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Abstract 

 

The constant evolution in electronics lets new equipment/devices to be regularly 

made available on the market, which has led to the situation where common 

operating systems (OS) include many device drivers (DD) produced by very diverse 

manufactures. Experience has shown that the development of DD is error prone, as 

a majority of the OS crashes can be attributed to flaws in their implementation.  

This thesis addresses the challenge of designing methodologies and tools to 

facilitate the detection of flaws in DD, contributing to decrease the errors in this kind 

of software, their impact in the OS stability, and the security threats caused by them. 

This is especially relevant because it can help developers to improve the quality of 

drivers during their implementation or when they are integrated into a system. 

The thesis work started by assessing how DD flaws can impact the correct 

execution of the Windows OS. The employed approach used a statistical analysis 

to obtain the list of kernel functions most used by the DD, and then automatically 

generated synthetic drivers that introduce parameter errors when calling a kernel 

function, thus mimicking a faulty interaction. The experimental results showed that 

most targeted functions were ineffective in the defence of the incorrect parameters. 

A reasonable number of crashes and a small number of hangs were observed 

suggesting a poor error containment capability of these OS functions. 

Then, we produced an architecture and a tool that supported the automatic 

injection of network attacks in mobile equipment (e.g., phone), with the objective of 

finding security flaws (or vulnerabilities) in Wi-Fi drivers. These DD were selected 

because they are of easy access to an external adversary, which simply needs to 

create malicious traffic to exploit them, and therefore the flaws in their 

implementation could have an important impact. Experiments with the tool 

uncovered a previously unknown vulnerability that causes OS hangs, when a 

specific value was assigned to the TIM element in the Beacon frame. The 

experiments also revealed a potential implementation problem of the TCP-IP stack 

by the use of disassociation frames when the target device was associated and 

authenticated with a Wi-Fi access point.  

Next, we developed a tool capable of registering and instrumenting the 

interactions between a DD and the OS. The solution used a wrapper DD around the 

binary of the driver under test, enabling full control over the function calls and 

parameters involved in the OS-DD interface. This tool can support very diverse 



 

 

  

 

testing operations, including the log of system activity and to reverse engineer the 

driver behaviour. Some experiments were performed with the tool, allowing to record 

the insights of the behaviour of the interactions between the DD and the OS, the 

parameter values and return values. Results also showed the ability to identify bugs 

in drivers, by executing tests based on the knowledge obtained from the driver’s 

dynamics. 

Our final contribution is a methodology and framework for the discovery of errors 

and vulnerabilities in Windows DD by resorting to the execution of the drivers in a 

fully emulated environment. This approach is capable of testing the drivers without 

requiring access to the associated hardware or the DD source code, and has a 

granular control over each machine instruction. Experiments performed with Off the 

Shelf DD confirmed a high dependency of the correctness of the parameters passed 

by the OS, identified the precise location and the motive of memory leaks, the 

existence of dormant and vulnerable code. 

  

Keywords: Device drivers; Dependability & security; Automated error detection; 

Emulation. 

 

 

 

 



 

Resumo 

A constante evolução da eletrónica tem como consequência a disponibilização 

regular no mercado de novos equipamentos/dispositivos, levando a uma situação 

em que os sistemas operativos (SO) mais comuns incluem uma grande quantidade 

de gestores de dispositivos (GD) produzidos por diversos fabricantes. A experiência 

tem mostrado que o desenvolvimento dos GD é sujeito a erros uma vez que a causa 

da maioria das paragens do SO pode ser atribuída a falhas na sua implementação. 

Esta tese centra-se no desafio da criação de metodologias e ferramentas que 

facilitam a deteção de falhas nos GD, contribuindo para uma diminuição nos erros 

neste tipo de software, o seu impacto na estabilidade do SO, e as ameaças de 

segurança por eles causadas. Isto é especialmente relevante porque pode ajudar a 

melhorar a qualidade dos GD tanto na sua implementação como quando estes são 

integrados em sistemas.  

Este trabalho inicia-se com uma avaliação de como as falhas nos GD podem 

levar a um funcionamento incorreto do SO Windows. A metodologia empregue usa 

uma análise estatística para obter a lista das funções do SO que são mais utilizadas 

pelos GD, e posteriormente constrói GD sintéticos que introduzem erros nos 

parâmetros passados durante a chamada às funções do SO, e desta forma, imita a 

integração duma falta. Os resultados das experiências mostraram que a maioria 

das funções testadas não se protege eficazmente dos parâmetros incorretos. 

Observou-se a ocorrência de um número razoável de paragens e um pequeno 

número de bloqueios, o que sugere uma pobre capacidade das funções do SO na 

contenção de erros.  

Posteriormente, produzimos uma arquitetura e uma ferramenta que suporta a 

injeção automática de ataques em equipamentos móveis (e.g., telemóveis), com o 

objetivo de encontrar falhas de segurança (ou vulnerabilidades) em GD de placas 

de rede Wi-Fi. Estes GD foram selecionados porque são de fácil acesso a um 

atacante remoto, o qual apenas necessita de criar tráfego malicioso para explorar 

falhas na sua implementação podendo ter um impacto importante. As experiências 

realizadas com a ferramenta revelaram uma vulnerabilidade anteriormente 

desconhecida que provoca um bloqueio no SO quando é atribuído um valor 

específico ao campo TIM da mensagem de Beacon. As experiências também 

revelaram um potencial problema na implementação do protocolo TCP-IP no uso 

das mensagens de desassociação quando o dispositivo alvo estava associado e 

autenticado com o ponto de acesso Wi-Fi.   



 

 

  

 

A seguir, desenvolvemos uma ferramenta com a capacidade de registar e 

instrumentar as interações entre os GD e o SO. A solução usa um GD que envolve 

o código binário do GD em teste, permitindo um controlo total sobre as chamadas 

a funções e aos parâmetros envolvidos na interface SO-GD. Esta ferramenta 

suporta diversas operações de teste, incluindo o registo da atividade do sistema e 

compreensão do comportamento do GD. Foram realizadas algumas experiências 

com esta ferramenta, permitindo o registo das interações entre o GD e o SO, os 

valores dos parâmetros e os valores de retorno das funções. Os resultados 

mostraram a capacidade de identificação de erros nos GD, através da execução de 

testes baseados no conhecimento da dinâmica do GD.  

A nossa contribuição final é uma metodologia e uma ferramenta para a 

descoberta de erros e vulnerabilidades em GD Windows recorrendo à execução do 

GD num ambiente totalmente emulado. Esta abordagem permite testar GD sem a 

necessidade do respetivo hardware ou o código fonte, e possuí controlo granular 

sobre a execução de cada instrução máquina. As experiências realizadas com GD 

disponíveis comercialmente confirmaram a grande dependência que os GD têm nos 

parâmetros das funções do SO, e identificaram o motivo e a localização precisa de 

fugas de memória, a existência de código não usado e vulnerável. 

 

Palavras-Chave: Gestores de dispositivos; Confiabilidade & segurança; Deteção 

automática de erros; Emulação. 

 

 



 

Resumo Alargado 

 

Os computadores são ferramentas comuns na vida moderna. Ao longo dos anos a 

arquitetura dos sistemas operativos (SO) evoluiu de forma a ser o mais 

independente possível do hardware, acomodando a constante evolução da 

tecnologia. Esta flexibilidade e extensibilidade é obtida através dos gestores de 

dispositivos, componentes chave do sistema que atuam como interface entre o SO 

e o hardware.  

Devido à constante evolução da eletrónica de consumo, aparecem 

continuamente novos gestores de dispositivos. Paralelamente, os SO tendem a 

manter a compatibilidade com diferentes gerações de gestores devido à 

impossibilidade prática de os reescrever. Ambos aspetos contribuem para que os 

gestores de dispositivos sejam um dos componentes de software mais dinâmicos e 

em maior número nos SO atuais.  

O desenvolvimento de um gestor de dispositivo é uma tarefa complexa que exige 

variados conhecimentos sobre a estrutura do SO e do hardware, algo que não é 

normalmente compreendido na sua totalidade pela maior parte dos programadores. 

Além disso, a manutenção e teste deste tipo de software é uma das tarefas mais 

onerosas na produção e manutenção dos SO. 

Na maior parte dos casos os gestores de dispositivos são considerados parte 

integrante do SO, e como tal, um erro neste tipo de software normalmente traz 

consequências catastróficas para o sistema. No entanto, muitos dos utilizadores e 

administradores de sistemas arrisca a instalação de gestores de dispositivos sem 

verificação prévia da sua confiabilidade. Estas razões levam a que os gestores de 

dispositivos apareçam como uma das principais causas na falha dos sistemas, 

devido à existência de erros de implementação. 

O teste de software é um dos principais mecanismos na descoberta de erros.  

Todavia, a procura de erros em aplicações e hardware é um processo minucioso e 

demorado que, dada a complexidade dos sistemas de hoje em dia, se torna 

bastante difícil de ser realizado por seres humanos. Assim tem-se recorrido à 

automatização dos processos de teste, recorrendo a técnicas de análise automática 

do código ou de injeção de faltas durante o processo de implementação. No 

entanto, no caso dos gestores de dispositivos, a tarefa de procura de erros é 

dificultada pelo facto de que na maioria dos casos este tipo de software é 

disponibilizado sem acesso ao código fonte. Além disso a estimulação do código do 



 

 

  

 

gestor de dispositivo requer normalmente a montagem dum sistema de testes com 

alguma complexidade.  

Este trabalho centra-se nos desafios relacionados com a deteção de erros em 

gestores de dispositivos, desejando contribuir para a redução de erros neste tipo de 

software, do seu impacto na estabilidade do SO e das ameaças de segurança 

causadas pela sua exploração por agentes maliciosos. Isto torna-se especialmente 

relevante porque permite aos programadores melhorar a qualidade dos gestores de 

dispositivos durante o seu desenvolvimento ou quando estes são integrados no SO. 

O trabalho visa contribuir com diferentes abordagens na identificação e localização 

de erros, sabendo de antemão que a construção deste tipo de soluções requer que 

se ultrapassem várias dificuldades. Houve um enfoque no Windows por ser um dos 

SO mais utilizados, e por trazer desafios adicionais devido à típica inacessibilidade 

ao código fonte dos seus componentes, funções e gestores de dispositivos. 

Numa fase inicial do trabalho pretendeu-se perceber o nível de resiliência do 

Windows quanto à passagem de parâmetros incorretos às funções que o SO 

disponibiliza aos gestores de dispositivos. A abordagem utilizou uma análise 

estatística para a elaboração duma lista das funções mais utilizadas pelos gestores 

de dispositivos presentes no SO. Essa informação foi empregue na geração de 

forma automática de um conjunto de gestores de dispositivos sintéticos que 

introduzem parâmetros incorretos nas chamadas a essas funções do SO, imitando 

desta forma uma falta na chamada à função. A análise dos resultados permitiu 

determinar quais das funções testadas eram as mais vulneráveis aos erros nos 

parâmetros, quais as consequências em termos de integridade do SO, 

nomeadamente no sistema de ficheiros, assim como a capacidade do SO em 

identificar a causa das paragens e bloqueios (quando existiram). 

Numa outra fase deste trabalho procedeu-se ao desenvolvimento de uma 

metodologia e ferramenta para a injeção de ataques em gestores de dispositivos de 

comunicação sem fios (Wi-Fi). Uma vez que o hardware de comunicações e os seus 

gestores estão diretamente expostos ao meio de transmissão, violações no 

protocolo de comunicação são primariamente processadas por este tipo de 

software. A exequibilidade desta técnica de injeção depende da capacidade de 

manipulação do conteúdo de todos os campos das mensagens, uma vez que muitos 

deles são utilizados na manutenção da integridade do estado do protocolo. A 

arquitetura desenvolvida envolveu a automatização do desenho dos casos de teste, 

recorrendo a uma técnica de fuzzing para determinar os valores a utilizar em cada 



 

campo das mensagens. Adicionalmente, procedeu-se à automatização do processo 

de execução dos casos de teste e recolha de resultados.  

As experiências executadas com gestores de dispositivos da rede Wi-Fi 

demonstraram vulnerabilidades face à violação da especificação do protocolo, 

permitindo determinar quais os valores, campos e em que estado do protocolo era 

possível gerar situações de bloqueio do SO.  

Apesar do sucesso demonstrado pelos resultados alcançados, o sistema 

anterior não era capaz de determinar com exatidão a localização do erro no código 

do gestor de dispositivo ou o motivo pelo qual este acontecia.  

Na seguinte fase do trabalho desenhou-se a ferramenta Intercept para registar 

todas as interações existentes entre o SO e o gestor de dispositivo. Na sua 

essência, o Intercept usa um gestor de dispositivo envelope capaz de envolver, em 

tempo de execução, o código binário de um gestor de dispositivo alvo. Desta forma 

o gestor de dispositivo alvo nunca interage diretamente com o SO, e todas as 

funções chamadas a partir do SO ou pelo gestor de dispositivo podem ser 

intercetadas pelo gestor envelope. Esta técnica permitiu-nos registar e interpretar 

os dados envolvidos nas interações entre o gestor de dispositivo e o SO, permitindo 

atividades como a análise reversa do código binário, e a determinação de alguns 

erros nos gestores de dispositivos. 

Na última fase do nosso trabalho, desenvolvemos uma metodologia que permite 

a localização de erros em gestores de dispositivos sem recurso ao código fonte ou 

a hardware específico. A metodologia assenta na ideia de que a estrutura de um 

gestor de dispositivo difere substancialmente da estrutura de uma aplicação. Na 

estrutura atual do Windows, o gestor de dispositivo regista funções no SO que 

obedecem a uma especificação pré-determinada, e a partir das quais o SO solicita 

a realização de serviços ao gestor. Por outro lado, o gestor de dispositivos utiliza 

um conjunto de rotinas do SO, por exemplo, para obter e libertar recursos, para 

interagir com o hardware, ou para manipular cadeias de valores. Além disso, existe 

uma sequência lógica na forma como o SO evoca as funções do gestor, desde o 

seu carregamento na memória até à sua terminação. Esta estrutura permite 

assumir, entre outras coisas, que o gestor dispositivo disponibiliza vários pontos de 

entrada com propósitos bem definidos, e limita o tipo de interação que o SO pode 

ter com o gestor. Existem vários outros aspetos que se devem verificar, incluindo a 

execução célere das funções disponibilizadas ao SO; a validação dos valores 

devolvidos pelo SO, a circunscrição aos recursos disponibilizados pelo SO (e.g., 

memória e identificadores de recursos) assim como a utilização dos recursos na 



 

 

  

 

sequência e momentos apropriados. Como resultado destes pressupostos, é 

possível construir um sistema que, imitando o comportamento SO, consegue de 

forma controlada e sistemática estimular o gestor de dispositivos de forma a tornar 

evidente potenciais erros. 

A ferramenta Discovery realiza esta metodologia recorrendo à emulação da 

execução do código binário do gestor de dispositivo, de forma a ultrapassar os 

constrangimentos da ausência do código fonte. Para além disso, usufrui das 

vantagens de realizar este tipo de análise sem necessidade de hardware especifico, 

assim como ter a capacidade de determinar a localização exata dos erros e as suas 

manifestações. Ela define um conjunto de validadores, algum deles com a 

granularidade de uma instrução máquina, permitindo a descoberta de erros ao mais 

baixo nível. Um outro conjunto de validadores garante a identificação de erros nas 

chamadas às funções do SO. Finalmente, um terceiro conjunto de validadores 

consegue aferir desequilíbrios nos recursos do SO (e.g., memória não devolvida ao 

SO) e encontrar código que não é executado. Os testes realizados com alguns 

gestores de dispositivos disponíveis comercialmente permitiram identificar algumas 

situações de erro, código não usado e vulnerável que demonstram o potencial deste 

tipo de ferramenta.  
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CHAPTER 1 INTRODUCTION 

 

 

 

 

Computers are common tools in modern life. In their short history, they have suffered 

huge improvements achieving a very important role in our society, being used in a 

wide variety of activities ranging from work to leisure. 

Over the years, operating systems (OS) evolved their architectures to become, 

as much as possible, independent from hardware in order to accommodate the 

constant evolution of motherboards and connected devices. Their flexibility and 

extensibility is achieved by the inclusion of device drivers (DD), which act as the 

interface between the OS and the hardware. 

Given the typical short life cycle of consumer electronics, system designers have 

to constantly program new drivers. In parallel, OS developers have to maintain 

compatibility with legacy DD, as it is practically impossible to rewrite them for a new 

architecture, given that their design is normally dependent on low level details. To 

accommodate the large number of devices that can be connected to a computer [1], 

it is usually possible to find thousands of drivers included in an OS installation. These 

aspects contribute to make DD the most dynamic and largest part of the OS 

nowadays.
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Even though current drivers are mostly written in a high level language (e.g., C 

or C++), they continue to be difficult to build and verify. Their development requires 

knowledge from a set of disparate areas, including Integrated Circuits (ICs), OS 

interfaces, compilers, and timing requirements, to name a few, which are often not 

mastered simultaneously by programmers. In addition, maintaining such wide 

variety of hardware makes DD development, maintenance and testing a very 

expensive task. 

Due to the above factors, it is not surprising that drivers can contain flaws in their 

implementation. In some drivers, this can be particularly worrisome. For example, in 

DD dedicated to assist communication hardware, errors may be remotely exploited. 

In addition, users normally accept the installation of DDs without checking their 

reliability, given that they are necessary to solve an immediate problem (e.g., being 

able to use a certain device for which no driver was provided). Moreover, almost any 

flaw in DD has a catastrophic impact because they run in the OS kernel. 

Consequently, despite the efforts performed by both free and commercial OS 

organizations, DD have been traditionally one of the most important causes of 

failures in popular systems, such as Linux [2][3] and Windows [5].  

It should be possible to design tools to identify errors in drivers, which users and 

system administrators could rely on to evaluate DDs. However, the growing 

complexity of both hardware and software tends to make the evaluation of 

dependability attributes a hard task. The use of an analytical model is even more 

difficult as the mechanisms involved in the fault activation and error propagation are 

quite intricate and may not be completely understood. In order to make the analysis 

feasible, sometimes simplifying assumptions have to be employed, with the cost of 

reducing the applicability of the final results.  

1.1 The Inherent Complexity of DDs 

In most commodity OS, such as Windows and Linux, DD are passive objects build 

as a collection of entry points that are invoked by the kernel when it needs a 

particular service. The driver executes in the context of external OS threads. Even 

if the driver creates one or more threads to handle auxiliary tasks, the driver logic is 

invoked from the OS. This model enables the kernel to efficiently communicate with 

the driver by invoking function calls, but it complicates driver programming as it 

needs to be designed to handle multiple concurrent executions. DD are state-full 

objects whose reaction to a request depends on the history of previous requests and 
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replies. Thus, a driver must maintain its execution state across invocations using 

state variables, which need to be stored in memory regions requested from the OS. 

Additional constraints in timings and non-blocking further complicates the 

management of the concurrency.  

The development of DDs is nowadays performed using high-level languages 

such as C or C++. The set of header files, source-code and other libraries requires 

multiple files to be maintained, which can lead to complex makefiles (or projects). In 

monolithic designs, such as in commodity OS, all the kernel functions run in 

privileged mode. DD are extensions of the kernel code and they can perform direct 

memory access operations (i.e., they can write in arbitrary locations of physical 

memory), including over kernel data structures. Therefore, any bug in a DD can 

potentially corrupt the entire system. 

Debugging and testing a DD requires often the associated piece of hardware to 

be present and to be responsive. The complexity associated with DD’s testing is 

aggravated as most vendors do not release openly the hardware specification. 

When they do, the specification many times contains inaccuracies and errors. In 

most OS, the debugging and testing tasks usually involves the use of two machines 

where one runs the debugger and the other is the target system where the driver is 

executed. Often many hours of work are needed just to setup this debugging 

environment. The debugging process itself is mostly done using a trial and error 

approach, setting up break points and conditions that make the driver fail, and 

restarting the target machine each time it hangs or crashes.  

Maintaining driver code is also an issue. Due to the difficulties in driver 

development, many times the code is adapted to new OS versions without taking 

into consideration the novel features, which would recommend significant rework to 

be performed. Sometimes there are even changes in the new OS versions that do 

not maintain retro compatibility. 

DD are complex to code, to debug and to maintain, and therefore are viewed by 

even experienced programmers, system administrators and users as an obscure 

and complex section of the OS. Over the year’s various initiatives and tools have 

been created to assist in DD testing (many of them are reviewed later on in this 

document). However, even in carefully tested DD, often it is still possible to find 

flaws.   
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1.2 Objective and Overview of the Work 

This thesis is primarily motivated by the existence of errors in DD, their impact in the 

OS stability and the security threats that these flaws may represent. It aims on one 

side to assess how a faulty driver can compromise the correct execution of an OS, 

and on the other side to develop mechanisms capable of discovering DD flaws. This 

is especially relevant because it can help developers to build DD that operate in a 

more dependable manner. Users and system administrators can also benefit from 

such tools to both evaluate existing systems or before doing upgrades.  

In our approach, we assume that all interactions with other drivers and 

applications are performed with the OS acting as an intermediary. The detection of 

DD flaws is performed mainly using techniques that do not require access to the 

driver source code. Our solutions use as input the binary image of the DD and output 

the set of problems that were identified. We are especially interested in supporting 

systems where the source code is not available because it makes our solutions 

applicable to a wider set of testing scenarios. We have chosen to focus the work on 

Windows as it is one of the most widely used OS and in the majority of the cases 

the source of the DD is not available. 

We started the work with an investigation with the aim to understand how DD 

flaws can impact the correct execution of an OS. To accomplish this, we have 

performed a statistical analysis of the DD that exist in a Windows installation, and 

then we have obtained the list of the most used OS functions. Next, we have 

developed a mechanism that automatically builds DD and injects faults when those 

drivers make function calls to the kernel. This approach differs from other robustness 

tests performed in the past (see for instance [53][54]), in the sense that it does not 

use an existing DD to insert the faults. Since we use synthetic drivers, our approach 

ensures that the fault is always activated. The obtained results confirmed that a DD 

can cause serious damage to the OS only by calling functions with invalid arguments 

and provided insights of the most common DD bugs. 

Secondly, we researched how to externally attack a DD. For this purpose, we 

have developed the Wdev-Fuzzer architecture. Although it was built for Wi-Fi 

networks, Wdev-Fuzzer can be easily adapted to other wireless network 

technologies. The methodology consisted in injecting potential erroneous values in 

the fields of the Wi-Fi frames, thus simulating an external attack. This allowed an 

evaluation of the behaviour of a target system in the presence of frames that violate 

the Wi-Fi specification. Our experiments with an HP PDA device revealed the 
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existence of several types of problems, showing that this device could be 

successfully attacked by a remote adversary.  

Next, we wanted to understand the type of interactions that exist between a DD 

and the OS. We developed a technique to control and interfere in the binary 

execution of the DD under test (DDUT). For this, we have developed Intercept, a 

system that wraps the execution of a Windows DD. A wrapper DD (WRDD) is used 

to provide an execution environment for the DDUT, supporting the load of the DDUT 

binary image into the address space of the WRDD and dynamically linking the DDUT 

to the OS. The WRDD mediates all interactions between the DDUT and the OS and 

is capable of recording the exchanged information and interfere with them. The 

information collected by Intercept documents and clarifies the correct order of the 

function calls, the parameters contents and return values. Additionally, Intercept 

maintains statistical information of several OS objects usage, such as memory 

allocation/deallocation and spinlocks. This type of information is useful in debugging 

and reverse engineering the DD and OS. The interference capability of Intercept 

supports the modification of parameters and return values passed in the function 

calls (from the OS to the DDUT and vice-versa). This was used to test the DDUT, 

but the likelihood of hanging or crashing the system is very high since an incorrect 

parameter or return value could corrupt the kernel. 

The results showed the profiling capability to inspect network traffic by accessing 

with Intercept the data packets available in function parameters. It helped to 

understand complex interactions with the OS, clarifying for instance the order of their 

execution. Statistics maintained by Intercept helped to evaluate resource usage and 

potential resource leakages during the DD activity. Using the interference 

capabilities of Intercept, it was possible to test the behaviour of a Wi-Fi DD when 

incorrect parameters are passed by the OS (in a simulated environment) and 

uncover an incorrect order of parameter validations. 

To overcome the difficulties related with the absence of the DD source code and 

associated hardware, we have designed the Supervised Emulation Analysis 

methodology. The methodology uses emulation with granular control over the 

machine instructions and a set of validators capable of capturing low level errors. 

Another set of validators acts whenever the DDUT calls an (emulated) OS function 

to check the parameters against several constrains. A test manager stimulates the 

DDUT at the exposed interfaces, mimicking the OS and controlling the return and 

parameter values of the OS functions as well as the different DDUT code paths. 

Tests performed with some off the shelf Windows DD confirmed the feasibility of the 
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methodology and the capability in capturing DD errors (e.g., memory leaks) and 

finding dormant and vulnerable code. 

1.3 Structure of the Thesis 

This thesis is organized as follows.  

Chapter 2 provides an overview of the device driver organization. We start by 

briefly describing Windows and Linux drivers to explain their structure and 

relationship with the OS. The chapter continues by making references to 

microkernels to get some insights on other alternative solutions. Microdrivers give 

us another approach with the benefit of reducing the effects of faulty DD. The 

chapter concludes with virtual machines, focusing on understanding how they 

address the isolation of DD.  

Chapter 3 is dedicated to the related work. It starts by providing some 

introductory concepts and describes some of the key research areas to which this 

thesis relates, such as fault injection, robustness testing, instrumentation, static and 

dynamic analysis. It helps to understand some of the decisions taken during our 

implementations as well as how the developed works position it in terms of 

contributions.  

Chapter 4 describes a solution for testing the Windows OS and its interfaces 

through the Windows DD Kit. We present a novel technique to automatically build 

test campaigns taking as input an XML description of the Windows functions. The 

result of this research contributed to understand how the Windows OS handles faulty 

DD, what are the main causes for the observed hangs and crashes, and the effects 

on the file system. 

Chapter 5 addresses attacks on Wi-Fi drivers using a new fuzzer architecture 

that is able to build malformed packets and execute test cases against a target 

system. The results revealed some disturbing conclusions over the possibility of 

causing crashes in remote machines just by sending malformed packets with the 

Wi-Fi protocol. 

Chapter 6 takes us deeper in the interactions between the OS kernel and the DD, 

and presents some of the necessary techniques to build a layer that can stand in 

between these two components. Intercept is the resulting tool supporting the 

discovery of flaws in DDs. 
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Chapter 7 presents a methodology and framework that enable researchers to 

locate errors and vulnerabilities in DD through the emulation of the OS and 

hardware. We present the results obtained with some off the shelf Windows DD. 

We conclude the thesis in chapter 8 with a summary of the investigation and a 

description of future work.  
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CHAPTER 2 DEVICE DRIVERS 

 

 

 

 

Nowadays the three most used operating systems for personal computers are 

Windows (88%), OSX (4%) and Linux (2%) [4]. However, OSX is a proprietary 

operating system based in the Open Darwin Unix, thus having the same roots as 

Linux. On the emerging market of mobile phones, tablets and other similar devices, 

the share is around: Android (69%), iOS (26%) and Windows Phone (2%). Since 

iOS is based on Open Darwin (Unix) and Android has its origins in Linux kernel 6 

the same is to say that both platforms are based on Unix like systems. This justifies 

the argument that nowadays Windows and Linux/Unix constitute the two major 

families of devices drivers in the computer industry. There are however other 

approaches to OS structure. For instance, instead of placing the DD as part of the 

kernel code it can be implemented like any other user-space application, allowing 

the driver to be started and stopped just as any other program. 

This chapter starts with a short section on DDs organization. We will describe 

what a DD is and focus the presentation on the structure and operation of DDs on 

the more popular operating systems (Windows and Linux). This will help to 

understand the internal architecture of this kind of software, its complexity and 

reliability issues. More detailed information about Windows DDs can be obtained in 
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[163][160][161][162] and for Linux, information about drivers can be found in 

[117][118][119].  

The chapter continues with DD organization in Microkernels, as a solution to 

provide the necessary level of isolation between the kernel and the DDs. We will 

also describe Microdrivers as another proposal for isolating the DDs, while keeping 

the performance of the system mostly unaffected. Finally, we will address Virtual 

Machines as a new trend to abstract resources and how DDs play an important role 

on the dependability of such systems. 

2.1 Introduction 

A device is a hardware piece attached to the computer, such as the keyboard, a 

network card or a display card. A DD is operating system code that allows the 

computer to communicate with a specific device. A DD consists of a set of functions 

implementing its logic and provides services to the rest of the OS. On monolithic OS, 

such as Windows and Linux, DDs can access the whole set of functions of the 

kernel, not only those that are used to carry out operations in the kernel space, but 

also in the application space.  

DDs can be organized in several functional classes, like Memory Management, 

Interrupt Management, File System Management, and Control Block Management. 

Two main categories of drivers can be distinguished: 

• Software drivers that have no direct access to the hardware layer of the 

devices, but rather to an abstraction (e.g., TCP/IP stack or file system); 

• Hardware drivers that interact with hardware devices, either peripheral (e.g., 

network, disk, printer, keyboard, mouse or screen) or internal to the 

motherboard (e.g., bus or RAM). 

In either case the drivers provide an abstract interface for the OS to interact with 

the hardware and the environment. A DD can thus be considered as the lowest level 

of software as it is directly bound to the hardware features of the device. Each driver 

manages one or more pieces of hardware while the kernel handles process 

scheduling, interrupts, etc. The operating system kernel can be considered a 

software layer running on top of DDs.  

Depending on the type of device, the DD can operate in two different ways. In the 

first one, the driver accesses the device in a periodic fashion (pooling) - the driver 

programs a timer with a pre-defined value and whenever the timer expires the device 

is checked to see if it needs servicing. In the second way, the device triggers an 
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interrupt to request the processor’s attention. Each interrupting device is assigned 

an identifier called the interrupt request (IRQ) number. When the processor detects 

that an interrupt has been generated on an IRQ, it stops the current execution and 

invokes an interrupt service routine (ISR) registered by the associated driver to 

attend to the device. In either case, these critical pieces of code must be quickly 

executed to prevent the whole system from being stopped. 

The communication between the driver and the device is performed through read 

and writes in a set of registers. These may be mapped onto the memory of the 

computer or use a special set of read and write functions. The rules that dictate when 

a register can be accessed often include specific conditions on the logical state of 

the device. Some registers cannot be accessed when the device interrupts are 

turned on. Others do not have meaningful information unless other registers are 

read or written first. 

A register may be readable, writable or both. Registers have specific length, and 

each bit may have particular meanings that may change depending on a read or 

write operation. The number of bytes that can be written and read simultaneously 

depends on the physical architecture of the computer.   

A readable register may have a specified set of values that might be read from it. 

Correspondingly, a writable register may only safely accept a specific set of values. 

Outside of that interval the value might cause unknown or unwanted behaviour. 

When a driver fails to meet the specification for its associated device, the device can 

be placed in an invalid state where it becomes damaged or restarts potentially 

causing data loss.  

Typically, the kernel features three main interfaces with the environment:  

• The hardware layer where interactions are made via the raising of hardware 

exceptions and transferring data through registers; 

•  The Application Programming Interface (API) where the main interactions 

concern the application to kernel calls and,  

•  The interface between the drivers and the kernel, offered by the Driver 

Programming Interface (DPI). 

In most popular operating systems, the kernel and drivers are executed in 

privileged mode, whereas application processes are run in a restricted address 

space in non-privileged mode. This reduces the risk of an application process to 

corrupt the kernel address space. On the other hand, since DDs execute in kernel 

space, any faulty behaviour is likely to impact the operation of the system. 
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Programming drivers with languages (such as C) that use pointer arithmetic without 

Integrated Memory Management (IMM) represent a special threat because it is easy 

to make unnoticed mistakes that corrupt the kernel.  

2.2 Windows Device Drivers 

The Windows Driver Model (WDM) defines a unified approach for all kernel-mode 

Windows drivers. It supports a layered driver architecture in which every device is 

serviced by a driver stack. Each driver in this chain isolates some hardware-

independent features from the drivers above and beneath it, avoiding the need for 

the drivers to interact directly with each other. The driver manager is in charge of 

automatically detecting the match between installed devices and the drivers. 

Moreover, it finds out the dependencies between drivers such that it is able to build 

the stack of drivers. 

The WDM has three types of DDs, but only a few driver stacks contain all kinds: 

• Bus driver – There is one bus driver for each type of bus in a machine (such 

as PCI, PnP and USB). Its primary responsibilities include: the identification 

of all devices connected to the bus; respond to plug and play events; and 

generically administer the devices on the bus. Typically, these DDs are 

provided by Microsoft; 

• Function driver – It is the main driver for a device. Provides the operational 

interface for the device, handling the read and write operations. Function 

drivers are typically written by the device vendor, and they usually depend 

on a specific bus driver to interact with the hardware; 

• Filter drivers – It is an optional driver that modifies the behaviour of a device. 

There are several kinds of filter drivers such as: lower-level and upper-level 

filter drivers that can change input/output requests to a particular device.  

The WDM specifies an architecture and design procedures for several types of 

devices, like display, printers, and interactive input. For network drivers, the Network 

Driver Interface Specification (NDIS) defines the standard interface between the 

layered network drivers, thereby abstracting lower-level drivers that manage the 

hardware from upper-level drivers implementing standard network transports (e.g., 

the TCP protocol).  
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Three types of kernel-mode network drivers are supported in Windows: 

• Miniport drivers - A Network Interface Card (NIC) is normally supported by 

a miniport driver that has two basic functions: manage the NIC hardware, 

including the transmission and reception of data; interface with higher-level 

drivers, such as protocol drivers through the NDIS library. The NDIS library 

encapsulates all operating system routines that a miniport driver must call 

(functions NdisMXxx() and NdisXxx()). The miniport driver, in turn, 

exports a set of entry points (MPXxx() routines) that NDIS calls for its own 

purposes or on behalf of higher-level drivers to send packets. 

• Protocol Drivers - A transport protocol (e.g., TCP) is implemented as a 

protocol driver. At its upper edge, a protocol driver usually exports a private 

interface to its higher-level drivers in the protocol stack. At its lower edge, a 

protocol driver interfaces with miniport drivers or intermediate network 

drivers. A protocol driver initializes packets, copies data from the application 

into the packets, and sends the packets to its lower-level drivers by calling 

NdisXxx() functions. It also exports a set of entry points 

(ProtocolXxx() routines) that NDIS calls for its own purposes or on 

behalf of lower-level drivers to give received packets. 

• Intermediate Drivers - These drivers are layered between miniport and 

protocol drivers, and they are used for instance to translate between 

different network media. An intermediate driver exports one or more virtual 

miniports at its upper edge. A protocol driver sends packets to a virtual 

miniport, which the intermediate driver propagates to an underlying miniport 

driver. At its lower edge, the intermediate driver appears to be a protocol 

driver to an underlying miniport driver. When the miniport driver indicates 

the arrival of packets, the intermediate driver forwards the packets up to the 

protocol drivers that are bound to its miniport. 

Windows DD structure 

Windows DDs expose functions that provide services to the OS. However, only one 

function is directly known by the OS, as it is the only one that is retrieved from the 

binary file when the driver is loaded. By convention, the function name is 

DriverEntry() and is defined as represented in List 2-1. 
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1 NTSTATUS DriverEntry( 

2 _In_  struct _DRIVER_OBJECT *DriverObject, 

3 _In_  PUNICODE_STRING RegistryPath 

4 ) 

List 2-1: DriverEntry prototype. 

This function is called when the OS finishes loading the binary code of the driver, 

and its role is to initialize all internal structures of the driver and hardware, and 

register to the OS the exported driver functions. 

The DriverObject parameter contains the fields that DriverEntry must fill 

in order to register the functions to the OS. A subset of the DriverObject type 

parameters is represented in List 2-2. 

 

1 typedef struct _DRIVER_OBJECT { 

2  //Sample of the structure with several fields omitted 

3  //Driver name 

4  UNICODE_STRING DriverName; 

5  

6  //Registry support 

7  PUNICODE_STRING HardwareDatabase; 

8  

9  //For registering the unloading function 

10  PDRIVER_UNLOAD DriverUnload; 

11  

12  //For registering the dispatch routines 

13  PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION  

14      + 1]; 

15 } DRIVER_OBJECT 

List 2-2: DRIVER_OBJECT definition (subset). 

The DriverUnload function from the above structure is set with the address 

of the function that should be called when the operating system decides to unload 

the driver. Typically, this routine is in charge of returning to the operating system all 

the resources that are held by the driver. 

The MajorFunction field is a dispatch table consisting of an array of entry 

points for the driver's DispatchXXX routines. The array's index values are the 

IRP_MJ_XXX values representing each I/O Request Packet (IRP) major function 

code. Each driver must set entry points in this array for the IRP_MJ_XXX requests 

that the driver handles. 
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The Windows kernel sends IRP to the drivers containing the information of the 

desired dispatch function to be executed. The following are examples of the IRP 

codes and intended execution functions (not exhaustive): 

• IRP_MJ_WRITE: Transfers data from the system to the drivers’ device; 

• IRP_MJ_READ: Transfers data from the device to the system; 

• IRP_MJ_PNP: Plug and play support routine. 

In the case of miniport drivers following the NDIS specification, the 

DriverEntry()function, in addition to what was described previously, initializes 

all internal structures of the driver and hardware, and calls the 

NdisMRegisterMiniportDriver() of the OS to indicate the supported driver 

functions. Examples of miniport driver functions that are registered in the NDIS are 

MPInitialize() and MPSendPackets(). The first is used to initialize NDIS 

structures and functions’ registrations and the second is used to send packets 

through the NIC. 

Windows DDs file structure 

Windows normally organizes a DD as a group of several files. Files with the 

extension .inf contain plain text and are divided in several sections. They have 

relevant context data such as the identifier of the vendor of the driver, the type and 

the compatibility with devices, and start-up parameter values. They are used during 

driver installation to match devices with drivers and to find the associated .sys files. 

Files with the extension .sys are the binary executable images of the driver and 

they are loaded to memory to provide services to the OS. The binary files follow the 

Portable Executable File (PEF) format [62], the same format used to represent 

applications .exe and dynamic link libraries .dll.  

