant code. PEV2

Implementation

Discovery is a framework whose components can be reused to build other tools for

the detection of flaws in DD. The framework was implemented using Visual Studio

2013 and is written in assembly, “C”, “C++” and “C#” languages. It is made available

in the form of a Dynamic Linking Library (DLL). Using the “Discovery.dll” it is

possible to create a graphical user application (and web services) that receives as

input a DD binary file, performs the analysis and returns a report about the potential

presence of flaws.

Table 7-8, gives an estimation of the lines of code of the latest version of

Discovery [169]. The C++, C and assembly files form the core of the platform. Many

of the C/C++ Header files were built based on Microsoft’s DDK code. The C# code

belongs to the user interface and the make files are automatically managed by the

Visual Studio.

150 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Table 7-8: Count of Lines of Code of Discovery.

Language Files Lines of Code

C++ 231 141,631

C 225 125,542

C/C++ Header 515 99,657

Assembly 154 21,284

C# 52 7,647

Make 17 2,142

7.10 Experimental Results

In this section, we present the test conditions and the results of the experiments

performed with drivers included in the installation disks of commercially available

products. The experiments were performed in a laptop computer HP Pavilion with

an AMD A8-6410 APU, 2.00GHz, with 6.00GB memory and an 220GB SSD Toshiba

Disk. Each of the driver under test (DUT) were subject to a series of situations that

simulate possible execution conditions in a real environment. If errors exist during

the execution, they are caught by the action of the Validators of Discovery.

These drivers were selected taking into consideration the current development

stage of Discovery and their relative simplicity, although, commercially available.

Experiments with a Bluetooth Driver

The first set of experiments targeted the btwrchid.sys (BT) HID Bluetooth

controller driver found as part of the installation package of the ASUS USB-BT400

Advanced Bluetooth 4.0 Adapter for Windows 10.

Table 7-9 summarizes the characteristics of the BT DD. The size in disk of BT is

20,480 bytes and the code is organized in 6 different sections. The .text section,

which contains the machine instructions, is 7,552B length which translated to 3,265

different instructions stored in TDiscoveryMemory cells.

During the loading process, Discovery found that BT1 imported 37 functions from

the OS, 32 from the ntoskrnl.exe, 3 from hal.dll and 2 from hidclass.sys.

Discovery detected 42 internal functions which evolved to 45 at the end of the

analysis process. This difference confirms that a simplistic analysis on the driver

code based on the detection of prolog and epilog of functions is usually not enough

to be able to detect the overall existing functions. To avoid this inaccuracy, during

the execution of the DD code, Discovery dynamically detects and considers for

analysis previously undetected internal functions.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 151

Table 7-9: Characteristics of the BT DD.

Characteristic Value

ID BT

Device driver file name btwrchid.sys

Type Bluetooth HID Controller

Vendor Broadcom

Target OS Windows 10

Target Platform 32 bit

File size in disk 20,480B

.text section Start: 0xB8A0480, Size: 7,552B

.rdata section Start: 0xB8A2200, Size: 384B

.data section Start: 0xB8A2380, Size: 256B

INIT section Start: 0xB8A2480, Size: 1,152B

.rsrc section Start: 0xB8A2900, Size: 1,024B

.reloc section Start: 0xB8A2D00, Size: 512B

DriverEntry address 0xB8A24BE

Number of TDiscovery memory cells 3,265

Number of imported functions from ntoskrnl.exe 32

Number of imported functions from hal.dll 3

Number of imported functions from hidclass.sys 2

Initial number of local DD functions 42

Final number of local DD functions 45

Imported Functions Test Cases for BT

After loading the BT DD, and based on the imported functions used by the DUT, the

Test Manager automatically selects the applicable test cases to be used whenever

the DUT calls any of the imported functions. Table 7-10 shows the test cases for

each of the eligible WFE functions used by BT DD. As an example, for the PVOID

ExAllocatePoolWithTag (_In_ POOL_TYPE PoolType, _In_ SIZE_T

NumberOfBytes, _In_ ULONG Tag) function, two possible conditions are

considered: i) IFTC1 the function succeeds and returns a valid pointer and ii) IFTC2

the function fails and returns NULL. Since the function does not have any output

parameters, IFTC3 to IFTC9 are not applicable to this function. To avoid false

positives, IFTC6 is not considered in our tests.

Although BT uses many other imported functions that carry return values and/or

output parameters, they were not eligible to be used for test purposes. For these

imported functions the DUT cannot determine the correctness of the return/output

and, therefore, an incorrect return value/parameter would potentially lead to false

positives.

152 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Table 7-10: Imported functions test cases for BT.

BT Imported Functions
Test Cases

IFTC1 IFTC2 IFTC3 IFTC4 IFTC5 IFTC6 IFTC7 IFTC8 IFTC9

ExAllocatePoolWithTag -

HidNotifyPresence -

HidRegisterMiniportDriver -

IoAcquireRemoveLockEx -

IoAllocateIrp -

IofCallDriver -

KeCancelTimer -

KeDelayExecutionThread -

KeSetEvent -

KeSetTimer -

KeWaiForSingleObject -

MmMapLockedPagesSpecifyCache -

PoCallDriver -

RtlInitUnicodeString -

ZwClose -

ZwOpenKey -

ZwQueryValueKey
-

 Tested condition

As an example, Table 7-11, lists three of these imported functions. For instance,

function LONG __cdecl InterlockedExchange(_Inout_ LONG volatile

*Target, _In_ LONG Value), contains a target input/output parameter and

returns the value of the target variable.

At the first glance, it looks like a candidate function for using IFTC4 and IFTC6,

however, the purpose of this function is to atomically exchange the values of the

parameters. Subverting this purpose, which cannot be verified by the DUT, would

constitute an error from the OS, that potentially would lead to a false positive when

applying the IFTC6 test condition.

The function KIRQL KeGetCurrentIrql(void) returns to the DD the current

IRQL value (managed by the OS). Changing this result (arbitrarily) would lead to

false positive errors.

Finally, an error in VOID KeInitializeTimer(_Out_ PKTIMER Timer);

would affect the PKTIMER opaque structure with little or no consequences to our

tests.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 153

Table 7-11: Discarded import functions test cases for BT (not exhaustive).

Imported Functions Discard reason

LONG __cdecl

InterlockedExchange(_Inout_

LONG volatile *Target, _In_

LONG Value);

Sets a variable to the specified value as an
atomic operation. The function returns the
initial value of the target variable.

KIRQL KeGetCurrentIrql(void);
The KeGetCurrentIrql routine returns the
current IRQL which is maintained by the OS.

VOID KeInitializeTimer(

 Out PKTIMER Timer

);

The KeInitializeTimer routine initializes a timer
object.

Timer is a pointer to a timer object, for which
the caller provides the storage.

Test Cases for BT at Driver Interface

At the beginning of the test execution, the Test Manager only knows the address of

the DriverEntry function. As the tests progress, and at the end of a successful

execution of DriverEntry, other interface functions are registered by BT in

Discovery. Table 7-12 shows the driver interface functions found during the analysis

process and the generated test cases.

Table 7-12: BT Driver Interface and test cases.

Target Interface Function
Test

Case ID
Test Case

DriverEntry
BTDI_TC01 Valid driverObject

BTDI_TC02 Invalid driverObject

AddDevice

BTDI_TC03 Valid driverObject

BTDI_TC04 Invalid driverObject

BTDI_TC05 DeviceExtension = NULL

BTDI_TC06
Dimension of Device Extension lower than
expected

IRP_MJ_POWER
BTDI_TC07 Valid deviceObject

BTDI_TC08 Invalid deviceObject

DriverUnload
BTDI_TC09 Valid deviceObject

BTDI_TC10 Invalid driverObject

IRP_MJ_CLOSE
BTDI_TC11 Valid deviceObject

BTDI_TC12 Invalid deviceObject

IRP_MJ_INTERNAL_DEV_CONTROL
BTDI_TC13 Valid deviceObject

BTDI_TC14 Invalid deviceObject

IRP_MJ_SYSTEM_CONTROL
BTDI_TC15 Valid deviceObject

BTDI_TC16 Invalid deviceObject

Test Results for BT

The Test Manager generates the test sets using the information about the exposed

interface of the BT DD (see Table 7-12) and information about calling sequences

combination present in the database. Table 7-13 gives examples of the generated

test sets for this DUT. The first column identifies the test set using the BT_TSx

nomenclature, where, BT is the identifier of the DUT, TS stands for Test Sequence

154 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

and x is the sequential number of the test set. The second column describes the

interface functions that are tested and the sequence of their call. The third column

indicates the total number of test cases generated by Discovery for the test set. The

last two columns present the partial and total execution time of the experiments in

seconds.

Column named “Partial” refers to the time taken to analyse the code of each of

the individual interface function in the test set. The column “Total” refers to the sum

of the time spent in the analysis of the execution of all the interface functions that

belong to the same test set.

Table 7-13: Example Test Set for BT and execution time.

Test Set Call Sequence
Total
Test

Cases

Execution Time (s)

Partial Total

BT_TS1
DriverEntry 4 9,1

10,1
DriverUnload 1 1,0

BT_TS2

DriverEntry 1 1,8

23,7 AddDevice 5 20,9

DriverUnload 1 1,0

BT_TS3

DriverEntry 1 1,8

17,1
AddDevice 1 4,2

IRP_MJ_POWER 12 10,1

DriverUnload 1 1,0

BT_TS4

DriverEntry 1 1,9

720,9
AddDevice 1 4,2

IRP_MJ_INTERNAL_DEV_CONTROL 101 713,8

DriverUnload 1 1,0

BT_TS5

DriverEntry 1 1,9

10,7
AddDevice 1 4,2

IRP_MJ_SYSTEM_CONTROL 5 3,6

DriverUnload 1 1,0

BT_TS6

DriverEntry 1 1,9

9,5
AddDevice 1 4,1

IRP_MJ_CLOSE 3 2,5

DriverUnload 1 1,0

The number of the generated test cases results from the identified interface

functions and the imported functions used during the execution of the DD. As an

example, we are going to analyse the tests in BT_TS1 (the remaining test

sequences, BT-TS2 to BT-TS6, follow the same principle).

The BT_TS1 test set contains a call to DriverEntry, followed by a call to

DriverUnload. This represents the situation where the DUT is installed and then

uninstalled in the OS. Two test cases, BTDI_TC01 and BTDI_TC02, were generated

to test DriverEntry (see Table 7-12). During the execution of DriverEntry, the

import function HidRegisterMiniportDriver is called (dynamically determined

during the analysis of the DD). Looking up to Table 7-10, it shows that IFTC1 and

IFTC2 were generated for HidRegisterMiniportDriver. Therefore, to test

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 155

DriverEntry a total for 4 test cases were generated (even though during other

imported functions may be used – but no test cases have been generated for them).

Similarly, two test cases were generated for the DriverUnload interface

function: BTDI_TC09 and BTDI_TC10. But since no imported functions are called

by DriverUnload only these two testes have been considered for this interface

function.

Considering that: i) Discovery discards test combinations that represent the same

test conditions (which may happen when calling some interface function sequences,

e.g., call DriverEntry and then call DriverUnload) and ii) Discovery does not

apply all possible combinations of the generated tests and assumes independency

over the interface functions, a total of five test cases are grouped in BT_TS1 as

represented in Table 7-14.

Finally, to avoid the repetition of the same test situations over different test sets

the Test Manager does not analyse interface functions that have been analysed in

previous sequences (i.e., does not present potential error situations). This is the

reason why DriverEntry and other functions only have one test situation in some

of the test sets.

Table 7-14: Detail of BT_TS1 Test Set

Test DriverEntry HidRegisterMiniportDriver DriverUnload Note

1 BTDI_TC01 IFTC1 BTDI_TC09

2 BTDI_TC02 IFTC1 BTDI_TC09

3 BTDI_TC01 IFTC2 BTDI_TC09

4 BTDI_TC02 IFTC2 BTDI_TC09

5 BTDI_TC01 IFTC1 BTDI_TC09
Not considered
since it is the

same as Test 1

6 BTDI_TC01 IFTC1 BTDI_TC10

The execution of the identified Test Sets for the BT DUT resulted in the detection

of the errors summarized at Table 7-15. In the next paragraphs, we are going to

detail the obtained results.

The BT_E1 error occurs when the Test Manager passed an invalid

driverObject parameter to the DriverEntry function. The error was signalled

by the MLV1-SourceOperand validator that was triggered when the DUT (while in

InternalFunction_0005) tried to use the ecx register to access the stack and

no valid memory existed at the referenced position.

The BT_E2 error occurs when the Test Manager passed an invalid

driverObject parameter to the AddDevice function. The error was signalled by

the MLV1-SourceOperand validator that was triggered when the DUT (while in

156 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

AddDevice function) tried to access the stack with the ebx register and no valid

memory existed at the referenced position.

Table 7-15: Test Results for BT.

Error
ID

Test
Case ID

Failure
Mode

Error

Description

BT_E1 BTDI_TC02 MLV1
Invalid driverObject passed to DriverEntry.

FM-MLV1 acted at: mov dword [ecx+0x74], 0xa6506de

BT_E2 BTDI_TC04 MLV1
Invalid driverObject passed to AddDevice.

FM-MLV1 acted at: mov eax, [ebx+0x28]

BT_E3 BTDI_TC05 MLV1
DeviceExtension = NULL passed to AddDevice.

FM-MLV1 acted at: mov eax,[ebx+0x28]

BT_E4 BTDI_TC06 MLV1

Dimension of DeviceExtension lower than expected passed to
AddDevice

FM-MLV1 validator at memset function detected

BT_E5 BTDI_TC08 MLV1
Invalid parameter passed to IRP_MJ_POWER

MLV1 acted at: mov eax, [ebx+0x28]

BT_E6 BTDI_TC12 MLV1

Invalid parameter passed to IRP_MJ_CLOSE
FM-MLV1 act at:

mov eax,[eax+0x8]

BT_E7 BTDI_TC14 MLV1
Invalid parameter passed to IRP_MJ_INTERNAL_DEV_CONTROL

MLV1 acted at: mov eax,[eax+0x8]

BT_E8 BTDI_TC16 MLV1
Invalid parameter passed to IRP_MJ_SYSTEM_CONTROL

MLV1 acted at: mov eax,[eax+0x8]

The case signalled by error BT_E3 is a slight different variation from the above 2

errors, and occurs because the Test Manager passed a NULL value in the

DeviceExtension field of the DeviceObject structure. In this case when the DD

tried to access a DeviceExtension field (DeviceExtension was based by the

ebx register) in the mov eax,[ebx+0x28] instruction the MLV1-SourceOperand

validator triggered the error.

The error BT_E4 shows a situation where the dimension allocated by the OSE

to the DeviceExtension was deliberately less than what was assigned by the

DUT. This resulted in a buffer overflow caught by the FLV1-MemoryRange when it

checked that the final byte of memset was out of the range of the assigned memory

to the DUT.

Errors BT_E5 to BT_E8 were all caused by invalid parameter passed to

IRP_MJ_POWER, IRP_MJ_CLOSE, IRP_MJ_INTERNAL_DEV_CONTROL and

IRP_MJM_SYSTEM_CONTROL respectively. The invalid parameter consisted in filling

in the input parameters with the expected parameters for DriverEntry. Whenever

these functions try to access the parameter a failure occurs. Curiously, all of these

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 157

3 errors were triggered by the same type of instruction mov eax,[eax+0x8]

although located at different addresses.

Even though errors BT_E1 to BT_E8 can be considered as false positives (these

errors are not related with an incorrect implementation from the DUT, but caused by

an incorrect assignment of parameters from the OS), it demonstrates how

dependent DD are from the kernel. Curiously, under the same initial conditions,

function DriverUnload did not caused any fault. A deeper analysis to the

DriverUnload function code revealed that the reason for this is the fact that this

function only has a ret instruction. Despite of the invalid parameters, since no code

tries to access it, no error is signalled.

Finally, Table 7-16 shows the relationship between the tests sets and the

identified errors.

Table 7-16: Relation between the test sets and the identified errors.

Test
Set

Error ID

BT_E1 BT_E2 BT_E3 BT_E4 BT_E5 BT_E6 BT_E7 BT_E8

BT_TS1

BT_TS2

BT_TS3

BT_TS4

BT_TS5

BT_TS6

Experiments with Serial over Bluetooth Driver

The second set of experiments targeted the oxser.sys (SR) serial over Bluetooth

DD which is supplied as part of the installation package of the BlueSoleil Bluetooth

dongle. Table 7-17 lists the characteristics of the SR DD and contain some statistical

data obtained after loading this DUT into the Discovery platform.

The size in disk of the SR DD is 49,408B which are translated into 13,754

TDiscovery memory cells. The cells store the code instructions found in .text,

PAGESPR0, PAGESRP0 and PAGESER sections. During the loading process of

this DD, it was found a total of 77 imported functions. Most of them, 68, are imported

from ntoskrnl.exe. A total of 7 functions are imported from hal.dll, and 2 are

imported from wmilib.sys.

Discovery initially detected 169 internal functions which evolved to 180 resulting

from the experiments.

158 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Table 7-17: Characteristics of the SR DD.

Element Value

ID SR

Device driver file name oxser.sys

Type Serial Bluetooth Emulator

Vendor IVT Corporation

Target OS Windows 7

Target Platform 32 bit

Disk Size 49,408B

.text section Start: 0x6F30380, Size: 9,216B

.rdata section Start: 0x6F32780, Size: 640B

.data section Start: 0x6F32A00, Size: 384B

PAGESPR0 Start: 0x6F32B80, Size: 896B

PAGESRP0 Start: 0x6F32F00, Size: 12,800B

PAGESER Start: 0x6F36100, Size: 15,360B

INIT section Start: 0x6F39D00, Size: 3,328B

.rsrc section Start: 0x6F3AA00, Size: 4,224B

.reloc section Start: 0x6F3BA80, Size: 1,684B

DriverEntry address 0x6F39D00

Number of TDiscovery memory cells 13,754

Number of imported functions (ntoskrnl.exe) 77

Number of imported functions (hal.dll) 7

Number of imported functions (wmilib.sys) 2

Initial number of local DD functions 169

Final number of local DD functions 180

Imported Functions Test Cases for SR

Table 7-18 represents the eligible imported functions used by the SR DD and the

corresponding test cases. Similarly, to what happened to BT DD, it was discarded

from the tests all the imported functions that do not have return values and output

parameters.

Additionally, imported functions that potentially could lead to false positives were

not considered as well. IFTC6 was also not considered as part of the test cases

because it could lead to false positive results (represented in the table by a shaded

area in IFTC6 column).

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 159

Table 7-18: SR imported functions test cases.

SR Imported Functions
Test Cases

IFTC1 IFTC2 IFTC3 IFTC4 IFTC5 IFTC6 IFTC7 IFTC8 IFTC9

ExAllocatePoolWithQuotaTag -

ExAllocatePoolWithTag -

IoAllocateErrorLogEntry -

IoAttachDeviceToDeviceStack -

IoBuildSynchoronousFsdRequest -

IoCancelIrp -

IoConnectInterrupt -

IoCreateDevice -

IoCreateSymbolicLink -

IofCallDriver -

IoGetConfigurationInformation -

IoOpenDeviceRegistryKey -

IoRegisterDeviceInterface -

IoSetDeviceInterfaceState -

IoWMRegistrationControl -

KeCancelTimer -

KeInsertQueueDpc -

KeRemoveQueueDpc -

KeSynchronizeExecution -

KeWaitForSingleObject -

PoCallDriver -

PoRequestPowerIrp -

RtlDeleteRegistryValue -

RtlIniUnicodeString -

RtlIntegerToUnicodeString -

RtlQueryRegistryValues

-

WmiCompleteRequest -

WmiSystemControl -

ZwClose -

ZwQueryValueKey -

ZwSetValueKey -

 Test condition

Test Cases for SR at Driver Interface

Table 7-19 and Table 7-20, presents the SR DD interface functions directly tested

by Discovery. These functions were automatically detected after the execution of the

DriverEntry function.

160 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Table 7-19: SR Driver Interface and test cases.

Target Interface Function
Test Case

ID
Test Case Description

DriverEntry SRDI_TC01 Valid parameters

AddDevice SRDI_TC02 Valid parameters

DriverUnload SRDI_TC03 Valid parameters

IRP_MJ_CLEANUP SRDI_TC04
Valid request (no input/output
parameters exist for this request).

IRP_MJ_CLOSE SRDI_TC05
Valid request (no input/output
parameters exist for this request).

IRP_MJ_CREATE

SRDI_TC06
stackLocation.MajorFunction =
IRP_MJ_CREATE

SRDI_TC07
Invalid stackLocation.MajorFunction
value

IRP_MJ_DEVICE_CONTROL

SRDI_TC08
to

SRDI_TC14

stackLocation.MajorFunction =
IRP_MJ_INTERNAL_DEVICE_CONT
ROL

stackLocation.Parameters.DeviceCont
rol.InputBufferLength = 0x1

stackLocation.Parameters.DeviceIoCo
ntrol.IoControlCode = collection of

values determined from the cmp

instructions

SRDI_TC15 Invalid stackLocation.MajorFunction

IRP_MJ_FLUSH_BUFFERS

SRDI_TC16
stackLocation.MajorFunction =
IRP_MJ_CREATE

SRDI_TC17
Invalid stackLocation.MajorFunction
value

IRP_MJ_INTERNAL_DEVICE_CONTR
OL

SRDI_TC18
to

SRDI_TC24

stackLocation.MajorFunction =
IRP_MJ_INTERNAL_DEVICE_CONT
ROL

stackLocation.Parameters.DeviceCont
rol.InputBufferLength = 0x1

stackLocation.Parameters.DeviceIoCo
ntrol.IoControlCode = collection of
values determined from the cmp
instructions

SRDI_TC25 Invalid stackLocation.MajorFunction

IRP_MJ_POWER

SRDI_TC26

stackLocation.MajorFunction =
IRP_MJ_POWER
stackLocation.MinorFunction =
IRP_MN_POWER_SEQUENCE

SRDI_TC27

stackLocation.MajorFunction =
IRP_MJ_POWER
stackLocation.MinorFunction =
IRP_MN_QUERY_POWER

SRDI_TC28

stackLocation.MajorFunction =
IRP_MJ_POWER
stackLocation.MinorFunction =
IRP_MN_SET_POWER

SRDI_TC29

stackLocation.MajorFunction =
IRP_MJ_POWER
stackLocation.MinorFunction =
IRP_MN_WAIT_WAKE

SRDI_TC30

stackLocation.MajorFunction =
IRP_MJ_POWER
stackLocation.MinorFunction = invalid
Value

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 161

Table 7-20: SR Driver Interface and test cases (continued).