The PEF file structure contains binary code and dependencies from other 

software modules (organized as tables). The binary code is mostly ready to be 

loaded into memory and run. However, since it can be placed anywhere in memory, 

there is the need to fix up the relative addresses of the function calls. Functions that 

refer to external modules are located in the imported functions table. This table 

contains the names of the external modules (DLLs, .sys, .exe), the function 

names and the address location in the memory of the running system. The 

addresses are resolved by the driver loader when it brings the driver in memory. 
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The driver is placed in execution by calling the DriverEntry() function. The 

address of this function is also obtained from the PEF file, and is located in the 

AddressOfEntryPoint field of the Optional Header section of the .sys file. 

Knowing this structure allows external systems to interface the driver code without 

having its source code, which is useful when designing solutions to discover 

vulnerabilities and other defects in DDs (as is our case). 

2.3 Linux Modules 

The Linux kernel is a Unix-like operating system kernel initially created in 1991 that 

rapidly accumulated developers and users, who adapted code from other free 

software projects for use with the new OS. The Linux kernel is released under the 

GNU General Public License version 2, making it free and open source software. 

Linux has the ability to extend the set of features offered by the kernel at run time. 

Each piece of code that can be added to the kernel at runtime is called a module. 

Each module is made up of object code (not linked into a complete executable) that 

can be dynamically linked to the running kernel by the insmod program and can be 

unlinked by the rmmod program. 

Linux distinguishes three fundamental device types. Each module usually 

implements one of these types, and thus is classified as a char module, a block 

module, or a network module. This division is not rigid as programmers can choose 

to build modules implementing different drivers in a single piece of code. However, 

good programming practices advice that a different module should be created for 

each new functionality that is implemented, since decomposition is a key element of 

scalability and extendibility. 

A character (char) device is one that can be accessed as a stream of bytes (like 

a file). A char driver is in charge of implementing this behaviour. Such a driver usually 

implements at the least the open, close, read and write system calls. Char 

devices are accessed by means of file system nodes, such as /dev/tty1. The 

distinguishing difference between a char device and a regular file is that in a regular 

file it is always possible to move back and forth, whereas most char devices are just 

data channels and therefore it is only possible to access them sequentially1.  

                                                      

1 There are however devices where it is possible to move back and forth. This usually applies 

to frame grabbers where the applications can access the whole data using mmap or 

lseek. 
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Like char devices, block devices are accessed by file system nodes in the /dev 

directory. A block device is a device that can host a file system. In most Unix 

systems, a block device can only handle I/O operations that transfer one or more 

blocks of data. However, Linux allows applications to read and write a block device 

like a char device permitting the transfer of any number of bytes at a time. Block and 

char devices only differ in the way data is managed internally by the kernel, as they 

have a different kernel/driver software interface. 

Any network transaction is made through a device that is able to exchange data 

with other hosts. A network interface is in charge of sending and receiving data 

packets driven by the network subsystem of the kernel, without knowing how 

individual transactions map to the actual packets being transmitted. Network devices 

are, usually, designed around the transmission and receipt of packets, although 

many network connections are stream-oriented. 

Some types of drivers work with additional layers of kernel support functions for 

a given device, and thus can be classified in other ways. For instance, one can talk 

about the USB modules, serial modules or SCSI modules. 

Linux module structure 

The 2.6 Linux device model provides a unified device model for the kernel, 

introducing abstractions that feature out commonalities from DDs. The device model 

is composed by different components such as udev, sysfs, kobjects, and 

device classes having effect on key kernel subsystems such as /dev node 

management, power management and system shutdown, communication with user 

space, hotpluging, firmware download, and module auto load.  

At the lowest level, every device in a Linux system is represented by an instance 

of the struct device as represented in List 2-3.  

 

1 struct device{ 

2   struct device *parent; 

3   struct kobject kobj; 

4   char bus_id[BUS_ID_SIZE]; 

5   struct bus_type *bus; 

6   struct device_driver *driver; 

7   void *driver_data; 

8   void (*release)(struct device *dev); 

9   /*Other fields omitted*/ 

10 }; 

List 2-3: Struct device in Linux (sample). 
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Next, we will perform a brief description of the fields of this structure for a better 

understanding of the device model of Linux. There are many other struct device 

fields but for simplicity they were omitted. 

The device’s parent represents the device to which it is attached to. In most cases 

a parent device is a bus or host controller. The kobject is a structure that 

represents this device and links it into the hierarchy of devices. The 

bus_id[BUS_ID_SIZE] is a string that uniquely identifies this particular device on 

the bus. PCI devices use the standard PCI ID format containing the domain, bus, 

device and function numbers. The struct bus_type *bus identifies the kind of 

bus the device sits on. The struct device_driver *driver is the driver that 

manages the device. The void *driver_data is a private data field that may be 

used by the DD and the void (*release)(struct device *dev) is the 

method that is called when the last reference to the device is removed. 

At the least, the parent, bus_id, bus, and release fields must be set 

before the device structure can be registered. Devices are registered and 

unregistered using the functions device_register and device_unregister whose 

signatures are represented in List 2-4. 

 

1 int device_register (struct device *dev); 

2  

3 void device_unregister(struct device *dev); 

List 2-4: Functions to register and unregister devices. 

 

The device model tracks all the drivers known to the system to enable the match 

between drivers with new devices. 

A DD is defined by the structure listed in List 2-5. 

 

1 struct device_driver{ 

2 char *name; 

3 struct bus_type *bus; 

4 struct list_head devices; 

5 int (*probe)(struct device *dev); 

6 int (*remove)(struct device *dev); 

7 void (*shutdown)(struct device *dev); 

8 /*Other fields omitted*/ 

9 }; 

List 2-5: Struct device_driver in Linux (subset). 
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The main fields of the struct device_driver have the following use: The 

name is the name of the driver that shows up in the sysfs; bus is the type of bus 

that this driver works with; devices is a list of all devices currently bound to this 

driver. The structure also contains some functions used to manage the device. For 

example, probe is called to query the existence of a specified device and whether 

this driver can work with it; remove is called when the device is removed from the 

system; and shutdown is called at shutdown time to inactivate the device. 

Drivers are registered and unregistered using the functions listed in List 2-6. 

 

1 int driver_register (struct device_driver *drv); 

2  

3 void driver_unregister(struct device_driver *dev); 

List 2-6: Functions to register and unregister DDs 

 

As an example, we are going to briefly describe how the PCI subsystem interacts 

with the driver model, introducing the basic concepts involved in adding and 

removing a driver from the system. These concepts are also applicable to all other 

subsystems that use the driver core to manage their drivers and devices. 

A Linux DD needs to have at least a function that is called when the driver is 

loaded (e.g., enter_func), and another when the driver is unloaded (e.g., 

exit_func). During the compilation of the code, the compiler identifies the 

initialization function when it finds the directive module_init(init_func). 

Similarly, the compiler identifies the unloading function when the 

module_exit(exit_func) directive is processed.  

The init_func() is where the DD initializes the peripherals and ties the driver 

to the rest of the system, by registering the functions that the DD offers to the OS in 

the available interfaces. The OS calls the init_func, which in turn will call the 

function __pci_register_driver(struct pci_driver*, struct 

*module, const char *mod_name) to link the driver with the system. Therefore, 

all PCI drivers must define a struct pci_driver variable that specifies the 

various functions that the PCI driver can support during the driver loading.  

The struct pci_driver contains two important members used for completing 

the connection of the DD with the OS: 

• .id_table: A structure that holds elements that the OS uses to match the 

identification of the vendor and device with the driver; 
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• .probe: A function called by the OS to announce to the DD that it should 

complete the matching process and tell to the OS if the DD can handle the 

PCI device. This function is called right after the registration process of the 

driver with the system when it finds a device that may be served by the 

recent register DD. 

 

Depending on the hardware of the PCI card, the DD registers other structures 

with the OS for managing the device, for instance, struct ethtool_ops is used 

for the OS to control the PCI communication cards, and struct iw_handler_def 

to control the Wi-Fi structure. The OS uses other functions assigned to struct 

pci_driver, such as open(), read(), ioctl() and write(), through which 

it can interact with the driver in a standardized way. 

Removing a driver starts when the OS calls the exit_func. The driver then calls 

the pci_unregister_driver operation, which merely calls the driver core 

function driver_unregister. The driver_unregister function handles some 

basic housekeeping, such as cleaning up some sysfs attributes that were attached 

to the driver’s entry in the sysfs tree. It then contacts all devices that were attached 

to the driver and calls the respective release function. 

2.4 Microkernels 

Microkernels were developed with the idea that traditional operating system 

functionality, such as DDs, protocol stacks and file systems, would be implemented 

as a user-space program, allowing them to be executed like any other process. This 

would not only simplify the implementation of these services but also support 

performance tuning without worrying about unintended side effects. Additionally, 

robustness and reliability could be enhanced because these services would no 

longer be able to perform direct memory access operations into the OS, writing to 

arbitrary locations of physical memory, including over kernel data structures.  

There are many good reasons for running DDs at user level, such as: 

• Ease of development:  If a driver is a normal user process it can be developed 

and debugged with well-known and common tools. On the contrary, in-kernel 

driver development requires a specific development and debugging environment 

(typically involving more than one machine). Furthermore, since in-kernel drivers 

can cause kernel malfunctions in unrelated kernel components, identifying the 

source of the fault can be much difficult. 
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• Maintainability: In systems like Linux, where the kernel and its internal 

interfaces change quickly, keeping drivers that depend on these interfaces can 

be a challenge due to the large number of dependencies that many DDs have 

[107]. A user-level API that formally isolates the driver interface reduces (or 

eliminates) these dependencies and at the same time would make them more 

portable across kernel versions. User-level drivers could also be written in any 

high-level language. 

• Dependability: An in-kernel driver handles interrupts running on the stack of 

the process that was interrupted, and since it may not block, this requires very 

careful resource management to avoid unfairly blocking the current process or 

dead locking the kernel. User-level drivers run in their own context avoiding the 

issue of blocking in the interrupt handler and simplifying dead lock prevention.  

Additionally, normal OS resource management, including better control over 

resource consumption and protection against resource leaks, can be applied to 

user-level drivers. Hence, user-level drivers have the potential to improve system 

reliability. Moreover, in case of problems, a system may be able to survive a 

crashed user-level driver as the arguments made in favour of recursive restart 

apply to user-level drivers [108]. 

• Portability: In-kernel drivers have to be compiled for a particular kernel; when 

the kernel is updated, the end-user has to either recompile the driver (in case of 

Linux where source code is more likely to be available) or obtain a new one from 

the vendor. If the driver is in user space, it depends only on the user-driver API 

and so the same driver binary can continue to be used. 

Mach [104][105] and Chorus [106] are two early examples of microkernel 

systems to take this approach.  

MINIX3 [69][70] wanted to mitigate systems crashes due to buggy DDs, through 

the design and implementation of a fully compartmentalized operating system. The 

approach was to reduce the kernel to an absolute minimum and running each driver 

as a separate, unprivileged user-mode process.  

The microkernel of MINIX3 is responsible for the low-level and privileged 

operations such as programming the CPU and MMU, handling the interrupts and 

perform inter-process communication. Servers provide the file system, process 

management and memory management functionalities. A database server is used 

to keep information about system processes with publish-subscribe functionalities. 

System processes can use it to store some data privately, for example, a restarting 
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system service can request state that it lost when it crashed. The system also 

contains a server that keeps track of all other servers and drivers running that can 

transparently repair the system when certain failures occur. System calls are 

transparently targeted to the right server by the system libraries. 

The publish-subscribe mechanism decouples producers and consumers. A 

producer can publish data with an associated identifier. A consumer can subscribe 

to selected events by specifying the identifiers or regular expressions it is interested 

in. Whenever a piece of data is updated it automatically broadcasts notifications to 

all dependent components. 

On top of the kernel a POSIX-conformant multi-server operating system was 

implemented. All servers and drivers run as independent user-mode processes and 

are highly restricted in what they can do, just like ordinary user applications. The 

servers and drivers can cooperate using the kernel’s Inter-Process Communication 

(IPC) primitives to provide the functionality of an ordinary UNIX operating system.  

Several drivers were implemented running as an independent user-mode 

process to prevent faults from spreading and make it easy to replace a failing driver 

without a reboot. Although not all driver bugs can be cured by restarting the failing 

driver, the authors of MINIX3 assume that the majority of driver bugs are related with 

timing and memory leaks for which a restart is usually enough. 

Although conceptually microkernels are to provide the necessary level of 

isolation, it can come with the price of performance degradation and difficulties in 

porting the approach to other architectures. None of the early attempts to run drivers 

outside of the kernel, as unprivileged user code, has made a lasting impact. 

Therefore, user-level drivers remain an exception in conventional systems and used 

only for devices where performance is not critical or where the number of context 

switches is small compared with the work that it does (for instance, the Linux X 

server or some printer drivers in Windows, to name a few).  

2.5 Microdrivers 

The common approach taken by commodity monolithic operating systems is for the 

kernel to execute in privileged mode, controlling all system resources and isolating 

them from the user application behaviour.  

Traditionally, DDs have been implemented as part of these kernels and there are 

many reasons that justify this approach: they had full access to all system resources 

which typically simplifies implementation and minimizes overhead; use of the 
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operating system mechanisms for multitasking, synchronization, memory 

management, I/O transfer and others. However, as previously described, this model 

allows a fault in a DD to potentially crash the whole system.  

Taking into consideration that most driver code moves data between memory 

and an external device it is possible to partition the DD. In the Microdrivers 

architecture [71], a DD is split into a kernel-level k-driver and a user-level u-driver. 

Critical path code, such as I/O, and high-priority functions, such as interrupt 

handling, are implemented in the k-driver. This code enjoys the full speed of a purely 

kernel driver. The remaining code, which is invoked infrequently, is implemented in 

the u-driver and executes outside the kernel in a user-mode process. When 

necessary, the k-driver may invoke the u-driver.  

The authors propose the use of a tool, DriverSlicer, to transform existing drivers 

into a Microdriver architecture. In the first phase, the tool partitions an existing code 

such that performance critical functions remain in the kernel. The split aims to 

minimize the cost of moving data and control along the performance critical path. 

Rarely used functions, such as those for start-up, shutdown and device configuration 

are relegated to the u-driver.   

The slicing operation is performed using as input a programmer-supplied 

interface specification to identify the set of critical root functions for the driver. These 

are driver entry points that must execute in the kernel and include high priority 

functions or functions called along the data path. Because these functions typically 

have a standard prototype, the programmer supplies interface specifications as type 

signatures. The splitter automatically marks functions that match these type 

signatures as critical root functions.  

In the second phase Driver Slicer uses the output of the splitter where each node 

of a call graph is marked kernel or user, based upon whether the corresponding 

function must execute in the k-driver or the u-driver. The code generator identifies 

interface functions and generates code to transfer control. An interface function is a 

function marked user that can potentially be called by a function marked kernel, or 

vice-versa. Non-interface functions are never called by functions implemented on 

the other side of the split, and thus does not need stubs for control or data transfer. 

The final transformation of the existing code into the Microdriver approach 

requires the programmer to complement the driver code which can be performed 

using user-level debugging and instrumentation aids. In fact, the costs of the 

Microdrivers architecture are the burden on programmers to convert existing drivers 

to Microdriver’s, in the form of annotating driver and kernel code. 



 

 

24 CHAPTER 2 - DEVICE DRIVERS 

 

Over the years, the Microdriver architecture was further extended. Security 

mechanism were introduced in Microdrivers architecture mediating and checking the 

communication between the u-driver and the corresponding k-driver [72]. In this 

model, the authors introduced a technique to automatically infer data structure 

integrity constraints to be enforced by the Remote Procedure Call (RCP). A u-driver 

communicates with the corresponding k-driver through RPC. When the k-driver 

receives a request from the kernel to execute functionality implemented in the u-

driver, such as initializing or configuring the device, it forwards this request to the u-

driver. Similarly, the u-driver may also invoke the k-driver to perform privileged 

operations or to invoke functions that are implemented in the kernel. However, the 

u-driver is untrusted and all requests that it sends to the k-driver must be monitored. 

The RPC monitor ensures that each message conforms to a security policy and 

checks both data values and function call targets in these messages. The RPC 

monitor also ensures that the k-driver function calls that are invoked by the u-driver 

are allowed by a control transfer policy that is extracted using static analysis of the 

driver. 

Decaf drivers [73] further extends the Microdrivers architecture to allow existing 

Linux kernel drivers to be incrementally converted to Java programs in user mode. 

The aim is to improve driver reliability through simplifying driver development and 

allowing most driver code to be written in user level languages, to take advantage 

of the language’s type and memory protections.  

2.6 Virtual Machines 

Virtualization is the simulation of a hardware platform, storage devices and network 

resources. It has been a subject of research for more than forty years [113]. 

Nowadays, where computers are sufficiently powerful, virtualization can be used to 

present the illusion of running several operating systems instances in one single 

machine. IBM VM/370 [109] was one of the first systems to use virtualization to 

support the execution of legacy code.  

Platform virtualization is performed on a given hardware by a Virtual Machine 

Monitor (VMM) or Hypervisor, which creates a simulated computer environment – 

the Virtual Machine (VM). In a virtualized environment, it is desirable to run DDs 

inside the VM, rather than in the VMM, for reasons of error containment and 

reduction in the software engineering effort. By running the drivers in a VM, a bug in 

the driver does not compromise the VMM or the others VM. It also avoids the re-
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implementation of the entire driver infrastructure in the VMM, and instead, there is 

simply a reuse of the driver support already present in the guest operating system. 

One of the major sources of performance degradation in virtual machines is the 

cost of virtualizing I/O devices to allow multiple guest VMs to securely share them. 

While the techniques used for virtualizing CPU and memory present near native 

performance [110][111][112], it is challenging to efficiently virtualize most I/O 

devices. Each interaction between a guest OS and an I/O device needs to undergo 

a costly interception and validation by the virtualization layer (VMM and VM) to 

ensure isolation, data multiplexing and demultiplexing.  

Xen [110] is an x86 VMM that can run many instances of different operating 

systems in parallel on a single physical machine (host). The XEN VMM runs 

immediately after the bootloader during the machine start-up. It executes directly on 

the host hardware and is responsible for handling CPU, memory and interrupts.  

Supervised by the VMM, XEN runs several instances of domains (VM) totally 

isolated from the hardware, which means that they have no privilege to access the 

existing devices or I/O functionalities. However, Domain 0 is a specialized VM with 

special privileges to directly access the hardware, handling access to the system’s 

I/O functions and interaction with other VM. The Domain 0 kernel contains the 

drivers for all the devices in the system and also has a set of control applications to 

manage the creation, destruction and configuration of VM. Figure 2-1 depicts the 

XEN architecture. 

Xen supports two virtualization techniques: i) hardware assisted virtualization 

and ii) paravirtualization. The first approach resorts to extensions recently 

introduced in the machines, namely the Intel VT or AMD-V hardware extensions. In 

this mode, XEN uses Qemu [168] to emulate the PC hardware, including the BIOS, 

IDE disk controller, VGA graphic adapter, and other devices. This technique does 

not require any change on the OS that runs in the VM. However, due to the full 

emulation overhead, virtualized VM are usually slower.  

Paravirtualization is a virtualization technique that presents a software interface 

to virtual machines that is similar, but not identical to that of the underlying hardware. 

The intention is to reduce the portion of the guest's execution time spent performing 

operations that are substantially more difficult to run in a virtual environment 

compared to a non-virtualized environment. The paravirtualization provides specially 

defined routines to allow the guest and host to request and acknowledge these 

tasks, which would otherwise be executed in the virtual domain degrading 

performance. A paravirtualized platform may allow the VMM to be simpler, shifting 
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the execution of critical tasks from the virtual domain to the host domain, and/or 

reduce the overall performance degradation of machine-execution inside the virtual-

guest. 

 

Figure 2-1: Xen architecture. 

Paravirtualization requires a XEN paravirtualized-enabled kernel and 

paravirtualized drivers so that the VM is aware of the VMM and can run efficiently 

without virtual emulation of the hardware. The same is to say that changes need to 

be performed to the OS running on paravirtualized VM. XenoLinux was the first 

paravirtualized enabled kernel.  

The Xen VMM uses an I/O architecture that is similar to the hosted VMM 

architecture [114]. As depicted in Figure 2-2, it employs privileged domains, called 

Driver Domains, which uses a Linux native DD to access I/O devices directly, and 

perform I/O operations on behalf of other unprivileged domains, called Guest 

Domain. The guest domains resort to virtual I/O devices controlled by paravirtualized 

drivers to request the driver domain for access to devices. 

To virtualize network access, Xen provides each Guest Domain with a number 

of virtual network interfaces, which the Guest Domain uses for all its network 

communication. Each virtual interface in the Guest Domain is connected to a 

corresponding backend network interface in the Driver Domain, which in turn is 
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connected to the physical network interfaces trough bridging, IP routing or NAT 

based solutions. 

 

Figure 2-2: Xen network driver organization. 

Data transfer between the virtual and backed network interface is achieved over 

an “I/O channel”, which uses a zero-copy page remap mechanism to implement the 

data transfer. The combination of page remapping over the I/O channel and packet 

transfer over the bridging provides a communication path for multiplexing and 

demultiplexing packets between the physical interface and the guest’s virtual 

interface. 

Several research works showed that Driver Domains run with poor performance 

[74][75] and therefore, there were alternatives proposals for XEN aiming to improve 

efficiency. For example, TwinDrivers [75] semi-automatically partitions DDs into a 

performance-critical part and a non-performance-critical part. In this approach, Xen 

runs the performance-critical part of the DD inside the VMM and the no-

performance-critical part in the Driver domain.  

Despite the advantages of a virtualized system a fault in a VMM’s DD can affect 

all other VMs. Although the VMM is relatively reliable because it is developed and 

published by a closed group, and subject to a lot of tests, the DD codes, used either 

by the VMM or privileged VM are mostly unreliable, since most DDs are developed 

independently by other groups. 
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Figure 2-3: VMware architecture. 

VMware [111][112] is one of the most popular software platform that allows 

multiple virtual machines to share hardware resources on a single hardware. The 

execution schedule and the sharing of resources give the illusion that each VM is 

running directly on a dedicated hardware platform. Unlike Xen, where the VMM 

relies on a separate operating system in the Domain 0, VMWare was designed 

specifically for virtualization with no need for another operating system. 

The architecture of VMware is depicted in Figure 2-3. The implementation for I/O 

was designed taking into consideration the need to handle performance critical 

devices such as the network and disk. In this architecture, an I/O request issued by 

a guest OS is first handled by the driver of the guest operating system in the VM. 

Since the VMware emulates specific hardware controllers, the corresponding drivers 

will be loaded in the guest VM. 

The privileged IN and OUT instructions used by the virtual devices to request I/O 

accesses are trapped by the VMM and handled by the device emulation code based 

on the specific I/O ports being accessed. The VMM then calls the device 

independent network or disk code to process the I/O request. 
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This approach, allows for unmodified operating systems to run in each VM: 

• The drivers used by the guest operating system will most likely be always 

the same, since the architecture always presents the same emulated 

devices. Since these drivers will be used by most, if not all implementation 

solutions, a bug present in these drivers can potentially affect all such 

systems. 

• The drivers used by the VMM are designed targeting specific hardware and 

maintaining the same upper interface and these drivers need to be 

developed and maintained by VMware.  

2.7 Summary 

The Windows OS defines the WDM which provides a unified approach for all kernel-

mode DD. It consists in a layered driver architecture where every device is serviced 

by a driver stack. The WDM specifies an architecture and design procedures for 

several types of devices which implies a well-defined structure from which the DD 

and the OS can interact. 

Windows DDs expose functions that provide services to the OS. However, only 

one function is directly known by the OS, as it is the only one that is retrieved from 

the binary file when the driver is loaded. Other interface functions are registered by 

the DD in the OS to service specific purposes depending on the DD type. 

The executable file of a DD follows the same format used to represent 

applications and dynamic link libraries. The executable file contains the binary code, 

relocation information and dependencies of the DD from other software. 

In Linux, a DD is named a “module” and consists in a piece of code that can be 

added to the kernel at runtime. Linux modules follows a unified device model for the 

kernel and contains abstractions that feature out commonalities from DDs. Similarly 

to the Windows OS, the binary transport file of a Linux module is known and can be 

interpreted to identify the sections of the binary machine code, relocation information 

and dependencies. 
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In monolithic OS, DD share the same privileges as the remaining kernel 

components. Therefore, an error in a DD (or module) can compromise the 

dependability of a system. Microkernels were developed with the idea that OS 

functionality, such as DDs, protocol stacks and file systems, would be implemented 

as a user-space program, allowing them to be executed like any other process which 

could minimize the consequence of errors in this type of software. Mach [104][105],  

Chorus [106] and MINIX3 [69][70] are examples of microkernel systems to take this 

approach.  

In the Microdrivers architecture [71], a DD is split into a kernel-level k-driver and 

a user-level u-driver. The critical path code, such as I/O, and high-priority functions, 

such as interrupt handling, are implemented in the k-driver. This code enjoys the full 

speed of a pure kernel driver. The remaining code, which is invoked infrequently, is 

implemented in the u-driver and executes outside the kernel in a user-mode process. 

When necessary, the k-driver may invoke the u-driver. Microdrivers is an approach 

to isolate DD execution and minimize the effects of bugs in this type of software in 

the dependability of the entire system. 

Virtualization is the simulation of several system components, including the 

hardware platform, storage devices and network resources. Platform virtualization 

is performed on a given hardware by a Virtual Machine Monitor (VMM) which creates 

a simulated computer environment – the Virtual Machine (VM). In a virtualized 

environment, DDs run inside the VM, rather than in the VMM, for reasons of error 

containment and reduction in the software engineering effort. By running the drivers 

in a VM, a bug in the driver does not compromise the VMM or the others VM. Despite 

the advantages of a virtualized system a fault in a VMM’s DD can affect all other 

VMs. Although the VMM is relatively reliable because it is developed and published 

by a closed group, and subject to a lot of tests, the DD codes, used either by the 

VMM or privileged VM are mostly unreliable, since most DDs are developed 

independently by other groups. Xen [110] is an x86 VMM that can run many 

instances of different operating systems in parallel on a single physical machine 

(host). 

VMware [111][112] is a popular software platform that allows multiple virtual 

machines to share hardware resources on a single hardware. Unlike Xen, where the 

VMM relies on a separate OS in the Domain 0, VMWare was designed specifically 

for virtualization with no need for another operating system. Since the VMware 

emulates specific hardware controllers, the corresponding drivers will be loaded in 

the guest VM. The privileged IN and OUT instructions used by the virtual devices to 
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request I/O accesses are trapped by the VMM and handled by the device emulation 

code based on the specific I/O ports being accessed. The VMM then calls the device 

independent network or disk code to process the I/O request. 

The approach taken by VMware allows for unmodified operating systems to run 

in each VM. The drivers used by the guest OS will most likely be always the same, 

since the architecture always presents the same emulated devices. However, since 

these drivers will be used by most, if not all implementation solutions, a bug present 

in these drivers can potentially affect all such systems. Additionally, the drivers used 

by the VMM are designed targeting specific hardware and maintaining the same 

upper interface which requires these drivers to be developed and maintained by 

VMware. 
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The detection of vulnerabilities in DDs is related to several different research areas. 

This chapter starts with a revision of some preparatory concepts, namely the ones 

related to failures and vulnerabilities of systems. More detailed descriptions about 

the basic concepts and taxonomy of dependable and secure computing can be 

obtained in [6], and other definitions can be found in [7][8]. 

Then, the chapter gives an overview of fault injection techniques. We will see how 

fault injection has been used as a methodology to evaluate systems dependability 

at various development stages and a few selected works will be briefly explained. 

We conclude this section with a description of the components that compose a 

generic fault injection system. 

The study on robustness testing is dedicated to the explanation of several 

systems used in the measurement of how well a system operates when subjected 

to the presence of exceptional inputs or a stressful environment.  

We also talk about instrumentation and dynamic analysis. This is relevant for 

understanding what kind of techniques can be employed to interact with DDs at 

function level as well as how to control their execution. 
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The section related to DD execution isolation complements the study about DD 

execution control, a trend that has been followed to increase the dependability of 

systems by protecting them from malfunctioning drivers. 

Static analysis addresses an approach for the verification of the reliability 

properties of drivers by analysing the code without executing it while, at the same 

time, inferring misbehaviours along the program’s control flow. 

When addressing driver programming we overview some of the proposed 

changes on DD construction as an approach to eliminate the root causes that lead 

to driver failures, instead of dealing with their consequences. 

3.1 Preparatory Concepts 

A system is an entity that interacts with other entities, including, hardware, software, 

humans, and the physical world. These other entities are the environment of the 

given system. The common interface between the system and its environment is the 

system boundary. 

The function of a system is what the system is intended to do and is described, 

in terms of functionality and performance, by its functional specification. The 

behaviour of a system is what the system does to implement its function and is 

described by a sequence of states. The state of a given system is composed by: 

computation, communication, stored information, interconnection, and physical 

condition. The external state is the part of the system that is perceived at the system 

interface. The remaining is its internal state.  The sequence of the system’s external 

states, as it is perceived by the users, is the service delivered by that system. A 

system can assume a role as a provider of services to other components and can 

assume a role as a client that expects services from system providers. A system can 

sequentially or simultaneously act as provider and client to other systems. The 

structure of a system is the set of elements that is composed of and connected in a 

specific manner. Thus, the system behaviour is a result of each component 

individual behaviour combined according to its structure. This recursive 

decomposition stops when an atomic element is found, i.e., an element that cannot 

be decomposed in other systems or its composition can be ignored.  

According to the Federal Standard 1037C, a fault is an accidental condition that 

causes a functional unit to fail to perform its required function, a system defect [8]. 

In most cases, a fault causes an error in the internal state of a component and, 

eventually may affect the external state. A fault is active when it causes an error, 

otherwise it is dormant. 
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Faults can be characterized as a vector definition of several dimensions, 

including: 

• System boundary: internal or external to the system 

Faults can be originated inside or outside the system’s boundary and can 

result in errors propagated into the system by interaction or interface. 

• Dimension: hardware or software  

Hardware faults are related with the physical structure of the system, 

electronic components and power. Software faults are related to programs 

and logical conditions.  

• Persistence: transitory, periodic or permanent  

Faults can be transitory and therefore happen only when certain conditions 

are meet and with a certain degree of probability. They may also be periodic, 

and thus possible to forecast, or permanent and usually easier to detect.  

• Level: degree of the manifestation 

Fault levels are dependent on the fault dimension. For hardware faults, the 

fault level measures the degree of a physical manifestation or 

characterization of the system, such as tension, current, power, radiation or 

environmental conditions. In software, the fault level measures the value of 

a parameter or a return value, and depends on the parameter or return type 

definition (integer, long, other value type). 

A fault experiment is the insertion of one fault in the system under test (SUT) and 

the registration of its behaviour and impact. A fault injection campaign is the set of 

fault experiments used to exercise the SUT in order to achieve statistical confidence 

in the analysis of its behaviour. The faultload is the set of faults that are used in the 

fault injection campaign and the workload is the set of tasks that the SUT has to 

perform during the experiment. 

An error is a discrepancy between the intended system behaviour and its actual 

behaviour. Errors occur at runtime when the system enters some undesired system 

state due to the activation of a fault.  

A failure is the temporary or permanent termination of the ability of an entity to 

perform its required function. Failures happen because of hardware or software 

problems. Hardware failures are originated by physical phenomena, provoked by a 

faulty component that does not work like it should. Software failures are provoked 

by errors in the program code or data.  

Modern societies depend on computers for communications, banking systems, 

social care, healthcare, and so many other different areas. The Dependability is 
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defined by the IFIP 10.4 Working Group on Dependable Computing and Fault 

Tolerance [9] as: 

 

"[...] the trustworthiness of a computing system which allows reliance to be 

justifiably placed on the service it delivers [...]" 

 

Dependability is therefore a fundamental attribute, and it can be characterized by 

several properties, such as, availability – the readiness for correct service, reliability 

– continuity of correct service, and safety – absence of consequences to the users 

and the environment, Integrity – Absence of improper system alteration and 

Maintainability – Ability to undergo modifications and repair. 

Robustness is defined as the degree to which a system operates correctly in the 

presence of exceptional inputs or stressful environmental conditions [37]. 

The term vulnerability, in computer security, can be explained as a weakness 

that allows an attacker to compromise a system. In order to occur a security failure, 

it is necessary a conjunction of a vulnerability fault and an attack that exploits this 

weakness, leading to an error in the system. From this viewpoint, a vulnerability 

represents a reduction of the system dependability attributes. 

To exploit a vulnerability an attacker needs to have at least one tool and/or 

technique that allow him to explore the vulnerability in the system. This may be 

achieved either by gaining local physical access to the system or having a remote 

link. 

Vulnerabilities are usually expressed by a product vendor as a defect requiring a 

patch, upgrade or a configuration change. This is the type of information that 

attackers search to profile an attack. Once a vulnerability is discovered, it is only a 

matter of time before an attacker develops a tool (worm, virus, file, information 

packet, etc.) that can take advantage of the fault. Exploits created to take advantage 

of these security vulnerabilities can lead to system compromise, non-availability, 

data loss, exposure of confidential information, and other losses.  

Vulnerability management is the process in which vulnerabilities in information 

technology are identified and the risks of these vulnerabilities are evaluated. This 

evaluation leads to correcting the vulnerabilities and removing the risk or a formal 

risk acceptance by the management of an organization (e.g., in case the impact of 

an attack would be low or the cost of correction does not outweigh possible damages 

to the organization). The term vulnerability management is often confused with 

vulnerability scanning. Despite the fact both are related, there is an important 

difference between the two. Vulnerability scanning consists of using a computer 
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program to identify vulnerabilities in networks, computer infrastructure or 

applications. Vulnerability management is the process surrounding vulnerability 

scanning, also considering other aspects such as risk acceptance, remediation, etc.  

3.2 Fault Injection 

This section briefly reviews some of the work related with fault injection. A few of the 

techniques and ideas introduced in this area were used in our research to uncover 

DDs’ vulnerabilities. 

Fault injection is the deliberate introduction of faults into a SUT to experimentally 

validate its dependability. It is an important experimental technique that helps 

researchers and system designers to study the behaviour of the system in the 

presence of faults without having to wait for them to occur (which can take a long 

time because they are typically infrequent). This approach can be applied during all 

phases of the development process, including design, prototype and production 

phases.  

To take an experimental approach, it is essential to understand the system’s 

architecture, structure, and behaviour, including the incorporated mechanisms for 

fault detection and recovery. In what concerns to fault injection, the target system 

may be classified in one of the following major types: i) Axiomatic models, ii) 

Empirical processing models and iii) Physical systems. 

Axiomatic models are used to describe the structure, dependability and 

performance of the system behaviour in the form of reliability block diagrams, fault 

trees, Markov graphs [148] or stochastic nets. Fault Trees (FT) are one of the most 

used models for reliability analysis because they represent a high-level abstraction 

of the system and can be solved using Binary Decision Diagram techniques. 

However static FT cannot handle sequential and functional dependencies between 

components. To overcome this lack of modelling power, a number of dynamic 

methodologies have been developed and used for dependability analysis of dynamic 

systems based on Markov Chains (MC) formalisms. On the other hand, as systems 

being built are increasingly complex and large, they are becoming more difficult to 

model and analyse. Manually generating an MC describing the system’s behaviour 

is a daunting and an error prone task. Furthermore, MC are faced with state space 

explosion problem where the states to be generated grows exponentially with the 

number of components comprised in the system. 

Empirical processing models incorporate complex or detailed behavioural and 

structural descriptions that require a simulation approach to process them. When 

systems are at the conceptual and design stages, simulation-based fault injection 
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tools can be used to evaluate the dependability of the system. In some cases, this 

is the most suitable approach because it enables the testing of the system using 

cost-effective tools. The results from the evaluation allow the design team to review 

their implementation options, without having to compromise the project, as it might 

happen at a more advanced phase. At this point, the system is a series of 

abstractions and assumptions where most of the implementation details are still to 

be defined. 

Physical systems can correspond to prototypes or final systems that are 

implemented in hardware and/or software. In this case, systems can be 

distinguished as being composed of hardware-only, software-only, hardware and 

software. The results obtained with simulation-based fault injection tools are often 

biased by some design assumptions, since there are usually differences between 

the model and the final implementation. When evaluating a prototype or final setup 

system this effect usually disappears because the SUT corresponds to an instance 

of the final version. This is important since the actual workload can impact on the 

performance of the error handling mechanisms as pointed out by several studies 

[10][11]. 

Simulation-Based Fault Injection 

Computational models of systems and their implementation in simulation software 

are used in testing during the early design phases, without the expense of 

developing a prototype. They may present different levels of abstraction, such as, 

device level, functional block-level, protocol level or system level. The level of detail 

of the model influences the accuracy of its behaviour. Highly detailed models may 

take too much time to simulate due to the size of the system’s activity. On the other 

hand, lighter models may be faster to run but may not accurately represent the 

systems mechanisms due to the implemented abstractions. 

Simulation-based fault injection can be performed in simulators of the 

computational models of the systems [13][14]. Here, the injection software may act 

at different levels of abstraction, modifying the structural organization of the SUT, 

the communication links between components, or the component models.  

One representative solution that implemented simulation-based fault injection is 

DEPEND [12]. It is an integrated simulation environment for the design and 

dependability analysis of fault-tolerant systems. It provides facilities to rapidly model 

a fault-tolerant architecture and conduct extensive fault injection studies. DEPEND 

is a functional process-based simulation tool, where the system behaviour is 

described by a collection of processes that interact with one another. To develop 
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and execute a model, the user writes a control program in C++, using the objects 

available from the DEPEND library that simulate the hardware components (e.g., 

CPUs, communication channels and disks). The fault-tolerant characteristics of an 

object, the type and the method by which faults are injected are also specified by 

the user. The program is then compiled and linked with the DEPEND objects, and 

the resulting model is executed in the simulated run-time environment. Here, the 

assortment of objects, including the fault injectors, CPUs and communication links, 

run simultaneously to simulate the functional behaviour of the complete system. 

Faults are injected, according to the user's specification, and a report containing the 

essential statistics of the simulation is produced. The results are then used by the 

development team to perform the necessary corrections in the developing project. 

Hardware Emulation Based Fault Injection 

Simulation-based fault injection can be too time consuming as the system models 

become excessively complex and detailed. Field Programmable Gate Array (FPGA) 

circuits allow the implementation, with a high degree of accuracy, of emulation 

models of hardware components. Since hardware circuit design normally uses some 

kind of Hardware Description Language (HDL), the FPGA can be programmed to 

mimic the intended hardware. This opens a window of opportunity for the execution 

of fault injection experiments into system models within a reasonable time and 

having most of the advantages of simulation-based fault injection. 

One of the first approaches based on FPGA emulation systems employed the 

concept of Dynamic Fault Injection (DFI) [15]. A typical use of the FPGA involves 

the following steps: 1) Provide an HDL of the circuit to implement; 2) Generate the 

connection list (netlist) with all the connections defined; 3) Transfer the netlist to the 

FPGA and 4) Use the FPGA. To perform a fault experiment using an FPGA, the 

above sequence of steps must be performed reconfiguring the HDL to include the 

fault. DFI explores the possibility of reducing the number of FPGA reconfigurations 

in a fault campaign by previously identifying which faults are dependent of using 

extra hardware. The extra hardware is connected to input ports of the FPGA and 

acts as demultiplexer activating, one at a time, each dependent fault.   

Hardware-Implemented Fault Injection 

Hardware-implemented fault injection refers to the process of injecting faults in a 

physical system. In most cases, a processor was chosen as the target because the 

system behaviour is mainly determined by this component. In addition to this 
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argument, the following reasons also justify the interest of the fault injection at the 

processor pins: 

• Faults injected in the processor pins can reproduce not only internal 

processor faults but also memory and bus faults, and most of the faults in 

peripheral devices. For instance, faults in a peripheral device can be 

duplicated by injecting faults in the processor pins during the cycles in which 

the processor is reading data from the peripheral device; 

• It is possible to cause errors in other parts of the target system by injecting 

faults in the processor pins. For example, a fault injected in the processor 

data bus, during a memory write cycle, will cause an error to be stored in 

the addressed memory cell. 

Hardware implemented fault injection comprehends several techniques, among 

them pin-level fault injection [16][17][18][19], test access port fault injection 

[23][24][25], electro-magnetic interference fault injection [21][22] and radiation 

based fault-injection [26][149][150]. We will briefly describe each of these 

techniques in the following sections. 

Pin-level Fault Injection 

Pin-level fault injection is one of the most common methods of hardware 

implemented fault injection [16][17][18][19][20][153]. Here the injector probe has 

physical contact with the target Integrated Circuit (IC) and directly interferes with the 

electric signals of the system. Since the faults are created at the pin level, they are 

not identical to traditional faults that occur inside the IC. Nevertheless, many of the 

same effects can be observed. 

The change of the electrical currents and voltages at the IC pins can be achieved 

through two main techniques: i) Active probes and ii) Socket insertion. Active probes 

add an electrical current to the circuit attaching the probe to the pins of the IC, 

without removing the chip from the system board. This method can provide stuck-at 

faults (maintaining a certain current level in the pin) or bridging faults by placing a 

probe across two or more pins of the IC.  

With socket insertion, a socket is placed between the target hardware and the 

system board. The contact between the IC pins and the circuit board, provided by 

the socket, is controlled by the fault injector. This technique extends the faults that 

can be performed, supporting the insertion of signals that are the result of a logic 

operation involving previous signals of the pin itself or any other pin. The main 
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advantage of the socket insertion technique over the active probes is the level of 

isolation that can be achieved relative to the surrounding circuitry.  

MESSALINE is an example of a tool for physical pin-level fault injection [16]. It 

has the ability of creating faults at the IC pin level such as: i) IC pins disconnected 

from the system board; ii) IC pins connected to a specific electric voltage level; iii) 

IC pins are connected together and iv) other complex logical signal combination as 

the result of a logic combination of other electric signals. It is a composition of four 

modules. The Fault Injection Module enables the generation of faults at the IC pins. 

The Activation Module uses physical output interfaces to initialize and control the 

target system. The ReadOut Module is responsible for reading the values present 

on selected target IC pins as a result of the experiments and finally, the Software 

Management Module creates the test sequence, does the run time control of its 

execution and collects the results to be used in the post-test analysis.  

Test Access Ports Fault Injection 

The miniaturization of device packaging, the development of surface-mounted 

packaging, and the associated development of the multi-layer board reduced the 

physical access for insertion of probes. The advances in semiconductor industry 

required software and hardware tools that could access critical functionalities of the 

IC. The standards IEEE-ISTO 5001-2003 (Nexus) [23], IEEE 1149.1 Standard Test 

Access Port and Boundary-Scan Architecture (JTAG) [24] and the proprietary 

Background Debug Mode (BDM) [25] provide solutions to interface VLSI circuits 

(microprocessors and FPGA) equipped with built-in debugging and testing features. 

They define I/O Test Access Ports (TAP) that enables the observation of the IC 

internal state, registers and other elements. Furthermore, TAP allows the injection 

of faults into the pins and internal state elements of the IC. The type of faults that 

can be injected depends on the debugging and testing features supported by the 

target IC. 

A fault injection experiment through TAP involves: a) defining a breakpoint and 

then wait for the program to reach the breakpoint, b) read the value of the target 

location, c) manipulate the value, d) write the new faulty value back to the target 

location, and e) resume the program execution. The main advantage of TAP fault 

injection is that faults can be inserted internally in IC without making any changes to 

the system’s hardware or software. Examples of the Test Access Port fault injection 

tools and applications can found in [151][152]. 
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Electro-magnetic Interference Fault Injection 

Electro-magnetic interference (EMI) is produced by a wide range of sources, such 

as, motor cars, trains and industrial plants. Since computer systems are in 

environments were such sources exist, electro-magnetic interference fault injection 

has also been applied in various scenarios.  

Typically, the EMI tests are conducted inside of an anechoic chamber with a 

controlled RF environment where the SUT is placed (e.g., between two metal plates 

which in turn are connected to the EMI generator). The isolation provided by the 

anechoic chamber provides assurance that the observed results are resultant from 

the EMI tests and not from an external source. The source of the EMI then combines 

different signal power with focus in a particular signal frequency, systematically 

swiping a large spectrum of inject random frequencies. 

The impact of EMI is usually much more severe than the impact of other 

commonly used injection techniques. Since EMI and in particular Power Supply 

Disturbances tend to affect many bits, which can modify a larger part of the system 

state [21][22][153].  

Radiation-Based Fault Injection 

As the dimensions and operating voltages of electronics are reduced, their 

sensitiveness to radiation increases dramatically. There is a multitude of radiation 

effects in semiconductor devices that vary in magnitude from data disruptions to 

permanent damage. This is a primary concern for commercial terrestrial and space 

applications. 

Radiation based fault injection is a contactless hardware implemented fault 

injection. Here the injector does not have direct contact with the target system, but 

produces some physical phenomenon that potentially influences the behaviour of 

the target electronics (e.g., by generating some sort of radiation). 

Fault injection by heavy-ion radiation is a technique for creating faults in systems, 

especially inside the ICs [26][149][153]. This method however is difficult to apply to 

existing computers mainly because the target chip outputs have to be compared pin-

by-pin with a gold unit, in order to know whether the radiation has produced errors 

inside the target IC or not. Since the heavy-ions are attenuated by molecules and 

other materials in the irradiation path, the target circuit must be run in a vacuum. 

Consequently, the packaging material that covers the target chip must be removed. 

This is a major difficulty because commercial IC components are many times 

destroyed during the removal of the packaging material. 
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A major feature of the heavy-ion fault injection technique is that faults can be 

introduced into VLSI circuits at locations impossible to reach by other methods, such 

as pin-level fault injection. The faults are also reasonably well spread within a circuit, 

as there are many sensitive memory elements in most VLSI circuits. Thereby, the 

injected faults generate a variety of error patterns which allow a thorough testing of 

fault handling mechanisms. 

Software-Implemented Fault Injection 

Computer systems are nowadays too complex for the mechanisms associated with 

fault activation and error propagation to be completely understood. This makes the 

evaluation of dependability properties a very demanding task. Analytical modelling 

becomes extremely hard and only possible if a great number of simplifying 

assumptions is used. Although hardware fault injection evaluation is suitable to 

validate specific fault handling mechanisms, the design of specialized tools is almost 

impossible as their complexity is directly associated to the control and check of the 

fault effects of the system being evaluated.  

Software Implemented Fault Injection (SWIFI) is primarily motivated to avoid the 

difficulties and cost inherent to physical fault injection approaches and is intended 

to emulate both software and hardware faults. Compared to hardware fault injection 

tools, it has lower complexity and development effort, as there is no need to build 

specialized hardware. A SWIFI tool also presents a greater degree of portability, 

since it can be applied to several different systems with little modifications. 

SWIFI tools can emulate hardware faults using mainly two different approaches 

applied to the software: i) at compile-time and ii) during runtime. In the compile-time 

approach the injector modifies the target program source code to insert some errors, 

which causes faults to be activated when the code is executed. The modified code 

potentially alters the functional behaviour of the original program, while it emulates 

the effect of hardware or software faults.  

To inject faults at runtime one must use a mechanism that suspends the workload 

in the SUT, calls the injector code and resumes the execution of the SUT’s software 

in the point where it was stopped. This can be accomplished by using one of the 

following mechanisms: a) timeout; b) exception-trap or c) code insertion. The timeout 

mechanism is the simplest and corresponds to the occurrence of an event triggered 

by a software or hardware timer that was set to expire at a certain instant. In 

response to the event, a routine is called to produce the fault. In the exception-trap 

mechanism the control of the system is transferred to the injector by means of a 

software trap or hardware exception. The handler routine is then responsible for the 
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generation of the fault. In the code insertion mechanism, unlike the compile-time 

code modification, the binary code of the target program is modified directly in 

memory at runtime. This can be accomplished, for instance, by placing the injector 

code in the handler routines of some advanced debugging features of modern 

CPUs. The handler routine is then triggered, for example, whenever the CPU’s 

program counter reaches some predefined value.  

These techniques can be used to target applications and the OS. In case of an 

application, the fault injector is inserted into the application itself or layered between 

the application and the operating system. If the target is the OS, the fault injector 

must be embedded in it, as it is very difficult to add a layer between the machine 

hardware and the OS. 

However, the SWIFI approach can have some limitations: It cannot inject faults 

into locations that are inaccessible to software, e.g., peripheral devices; The 

software instrumentation may disturb the workload running on the target system and 

even change the structure of original software; and it usually has a poor time-

resolution making this approach unable to capture certain error behaviours 

associated with low latency faults. This, however, can be minimized with careful 

design of the injection environment or by adopting a hybrid software/hardware 

solution (described later). The SWIFI approach can also have fidelity problems due 

to poor time-resolution. For long latency faults, such as memory faults, the low time-

resolution may not be a problem. For short latency faults, such as bus and CPU 

faults, the approach may fail to capture certain error behaviour, including some 

forms of error propagation.  

This problem can be solved by taking a hybrid approach, which combines the 

versatility of software fault injection and the accuracy of hardware monitoring [35]. 

The hybrid approach is well suited for measuring extremely short latencies. 

However, the hardware monitoring involved can have high costs and decrease 

flexibility, by limiting observation points and data storage size. 

Over the years, several tools have been proposed for SWIFI, such as FERRARI 

[28], FIAT [27], FINE [29], DEFINE [30] (an evolution of FINE), DOCTOR [31], 

FTAPE [32], GOOFI [34] and Xception [33]. As an example, we will describe in more 

detail the Xception toll. 

Xception is a fault injection and monitoring environment that introduces faults by 

software and monitors their impact on the target system behaviour. This tool was 

fundamentally designed to emulate hardware transient faults in functional units of 

the target processor. It uses the advanced debugging and performance analysis 

features that exist in most modern processors, such as performance counters and 
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breakpoint registers. The counter register can be programmed to record a number 

of user defined events such as load, store, or floating point instructions. The 

breakpoint register enables the programmer to specify where to break the program 

for a wide range of situations such as load, store or fetch of data from a specified 

address or even some instruction types (e.g., floating point instructions). Using a 

combination of these mechanisms, faults can be injected when the instruction in a 

specific address is fetched or when the data stored in some address is accessed. In 

practice, the exception trigger that inserts the faults is programmed in the processor 

debugging hardware before starting the target application. This allows the target 

application to be left unchanged and be executed at normal speed (and not in some 

special trace mode). When trigger is reached, the trigger handler creates the fault. 

Since Xception operates at the exception handler level, and not through any service 

provided by the operating system, the injected faults can affect any process running 

on the target system including the OS. 

Components of a Fault Injection System 

Figure 3-1 represents the most relevant components usually employed in Fault 

Injection Systems (FIS). These components implement activities such as disturb the 

execution of the SUT, observe the behaviour and determine if the fault was tolerated.  

The FIS actions are defined by the System Controller that is in charge of 

coordinating the experiment and of synchronizing all other components. It can run 

in the SUT itself or in a separate machine.  

In each round of the fault injection campaign, the Setup Module prepares the 

system to become operational and meet the desired initial conditions.  

The Workload Generator stimulates the SUT to perform its tasks. This component 

is used to exercise the system at normal or stressful conditions, depending on how 

fast it demands/provides services at the SUT interface. 

Faults are produced by the Fault Generator that either creates them at runtime, 

commanded by the Controller, or prior to the experiment. In this later case, the faults 

are stored in a Fault Library for later use. The Fault Injector injects the faults into the 

SUT, either interacting physically and/or logically with it. 

The Data Collection is in charge of capturing, processing and analysing the data 

produced in the SUT. The collected information is saved in a Data Storage. 

 



 

 

46 CHAPTER 3 - RELATED WORK 

 

 

Figure 3-1: Basic components of a fault injection system. 

The Fault Monitor observes the SUT behaviour and gives feedback to the System 

Controller, allowing it to decide the next round in the injection campaign. 

The Data Processing and Analysis component allows the analysis of the SUT 

behaviour even after the fault campaign has finished. All FIS activity is registered in 

a Log Database for complementary analysis (e.g., sequence of events).  

Typically, there are 3 different phases in the activity of the FIS: 

1. Preparation: The preparation phase is the stage where all the preliminary 

conditions are setup. In the cases were the faults can be previously 

generated it also involves the creation or loading of the Fault Library; 
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2. Fault Injection: The fault injection phase represents the stage where the fault 

injection campaigns occur; The system is setup, including the workload, 

faults are injected and the behaviour of the system is observed. 

3. Data Processing: In this phase, the processing and analysis of the results 

of the tests is performed. 

3.3 Robustness Testing 

In computer science, robustness is defined as the degree to which a system 

operates correctly in the presence of exceptional inputs or stressful environmental 

conditions. Robustness testing is an experimental evaluation technique which forces 

incorrect inputs and/or stressful situations to systems or system components, trying 

to activate faults that result in incorrect operation.  

The acceptability of robustness testing is based on the ability to reproduce the 

initial conditions, the observations and measurements of the experiments. Thus, an 

important aspect of the robustness testing is the establishment of result metrics, 

which form the basis for evaluation and comparison. For instance, the 5-point 

CRASH [36] scale organizes the failures caused by the injection of faults, according 

to the severity of their effect on an end system, being ‘C’ (catastrophic) the most 

severe and ‘H’ (hindering) the less one. Others failure modes scales have also been 

proposed, for instance [3][53][54][55].  

Robustness testing has been employed in some proposals for dependability 

benchmarking approaches [154][155]. One of the main targets of robustness testing 

has been the OS interfaces, which have been tested with erroneous inputs being 

inserted at the application interface (see for instance [38][43][46]). By creating 

evaluation techniques that provide a direct, repeatable, quantitative assessment of 

OS exception handling abilities, developers may obtain feedback, for instance, 

about the capability of a new OS version to protect itself. Knowledge about the 

exception handling weak spots of an OS enables system designers to take extra 

precautions by increasing the type of validations they perform on input/outputs. 

Additionally, quantitative assessment enables system designers to make 

comparison whether it might be more robust to use a COTS OS than an existing 

proprietary OS. For instance, some studies have shown that open source solutions 

did not exhibit significantly more critical failure modes than commercial ones 

[45][52]. Other studies on dependability benchmarking include CORBA middleware 

implementations [67][68] and Online Transaction Processing (OLTP) systems [39]. 
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Robustness testing can also be used to evaluate the dependability of systems at 

the DD level. It can be employed for instance to verify how well the DD software can 

cope with erroneous inputs. During the course of our research we have explored 

some of the ideas related to this area to build a system capable of measuring the 

robustness of the OS when subject to DD malfunction. In the rest of this section, we 

review in more detail several robustness testing tools and describe some of the 

experimental results that were obtained. A particular focus will be given to tools that 

address the robustness of DDs. 

Operating System Robustness Testing  

FUZZ was an early attempt to perform OS robustness testing, and it targeted the 

system utility applications [40]. FUZZ was capable of producing random printable 

and control characters, which were then used as input to the utility applications. 

Automatic testing was achieved by utilizing a script that initiated the applications and 

passed the random data. 

This tool was used to test a large collection of utilities running on several versions 

of the Unix OS (and was later applied to other OS) [47]. Three types of failure modes 

were considered in the test campaigns:  

1. Crash - the program ended abnormally producing a core file;  

2. Hang - the program appeared to loop indefinitely, or  

3. Succeed - the program terminated normally.  

The first results showed a surprising number of programs that would crash or 

hang. Pointer/array errors, unchecked return codes, input functions, were pointed 

as some of the root causes of the observed behaviour. Although the problems 

affected a large number of regularly used OS utilities, many of the discovered 

problems were still present in new OS versions several years later [41]. In the recent 

years, other researchers have extended these ideas into more intelligent and less 

random tools, capable of testing different kinds of software components (see for 

example [48][49][50]). 

An example of an early method for automatically testing OS for robustness is the 

CRASHME tool [42]. It operates by writing random data values to memory, and then 

it spawns a large number of tasks that attempt to execute those random bytes as 

concurrent programs. While many tasks terminate almost immediately due to illegal 

instruction exceptions, on occasion a single task or a confluence of multiple tasks 

can cause an operating system to fail. If run long enough CRASHME may eventually 

get lucky and find some way to crash the system. 
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The Random and Intelligent Data Design Library Environment (RIDDLE) was 

used to stress testing the Windows NT software [51]. RIDDLE generates input for 

the application being tested using the grammar of the component under analysis, 

rather than simply creating random input. It can combine for instance random field 

values with boundary value conditions to evaluate a program behaviour under 

anomalous conditions. RIDDLE was employed to compare the reliability of native 

Windows NT utilities with the Cygnus Win32 port of the widely-distributed GNU 

utilities. The results show that the native Windows NT utilities had far fewer failures 

due to anomalous input than the GNU Win32 utilities, which revealed that errors may 

arise when porting a stable program from one platform to another. 

Another example of a software robustness testing system tool that automatically 

tests the exception handling capabilities of the OS is BALLISTA [43]. While it can be 

used for testing APIs beyond OS (e.g., a simulation framework), much of the focus 

of the evaluation was on POSIX OS interfaces. BALLISTA testing methodology 

involves automatically generating sets of exceptional parameter values that are 

used as arguments when calling software modules. The results of these calls are 

examined to determine whether the software module detected and notified the 

calling program of an error, or whether the task (or even the system) suffered a crash 

or hang as the result of a call.  

The evaluation of Microkernels fault handling mechanisms was the target of the 

Microkernel Assessment by Fault Injection Analysis and Design Aid (MAFALDA) 

[44]. MAFALDA takes advantage of the debugging features of most modern 

microprocessors to inject faults by software and monitor their effects (as in Xception 

[33]). One form of fault injection implemented by MAFALDA consists in the 

corruption of the input parameters. It simulates the propagation of an error from the 

application level to executive level of the microkernel, aiming to evaluate the 

robustness properties of the microkernel interface. It traps the target kernel so that 

an exception is automatically raised whenever there is a call to an entry point of the 

microkernel. The handler for this exception is responsible for the corruption of the 

input parameters and once injected the handler lets the call proceed to the kernel.  

Device Driver Robustness Testing  

Device Path Exerciser (DPE) is a tool for testing the reliability and security of drivers 

[59]. It calls drivers through a variety of user-mode I/O interfaces with valid, invalid, 

and poorly-formatted data that will cause some error in the driver execution if not 

managed correctly. These tests can reveal improper driver design or implementation 

that might result in system crashes or might make the system vulnerable to malicious 
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attacks. During a test, DPE sends an enormous quantity of calls (hundreds of 

thousands) to the driver in rapid succession. The calls include changes in data 

access methods, valid and invalid buffer lengths and addresses, and permutations 

of the function parameters that might be misinterpreted by a flawed parsing or error-

handling routine. The tool verifies that calls sent to the driver are completed correctly 

and do not cause system crashes, system memory pool corruption, or memory 

leaks. The driver is expected to handle each of the requests properly, either by 

returning valid data or by rejecting the request. 

IoSpy and IoAttack are tools that perform IOCTL and Windows Management 

Interface (WMI) tests on kernel-mode drivers [60]. These tools help to ensure that 

the drivers’ IOCTL and WMI code validate data buffers and buffer lengths correctly, 

avoiding buffer overruns that can lead to system instability. When a device is 

enabled for testing, IoSpy captures the IOCTL and WMI requests sent to the driver 

of the device, and records the attributes of these requests within a data file. IoAttack 

then reads the attributes from this data file, and uses these attributes to fuzz, or 

randomly change the IOCTL or WMI requests in various ways, before sending them 

to the driver. This allows further entry into the driver’s buffer validation code without 

writing IOCTL or WMI-specific tests. 

Plug and Play (PnP) related code paths in the driver and user-mode components 

can have their robustness evaluated by the Plug and Play Driver Test Tool [61]. This 

tool forces a driver to handle almost all the PnP IRP, and more specifically it stresses 

three main areas: removal, rebalance, and surprise removal. The tool provides a 

mechanism to test each of these separately or to test them all together. This PnP 

testing is accomplished by using a combination of user-mode API calls (through the 

test application) and kernel-mode API calls (through an upper filter driver). 

3.4 Instrumentation and Dynamic Analysis 

Analysing the dynamic behaviour, performance, and correctness of software and 

systems is invaluable to software developers and hardware designers. 

Instrumentation is done by inserting debugging and profiling information. It supports 

monitoring and measurement of the level of performance of the application and 

writes execution traces to the display or files to help the diagnose of errors. In fact, 

the ability to interfere with systems and software is the building block for software 

fault injection and robustness testing presented in the previous sections. Having 

access to appropriate source code, it is often trivial to insert new instrumentation or 

extensions by rebuilding the applications or the OS to provide necessary insights 

about its execution. When no source code is available, the ability to instrument 
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unmodified binaries facilitates the analysis of commercial applications in realistic 

scenarios.  

Next, we will briefly introduce some of the existing tools that address 

instrumentation and dynamic analysis. We are especially interested in 

understanding what techniques and challenges are involved in instrumenting DDs.  

Detours [90] is a library for intercepting arbitrary Win32 binary functions on x86 

machines. The interception code is applied dynamically at runtime by replacing the 

first few instructions of the target function with an unconditional jump to a user-

provided detour function. The removed instructions from the target function are 

preserved in a trampoline function, which also has an unconditional branch to the 

remainder of the target function. The detour function can either completely replace 

the target function or extend its semantics by invoking the target function as a 

subroutine through the trampoline. Detours experiments were based on Windows 

applications and DLLs, but were not applied to DDs.  

A software system that performs run-time binary instrumentation of Windows 

applications is PIN [91]. PIN collects data by running the applications in a process-

level virtual machine. It intercepts the process execution at the beginning and injects 

a runtime agent that is similar to a dynamic binary translator. To use PIN, a 

developer writes a “Pintool” application in C++ using the PIN API consisting of 

instrumentation, analysis and call-back routines. The “Pintool” describes where to 

insert instrumentation and what it should do. Instrumentation routines walk over the 

instructions of an application and insert calls to analysis routines. Analysis routines 

are called when the program executes an instrumented instruction, collecting data 

about the instruction or analysing its behaviour. Call-backs are invoked when an 

event occurs, such as a program exit. Several applications were instrumented using 

PIN, such as Excel and Illustrator. PIN executes in user level ring3, and therefore 

can only capture user-level code. Another example of a dynamic binary translation 

technique similar to the one used by PIN is implemented by DynamoRio [103]. 

NTrace [102] is a dynamic tracing tool for the Windows kernel capable of tracing 

system calls, including the ones involving drivers. The used technique is based on 

code modification and injection of branch instructions to jump to tracing functions. It 

relies on the properties introduced by the Microsoft Hot patching infrastructure, 

which by definition start with a mov edi, edi instruction. NTrace replaces this 

instruction with a two-byte jump instruction.  However, due to the space constraints, 

the jump cannot direct control into the instrumentation routine. It rather redirects to 

the padding area preceding the function. The padding area is used as a trampoline 

into the instrumentation proxy routine.  
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DDT [81] combines virtualization with a specialized form of symbolic execution 

to test DDs. This tool uses a modified QEMU [168] machine emulator together with 

a modified version of the Klee symbolic execution engine [147]. DDT runs a 

complete, unmodified, binary software stack, comprising of the Windows OS, the 

drivers to be tested, and all associated applications. DDT forces the loading of the 

driver of interest, determines the driver’s entry points, coerces the OS into invoking 

them, and then symbolically executes the DD of interest using an adapted version 

of Klee.  

3.5 Isolation of Device Driver Execution 

Commodity operating systems are built using a monolithically design where all the 

operating system functions run in kernel mode. To simplify the design of the kernel, 

components such as DDs, dispatcher and file systems share the same address 

space without isolation. However, with this unconstrained access, every bug in these 

components can potential compromise the system correctness. 

The isolation of the kernel from other operating system components could 

increase system dependability. Once the kernel has been well tested, a flaw in any 

other component, especially the ones that change often (such as DDs), could no 

longer compromise the entire system. Furthermore, the kernel could integrate 

recovery procedures to restore the faulty component by restarting the service, 

eventually with minor or no losses in data or context. 

CPU manufacturers have incorporated in their architectures hierarchical domains 

to protect data from functionality faults. Unfortunately, mainstream operating 

systems do not take fully advantage of these features. In this section, we are going 

to give an overview of the mechanisms aiming to isolate DDs. We will focus our 

attention in techniques involved in the protection of the system from DD failures, 

used in testing a DD without corrupting the entire system, and employed to record 

DD faults whenever they occur. 

Runtime Protection 

Software fault isolation (SFI) [78] is a software technique used to isolate the 

execution of individual applications and prevent faults from these applications to 

contaminate the remaining system. In this technique, the untrusted software is 

placed inside a fault domain consisting on a contiguous region of memory within an 

address space.  The virtual address space of the untrusted software is divided into 
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aligned segments such that all virtual addresses within a segment share the same 

segment identifier.  

Two mechanisms were proposed to enforce the execution of the code within its 

fault domain: i) segment matching and ii) address sandboxing. In the first 

mechanism, the binary of the application to be isolated is modified to include some 

checking code before every unsafe instruction. If the checking code determines that 

the target address is safe, it lets the application to proceed. Otherwise, the inserted 

code traps to a system error routine outside the distrusted module’s fault domain. 

The second mechanism employs address sandboxing, which consists in inserting 

some code before each unsafe instruction to set the value of the segment identifier, 

forcing it to stay inside the same fault domain. Although it cannot catch the illegal 

addresses, it prevents the untrusted code to affect any other domain. The prototype 

used in SFI targeted user applications, but the proposed ideas could also be 

applicable to isolate DDs into SFI segments. 

In an alternative approach, the OS could be divided into inner kernel and 

application resources, as suggested by VINO [115]. The inner kernel cannot be 

modified by applications but processes can override the behaviour of the application 

resources. Files, directories, threads, transactions, physical memory pages, virtual 

memory pages and queues are example of resources each one includes properties 

and default operations implementation. New resource types are added to VINO by 

compiling them it into the kernel.  

VINO, uses a trusted compiler that generates code with either bounds checking 

or sandboxing to ensure code safety [82]. The generated code is digitally signed so 

that all code installed in the kernel can be verified to be from the trusted source. The 

compiler also ensures that the generated code does not mask interrupts or modifies 

itself. Each graft receives its own heap and stack, and when a graft changes kernel 

state (e.g., by opening a file), the kernel records the fact so that any such 

modifications can be undone if the graft misbehaves. If the process is aborted, the 

corresponding transaction is aborted, and the system is returned to a consistent 

state. 

Static Verification and Runtime Memory Protection 

XFI [83] is a protection mechanism designed for Windows running on the x86 

hardware platform that combines static verification with run-time software guards for 

memory access control and system state integrity.  

The XFI-rewriter produces XFI binary modules from Windows x86 executable 

(EXE, DLL or SYS). It makes use of debug information (PDB files), to distinguish 
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code from data and to add structured guards and verification hints to be used later 

during the loading process.  

Guards consists on code added to the binary modules intent to enforce that an 

XFI module complies with the policies that dictate interaction with its system 

environment: memory access constraints, control flow (the code can never flow 

outside the module’s code, except via calls to a set of prescribed support routines, 

and via returns to external call-sites); stack integrity; authorized instruction 

execution; system-environment integrity (e.g., segment registers cannot be 

modified). 

In addition to restricting interactions between a module and its host, XFI places 

constraints on the execution of the module through: control-flow integrity (execution 

follow a static, expected control-flow graph); program-data integrity (Certain module-

global and function-local variables can be accessed only via static references from 

the proper instructions in the module); Assured self-authentication (a module 

authenticates itself to the host system). 

The correctness of XFI protection depends on the load time verification of the 

XFI module. XFI-verifier makes a linear pass over the bytes of an XFI module 

checking statically that each XFI module has the appropriate structure and the 

necessary guards. Verification also considers the execution of machine-code 

instructions abstractly; it manipulates verification states which are predicates that 

describe concrete execution states. A trusted XFI module requires that it passes all 

verifications of a defined policy and that those policies hold during its execution. It 

can be seen as an example of proof-carrying code (PCC) [116], even though they 

do not include logical proofs. 

LXFI [86] isolates faults in a DD by checking its accesses to kernel API, according 

to programmer-specified integrity rules. LXFI uses a compiler plug-in to instrument 

the generated code to grant, check, and transfer capabilities between kernel 

modules.  

The main goal of LXFI is to prevent an adversary from exploiting vulnerabilities in 

kernel modules in a way that leads to a privilege escalation attack. LXFI protection 

relies in the control of the functions that a module is allowed to call, in the verification 

of its control flow and in the data structure integrity used by the module. The 

application of LXFI is a four step process where: i) developers annotate core kernel 

interfaces to enforce API integrity between the core kernel and modules, ii) module 

developers annotate certain parts of their module where they need to switch 

privileges between different module instances; iii) LXFI’s compile time rewriter 

instruments the generated code to perform API integrity checks at runtime and iv) 
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LXFI’s runtime is invoked at the instrumented points, and performs checks to uphold 

API integrity (if the checks fail, the kernel panics). 

Low Level Driver Execution Isolation 

One reason that explains many failures in commodity operating systems, is the close 

integration between untrusted extensions and the core kernel, which violates the 

principle of least authority. In particular, since new DDs are often introduced in the 

system, it is difficult to ensure that all of them behave correctly. Therefore, some 

proposals have suggested the use of low level isolation mechanisms to prevent 

failures in the drivers from propagating to the rest of the system. Some examples of 

these solutions are presented next. 

One of the first approaches to provide isolation of DDs on a commodity operating 

system was Nooks [76]. It seeks to achieve: i) DD execution isolation, ii) automatic 

recovery of the DD with iii) minimum changes to existing systems.  

The isolation performed by Nooks is achieved by memory management to 

implement lightweight protection domains with virtual memory protection, and the 

Extension Procedure Call (XPC), to transfer the control safely between DDs and the 

kernel. 

The memory management ensures that the kernel has read-write access to the 

entire memory space while DD is restricted to read-only access. The XPC 

mechanism provides a function to pass control from the kernel to the DD and another 

to pass control from the DD to the kernel. These transfer routines save the caller’s 

context on the stack, find a stack for the calling domain (which may be newly 

allocated or reused when calls are nested), change page tables to the target domain, 

and then call the function. The reverse operations are performed when the call 

returns. 

Nooks interposes on extension/kernel control transfers with wrapper stubs to 

perform the following tasks: i) check parameters for validity by verifying with the 

object tracker and memory manager that pointers are valid; ii) implement call-by-

value-result semantics for XPC, by creating a copy of kernel objects on the local 

heap or stack within the extension’s protection domain and iii) perform a XPC into 

the kernel or extension to execute the desired function. 

Nooks recovers from a DD failure by recording all resources that are held and 

when a failure is detected, the isolation components releases the resources and 

then tries to restart the driver. 

 Herder et al. [79] suggest a way to isolate DDs by enforcing least authority and 

refining the driver by extensive software-implemented-fault-injection testing. These 
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principles, intent to limit the damage that can result from accidents or errors. It also 

reduces the number of potential interactions among privileged programs so that 

unintentional, unwanted, or improper uses of privilege are less likely to occur. 

Another example of a fault isolation technique is proposed in Byte Granularity 

Isolation (BGI) [77]. BGI is implemented as a compiler plug-in that generates 

instrumented code for DDs and links it to an interposition library that mediates the 

communication between the DDs and the kernel. 

BGI runs DDs in controlled memory regions (domains) separated from the kernel 

and trusted DDs. It associates an Access Control List (ACL) with each byte of the 

virtual memory to the domains that can access it and how they can access it. Access 

rights are granted and revoked by code inserted by BGI compiler and by the 

interposition library according to the semantics of the operation being invoked. The 

protection is enforced by inline checks inserted by BGI and by checks performed by 

the interposition library. 

The interposition library contains kernel wrappers that are called by the DD and 

DD function wrappers that are called by the kernel. 

The kernel wrapper checks the rights to the arguments supplied by the DD, can 

revoke the rights to some of those arguments, it calls the wrapped kernel function, 

and it may grant rights to some objects returned by the function. The DD function 

wrapper may grant rights to some arguments, it calls the wrapped DD function, it 

may revoke rights to some arguments, and it checks values returned by the DD. 

This way BGI can grant access to the bytes that a domain should access and it 

can check accesses to these bytes regardless where they are in memory. 

Additionally, it controls when a domain is allowed to access these bytes because it 

grants and revokes the access to the specified bytes. 

BGI required modifications to the kernel to reserve virtual address space for the 

kernel table when the system boots, and to reserve virtual address space in every 

process when process are created to create the domains. 

3.6 Static Analysis 

For long the development of applications has been made easier because of 

compilers that are able to identify program errors related to syntax, type violations, 

and mismatches between a function’s formal and actual parameters. More 

sophisticated checking includes looking at pointers and uninitialized variables. 

However, most of the analysis is done intra-procedurally, and consequently 

problems caused by the interactions between functions are not detected. 

Additionally, these techniques are not applicable to many categories of defects, such 
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as memory leaks, buffer overflows, resource consumption and NULL pointer 

assignments to name a few. Another form of more sophisticated testing must 

therefore be applied to increase the quality and reliability of the software. 

Static analysis techniques analyse a program without executing it, but follow all 

paths while building an internal representation of the program’s control flow. Over 

the years many tools have appeared, and one way to classify them is based on the 

type of flaws that are searched for as the ones enumerated by the Common 

Weakness Enumeration (CWE) classes [131] or the Seven Pernicious Kingdoms 

taxonomy [132]. 

• Input validation and representation: Input validation and representation 

problems are caused by metacharacters, alternate encodings and numeric 

representations.  Security problems result from trusting input. 

• API abuse: An API is a contract between a caller and a callee. The most 

common forms of API abuse are caused by the caller failing to honour its 

end of this contract. For example, if a program fails to call a correct 

sequence of functions. 

• Security features: Incorrect handling of security features in topics such as 

authentication, access control, confidentiality, cryptography, and privilege 

management.  

• Time and state: Defects related to unexpected interactions between 

threads, processes, time, and information, deadlocks, race conditions. 

• Errors: Errors related with error handling. 

• Code quality: Poor code quality of the code leading to unpredictable 

behaviours, especially under system stress. 

• Encapsulation: Poor software boundaries leading to data leakage between 

users and debug code leftovers. 

• Environment: Everything that is outside of the source code but is still critical 

to the security of the product that is being created. 

The Input Validation and Representation category looks into bugs that are 

caused by meta characters, alternate encodings and numeric representations, and 

security problems resulting from trusting input. Examples of bugs in this category 

are buffer overflows, command injection, cross-site scripting, format string, integer 

overflow, SQL injection, etc. This category includes several of the bugs normally 
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reported as security vulnerabilities by tool vendors. Tools that support both timing 

and state, and input validation and representation bugs include:  

• Coverity [133][134][146], a C, C++ and Java checker;  

• Jlint [135][136], a checker of Java class files that is based on data flow and 

abstract interpretation;  

• PREfast [56], a C, C++ checker based on intra-procedural analysis and 

statistics;  

• Splint [137], a C lint prototype for security vulnerability analysis based on 

taint annotations;  

• Archer [138], a C array checker that uses symbolic analysis; 

• FindBugs [139], a Java checker that uses bug-patterns and data flow 

analysis on Javaclass-files;  

• Gramma Tech's CodeSonar [140], a C,C++ checker that performs whole-

program, inter procedural analysis. 

The Timing and State category looks into bugs that are due to distributed 

computation via the sharing of state across time. Examples of bugs in this category 

are dead locks and race conditions. Tools that support this category of bugs include:  

• JPF [95][128], a Java programming language checker that model-checks 

annotated Java code;  

• PREfix [141], a C/C++ checker based on inter-procedural data flow analysis;  

• ESP [142], a C checker that focuses on scalability of analysis and 

simulation;  

• Goanna [143], a C/C++ checker that model-checks static properties of a 

program. 

The Security Features category is concerned with authentication, access control, 

confidentiality, cryptography and privilege management. Examples of bugs in this 

category are insecure randomness, least privilege violation, missing access control, 

password management and privacy violation. A tool that supports timing and state, 

input validation, and security features is Veracode [144], a binary/executable code 

checker based on data flow analysis that performs penetration testing on the binary 

code. 