Target Interface Function
Test Case

ID
Test Case Description

IRP_MJ_QUERY_INFORMATION

SRDI_TC31

stackLocation.MajorFunction =
IRP_MJ_QUERY_INFORMATION
IrpSp->Parameters.
QueryFile.FileInformationClass =
FileAllInformation

SRDI_TC32
Invalid IrpSp->Parameters.
QueryFile.FileInformationClass

IRP_MJ_READ

SRDI_TC33

stackLocation.MajorFunction =
IRP_MJ_READ
IrpSp->MinorFunction =
IRP_MN_NORMAL
IrpSp->Parameters.Read.Length =0

SRDI_TC34

stackLocation.MajorFunction =
IRP_MJ_READ
IrpSp->MinorFunction =
IRP_MN_NORMAL
IrpSp->Parameters.Read.Length
=0xA

SRDI_TC35

stackLocation.MajorFunction =
IRP_MJ_READ
IrpSp->MinorFunction =
IRP_MN_NORMAL
IrpSp->Parameters.Read.Length
=0xFF

IRP_MJ_SET_INFORMATION

SRDI_TC36

IrpSp->MajorFunction =
IRP_MJ_SET_INFORMATION
IrpSp-> Parameters.SetFile.
FileInformationClass =
FileBasicInformation

SRDI_TC37

IrpSp->MajorFunction =
IRP_MJ_SET_INFORMATION
IrpSp-> Parameters.SetFile.
FileInformationClass = invalid value

IRP_MJ_SYSTEM_CONTROL

SRDI_TC38

IrpSp->MajorFunction =
IRP_MJ_SYSTEM_CONTROL
IrpSp->MinorFunction =
IRP_MN_ENABLE_EVENTS

SRDI_TC39
IrpSp->MajorFunction =
IRP_MJ_SYSTEM_CONTROL
IrpSp->MinorFunction = invalid value

IRP_MJ_WRITE

SRDI_TC40
Irp->AssociatedIrp.SystemBuffer uses
buffered I/O
Parameters.Write.Length = 0x00

SRDI_TC41
Irp->AssociatedIrp.SystemBuffer uses
buffered I/O
Parameters.Write.Length = 0x0A

SRDI_TC42
Irp->AssociatedIrp.SystemBuffer uses
buffered I/O
Parameters.Write.Length = 0xFFFF

To reduce the number of test cases and the number of false positives, no invalid

parameters have been used for DriverEntry, AddDevice and DriverUnload

function (SRDI_TC01 to SRDI_TC03). As demonstrated by the tests performed in

the BT DD, passing invalid parameters to these functions causes false positive

results.

162 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

The IRP_MJ_CLEANUP and IRP_MJ_CLOSE dispatch functions have no

input/output parameters. Therefore, no special conditions are used to analyse them

(SRDI_TC04 and SRDI_TC05).

On the contrary, IRP_MJ_CREATE receives an input value in the

stackLocation.MajorFunction member of the IRP request. Two situations are

evaluated, stackLocation.MajorFunction equal to IRP_MJ_CREATE

(SRDI_TC06) and stackLocation.MajorFunction equal to an unexpected

value (SRDI_TC07).

The IRP_MJ_DEVICE_CONTROL is analysed with test cases SRDI_TC08 to

SRDI_TC14. In these test cases, Discovery employs the values used in cmp

instructions as candidates for the IoControlCode passed as parameter. The idea

is find out which IoControlCode this dispatch function is using. SRDI_TC15 tests

the condition of having an invalid MajorFunction passed to

IRP_MJ_DEVICE_CONTROL.

The values used to analyse the handling of the remaining IRP_MJ_XXXX

dispatch functions, follows the same logic as the previous test conditions (i.e.,

exercising the dispatch functions with meaningful parameters taking into

consideration the input parameter types and possible values).

Test Set for SR

Table 7-21 defines 191 test cases grouped into 15 test sets, where the SR DD code

is analysed through different function call combinations. These test sets represent

possible calling sequences during the SR execution in the OS. The test cases used

to analyse each function in each call sequence result from the tests identified for the

interface function of the DD and the test cases identified for the used imported

functions.

Table 7-21: Test Set for SR.

Test Set Call Sequence
Total
Test

Cases

Execution Time (s)

Partial Total

SR_TS01
DriverEntry 8 165,6

167,8
DriverUnload 1 2,2

SR_TS02

DriverEntry 1 20,7

31,7 AddDevice 4 8,8

DriverUnload 1 2,2

SR_TS03

DriverEntry 1 20,7

24,7 AddDevice 1 2,2

IRP_MJ_CLEANUP 1 1,8

SR_TS04

DriverEntry 1 20,7

24,9 AddDevice 1 2,2

IRP_MJ_CLOSE 1 2,0

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 163

Table 7-22: Test Set for SR (continued).

Test Set Call Sequence
Total
Test

Cases

Execution Time (s)

Partial Total

SR_TS05

DriverEntry 1 20,7

159,2 AddDevice 1 2,2

IRP_MJ_CREATE 64 136,3

SR_TS06

DriverEntry 1 20,7

83,7 AddDevice 1 2,2

IRP_MJ_DEVICE_CONTROL 32 60,8

SR_TS07

DriverEntry 1 20,7

26,4 AddDevice 1 2,2

IRP_MJ_FLUSH_BUFFERS 2 3,5

SR_TS08

DriverEntry 1 20,7

47,2 AddDevice 1 2,2

IRP_MJ_INTERNAL_DEV_CONTROL 10 24,3

SR_TS09

DriverEntry 1 20,7

55,5 AddDevice 1 2,2

IRP_MJ_POWER 16 32,6

SR_TS10

DriverEntry 1 20,7

31,4 AddDevice 1 2,2

IRP_QUERY_INFORMATION 6 8,5

SR_TS11

DriverEntry 1 20,7

31,3 AddDevice 1 2,2

IRP_MJ_READ 4 8,4

SR_TS12

DriverEntry 1 20,7

24,8 AddDevice 1 2,2

IRP_MJ_SET_INFORMATION 1 1,9

SR_TS13

DriverEntry 1 20,7

26,9 AddDevice 1 2,2

IRP_MJ_SYSTEM_CONTROL 2 4,0

SR_TS14

DriverEntry 1 20,7

31,7 AddDevice 1 2,2

IRP_MJ_WRITE 4 8,8

SR_TS15

DriverEntry 1 20,7

37,2

AddDevice 1 2,2

IRP_MJ_CREATE 1 2,1

IRP_MJ_DEVICE_CONTROL 1 1,9

IRP_MJ_READ 1 2,1

IRP_MJ_WRITE 1 2,2

IRP_MJ_CLEANUP 1 1,8

IRP_MJ_CLOSE 1 2,0

DriverUnload 1 2,2

Test Results for SR

The execution of the SR driver code, resulted in the detection of the errors

summarized at Table 7-23.

The SR_E01 error occurs in all test sets where DriverEntry and

DriverUnload have successful executions and are called in sequence. This order

of events (detected in SR_TS01, SR_TS02 and SR_TS15) triggers an error caught

by the FM-PEV1 Resource Leakage Validator.

164 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Table 7-23: Test Results for SR.

Error
ID

Test Set
ID

Failure
Mode

Error description

SR_E01
SR_TS02
SR_TS15

PEV1 Memory leakage.

SR_E02
SR_TS02

to
SR_TS15

FLV6 The return code of RtlIntegerToUnicodeString is not validated.

SR_E03 SR_TS01 PEV2 Dormant path at Driver Entry.

SR_E04 SR_TS01 FLV7
Explicit call to KbdBugCheck when BreakOnEntry registry exists with
value different from zero.

This occurs because a portion of 30 bytes of memory allocated with function

ExAllocatePoolWithTag in the AddDevice function is not returned to the OSE

by the DriverUnload function. Although the leakage is small, and requires the

activation/deactivation of the DD (which under normal situations is not usual to

happen often), it may be exploited to crash the system.

The situation reported in SR_E02 is triggered by FM-FLV6 because the DD does

not validate the return value of RtlIntegerToUnicodeString when is called by

InternalFunction_0117 (which in turn is called by AddDevice). The

RtlIntegerToUnicodeString function is used by the SR DD to build the device

name passed to function IoCreateDevice (called in InternalFunction_0117).

Although in most situations it is not expected that the

RtlIntegerToUnicodeString returns an error, if it ever does, it may be

impossible for applications to connect with this DD to perform I/O requests.

During the analysis to the DriverEntry function, a call to

RtlQueryRegistryValues is performed to obtain the values of specific SR

Windows Registry Keys: BreakOnEntry, DebugLevel, ForceFiFoEnable,

RxFIFO, TxFIFO, PermitShare and LogFifo. When the Test Manager forced

the return of IFTC3 values on function RtlQueryRegistryValues, the PEV2

Dormant Code Validator raised an error. When the Test Manager forced IFTC5

values returned by function RtlQueryRegistryValues the dormant code was

activated and a call to the OSE function KbdBugCheck is performed which triggers

FLV7. In fact, the SR_E04 error represents a vulnerability to all the systems that

have the SR DD installed. By placing a BreakOnEntry key with value 0x01 into

the Windows registry path of this DD, it is possible to cause a crash whenever the

system boots and SR is activated. Once this vulnerability is triggered, this situation

can only be reverted either by using the secure mode and recover the last good

known configuration of Windows, by booting with another image disk or reinstalling

the OS.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 165

Performance of Discovery

This section is dedicated to a brief analysis over the performance of Discovery. We

are going to take as examples for the analysis the BT and SR DD used in the

previous sections.

Table 7-24 shows the execution time of Discovery related with the DUT loading

and initialization of the execution platform.

Table 7-24: Execution time of Discovery during the loading process.

Metric BT SR

File size 20,480B 51,169B

Number of imported functions 32 77

Initialization of internal structures* 24ms

File loading 16ms 16ms

Linkage 284ms 375ms

Sections processing 132ms 517ms

Platform initialization* 169ms

Total time 625ms 1,077ms

*These values are intrinsic to the platform and independent from the DUT

Considering that the time to initialize the internal structures and the platform of

Discovery is independent from the DUT, the overall time to load the driver and be

ready to start the analysis is influenced by the complexity of the linkage process.

Since SR is more complex (inferred by the number of imported functions and lines

of code), Discovery takes more time to perform the loading process (1,077ms) than

for BT (625ms). However, both DUT are ready for analysis in the order of less than

1 second.

During the analysis process, Discovery takes the values listed in Table 7-25 to

emulate various instructions. The table represents a sequence execution sample of

278 instructions, which took a total of 5,111ms. The first column of the table has the

instruction mnemonic, the second column the minimum time spent for the instruction

execution, followed by the average execution time and finally, the last column, has

the maximum value observed for the instruction execution.

From the sample, it can be observed that the ret instructions has the highest

execution time, which has to do with the context switching that occurs from the true-

mode to the emulation-mode. The push instruction has the second highest time with

an average execution time of 54ms. The remaining instructions are executed in

average in less than 10ms. The mov instructions takes in average 2.9ms.

166 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

Comparing the performance of the execution platform of Discovery with a modern

CPU (for instance an Intel Core i7 performs 0.318MIPms @ 3.0GHz [171]), one can

conclude that there is plenty for improvement.

Table 7-25: Performance of Discovery during execution.

Instruction
Time (ms)**

Min Average Max

ret 80 93.3 113

push 1 54.3 57

jnz 2 6.0 21

lea 2 5.4 10

call 2 3.7 5

pop 2 3.2 4

sub 2 3.0 4

and 3 3.0 3

mov 1 2.9 8

xor 2 2.9 4

jz 2 2.5 3

test 2 2.3 3

cmp 2 2.3 3

stosd 2 2.2 3

leave 2 2.0 2

not 2 2.0 2

dir* 1 1.7 3

jmp 1 1.7 2

add 1 1.0 1

*This instruction does not exist in a real x86-64 platform. It is an abstraction to direct assign a value to a
register used during context switching.
**Sample execution involving a sequence of 278 instructions.

However, the primary goal of Discovery was not performance, and from our

knowledge of the platform, the average times can be significantly reduced at least

by a factor of 10. Nevertheless, for some of the experiments performed, some

Validators have been triggered after a few instructions, which is to say that Discovery

could detect errors in a few milliseconds time.

Another important aspect of the Discovery platform is the ability to automatically

maintain the execution context to speed up testing. Taking a closer look to the last

column of Table 7-13 and Table 7-21, all the time spent with DriverEntry and

AddDevice can be avoided, which significantly reduces the overall time of the

analysis.

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 167

7.11 Summary

The Supervised Emulation Analysis is a methodology for the detection and location

of flaws in DD without resorting to the source code or specific hardware. The

methodology was designed based on: i) the assumption that DD follow a specific

driver model structure which limits the interface from which the OS and the DD

interact with each other; ii) the types of bug classes that can be detected and located

based in the type of the executing hardware platform; iii) the definition of validators

that locate the considered bug classes; iv) the definition of an emulation platform

that analyses the DD binary code and v) the necessary procedures that should be

in place to locate DD flaws.