The API Abuse category is concerned with the violation of the (API) contract 

between a caller and a callee. Examples of bugs in this category are dangerous 
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functions that cannot be used safely, directory restrictions, heap inspection, and 

various often misused language or operating system features. Tools that support 

timing and state, as well as API abuse bugs include:  

• SLAM [58][144], a C/C++ DD checker that model-checks and verifies code 

against a specification of a DD;  

• A tool that support timing and state, input validation, security features and 

API abuse bugs is Static Code Analysis [14]. 

• Other uses of static analysis approaches have been applied to the detection 

of viruses and worms [93][123][124][125]. Also, it has been applied to the 

detection of rootkits [126] and spyware-like behaviour [127]. 

The research on static analysis tools is by far exhaustive. However, from the 

sample, it can be apprehended that most of the static analysis tools requires access 

to the source code or annotations. Binary static analysis tools also exist but they 

face additional challenges since need to deal with machine code representation 

which difficult the analysis. In this kind of tools typically a pre-processing phase is 

performed to translate the binary code to its internal representations as is the case 

of [94] (see also RevGen [97] and LLVM [96] representation). 

Our interest in these tools is quite clear, static analysis tools can play a role in 

the detection of vulnerabilities and errors of DDs. However, many of the static 

analysis tools require changes in the source code to be effective, which is something 

not easy to get for commercial operating systems. There are however a few 

techniques that can operate over binary code. 

We will describe some of the existing work related with static analysis and 

understand how we may benefit from static analysis to help us find vulnerabilities in 

DDs. 

Compile time static analysis  

PREfast is a static verification tool that examines each function of the driver code 

independently, for the detection of general syntax and coding errors, such as 

unchecked return values [55]. The driver-specific features detect subtler errors, such 

as leaving uninitialized fields in a copied I/O Request Packet (IRP) and failing to 

restore a changed Interrupt Request Level (IRQL) by the end of a routine. 

PREfast has to know additional information about the source code in the form of 

annotations. These annotations are special macros that are expanded into 

meaningful definitions only when PREfast runs. General-purpose and driver-specific 

annotations are defined in header files that must be included in the code. The 
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annotations extend function prototype and describe the contract between the 

function and its caller. This enables for PREfast to analyse the code more 

accurately, with significantly fewer false positives and false negatives. Annotations 

also make the code easier to read, forming a documentation that does not drift apart 

from the code.  

Static Driver Verifier (SDV) is a source level compile-time tool that explores code 

paths in a DD by symbolically executing the source code [57][58][121]. SDV 

automatically creates an alternative program that is an abstraction of the original 

program. The alternative program is then checked against API usage rules using a 

state machine. The program abstraction is expressed as a Boolean program that 

has all the control-flow constructs of the original code (including procedures and 

procedure calls) but only Boolean variables. SDV uses a symbolic model checking 

algorithm based on binary decision diagrams [122] to determine if the Boolean 

program obeys to the API usage rule. SDV places a driver in a hostile environment 

and systematically tests all code paths looking for violations of WDM usage rules. 

The symbolic execution makes very few assumptions about the state of the OS or 

the initial state of the driver, so it can exercise situations that are difficult to analyse 

by traditional testing. 

Runtime Checking 

Static analysis has also been employed to detect implementation flaws or 

deficiencies in input validation or device responsiveness as is the case of Carburizer 

[80]. It uses CIL [130] and intermediate language and tool set for analysis and 

transformation of C programs to read the pre-processed C code of the driver and 

produce an internal representation of the code suitable for static analysis that locates 

dependencies on inputs from the device. When it finds in the code a control decision, 

such as a branch or a function call, based on data from the device, the analyser 

marks the data as sensitive because it is dependent on the correct functioning of the 

device. Similarly, if the driver code uses a value originating from a device in an 

address calculation, such as an array index, the use of the address is also 

dependent on the device and thus marked as possibly unsecure.  

Carburizer inserts the necessary code to report a failure if the data is incorrect. 

Additional code is also generated aiming to detect stuck interrupts and non-

responsive devices. In the case of problems with the device, the added code invokes 

a generic recovery service that can reset the device using shadow drivers [129] to 

provide this service. 
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Static verification of binary code 

In [94] is described an approach for the identification of use of data coming from 

untrusted sources in x86 executables in ELF binary format. It performs the analysis 

of the binary program assembly level representation of the program. During the 

analysis of the program, indirect call and jump instructions are attempted to be 

resolved to help in the identification of functions and the derivation of a complete 

control flow graph. To resolve the jump-table-based branches, the code is 

backtracked in the code until the instruction that set up the jump table access is 

reached, thus recovering the base location and the number of entries in the table.  

Mechanisms are applied to detect loops. Recursive function calls are identified 

by applying a standard topological sort algorithm on the function call graph of the 

program. 

The resolution of the library functions used in the program to test is performed by 

combining the information contained in the Procedure Linkage Table and the 

relocation table of the binary. 

The analysis technique uses symbolic execution of functions to determine a set 

of possible targets and approximates all possible concrete executions and focus on 

identifying insecure uses of the standard C library functions. 

3.7 Driver Programming Model 

Among the main reasons behind buggy drivers are low-level programming 

language, poorly-defined communication protocols between the DD and the OS, a 

complex driver execution infrastructure and a multithreading computational model. 

To address these difficulties, efforts were made to provide safer programming 

languages and a friendlier driver execution infrastructure. 

Commodity OS such as Windows and Linux and their extensions are built using 

mainly the C language, which gives a high level of freedom to the programmers 

namely to make mistakes.  

To be effective the driver programming model approach needs to be adopted by 

DD writers and sponsored by both OS and device manufacturers since they require 

changes in the current development paradigm as well as access to protected 

information. 

Introducing changes to existing programming languages can improve the quality 

of driver building, with an increase of the overall dependability. However, requiring 

the use of totally different languages and building procedures may be a challenge.  
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Formal specification is a way to have a clear and well defined contract between 

the DD and the rest of the system. It relies on the accurate and detailed information 

to minimize bugs. Eventually, automatic tools can then formally analyse the resulting 

code and identify specification violations either statically or dynamically. 

The replacement of the multi-threaded model with an event-based model can be 

a solution to reduce (or eliminate) some of the difficulties related with concurrency, 

one of the most common problems in driver development. 

In this section we will describe some example works that aim to achieve 

correctness by construction as opposed to fault detection and isolation. The goal is 

to eliminate the root causes that lead to faults instead of dealing with their 

consequences. 

Type Based Checking and Restart Capabilities 

SafeDrive [85] aims to improve DD reliability by adding type-based checking and 

restart capabilities to existing DDs written in C language. The primary goal of 

SafeDrive is to detect memory and type errors ensuring that data of the correct type 

is used in kernel API calls and in shared data structures, preventing the kernel or 

devices from receiving incorrect data. 

To transform a driver written in C into one that obeys stricter type safety 

requirements there is the need to fix the C languages constructs that can cause 

violations without requiring extensive rewrites. SafeDrive uses Deputy, a type 

system for pointers that can enforce memory safety by using annotations in header 

files for APIs and shared structures. The annotations express known relationships 

between variables and fields (e.g., int * count(len) buf means that the 

variable len holds the number of elements in buf). Programmers are responsible 

for inserting type annotations that describe pointer bounds expressing known 

relationships between variables and fields  

Deputy is implemented as a source-to-source transformation that runs 

immediately after pre-processing. During compilation the annotations are 

transformed into appropriate run-time checks. At run time a SafeDrive extension is 

loaded into the same address space as the host system and is linked to both the 

host system and the SafeDrive runtime system. The SafeDrive runtime system 

checks the compliance with the assertions and tracks the use of resources that are 

being requested by the driver to the OS. If assertions fail, SafeDrive invokes the 

recovery subsystem that will use its internal data structures to restore the resources 

used by the driver. 
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Laddie [88] introduced a type-safe language that enables driver writers to create 

I/O interfaces between a driver and its device so that these I/O interfaces cannot be 

easily misused. A Laddie specification consists in a set of declarations that form I/O 

rules for reading and writing into the registers of a device. The rules are pre-

conditions and post-conditions for reading and writing each register. Each 

specification is organized in two different sections. The first one is where the 

components for the logical state of the device are declared. The second part is 

where the I/O rules for communicating with the device are set. 

To produce a DD a programmer need to go through the following stages: i) 

produce a Laddie specification; ii) compile the Laddie specification and produce Clay 

output files [120]; iii) write the body of the DD in Clay language and iv) compile Clay 

files to obtain the driver. During this compilation stage a series of verifications are 

run to ensure that all types are declared and that rules are consistent. The 

consistency tests will catch errors where no inputs could satisfy the conditions. 

Clay’s compiler will do all the compile time checking and inform the programmer 

if any run-time checks are still necessary to be included in the driver code. 

Formal Specification 

Writing formal specifications has associated challenges since they derive from the 

device and OS specifications and documentations itself that seldom undergoes 

adequate quality assurance causing the formal specification derived from such 

information to reproduce defects in addition to extra ones introduced during the 

formalisation process.  

Distilling device specifications from existing driver implementations is another 

possible approach to construct a device specification. However, access to source 

code is usually not the case for commercial OS. Besides, a DD may contain errors, 

which may be carried over to the resulting specification. A third approach to 

construct a device specification is to derive it from the register transfer level (RTL) 

description of the device written in a hardware description language while 

abstracting away most of internal logic and modelling only interface modules. 

However, access to the RTL description is usually not viable since it is part of the 

device manufacturer’s intellectual property. 

Termite [87] is a DD synthesis tool that uses a combination of formal 

specifications of the device’s registers and behaviour and the interface between the 

device and the OS to produce a less error prone working DD.  

The device interface specification describes the programming model of the 

device, including its software-visible states and behaviours. The OS interface 
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specification defines the services that the driver has to provide to the rest of the 

system, including the services available from the OS to the driver.  

Given the specifications, the Termite algorithm implements a driver in C language 

that satisfies two main requirements: i) safety (the driver shall not violate the 

specified order of operations) and ii) liveness (the driver is required to perform all its 

actions within a finite number of steps). 

The construction of a device is performed in three steps. The first step combines 

individual driver interface specifications into a single specification. The second step 

produces a driver state machine that has safety and liveness properties. The third 

step translates the state machine into a driver implementation in C.  

The formal specification of a DD is written in a high-level language and is 

therefore not as error-prone as developing the DD itself. Errors in specifications can 

be reduced by using model checking techniques. Thus, generating the code 

automatically from the formal specifications reduces programming errors in drivers 

since a bug in the driver can only occur as a result of an error in the specification.  

Event Based Model 

Currently in modern OS the driver functions are mainly called by the kernel when it 

needs to perform an I/O or deliver an interrupt notification to the driver. However, 

since kernels are multithreaded, the driver needs to be prepared to handle 

concurrent invocations by multiple threads. This increases complexity since the 

functions of the driver need to be constructed in such a way that do not deadlock 

the all system and have synchronization mechanisms to hold these evocations.  

As an alternative to the traditional multithreading approach, Dingo proposes the 

use of an event driven model [84]. Dingo also provides Tingu, a formal language for 

describing driver software protocols for a clear and unambiguous description of 

requirements of driver behaviour.   

In Dingo, a driver software protocol is the collection of protocols that regulates 

the communication between the driver and the hardware device and the OS. This 

communication occurs over ports, which are bidirectional message-based 

communication points. Each port is associated with one protocol that defines the 

messages that can be exchanged, constraints on ordering, time control and 

contents. A protocol is violated if, after entry into a state, the given amount of time 

passes without triggering a transition leading to a different state.  

The Tingu compiler generates a protocol observer from the Tingu specification of 

its ports. It intercepts all messages exchanged by the driver and keeps track of the 
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state of all its protocols. Whenever the driver or the OS fails to comply with the 

messages timings and/or contents the observer notifies the OS about the failure.  

While Dingo does not eliminate bugs caused by an incorrect implementation of 

the protocol, the presence of a clear and complete specification of the protocol tends 

to reduce the occurrence of these bugs.  

Another example system that proposes to reduce the complexity of driver 

development by changing to an active event-driven model is the Active DD 

architecture [89] 

The active DD architecture [89], similar to Dingo, deals with synchronization 

issues as well as provides a clear driver control flow by assigning a dedicated thread 

to a DD. This driver thread receives requests from the kernel via message passing 

in an event-based way. 

3.8 Summary 

Fault injection deliberately introduces faults into a SUT to experimentally validate its 

dependability. In what concerns to fault injection, the target system may be classified 

in one of the following major types: i) Axiomatic models, ii) Empirical processing 

models and iii) Physical systems. 

Simulation-based fault injection involves computational models of systems and 

their implementation in simulation software. Highly detailed models may take too 

much time to simulate due to the size of the system’s activity. On the other hand, 

lighter models may be faster to run but may not accurately represent the systems 

mechanisms due to the implemented abstractions. A representative tool of 

implemented simulation-based fault injection is DEPEND [12]. 

Field Programmable Gate Array (FPGA) circuits allow the implementation of 

Hardware Emulation Based Fault Injection through emulation models of hardware 

components. The FPGA can be programmed to mimic the intended hardware 

opening a window of opportunity for the execution of fault injection experiments into 

system models within a reasonable time and having most of the advantages of 

simulation-based fault injection. 

Hardware-implemented fault injection refers to the process of injecting faults in a 

physical system. In most cases the processor was chosen as the target because the 

system behaviour is mainly determined by this component. Several hardware-

implemented fault injection techniques were developed such as: i) Pin-level fault 

injection where the injector probe has physical contact with the target Integrated 

Circuit (IC) and directly interferes with the electric signals of the system (see for 

instance [16][17][18][19]); ii) Test Access Ports Fault injection uses I/O Test Access 
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Ports (TAP) allows the injection of faults into the pins and internal state elements of 

the IC [23][24][25]; iii) Electro-magnetic interference fault injection uses a wide range 

of sources to produce electro-magnetic interference into the systems [21][22]; and 

iv) Radiation-Based fault injection that uses radiation (e.g.; heavy-ion) to potentially 

influences the behaviour of the target electronics [26][149][150]. 

Software-Implemented Fault Injection (SWIFI) is primarily motivated to avoid the 

difficulties and cost inherent to physical fault injection approaches and is intended 

to emulate both software and hardware faults. It presents lower complexity and 

development effort than hardware fault injection tools and can emulate hardware 

faults with high degree of control. Some proposed SWIFI tools include FERRARI 

[28], FIAT [27], FINE [29], DEFINE [30], DOCTOR [31], FTAPE [32], GOOFI [34] 

and Xception [33]. 

Robustness testing is an experimental evaluation technique which forces 

incorrect inputs and/or stressful situations to systems or system components, trying 

to activate faults that result in incorrect operation. One of the main targets of 

robustness testing has been the OS interfaces, which have been tested with 

erroneous inputs being inserted at the application interface (see for instance [38] 

[40][42][43][44][46][51][59][60][61]). 

Instrumentation is done by inserting debugging and profiling information into the 

system. It supports monitoring and measurement of the level of performance of the 

application and capture execution traces to help the diagnose of errors. Having 

access to appropriate source code, it is often trivial to insert new instrumentation or 

extensions into systems. When no source code is available, the ability to instrument 

unmodified binaries facilitates the analysis of commercial applications in realistic 

scenarios. Some example of instrumentation tools include, Detours [90], NTrace 

[102] and DDT [81]. 

Commodity operating systems are built using a monolithically design where all 

the operating system functions run in kernel mode. However, with this unconstrained 

access, every bug in these components can potential compromise the system 

correctness. The isolation of the execution of kernel components have been 

proposed using Runtime Protection [115], Static Verification and Runtime Memory 

Protection [83][86] and Low Level Driver Execution Isolation [76][77][79]. 

Static analysis techniques analyse a program without executing it. Static analysis 

tools follow all paths while building an internal representation of the program’s 

control flow. Most of the static analysis tools requires access to the source code or 

annotations. Complex systems can take too long or being impossible to analyse. 

Binary static analysis tools also exist but they face additional challenges since need 
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to deal with machine code representation which difficult the analysis. Examples of 

static analysis tools were given in the following categories: i) compile time static 

analysis; ii) runtime checking and static verification of binary code. The following are 

examples of static analysis tools, Coverity [133][134][146], Jlint [135][136], PREfast 

[56], Splint [137] (see also [95][128][138][139][140][141][142][143]). 

Among the main reasons behind buggy drivers are low-level programming 

language, poorly-defined communication protocols between the DD and the OS, a 

complex driver execution infrastructure and a multithreading computational model. 

Introducing changes to existing programming languages can improve the quality of 

driver building, with an increase of the overall dependability.  

Formal specification is a way to have a clear and well defined contract between 

the DD and the rest of the system. It relies on the accurate and detailed information 

to minimize bugs. Eventually, automatic tools can then formally analyse the resulting 

code and identify specification violations either statically or dynamically. 

The replacement of the multi-threaded model with an event-based model can be 

a solution to reduce (or eliminate) some of the difficulties related with concurrency, 

one of the most common problems in driver development. 
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CHAPTER 4 ROBUSTNESS TESTING OF THE 
WINDOWS DRIVER KIT 

 

 

 

 

Device Drivers are one of the major sources for system malfunctions. Previously we 

have explained a series of potential causes that contribute for this situation. In the 

case of monolithic OS architectures, the main reason for these problems can be 

attributed to the fact that the driver executes with the same privileges as the OS 

kernel. Since it is very difficult to change the existing software architecture, 

researches have proposed solutions to minimize the effects of faults in the drivers 

either by executing the driver code in a separate environment (from the kernel) or 

by wrapping the code with enough controls to prevent faults from compromising the 

overall system execution. The success of these solutions depends on how effective 

are the designed mechanisms to cope with all sorts of flaws that a DD may have.  

The undeniable fact is that DDs are becoming the most dynamic and larger part 

of the OS code and, with new devices released frequently, this problem can grow 

exponentially. In this chapter, we study in some detail the effect of DD faults on the 

dependability of a system and determine how the OS is prepared to cope with them. 

This study can help us identifying some common types of faults that may lead to 

system failure and contribute to devise solutions that could prevent them more 

effectively.  

In this part of our investigation we focus on the interface between the DD and the 

OS. As we are especially interested in dealing with Windows DDs we designed a 
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methodology to evaluate the robustness of the DD Kit (DDK) functions. We also built 

a tool that implements the methodology, which has its roots in the Ballista [43] 

approach. In our tool several test drivers are generated, containing DDK function 

calls with erroneous arguments. The argument values were selected specifically for 

each function, and they emulate seven classes of typical programming errors.  

4.1 The Test Methodology  

In a robustness testing campaign one wants to understand how well a certain 

interface withstands erroneous input to its exported functions. Each test basically 

consists on calling a function with a combination of good and bad parameter values, 

and on observing its outcome in the system execution. As expected, these 

campaigns can easily become too time consuming and extremely hard to perform, 

especially if the interface has a large number of functions with various parameters, 

since this leads to a combinatory explosion on the number of tests that has to be 

carried out.  

This kind of problem occurs with the Windows DDK because it exports more than 

a thousand functions. However, from the group of all available functions, some of 

them are more commonly used than others, and therefore these functions potentially 

have more impact in the system. Moreover, in most cases, (good) parameter values 

are often restricted to a small subset of the supported values of a given type. 

Based on these observations, we developed a methodology to test the Windows 

DDK. It has several steps that are implemented by a set of tools, as represented in 

Figure 4-1. The DevInspector tool performs an automatic analysis of the target 

system to obtain a list of available DDs. Then, it measures the presence of each 

imported function from the DDK by each driver.  

Using this data, one can select a group of functions for testing, the candidate list. 

A XML file is manually written to describe the prototype of each function, which also 

includes the fault load (e.g., the bad values that should be tried).  

Next, the DevBuilder tool takes as input the information contained in the XML file, 

a template of a DD code, some compilation definitions, and generates the workload 

utilized to exercise the target system and to observe its behaviour. The workload 

includes for each function test a distinct DD that injects the faulty input. 

Other approaches could have been employed to implement the tests (e.g., a 

single DD injects all faulty data). However, the selected solution was chosen 

because: i) the control logic of each driver and management tool becomes quite 

simple; ii) the interference between experiments basically disappears because an 

OS reboot is performed after a driver test, iii) last, one can determine if the DD 

loading and unloading mechanisms are damaged by the injected faults. 
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Figure 4-1: Test DD generation. 

 

The study has looked in a comparative basis at aspects such as error 

containment, influence of the file system type, and the diagnosis capabilities of 

minidump files. 

4.2 Selecting the Candidate List 

Windows stores drivers in the portable executable file format [62], which contains a 

table with the functions that are exported from the driver and imported from the OS. 

In the case of drivers, the imported functions are the ones provided by the DDK. 

Therefore, one can discover the DD currently available in a system by looking for 

.sys files placed in \system32\drivers. Then, by examining the table of 

imported functions of the existing drivers, one can collect statistics about which DDK 

functions are utilized in practice. 

In our experiments, we have performed several installations of Windows XP and 

Windows Server 2003 to use FAT32 and NTFS file systems. Windows Vista was 

installed only with NTFS file system. These OS and file system combinations were 

installed in a DELL Optiplex 170L computer. Table 4-1 shows the number of drivers 

found for each of our Windows installations. 
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Each line in the table identifies the OS name and file system, the number of 

drivers that were found in the OS installation and that were running when the boot 

sequence completed, and the number of functions imported by these drivers. As it 

is possible to observe, Windows Vista imports many more functions than Windows 

Server 2003 for roughly the same number of drivers (2400 instead of 1463).  

 

Table 4-1: Drivers in a Windows OS installation. 

OS File System 

Drivers # of 
different 
functions 
in running 
Drivers 

Total Running 

Windows XP 
FAT32 259 93 1490 

NTFS 260 94 1494 

Server 2003 
FAT32 189 93 1463 

NTFS 189 92 1463 

Vista NTFS 250 113 2400 

 

From the analysis of these drivers (both total and running), it was possible to 

conclude that a small group of functions was commonly present in the majority of 

the DD, and that most of the rest of the functions were infrequently utilized (e.g., 

around 900 functions were only called by 1 or 2 drivers). These results indicate that 

if one of the most common imported functions unsafely treats its parameters, then 

almost every DD is potentially affected. 

For this work, the functions that were chosen for the candidate list were the ones 

commonly imported by the majority of the drivers. Being impossible to test every 

function in a reasonable time, it was used the following selection criterion:  

 

“The tested functions had to be present in at the least 95% of all running drivers”.  

 

Table 4-2 displays the first group of the most used functions that satisfied this 

criterion. In each line, the table presents our internal identifier, the name of the 

function and its alias (to reduce the size of the rest of the tables). We have found 

out that this list changes very little when this criterion is applied to all existing drivers 

and not only the running ones.  

Table 4-3 displays the driver coverage by this group of functions in each OS 

configuration. 
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Table 4-2: Top 20 called DDK functions. 

ID Name Alias 

1 ntoskrnl::RtlInitUnicodeString InitStr 

2 ntoskrnl::ExAllocatePoolWithTag AllocPool 

3 Ntoskrnl::KeBugCheckEx BugCheck 

4 ntoskrnl::IofCompleteRequest CompReq 

5 Ntoskrnl::IoCreateDevice CreateDev 

6 Ntoskrnl::IoDeleteDevice DeleteDev 

7 ntoskrnl::KeInitializeEvent InitEvt 

8 ntoskrnl::KeWaitForSingleObject WaitObj 

9 ntoskrnl::ZwClose ZwClose 

10 ntoskrnl::IofCallDriver CallDrv 

11 ntoskrnl::ExFreePoolWithTag FreePool 

12 ntoskrnl::KeSetEvent SetEvt 

13 ntoskrnl::KeInitializeSpinLock InitLock 

14 HAL::KfAcquireSpinLock AcqLock 

15 HAL::KfReleaseSpinLock RelLock 

16 ntoskrnl::ObfDereferenceObject DerefObj 

17 ntoskrnl::ZwOpenKey OpenKey 

18 ntoskrnl::ZwQueryValueKey QryKey 

19 IoAttachDeviceToStack AttachDev 

20 ntoskrnl::memset Memset 

 

Table 4-3: Top 20 functions driver coverage. 

OS File System Driver Coverage 

Windows XP 
FAT32 96,7% 

NTFS 96,8% 

Server 2003 
FAT32 96,7% 

NTFS 96,7% 

Vista NTFS 97,3% 

 

Other selection criteria were considered, such as the static or dynamic frequency 

of function calls. Static frequency picks functions that appear many times in the code 

without taking into account the logic under it – a function may appear repeatedly in 

the code but may never be executed.  

Dynamic frequency chooses the functions that are called most often during the 

execution of a given workload. Therefore, if the workload has a high file activity then 

disk drivers would run more, and their functions would be selected for the candidate 

list. This will bias the analysis towards the elected workload, which is something we 

decided to avoid in these experiments. 
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4.3 Tested Faulty Values 

The main responsibility of the DevBuilder tool is to write DD based on the template 

code, each one carrying out a distinct function test (see Figure 4-1). To accomplish 

this task, all relevant data about the functions is provided in a XML signature file, 

and a DD source code template with special marks that identify where to place the 

information translated from XML into source code. 

The signature file includes the function name, parameter type and values that 

should be tried out as well as the expected return values. In addition, for certain 

functions, it also contains some setup code that is inserted before the function call, 

to ensure that all necessary initializations are performed. Similarly, some other code 

can also be included, which is placed after the function call, for instance to evaluate 

if some parameter had its value correctly changed or to check the returned value of 

the performed call. 

In order to obtain the relevant data about the functions, we had to resort to the 

Windows DDK documentation. From the point of view of a DD developer, this 

documentation corresponds to the specification of the DDK functions. Therefore, if 

there are errors in the documentation, then they may be translated into bugs in the 

drivers’ implementations (and also in our tests). Nevertheless, in the worst case, if 

a problem is observed with a test, at least it indicates that the function description 

contains some mistake.  

The signature file defines seven types of correct and faulty inputs. These values, 

summarized in Table 4-4, emulate the outcomes of some of the most common 

programming bugs.  

Table 4-4: Fault type description. 

Fault Type Description 

Acceptable Value Parameter is initialized with a correct value. 

Missing local variable initialization Parameter with a random initial value. 

Forbidden values 
Uses values that are explicitly identified in the DDK 
documentation as incorrect. 

Out of bounds value Parameters that exceed the expected range of values. 

Invalid pointer assignment Invalid memory locations. 

NULL pointer assignment NULL value passed to a pointer parameter. 

Related function not called 
This fault is produced by deliberately not calling a setup 
function, contrarily to what is defined in the DDK 
documentation. 

 



 

 

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 75 

 

 

4.4 Expected Failure Modes 

The list displayed in Table 4-5 represents the possible scenarios that are expected 

to occur after a DD injects a fault into the OS. Initially we started with a much larger 

list of failure modes, which was derived from various sources, such as the available 

works in the literature and expert opinion from people that administer Windows 

systems. However, as the experiences progressed, we decided to reduce 

substantially this list because several of the original failure modes were not observed 

in practice.  

Generally speaking, there are two major possible outcome scenarios: either the 

faulty input produces an error (e.g., a crash) or it is handled in some manner. Since 

the fault handling mechanisms can also have implementation problems, the FM1 

failure mode was divided in three subcategories. In order to determine which 

subcategory applies to a given experiment, the DD verifies the correctness of the 

return value (if it was different from void) and output parameters of the function. 

• Returns ERROR (RErr): The return value from the function call indicates 

that an error was detected possibly due to invalid parameters. This means 

that the bad input was detected and was handled properly. 

• Returns OK (ROk): The return value of the call indicates a successful 

execution. This category includes two cases: even with some erroneous 

input, the function executed correctly or did not run but returned OK; all input 

was correct, for instance because only good parameter values were utilized 

or the random parameters ended up having acceptable values. 

• Invalid return value (RInv): Sometimes several values are used to indicate 

a successful execution (a calculation result) or an error (reason of failure). 

When the return value is outside the range of possible output values (at least 

from what is said in the DDK documentation), this means that either the 

documentation or the function implementation has a problem. 

Table 4-5: Expected failure modes. 

ID Description 

FM1 No problems are detected in the system execution. 

FM2 The applications or even the whole system hangs. 

FM3 
The system crashes and then reboots; the file system is checked and NO corrupted 
files are found. 

FM4 Same as FM3, but there are corrupted files. 
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The experimental system was configured such that whenever a crash occurs, 

Windows generated a minidump file to describe the execution context of the system 

when the failure took place. The analysis of this file is very important because it 

allows developers to track the origin of crashes. Although several efforts have been 

made to improve the capabilities of crash origin identification, still some errors 

remain untraceable or are detected incorrectly. 

Whenever an experiment caused a crash, the minidump files were inspected to 

evaluate their identification capabilities. Four main categories of results were 

considered:  

• Identification OK (M1): The minidump file correctly identifies the faulty 

driver as the source of the crash. 

• Identification ERROR (M2): The minidump file identifies other module as 

the cause of failure.  

• Unidentified (M3): The minidump file could not identify either the driver or 

other module as the source of the crash. 

• Memory Corruption (M4): The minidump file detected a memory 

corruption. 

4.5 Experimental Setup 

Since the experiments were likely to cause system hangs or crashes, and 

sometimes these crashes corrupted files, two machines were used to automate most 

of the tasks (see Figure 4-2). The target machine hosts the OS under test and the 

DD workload, and the controller machine is in charge of selecting which tests should 

be carried out, collecting data and rebooting the target whenever needed.  

After booting the targeting machine, the DevInject contacts the DevController to 

find out which driver should be used in the next experiment. Then, DevInject loads 

the driver, triggers the fault, checks the outcome and, if everything went well, 

removes the driver.  

The DevController is informed of each step of the experiment, so that it can 

instruct the DevInject what actions should be performed next. This way, the target 

file system is not used to save any intermediate results or keep track of the 

experience, since it might end up being corrupted. The target file system is however 

utilized to store the minidump files and the corrupted files that were found. After a 

reboot, the DevInject transfers to the DevController all this information using FTP. 
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Figure 4-2: Experimental setup. 

All measurements were taken on a prototype system composed by two x86 PCs 

linked by an Ethernet network. The target machine was a DELL Optiplex computer 

with 512Mb and 2 disks.  

Three OS versions and two distinct file systems, FAT32 and NTFS, were 

evaluated. The outcome was five different configurations (Vista was not tested with 

FAT32). The exact OS versions were: Windows XP Kernel Version 2600 (SP 2), 

built: 2600.xpsp_sp2_gdr.050301-1519, Windows Server 2003 Kernel Version 3790 

(SP 1), built: 3790.srv03_sp1_rtm.050324-1447 and Windows Vista Kernel Version 

5600, built: 5600.16384.x86fre.vista_rc1.060829-2230. 

Microsoft provides an equivalent DDK for all OS. This way the same set of drivers 

that have been synthetically produced could be used to test the various OS.  In every 

target configuration the initial conditions were the same, the OS were configured to 

produce similar types of dump files, and the DevInject tool was basically the only 

user application running. 

The experiments were performed without load to ensure that results were highly 

repeatable, and therefore to increase the accuracy to the conclusions.  

4.6 Discussion of Results 

The observed failure modes are displayed in Table 4-6. The first three columns 

present the function identifier ID, its alias name and the number of experiments 

carried out with each function. The failure modes for the various OS configurations 

are represented in the next four groups of columns, under the headings FM1 to FM4. 

Each column group presents one value for each OS configuration. 
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Figure 4-3: Relative robustness (FM1/#DD). 

In the 20 functions that were tested, several of them were able to deal at least 

with a subset of the erroneous input. There were however a few cases where results 

were extremely bad, indicating a high level of vulnerability. 

By computing the formula FM1/#DD for each FM1 entry, one can have an idea 

about the relative robustness of the functions (see Figure 4-3). The results obtained 

using Windows XP with FAT and NTFS files systems were the same. This also 

happened in the case of Windows 2003. For these reason, we are showing a more 

simplified view of the results. As displayed in the graph, only two functions were 

100% immune to the injected faults, ZwClose and QryKey. On the other hand, eight 

functions had zero or near zero capabilities to deal with the faults.  

One reason for this behaviour is that some of these functions are so efficiency 

dependent (e.g., CompReq and AcqLock) that developers probably have avoided 

the implementation of built in checks. Another reason is related to the nature of the 

function, which in the case of BugCheck is to bring down the system in a controlled 

manner, when the caller discovers an unrecoverable inconsistency. In this case, the 

developers probably preferred to reboot the system even if some parameters were 

incorrect (but notice that this reboot sometimes was not done in a completely 

satisfactory way since files ended up being corrupted). 
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Observing again Table 4-6 from the various functions it is possible to conclude 

that only two caused the system to hang (vertical section FM2: Hangs). Functions 

AcqLock and AttachDev caused hangs in all OS configurations, when an invalid 

pointer was passed as argument. Most of the erroneous inputs that caused failures 

end up crashing the system (vertical section FM3 and vertical section FM4). From 

the various classes of faults that were injected, the most malicious were invalid 

pointer assignments and NULL values passed in pointer parameters. The first class, 

invalid pointers, is sometimes difficult to validate, depending on the context (e.g., a 

buffer pointer that was not properly allocated but has a different value than NULL). 

On the other hand, NULL pointers can be easily determined and for this reason it is 

difficult to justify why they are left un-checked, allowing them to cause so many 

reliability problems. 

In all experiments, it was never observed any file corruption with the NTFS file 

system after a reboot. However, the FAT32 file system displayed in many instances 

cases of corruption. Traditionally, NTFS has been considered much more reliable 

than FAT32, and our results contribute to confirm this. The reliability capabilities 

integrated in NTFS, like transactional operations and logging, have proven to be 

quite effective at protecting the system during abnormal execution. The overall 

comparison of the 3 operating systems, if we restrict ourselves to NTFS or FAT32, 

shows a remarkable resemblance among them.  

The last two rows of Table 4-6 present an average value for the failure modes 

and OS configurations. On average, OSs had an approximately equivalent number 

of failures in each mode, with around 73% testes with no problems detected during 

the system execution.  Hangs were a rare event in all OSs. If a finer analysis is made 

on a function basis (see Figure 4-3), we observe a similar behaviour for most 

functions. There were only two functions where results reasonably differ, SetEvt and 

memset. From these results, there is reasonable indication that the 3 operating 

systems use comparable levels of protection from faulty inputs coming from drivers.  

These results reinforce the idea that although the Windows NT system has 

undergone several name changes over the past several years, it remains entirely 

based on the original Windows NT code base. However, as time went by, the 

implementation of many internal features has changed. We expected that newer 

versions of the Windows OS family would become more robust; in practice, we did 

not see this improvement at the driver’s interface. Of course, this conclusion needs 

to be better verified with further experiments. 

 

 



 

 

CHAPTER 4 - ROBUSTNESS TESTING OF THE WINDOWS DRIVER KIT 81 

 

 

Return Values from Functions 

As explained previously, even when the system executes without apparent 

problems, the checking mechanisms might not validate the faulty arguments in the 

most correct manner and produce fail-silent violations. Therefore, FM1 can be 

further divided in three sub-categories to determine how well the OS handled the 

inputs.   

Table 4-7 shows the results of the experiments obtained when the function 

execution returned a value in the RErr category, i.e., an error was detected by the 

function. Since some functions do not return any values, their corresponding table 

entries were filled with “-”. The “# Faulty Drivers” column refers to the number of 

drivers produced by DevBuilder that contained at least one bad parameter. 

Comparing this column with the following five columns, one can realize that only two 

functions have a match between the number of faulty drivers and the number of RErr 

values. The other functions revealed a limited parameter checking capability.   

Table 4-7 Return error (RErr) values. 

ID Alias 
#Faulty 
Drivers 

RErr 

XP 2003 Vista 

Fat Ntfs Fat Ntfs Ntfs 

1 InitStr 9 0 0 0 0 0 

2 AllocPool 200 20 20 20 20 12 

3 BugCheck 12 - - - - - 

4 CompReq 51 - - - - - 

5 CreateDev 76 0 0 0 0 0 

6 DeleteDev 4 - - - - - 

7 InitEvt 14 - - - - - 

8 WaitObj 36 0 0 0 0 0 

9 ZwClose 3 3 3 3 3 3 

10 CallDrv 9 0 0 0 0 0 

11 FreePool 15 - - - - - 

12 SetEvt 20 0 0 0 0 0 

13 InitLock 2 - - - - - 

14 AcqLock 8 0 0 0 0 0 

15 RelLock 48 - - - - - 

16 DerefObj 3 - - - - - 

17 OpenKey 155 104 104 104 104 104 

18 QryKey 315 315 315 315 315 315 

19 AttachDev 9 0 0 0 0 0 

20 memset 39 0 0 0 0 0 
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To complement this analysis, Table 4-8 presents the results for the ROk category 

(i.e., the return value of the call is a successful execution). Column “Non Faulty 

Drivers” shows the number of drivers with only correct arguments. Comparing this 

column with the remaining ones, it is possible to conclude that functions return a 

successful execution more often than the number of non-faulty drivers. However, in 

some cases this might not mean that there is a major problem. For instance, 

consider function 2-AllocPool that receives three parameters: the type of pool (P0); 

the pool size (P1); and a tag value (P2). Depending on the order of parameter 

checking, one can have the following acceptable outcome: P1 is zero, and 2-

AllocPool returns a pointer to an empty buffer independently of the other parameters 

values.   

On the other hand, by analysing the execution log, we found out that when P1 

was less than 100.000*PAGE_SIZE, Windows returned ROk even when a forbidden 

value was given in P0 (at least, as stated in the DDK documentation). This kind of 

behaviour means that an error was (potentially) propagated back to the driver, since 

it will be using a type of memory pool different from the expected thus causing a fail 

silent violation. The table also reveals another phenomenon -- the   three   versions 

of   Windows   handle   the   faulty   parameters   differently. 

Table 4-8 Return OK (ROk) values. 

ID Alias 

Non 
Faulty 
Drivers 

ROk 

XP 2003 Vista 

Fat Ntfs Fat Ntfs Ntfs 

1 InitStr 3 9 9 9 9 9 

2 AllocPool 240 396 396 396 396 408 

3 BugCheck 0 - - - - - 

4 CompReq 0 - - - - - 

5 CreateDev 20 48 48 48 48 48 

6 DeleteDev 0 - - - - - 

7 InitEvt 4 - - - - - 

8 WaitObj 0 18 18 18 18 18 

9 ZwClose 0 0 0 0 0 0 

10 CallDrv 0 0 0 0 0 0 

11 FreePool 1 - - - - - 

12 SetEvt 4 6 6 18 18 9 

13 InitLock 1           

14 AcqLock 0 0 0 0 0 0 

15 RelLock 0 - - - - - 

16 DerefObj 0 - - - - - 

17 OpenKey 0 0 0 0 0 0 

18 QryKey 0 0 0 0 0 0 

19 AttachDev 0 1 1 1 1 1 

20 memset 9 18 18 27 27 22 
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For example, there were several cases in Vista where function 2-AllocPool 

succeeded while in XP and Server 2003 it caused a crash. In function 12-SetEvt, 

Server 2003 does not crash when TRUE was passed in one of the parameters, while 

the other did so (the documentation says that when this value is used, the function 

execution is to be followed immediately by a call to one of the KeWaitXxx routines, 

which was not done in either OSs).   

In all experiments, we did not observe any return values belonging to the RInv 

category (i.e., values outside the expected return range).   

Corrupted Files 

The last group of results in Table 4-6 corresponding to FM4, displays the number of 

times Windows found corrupted files while booting. The Chkdsk utility is called 

during the booting process to detect these files.  

Corrupted files were found only in the configurations that used the FAT32 file 

system. Using the formula FM4/(FM3+FM4) one can have a relative measure of how 

sensitive is the file system when a crash occurs, i.e., crashes resulting in corrupt 

files / crashes. The results presented in Figure 4-4 shows that when using FAT32 

in general, Windows Server 2003 is more sensitive than Windows XP in a majority 

of the cases (since there were no observed crashes for Windows XP using NTFS, 

Windows Server 2003 NTFS and Windows Vista these results were omitted from 

the graph for simplicity). 

 

 

Figure 4-4: File System sensitiveness (FM4/(FM3+FM4)).   
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Minidump Diagnosis Capabilities 

The analysis of the minidump files produced during a system crash allows us to 

determine how well they identify a driver as the culprit of the failure. These files are 

fundamental tools for the Windows development teams because they help to 

diagnose system problems, and eventually to correct them. We have used the 

Microsoft’s Kernel Debugger [101] to perform the analysis of these files, together 

with a tool, DevDump, that automates most of this task. DevDump controls the 

debugger, passes the minidumps under investigation, and selects a log where 

results should be stored. After processing all files, DevDump generates various 

statistics about the detection capabilities of minidumps.   

In the experiments, all Windows versions correctly spotted the faulty DD in the 

majority of times. Figure 4-5 show the relationship between the number of crashes 

and the correct identification of the source of the crash (M1). The accuracy of the 

error source determination seems to be independent of the file system used. Only 

in very few cases there was a difference between the two file systems, such as for 

the 7-InitEvt function where Server 2003 FAT32 identified a different source of crash 

from Server 2003 NTFS. In general, the results show that Windows XP is more 

accurate than the others OS (see 7-InitEvt, 14-AcqLock and 15-RelLock). However, 

there were cases where other kernel modules were incorrectly identified (functions 

1-InitStr, 14-AcqLock and 15-RelLock). 

 

Figure 4-5: Source identification OK (M1). 
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Figure 4-6: Source identification error (M2). 

 

 

Figure 4-7: Source of crash unidentified (M3). 

 

These errors are particularly unpleasant because they can lead to waste of time 

while looking for bugs in the wrong place, and they can reduce the confidence on 

the information provided by minidumps.  In some other cases, Windows was unable 

to discover the cause of failure. This happened in Vista more frequently than the 

other OS configurations, for instance in functions 12-SetEvt and 15-RelLock (see 
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Figure 4-7). In function 12-SetEvt, Vista was the only system that could not diagnose 

the cause of failure. Only Windows Server 2003 detected memory corruption 

situations (in functions 14-AcqLock and 15-RelLock). Windows Server 2003 (FAT32 

and NTFS) located memory corruptions when faults were injected in functions 14-

AcqLock and 15-RelLock. 

4.7 Summary 

This investigation focused on a robustness testing experiment that evaluates 

Windows XP, Windows Server 2003 and Windows Vista. The main objective of this 

study was to determine how well Windows protects itself from faulty drivers that 

provide erroneous input to the DDK routines. Seven classes of typical programming 

bugs were simulated. 

The analysis of the results shows that most interface functions are unable to 

completely check their inputs - from the 20 selected functions, only 2 were 100% 

effective in their defence. We observed a small number of hangs and a reasonable 

number of crashes. The main reason for the crashes was invalid or NULL pointer 

values. Corruption of files was only observed with the FAT32 file system. The 

analysis of the return values demonstrates that in some cases Windows completes 

without generating an error for function calls with incorrect parameters, in particular, 

Windows Server 2003 seems to be the most permissible one. This behaviour 

suggests a deficient error containment capability of the OS. In most cases, the 

examined minidump files provided valuable information about the sources of the 

crashes, something extremely useful for the development teams. However, 

Windows Vista seems to have more troubles in this identification than the other OS. 

The experiments made with Windows Vista revealed that it behaves in a similar way 

to Windows XP and Server 2003. 

 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 ATTACKING WI-FI DRIVERS 

 

 

 

 

WLAN were originally employed to provide networks elements with the ability to 

roam across facilities. They give individuals the freedom to stay connected to the 

network while moving from one coverage area to another. They can be used to 

extend a wired infrastructure or to replace the existing ones, and save costs not only 

due to the falling price of the wireless components but primarily with savings with 

power and data cables installation.  

WLAN offer many advantages but also weaken the security perimeter. In many 

places, like airports and shopping malls, there are dozens of rogue networks just 

waiting to entrap unsuspecting travellers. Every time someone logs on to a public 

WLAN, it is transmitting its login name and password over open airwaves, and when 

accessing the Internet possibly its credit card number. 

Individual home networks may be attractive to malicious neighbours wanting to 

steal the bandwidth or passers-by snooping around one’s hard disk. Corporate 

networks may be of increased interest to hackers willing to steal business secrets, 

credit card transactions, personal data or health care records. This happens 

because  many  public and private WLAN use poor or no encryption at all, meaning 
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that anyone with a laptop and a WLAN card could intercept and read data packets 

being sent or received by legitimate users. 

Although many security failures are due to incorrect configuration, some are 

caused by implementation errors. In this chapter, we are particularly interested in 

locating this sort of bugs (or vulnerabilities) in DD of WLAN, to allow their removal. 

In the majority of situations, the code of the DD is closed. Therefore, the most 

common way for vulnerabilities to be discovered by hackers is to use a black box 

testing methodology using random inputs, sometimes called fuzzers [63]. It consists 

on presenting malformed data injection to the interface and observe the outcomes. 

This technique may require further refinements to catch more complex bugs, due to 

protocol specificities, but it can be very effective discovering most obvious ones, like 

TCP-IP stack problems and OS hangs. 

This chapter presents the design of a new fuzzer architecture that is able to build 

malformed packets and perform attacks against target systems, independently of 

the communication media. The current implementation of the architecture, called 

Wdev-Fuzzer, supports the Wi-Fi protocol but it can be extended to other 

communication protocols, such as IrDA and Bluetooth. The tool was utilized to study 

the behaviour of a Wi-Fi DD of a smart phone running Windows Mobile 5. The tested 

scenarios simulate an attack against the Wi-Fi device, either when it is just looking 

for an Access Point (AP) to connect or when it is already connected.  

Experimental results demonstrated that in most cases Windows is capable of 

handling correctly the malicious packets. However, in one situation, a specific 

Beacon packet always caused the system to hang. This implies that the DD has a 

critical vulnerability which was previously unknown. Wdev-Fuzzer was also 

successfully applied to uncover other potential problems. For example, it was used 

to reproduce denial of service attacks with Disassociation and Deauthentication 

frames. 

5.1 Wdev-Fuzzer Architecture 

The Wdev-Fuzzer is divided in 8 modules (see Figure 5-1). The Message 

Specification is a text file that defines packets as a group of fields. Each packet field 

is also specified in the same file using basic data types that are intrinsic to the Wdev-

Fuzzer. For each basic type there is a fuzz operator that assigns specific values 

according to some given rules. During the construction of the packets, the Packet 

Generator takes the packet description as input, and uses these operators to fill in 

the values of the fields.  
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Figure 5-1: Wdev-Fuzzer block diagram. 

 

The result is a ready-to-be-send potentially bogus packet. By extending the basic 

types and the fuzz operators, it is possible to build newer types and values, in order 

to meet specific protocol requirements.  

The Packet Injector sends the packets to the SUT. And the Packet Listener 

receives and analyses all responses that arrive from the SUT. The Monitor 

Application and corresponding Monitor Listener are optional components that 

exchange information about the state of the SUT. They are used to help to find out 

if an attack was successful and contribute to the decision of which attack should be 

performed next. The Attack Controller controls the activity of the Packet Injector. It 

decides which next packet (attack) should be transmitted, based on the feedback 

given by the Monitor Listener and Packet Listener, using predetermined criteria. 

The Traffic Generator is used to create and exchange good packets between the 

Access Point (AP) and the SUT. This way we can observe the system behaviour 

when subject to an attack while correct data is being transmitted by a non-malicious 

AP. 
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The basic architecture of Wdev-Fuzzer can be tailored to several communication 

protocols, still some changes will have to be performed. For example, a new 

Message Specification has to be carried out and the Packet Injector and Packet 

Listener implementations have to be updated to use the specific functions for 

sending and receiving raw packets from the media. 

5.2 Using Wdev-Fuzzer in 802.11 

The IEEE 802.11 architecture consists of several interacting components to provide 

a WLAN that supports station mobility transparently to upper layers. The basic 

service set (BSS) is the fundamental building block of an IEEE 802.11 LAN. The 

BSS coverage area is where the member stations (STA) of the BSS may remain in 

communication. If a STA moves out of its BSS, it can no longer directly communicate 

with the other members.   

The independent BSS (IBSS) is the most basic type of a Wi-Fi LAN, and consists 

of only two STA that are able to exchange data directly with each other. Since this 

type of network is often formed without pre-planning it is usually referred to as an 

ad-hoc network. 

A BSS, instead of operating independently, may also be part of an extended form 

of network that is built with multiple BSSs and is interconnected by a distribution 

system (DS). In this setting, an AP gives access to the DS by providing DS services 

in addition to act as a STA. 

Figure 5-2 shows the Medium Access Control (MAC) message frame format for 

the 802.11 protocol. These frames may be composed by Fixed Length (FL) and Tag 

Length Value (TLV) field types.  

To facilitate message parsing, when FL and TLV fields appear in the same 

message, FL fields always come first. A FL field appears at a fixed location relative 

to the beginning of the frame and it always has the same length. A TLV field has 

three elements, a Tag which uniquely identifies the field, a size element which 

determines the length of the data and the data itself.  

 

Figure 5-2: Generic Wi-Fi MAC frame format. 
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Examples of FL fields are all the contents of the Frame Control. Examples of TLV 

fields are for instance the Traffic Information Map (TIM) field in a Beacon frame. 

 

 

Figure 5-3: Relationship between messages and services in Wi-Fi. 

Table 5-1: Tested Wi-Fi frames. 

Frame Type SubType To AP From AP Class 

Association Request Mgt 0  - 2 

Association Response Mgt 1 -  2 

Reassociation Request Mgt 2  - 2 

Reassociation Response Mgt 3 -  2 

Probe Request Mgt 4  - 1 

Probe Response Mgt 5 -  1 

Beacon Mgt 8 -  1 

Disassociation Mgt 10   2 

Authentication Mgt 11   1 

Deauthentication Mgt 12   1,3 

Power Save Ctrl 10  - 3 

Request to Send Ctrl 11  - 1 

Clear to Send Ctrl 12 -  1 

Acknowledgment (Ack) Ctrl 13   1 

Contention Free (CF) End Ctrl 14 -  1 

CF-End+CF-Ack Ctrl 15 -  1 

Data Data 0   1,3 

 Field included in the message 
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Unauthenticated
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The MAC frame types that may be exchanged between a pair of STAs depend 

on their state. The state of the sending STA, given by Figure 5-3, is defined with 

respect to the intended receiving STA. The allowed frame types that can be 

transmitted in a given state are grouped into classes. In State 1, only Class 1 frames 

are allowed. In State 2, either Class 1 or Class 2 frames are acceptable. In State 3, 

all frames are permitted (Classes 1, 2, and 3). The frame classes are shown in Table 

5-1. 

In this work, we utilize the Wdev-Fuzzer to evaluate the Wi-Fi implementation of 

a Windows Mobile 5 smart phone. Since these type of equipment are mostly used 

as a STA rather than as an AP, the device will be configured as an STA. The 

evaluation of an AP is left out for future work. Additionally, we will not use the IBSS 

configuration because handheld devices are many times operated in a connected 

BSS. In the tested scenarios, the Wdev-Fuzzer is going to simulate a malicious AP 

that sends potentially erroneous frames to a SUT.   

 

Table 5-2: Tested Faulty Values. 

Fuzz Operator Fixed Length Field Tag Length Value Field 

Not Present -  

Repeated -  

All bits Zero   

MIN-1   

MIN   

MIN+1   

Random   

Specific Value   

MAX-1   

MAX   

MAX+1   

All bits One   

 Tested condition 

5.3 Tested Faulty Values 

Table 5-2 displays the fuzz operators that are applied to each field type, to build Wi-

Fi frames in the experiments. The ‘ ’ character indicates that the operator was 

applied to the field and the ‘-‘ the opposite.  The operator “Not present” omits an 

element from the frame. The “Repeated” operator produces multiple occurrences of 

the same field in the frame. The operators “All bits Zero” and “All bits One” are self-
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explanatory. The “MIN” and “MAX” operators produce the minimum and maximum 

values that a field might contain, as stated in the 802.11 specification.  

Often, the “All bits Zero” and “MIN” operators produce equal values, whenever 

the minimum value is zero. The same applies for operators “MAX” and “All bits One”. 

In these cases, the “MIN” or “MAX” operators are not utilized, since they create test 

results equivalent to the “All bits Zero” and “All bits One” (respectively).  

The “Random” operator generates random values that are between the values 

produced by the “MIN” and “MAX” operators. At last, the “Specific Value” operator 

places a pre-defined value in a field. This operator is used for example to force 

certain frames to have SUT’s MAC address. 

5.4 Tested Scenarios 

At first, we considered testing the SUT in all 3 states represented in Figure 5-3. 

However, since in real situations State 2 is only available for shorts periods of time, 

only States 1 and 3 were considered.   

Tests were carried out in 3 different scenarios (A, B and C). In scenario A, the 

SUT was in State 1, meaning that it was not associated or authenticated with any 

AP.  In scenario B, the SUT was in State 3, linked to a Real AP using no 

authentication. At last, in scenario C, the SUT was also at State 3 but using 

authentication. In scenarios B and C, the Traffic Generator forced the exchange of 

data packets between the SUT and the Real AP to stress the communication stack 

by opening a TCP-IP socket and transmitting packets between the SUT and the Real 

AP. 

5.5 Expected Failure Modes 

The Packet Generator uses the Message Specification and the fuzz operators to 

build Wi-Fi frames. Depending on the values produced, the SUT is going to receive 

good and bad Wi-Fi frames, which may be handled correctly or may lead to some 

failure. Table 5-3 summarizes the expected failure modes of the SUT when it 

receives Wi-Fi frames. It was elaborated after some preliminary experiments and 

also based on information provided in the literature [53][54].  

F1 represents the case where the system appears to continue to work without 

any problems. However, in general, it does not mean that the injected fault was 

handled correctly. Whenever a test uses Beacon or Probe frames, the SUT Monitor 

returns some feedback to the Controller, saying which APs have been detected. 
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Table 5-3: Expected failure modes. 

ID Description 

F1 No problems were detected in the system execution. 

F2 Packet Listener detects invalid frame. 

F3 SUT was disassociated. 

F4 SUT was de-authenticated. 

F5 Monitor hangs. 

F6 OS hangs. 

F7 The system crashes and then reboots. 

 

Table 5-4: Detailed F1 failure mode. 

ID Description 

F1A Device provides correct information about AP (either detecting it or not). 

F1B Device does not detect the AP but it should. 

F1C Device detects the AP but it should not. 

 

In these cases, we are able to further extend F1 in three other categories, as 

represented in Table 5-4. For instance, the F1A value represents the scenario when 

the Monitor correctly reports the information about the AP, either because it was 

detected (the packet was well-formed) or because it was not detected (the packet 

was incorrectly formed, and therefore, the SUT discarded it and the report indicates 

no AP). The F1B value applies to the cases where the Monitor does not detect the 

AP but it should, and F1C corresponds to the cases where the AP is detected but it 

should not.  

The F2 failure mode represents the situations where the SUT detected an invalid 

frame. 

When the SUT is at State 3, the F3 failure mode means that the device became 

disassociated from the AP, as a result of some attack. Likewise, the F4 mode 

indicates that the attack successfully deauthenticated the SUT from the AP. 

The F5 failure mode signals that the Monitor Application hangs as a 

consequence of an attack, denoting that some problem with the DD has propagated 

to the application. Whenever the OS hangs, the F6 mode is used. The F7 failure 

mode corresponds to the situation when the system crashes and then reboots. 

5.6 The Testing Infra-structure 

In the Windows OS family, NDIS is an API for Network Interface Cards (NIC's). The 

details of a NIC hardware implementation can be wrapped by a Media Access 
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Controller (MAC) DD, in such a way that all NIC's for the same media (e.g., Ethernet) 

are accessed using a common API. Applications interact with NIC's through a stack 

of DDs, where each driver adds functionality to the entire communication 

infrastructure.  

Probably, the main difficulty in building a Wi-Fi test infrastructure is the 

implementation of the operations for injecting and capturing the Wi-Fi raw frames. 

Our first attempt to address the problem utilized a filter DD that was placed in the 

lower parts of the driver stack, hoping to intercept packets sent and received by each 

NIC (as well as control instructions given by the OS to the DD). Windows, however, 

implements the Wi-Fi protocol in the MAC DD, which emulates the Ethernet protocol 

to the drivers above it. Therefore, the DD was only able to capture Ethernet frames 

and not Wi-Fi raw frames.  

Still there are other possible ways for capturing Wi-Fi frames in Windows, neither 

of them very easy to achieve. One approach is using an internal interface to the 

MAC DD. Another consists in developing our own MAC DD, but this would require 

a direct interaction with the NIC and complete knowledge of its specification 

(something that usually is not available). A commercial solution based on this idea 

is Airpcap [64], which uses a proprietary MAC DD and their own capture hardware.  

 

 

Figure 5-4: Fuzzer Wi-Fi test infrastructure. 
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In the end, it was decided to build a heterogeneous testing infrastructure, since 

in Linux there are several cards and open drivers that support Wi-Fi frame injection 

and capture (although not every NIC can be used due to hardware limitations). One 

simple way to find them is to search in the Internet for Wi-Fi sniffers and look for 

compatible NICs.  

Figure 5-4 displays the current testing infrastructure that is composed by 4 

components: the Controller Machine, the Mobile Device (SUT), the Host PC and the 

Real Access Point. We will detail these components in the next sections. 

Controller Machine and SUT 

The Controller Machine generates the Wi-Fi packets containing malicious data (e.g., 

out-of-bound values, repeated tags) and sends them through the Wi-Fi interface to 

the SUT. Each packet is sent several times to assure that the SUT is able to receive 

it. 

This element also monitors the outcomes of the tests, and saves the collected 

data in the disk for future analysis. Currently, the Controller is installed in a Linux OS 

machine, with the MadWi-Fi driver [65] for wireless LAN chipsets from Atheros. The 

Packet Injector uses a modified version of Lorcon [66] as a generic library for 

injecting Wi-Fi frames. The Monitor Listener receives any incoming frames from the 

Monitor installed in the SUT and forwards this information to the Attack Controller to 

synchronize the next attack. The Packet Listener informs the Attack Controller of 

each incoming packet sent by the SUT. These packets have to be carefully 

examined to detect any unexpected behaviour. 

The SUT is the target Wi-Fi device of the experiments. It runs a Monitor 

Application that regularly connects to the Monitor Listener of the Controller, 

informing the current list of detected AP and the status of any existing connection. 

This data is especially useful when testing Beacon and Probe frames, as the 

detection of the AP is crucial to determine the correction of the error handling 

mechanisms.  

Host PC and Real AP 

The SUT is physically attached to the Host PC through an USB port. This way, the 

Monitor Application can reach the Attack Controller through an out of band link, 

leaving the Wi-Fi medium free for the experiments. The Host PC runs Windows XP 

and Microsoft’s ActiveSync, allowing the communication between the SUT and the 

Host PC with TCP over USB, which is then followed by TCP over Ethernet in the 

connection between the Host PC and the Controller Machine.  
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To keep the complexity of the code of the Controller manageable, a Real AP is 

utilized to take the SUT through the various states of the Wi-Fi protocol. This way, 

specific frames can be injected in every state. The Real AP was implemented in 

Windows XP using an off-the-shelf AP application. 

5.7 Experimental Results 

This section presents the results of the various experiments carried out with the 

Wdev-Fuzzer in an 802.11b network. The test bed was composed by a Controller 

Machine implemented in a Dell Optiplex 170L Pentium IV computer, installed with 

Fedora Core 6. It used a NetGear WPN311 wireless PCI card and the built-in 

Ethernet card as communication means.  

The SUT was an HP iPAQ hw6915 PDA running Windows Mobile 5 and equipped 

with a built-in Texas Instruments Wi-Fi chip. The Host PC machine was a 

HighScreen Pentium IV computer with Windows XP Professional Edition. The SUT 

was attached to an USB port on the Host and uses ActiveSync 4.1 build 4841 to 

establish the connection. This machine was also equipped with an Ethernet card, 

which was connected to the Controller Machine with a 100Mbits link. It also hosts 

the Real AP using a GigaByte AirCruiser GN-WP01GS wireless PCI card and the  

companion AP application. The SUT was attached to an USB port on the Host PC 

and placed at about 2m distance from the Controller Machine and the Real AP.   

The results of the test campaigns are displayed in Table 5-5 and Table 5-6. A 

total of 89489 attacks were carried out for each of the three scenarios. The tables 

only show the outcomes for frames that flow from the AP to the SUT (see Table 5-1), 

since frames on the other direction never caused any problems (i.e., the failure mode 

was always of type F1). The first column of the tables shows the field type being 

tested, and the second column displays how many different values were tried. The 

following columns display the results obtained for the various different frames. An 

empty cell is used to indicate that the corresponding field does not belong to the 

frame being tested otherwise it is filled with the code of the observed failure mode 

(see Table 5-3).   

Since in most cases the result was F1, to make the table reading simpler, the 

number of times that it occurs is omitted (it is equal to number of tried values 

displayed in the second column). For failure modes different than F1, the table 

presents in the cell the number of tests that caused a problem. 
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Failure Modes in Scenario A 

The SUT is in State 1 in the test campaign of scenario A. The SUT is placed in this 

state by powering on the Wi-Fi component of the device and by making sure that no 

association exists with any STA or AP. The test results for this scenario are 

displayed in Table 5-5. It shows that in general the SUT was able to handle correctly 

the malicious frames. Nevertheless, some interesting outcomes were observed for 

certain specific scenarios, which are summarized in the following points.  

Since Beacon frames are directed to everybody in the coverage area, APs should 

announce themselves using the broadcast MAC address (FF:FF:FF:FF:FF:FF) 

as the Destination Address. Windows Mobile, however, reports a new AP when the 

Destination Address uses a distinct MAC address (see row DA). This occurs even 

when the Destination Address is different from the MAC address of the SUT. This 

behaviour is an implementation issue and does not seem to be a problem.   

SSID is the identifier of the AP, and it has a maximum size of 32 characters. The 

experiments show that the SUT does not report an existing AP if the SSID field has 

‘0x00’ as one of the ASCII characters of the identifier (see row SSID). The same 

behaviour was also seen when we run an equivalent test with another Windows 

Mobile equipment, which gives evidence that this problem may extend to several 

other implementations. From a security perspective, this behaviour is undesirable 

since it allows the creation of networks which are hidden from certain devices (e.g., 

a group of hackers could keep a network secret if they found out that the security 

officers use a Windows Mobile-based solution for diagnosing Wi-Fi networks).  

When multiple SSID fields are sent in a given frame, the SUT assumes the last 

value as the correct one. If other vendors take a different view, and choose for 

instance the first SSID, then this could lead to incompatibility problems. The 802.11 

specification does not address this particular issue. 

Whenever the SUT receives a Beacon frame with a TLV field with TAG = 5 (TIM), 

Length = 255 and Value = 0xFF, the OS hangs at the first user interaction with the 

device (see F6 value in row TIM). The same kind of failure also occurred when the 

SUT was in States 2 and 3, as shown in Table 5-6. When a similar test was made 

with different Windows Mobile equipment, everything went fine and no hangs were 

felt. 
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Table 5-5: Observed Failure Modes in Scenario A. 
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More  
Flags* 

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Power 
Management* 

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

More Data* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

RA/Addr1 8 F1 F1 F1 F1 F1        

TA/Addr2 8     F1        

DA 8      F1 F1 
7x 

F1C 
7x 

F1C 
F1 F1 F1 

SA 8      F1 F1 F1A F1A F1 F1 F1 

AID 15      F1 F1      

BSS ID 8   F1 F1  F1 F1 F1 F1 F1 F1 F1 

Addr3 8     F1        

Sequence 
Control 

10     F1 F1 F1 F1 F1 F1 F1 F1 

Addr4 7     F1        

Frame  
Body 

7     F1        

Timestamp 6        F1A F1A  F1  

Beacon** 
Interval 

2700        F1A F1A  F1  

Capabilities** 2050      F1 F1 F1 F1  F1  

SSID** 1275      F1 F1 
32x 
F1B 

32x 
F1B 

F1 F1 F1 

Supported** 
Rates 

256      F1 F1 F1A F1A F1 F1 F1 

FH**  
Parameter 

256      F1 F1 F1A F1A F1 F1 F1 

DS**  
Parameter 

256      F1 F1 F1A F1A F1 F1 F1 

CF**  
Parameter 

256      F1 F1 F1A F1A F1 F1 F1 

IBSS** 
Parameter 

256      F1 F1 F1A F1A F1 F1 F1 

TIM** 256      F1 F1 F1 
1X 
F6 

F1 F1 F1 

Reason  
Code 

15          F1  F1 

Status  
Code 

5      F1 F1    F1  

Auth. Algorithm 
Nbr. 

5           F1  

Auth. Trans. 
Nbr. 

5           F1  

Other  
TLV** 

1255      F1 F1 F1 F1 F1 F1 F1 

*Frame Control; **Tag Length Value 
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This probably means that the flaw is in HP iPAQ DD. Even so, the vulnerability 

is critical from an availability standpoint because exploitation is simple (e.g., since 

Beacon frames are processed in all states, a hacker would only need to walk around 

with a malicious AP to hang all vulnerable devices in a surrounding area).  

The Probe Response failure modes were identical to the Beacon frame, with the 

exception of the TIM field where no OS hangs were seen. 

Failure Modes in Scenario B 

To perform the experiments corresponding to the scenario B, the SUT was 

associated and authenticated to the Real AP using no encryption protocol. The 

results are shown in Table 5-6. The outcomes for the Beacon and Probe Response 

frames are equivalent to those obtained in scenario A, which is not surprising, as 

the process of detecting APs while connected to another AP remains the same. 

Fuzzing Disassociation and Deauthentication frames confirmed a known 

problem with the Wi-Fi protocol. Since the various fields of the frame are not 

cryptographically protected with some authentication data (e.g., a message 

authentication code), a rogue AP can transmit Disassociation and Deauthentication 

frames and cause the Wi-Fi communication to be disrupted (i.e., the Wi-Fi protocol 

is vulnerable to a Denial of Service (DoS) attack). This can happen if the Destination 

Address (DA) is equal to the address of the associated STA or the broadcast 

address. Nevertheless, we found out that several checks are made before accepting 

the frames, making the attack harder to execute. Several flags of the frame control 

part of the packet are verified (To/From DS, More Flags, Retry, Power Management, 

More Data, WEP and Order), reducing significantly the combinations that break the 

communication.   

We also discovered that, whenever the SUT became disassociated and got 

associated after terminating the attack, the Traffic Generator could not recover the 

TCP-IP communication. This aspect reveals that some implementation problems 

may exist in the TCP-IP stack. Contrarily, whenever the SUT become deauthenticate 

and got authenticated at the end of the attack, the Traffic Generator always 

recovered the TCP-IP communication. This shows that the DoS attacks performed 

with Dissassociation frames can be more harmful than the ones made with 

Deauthentication frames. 
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Table 5-6: Observed Failure Modes in Scenario B and C. 
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Protocol* 
Version 

4 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

To/From* DS 4 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
3x 
F3 

F1 
3x 
F4 

More  
Flags* 

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

Power 
Management* 

2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

More Data* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
3500x 

F3 
F1 

3500x 
F4 

RA/Addr1 8 F1 F1 F1 F1 F1        

TA/Addr2 8     F1        

DA 8      F1 F1 
7x 

F1C 
7x 

F1C 
2x 
F3 

F1 
2x 
F4 

SA 8      F1 F1 F1A F1A 
1x 
F3 

F1 
1x 
F4 

AID 15      F1 F1      

BSS ID 8   F1 F1  F1 F1 F1 F1 
1x 
F3 

F1 
1x 
F4 

Addr3 8     F1        

Sequence 
Control 

10     F1 F1 F1 F1 F1 
1x 
F3 

F1 
1x 
F4 

Addr4 7     F1        

Frame  
Body 

7     F1        

Timestamp 6        F1A F1A  F1  

Beacon** 
Interval 

2700        F1A F1A  F1  

Capabilities** 2050      F1 F1 F1A F1A  F1  

SSID** 1275      F1 F1 
32x 
F1B 

32x 
F1B 

1275x 
F3 

F1 
1275x 

F4 

Supported** 
Rates 

256      F1 F1 F1A F1A 
256x 
F3 

F1 
256x 
F4 

FH**  
Parameter 

256      F1 F1 F1A F1A 
256x 
F3 

F1 
256x 
F4 

DS**  
Parameter 

256      F1 F1 F1A F1A 
256x 
F3 

F1 
256x 
F4 

CF**  
Parameter 

256      F1 F1 F1A F1A 
256x 
F3 

F1 
256x 
F4 

IBSS** 
Parameter 

256      F1 F1 F1A F1A 
256x 
F3 

F1 
256x 
F4 

TIM** 256      F1 F1 F1 
1x 
F6 

256x 
F3 

F1 
256x 
F4 

Reason  
Code 

15          
15x 
F3 

 
15x 
F4 

Status  
Code 

5      F1 F1    F1  

Auth. Algorithm 
Nbr. 

5           F1  

Auth. Trans. 
Nbr. 

5           F1  

Other  
TLV** 

1255      F1 F1 F1 F1 
1255x 

F3 
F1 

1255x 
F4 

*Frame Control; **Tag Length Value 
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Failure Modes in Scenario C 

In scenario C, the test campaign was performed with the SUT associated and 

authenticated to the Real AP using shared key mode encryption protocol. The 

results observed in scenario C were equal to the ones obtained in the scenario B. 

5.8 Summary 

The Wdev-Fuzzer tool is a fuzzer that targets DDs of communication protocols. The 

proposed architecture is quite generic, allowing a detailed description of the 

protocol’s messages. Therefore, the generated attacks are very effective at 

discovering new vulnerabilities and at verifying known issues. Additionally, the tool 

can also help to perform some of the tasks of conformance testing, by detecting 

misbehaviours of the DD’s implementation with respect to the specification of the 

protocols.  

The presented version of the tool was utilized to evaluate a Wi-Fi DD of a smart 

phone running Windows Mobile 5. The results demonstrated that in most cases, 

Windows was able to handle correctly the malicious frames. They also showed that 

Wdev-Fuzzer can be successfully applied to reproduce denial of service attacks 

using Disassociation and Deauthentication frames. The tool revealed that there 

might be a problem in the implementation of the TCP-IP stack, uncovered by the 

use of disassociation frames when the SUT was associated and authenticated with 

an AP. Finally, it discovered a previously unknown vulnerability that causes OS 

hangs, using the TIM element in the Beacon frame. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 INTERCEPT 

 

 

 

 

There is a significant difference between being able to trigger an error and locate 

the vulnerability behind the error. Locating the flaw requires access to the system 

under test in such a way that it is possible to pinpoint the part of the code that is 

responsible for the observed behaviour. In the case of Windows DDs (WDD) this is 

a challenge. In most times, it is impossible for independent researchers to have 

access to the source code of the DD, making it hard to understand the reasons 

behind a faulty behaviour. 

This chapter describes the Intercept tool that focus on DD involved with 

communications that can instrument WDD by logging data about the interactions 

with the OS. It operates without access to the driver's source code and with no 

changes to the driver’s binary file. As its name indicates, the tool intercepts all 

function calls between the DD and the OS, ensuring that various information can be 

collected, such as the name of the functions that are invoked, their parameters and 

return values, and the content of particular areas of memory. Although simple in 

concept, it enables the users to expose a DD behaviour and data structures, which 

provide a practical approach towards its understanding. 

Intercept can be used as a building block of other tools by providing the contents 

of packets and the context of their arrival/departure. For this purpose, Intercept can 

log the network traffic information in the format used by Libpcap [98], which can then 

be analysed by popular tools such as WireShark [99]. Intercept can be very helpful 
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in debugging processes since it gives a higher level vision of what is happening 

between the OS and the driver, and at the same time offering information on the 

parameter contents and address locations. Combined with debugging tools from 

Microsoft, such as WinDbg [101], this data is useful to reduce the time for locating 

functions, OS resources and global variables.  

Intercept logs information about the interactions between the OS core and the 

DD under test (DUT). The data is collected during the whole period of execution, 

starting when the driver is loaded and ending when it is uninstalled. It includes 

among others, the list of functions that are used, the order by which they are called, 

and parameter and return values. This information is quite comprehensive, and it 

helps not only to understand the driver-OS interactions, but also to realize how 

drivers deal with the hardware in terms of programming and access to specific 

storage areas.  

Intercept uses an approach to instrument DDs in Windows that requires no 

changes to the binary code. It resorts to a proxy DD that points all imported functions 

from a driver to its own interception layer. Call-back functions registered by the driver 

are also captured and directed to the interception layer. No extra code needs to be 

developed for normal operation - a complete log is generated describing how the 

driver behaves as a result of the experiments. However, extensibility is achieved by 

changing the actions performed by the interception layer, allowing more complex 

operations to be carried out. 

6.1 Intercept Architecture 

The architecture of Intercept is represented in Figure 6-1. It can be divided in two 

main components: The Intercept Windows DD (IWDD) and the Intercept User 

Interface (IUI). The first is a Windows driver that provides all the necessary functions 

to load, execute and intercept the DUT. The second is an application that allows 

users to setup the interception process and control the IWDD activity. 

The components of IWDD are the following. The Controller provides an interface 

for the IUI application to control the behaviour of the IWDD, allowing for instance the 

definition of the level of detail of logging and the selection of which functions should 

be logged.  

The Loader & Connector (LC) is responsible for loading the “DUT.sys” file into 

the memory space of IWDD. It also links all functions that the DUT calls from external 

modules to the functions offered by the Interception layer. 
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Figure 6-1: Intercept architecture. 

The Interception Layer provides the environment for the DUT to run, and 

intercepts all calls performed by the OS to the DUT and the other way around. The 

Log Unit (LGU) receives the log entries from the Interception layer and saves them 

to a file. This is performed in a separate task to decouple the write delays from the 

remaining processing, and therefore increase the system performance. 

6.2 Using Intercept 

Intercept is installed by replacing in the system the DUT with its own driver (the 

IWDD). When the OS attempts to load the DUT, in fact it ends up loading IWDD. 

Later on, IWDD brings to memory the DUT for execution. Setting up the interception 

of a DUT involves the following steps:  

1. The user indicates the DUT of interest through the IUI interface, where a list of 

devices present in the OS is displayed;  

2. The IUI locates the DUT.inf and DUT.sys files, and makes a copy of them to a 

predefined folder. A copy of the IWDD.sys file is also placed in the same folder; 

3. The IUI replaces in the DUT.inf file all references to DUT.sys with IWDD.sys. 

The IUI also removes references to the security catalogue, since IWDD is not 

currently digitally signed. This way, when the OS interprets the DUT.inf file, it 

will install IWDD.sys instead; 
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4. The Windows Device Manager (WDM) is used to uninstall the DUT.sys, and then 

it is asked to check for new hardware, to detect that there is a device without a 

driver. At that time, the location of the predefined folder is provided, and Windows 

interprets the modified DUT.inf file. Since there is a match with the hardware 

identification of the device, it proceeds to load the IWDD.sys file. 

 

After loading IWDD.sys, the following sequence of actions occurs: 

1. The WDM calls the DriverEntry(DriverObject *drvObj, 

PUNICODE_STRING RegPath) function of IWDD, so that it can initialize and 

register the call-back functions. Parameter *drvObj is a complex structure where 

some of the exported call-back functions can be registered. Parameter RegPath 

is the path of the Windows Register location where the driver should store 

information. Since the DD functionality is to be provided by the original DUT 

implementation, at this stage the control is given to the LC unit to load the DUT’s 

code; 

2. The LC unit interprets the DUT.sys file contents, relocates the addresses, and 

goes through the table of imported functions to link them to the Interception layer. 

Technically this is achieved by having in the Interception layer a table containing 

entries with a ‘name’ and an ‘address’ for each function. The ‘name’ is the 

Windows function name that can be found in the imported table of the DUT and 

the ‘address’ is a pointer to the code of the function. The ‘address’ of the function 

in the Interception layer is placed in the imported function table of the DUT's. In 

the end, all imported functions of the DUT point to functions in the IWDD.  