The driver model establishes the internal structure of the DD. The entry point is

the only known function by the OS immediately after the DD being loaded. During

the DD execution, the DD registers limited interface functions in the OS that

implement specific services required by the OS. The DD may have many internal

functions used to simplify its code organization. These functions are used by some

of the interface functions exposed to the OS and other internal functions. However,

the OS cannot interface directly with them. DD may register interrupt functions in the

OS, but these functions also follows a specific model. The DD depends on functions

typically provided by the OS that form the API that the DD can use.

The DD binary file follows a specific format which can be interpreted to determine

and locate its various components which are fundamental to load and be able to

execute the DD code.

Based on the previous information it should be possible to build a system that

can interface the DD code and perform the same tasks as the OS, testing the DD

through the various interface functions and locate errors by using test cases that

address the parameters and return values of the interface.

The methodology defines validators. A mechanism called during the DD code

execution to perform a check over an intended action. Three different kind of

validators classes were identified: i) Machine Level Validators that are triggered

during the execution of a machine instruction to check the validity of the machine

instruction parameters; ii) Function Level Validators that are triggered during the

execution of a call from the DD to the OS and iii) Post Execution Validators that are

triggered after the execution of a sequence of DD interface functions to detect

abnormal situations such as resource leakage and dormant code.

168 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS

The methodology defines an emulated environment where the DD code is loaded

and executed. The execution of each DD machine instruction is subject to the action

of the validators to ascertain the correctness of the execution. The emulation

ensures that there is no need for the hardware of the platform or device during the

DD analysis. Additionally, the stability of the testing platform is not compromised by

the tests being performed because the errors in the DD code are detected before

the execution can take place. Finally, the identification of the flaws can be distributed

over different systems.

The procedures for detecting and locating the flaws in the DD consists of: i) a

preparation phase where the DD binary file is loaded in the emulation platform; ii)

pre-processing of the DD to identify the code structure; iii) exercise the DD using a

set of calling sequences and test cases that mimic the OS behaviour but create

typical and extraordinary scenarios that the DD should handle.

Discovery is an implementation of the Supervised Emulation Analysis

methodology. It implements an emulation of the x86-64 architecture platform where

the DD code analysis occurs, an Operating System Emulator to load and interface

the DD code, a Device Emulator structure, a Database to handle configurations,

traces, test sequences, test cases and results, and the Test Manager in charge of

supervising the strategy employed to find the errors in the DD code. Discovery has

granularity control over the machine code execution of the DD supporting very

detailed checks at the level of each machine instruction execution, allowing for

catching platform dependent flaws such as buffer overflows, incorrect pointers,

invalid jumps and calls. All functions imported by the DD are emulated by the

platform. Checks embedded at each imported function allows the detection of flaws

at a higher execution level such as incorrect OS object handlers, pointers and

function calls. Post execution checks allows for the detection of resource leakages

and dormant code.

Experiments performed with two commercial DD demonstrated the dependency

level that DD have from the correctness of the calls made from the OS, resource

leakage, non-validation of return values, the presence of dormant code and

vulnerable situations related with Windows registery values.

Although the primary objective of Discovery was not performance, from the

experiments performed it presented results in a reasonable time frame.

CHAPTER 8 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the main contributions of the work and provides some

indications of future research directions.

8.1 Conclusions

The thesis describes several methodologies applied to the discovery of errors in

DDs and their causes. The first contribution focus on robustness testing of the

functions provided by Microsoft’s DD development kit (DDK). In the context of this

work, we designed a system that automatically writes the source code of potentially

faulty DDs, installs them in the OS, triggers the faults, collects and analyses the

results. The execution of each DD, the call of the DDK function with potential

erroneous parameters, and consequently the behaviour of the system gives us an

idea of how well the OS would cope with the triggered faults. The analysis of the

results shows that most targeted functions were unable to offer a protection to the

incorrect parameters. A small number of hangs and a reasonable number of crashes

were observed, which suggests a deficient error containment capability of these OS

functions.

170 CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

The second contribution of this work uses the fuzzing concept to perform the

injection of attacks on Wi-Fi DDs. We developed a methodology and an architecture

capable of injecting Wi-Fi frames with controlled faulty values in the various frame

fields of this medium. A target windows smartphone device is connected to both the

Wi-Fi medium and to a host computer that monitors the results of the attacks. The

results demonstrated that in most cases, Windows was able to handle correctly the

malicious frames. However, the results also showed that Wdev-Fuzzer can be

successfully applied to reproduce denial of service attacks using Disassociation and

Deauthentication frames. The system revealed a potential implementation problem

of the TCP-IP stack, uncovered by the use of disassociation frames when the target

device was associated and authenticated with a Wi-Fi access point. The

experiments also discovered a previously unknown vulnerability that causes OS

hangs, when a specific value was assigned to the TIM element in the Beacon frame.

Another contribution of the work resulted in the Intercept tool that instruments

Windows DDs by logging the driver interactions with the OS at function level. It uses

an approach where the DD binary is in full control of a DD wrapper layer and the

execution is traced to a file recording all function calls, parameter and return values.

The trace is directly generated in clear text with all the involved data structures.

Intercept gives a clear picture of the dynamics of the driver, which can help in

debugging and reverse engineering processes with low performance degradation.

Results show the ability of the tool to identify bugs in drivers, by executing tests

based on the knowledge obtained from the driver’s dynamics.

The final contribution of the work is the Supervised Emulation Analysis

methodology and the Discovery framework. The methodology takes advantage of

the fact that DD have a well-defined structure, therefore limiting the number of

possible path combinations per function and loops. The methodology uses

emulation to exercise the DD through its interfaces, mimicking the OS behaviour

and verifying the driver execution. The emulation platform controls the binary

execution of the DD code with instruction granularity, which enables fine grain

checks with Validators that ascertain the validity of the code being executed, this

way enabling the detection of low level errors. The emulation platform also provides

all the resources required by the DD. Therefore, the platform can catch function level

errors related with parameter values, DD state, function call orders and resource

leakage. Post Execution Validators can be used to verify the balance of resources

and dormant code. Experimental results with Discovery confirmed that the DDs have

a high dependency from the OS and do not check (and in most the cases have no

way to check) the validity of the parameters passed by the OS, either when calling

a DD function or when a OS service returns. The results also show that most the

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK 171

tested DDs verifies the return values of the OS functions and act accordingly.

Nevertheless, it was possible to detect cases where the DDs do not validate return

values, present resource leakages and dormant code that may compromise system

stability.

8.2 Future Work

Future works can naturally continue to improve and expand the functionalities of the

presented tools, methodologies and frameworks to support the detection of DD

errors and build more dependable computer systems. Next we present a few ideas

for future work within the same research field.

Emulation sandboxing for runtime protection

The thesis addressed the detection of DD errors using an emulated platform to

stimulate the DD code while facing specific input values. The operation is performed

in an emulated environment. This idea could be extended to an active real-time

detection and protection mechanism by creating an emulated sandboxing

environment for runtime protection that validates the DD code path before it is

executed. In the case of an error being detected, the sandbox can gracefully return

to the OS.

Binary code refactoring for error detection on OS resource usage

OS provide resources to DDs. An incorrect use of such resources can lead to

leakages and deadlocks. One potential research area that can expand the

possibilities of Discovery involves code refactoring of the DD aiming for a fast and

accurate detection on errors related with OS resource usage. The main idea is to

identify the code paths that involve the allocation/deallocation of resources,

acquisition and release of locking mechanisms (locks, semaphores and mutex) and

strip out the remaining code. This way, it would be possible to continue to have the

underlying usage logic of such resources striped out from the complexity of the other

code.

Emulation assisted symbolic execution

An emulation execution platform, such as Discovery, enables the control of the

execution engine. As seen during the experimental results of the Supervised

Emulation Analysis, DD are highly dependent on the OS inputs. One possible way

to achieve higher levels of independency of the OS is to execute each machine

172 CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

instructions abstractly. Instead of executing the associated algorithm of each

machine instruction, the execution engine can be changed to symbolically process

the instructions and simplify the correlation between decision instructions, the input

parameters of the function and potential errors.

ANNEX I – Robustness Testing of the Windows
DDK sample code

This section relates to Chapter 4 Robustness Testing of the Windows Driver Kit. It

contains the source code of the device driver template used by DevBuilder when

building synthetic device drivers (see DevInjector.c next).

DevBuilder rewrites the DevInjector.c file by adding specific code next to the

following comment lines:

• //INSERT DECLARATIONS HERE;

• //INSERT FUNCTION CALL HERE;

• //INSERT POSTCODE;

• //INSERT DRIVER ENTRY CODE.

The code to be inserted at the comment lines identified earlier is found at the

XML file that describes the signature of the function to be tested. The next sections

of this annex contain:

• devInjector.c

The synthetic template device driver source file;

• IoCallDriver.XML

The signature description file of the function IoCallDriver used to

generate specific DD for testing the robustness of this function;

• IoCallDriver_1.c

The resulting source code of a synthetic driver by processing

DevInjector.c and IoCallDriver.xml

174 ANNEX I – Robustness Testing of the Windows DDK sample code

DevInjector.c

The following text is the source code of the synthetic template device driver used by

DevBuilder to build synthetic device drivers.

//--
//
// DevInjector.c
//
// Copyright (C) 2017 Manuel Mendonca, Nuno Neves
// FCUL
//
// Template driver.
//
// V3.0 Support for post code
//
//
//--
#define _X86_
#include "ntddk.h"
#include "..\DD_Include\ioctlcmd.h"

#define DEBUG_IOCTL_TEXT "DInject - IOCTL_EXECUTE_ACTION invoked.\r\n"
#define DEBUG_IOCTL_DEFAULT "DInject - IOCTL_EXECUTE_ACTION default.\r\n"
#define DEBUG_DRIVER_ENTRY "DInject - Driver Entry\r\n"
#define DEBUG_DRIVER_ENTRYEND "DInject - Driver Entry end.\r\n"
#define DEBUG_UNLOAD "DInject - Unload.\r\n"

#define SYMBOL_LINK L"\\Device\\DInject"
#define DEVICE_LINK L"\\DosDevices\\DInject"

//--
//
// DevInjectorDeviceControl
//
//--
NTSTATUS
DevInjectorDeviceControl(

IN PFILE_OBJECT FileObject,
IN BOOLEAN Wait, IN PVOID InputBuffer,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer,
IN ULONG OutputBufferLength,
IN ULONG IoControlCode,
OUT PIO_STATUS_BLOCK IoStatus,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp)

{
 //INSERT DECLARATIONS HERE

 //IoStatus->Information = 0;
 //OutputBufferLength = 0;

 switch (IoControlCode) {
 case IOCTL_EXECUTE_ACTION:

//INSERT FUNCTION CALL HERE

//INSERT POSTCODE

 DbgPrint(DEBUG_IOCTL_TEXT);
 DbgPrint(OutputBuffer);
 IoStatus->Status = STATUS_SUCCESS;

break;

 default:
 IoStatus->Status = STATUS_NOT_SUPPORTED;
 DbgPrint(DEBUG_IOCTL_DEFAULT);

break;
 }

return IoStatus->Status;
}

ANNEX I – Robustness Testing of the Windows DDK sample code 175

//--
//
// DevInjectorDispatch
//
// In this routine requests to our own device. The only
// requests we care about handling explicitely are IOCTL commands that
// we will get from the GUI. We also expect to get Create and Close
// commands when the GUI opens and closes communications with us.
//
//--
NTSTATUS DevInjectorDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{
 PIO_STACK_LOCATION iosp;
 PVOID inputBuffer;
 PVOID outputBuffer;
 ULONG inputBufferLength;
 ULONG outputBufferLength;
 ULONG ioControlCode;
 NTSTATUS status;

//
// Switch on the request type
//

 iosp = IoGetCurrentIrpStackLocation (Irp);
 switch (iosp->MajorFunction) {

case IRP_MJ_CREATE:
case IRP_MJ_CLOSE:

 status = STATUS_SUCCESS;
break;

case IRP_MJ_DEVICE_CONTROL:

 inputBuffer = Irp->AssociatedIrp.SystemBuffer;
inputBufferLength = iosp->Parameters.DeviceIoControl.InputBufferLength;
outputBuffer = Irp->AssociatedIrp.SystemBuffer;
outputBufferLength = iosp-> Parameters.DeviceIoControl.OutputBufferLength;
ioControlCode = iosp-> Parameters.DeviceIoControl.IoControlCode;

 status = DevInjectorDeviceControl(

iosp->FileObject,
TRUE,inputBuffer, inputBufferLength, outputBuffer,
outputBufferLength, ioControlCode, &Irp->IoStatus,

 DeviceObject, Irp);
 break;

default:

 status = STATUS_INVALID_DEVICE_REQUEST;
 break;

}

//
// Complete the request
//
Irp->IoStatus.Status = status;

 IoCompleteRequest(Irp, IO_NO_INCREMENT);
 return status;
}

//--
//
// DevInjectorUnload
//
// Our job is done - time to leave.
//
//--
VOID
DevInjectorUnload(IN PDRIVER_OBJECT DriverObject)
{
 WCHAR deviceLinkBuffer[] = SYMBOL_LINK;
 UNICODE_STRING deviceLinkUnicodeString;

//
 // Delete the symbolic link for our device

//
 RtlInitUnicodeString(&deviceLinkUnicodeString, deviceLinkBuffer);
 IoDeleteSymbolicLink(&deviceLinkUnicodeString);

176 ANNEX I – Robustness Testing of the Windows DDK sample code

//
 // Delete the device object

//
 IoDeleteDevice(DriverObject->DeviceObject);
 DbgPrint(DEBUG_UNLOAD);
}

//--
//
// DriverEntry
//
// Installable driver initialization. Here we just set ourselves up.
//
//--
NTSTATUS
DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath)
{

NTSTATUS status;
WCHAR deviceNameBuffer[] = SYMBOL_LINK;
UNICODE_STRING deviceNameUnicodeString;
WCHAR deviceLinkBuffer[] = DEVICE_LINK;
UNICODE_STRING deviceLinkUnicodeString;
PDEVICE_OBJECT interfaceDevice = NULL;
ULONG startType, demandStart;
RTL_QUERY_REGISTRY_TABLE paramTable[2];
UNICODE_STRING registryPath;
LARGE_INTEGER crashTime;

//INSERT DRIVER ENTRY CODE

 DbgPrint(DEBUG_DRIVER_ENTRY);

//
// Create a named device object
//
RtlInitUnicodeString (&deviceNameUnicodeString,deviceNameBuffer);

status = IoCreateDevice (DriverObject,

 0,
 &deviceNameUnicodeString,
 FILE_DEVICE_DEVINJECT,
 0,
 TRUE,
 &interfaceDevice);

if (NT_SUCCESS(status)) {
 //

 // Create a symbolic link that the GUI can specify to
// gain access to this driver/device

 //
 RtlInitUnicodeString (&deviceLinkUnicodeString, deviceLinkBuffer);
 status = IoCreateSymbolicLink (&deviceLinkUnicodeString,
 &deviceNameUnicodeString);

 //

// Create dispatch points for all routines that must be
// injected

 //
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DevInjectorDispatch;

 DriverObject->DriverUnload = DevInjectorUnload;
}

if (!NT_SUCCESS(status)) {

//
 // Something went wrong, so clean up
 //
 DbgPrint("Something Went Wrong");
 if(interfaceDevice) {

IoDeleteDevice(interfaceDevice);
}

 }

//
// Query our start type to see if we are supposed to monitor starting
// at boot time
//
registryPath.Buffer = ExAllocatePool(PagedPool, RegistryPath->Length +

sizeof(UNICODE_NULL));

if(!registryPath.Buffer) {

ANNEX I – Robustness Testing of the Windows DDK sample code 177

 return STATUS_INSUFFICIENT_RESOURCES;
}

registryPath.Length = RegistryPath->Length + sizeof(UNICODE_NULL);
registryPath.MaximumLength = registryPath.Length;

RtlZeroMemory(registryPath.Buffer, registryPath.Length);
RtlMoveMemory(registryPath.Buffer, RegistryPath->Buffer, RegistryPath->Length);

demandStart = SERVICE_DEMAND_START;
startType = demandStart;
RtlZeroMemory(¶mTable[0], sizeof(paramTable));
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[0].Name = L"Start";
paramTable[0].EntryContext = &startType;
paramTable[0].DefaultType = REG_DWORD;
paramTable[0].DefaultData = &demandStart;
paramTable[0].DefaultLength = sizeof(ULONG);

RtlQueryRegistryValues(RTL_REGISTRY_ABSOLUTE, registryPath.Buffer, ¶mTable[0],

NULL, NULL);
 DbgPrint(DEBUG_DRIVER_ENTRYEND);

return status;
}

IoCallDriver.XML

The following text is the XML signature definition of the IoCallDriver function. It will

be used by DevBuilder to write the source code of the multiple synthetic device

drivers used to perform the robustness test campaign of the IoCallDriver function.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<functions xmlns="www.fcul.pt">
 <function functionName="IoCallDriver">
 <returnValue>NTSTATUS</returnValue>
 <preCode codeLines="PRECODE">
 </preCode>

 <postCode codeLines="POSTCODE">
 </postCode>

 <parameter parameterName="PDEVICE_OBJECT">
 <value></value>
 <value>NULL</value>
 <value>DeviceObject</value>
 </parameter>

 <parameter parameterName="PIRP">
 <value></value>
 <value>NULL</value>
 <value>Irp</value>
 </parameter>

 </function>
</functions>

IoCallDriver0.c

The following text is the source code of the first synthetic device used at the

robustness testing campaign of the IoCallDriver function.

//--
//
// IoCallDriver0.c – rewritten from devInject.c

178 ANNEX I – Robustness Testing of the Windows DDK sample code

//
// Copyright (C) 2017 Manuel Mendonca, Nuno Neves
// FCUL
//
//--
#define _X86_
#include "ntddk.h"
#include "..\DD_Include\ioctlcmd.h"

#define DEBUG_IOCTL_TEXT "IoCallDriver0 - IOCTL_EXECUTE_ACTION invoked.\r\n"
#define DEBUG_IOCTL_DEFAULT "IoCallDriver0 - IOCTL_EXECUTE_ACTION default.\r\n"
#define DEBUG_DRIVER_ENTRY "IoCallDriver0 - Driver Entry\r\n"
#define DEBUG_DRIVER_ENTRYEND "IoCallDriver0 - Driver Entry end.\r\n"
#define DEBUG_UNLOAD "IoCallDriver0 - Unload.\r\n"

#define SYMBOL_LINK L"\\Device\\IoCallDriver0"
#define DEVICE_LINK L"\\DosDevices\\IoCallDriver0"

//--
//
// DevInjectorDeviceControl
//
//--
NTSTATUS DevInjectorDeviceControl(

IN PFILE_OBJECT FileObject,
IN BOOLEAN Wait,
IN PVOID InputBuffer,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer,
IN ULONG OutputBufferLength,
IN ULONG IoControlCode,
OUT PIO_STATUS_BLOCK IoStatus,
IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)

{
PDEVICE_OBJECT p0;
PIRP p1;
//INSERT PRECODE HERE

switch (IoControlCode) {
 case IOCTL_EXECUTE_ACTION:
 DbgPrint("IoCallDriver0.c - IOCTL_EXECUTE_ACTION invoked V1.0.\r\n");

 IoStatus->Status = IoCallDriver(p0, p1);
 if (IoStatus->Status == STATUS_PENDING){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
STATUS_PENDING.", 50);

 OutputBufferLength = 50;
 }
 else
 if (IoStatus->Status == STATUS_HANDLE_NOT_CLOSABLE){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
STATUS_HANDLE_NOT_CLOSABLE.", 62);

OutputBufferLength = 62;
 }
 else
 if (IoStatus->Status == STATUS_INVALID_HANDLE){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS.
Value is STATUS_INVALID_HANDLE.", 57);
OutputBufferLength = 57;

 }
 else
 if (IoStatus->Status == STATUS_ACCESS_DENIED){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_ACCESS_DENIED.", 56);
OutputBufferLength = 56;

 }
 else
 if (IoStatus->Status == STATUS_INSUFFICIENT_RESOURCES){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_INSUFFICIENT_RESOURCES.", 65);
OutputBufferLength = 65;

 }
 else
 if (IoStatus->Status == STATUS_ILLEGAL_FLOAT_CONTEXT){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_ILLEGAL_FLOAT_CONTEXT.", 64);
OutputBufferLength = 64;

 }
 else

ANNEX I – Robustness Testing of the Windows DDK sample code 179

 if (IoStatus->Status == STATUS_SUCCESS){
RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_SUCCESS.", 50);
OutputBufferLength = 50;

}
else
if (IoStatus->Status == STATUS_ALERTED){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_ALERTED.", 50);
OutputBufferLength = 50;

}
else
if (IoStatus->Status == STATUS_USER_APC){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_USER_APC.", 51);
OutputBufferLength = 51;

}
else
if (IoStatus->Status == STATUS_TIMEOUT){

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is
 STATUS_TIMEOUT.", 50);
OutputBufferLength = 50;

}
else
{

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is not
 STATUS_SUCCESS.", 54);
OutputBufferLength = 54;

}
IoStatus->Information = OutputBufferLength;

//INSERT POSTCODE

 DbgPrint(DEBUG_IOCTL_TEXT);
 DbgPrint(OutputBuffer);
 IoStatus->Status = STATUS_SUCCESS;
 //IoStatus->Information = OutputBufferLength;
 break;

 default:

IoStatus->Status = STATUS_NOT_SUPPORTED;
 DbgPrint(DEBUG_IOCTL_DEFAULT);

break;
}
return IoStatus->Status;

}

//--
//
// DevInjectorDispatch
//
// In this routine requests to our own device. The only
// requests we care about handling explicitely are IOCTL commands that
// we will get from the GUI. We also expect to get Create and Close
// commands when the GUI opens and closes communications with us.
//
//--
NTSTATUS DevInjectorDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{
 PIO_STACK_LOCATION iosp;
 PVOID inputBuffer;
 PVOID outputBuffer;
 ULONG inputBufferLength;
 ULONG outputBufferLength;
 ULONG ioControlCode;
 NTSTATUS status;

 //
 // Switch on the request type
 //
 iosp = IoGetCurrentIrpStackLocation (Irp);
 switch (iosp->MajorFunction) {

case IRP_MJ_CREATE:
case IRP_MJ_CLOSE:

status = STATUS_SUCCESS;
break;

 case IRP_MJ_DEVICE_CONTROL:

180 ANNEX I – Robustness Testing of the Windows DDK sample code

inputBuffer = Irp->AssociatedIrp.SystemBuffer;
inputBufferLength = iosp->
 Parameters.DeviceIoControl.InputBufferLength;
outputBuffer = Irp->AssociatedIrp.SystemBuffer;
outputBufferLength = iosp->
 Parameters.DeviceIoControl.OutputBufferLength;
ioControlCode = iosp->
 Parameters.DeviceIoControl.IoControlCode;

status = DevInjectorDeviceControl(iosp->FileObject, TRUE,

 inputBuffer, inputBufferLength,
 outputBuffer, outputBufferLength,
 ioControlCode, &Irp->IoStatus,
 DeviceObject, Irp);
 break;

default:
status = STATUS_INVALID_DEVICE_REQUEST;
break;

 }

 //
 // Complete the request
 //

Irp->IoStatus.Status = status;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);
 return status;
}

//--
//
// DevInjectorUnload
//
// Our job is done - time to leave.
//
//--
VOID
DevInjectorUnload(IN PDRIVER_OBJECT DriverObject)
{
 WCHAR deviceLinkBuffer[] = SYMBOL_LINK;
 UNICODE_STRING deviceLinkUnicodeString;