3. Next, the DUT.sys binary is merged and linked to the IWDD. The LC unit also 

finds the address of the DUT’s  DriverEntry(), which is then executed.  As 

with any other driver, the DUT has to perform all initializations within this function, 

including running NdisMRegisterMiniportDriver() to register its exported 

functions to handle packets. However, since the DUT's imported functions were 

substituted by IWDD functions, a call to NdisMRegisterMiniportDriver() 

in fact corresponds to a call to _IWDD_NdisMRegisterMiniportDriver()2. 

In the particular case of this function, the DUT gives as parameters the call-back 

functions to be registered in the NDIS library. In the Interception layer, the 

implementation of this function swaps the function addresses with its own 

functions, making the interception effective also for functions that will be called by 

the OS to the DUT. 

                                                      

2 The prefix _IWDD_ is used to identify a function provided by the IWDD. 
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4. When the DUT's DriverEntry()finishes, it returns a drvObj parameter 

containing potentially also some pointers to call-back functions. Therefore, before 

giving control back to the OS, IWDD replaces all call-back entries in drvObj with 

its own intercept functions, which in turn will call the DUT’s routines. This way this 

type of call-back function is also intercepted. 

6.3 Tracing the Execution of the DUT 

The DUT starts to operate normally, but every call performed by the OS to the DUT, 

and vice versa, is intercepted. The Interception layer traces all execution of the DUT, 

recording information about which and when functions are called, what parameter 

values are passed, which return values are produced and when the function exits. 

The log uses a plain text format and data is recorded to a file.  

All functions implemented in the Interception layer make use of routines 

_IWDD_DbgPrint() and _IWDD_Dump(char *addr, long size). The first 

works like the C language printf() function, and is used to write formatted data 

to the log file, such as strings and other information types. The second function is 

used to dump into the log file the contents of memory of a certain range of bytes 

starting at a given memory addresses. Together, these two functions can give a 

clear insight of the DUT’s and OS’s interaction. 

Typically, the Interception layer creates a log entry both when entering and 

leaving a function. Whenever input parameter values are involved, they are also 

logged before calling the intended function, either in the DUT’s code or in the OS. 

Output parameters and return values are saved before the function ends execution. 

Complex structures, such as NetBuffers, NetBufferLists or MDLs, are 

decomposed by specific routines so that the values in each field of the structure can 

be stored. 

The interception of functions and the trace of its related information is a time-

consuming activity that may interfere with the DUT and the overall system 

performance. To reduce overheads, the storage process is handled by a separate 

thread. During the IWDD start-up process, the LGU unit creates a queue and a 

dedicated thread (DThread), whose task is to take elements from the queue and 

write them into the log file. The queue acts as a buffer to adapt to the various speeds 

at which information is produced and consumed by the thread. The access to the 

queue is protected by a lock mechanism to avoid race conditions. A call to 

_IWDD_DbgPrint() or _IWDD_Dump() copies the contents of the memory to the 

queue, and signals the thread to wake up and store the information. 
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In the standard mode of operation, the log file is created when the thread is 

initiated. Each time the thread awakes, the data is removed from the queue and 

written to the file. When the file reaches a pre-determined value, it is closed and a 

new one is created. However, in case of a crash, the information in cache can be 

lost. To cope with this situation, the thread can also be configured to open, write 

synchronously and close the file each time it consumes data from the queue. 

However, this comes at the expense of a higher overhead. 

6.4 Experimental Results 

The objective of the experiments is twofold. First, we want to get some insights into 

the overheads introduced by Intercept, while a DD executes a common network task 

- a file transfer by FTP. Second, we want to show some of the usage scenarios of 

the tool, such as determining which functions are imported by the drivers and what 

interactions occur while a driver runs. 

Test environment 

The experiments were performed with three standard drivers, implementing different 

network protocols, namely Ethernet, Wi-Fi and Bluetooth. Table 6-1 summarizes the 

installation files for each DUT. 

The corresponding hardware devices were connected to a Toshiba Satellite 

A200-263 Laptop computer. The Ethernet and Wi-Fi cards were built-in into the 

computer, while the Bluetooth device was a SWEEX Micro Class II Bluetooth 

peripheral [100] linked by USB. In the tests, we have used Intercept both with 

Windows Vista and Windows 8. 

Table 6-1: Device drivers under test. 

Driver Type Info File Binary file 

Ethernet netrtx32.inf rtlh.sys 

Wi-Fi netathr.inf atrh.sys 

Bluetooth netbt.inf btnetdrv.sys 

 

The overhead experiments were based on the transmission of a file through FTP. 

The FTP server runs in an HP 6730b computer. The FTP client was the Microsoft 

FTP client application, which was executed in the laptop together with Intercept. 

Different network connections were established depending on the DUT in use. For 

the Ethernet driver an Ethernet network of 100Mbps using a TP-Link 8 port 
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10/100Mbps switch was setup to connect the two systems. For the Wi-Fi and 

Bluetooth drivers an ad-hoc connection was established. 

Overhead of Intercept 

To evaluate the overheads introduced by Intercept, we have run a set of experiments 

consisting on the transfer of a file of 853548 byte length between a FTP server and 

a client. Any file could have been used for the transfer. We selected this file because 

it was the first log produced by Intercept during the experiments.  

For each driver five FTP transfers were performed, and the average results are 

presented in the tables. Table 6-2 summarizes the results for the execution time and 

transfer speeds. Column “Driver ID” represents the DUT, either in Windows Vista 

(xx_Vista) or in Windows 8 (xx_Win8). The columns under the label “Intercept off” 

display the average transfer time and average speed when the Intercept tool is not 

installed in the client system. The columns under label “Intercept on” correspond to 

the case when the Intercept tool is being used. 

The results between Intercept off and on show a performance degradation, which 

was expected as Intercept records all the activity of the drivers, and performs tasks 

such as decoding parameter structures and return values of all functions. 

Nevertheless, these overheads are relatively small: between 2% and 7% for the 

Ethernet driver, 2% to 3% for the Bluetooth driver and 14% to 15% for the Wi-Fi 

driver. These observations were more or less expected since the Wi-Fi drivers have 

more imported functions, are longer in size and require more processing when 

compared with the other drivers. The same Bluetooth driver was used in both OS 

which can explain the similarity of the degradation. 

Table 6-2: Average file transfer time and speed values. 

Driver ID 

FTP Transfer 

Intercept Off 
(average) 

Intercept On 
(average) Time 

overhead 

Time* Speed** Time* Speed** 

Eth_Vista 0,198 6238 0,202 6204 2% 

Eth_Win8 0,136 6503 0,146 5963 7% 

Wi_Fi Vista 9,300 97 10,650 84 15% 

WiFi_Win8 0,276 3076 0,314 2872 14% 

Bth_Vista 5,890 145 6,012 142 2% 

Bth_Win8 5,612 152 5,760 148 3% 

Note: *time in seconds, **speed in Kbytes/second 
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The differences between the overheads on the Ethernet and Wi-Fi networks can 

be related to changes in the drivers, since we have used the standard drivers that 

came with the Windows installation.  

During the experiments, we saw that for each transmitted byte, Intercept 

generated between 9 to 23Kbytes of data. Not surprisingly the Wi-Fi driver was the 

one that generated a higher amount of data, which can be interpreted as a 

synonymous of increased complexity. 

Understanding how drivers are initialized 

Although there is plenty literature about Windows DDs (see for 

instance[157][158][159][160][161][162]) and source code examples (see for 

instance [163][164][165][166]), programming this type of modules is not an easy 

task. Intercept contributes to understanding the DD behaviour since the moment the 

DD is loaded and initialized. As an example, Figure 6-2, shows the moment when 

the DD registers its call back functions on Windows using function 

NdisMRegisterMiniportDriver.  

Obtaining this type of information allows one to understand some of the DDs 

characteristics (such as versioning information) and map the location of the DD’s 

call-back functions and objects, which can be useful during debugging or reverse 

engineering processes. 

 

 

Figure 6-2: Drive initialization – Call to NdisMRegisterMiniportDriver. 
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Understanding how drivers interact with the hardware 

Intercept can also help to understand how specific hardware interactions are 

performed.  The NDIS Library provides a set of I/O functions that a miniport driver 

calls to access I/O ports. These calls provide a standard portable interface that 

supports the various operating environments for NDIS drivers. For instance, 

functions are offered for mapping ports, for claiming I/O resources, and for reading 

from and writing to the mapped and unmapped I/O ports. Taking the Wi-Fi driver as 

an example, one can use Intercept to learn how the hardware initialization process 

happens. It starts when the OS invokes the drivers’ call-back function 

MPInitializeEx (see Figure 6-3).  

The OS passes several parameters to this function. One of them is the 

MiniportAdapterHandle so that whenever there is the need for the driver to call 

for some function, the OS is able to know which hardware the driver is referencing 

to (in this case, the reference is 0x8b34a438). All subsequent functions related with 

this driver will use this reference. 

 

 

Figure 6-3: Call to MPInitializeEx to initialize the hardware (excerpt). 

Another parameter is the resources allocated for the hardware. This allocation 

was performed automatically by the system according to the PCI standard, which 

releases the programmers from doing it. However, the driver only gets to know it 

when this function is called. In this example, some of resources assigned to the Wi-

Fi hardware were: Memory start: 0xd4000000 and Memory length: 0x00010000. 

 

ENTER – NewMPInitializeEx

MiniportAdapterHandle.....: 0x8b34a438

MiniportDriverContext.....: 0x00000000

MiniportInitParameters....: 0x8c36b6c0

Header.Revision...................................: 0x00000001

Header.Size.......................................: 0x00000028

Header.Type.......................................: 0x00000081

Flags.............................................: 0x00000000

IMDeviceInstanceContext...........................: 0x00000000

MiniportAddDeviceContext..........................: 0x00000000

IfIndex...........................................: 0x0000003f

NetLuid...........................................: 0x00000000

NetLuid.Info......................................: 0x00000000

NetLuid.Value.....................................: 0x00000000

AllocatedResources................................: 0x8815ccd4

AllocatedResources->Version.......................: 0x00000001

AllocatedResources->Revision......................: 0x00000001

AllocatedResources->Count.........................: 0x00000003

AllocatedResources->PartialDescriptors[00000000].Type.........................: 0x00000003

AllocatedResources->PartialDescriptors[00000000].ShareDisposition.............: 0x00000001

AllocatedResources->PartialDescriptors[00000000].Flags........................: 0x00000080

CmResourceTypeMemory

AllocatedResources->PartialDescriptors[00000000].u.Memory.Start...............: 0xd4000000

AllocatedResources->PartialDescriptors[00000000].u.Memory.Length..............: 0x00010000
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Figure 6-4: Call to NdisGetBusData / SetBusData. 

Other examples of interaction with the hardware can give insights of specific 

register and available ports as is the case of Figure 6-4 that shows the moment that 

the DD receives data from the PCI bus (using NdisMGetBusData) and programs 

the device by writing some data using NdisMSetBusData. 

Inspecting data packets 

Intercept can also be employed when particular information needs to be collected. 

As an example, we wanted to find out what data is returned by the FTP server after 

the client connects. Figure 6-5 shows a call performed by the DUT to the OS 

notifying NDIS that a new frame has just arrived. In this case, it is possible to observe 

the banner received from the FTP server, i.e., 220-Welcome to Cerberus FTP 

Server.  

This type of inspection is possible because Intercept knows the kind of structures 

involved in each OS function and is able to decompose them. The interpretation and 

decomposition of complex structures (as data packets) can be extended in Intercept 

to cope with evolutions of the OS and protocols. A file with the description of the 

structures and the type of the elements that compose the structure is all that is 

needed to change the behaviour of the interpreter. 
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Figure 6-5: Looking in detail at a particular packet (excerpt). 

Understanding complex interactions with the OS 

Intercept can be used to comprehend how certain complex operations are performed 

by the driver.  For example, in Windows, a driver can remain installed but disabled. 

By analysing the log produced by Intercept during the disabling process, it is 

possible to observe that the OS first calls the drivers’ MiniportPause to stop the 

flow of data through the device. Second, the OS calls MiniportHalt to obtain the 

resources that were being utilized. Both these two functions were registered during 

the initialization process, at the time using the NdisMRegisterMiniportDriver 

function. Finally, the OS calls the Unload function to notify the driver that is about 

to be unload. The Unload function was also registered by the driver in the OS when 

the DriverEntry routine returned, by setting the address of this function in the 

DriverUnload field of the Driver_Object structure. As soon as the Unload 

function starts it is possible to observe in the log that the driver calls the 

MPDriverUnload call-back function (see Figure 6-6). When this function ends the 

unload process ends and the driver is disabled. 

Another example corresponds to uninstalling the driver. With the information 

logged by Intercept, it was found that there is no difference between disabling and 

uninstalling a driver, except from the fact that uninstalling the driver removes it from 

the system. 
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Figure 6-6: DD disabling process (excerpt). 

Determining resource leakage 

The detailed information stored by Intercept in the log also helps to determine if all 

resources allocated by the driver are returned to the OS core. This can assist for 

instance to detect drivers with bugs. Table 6-3 represents the list of five resources 

allocation functions utilized by the Wi-Fi driver and Table 6-4 represents the list of 

five corresponding de-allocation functions utilized by the same driver. As it is 

possible to observe, there is a match between the number of resource allocations 

and releases which shows no resource leakage during the DD execution.  

Table 6-3: Statistics of resource allocation/deallocation. 

Function Number of Calls 

_IWDD_NdisAllocateIoWorkItem 1158 

_IWDD_NdisMAllocateNetBufferSGList 1041 

_IWDD_NdisMAllocateSharedMemory 803 

_IWDD_NdisAllocateNetBuffer 256 

_IWDD_NdisAllocateNetBufferList 256 

 

Table 6-4: Statistics of resource allocation/deallocation. 

Function Number of Calls 

_IWDD_NdisFreeIoWorkItem 1158 

_IWDD_NdisMFreeNetBufferSGList 1041 

_IWDD_NdisMFreeSharedMemory 803 

_IWDD_NdisFreeNetBuffer 256 

_IWDD_NdisFreeNetBufferList 256 



 

 

CHAPTER 6 - INTERCEPT 115 

 

 

Understanding the dynamics of function calls 

The dynamics of function calls during a driver’s execution is determined by its work 

load. Intercept can support various kinds of profiling analysis about the usage of 

functions by a certain DD under a specific load. For example, in our FTP transfer 

scenario, Table 6-5 represents the top 5 most called functions by each DUT from 

installation and until deactivation (in Windows Vista).  

Table 6-5: Top 5 most used functions by each driver. 

Function Eth_Vista WiFi_Vista Bth_Vista 

NdisMSynchronizeWithInterruptEx - 69301 - 

InterruptHandler 880 33931 - 

MiniportInterruptDpc - 32774 - 

NdisAcquireReadWriteLock - 6345 - 

NdisReleaseReadWriteLock - 6345 - 

NdisMIndicateReceiveNetBufferLists - - 1032 

NdisAllocateMdl 1096 - - 

NdisFreeMdl 1096 - - 

NdisAllocateNetBufferAndNetBufferList 1024 - - 

NdisFreeNetBufferList 1024 - - 

NdisAllocateMemoryWithTagPriority - - 520 

NdisFreeMemory - - 520 

MPSendNetBufferLists - - 503 

NdisMSendNetBufferListsComplete - - 503 

 

 

Based on the number of function calls it becomes clear that the Wi-Fi driver is 

the one that shows more activity in the system. Focusing on the top 3 functions from 

this driver, the NdisMSynchronizeWithInterruptEx is the most used function. 

Drivers must call this function whenever two threads share resources that can be 

accessed at the same time. On a uniprocessor computer, if one driver function is 

accessing a shared resource and is interrupted, to allow the execution of another 

function that runs at a higher priority, the shared resource must be protected to 

prevent race conditions. On an SMP computer, two threads could be running 

simultaneously on different processors and attempting to modify the same data. 

Such accesses must be synchronized.  
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InterruptHandler is the second most executed function. This function runs 

whenever the hardware interrupts the system execution to notify that attention is 

required. From the 33931 interrupts, 32774 calls were deferred for later execution 

with MiniportInterruptDpc. By inspecting the remaining functions used by the 

Wi-Fi driver, which are lock related, it becomes evident that the driver is relying 

heavily on multithreading and synchronization operations.  

Several other metrics can be obtained with Intercept, such as the minimum, 

average and maximum usage of each individual resource, DMA transfers, restarts, 

pauses, most used sections of the code, to name only a few.  

Using Intercept as a Testing Tool 

Due to the detailed logs provided by Intercept, a tester can fully understand the 

driver’s dynamics, and thus plan and design tests that target specific and elaborated 

conditions. During the call to a function Intercept can identify the presence of specific 

conditions specified by the tester to interfere with parameters and return values. 

For instance, the Wi-Fi driver in Windows 8 calls the NdisMMapIoSpace during 

the initialization. This function maps a given bus-relative “physical” range of device 

RAM. When successful, this function returns NDIS_STATUS_SUCCESS and the 

value of the output parameter VirtualAddress contains the start of the memory 

map. Other outcomes are exceptions that should be handled quietly.  

We have performed a series of experiments when the DD called 

NdisMMapIoSpace during the initialization.  Four test scenarios where planned by 

returning to the DD exceptional values (as described in Microsoft documentation) 

NDIS_STATUS_RESOURCE_CONFLICT, NDIS_STATUS_RESOURCES, 

NDIS_STATUS_FAILURE and one unspecified value 

(NDIS_STATUS_FAILURE+1), while maintaining the VirtualAddress equal to 

NULL. The DUT handled correctly the tests and ended quietly, and appropriately 

deallocated all resources, as confirmed by the Intercept logs. 

Four additional test scenarios were performed with the same return values but 

assigning a specific value to VirtualAddress. These tests all resulted in a crash 

of the system with the DUT being the culprit. It was concluded that the driver is using 

the value of VirtualAddress before checking the return value, which is worrisome 

in case Windows does not clear the VirtualAddress field.  
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6.5 Summary 

This chapter presents Intercept, a tool that instruments WDD by logging the driver 

interactions with the OS at function level. It uses an approach where the WDD binary 

is in full control and the execution traced to a file recording all function calls, 

parameter and return values. The trace is directly generated in clear text with all the 

involved data structures.  

An experiment with three network drivers was used to demonstrate some of the 

instrumentation capabilities of Intercept. The performance of the tool was also 

evaluated in a FTP file transfer scenario, and the observed overheads were small 

given the amount of information that is logged, all below 15%. 

As is, Intercept gives a clear picture of the dynamics of the driver, which can help 

in debugging and reverse engineering processes with low performance degradation.  

Intercept is also a building block for a testing tool. Results show the ability to 

identify bugs in drivers, by executing tests based on the knowledge obtained from 

the driver’s dynamics. 
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Experimentally testing a DD typically requires a target host setup composed by a 

computer running the full OS installation and the hardware driven by the DD under 

test. To manage the experiments, it is usually required a second system that controls 

the tests and monitor the results. This is necessary because a bug in the DD can 

corrupt the execution environment of the experiments as well as the collection of the 

results. The delays introduced by the need to restart the host system and setup the 

initial conditions can slow the testing campaign. One way to speed up the 

restauration process and avoid some of the effort required to manage all the restart 

actions is to use virtual machine execution. In this case, the virtual machine contains 

a snapshot image of the system under test which, in the case of a crash or hang, 

can allow the system to reinitiate from a previous saved starting point (see for 

instance [53][54]). However, the required setup is still there. One needs the full OS 

installation, ensuring that the DD of interest is loaded and that the appropriate 

workload is produced. Moreover, it is required that the hardware driven by the DD is 

present. To determine the root cause of a problem, typically further analysis is 

needed, most of the times relying on the ability of the OS to locate the origins of the 

problem, which sometimes cannot be performed adequately (see for instance [92]).  

In this chapter we define the Supervised Emulation Analysis methodology that 

supports the identification and location of errors in DDs without the need of the 

source code and the hardware component. Since testing is carried out with the 
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binary of the DD, a series of problems related with the dependency of the source 

code are solved. In addition, inaccuracies introduced by compiler optimizations are 

detected improving the overall precision of the approach. Another aspect that is 

addressed is related with the target architecture. Often programmers tend to 

maintain a single source code for different target architectures by introducing 

conditional compilation flags that are instantiated for the various deployments. 

During the compilation process bugs may be introduced, as the final target 

specificities may not be properly taken into consideration at the time of the driver 

writing. Finally, the binary of the driver to be installed could have suffered malicious 

changes after its final compilation, and therefore, testing the DD version that is going 

to be utilized would allow the discovery of the added weaknesses. 

In summary, the motivation for this work originates from the following ideas: i) 

only use the binary of the DD; ii) no specific hardware is needed and iii) resort to an 

emulation machine. The combination of these ideas potentiates the implementation 

of systems that perform DD testing as a service where a distributed and collaborative 

platform available through the web could allow a faster detection of DD flaws, 

something especially important for previously unknown code. 

7.1 Methodology 

In modern systems, user applications cannot communicate directly with the 

hardware. DDs give support to this task and export interfaces that the OS and the 

applications can use to access devices creating a uniform layer that abstracts the 

details of the different hardware.  

In the case of the two most popular OS, both, Windows and Linux, share a similar 

approach in the way that the OS kernel deals with the hardware (this approach is 

also common to iOS). The similarities found between both OS in the platforms that 

they run and in the approach taken to address kernel extensions can definitively be 

used as an argument for the development of a common methodology for the 

discovery of bugs and vulnerabilities in DDs. However, unlikely to Linux where the 

majority of the source code is available, on Windows the source code of the DD is 

usually kept confidential. The Supervised Emulation Analysis is a methodology for 

the detection and location of flaws in DDs. This methodology is based on the 

definition of the following elements: 

• The assumptions on the DD structure that allows for the methodology to be 

applied; 

• The specification of the DD bug classes that are going to be detected and 

located; 
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• The definition of the validators that will be employed to discover the 

considered bug classes; 

• The platform architecture that should be followed by tools implementing this 

methodology to achieve the desired detection objectives; 

• The procedures to be executed to locate flaws in the DDs.  

The next sections describe in more detail each of the previous enumerated 

elements. 

7.2 Assumptions on Device Driver Structure 

DDs are built according to a DD model determined by the OS internal organization. 

The driver model (among other things) establishes the internal structure of the DD, 

defines the interface between the OS and the DD (and vice versa), and the logic 

sequence of the calls.  Additionally, the OS supports the file structure that transports 

the DD binary code to be loaded into memory for execution.  

Device Driver Model 

Generically speaking a DD contains several functions that can be grouped in 

different classes: i) interface, ii) entry point, iii) unloading, iv) internal, v) interrupt and 

vi) imported. Each of these groups plays a specific role in the work cycle of the driver 

and understanding them can help to design solutions for testing them.  

• Interface functions. The interface functions implement services that the 

DD makes available to the OS. It is included in this category functions such 

as read, write, power management and IOCTL. These are the functions that 

the OS interfaces directly to request specific operations. 

• Entry point function. The driver contains one entry point function 

responsible for initializing the internal structures of the DD. It is the unique 

interface function know right after the DD loading. In the majority of OS, the 

execution of the driver initialization function registers other interface 

functions made available by the DD to the OS. 

• Unloading function. This is a special interface function that performs the 

opposite of the initialization function. It detaches the driver from the 

hardware, unregisters the DD from the OS and performs all the necessary 

clean-up, such as returning all the resources that were acquired during the 

driver working period.  
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• Internal functions. The code of the DD is implemented using a series of 

internal functions that should simplify the code organization as well as 

maintainability. These functions cannot be directly interfaced by the OS but 

are used by some of the interface functions and other internal functions. 

• Interrupt functions. A driver that deals with hardware typically has 

associated functions that are called as a result of an external event that 

triggers them. Typically, the OS already has typified interrupt vectors for 

each type of device that will be attached to the DD interrupt handlers. 

Interrupt functions are a special kind of interface functions and are typically 

registered by the driver initialization routine. 

• Imported functions. A driver depends on functions typically provided by 

the kernel. These are the functions provided by the OS that form the API 

that the DD can use.  

 

Based on the previous information it should be possible to build a system that can 

interface the DD code and perform the same tasks as the OS. This system could 

then test the driver through the various functions identified above and be able to 

locate errors by using test cases that addresses:  

• The parameters of the interface; 

• The parameters of the interrupt functions and the trigger timings; 

• The output return value and output parameters of Imported Functions. 

Binary Transport File  

The binary image of the DD is normally stored in a file and envelops the binary 

executable code. Using the appropriate file format and interpreting it according to 

the specification (e.g., COFF, ELF or EFI) allows the different sections of the DD to 

be correctly identified. This maps the contents of the file into binary code, and 

subsequently to memory addresses that will hold the executable code region, data 

regions, relocation tables and external dependencies of the driver code.  

Using this knowledge, it is possible to build a system that processes the DD 

binary file and performs the tasks that the OS does to prepare the driver for 

execution. 
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7.3 Device Driver Flaw Classes 

A flaw is a malfunction in a program that makes it to produce incorrect outputs, 

behave in an undesired way, such as terminate unexpectedly. When bugs are not a 

consequence of a programming error, they are usually a consequence of design 

flaws. 

Although software can be affected by an enormous quantity of flaws (see for 

instance the Common Weakness Enumeration (CWE) classes [131] or the Seven 

Pernicious Kingdoms taxonomy [132]), the typical error classes affecting the DD 

code is a more restrictive subset. The goal of identifying the bug classes that may 

affect DDs is to characterize the kinds of flaws that a given tool is able to identify 

and the instruments that need to be built to detect them.  

Flaw classes are intrinsically connected to the underlying design of the execution 

platform and architecture of the OS. For instance, in a x86 platform running 

Windows, there are several calling conventions that determine the usage of the 

stack to pass arguments to functions. In the x64 platform also with Windows, 

parameters are passed using registers instead. This correlation between the calling 

convention and the execution platform changes the type of bugs that can affect the 

target platform where the DD is executed and consequently the type of mechanisms 

necessary to detect them. 

The following sections describe typical flaw classes that commonly affect DDs.  

Uninitialized/ Nonvalidated/ Corrupted Pointers 

Whenever a pointer is dereferenced, it is retrieved the value contained at the 

memory address location hold by the pointer. For example, the C language standard 

defines that a static uninitialized pointer has a NULL (0x00) value. If a kernel path 

attempts to dereference a NULL pointer, it will try to access the memory address 

0x00, which likely will result in a halt or hang condition, since the protection 

mechanism of the platform knows that nothing is mapped there. 

NULL pointer dereference vulnerabilities are a subset of a larger class of bugs 

known as uninitialized/ nonvalidated/ corrupted pointer dereference. This category 

covers all situations in which a pointer is used while its content has been changed, 

was never properly set or was not correctly validated. This class covers also 

incorrect sequence of function calls. For instance, many resources can only be used 

by the DD if they are properly initialized and allocated. Access to memory through 

pointers without a proper initialization will normally refer to an incorrect memory 

area. Corrupted pointers can also be a consequence of some other type of bugs, 
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such as buffer overflows, which change one or more of the bytes where the pointer 

is stored. 

Stack Related Flaws 

The kernel stack implementation follows conventions that include the growth 

direction (from higher addresses to lower addresses, or vice versa), the register that 

keeps track of its top address, the location where local variables are saved, how 

parameters are passed, and how a sequence of function calls is linked together. 

Kernel stack vulnerabilities are usually the consequence of writing past the 

boundaries of a stack allocated buffer. This kind of situation can occur as a result of 

using unsafe C functions, such as strcpy() or sprintf(), since these functions 

keep writing to their destination buffer, regardless of its size, until a 0x00 terminating 

character is found in the source string. An incorrect termination condition in a loop 

that populates an array is also an example of how such situation can occur. Another 

example is in the use of one of the safe C functions, such as strncpy(), 

memcpy(), or snprintf(), but incorrectly calculating the size of the destination 

buffer.  

The stack plays a critical role in the application binary interface and the detection 

of stack vulnerabilities can be heavily architecture-dependent. 

Heap Vulnerabilities 

The kernel implements a virtual memory abstraction, creating the illusion of a large 

and independent virtual address space. The kernel continuously manages space for 

a large variety of small objects and temporary buffers. The vulnerabilities that can 

affect the kernel heap are usually a consequence of buffer overflows, triggered by 

the use of unsafe functions, incorrect loop termination, and incorrect use of safe 

functions as explained before. The probable outcome of such an overflow is to 

overwrite some random kernel memory or paging metadata, causing some 

undesirable behavior. 

7.4 Detecting Flaws with Validators 

A validator is a mechanism that is called during the DD code execution to perform a 

check over an intended action. Validators can be defined at the lowest execution 

level in the platform (such as instruction machine level), at the function interface 

level or at the end of a sequence of function calls. When a validator is triggered the 

execution of the code is halted and an error is signalled. 
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The methodology identifies three different kinds of validator classes:  

• Machine Level Validators (MLV): These validators are triggered during the 

execution of a machine instruction and the objective is to check the 

parameters involved in the machine instruction. The machine instruction is 

not executed if the validator returns false. 

• Function Level Validators (FLV): They are triggered during the execution 

call from the DD to the OS, therefore embedded in the imported functions 

code. The implementation of the FLV depends on the type of the called 

function. Some of these validators may focus on parameter values, while 

others may be related with the status of a state machine of OS objects. 

• Post Execution Validators (PEV): They are triggered after the execution 

of a sequence of DD interface functions to detect abnormal situations such 

as, the status of the resources allocated/released or the existence of 

dormant code.  

These types of Validator classes represent different execution levels involved in 

the analysis of the DD code. While MLV act at the machine instruction level, FLV 

operate at the interface of DD with the OS. This distinction is necessary, for example: 

while at the machine level there is nothing wrong in assigning the value NULL to a 

variable and pass the variable value to function fx, at the function level the NULL 

value in a handler parameter of function fx (that is expecting a valid handler from 

the OS), may be synonymous of a flaw. Finally, PEV act at the top of the execution 

level as it depends on the order of calls performed.  

Next are several examples of basic validators that should be available to detect 

the identified flaw classes in the previous section. Tools implementing this 

methodology should however keep open the possibility to extend these validators. 

• MLV1-Source operand validation. Checks that the source operand 

address of an instruction is valid in the context of the operation. Valid source 

addresses include: i) stack addresses assigned to the function holding the 

instruction, ii) memory requested by the DD using the imported functions, iii) 

objects created by the OS Emulator and, iv) hardware location map. The 

call and jmp instructions are not covered by this validator. 

• MLV2-Destination operand validation. Performs the same validations 

detailed for the source operand validation but applicable to the destination 

address of the instruction. The call and jmp instructions are not covered 

by this validator. 
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• MLV3-Call, jmp and ret destination addresses. The call, conditional 

and unconditional jump and ret instructions are subject to a special 

validation. The destination address of these instructions must fall into the 

beginning of an internal function of the driver, a jump table located at the 

DD executable code or into one of the imported functions of the OS. 

• FLVx-Function validators. Checks inside each of the imported functions 

to verify the conformity of the parameter values according to the context of 

the invoked function. Such checks include the parameter type and the 

allowed interval of values.  It is also the responsibility of this type of 

validators to determine if the prerequisites for executing a function are met. 

For instance, they should ensure that before calling function B, function A 

has been called.  

• PEV1-Memory Balance. Checks, after a determined sequence of interface 

function calls, the balance of memory allocations, guaranteeing that all 

allocated memory in function X was freed at function Z. 

7.5 Platform Architecture 

The objective of defining a platform architecture in the methodology is to identify 

which components should exist and what are the roles of each of them in achieving 

the detection goals. Next, we present some of the identified components: i) 

Execution platform; ii) OS Emulator; iii) Device Emulation and iv) Test Manager. 

Execution Platform 

The execution platform consists of an emulated environment where the DD code is 

loaded and executed. The environment emulates the architecture where the DD 

would run (x86, x86-64, other). The execution of each instruction is subject to the 

action of validators to ascertain the correctness of the execution.  

The emulation ensures that there is no need for the hardware of the platform or 

the device. The level of independency achieved with an execution platform based 

on emulation allows to test binary code not originally designed for the target platform, 

i.e., the execution platform may run in Linux and analyse Windows DD code. 

Additionally, the stability of the testing platform is not compromised by the tests 

being performed on the driver code because the detection of the errors is made 

before the execution takes place.  
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Since the execution platform is emulated, the discovery of the flaws can be 

distributed over different systems contributing for gains of efficiency using 

parallelism.  

OS Emulator 

DDs require the support of the OS for their execution. The OS Emulator provides an 

API that allows for the implementation of the driver code. The implementation of this 

methodology requires that all the functions imported by the DD are available at the 

execution platform. It is necessary that the output parameters and return values are 

in control of the Test Manager to allow the generation of particular test conditions. 

The OS Emulator is also the primary interface with the DD and mimics the tasks 

of the OS. This component is in charge of loading the DD and maintaining the data 

structures that support the driver executions, such as kernel objects. It is also in 

charge of the calls to the initialization functions and interfaces with all the functions 

made available from the DD accordingly to the instructions of the Test Manager. 

Device Emulation 

The role of the Device Emulation is to react to the input/output requests performed 

by the DD code whenever it interfaces with the hardware, giving appropriate 

responses such that the execution of the DD code can continue. A DD interacts with 

the hardware component using two different mechanisms: i) directly through in/out 

machine code instructions and ii) using OS API functions as intermediate. 

When the DD uses in/out instructions, it specifies the address of the device and 

issues the instruction expecting to read/write some type of information. Similarly, 

when using an API function as intermediate to the hardware, the involved 

parameters will transport the data from/to the device using the specified signature 

of the API function.  

Device emulation consists on returning to the driver information to be processed 

through the interface mechanism (in/out instructions or API function) whose contents 

and results (successful/unsuccessful access) are controlled by the Test Manager. 

Without knowing the details of the hardware it becomes challenging to emulate 

its behavior. For instance, the DD may look for a particular value in a buffer returned 

by the device to determine proper initialization. The independency of the hardware 

is achieved by ensuring that the internal functions of the DD that deal with hardware 

interfaces have all code paths tested. This guarantees that a code path that expects 

some kind of device behavior is also tested. 
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Test Manager 

The Test Manager is the component in charge of exercising the DD by conducting 

the execution of the binary code. It uses a set of test cases to exercise the driver 

according to a predefined testing strategy.  

At the function level, it is the Test Manager that sets the conditions for the tests 

and interacts with the DD. The Test Manager for instance instructs the entry point 

function of the driver to be called or the interrupt functions to be processed. It is also 

the Test Manager that defines what should be the behavior of imported functions 

when called by the driver (e.g., return values and/or output parameters) and controls 

the OS Emulator and the Device Emulation. 

7.6 Procedures 

The next sections describe at high level what are the procedures involved in the 

identification of flaws in the drive code following the proposed methodology. 

Preparation 

At the preparation stage, the DD binary file structure is analyzed and loaded in the 

execution platform to become ready to be used at subsequent stages.  

The preparation stage comprises the following steps: 

• Binary file interpretation. Consists in the identification of the binary file 

format by reading the file contents and matching it with one of the supported 

structures, e.g., COFF, ELF or EFI.  Using the appropriate file format, the 

process continues with decoding and locating in the binary file of all internal 

structures and sections, such as the machine code, data regions, relocation 

tables and external dependencies.  

• Binary file loading. The binary file is analyzed and mapped in the memory 

of the execution platform. Each byte is linked to a metadata structure that 

holds information about the byte contents, such as the section where it 

belongs. The bytes that belong to code sections are interpreted to form 

instructions. Each instruction is linked to a metadata structure that 

represents the machine code in a higher level language (e.g., assembler), 

keeps track of the address location of the bytes in the executable memory, 

the section the instruction belongs to, and the access privilege (read, write, 

execute). A counter is also maintained to keep track of how many times the 

instruction has been executed. 
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The mentioned metadata guarantees that enough information exists to 

detect attempts to access the executable memory in the middle of an 

instruction during the dynamic execution. This is necessary because in 

CISC architectures the instructions have different sizes and it is allowed to 

start execution from any address (which may be the middle of a particular 

instruction). Therefore, it is possible to have a new set of interpreted 

instructions starting from the middle of a multiple byte instruction which can 

be useful for exploits. On the contrary, in RISC architectures this is not 

possible because each instruction is not spawn in multiple bytes.  

• Relocation and linkage. Ensures that all data and code can be correctly 

accessed. Links to imported functions are taken care, guaranteeing that 

they reference the imported functions provided by the execution platform.  

Binary Code Pre-processing 

The second stage of the methodology uses the metadata obtained at the previous 

stage to perform a pre-processing of the binary code of the DD. This pre-processing 

builds meta data that represents the internal functions of the DD, such that they can 

be dynamically exercised at a later stage. The identification of the precise location 

of the internal functions may need to resort to several interactions because of 

dependencies on the target architecture, instruction set, compiler options, code 

optimization and the existence/absence of parameters and local variables. The 

reason for this is related with the prolog/epilog of each function that can differ, 

influenced by the previous factors, potentially leading to difficulties in locating the 

beginning/ending of functions in a single iteration.  

As a last resort, the analysis of the DD code described at the next stage may 

commence without knowing the location of any internal function, except the entry 

point function of the DD. Starting from the entry point, and every time a call to an 

internal function is detected, a new round of binary code pre-processing is performed 

(if necessarily recursively) to identify the remaining functions. 

Another objective of this stage is to identify the use of potentially insecure 

functions. It may not be possible at this stage to determine which internal functions 

make use of these potential threats because of the impossibility to correctly 

determine the internal function location (due to the reasons explained previously) or 

due to call indirections.  

The final objective of this stage is to identify for each internal function all possible 

code paths and the decision points that form them, as soon as the internal function 

location is determined. This is achieved by building the execution tree that 
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corresponds to the function code and then follow all code paths from the root of the 

tree until all the branch leaf’s. The tree is formed based on the following ideas (not 

exhaustive): 

• Each instruction (not a jump and not a return instruction) is stored at the left 

branch of the tree; 

• Whenever a conditional jump instruction is identified a node is built; 

• The left branch of a node is taken if the conditional jump condition is false; 

• The right branch of the node is taken if the conditional jump condition is true; 

• The branch ends (a leaf is detected): 

o whenever a return instruction is identified, or; 

o whenever an unconditional jump instruction refers to an address 

of an instruction already existing in any of the branches from the 

current location up to the tree root. 