//
 // Delete the symbolic link for our device

//
 RtlInitUnicodeString(&deviceLinkUnicodeString, deviceLinkBuffer);
 IoDeleteSymbolicLink(&deviceLinkUnicodeString);

//
 // Delete the device object

//
 IoDeleteDevice(DriverObject->DeviceObject);
 DbgPrint(DEBUG_UNLOAD);
}

//--
//
// DriverEntry
//
// Installable driver initialization. Here we just set ourselves up.
//
//--
NTSTATUS
DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath)
{

NTSTATUS status;
WCHAR deviceNameBuffer[] = SYMBOL_LINK;
UNICODE_STRING deviceNameUnicodeString;
WCHAR deviceLinkBuffer[] = DEVICE_LINK;
UNICODE_STRING deviceLinkUnicodeString;
PDEVICE_OBJECT interfaceDevice = NULL;
ULONG startType, demandStart;
RTL_QUERY_REGISTRY_TABLE paramTable[2];
UNICODE_STRING registryPath;
LARGE_INTEGER crashTime;

ANNEX I – Robustness Testing of the Windows DDK sample code 181

 DbgPrint("IoCallDriver0 - DRIVER ENTRY invoked V1.0.\n");
 DbgPrint(DEBUG_DRIVER_ENTRY);

//
// Create a named device object
//
RtlInitUnicodeString (&deviceNameUnicodeString, deviceNameBuffer);
status = IoCreateDevice (DriverObject,

 0,
&deviceNameUnicodeString,
FILE_DEVICE_DEVINJECT,
0,
TRUE,
&interfaceDevice);

if (NT_SUCCESS(status)) {

 //
 // Create a symbolic link that the GUI can specify to gain access
 // to this driver/device
 //
 RtlInitUnicodeString (&deviceLinkUnicodeString,
 deviceLinkBuffer);
 status = IoCreateSymbolicLink (&deviceLinkUnicodeString,
 &deviceNameUnicodeString);

 //
 // Create dispatch points for all routines that must be injected
 //

 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DevInjectorDispatch;
 DriverObject->DriverUnload = DevInjectorUnload;
}

if (!NT_SUCCESS(status)) {

 //
 // Something went wrong, so clean up
 //
 DbgPrint("Something Went Wrong");
 if(interfaceDevice) {

IoDeleteDevice(interfaceDevice);
 }
}

//
// Query our start type to see if we are supposed to monitor starting
// at boot time
//
registryPath.Buffer = ExAllocatePool(PagedPool,

 RegistryPath->Length + sizeof(UNICODE_NULL));
if(!registryPath.Buffer) {

 return STATUS_INSUFFICIENT_RESOURCES;
 }

 registryPath.Length = RegistryPath->Length + sizeof(UNICODE_NULL);
 registryPath.MaximumLength = registryPath.Length;

 RtlZeroMemory(registryPath.Buffer, registryPath.Length);
 RtlMoveMemory(registryPath.Buffer, RegistryPath->Buffer, RegistryPath->Length);

 demandStart = SERVICE_DEMAND_START;
 startType = demandStart;
 RtlZeroMemory(¶mTable[0], sizeof(paramTable));
 paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
 paramTable[0].Name = L"Start";
 paramTable[0].EntryContext = &startType;
 paramTable[0].DefaultType = REG_DWORD;
 paramTable[0].DefaultData = &demandStart;
 paramTable[0].DefaultLength = sizeof(ULONG);

RtlQueryRegistryValues(RTL_REGISTRY_ABSOLUTE, registryPath.Buffer, ¶mTable[0], NULL,
 NULL);

 DbgPrint(DEBUG_DRIVER_ENTRYEND);
 return status;
}

182 ANNEX I – Robustness Testing of the Windows DDK sample code

ANNEX II – Discovery

This annex relates to Chapter 7 Supervised Emulation Analysis. It briefly presents

Discovery - an application developed to interface with the Discovery framework and

locate errors in DD.

Figure AnII-1 depicts the main window of Discovery platform where the DCPU,

integrated debugger and main console are shown.

Figure AnII-1: Discovery Main Window (general view).

184 ANNEX II – Discovery

Figure AnII-2: Discovery5 Console.

Figure AnII-2 depicts the console of Discovery through which the user can select the

device driver for analysis. The text box labelled “Binary File” contains the path for

the device driver under test.

The current version of Discovery allows access to the emulation platform and

interaction with the DCPU and integrated debugger (see Figure AnII-3).

Figure AnII-3: DCPU and integrated debugger windows.

ANNEX II – Discovery 185

Function Call Graph

Discovery builds the function call graph of the device driver under test. Figure AnII-4

depicts the function call graph available at Discovery with focus on the DriverEntry

function of the device driver under test.

Figure AnII-4: Example of Driver Entry Call Graph (pre-Expanded)

Figure AnII-5 depicts an example of the DriverEntry expanded function call graph.

The code highlighted in green shows instructions that where analysed by the

platform during the execution of the test sets.

186 ANNEX II – Discovery

Figure AnII-5: Example of Driver Entry Call Graph (Expanded)

Report

Figure AnII-6 depicts the dynamic report being built as a result of the analysis

performed at the device driver and errors being detected by the implemented

validators.

Figure AnII-6: Dynamic Report

BIBLIOGRAPHY

[1] B. Murphy, “Automating software failure reporting”, ACM Queue, Vol. 2, N.8, 2004.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of operating system

errors”, In Proceedings of the Symposium on Operating Systems Principles, pp. 73-88, October

2001.

[3] L. Reveillere and G. Muller, “Improving Driver Robustness: an Evaluation of the Devil

Approach”, In Proceedings of the International Conference on Dependable Systems and

Networks, pp. 131-140, July 2001.

[4] “Net market share”, http://www.netmarketshare.com, accessed December 2016.

[5] D. Simpson, “Windows XP Embedded with Service Pack 1 Reliability”, Technical Report,

Microsoft Corporation, January 2003.

[6] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and Taxonomy of

Dependable and Secure Computing”, IEEE Transactions on Dependable and Secure

Computing, January-March 2004.

[7] “ATIS Telecom Glossary 2007”, “Fault definition”,

http://www.atis.org/glossary/definition.aspx?id=7926, accessed December 2016

[8] “Federal Standard 1037C”, “Fault definition”, http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm,

accessed December 2016.

[9] “IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Dependability

definition”, http://www.dependability.org/wg10.4/, accessed September 2016.

http://www.atis.org/glossary/definition.aspx?id=7926
http://www.dependability.org/wg10.4/

188 BIBLIOGRAPHY

[10] R. Iyer and D. Rossetti, “A measurement-based model for workload dependence of CPU

errors”, IEEE Transactions on Computers, vol. C-35, pp. 511-519, June 1986.

[11] E. Czeck and D. Siewiorek, “Effects of transient gate-level faults on program behaviour”, In

Proceedings of the 20th Symposium on Fault-Tolerant Computing, pp. 236-243, June 1990.

[12] K. Goswami and R. Iyer, “A simulation-based study of a triple modular redundant system using

DEPEND”, In Proceedings of the 5th International Conference on Fault- Tolerant Computing

Systems, pp. 300-311, September 1991.

[13] E. Jenn, J. Arlat, M. Rimtn, J. Ohlsson, and J. Karlsson, “Fault Injection into VHDL Models: The

MEFISTO Tool”, In Proceedings 24th International Symposium on Fault-Tolerant Computing,

pp. 66-75, June 1994.

[14] V. Sieh, 0. Tschache, and F. Balbach, “VERIFY: evaluation of reliability using VHDL-models

with embedded fault descriptions”, In Proceedings of the 27th International Symposium on

Fault-Tolerant Computing, pp. 32 -36, June 1997.

[15] C. Kwang-Ting, H. Shi-Yu, and D. Wei-Jin, “Fault Emulation: A New Methodology for Fault

Grading”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 18, N.10, pp. 1487-1495, 1999.

[16] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell,

“Fault Injection for Dependability Validation - A Methodology and Some Applications”, IEEE

Transactions on Software Engineering, 16 (2), pp. 166-182, February 1990.

[17] M. Hsueh, T. Tsai, and R. Iyer, “Fault Injection Techniques and Tools”, IEEE Computer Vol.

30, pp. 75-82, April 1997.

[18] P. Folkesson, S. Svensson, and J. Karlsson, “A Comparison of Simulation Based and Scan

Chain Implemented Fault Injection”, In Proceedings. 28th International Symposium on Fault-

Tolerant Computing, pp. 284-293, June 1998.

[19] P. Folkesson, “Assessment and Comparison of Physical Fault Injection Techniques”, Ph.D.

thesis, Chalmers University of Technology, 1999.

[20] H. Madeira, M. Rela, and J. G. Silva, “RIFLE: A General Purpose Pin-Level Fault Injector”, In

Proceedings of the European Dependable Computing Conference, Springer LNCS, Vol. 852,

pp.199-216, 1994.

[21] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber, “Comparison of

Physical and Software-Implemented Fault Injection Techniques”, IEEE Transactions on

Computers, Vol.52, N.9, pp.1115-1133, September 2003.

[22] A. Rajabzadeh, S. G. Miremadi, and M. Mohandespour, “Experimental Evaluation of

Master/Checker Architecture Using Power Supply and Software-Based Fault Injection”, in

Proceedings of the 10th IEEE Int. On-Line Testing Symposium, pp. 239-44, July 2004.

[23] IEEE-ISTO 5001, “The Nexus 5001 Forum Standard for a Global Embedded Processor Debug

Interface V2.0”, IEEE-Industry Standards and Technology Organization, Piscataway, NJ 08854

USA, December 2003.

[24] IEEE Standard 1149.1-2001 “IEEE Standard Test Access Port and Boundary-Scan

Architecture”, IEEE, Piscataway, NJ 08854 USA, 2001.

BIBLIOGRAPHY 189

[25] NXP, “Background debug mode”,

http://www.nxp.com/search?output=xml_no_dtd&proxystylesheet=nxp_search_style_fe&filter

=0&getfields=*&rc=1&sort=date%3AD%3AL%3Ad1&oe=UTF-8&ie=UTF-

8&ud=1&lang_cd=&wc=200&wc_mc=1&exclude_apps=1&site=nxp_en&dnavs=inmeta%3AA

sset_Type%3DDocuments&client=nxp_search_documents&q=Background+debug+mode+in

meta%3AAsset_Type%3DDocuments, accessed December 2016.

[26] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of error detection schemes using fault

injection by heavy-ion radiation”, In Proceedings of the International Fault Tolerance Computer

Symposium, FTCS-19, pp.340-347, June 1989.

[27] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, D. Rancey, A.

Robinson, and T. Lin, “FIAT - Fault Injection Based Automated Testing Environment”, In

Proceedings 18th International Symposium On Fault-Tolerant Computing, pp. 102-107, 1988.

[28] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. “Ferrari: A tool for the Validation of System

Dependability Properties”, In Proceedings of the International Symposium on Fault-Tolerant

Computing, pp. 336-344, June 1992.

[29] W. l. Kao, R. K. Iyer, and D. Tang, “FINE: A Fault Injection and Monitoring Environment for

Tracing the UNIX System behaviour under Faults”, IEEE Transactions on Software

Engineering, pp. 1105-1118, Vol 19. No. 11, November 1993.

[30] W. l. Kao and R. K. Iyer, “DEFINE: A Distributed Fault Injection and Monitoring Environment”,

Workshop on Fault-Tolerant Parallel and Distributed Systems, June 1994.

[31] S. Han, H.Rosenberg, and K.Shin, “DOCTOR: an Integrated Software Fault Injection

Environment for Distributed Real-Time Systems”, In Proceedings of the Computer

Performance and Dependability Symposium, pp. 204-213, 1995.

[32] T. Tsai and R. Iyer, “Measuring Fault Tolerance with the FTAPE Fault Injection Tool”, In

Proceedings of the 8th International Conference Modelling Techniques and Tools for Computer

Performance Evaluation, pp. 26-40, 1995.

[33] J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software Fault Injection and Monitoring” in

Processor Functional Units, IEEE Transactions on Software Engineering, Vol. 24, No. 2,

February 1998.

[34] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: Generic Object-oriented Fault

Injection Tool”, In Proceedings of the International Conference on Dependable Systems and

Networks, pp. 83-88, July 2001.

[35] L. T. Young, R. K. Iyer, K. K. Goswami, and C. Alonso, “A Hybrid Monitor Assisted Fault

Injection Environment”, IFIP Working Conference on Dependable Computing for Critical

Applications, Vol. 8, pp. 281-302, September 1992.

[36] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Comparing Operating Systems

Using Robustness Benchmarks”, In Proceedings of the Symposium on Reliable and Distributed

Systems, pp. 72-79, October 1997.

[37] “IEEE Standard Glossary of Software Engineering Terminology”,

http://standards.ieee.org/findstds/standard/610.12-1990.html, accessed December 2016.

190 BIBLIOGRAPHY

[38] A. Kalakech, T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Benchmarking Operating System

Dependability: Windows 2000 as a Case Study”, In Proceedings of the Pacific Rim International

Symposium of Dependable Computing, pp.261-270, March 2004.

[39] M. Vieira and H. Madeira, “A Dependability Benchmark for OLTP Application Environments”,

In Proceedings of the 29th International Conference on Very Large Databases, Vol. 29, pp. 742-

753, September 2003.

[40] P. Oehlert, “Violating Assumptions with Fuzzing”, IEEE Security & Privacy, pp. 58-62,

March/April 2005.

[41] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl, “Fuzz Revisited:

A Re-examination of the Reliability of UNIX Utilities and Services”, Computer Science

Technical Report 1268, Univ. of Wisconsin-Madison, May 1998.

[42] G. Carrette, “CRASHME: Random input testing” (no publication available)

http://people.delphi.com/gjc/crashme.html, accessed July 2013.

[43] J. DeVale, P. Koopman, and D. Guttendorf, “The Ballista Software Robustness Testing

Service”, In Proceedings of the 16th International Conference of Testing Computer Software,

pp. 33-42, 1999.

[44] M. Rodríguez, F. Salles, J. Fabre, and J. Arlat, “MAFALDA: Microkernel Assessment by Fault

Injection and Design Aid”, In Proceedings of the European Dependable Computing

Conference, Springer LNCS, Vol. 1667, pp. 143-160, 1999.

[45] P. Koopman and J. DeVale, “Comparing the Robustness of POSIX Operating Systems”, In

Proceedings of the 29th International Symposium on Fault-Tolerant Computing, pp. 30-37,

June 1999.

[46] C. Shelton, P. Koopman, and K. D. Vale, “Robustness Testing of the Microsoft Win32 API”, In

Proceedings of the International Conference on Dependable Systems and Networks, pp. 261-

270, June 2000.

[47] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utilities”,

Communications of the ACM, 33(12):32–44, 1990.

[48] T. Biege, “Radius Fuzzer”, http://www.beyondsecurity.com

/dynamic_fuzzing_testing_remote_authentication_dial_in_user_service_RADIUS_protocol,

accessed December 2016.

[49] A. Greene, “SPIKEfile”, http://packetstormsecurity.com/files/39625/SPIKEfile.tgz.html,

accessed December 2016.

[50] M. Sutton, “FileFuzz”, https://packetstormsecurity.com/files/39626/FileFuzz.zip.html, accessed

December 2016.

[51] A. Ghosh, M. Schmid, and V. Shah, “Testing the robustness of Windows NT software”, In

Proceedings of the 9th International Symposium on Software Reliability Engineering, pp. 231-

235, November 1998.

[52] J. Arlat, J.-C. Fabre, M. Rodríguez, and F. Salles, “Dependability of COTS Microkernel-Based

Systems”, IEEE Transactions on Computers, Vol. 51, No 2, pp. 138-163, 2002.

BIBLIOGRAPHY 191

[53] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the Impact of Faulty Drivers on the

Robustness of the Linux Kernel”, In Proceedings of the International Conference on

Dependable Systems and Networks, pp.867-876, June 2004.

[54] J. Durães and H. Madeira, “Characterization of Operating Systems Behaviour in the Presence

of Faulty Drivers through Software Fault Emulation”, In Proceedings of the Pacific Rim

International Symposium of Dependable Computing, pp. 201-209, December 2002.

[55] A. Johansson and N. Suri, “Error Propagation Profiling of Operating Systems”, In Proceedings

of the International Conference on Dependable Systems and Networks, pp. 86-95, July 2005.

[56] “PREfast for Drivers”, https://msdn.microsoft.com/windows/hardware/drivers/devtest/code-

analysis-for-drivers, accessed December 2016.

[57] “Static Driver Verifier”, https://msdn.microsoft.com/windows/hardware/drivers/devtest/static-

driver-verifier, accessed December 2016.

[58] T. Ball and S. Rajamani, “The SLAM project: debugging system software via static analysis”,

In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pp. 1-3, January 2002.

[59] “Device Path Exerciser”, https://msdn.microsoft.com/en-us/library/ff544856.aspx, accessed

December 2016.

[60] “IoSpy and IoAttack”, https://msdn.microsoft.com/windows/hardware/drivers/devtest/iospy-

and-ioattack, accessed December 2016.

[61] “Plug and Play Driver Test”, https://msdn.microsoft.com/en-us/library/ff550385.aspx, accessed

December 2016.

[62] Microsoft Corporation, “Microsoft Portable Executable and Common Object File Format

Specification”, February 2005.

[63] “Fuzzers”, http://malsecure.blogspot.pt/2006/11/fuzzers-ultimate-list.html, accessed

December 2016.

[64] “Airpcap”, https://support.riverbed.com/content/support/software/steelcentral-

npm/airpcap.html, accessed December 2016.

[65] “Madwifi driver”, http://madwifi-project.org/, accessed December 2016.

[66] “Lorcon project”, https://github.com/lunixbochs/lorcon, accessed December 2016.

[67] E. Marsden, J. C. Fabre, and J. Arlat, “Dependability of CORBA Systems: Service

Characterization by Fault Injection”, In Proceedings of the 21st International Symposium on

Reliable Distributed Systems, pp. 276-285, June 2002.

[68] J. Pan, P. Koopman, D. Siewiorek, Y. Huang, R. Gruber, and M. L. Jiang, “Robustness Testing

and Hardening of CORBA ORB Implementations”, In Proceedings of the International

Conference on Dependable Systems and Networks, pp. 141-150, June 2001.

[69] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum, “Construction of a Highly

Dependable Operating System”, In Proceedings of the 6th European Dependable Computing

Conference, pp. 18-20, October 2006.

192 BIBLIOGRAPHY

[70] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum, “Reorganizing UNIX for

Reliability”. In Proceedings of the 11th Asia-Pacific Computer Systems Architecture

Conference, pp. 81-94, September 2006.

[71] V. Ganapathy, M. Renzelmann, A. Balakrish-nan, M. Swift, and S. Jha, “The design and

implementation of micro drivers”, In Proceedings of the 13th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 168-178,

March 2008.

[72] S. Butt, V. Ganapathy, M. M. Swift, and C. Chang, “Protecting Commodity Operating System

Kernels from Vulnerable Device Drivers”, In Proceedings of the 25th Annual Computer Security

Applications Conference, pp. 301-310, December, 2009.

[73] M. Renzelmann and M. Swift, “Decaf: Moving Device Drivers to a modern language”, In

Proceedings of the 2009 USENIX Annual Technical Conference, 2009.

[74] J. Santos, Y. Turner, G.(John) Janakiraman, and Ian Pratt, “Bridging the gap between

hardware and software techniques for i/o virtualization”, In Proceedings of USENIX Annual

Technical Conference, 2008.

[75] A. Menon, S. Schubert, and W. Zwaenepoel. “Twin Drivers: semiautomatic derivation off a

stand safe hypervisor network drivers from guest OS drivers”, In Proceedings of the 14th

International Conference on Architectural Support for Programming Languages and Operating

Systems, 2009.

[76] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability of commodity operating

systems”, In Proceedings of the 19th ACM Symposium on Operating Systems Principles,

October 2003.

[77] M. Castro, M. Costa, J. P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and R.

Black, “Fast byte-granularity software fault isolation”, In Proceedings of the 22nd ACM

Symposium on Operating Systems Principles, October 2009.

[78] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based fault

isolation”, In Proceedings of the 14th Symposium on Operating Systems Principles, pp. 203-

216, December 1993.

[79] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Fault isolation for Device

Drivers”, In Proceedings of International Conference on Dependable Systems and Networks,

2009.

[80] A. Kadav, M. Lmann, and M.Swift, “Tolerating Hardware Device Failures in Software”, In

Proceedings of the 22nd Symposium on Operating systems principles, pp. 59-72, 2009.

[81] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing Closed-Source Binary Device Drivers

with DDT”, USENIX Annual Technical Conference, June 22-25, 2010.

[82] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith, “Dealing with Disaster: Surviving Misbehaved

Kernel Extensions”, In Proceedings of 2nd Operating Systems Design and Implementation,

1996.

[83] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI: Software Guards for

System Address Spaces”, In Proceedings of the 7th Operating Systems Design and

Implementation, 2006.

BIBLIOGRAPHY 193

[84] L. Ryzhyk, P. Chubb, IhorKuz, and G. Heiser, “Dingo: Taming Device Drivers”. In Proceedings

of the 4th EuroSys Conference, April 2009.

[85] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer,

“SafeDrive: Safe and recoverable extensions using Language-Based techniques”, In

Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation,

pp. 45-60, November 2006.

[86] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Software fault isolation

with API integrity and multi-principal modules”, In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles pp. 115-128, 2011.

[87] L. Ryzhyk, P. Chubb, I. Kuz, E. Sueur, and G. Heiser, “Automatic Device Driver synthesis with

Termite”, in Proceedings of the 22nd ACM Symposium on Operating Systems Principles,

October 2009.

[88] Lea Wittie, “Laddie: Language for Automated Device Drivers”, Bucknell TR#08-2 Tech Report

2008.

[89] L. Ryzhyk, Y. Zhu, and Heiser, GA, “The case for Active Device Drivers”, in First ACM Asia-

Pacific Workshop on Systems, August 2010.

[90] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 Functions”, In Proceedings

of the Conference of USENIX Windows NT Symposium, 1999.

[91] A. Skaletsky, T. Devor, N. Chachmon, R. Cohn, K. Hazelwood, V. Vladimirov, and M. Bach,

“Dynamic Program Analysis of Microsoft Windows Applications”, In Proceedings of the

International Symposium on Performance Analysis of Systems & Software, 2010.

[92] M. Mendonça and N. Neves, “Robustness Testing of the Windows DDK”, In Proceedings of the

International Conference on Dependable Systems and Networks, June 2007.

[93] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P.

Poosankam, and P. Saxena, “Bitblaze: A new approach to computer security via binary

analysis”, In Proceedings of the International Conference on Information Systems Security,

December 2008.

[94] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static detection of vulnerabilities in x86

executables”, In Proceedings of Annual Computer Security Applications Conference, 2006.

[95] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape,

“Combining unit-level symbolic execution and system-level concrete execution for testing

NASA software”, In Proceedings of the International Symposium on Software Testing and

Analysis, July 2008.

[96] “The LLVM Compiler Infrastructure”, http://llvm.org, accessed December 2016.

[97] V. Chipounov and G. Candea, “Enabling Sophisticated Analysis of x86 Binaries with RevGen”,

In Proceedings of the International Conference on Dependable Systems and Networks, June

2011.

[98] “Libpcap file format”, https://wiki.wireshark.org/Development/LibpcapFileFormat, accessed

December 2016.

[99] “WireShark”, http://www.wireshark.org, accessed December 2016.

[100] “Sweex”, http://www.sweex.com/, accessed December 2016.