Next, starting from the root of the function tree until all branch leaf’s, determines 

all possible code path combinations. During the formation of all the code paths 

potential loops are also detected and noted in the metadata structures. 

Supervised Emulation Analysis 

The objective of the Supervised Emulation Analysis procedure is to exercise the DD 

binary code and determine if there are errors, where they are located and what are 

the conditions for triggering them. The reason for the need to execute the DD code 

is related with the difficulties in establishing a direct relation between the internal 

functions of the driver, the input parameters, return values from function calls 

performed inside the driver code and the driver state that can lead to flaws being 

triggered. These combinations may result in complex formulas that cannot be easily 

resolved with static analysis. 

A complete driver dynamic analysis involves the verification of the compliance of 

the driver code with multiple OS mechanisms starting at its initialization, going 

through all its available services and finishing with its removal. The supervised 

emulation analysis starts with the invocation of the entry point function of the DD 

and continues with the execution through each of the exposed services. For 

instance, if the driver has registered dispatch functions during its initialization, then 

the driver IRP handling mechanism is one of the target of the analysis. On the other 

hand, if the driver implements the plug and play mechanism then a strategy for 

dynamically executing this facility should be implemented. Using this knowledge, 



 

  

CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 131 

 

 

one can direct the analysis of the DD to target the interfaces that process external 

data either from unprivileged applications or from communication devices (for 

instance, interrupt routines) and look for errors that may be exploited. 

During the emulation analysis, the Test Manager uses scripts that detail the 

sequence of the driver interface functions that should be tested. The Test Manager 

may use the facilities offered by the Execution Platform to parallelize execution of 

different code paths and achieve faster results. Additionally, by using automatic state 

snapshots of the emulated machine, which can be restored at a later time (for 

instance, before any conditional jump or before any call), the analysis can continue 

in other code paths after uncovering an error. 

Whenever a Validator signals a flaw, all the information about the location of the 

flaw in the driver code can be reported. Irrespectively of the kind of flaw, the platform 

should be able to provide the faulty instruction, faulty parameters, initial conditions 

and sequence of events that triggered the fault.  

By resorting to the information about the execution code tree and the 

determination of all possible code paths (determined at the previous stage), it is 

possible know the code coverture of the tests as well as determine potential dormant 

code. 

Reporting and knowledge storage  

The final procedure consists in reporting the encountered flaws, which includes 

providing information about: the involved Validators, the preconditions that triggered 

them, the location in the code, the involved functions, parameters and return values. 

A signature of a digest of the DD can also be associated with the report to form a 

knowledge base for future reference. 

7.7 Discovery Framework 

Discovery is an implementation of the Supervised Emulation Analysis methodology. 

The use of an emulated platform allows independency over the hardware setup 

usually required to test a DD. Emulation also avoids stability issues related with 

hangs and crashes in case of DD malfunctions in the testing platform. Through the 

control of the emulation machine, Discovery offers the possibility to detect errors 

and vulnerabilities at machine instruction level, function level and post execution 

level. 

Discovery has granularity control over the machine code execution of the DD 

supporting very detailed checks at the level of each instruction execution. This way 

it is possible to catch platform dependent flaws such as buffer overflows, incorrect 
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pointer dereferences, invalid jumps and calls. In Discovery, all the functions imported 

by the DD are also emulated by the platform. Checks embedded at each imported 

function allows the detection of flaws at a higher execution level such as, incorrect 

handlers, incorrect pointers and invalid use of OS objects. Finally, by performing 

post execution checks, Discovery can find resource leakages, deadlocks and other 

complex conditions. 

In the next sections, we are going to detail the framework with focus in the 

architecture components. 

Architecture 

Figure 7-1 depicts the architecture of Discovery. Starting from the top of the figure, 

an Application dynamically links to the framework and has access to the functions 

exposed at the Application Interface Layer. The Application provides to the users 

(and/or systems) an interface through which they control the behaviour of the 

framework. Once the DD of interest is identified, the Application passes it to 

Discovery for analysis using the Application Interface Layer. The DD is loaded in the 

framework (marked by the dashed arrow in the figure) and the analysis can start. 

 

 

Figure 7-1: Discovery Framework Architecture. 
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The Discovery Emulation Machine group of components offers an environment 

where the DD machine instructions are analysed. The OS Emulator group provides 

all interfaces, mechanisms, and objects that are required by the DD from the OS. 

The Device Emulator enhances the abstraction of the framework by managing the 

input/output information, managing the interrupt generation and storage of 

information related to the device driven by the DD. The Database group is used to 

store the execution context of the framework, configuration information, the OS 

resources managed by the OS Emulator, test cases and results, the execution trace 

of the framework, and the data for reporting. All the activity of the analysis is 

controlled by the Test Manager which oversees the orchestration of the components.  

Discovery Emulation Machine 

The Discovery Emulation Machine (DEM) implements a simplified x86-64 platform 

where the DD code analysis occurs. It follows a modified Harvard architecture, which 

contains a processing unit with an arithmetic logic unit and processor registers, a 

control unit with an instruction register and program counter, a memory to store both 

data and instructions and input and output mechanisms. By implementing an x86-

64 type of architecture, Discovery addresses one of the most popular computer 

architectures which is used in modern personal computers and servers. In any case, 

the approach taken by Discovery can be extended to support other types of 

architectures. 

We have considered using existing virtual platforms such as Bochs [167] or 

QEmu [168], but in the end, we opted to develop our own emulation platform 

because of the complexity of stripping out all the unnecessary components (e.g., 

BIOS, IO Bus, bridges) to execute the DD code. Instead of investing time in 

understanding how these architectures would fit our needs and the required changes 

to such systems, we built something more suitable for our needs.  

TDiscoveryMemory 

In an x86-64 conventional system, the memory can be considered as an array of 

consecutive cells distinguished from each other by their address location. During the 

code execution, the CPU reads the memory contents pointed by the instruction 

register, decodes the instruction and executes the associated algorithm. In CICS 

CPU architectures, as it happens in x86-64, instructions may occupy more than one 

memory cell which may require the CPU to perform multiple memory accesses to 

complete the execution of one instruction. 
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Physical memory constraints have been resolved by resorting to mechanisms 

that virtualize the memory space, giving the illusion that memory is many times 

greater than what exists.  

In our implementation, we have defined the TDiscoveryMemory structure to 

represent the executable memory of the platform (see List 7-1).   

Each TDiscoveryMemory cell contains the address where the first byte of the 

machine instruction would be positioned in conventional memory, the assembly 

instruction already decrypted in text format, the number of parameters of that 

instruction and the characterization of each parameter in the instruction. 

 

1 typedef struct { 

2  um64 address;             //instruction address 

3  char asmInstruction[50];  //decoded instruction 

4  char byteCodes[20];       //raw instruction 

5  int nbrParams;            //number of parameters 

6  TTValue param[MAX_PARAM]; //parameters 

7  int execCounter;          //number of executions 

8  … 

9 } TDiscoveryMemory; 

List 7-1: TDiscoveryMemory definition (sample). 

During the loading process of a DD’s binary file into the DEM, the binary code is 

pre-processed and transformed into assembler instructions using NASM [156]. 

Then, a representation of that information is stored in TDiscoveryMemory cells.  

This organization was followed for the following main reasons: it reduces the 

efforts on interpretation of the CPU instruction set during code analysis and code 

emulation execution; it maintains a metadata structure about each instruction, 

parameters and number of executions; it can detect attempts of executing different 

instructions sequences as a result of landing in the middle of variable sized 

instructions (a technique used to exploit the architecture of CISC architecture). 

We are aware that from the point of view of memory space efficiency, 

TDiscoveryMemory is by far less efficient than the conventional x86-64 memory 

organization, but our objectives are quite different from just running the executable 

program. Additionally, since the average dimension of a DD is usually small, the use 

of such memory organization is consequently not a concern. 

Discovery CPU 

The Discovery CPU (DCPU) is an emulation of an x64 CPU architecture organized 

in two main components. The first component is a “C” structure where each field 

holds the status of the individual DCPU registers (see List 7-2). The second 
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component is the Instruction Execution Engine (IEE) that implements the DCPU 

internal mechanics and the machine instructions according to the algorithms of the 

various instructions. The instructions follow the descriptions found in [170] and 

although the current instruction set is not complete (for instance MMX instructions 

were not implemented) they have been proved to be enough to execute the off-the-

shelf drivers from our experiments. In each step, the IEE uses the value of the 

instruction pointer rip register to locate the next instruction stored in a 

TDiscoveryMemory cell and execute the machine instruction algorithm.  

 

1 typedef struct { 

2  um64 rax, rbx, rcx,rdx,r8,r9,…//registers 

3  um64 cpuflags;     //flags 

4  um64 rbp,rsp;      //stack pointers 

5  um64 rdi,rsi,rip;  //index registers  

6  int cpuMode;       //operation mode 

7  … 

8 } DCPU; 

List 7-2: DCPU structure (sample). 

Hardware Stack 

In most computer architectures, a Hardware Stack is an area of the computer 

memory with a fixed origin and variable size that is involved in the execution of 

functions, transport of parameters and allocation of local variables of functions. In 

Discovery, the Hardware Stack is implemented detached from the executable 

memory hold by TDiscoveryMemory cells.  The Hardware Stack is simply an array 

of bytes managed through the rsp and rbp registers of the DCPU. Similar to what 

happens with a conventional x86-64 architecture, the Hardware Stack gives support 

to push, pop, call and ret instructions.  

Operating System Emulator 

The Operating System Emulator (OSE) is the functional interface to the DD. The 

OSE is: i) in charge of loading the DD and maintain data structures that support the 

DD execution, ii) provide all the imported functions called by the DD, and iii) call the 

DD call-back functions using the appropriate function signatures and parameters. 

These three main tasks are provided respectively by the Driver Loader, the Windows 

Function Emulator and the Driver Manager components. The following sub sections 

explains the implementation of these components and the role they perform in the 

overall architecture. 
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Driver Loader 

In the Windows OS, a DD installation package usually contains at least an “.inf” 

and one or more “.sys” files. The “.inf” file is a text based file organized into 

several sections used during the installation of the DD in the system. The OS 

employs this file to match devices with drivers whenever a new device is found in 

the hardware platform. The “.inf” file contains information about the appropriate 

“.sys” filename to be used to drive the device.  

The “.sys” file is the binary image of the DD and contains the machine 

instructions that must be loaded in memory to execute and control the device. It 

follows the PEF [32] format for the file structure, the same utilized by applications 

and DLLs, which includes in a single file the machine code of the DD and 

dependences from other software modules organized in the form of tables. The 

imported functions table contains the name of the functions and the name of the 

external modules (DLLs or other software modules) from which the DD depends. 

The OS uses this information during the software loading process to link the DD 

code to other software modules necessary for correct execution. In some cases, the 

required modules may not yet be present in the system. When this happens, the OS 

has to perform additional loadings that may result in some kind of recursion process. 

In Discovery, the Driver Loader (DL) is the component responsible for the loading 

process of the DD intended for analysis in the emulation machine. The loading 

process is performed in two phases: 

• Phase 1 – File read and preparation: The DL reserves temporary regular 

memory space in the Discovery application and reads the “.sys” file to that 

memory. Following the specification of the PEF format, the DL interprets the 

contents of the temporary memory and locates the various sections. The 

code section is prepared for execution by fixing the relocation addresses 

and linking the imported functions discriminated in the import section table 

to the functions provided by the Windows Function Emulator. At the end of 

phase 1, the DL has an image of the DD loaded in temporary memory where 

all imported functions used by the DD are already linked to the functions 

provided by the framework; 

• Phase 2 – Building the executable memory contents: The DL walks 

through the temporary memory to disassemble the machine instructions in 

the code section. For each instruction, the DL allocates and builds a 

TDiscoveryMemory memory cell with the corresponding metadata. During 

this process, the existing internal functions are identified by matching the 

processed instructions with the prologue and epilogue machine instruction 
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sequences that form the start and end of functions. To complement this 

identification, call instructions are interpreted and the destination address 

identified. Destination addresses embedded in the instruction (e.g., call 

dword [dword 0x0800ABCD]) are easy to check for either an internal 

function or an imported function. New previously unidentified internal 

functions are then dynamically formed. Indirect calls (e.g., call esi) 

should be checked later. 

 

Figure 7-2 illustrates the memory organization of a TDiscoveryMemory 

*discoveryMemory array used to represent the binary code of a DD. As an 

example, the cell discoveryMemory[0] represents the first instruction of the 

binary code and discoveryMemory[1] represents the second instruction of the 

binary code. Each of these cells already contains a series of metadata necessary 

for the DEM to execute. 

 

 

Figure 7-2: Example of Discovery Memory organization. 
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Windows Function Emulator 

A Windows DD depends on functions provided by the OS. These functions are 

described in the DDK, and form the API provided by the OS to the DD. They are 

used by the DD to register the call-back functions in the OS, to request and free 

resources from the OS and to perform various other operations. 

Table 7-1: Summary of Implemented Windows Emulator functions. 

Import 
library 

Function 
group 

Description File modules 
Number 

of 
Functions 

Ntoskrnl.exe 

I/O manager  Service functions NtosKrnlIoManagerRtl 16 

Memory 
manager  

Page table control NtosKrnlMemortyMgr 6 

Executive  
Heap 
management and 
synchronisation 

NtosKrnlExecutiveLib 11 

Power 
Management  

Power control NtosKrnlPoMgr 4 

Runtime 
(prefix Rtl) 

Utility and 
management 
routines replacing 
ANSI-standard 
routines 

NtosKrnlRtl 

NtosMutextInterface 

NtosKrnlMgr 

NtosKrnlList 

22 

Zw routines 
File and registry 
access 

ZwXxxRoutines 10 

Windows 
kernel 

Low-level 
synchronization 
functions 

NtosKrnlCoreKrnlLibRtl 32 

Hal.sys 
Hardware 
abstraction 
layer 

Provides an 
abstraction of the 
hardware 

Hal 23 

Ndis.sys 
Network driver 
interface  

Network support Ndis 148 

WMiLib.sys IoManager 
Windows 
Management 
Instrumentation 

WMI 2 

 

In Discovery, the Windows Function Emulator (WFE) is the module that 

implements the functions listed in the “.import” section of the DD. Table 7-1 gives 

a summary of the type and number of the currently implemented functions that can 

be linked to the DD. 

The WFE defines the TFuncTranslation structure (see List 7-3) to establish 

the correspondence between the name of an imported function (fxName) and the 

address of the corresponding function implemented at the WFE (*_My_fxAddr). 

Other attributes such as the calling convention (callingConvention) and the 

number of parameters (nbrParams) of the function are also represented in the 

structure. All Windows functions implemented in WFE are arranged in an array of 
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TFuncTranslation elements which is used during the linkage process of the 

DUT to correctly locate the address of imported function and connect the imported 

functions of the DD with Discovery. 

 

1 typedef struct{ 

2  char fxName[255];     //name of the function  

3  DWORD *_My_fxAddr;    //address of the function 

4  int callingConvention;//function calling convention 

5  int nbrParams;        //Number of parameters 

6 }TFuncTranslation; 

List 7-3: TFuncTranslation – Linkage of imported functions. 

Driver Manager 

The Driver Manager (DM) is the component of the OS Emulator in charge of invoking 

the DD interface functions and maintaining the resources that the DD requires from 

the OS Emulator for execution. It is for instance the Driver Manager that holds the 

struct _DRIVER_OBJECT *DriverObject parameter on the call to the 

DriverEntry function. Besides maintaining all the necessary structures, it is the 

DM that passes the parameters to the DD according to the calling convention in use 

by the target platform (either using the Hardware Stack or the registers) and setups 

the registers of the DCPU such that the execution context can switch to the DEM 

and the code of the DD. 

Device Emulator 

It becomes challenging to emulate any device without knowing the details of the 

hardware. For instance, the DD may look for specific values read from a specific port 

to determine its state and continue operation. The hardware independency is 

achieved by ensuring that the code paths depending on in and out instructions are 

covered, something delegated to the Test Manager. More sophisticated devices use 

abstract ways to deal with input/output. In these cases, the Device Emulator 

interprets and processes complex structures such look-a-side buffers and DMA 

memory representations, which typically occurs with most of the modern DD that 

deal with PCI, USB and NDIS specifications. In this case the import functions 

provided by the OS Emulator are involved 

The Device Emulator manages information related to input/output requests 

performed by the DD code whenever it interfaces with the hardware either directly 

using In and out instructions or indirectly when intermediated by the OS Emulator. 
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The objective of this component is not to emulate a replica of the device managed 

by the DD (it will be impossible since Discovery does not know which device is 

involved), but rather to provide the mechanisms to analyse the DD code. 

Database 

Discovery uses a database to keep track of test cases and test results. The database 

also maintains the content of the execution of the DEM, the resources managed by 

the OS Emulator and the information to generate reports. This way, Discovery 

ensures that it contains all the data to be able not only to reproduce results, but also 

to accurately report the detected flaws.   

Test Manager 

The Test Manager is the component in charge of supervising the strategy employed 

to find the errors in the DD code. It uses the internal structure of the DD under test 

to dynamically generate the test cases and implement a testing strategy (see section 

7.9). 

7.8 Discovery Emulation Execution Mechanisms 

This section describes a few mechanisms that glue all the components of the 

framework enabling the analysis of the DD. 

Execution Context Switch 

The DEM has two main modes of operation distinguished by the code that is being 

executed. The DEM is running in emulation mode when a DD function is being 

executed. The DEM is running in true mode when the DD calls a WFE function, a 

DD function execution finishes or a flaw in the DD has been detected. Whenever a 

change from true mode to emulation mode occurs (and vice versa) it is said that an 

execution context switch has occurred. It is important to understand in which 

execution mode the DEM is running to comprehend what are the techniques 

involved in the detection of DD flaws. 

Calling DD Interface Functions 

DDs comply with a defined structure and, as explained before, the DriverEntry 

function is the entry point to the driver code. The DD exposes other functions either 

by filling in the address of the call-back functions in the DRIVER_OBJECT data 

structure (when DriverEntry returns) or by registering call-back functions to the 
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OS using appropriate registration functions, such as, 

NdisMRegisterMiniportDriver in the case of a NDIS DD. 

The Driver Manager is the component of Discovery that directly calls the DD 

Interface functions. When a DD function is called, there is a switch on the execution 

mode of DEM from true mode to emulation mode. The switching algorithm can be 

described as follows: 

• Determine which function of the DD to call and obtain the signature of the 

DD function; 

• Prepare the parameter values and pass the parameters to the DEM 

according the type of execution platform (i.e., 32 bit or 64 bit); 

• Force the return address in the Hardware Stack to a Driver Manager 

function, ensuring that when the DD function ends the DD switches the 

context of the DEM to true mode in a controlled way; 

• Setup the rip register value of the DCPU to the address of the DD function 

to be executed; 

• Enter into emulation mode by transferring the execution control to the DCPU 

with a call to cpu_run() function. 

Although the call of the DD functions is performed by the Driver Manager, it is 

the Test Manager that instructs it. The DEM continues to run in emulation mode until 

one of the following events occurs: 

• The DD calls a WFE function; 

• The DD code execution finishes by returning the execution to the address 

of the Driver Manager entry function; 

• A flaw is detected by one of the validators during the computation of a binary 

instruction. 

Executing WFE Functions 

The DEM executes the DD code in emulation mode. Whenever a jmp, call or ret 

instruction targets the address of a WFE function, the execution of the DEM changes 

from emulation mode to true mode. The algorithm of this context switch is 

implemented at the cpu_step function and can be described as follows: 

• Obtain the next instruction address and verify if it refers to a 

TDiscoveryMemory cell: 

o In the affirmative case, continue the execution at that address; 
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o Otherwise, verify if the address belongs to a WFE function. In 

this case perform the context switch by calling 

cpu_executeWFEFunction; 

else, raise a flaw exception. 

Returning Control to Driver Manager 

Under normal circumstances, when the execution of a DD function ends, the Driver 

Manager entry point function is called. When this happens, the Driver Manager 

returns control to the Test Manager so that it decides what should be the conditions 

to perform the next test. 

On the contrary, if a flaw is detected, the Driver Manager entry point will not be 

called. The emulation (or the execution of a WFE function) will end because one of 

the Validators signals a fault event to the Test Manager. 

7.9 Detection of Flaws 

This section describes the mechanisms involved in the detection of flaws, how they 

are triggered and what kind of flaws it is possible for Discovery to find. We start this 

section by presenting Primitive Checkers, a set of functions responsible for the 

detection of basic errors in the DD code. These are the building blocks for 

constructing more complex verifications. Then, we explain the Validators embedded 

in Discovery and group them in two different classes. Next, we present the adopted 

testing strategy. Finally, we conclude the section by enumerating the type of flaws 

that can be detected with the currently implemented Validators. 

Primitive Checkers 

In Discovery, a primitive checker is a function that evaluates an input parameter and 

returns true or false depending if the parameter satisfies or not the success 

criterion. Table 7-2 includes the list of currently implemented primitive checkers.  

As an example, primitive checker PC3, isValidStackAddr(um64 address, 

int range), returns true if the parameter address and address+range is 

within the range of the Hardware Stack. This primitive is suitable to check if a certain 

address is a plausible local variable. In this checker, the range parameter gives 

the possibility to check an interval of consecutive addresses starting at address. 

This is the basic mechanism for buffer overflows detection in the Hardware Stack, 

as a result of consecutive mov instructions (including movsd, movsw, movsx). 
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Another example, PC4, isValidWFEAddress, verifies is the address 

parameter corresponds to the address of a function provided by the Windows 

Function Emulator. This primitive checker is useful to verify if a call to the specified 

address parameter can be performed. 

Table 7-2: List of Primitive Checkers. 

ID Name 
Input 

Parameter 
Description 

PC1 isValidSourceRegister 
instruction, 
regName 

Returns true if regName is a valid 
instruction source register operand. 

PC2 isValidDestinationRegister 
instruction, 
regName 

Returns true if regName is a valid 
instruction destination register. 

PC3 isValidStackAddr 
address, 

range 

Returns true if address and address+range 
belongs to the address interval of the 
Hardware Stack. 

PC4 isValidWFEAddr address 
Returns true if address corresponds to an 
address of a WFE function. 

PC5 isValidDriverManagerAddr address 
Returns true if address is the address of the 
entry point of the Driver Manager. 

PC6 isValidTDiscoveryCell address 
Returns true if address is an address of a 
TDiscoveryMemory cell. 

PC7 isValidMemoryFromOS 
address, 

range 
Returns true if address and address+range 
belongs to memory managed by the OSE. 

PC8 isValidOSObjectHandler Handler 
Returns true if handler is and identifier 
provided by the OSE. 

PC9 isValidDataSegment 
address, 

range 

Returns true if address and address+range 
belongs to the address interval of the DD 
data segment. 

Validators 

Discovery uses Validators during the DD code analysis to perform a check over an 

intended action. The output value of a Validator may be true, which means that no 

flaw was detected and the intended action is harmless, or false, which indicates 

that a flaw has been found.  

Table 7-3 presents the list of the currently implemented Validators and flaws that 

can be detected. The first column, contains the identifier of the Machine Level 

Validator (MLV), Function Level Validator (FLV) and Post Execution Validator (PEV). 

Column “Name” gives a designation to the Validator and establishes an implicit 

relationship between the name and the target of the check that is performed. Column 

“Flaw” describes the type of flaws that the Validator can detect. Column “Possible 

Causes” gives a non-exhaustive list of possible causes for the flaw.   

Finally, the last column gives a non-exhaustive list of the possible consequences 

of not catching the flaw.  
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Validators are built using Primitive checkers. For instance, MLV1 Source operand 

is built using PC1, PC3, PC4, PC5, PC6, PC7, PC8 and PC9. 

Table 7-3: List of implemented validators and detectable flaws. 

ID Name Flaw Possible causes 
Possible 

consequences 

MLV1 Source operand 
Invalid 
source 
operand 

• Uninitialized variable 

• Corrupted pointer 

• Buffer overflow 

• Hang 

• Crash 

MLV2 Destination operand 
Invalid 
destination 
operand 

• Uninitialized variable 

• Corrupted pointer 

• Buffer overflow 

• Hang 

• Crash 

MLV3 
Call, jmp and ret 
destination address 

Invalid 
address for 
execution 

• Uninitialized variable 

• Corrupted pointer 

• Privilege 
elevation 

• Hang 

• Crash 

MLV4 
Unconditional jump 
destination address 

Invalid 
address for 
execution 

• Corrupted pointer 

• Privilege 
elevation 

• Hang 

• Crash 

FLV1 MemoryRange 
Invalid 
address 

• Uninitialized variable 

• Corrupted pointer 

• Buffer overflow 

• Hang 

• Crash 

FLV2 Handler 
Invalid 
handler 

• Uninitialized variable 

• Corrupted pointer 

• Hang 

• Crash 

FLV3 ParameterRange 
Invalid value 
for 
parameter 

• Uninitialized variable 

• Corrupted pointer 

• Hang 

• Crash 

FLV4 DeadLock Dead lock 

• Uninitialized variable 

• Corrupted pointer 

• Incorrect control of 
resources 

• Hang 

• Crash 

FLV5 IRQL 
Invalid IRQL 
for function 

• Invalid function 
context control 

• Hang 

• Crash 

FLV6 
Return Value 
Evaluation 

Non 
validation of 
function 
return value 

• Incorrect function 
context control 

• Hang 

• Crash 

FLV7 
Explicit call to crash 
function 

Bug check 
function 
called 

• Explicit call from the 
DD to a function that 
crashes the OS. 

• Crash 

PEV1 ResourceLeakage 
Resource 
leakage 

• Uninitialized variable 

• Corrupted pointer 

• Incorrect control of 
resources 

• Hang 

• Crash 

PEV2 DormantCode 
Code 
dormant 

• Compilation errors 

• Backdoors 

• Hang 

• Crash 

• Disclosure of 
confidential 
information 

Testing Strategy 

The Test Manager uses the internal structure of the DD under test to dynamically 

generate the test cases based on: 1) The entry point of the driver; 2) The remaining 

interface functions exposed by the DD to the OS (registered by the DD during its 

execution); 3) The possible return values/output parameters of the imported 
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functions called by the DD; and 4) The documented calling sequences performed 

by the OS to the interface functions of the DD. 

The objective of the Test Manager is to execute all test cases defined for an 

interface function, import function (i.e., output/return values) and be able to either 

reach the end of the execution or to find an error.  

The test campaign starts at the DriverEntry function and once the tests 

determined for this function are finished, the Test Manager moves to another 

interface function exposed by the DD to the OS. For this, the Test Manager uses the 

functions that were registered by the DD using the MajorFunction array of the 

Driver_Object parameter of DriverEntry or by calling specific OS functions 

(either still in the execution context of the DriverEntry function or in the execution 

context of other interface functions). 

The order used by the Test Manager to test each interface function mimics the 

way the OS uses such functions, thus avoiding sequences that do not make sense 

for the DD. Otherwise, if executed, these sequences could lead to false positives 

(for instance, calling the AddDevice function after calling the DriverUnload 

function).  

Since the interface functions exported by the DD to the OS are known and 

documented, it is possible to build calls to these functions with diverse parameter 

values that should be handled correctly by the DD. 

While testing an interface function, whenever a call is performed to an internal 

function of the DD, the Test Manager changes the test focus and initiates the test 

campaign of such function. This happens recursively, until the Test Manager finds 

an internal function that does not call any internal function. Whenever it finishes the 

test campaign of an internal function it changes the focus to the preempted testing 

function. 

The Test Manager maintains control over each call performed by the DD code to 

external functions keeping track about each code path where the call was 

performed, what was the returned result and the value of the output parameters. 

This way, the Test Manager can run diverse tests within an internal function of the 

DD and change the return value (or output parameter value) of any called WFE 

function in each test case. 

Tests Cases 

From the point of view of the tests, Discovery interfaces the DUT at two different 

levels: i) at the DUT interface functions and ii) at the provision of the OS functions 

(in this case the functions implemented by the WFE component). Therefore, the 
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following group of test cases can be identified: i) driver interface test cases (DITC) 

acting at the DUT’ interface and ii) imported function test conditions (IFTC) that 

control the return values and output parameters of the WFE functions. The selection 

and usage of each of the test cases is controlled by the Test Manager during the 

analysis of the DUT.  

Driver Interface Tests Cases 

Table 7-4 represents the test cases at the driver interface of the DUT. DITC1 

represents a normal situation where the Test Manager calls a function of the DUT 

with valid parameters. DITC2 represents a situation where the Test Manager passes 

invalid parameters to the DUT. Although DITC2 represents an uncommon situation 

(because typically the OS does not pass invalid parameters to the DD) it was 

included to demonstrate the level of dependency that usually DD have from the OS 

in what regards to the correctness of the input parameters. 

Table 7-4: DITC test values. 

ID 
Parameter passed 
to DUT function 

Description 

DITC1 Valid value 
The Test Manager passes valid parameters to an 
interface function of the driver. 

DITC2 Invalid value 
The Test Manager passes invalid parameters to an 
interface function of the driver. 

Import Function Tests Conditions  

An imported function falls into one of the following signatures: i) have no return value 

and no output parameters, ii) have return value and no output parameters, iii) have 

no return values but have output parameters and iv) have both return value and 

output parameters. Table 7-5 represents the applicable test cases that simulate the 

possible outcomes on the usage of the imported functions called by the DUT during 

its operation. For instance, IFTC1 represents a situation where function Fx called by 

the DD has a successful outcome. On the contrary, IFTC2, represents a situation 

where function Fx had an unsuccessful outcome. Naturally, functions that do not 

return values and do not have output parameters are not considered for test 

conditions. In these cases, the Test Manager has to guarantee the correct outcome 

for the tests to be meaningful.  

Currently, Discovery has over 260 imported functions defined and over 390 

imported functions test conditions in its database. 
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Table 7-5: IFTC combination values. 

ID 
  WFE return 

value 
WDE output 
parameter 

Description 

IFTC1 Success No output parameters 

The DUT calls a WDE function and 
the WDE function return value 
informs successful execution. 

The WDE function does not have 
any output parameters. 

IFTC2 Fail No output parameters 

The DUT calls a WDE function and 
the WDE function return value 
informs an unsuccessful execution. 
The WDE function does not have 
any output parameters. 

IFTC3 Success Min Valid Value 

The DUT calls a WDE function and 
the WDE function return value 
informs successful execution. 

Output parameters have minimum 
value for the involved type. 

IFTC4 Success Valid Value 

The DUT calls a WDE function and 
the WDE function return value 
informs successful execution. 

Output parameters are valid (e.g., 
memory allocation pointers are 
valid). 

IFTC5 Success Max Valid Value 

The DUT calls a WDE function and 
the WDE function return value 
informs successful execution. 

Output parameters have maximum 
value for the involved type. 

IFTC6 Success Invalid Value 

The DUT calls a WDE function and 
the WDE function return value 
informs successful execution. 

Output parameters have invalid 
values. 

IFTC7 Fail Invalid value 

The DUT calls a WDE function and 
the WDE function return value 
informs an unsuccessful execution. 
Output parameters contain values 
susceptible to cause problems if 
used (e.g., NULL pointers). 

IFTC8 No return value Valid value 

The DUT calls a WDE function and 
the WDE function does not have a 
return value. The output parameters 
contain values usable by the DD 
(i.e., not susceptible to cause any 
problem, e.g. memory allocations 
are valid). 

IFTC9 No return value Invalid value 

The DUT calls a WDE function and 
the WDE function does not have a 
return value. Output parameters 
informs unsuccessful execution of 
the function (e.g., NULL pointer in 
memory allocations). 
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Test Sets 

In a real environment, the way that the OS calls the exposed interface of the DD is 

not arbitrary. Although it depends on external events, it follows a specific pattern. 

Therefore, for the analysis of the DD to be meaningful, whenever dynamically 

emulating the execution of the DUT code, the Test Manager must mimic the OS 

sequence of calls. Otherwise, in most the cases calling the DD interface arbitrarily 

can lead to false positive results. 

Table 7-6 presents the considered test set used by the Test Manager for the 

experiments. The applicability of each of the sequences is determined by the Test 

Manager and dependent on the exposed interface of the DUT. 

Table 7-6: Applicable call sequence test conditions (not exhaustive). 

Sequence ID Call Sequence 

S1 
• DriverEntry 

• DriverUnload 

S2 

• DriverEntry 

• AddDevice 

• DriverUnload 

S3 

• DriverEntry 

• AddDevice 

• IRP_MJ_XXXX functions 

• DriverUnload 

S4 

• DriverEntry 

• AddDevice 

• Ndis initialization routines 

• IRP_MJ_XXXX functions 

• Interrupt Routines 

• DriverUnload 

 

S1 represents the case where the DD is installed in the OS and is removed 

immediately. In S2, the AddDevice function is called after DriverEntry, and the 

DD removed right after. In S3, the IRP_MJ_XXXX functions are called after 

AddDevice. Calling IRP_MJ_XXXX functions without AddDevice can lead to 

errors because the IRP_MJ_XXXX function may try to access the 

driverExtension fields before it has been created (typically) in AddDevice 

function. S4 contains calls to interrupt routine functions. The sequences can have 

more complex combinations, but the current version of Discovery only contains 

these ones for now. 

At the end of each of the test sets, the Test Manager can assess the balance of 

the resources used by the DUT and determine situations that can be caught by Post 

Execution Validators. 
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Expected failure modes 

The detection of errors during the analysis is performed using the Validators 

described previously. In Discovery, there is a one to one correspondence between 

the Validators and the expected failure modes as structured in Table 7-7.  

Table 7-7: Expected failure modes. 

ID Flaw Validator 

FM-MLV1 Invalid source operand in instruction. MLV1 

FM-MLV2 Invalid destination operand in instruction. MLV2 

FM-MLV3 
Invalid address for execution in call, unconditional jump and return 
instructions. 

MLV3 

FM-MLV4 Invalid address for execution in conditional jump. MLV4 

FM-FLV1 Invalid address passed to WFE function. FLV1 

FM-FLV2 Invalid handler passed to WFE function. FLV2 

FM-FLV3 Invalid value for parameter. FLV3 

FM-FLV4 Dead lock. FLV4 

FM-FLV5 Invalid IRQL for function. FLV5 

FM-FLV6 Non validation of function return value. FLV6 

FM-FLV7 Explicit call to crashing function FLV7 

FM-PEV1 Resource leakage. PEV1 

FM-PEV2 Dormant code. PEV2 

Implementation 

Discovery is a framework whose components can be reused to build other tools for 

the detection of flaws in DD. The framework was implemented using Visual Studio 

2013 and is written in assembly, “C”, “C++” and “C#” languages. It is made available 

in the form of a Dynamic Linking Library (DLL). Using the “Discovery.dll” it is 

possible to create a graphical user application (and web services) that receives as 

input a DD binary file, performs the analysis and returns a report about the potential 

presence of flaws.  

Table 7-8, gives an estimation of the lines of code of the latest version of 

Discovery [169]. The C++, C and assembly files form the core of the platform. Many 

of the C/C++ Header files were built based on Microsoft’s DDK code. The C# code 

belongs to the user interface and the make files are automatically managed by the 

Visual Studio. 



 

 

150 CHAPTER 7 - SUPERVISED EMULATION ANALYSIS 

 

Table 7-8: Count of Lines of Code of Discovery. 

Language Files Lines of Code 

C++ 231 141,631 

C 225 125,542 

C/C++ Header 515 99,657 

Assembly 154 21,284 

C# 52 7,647 

Make 17 2,142 

7.10 Experimental Results 

In this section, we present the test conditions and the results of the experiments 

performed with drivers included in the installation disks of commercially available 

products. The experiments were performed in a laptop computer HP Pavilion with 

an AMD A8-6410 APU, 2.00GHz, with 6.00GB memory and an 220GB SSD Toshiba 

Disk. Each of the driver under test (DUT) were subject to a series of situations that 

simulate possible execution conditions in a real environment. If errors exist during 

the execution, they are caught by the action of the Validators of Discovery.  

These drivers were selected taking into consideration the current development 

stage of Discovery and their relative simplicity, although, commercially available. 

Experiments with a Bluetooth Driver 

The first set of experiments targeted the btwrchid.sys (BT) HID Bluetooth 

controller driver found as part of the installation package of the ASUS USB-BT400 

Advanced Bluetooth 4.0 Adapter for Windows 10. 

Table 7-9 summarizes the characteristics of the BT DD. The size in disk of BT is 

20,480 bytes and the code is organized in 6 different sections. The .text section, 

which contains the machine instructions, is 7,552B length which translated to 3,265 

different instructions stored in TDiscoveryMemory cells.  

During the loading process, Discovery found that BT1 imported 37 functions from 

the OS, 32 from the ntoskrnl.exe, 3 from hal.dll and 2 from hidclass.sys.  

Discovery detected 42 internal functions which evolved to 45 at the end of the 

analysis process. This difference confirms that a simplistic analysis on the driver 

code based on the detection of prolog and epilog of functions is usually not enough 

to be able to detect the overall existing functions. To avoid this inaccuracy, during 

the execution of the DD code, Discovery dynamically detects and considers for 

analysis previously undetected internal functions. 
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Table 7-9: Characteristics of the BT DD. 

Characteristic Value 

ID BT 

Device driver file name btwrchid.sys 

Type Bluetooth HID Controller 

Vendor Broadcom 

Target OS Windows 10 

Target Platform 32 bit 

File size in disk 20,480B 

.text section Start: 0xB8A0480,         Size:  7,552B 

.rdata section Start: 0xB8A2200,         Size:     384B 

.data section Start: 0xB8A2380,         Size:     256B 

INIT section Start: 0xB8A2480,         Size:  1,152B 

.rsrc section Start: 0xB8A2900,         Size:  1,024B 

.reloc section Start: 0xB8A2D00,         Size:     512B 

DriverEntry address 0xB8A24BE 

Number of TDiscovery memory cells 3,265 

Number of imported functions from ntoskrnl.exe 32 

Number of imported functions from hal.dll 3 

Number of imported functions from hidclass.sys 2 

Initial number of local DD functions 42 

Final number of local DD functions 45 

Imported Functions Test Cases for BT 

After loading the BT DD, and based on the imported functions used by the DUT, the 

Test Manager automatically selects the applicable test cases to be used whenever 

the DUT calls any of the imported functions. Table 7-10 shows the test cases for 

each of the eligible WFE functions used by BT DD. As an example, for the PVOID 

ExAllocatePoolWithTag (_In_ POOL_TYPE PoolType, _In_ SIZE_T 

NumberOfBytes, _In_ ULONG Tag) function, two possible conditions are 

considered: i) IFTC1 the function succeeds and returns a valid pointer and ii) IFTC2 

the function fails and returns NULL. Since the function does not have any output 

parameters, IFTC3 to IFTC9 are not applicable to this function. To avoid false 

positives, IFTC6 is not considered in our tests. 