194 BIBLIOGRAPHY

[101] “WinDbg”, https://developer.microsoft.com/en-us/windows/hardware/windows-driver-kit,

accessed December 2016.

[102] J. Passing, A. Schmitdt, M. Lowis, and A. Polze, “NTrace: Function Boundary Tracing for

Windows on IA-32”, In Proceedings of the Working Conference on Reverse Engineering,

October 2009.

[103] D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastructure for Adaptive Dynamic

Optimization”. In Proceedings of the International Symposium on Code Generation and

Optimization, March 2003.

[104] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, “Mach: A

New Kernel Foundation for UNIX Development”. In Proceedings of Summer USENIX. July,

1986.

[105] D. Golub, R. Dean, A. Forin, and R. Rashid, “Unix as an application program”. In USENIX 1990

Summer Conference, pp. 87-95, June 1990.

[106] M. Rozier, A. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,

S. Langlois, P. Leonard, and W. Neuhause, “CHORUS distributed operating system”.

Computing Systems, Vol. 1, N.4, pp. 305-370, 1988.

[107] S. R, Schach, B. Jin, D. R. Wright, G. Heller, and A.Offutt, “Maintainability of the Linux Kernel”,

In IEE Proceedings – Software, Vol. 149, Issue 1, pp. 18-23, February 2002.

[108] G. Candea and A. Fox, “Recursive Restartability: Turning the Reboot Sledgehammer into a

Scapel”, In Proceedings of the 8th Workshop on Hot Topics in Operating Systems, May 2001.

[109] L. Seawright and R. MacKinnon, “VM/370 – A study of multiplicity and usefulness”, IBM

Systems Journal, Vol. 18, N.1, pp. 4-17, 1979.

[110] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the Art of Virtualization”, In Proceedings of the 9th ACM Symposium on

Operating Systems Principles, pp. 164-177, 2003.

[111] K. Adams and O. Agesen, “A comparison of software and hardware techniques for x86

virtualization”, In Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 2-13, October, 2006.

[112] C. Waldspurger, “Memory Resource Management in VMWare ESX Server”, In Proceedings of

the 5th Symposium on Operating Systems Design and Implementation, Vol. 36, pp. 181-194,

2002.

[113] R. Goldberg, “Survey of Virtual Machine Research”, IEEE Computer Society Press, pp. 34-45,

1975.

[114] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson, “Safe hardware

access with the XEN virtual machine monitor”, in Proceedings of the 1st Workshop on Operating

System and Architectural Support for the on demand on IT Infrastructure, October, 2004.

[115] M. Seltzer, Y. Endo, C. Small, and K. Smith, “An introduction to the architecture of the VINO

kernel”, Harvard University Computer Science Technical Report 34-94, 1994.

[116] G. Necula, “Proof-carrying code”, In Conference Record of POPL 1997: The 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 106-119,

January, 1997.

BIBLIOGRAPHY 195

[117] J. Corbet, A. Rubini, and G. Kroah-Hartman, “Linux Device Drivers”, 3rd edition, O’Reilly Media,

2005.

[118] J. Cooperstein, “Writing Linux Device Drivers – a guide with exercises”, Jerry Cooperstein,

2009.

[119] A. Robbins, “Essential Linux Device Drivers”, Sreekrishnan Venkateswaran, Prentice Hall,

2008.

[120] “Clay Programming Language”, http://claylabs.com/clay, accessed December 2013.

[121] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.

Rajamani, and A. Ustuner, “Thorough Static Analysis of Device Drivers”, Proceedings of the

1st ACM SIGOPS/EuroSys European Conference on Computer Systems pp. 73-85, Vol. 40,

issue 4, October 2006.

[122] R. Bryant, “Graph-Based algorithms for Boolean Function Manipulation”, IEEE Transactions

on Computers C-35(8), pp 677-691, 1986.

[123] M. Christodorescu and S. Jha, “Static Analysis of Executables to Detect Malicious Patterns”,

In Proceedings of the 12th USENIX Security Symposium, 2003.

[124] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-Aware

Malware Detection”, In Proceedings of the 2005 IEEE Symposium on Security and Privacy, pp.

32-46, 2005.

[125] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically Generating Signatures for

Polymorphic Worms”, In Proc. of the 2005 IEEE Symposium. on Security and Privacy, pp. 226-

241, 2005.

[126] C. Kruegel, W. Robertson, and G. Vigna, “Detecting Kernel-Level Rootkits Through Binary

Analysis”, In Proceedings of the Annual Computer Security Applications Conf. (ACSAC), pp

91–100, December 2004.

[127] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-based spyware

detection”. In Proceedings of the 15th USENIX Security Symposium, 2006.

[128] “Java Path Finder”, http://babelfish.arc.nasa.gov/trac/jpf, accessed December 2016.

[129] M. Swift, M. Annamalau, B. N. Bershad, and H. M. Levy, "Recovering Device Drivers", in ACM

Transactions on Computer Systems, 24 (4), November 2006.

[130] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer, “CIL: Intermediate language and tools

for analysis and transformation of C programs”, In Proceedings of the 11th International

Conference on Compiler Construction, 2002.

[131] “CWE list”, http://cwe.mitre.org/data/index.html, accessed December 2016.

[132] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms: A taxonomy of software

security errors.”, IEEE Security & Privacy, Vol.3, pp. 81-84, December 2005.

[133] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system rules using system-specific

programmer-written compiler extensions”, In Proceedings of the 4th Symposium on Operating

Systems Design and Implementation, pp. 23-25, October 2000.

196 BIBLIOGRAPHY

[134] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as deviant behavior: A general

approach to inferring errors in systems code”, In Proceedings of the 18th ACM Symposium on

Operating Systems Principles, pp. 57-72, October 2001.

[135] C. Artho and A. Biere, “Applying static analysis to large-scale, multi-threaded Java programs”,

In Proceedings of the Australian Software Engineering Conference, pp.68-75, August 2001.

[136] C. Artho and K. Havelund, “Applying Jlint to space exploration software”, In Verification Model

Checking and Abstract Interpretation, Vol 2937/2003 of Lecture Notes in Computer Science,

pp. 297-308, Springer Berling/Heidelberg, 2004.

[137] D. Evans and D. Larochelle, “Improving security using “Extensible light weight static analysis”,

IEEE Software, pp. 42-51, February 2002.

[138] Y. Xie, A. Chou, and D. Engler, “Archer: using symbolic, path-sensitive analysis to detect

memory access errors”, In ESEC/FSE-11: Proceedings of the 9th European software

engineering conference held jointly with 11th ACMSIGSOFT International Symposium on

Foundations of Software Engineering, pp.327-336, 2003.

[139] D. Hovemeyer and W. Pugh, “Finding bugs is easy”, In Companion to the 19th Annual

ACMSIGPLAN Conference on Object Oriented Programming Systems, Languages, and

Applications, pp.92-106, October 2004.

[140] “Gramma Tech Code Sonar”, https://www.grammatech.com/products/codesonar, accessed

December 2016.

[141] W. R. Bush, J. D. Pincus, and D. J. Siela, “A static analyser for finding dynamic programming

errors”, Software Practice & Experience, Vol. 30, pp.775-802, May 2000.

[142] M. Das, S. Lerner and M. Seigle, “ESP: Path-sensitive program verification in polynomial time”,

In Proceedings of the Conference on Programming Language Design and Implementation, pp.

57-68, June 2002.

[143] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg and F. Rauch, “Goanna – a static model

checker”, In Proceedings of the 11th International Workshop on Formal Methods for Industrial

Critical Systems, N. 4346 in Lecture Notes in Computer Science, August 2006.

[144] “Veracode”, http://www.veracode.com/, accessed December 2016.

[145] T. Ball and S. K. Rajamani, “Automatically validating temporal safety properties of interfaces”,

In Proceedings of the Workshop on Model Checking of Software, LNCS2057, pp. 103-122,

May 2001.

[146] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky, S.

McPeak, and D. Engler, “A few billion lines of code later: using static analysis to find bugs in

the real world”, Communications of the ACM, Vol. 53, N.2, 2010.

[147] C. Cadar, D. Dunbar, and D. R. Engler. “KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs”, In Proceedings of the Symposium on

Operating Systems Design and Implementation, 2008.

[148] O. Frank and D. Strauss, “Markov Graphs”, Journal of the American Statistical Association,

Vol. 81, N.395, pp.832-842, 1986.

[149] R. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Technologies”, IEEE

Transactions on Device and Materials Reliability, Vol. 5, N.3, pp.305-316, September 2005.

BIBLIOGRAPHY 197

[150] M. Leitner, D. Wutte, J. Brandstotter, F. Aumayr, and HP. Winter, “Single-stage 5GHz ECR-

multicharged ion source with high magnetic mirror ratio and blased disk”, Review of Scientific

Instuments, Vol.65, N.4, pp. 1091-1993, April 1994.

[151] M. Zenha-Rela and J. Cunha, “Exploiting the IEEE 1149.1 standard for software reliability

evaluation in space applications”, European Safety and Reliability Conference, pp.1459-1464,

September 2006.

[152] P. M. Folkesson, “Assessement and Comparison of Physical Fault Injection, Techniques”, Phd

thesis, Chalmers University of Technology, 1999.

[153] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J.Reisinger, “Application of Three

Physical Fault Injection Techniques to the Experimental Assessment of the MARS

Architecture”, in Proceedings of the 5th IFIP Working Conference on Dependable Computing

for Critical Applications, pp.150-151, 1995.

[154] A. Brown, J. Traupman, P. Broadwell, and D. Patterson, “Practical Issues in Dependability

Benchmarking”, Proceedings of the second Workshop on Evaluating and Architecting System

Dependability, 2002.

[155] H. Madeira and P. Koopman, “Dependability Benchmarking: making choices in an n-

dimensional problem space”, Proceedings of the first Workshop on Evaluating and Architecting

System Dependability, 2001.

[156] “NASM: The netwide assembler”, http://www.nasm.us, accessed December 2016.

[157] “Getting Started with Windows drivers”, https://msdn.microsoft.com/en-

us/library/windows/hardware/ff554690%28v=vs.85%29.aspx, accessed December 2016.

[158] “Programming Guide”, https://msdn.microsoft.com/en-

us/library/windows/hardware/hh406596%28v=vs.85%29.aspx, accessed December 2016.

[159] “Windows Programming Device Drivers Introduction”,

https://en.wikibooks.org/wiki/Windows_Programming/Device_Driver_Introduction, accessed

December 2016.

[160] R. D. Reeves, “Windows 7 Device Drivers”, Addison-Wesley Microsoft Technology Series,

2011.

[161] W. Oney, “Programming the Microsoft Windows Driver Model”, 2nd Edition, Microsoft Press,

2003.

[162] P. Orwick, G. Smith, “Developing Drivers with Windows Driver Foundation”, Microsoft Press,

2007.

[163] “Download kits for Windows hardware development”, https://developer.microsoft.com/en-

us/windows/hardware/download-kits-windows-hardware-development, accessed December

2016.

[164] “Windows Driver Samples”, https://msdn.microsoft.com/windows/hardware/drivers/

samples/index, accessed December 2016.

[165] “Windows Driver Code Samples”, https://msdn.microsoft.com/en-

us/windows/hardware/dn433227.aspx, accessed December 2016.

198 BIBLIOGRAPHY

[166] “Windows Driver Kit (WDK) 8.0 Samples”,

https://code.msdn.microsoft.com/windowshardware/windows-driver-kit-wdk-80-e3161626,

December 2016.

[167] “Bochs”, http://bochs.sourceforge.net, accessed December 2016.

[168] “QEMU”, https://github.com/qemu/qemu, accessed December 2016.

[169] “CLOC”, https://github.com/AlDanial/cloc, accessed December 2016.

[170] “Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol 2 (2A,2B & 2C): Instruction

Set Reference, A-Z”, http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-

325383.pdf, accessed December 2016.

[171] “Instructions per second”, https://en.wikipedia.org/wiki/Instructions_per_second, accessed

December 2016.