Although BT uses many other imported functions that carry return values and/or 

output parameters, they were not eligible to be used for test purposes. For these 

imported functions the DUT cannot determine the correctness of the return/output 

and, therefore, an incorrect return value/parameter would potentially lead to false 

positives. 
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Table 7-10: Imported functions test cases for BT. 

BT Imported Functions 
Test Cases 

IFTC1 IFTC2 IFTC3 IFTC4 IFTC5 IFTC6 IFTC7 IFTC8 IFTC9 

ExAllocatePoolWithTag      -    

HidNotifyPresence      -    

HidRegisterMiniportDriver      -    

IoAcquireRemoveLockEx      -    

IoAllocateIrp      -    

IofCallDriver      - 
 

  

KeCancelTimer      - 
 

  

KeDelayExecutionThread      -    

KeSetEvent      - 
 

  

KeSetTimer      - 
 

  

KeWaiForSingleObject      -    

MmMapLockedPagesSpecifyCache      - 
   

PoCallDriver      - 
   

RtlInitUnicodeString      -    

ZwClose      -    

ZwOpenKey      - 
   

ZwQueryValueKey      
- 

   

 Tested condition 

 

As an example, Table 7-11, lists three of these imported functions. For instance, 

function LONG __cdecl InterlockedExchange(_Inout_ LONG volatile 

*Target, _In_ LONG Value), contains a target input/output parameter and 

returns the value of the target variable.  

At the first glance, it looks like a candidate function for using IFTC4 and IFTC6, 

however, the purpose of this function is to atomically exchange the values of the 

parameters. Subverting this purpose, which cannot be verified by the DUT, would 

constitute an error from the OS, that potentially would lead to a false positive when 

applying the IFTC6 test condition.  

The function KIRQL KeGetCurrentIrql(void) returns to the DD the current 

IRQL value (managed by the OS). Changing this result (arbitrarily) would lead to 

false positive errors.  

Finally, an error in VOID KeInitializeTimer(_Out_ PKTIMER Timer); 

would affect the PKTIMER opaque structure with little or no consequences to our 

tests.  
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Table 7-11: Discarded import functions test cases for BT (not exhaustive). 

Imported Functions Discard reason 

LONG __cdecl 

InterlockedExchange(_Inout_ 

LONG volatile *Target, _In_ 

LONG Value); 

Sets a variable to the specified value as an 
atomic operation. The function returns the 
initial value of the target variable. 

KIRQL KeGetCurrentIrql(void); 
The KeGetCurrentIrql routine returns the 
current IRQL which is maintained by the OS. 

VOID KeInitializeTimer( 

  _Out_ PKTIMER Timer 

); 

The KeInitializeTimer routine initializes a timer 
object. 

Timer is a pointer to a timer object, for which 
the caller provides the storage. 

Test Cases for BT at Driver Interface 

At the beginning of the test execution, the Test Manager only knows the address of 

the DriverEntry function. As the tests progress, and at the end of a successful 

execution of DriverEntry, other interface functions are registered by BT in 

Discovery. Table 7-12 shows the driver interface functions found during the analysis 

process and the generated test cases. 

Table 7-12: BT Driver Interface and test cases. 

Target Interface Function 
Test 

Case ID 
Test Case 

DriverEntry 
BTDI_TC01 Valid driverObject 

BTDI_TC02 Invalid driverObject 

AddDevice 

BTDI_TC03 Valid driverObject 

BTDI_TC04 Invalid driverObject 

BTDI_TC05 DeviceExtension = NULL 

BTDI_TC06 
Dimension of Device Extension lower than 
expected 

IRP_MJ_POWER 
BTDI_TC07 Valid deviceObject 

BTDI_TC08 Invalid deviceObject 

DriverUnload 
BTDI_TC09 Valid deviceObject 

BTDI_TC10 Invalid driverObject 

IRP_MJ_CLOSE 
BTDI_TC11 Valid deviceObject 

BTDI_TC12 Invalid deviceObject 

IRP_MJ_INTERNAL_DEV_CONTROL 
BTDI_TC13 Valid deviceObject 

BTDI_TC14 Invalid deviceObject 

IRP_MJ_SYSTEM_CONTROL 
BTDI_TC15 Valid deviceObject 

BTDI_TC16 Invalid deviceObject 

Test Results for BT 

The Test Manager generates the test sets using the information about the exposed 

interface of the BT DD (see Table 7-12) and information about calling sequences 

combination present in the database. Table 7-13 gives examples of the generated 

test sets for this DUT. The first column identifies the test set using the BT_TSx 

nomenclature, where, BT is the identifier of the DUT, TS stands for Test Sequence 
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and x is the sequential number of the test set. The second column describes the 

interface functions that are tested and the sequence of their call. The third column 

indicates the total number of test cases generated by Discovery for the test set. The 

last two columns present the partial and total execution time of the experiments in 

seconds. 

Column named “Partial” refers to the time taken to analyse the code of each of 

the individual interface function in the test set. The column “Total” refers to the sum 

of the time spent in the analysis of the execution of all the interface functions that 

belong to the same test set. 

Table 7-13: Example Test Set for BT and execution time. 

Test Set Call Sequence 
Total 
Test 

Cases 

Execution Time (s) 

Partial Total 

BT_TS1 
DriverEntry 4 9,1 

10,1 
DriverUnload 1 1,0 

BT_TS2 

DriverEntry 1 1,8 

23,7 AddDevice 5 20,9 

DriverUnload 1 1,0 

BT_TS3 

DriverEntry 1 1,8 

17,1 
AddDevice 1 4,2 

IRP_MJ_POWER 12 10,1 

DriverUnload 1 1,0 

BT_TS4 

DriverEntry 1 1,9 

720,9 
AddDevice 1 4,2 

IRP_MJ_INTERNAL_DEV_CONTROL 101 713,8 

DriverUnload 1 1,0 

BT_TS5 

DriverEntry 1 1,9 

10,7 
AddDevice 1 4,2 

IRP_MJ_SYSTEM_CONTROL 5 3,6 

DriverUnload 1 1,0 

BT_TS6 

DriverEntry 1 1,9 

9,5 
AddDevice 1 4,1 

IRP_MJ_CLOSE 3 2,5 

DriverUnload 1 1,0 

 

The number of the generated test cases results from the identified interface 

functions and the imported functions used during the execution of the DD. As an 

example, we are going to analyse the tests in BT_TS1 (the remaining test 

sequences, BT-TS2 to BT-TS6, follow the same principle). 

The BT_TS1 test set contains a call to DriverEntry, followed by a call to 

DriverUnload. This represents the situation where the DUT is installed and then 

uninstalled in the OS. Two test cases, BTDI_TC01 and BTDI_TC02, were generated 

to test DriverEntry  (see Table 7-12). During the execution of DriverEntry, the 

import function HidRegisterMiniportDriver is called (dynamically determined 

during the analysis of the DD). Looking up to Table 7-10, it shows that IFTC1 and 

IFTC2 were generated for HidRegisterMiniportDriver. Therefore, to test 
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DriverEntry a total for 4 test cases were generated (even though during other 

imported functions may be used – but no test cases have been generated for them).  

Similarly, two test cases were generated for the DriverUnload interface 

function: BTDI_TC09 and BTDI_TC10. But since no imported functions are called 

by DriverUnload only these two testes have been considered for this interface 

function.  

Considering that: i) Discovery discards test combinations that represent the same 

test conditions (which may happen when calling some interface function sequences, 

e.g., call DriverEntry and then call DriverUnload) and ii) Discovery does not 

apply all possible combinations of the generated tests and assumes independency 

over the interface functions, a total of five test cases are grouped in BT_TS1 as 

represented in Table 7-14.  

Finally, to avoid the repetition of the same test situations over different test sets 

the Test Manager does not analyse interface functions that have been analysed in 

previous sequences (i.e., does not present potential error situations). This is the 

reason why DriverEntry and other functions only have one test situation in some 

of the test sets.  

Table 7-14: Detail of BT_TS1 Test Set 

Test DriverEntry HidRegisterMiniportDriver DriverUnload Note 

1 BTDI_TC01 IFTC1 BTDI_TC09  

2 BTDI_TC02 IFTC1 BTDI_TC09  

3 BTDI_TC01 IFTC2 BTDI_TC09  

4 BTDI_TC02 IFTC2 BTDI_TC09  

5 BTDI_TC01 IFTC1 BTDI_TC09 
Not considered 
since it is the 

same as Test 1 

6 BTDI_TC01 IFTC1 BTDI_TC10  

 

The execution of the identified Test Sets for the BT DUT resulted in the detection 

of the errors summarized at Table 7-15. In the next paragraphs, we are going to 

detail the obtained results. 

The BT_E1 error occurs when the Test Manager passed an invalid 

driverObject parameter to the DriverEntry function. The error was signalled 

by the MLV1-SourceOperand validator that was triggered when the DUT (while in 

InternalFunction_0005) tried to use the ecx register to access the stack and 

no valid memory existed at the referenced position. 

The BT_E2 error occurs when the Test Manager passed an invalid 

driverObject parameter to the AddDevice function. The error was signalled by 

the MLV1-SourceOperand validator that was triggered when the DUT (while in 
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AddDevice function) tried to access the stack with the ebx register and no valid 

memory existed at the referenced position. 

Table 7-15: Test Results for BT. 

Error 
ID 

Test 
Case ID 

Failure 
Mode 

Error 

Description 

BT_E1 BTDI_TC02 MLV1 
Invalid driverObject passed to DriverEntry. 

FM-MLV1 acted at: mov dword [ecx+0x74], 0xa6506de 

BT_E2 BTDI_TC04 MLV1 
Invalid driverObject passed to AddDevice. 

FM-MLV1 acted at: mov eax, [ebx+0x28] 

BT_E3 BTDI_TC05 MLV1 
DeviceExtension = NULL passed to AddDevice. 

FM-MLV1 acted at: mov eax,[ebx+0x28] 

BT_E4 BTDI_TC06 MLV1 

Dimension of DeviceExtension lower than expected passed to 
AddDevice 

 

FM-MLV1 validator at memset function detected 

BT_E5 BTDI_TC08 MLV1 
Invalid parameter passed to IRP_MJ_POWER 

MLV1 acted at: mov eax, [ebx+0x28] 

BT_E6 BTDI_TC12 MLV1 

Invalid parameter passed to IRP_MJ_CLOSE 
FM-MLV1 act at:  

mov eax,[eax+0x8] 

BT_E7 BTDI_TC14 MLV1 
Invalid parameter passed to IRP_MJ_INTERNAL_DEV_CONTROL 

MLV1 acted at: mov eax,[eax+0x8] 

BT_E8 BTDI_TC16 MLV1 
Invalid parameter passed to IRP_MJ_SYSTEM_CONTROL  

MLV1 acted at: mov eax,[eax+0x8] 

 

The case signalled by error BT_E3 is a slight different variation from the above 2 

errors, and occurs because the Test Manager passed a NULL value in the 

DeviceExtension field of the DeviceObject structure. In this case when the DD 

tried to access a DeviceExtension field (DeviceExtension was based by the 

ebx register) in the mov eax,[ebx+0x28] instruction the MLV1-SourceOperand 

validator triggered the error. 

The error BT_E4 shows a situation where the dimension allocated by the OSE 

to the DeviceExtension was deliberately less than what was assigned by the 

DUT. This resulted in a buffer overflow caught by the FLV1-MemoryRange when it 

checked that the final byte of memset was out of the range of the assigned memory 

to the DUT. 

Errors BT_E5 to BT_E8 were all caused by invalid parameter passed to 

IRP_MJ_POWER, IRP_MJ_CLOSE, IRP_MJ_INTERNAL_DEV_CONTROL and 

IRP_MJM_SYSTEM_CONTROL respectively. The invalid parameter consisted in filling 

in the input parameters with the expected parameters for DriverEntry. Whenever 

these functions try to access the parameter a failure occurs. Curiously, all of these 
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3 errors were triggered by the same type of instruction mov eax,[eax+0x8] 

although located at different addresses. 

Even though errors BT_E1 to BT_E8 can be considered as false positives (these 

errors are not related with an incorrect implementation from the DUT, but caused by 

an incorrect assignment of parameters from the OS), it demonstrates how 

dependent DD are from the kernel. Curiously, under the same initial conditions, 

function DriverUnload did not caused any fault. A deeper analysis to the 

DriverUnload function code revealed that the reason for this is the fact that this 

function only has a ret instruction. Despite of the invalid parameters, since no code 

tries to access it, no error is signalled.  

Finally, Table 7-16 shows the relationship between the tests sets and the 

identified errors.  

Table 7-16: Relation between the test sets and the identified errors. 

Test 
Set 

Error ID 

BT_E1 BT_E2 BT_E3 BT_E4 BT_E5 BT_E6 BT_E7 BT_E8 

BT_TS1         

BT_TS2         

BT_TS3         

BT_TS4         

BT_TS5         

BT_TS6         

Experiments with Serial over Bluetooth Driver 

The second set of experiments targeted the oxser.sys (SR) serial over Bluetooth 

DD which is supplied as part of the installation package of the BlueSoleil Bluetooth 

dongle. Table 7-17 lists the characteristics of the SR DD and contain some statistical 

data obtained after loading this DUT into the Discovery platform.  

The size in disk of the SR DD is 49,408B which are translated into 13,754 

TDiscovery memory cells. The cells store the code instructions found in .text, 

PAGESPR0, PAGESRP0 and PAGESER sections. During the loading process of 

this DD, it was found a total of 77 imported functions. Most of them, 68, are imported 

from ntoskrnl.exe. A total of 7 functions are imported from hal.dll, and 2 are 

imported from wmilib.sys.  

Discovery initially detected 169 internal functions which evolved to 180 resulting 

from the experiments. 
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Table 7-17: Characteristics of the SR DD. 

Element Value 

ID SR 

Device driver file name oxser.sys 

Type Serial Bluetooth Emulator 

Vendor IVT Corporation 

Target OS Windows 7 

Target Platform 32 bit 

Disk Size 49,408B 

.text section Start: 0x6F30380, Size:   9,216B 

.rdata section Start: 0x6F32780, Size:      640B 

.data section Start: 0x6F32A00, Size:      384B 

PAGESPR0 Start: 0x6F32B80, Size:      896B 

PAGESRP0 Start: 0x6F32F00, Size: 12,800B 

PAGESER Start: 0x6F36100, Size: 15,360B 

INIT section Start: 0x6F39D00, Size:   3,328B 

.rsrc section Start: 0x6F3AA00, Size:   4,224B 

.reloc section Start: 0x6F3BA80, Size:   1,684B 

DriverEntry address 0x6F39D00 

Number of TDiscovery memory cells 13,754 

Number of imported functions (ntoskrnl.exe) 77 

Number of imported functions (hal.dll) 7 

Number of imported functions (wmilib.sys) 2 

Initial number of local DD functions 169 

Final number of local DD functions 180 

Imported Functions Test Cases for SR 

Table 7-18 represents the eligible imported functions used by the SR DD and the 

corresponding test cases. Similarly, to what happened to BT DD, it was discarded 

from the tests all the imported functions that do not have return values and output 

parameters.  

Additionally, imported functions that potentially could lead to false positives were 

not considered as well. IFTC6 was also not considered as part of the test cases 

because it could lead to false positive results (represented in the table by a shaded 

area in IFTC6 column). 
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Table 7-18: SR imported functions test cases. 

SR Imported Functions 
Test Cases 

IFTC1 IFTC2 IFTC3 IFTC4 IFTC5 IFTC6 IFTC7 IFTC8 IFTC9 

ExAllocatePoolWithQuotaTag      -    

ExAllocatePoolWithTag      -    

IoAllocateErrorLogEntry      -    

IoAttachDeviceToDeviceStack      -    

IoBuildSynchoronousFsdRequest      - 
 

  

IoCancelIrp      -    

IoConnectInterrupt      - 
 

  

IoCreateDevice      - 
 

  

IoCreateSymbolicLink      -    

IofCallDriver      - 
 

  

IoGetConfigurationInformation      -    

IoOpenDeviceRegistryKey      - 
 

  

IoRegisterDeviceInterface      - 
 

  

IoSetDeviceInterfaceState      -    

IoWMRegistrationControl      -    

KeCancelTimer      - 
 

  

KeInsertQueueDpc      - 
 

  

KeRemoveQueueDpc      - 
 

  

KeSynchronizeExecution      - 
 

  

KeWaitForSingleObject      -    

PoCallDriver      - 
 

  

PoRequestPowerIrp      - 
 

  

RtlDeleteRegistryValue      -    

RtlIniUnicodeString      -  
  

RtlIntegerToUnicodeString      - 
 

  

RtlQueryRegistryValues   
   

- 
 

  

WmiCompleteRequest      - 
 

  

WmiSystemControl      - 
 

  

ZwClose      -    

ZwQueryValueKey      - 
 

  

ZwSetValueKey      - 
 

  

 Test condition 

Test Cases for SR at Driver Interface 

Table 7-19 and Table 7-20, presents the SR DD interface functions directly tested 

by Discovery. These functions were automatically detected after the execution of the 

DriverEntry function.  
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Table 7-19: SR Driver Interface and test cases. 

Target Interface Function 
Test Case 

ID 
Test Case Description 

DriverEntry SRDI_TC01 Valid parameters 

AddDevice SRDI_TC02 Valid parameters 

DriverUnload SRDI_TC03 Valid parameters 

IRP_MJ_CLEANUP SRDI_TC04 
Valid request (no input/output 
parameters exist for this request). 

IRP_MJ_CLOSE SRDI_TC05 
Valid request (no input/output 
parameters exist for this request). 

IRP_MJ_CREATE 

SRDI_TC06 
stackLocation.MajorFunction = 
IRP_MJ_CREATE 

SRDI_TC07 
Invalid stackLocation.MajorFunction 
value 

IRP_MJ_DEVICE_CONTROL 

SRDI_TC08 
to 

SRDI_TC14 

stackLocation.MajorFunction = 
IRP_MJ_INTERNAL_DEVICE_CONT
ROL 
 
stackLocation.Parameters.DeviceCont
rol.InputBufferLength = 0x1 
 
stackLocation.Parameters.DeviceIoCo
ntrol.IoControlCode = collection of 

values determined from the cmp 

instructions 

SRDI_TC15 Invalid stackLocation.MajorFunction 

IRP_MJ_FLUSH_BUFFERS 

SRDI_TC16 
stackLocation.MajorFunction = 
IRP_MJ_CREATE 

SRDI_TC17 
Invalid stackLocation.MajorFunction 
value 

IRP_MJ_INTERNAL_DEVICE_CONTR
OL 

SRDI_TC18  
to  

SRDI_TC24 

stackLocation.MajorFunction = 
IRP_MJ_INTERNAL_DEVICE_CONT
ROL 
 
stackLocation.Parameters.DeviceCont
rol.InputBufferLength = 0x1 
 
stackLocation.Parameters.DeviceIoCo
ntrol.IoControlCode = collection of 
values determined from the cmp 
instructions 

SRDI_TC25 Invalid stackLocation.MajorFunction 

IRP_MJ_POWER 

SRDI_TC26 

stackLocation.MajorFunction = 
IRP_MJ_POWER 
stackLocation.MinorFunction = 
IRP_MN_POWER_SEQUENCE 

SRDI_TC27 

stackLocation.MajorFunction = 
IRP_MJ_POWER 
stackLocation.MinorFunction = 
IRP_MN_QUERY_POWER 

SRDI_TC28 

stackLocation.MajorFunction = 
IRP_MJ_POWER 
stackLocation.MinorFunction = 
IRP_MN_SET_POWER 

SRDI_TC29 

stackLocation.MajorFunction = 
IRP_MJ_POWER 
stackLocation.MinorFunction = 
IRP_MN_WAIT_WAKE 

SRDI_TC30 

stackLocation.MajorFunction = 
IRP_MJ_POWER 
stackLocation.MinorFunction = invalid 
Value 
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Table 7-20: SR Driver Interface and test cases (continued). 

Target Interface Function 
Test Case 

ID 
Test Case Description 

IRP_MJ_QUERY_INFORMATION 

SRDI_TC31 

stackLocation.MajorFunction = 
IRP_MJ_QUERY_INFORMATION 
IrpSp->Parameters. 
QueryFile.FileInformationClass = 
FileAllInformation 

SRDI_TC32 
Invalid IrpSp->Parameters. 
QueryFile.FileInformationClass 

IRP_MJ_READ 

SRDI_TC33 

stackLocation.MajorFunction = 
IRP_MJ_READ 
IrpSp->MinorFunction = 
IRP_MN_NORMAL 
IrpSp->Parameters.Read.Length =0 

SRDI_TC34 

stackLocation.MajorFunction = 
IRP_MJ_READ 
IrpSp->MinorFunction = 
IRP_MN_NORMAL 
IrpSp->Parameters.Read.Length 
=0xA 

SRDI_TC35 

stackLocation.MajorFunction = 
IRP_MJ_READ 
IrpSp->MinorFunction = 
IRP_MN_NORMAL 
IrpSp->Parameters.Read.Length 
=0xFF 

IRP_MJ_SET_INFORMATION 

SRDI_TC36 

IrpSp->MajorFunction = 
IRP_MJ_SET_INFORMATION 
IrpSp-> Parameters.SetFile. 
FileInformationClass = 
FileBasicInformation 

SRDI_TC37 

IrpSp->MajorFunction = 
IRP_MJ_SET_INFORMATION 
IrpSp-> Parameters.SetFile. 
FileInformationClass = invalid value 

IRP_MJ_SYSTEM_CONTROL 

SRDI_TC38 

IrpSp->MajorFunction = 
IRP_MJ_SYSTEM_CONTROL 
IrpSp->MinorFunction = 
IRP_MN_ENABLE_EVENTS 

SRDI_TC39 
IrpSp->MajorFunction = 
IRP_MJ_SYSTEM_CONTROL 
IrpSp->MinorFunction = invalid value 

IRP_MJ_WRITE 

SRDI_TC40 
Irp->AssociatedIrp.SystemBuffer uses 
buffered I/O 
Parameters.Write.Length = 0x00 

SRDI_TC41 
Irp->AssociatedIrp.SystemBuffer uses 
buffered I/O 
Parameters.Write.Length = 0x0A 

SRDI_TC42 
Irp->AssociatedIrp.SystemBuffer uses 
buffered I/O 
Parameters.Write.Length = 0xFFFF 

 

To reduce the number of test cases and the number of false positives, no invalid 

parameters have been used for DriverEntry, AddDevice and DriverUnload 

function (SRDI_TC01 to SRDI_TC03). As demonstrated by the tests performed in 

the BT DD, passing invalid parameters to these functions causes false positive 

results.  
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The IRP_MJ_CLEANUP and IRP_MJ_CLOSE dispatch functions have no 

input/output parameters. Therefore, no special conditions are used to analyse them 

(SRDI_TC04 and SRDI_TC05).  

On the contrary, IRP_MJ_CREATE receives an input value in the 

stackLocation.MajorFunction member of the IRP request. Two situations are 

evaluated, stackLocation.MajorFunction equal to IRP_MJ_CREATE 

(SRDI_TC06) and stackLocation.MajorFunction equal to an unexpected 

value (SRDI_TC07).  

The IRP_MJ_DEVICE_CONTROL is analysed with test cases SRDI_TC08 to 

SRDI_TC14. In these test cases, Discovery employs the values used in cmp 

instructions as candidates for the IoControlCode passed as parameter. The idea 

is find out which IoControlCode this dispatch function is using. SRDI_TC15 tests 

the condition of having an invalid MajorFunction passed to 

IRP_MJ_DEVICE_CONTROL. 

The values used to analyse the handling of the remaining IRP_MJ_XXXX 

dispatch functions, follows the same logic as the previous test conditions (i.e., 

exercising the dispatch functions with meaningful parameters taking into 

consideration the input parameter types and possible values). 

Test Set for SR 

Table 7-21 defines 191 test cases grouped into 15 test sets, where the SR DD code 

is analysed through different function call combinations. These test sets represent 

possible calling sequences during the SR execution in the OS. The test cases used 

to analyse each function in each call sequence result from the tests identified for the 

interface function of the DD and the test cases identified for the used imported 

functions. 

Table 7-21: Test Set for SR. 

Test Set Call Sequence 
Total 
Test 

Cases 

Execution Time (s) 

Partial Total 

SR_TS01 
DriverEntry 8 165,6 

167,8 
DriverUnload 1 2,2 

SR_TS02 

DriverEntry 1 20,7 

31,7 AddDevice 4 8,8 

DriverUnload 1 2,2 

SR_TS03 

DriverEntry 1 20,7 

24,7 AddDevice 1 2,2 

IRP_MJ_CLEANUP 1 1,8 

SR_TS04 

DriverEntry 1 20,7 

24,9 AddDevice 1 2,2 

IRP_MJ_CLOSE 1 2,0 
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Table 7-22: Test Set for SR (continued). 

Test Set Call Sequence 
Total 
Test 

Cases 

Execution Time (s) 

Partial Total 

SR_TS05 

DriverEntry 1 20,7 

159,2 AddDevice 1 2,2 

IRP_MJ_CREATE 64 136,3 

SR_TS06 

DriverEntry 1 20,7 

83,7 AddDevice 1 2,2 

IRP_MJ_DEVICE_CONTROL 32 60,8 

SR_TS07 

DriverEntry 1 20,7 

26,4 AddDevice 1 2,2 

IRP_MJ_FLUSH_BUFFERS 2 3,5 

SR_TS08 

DriverEntry 1 20,7 

47,2 AddDevice 1 2,2 

IRP_MJ_INTERNAL_DEV_CONTROL 10 24,3 

SR_TS09 

DriverEntry 1 20,7 

55,5 AddDevice 1 2,2 

IRP_MJ_POWER 16 32,6 

SR_TS10 

DriverEntry 1 20,7 

31,4 AddDevice 1 2,2 

IRP_QUERY_INFORMATION 6 8,5 

SR_TS11 

DriverEntry 1 20,7 

31,3 AddDevice 1 2,2 

IRP_MJ_READ 4 8,4 

SR_TS12 

DriverEntry 1 20,7 

24,8 AddDevice 1 2,2 

IRP_MJ_SET_INFORMATION 1 1,9 

SR_TS13 

DriverEntry 1 20,7 

26,9 AddDevice 1 2,2 

IRP_MJ_SYSTEM_CONTROL 2 4,0 

SR_TS14 

DriverEntry 1 20,7 

31,7 AddDevice 1 2,2 

IRP_MJ_WRITE 4 8,8 

SR_TS15 

DriverEntry 1 20,7 

37,2 

AddDevice 1 2,2 

IRP_MJ_CREATE 1 2,1 

IRP_MJ_DEVICE_CONTROL 1 1,9 

IRP_MJ_READ 1 2,1 

IRP_MJ_WRITE 1 2,2 

IRP_MJ_CLEANUP 1 1,8 

IRP_MJ_CLOSE 1 2,0 

DriverUnload 1 2,2 

 

Test Results for SR 

The execution of the SR driver code, resulted in the detection of the errors 

summarized at Table 7-23. 

The SR_E01 error occurs in all test sets where DriverEntry and 

DriverUnload have successful executions and are called in sequence. This order 

of events (detected in SR_TS01, SR_TS02 and SR_TS15) triggers an error caught 

by the FM-PEV1 Resource Leakage Validator. 
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Table 7-23: Test Results for SR. 

Error 
ID 

Test Set 
ID 

Failure 
Mode 

Error description 

SR_E01 
SR_TS02 
SR_TS15 

PEV1 Memory leakage. 

SR_E02 
SR_TS02 

to 
SR_TS15 

FLV6 The return code of RtlIntegerToUnicodeString is not validated.  

SR_E03 SR_TS01 PEV2 Dormant path at Driver Entry. 

SR_E04 SR_TS01 FLV7 
Explicit call to KbdBugCheck when BreakOnEntry registry exists with 
value different from zero. 

 

This occurs because a portion of 30 bytes of memory allocated with function 

ExAllocatePoolWithTag in the AddDevice function is not returned to the OSE 

by the DriverUnload function. Although the leakage is small, and requires the 

activation/deactivation of the DD (which under normal situations is not usual to 

happen often), it may be exploited to crash the system. 

The situation reported in SR_E02 is triggered by FM-FLV6 because the DD does 

not validate the return value of RtlIntegerToUnicodeString when is called by 

InternalFunction_0117 (which in turn is called by AddDevice). The 

RtlIntegerToUnicodeString function is used by the SR DD to build the device 

name passed to function IoCreateDevice (called in InternalFunction_0117). 

Although in most situations it is not expected that the 

RtlIntegerToUnicodeString returns an error, if it ever does, it may be 

impossible for applications to connect with this DD to perform I/O requests. 

During the analysis to the DriverEntry function, a call to 

RtlQueryRegistryValues is performed to obtain the values of specific SR 

Windows Registry Keys: BreakOnEntry, DebugLevel, ForceFiFoEnable, 

RxFIFO, TxFIFO, PermitShare and LogFifo. When the Test Manager forced 

the return of IFTC3 values on function RtlQueryRegistryValues, the PEV2 

Dormant Code Validator raised an error. When the Test Manager forced IFTC5 

values returned by function RtlQueryRegistryValues the dormant code was 

activated and a call to the OSE function KbdBugCheck is performed which triggers 

FLV7. In fact, the SR_E04 error represents a vulnerability to all the systems that 

have the SR DD installed. By placing a BreakOnEntry key with value 0x01 into 

the Windows registry path of this DD, it is possible to cause a crash whenever the 

system boots and SR is activated. Once this vulnerability is triggered, this situation 

can only be reverted either by using the secure mode and recover the last good 

known configuration of Windows, by booting with another image disk or reinstalling 

the OS. 
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Performance of Discovery 

This section is dedicated to a brief analysis over the performance of Discovery. We 

are going to take as examples for the analysis the BT and SR DD used in the 

previous sections. 

Table 7-24 shows the execution time of Discovery related with the DUT loading 

and initialization of the execution platform. 

Table 7-24: Execution time of Discovery during the loading process. 

Metric BT SR 

File size 20,480B 51,169B 

Number of imported functions 32 77 

Initialization of internal structures* 24ms 

File loading 16ms 16ms 

Linkage 284ms 375ms 

Sections processing 132ms 517ms 

Platform initialization* 169ms 

Total time 625ms 1,077ms 

*These values are intrinsic to the platform and independent from the DUT 

 

Considering that the time to initialize the internal structures and the platform of 

Discovery is independent from the DUT, the overall time to load the driver and be 

ready to start the analysis is influenced by the complexity of the linkage process. 

Since SR is more complex (inferred by the number of imported functions and lines 

of code), Discovery takes more time to perform the loading process (1,077ms) than 

for BT (625ms). However, both DUT are ready for analysis in the order of less than 

1 second. 

During the analysis process, Discovery takes the values listed in Table 7-25 to 

emulate various instructions. The table represents a sequence execution sample of 

278 instructions, which took a total of 5,111ms. The first column of the table has the 

instruction mnemonic, the second column the minimum time spent for the instruction 

execution, followed by the average execution time and finally, the last column, has 

the maximum value observed for the instruction execution.  

From the sample, it can be observed that the ret instructions has the highest 

execution time, which has to do with the context switching that occurs from the true-

mode to the emulation-mode. The push instruction has the second highest time with 

an average execution time of 54ms. The remaining instructions are executed in 

average in less than 10ms. The mov instructions takes in average 2.9ms.  
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Comparing the performance of the execution platform of Discovery with a modern 

CPU (for instance an Intel Core i7 performs 0.318MIPms @ 3.0GHz [171]), one can 

conclude that there is plenty for improvement.  

Table 7-25: Performance of Discovery during execution. 

Instruction 
Time (ms)** 

Min Average Max 

ret 80 93.3 113 

push 1 54.3 57 

jnz 2 6.0 21 

lea 2 5.4 10 

call 2 3.7 5 

pop 2 3.2 4 

sub 2 3.0 4 

and 3 3.0 3 

mov 1 2.9 8 

xor 2 2.9 4 

jz 2 2.5 3 

test 2 2.3 3 

cmp 2 2.3 3 

stosd 2 2.2 3 

leave 2 2.0 2 

not 2 2.0 2 

dir* 1 1.7 3 

jmp 1 1.7 2 

add 1 1.0 1 

*This instruction does not exist in a real x86-64 platform. It is an abstraction to direct assign a value to a 
register used during context switching. 
**Sample execution involving a sequence of 278 instructions. 

 
However, the primary goal of Discovery was not performance, and from our 

knowledge of the platform, the average times can be significantly reduced at least 

by a factor of 10. Nevertheless, for some of the experiments performed, some 

Validators have been triggered after a few instructions, which is to say that Discovery 

could detect errors in a few milliseconds time. 

Another important aspect of the Discovery platform is the ability to automatically 

maintain the execution context to speed up testing. Taking a closer look to the last 

column of Table 7-13 and Table 7-21, all the time spent with DriverEntry and 

AddDevice can be avoided, which significantly reduces the overall time of the 

analysis. 
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7.11 Summary 

The Supervised Emulation Analysis is a methodology for the detection and location 

of flaws in DD without resorting to the source code or specific hardware. The 

methodology was designed based on: i) the assumption that DD follow a specific 

driver model structure which limits the interface from which the OS and the DD 

interact with each other; ii) the types of bug classes that can be detected and located 

based in the type of the executing hardware platform; iii) the definition of validators 

that locate the considered bug classes; iv) the definition of an emulation platform 

that analyses the DD binary code and v) the necessary procedures that should be 

in place to locate DD flaws. 

The driver model establishes the internal structure of the DD. The entry point is 

the only known function by the OS immediately after the DD being loaded. During 

the DD execution, the DD registers limited interface functions in the OS that 

implement specific services required by the OS. The DD may have many internal 

functions used to simplify its code organization. These functions are used by some 

of the interface functions exposed to the OS and other internal functions. However, 

the OS cannot interface directly with them. DD may register interrupt functions in the 

OS, but these functions also follows a specific model. The DD depends on functions 

typically provided by the OS that form the API that the DD can use.  

The DD binary file follows a specific format which can be interpreted to determine 

and locate its various components which are fundamental to load and be able to 

execute the DD code. 

Based on the previous information it should be possible to build a system that 

can interface the DD code and perform the same tasks as the OS, testing the DD 

through the various interface functions and locate errors by using test cases that 

address the parameters and return values of the interface. 

The methodology defines validators. A mechanism called during the DD code 

execution to perform a check over an intended action. Three different kind of 

validators classes were identified: i) Machine Level Validators that are triggered 

during the execution of a machine instruction to check the validity of the machine 

instruction parameters; ii) Function Level Validators that are triggered during the 

execution of a call from the DD to the OS and iii) Post Execution Validators that are 

triggered after the execution of a sequence of DD interface functions to detect 

abnormal situations such as resource leakage and dormant code. 
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The methodology defines an emulated environment where the DD code is loaded 

and executed. The execution of each DD machine instruction is subject to the action 

of the validators to ascertain the correctness of the execution. The emulation 

ensures that there is no need for the hardware of the platform or device during the 

DD analysis. Additionally, the stability of the testing platform is not compromised by 

the tests being performed because the errors in the DD code are detected before 

the execution can take place. Finally, the identification of the flaws can be distributed 

over different systems.  

The procedures for detecting and locating the flaws in the DD consists of: i) a 

preparation phase where the DD binary file is loaded in the emulation platform; ii) 

pre-processing of the DD to identify the code structure; iii) exercise the DD using a 

set of calling sequences and test cases that mimic the OS behaviour but create 

typical and extraordinary scenarios that the DD should handle. 

Discovery is an implementation of the Supervised Emulation Analysis 

methodology. It implements an emulation of the x86-64 architecture platform where 

the DD code analysis occurs, an Operating System Emulator to load and interface 

the DD code, a Device Emulator structure, a Database to handle configurations, 

traces, test sequences, test cases and results, and the Test Manager in charge of 

supervising the strategy employed to find the errors in the DD code. Discovery has 

granularity control over the machine code execution of the DD supporting very 

detailed checks at the level of each machine instruction execution, allowing for 

catching platform dependent flaws such as buffer overflows, incorrect pointers, 

invalid jumps and calls. All functions imported by the DD are emulated by the 

platform. Checks embedded at each imported function allows the detection of flaws 

at a higher execution level such as incorrect OS object handlers, pointers and 

function calls. Post execution checks allows for the detection of resource leakages 

and dormant code. 

Experiments performed with two commercial DD demonstrated the dependency 

level that DD have from the correctness of the calls made from the OS, resource 

leakage, non-validation of return values, the presence of dormant code and 

vulnerable situations related with Windows registery values. 

Although the primary objective of Discovery was not performance, from the 

experiments performed it presented results in a reasonable time frame. 

 

 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

 

 

 

 

This chapter summarizes the main contributions of the work and provides some 

indications of future research directions. 

8.1 Conclusions 

The thesis describes several methodologies applied to the discovery of errors in 

DDs and their causes. The first contribution focus on robustness testing of the 

functions provided by Microsoft’s DD development kit (DDK). In the context of this 

work, we designed a system that automatically writes the source code of potentially 

faulty DDs, installs them in the OS, triggers the faults, collects and analyses the 

results. The execution of each DD, the call of the DDK function with potential 

erroneous parameters, and consequently the behaviour of the system gives us an 

idea of how well the OS would cope with the triggered faults. The analysis of the 

results shows that most targeted functions were unable to offer a protection to the 

incorrect parameters. A small number of hangs and a reasonable number of crashes 

were observed, which suggests a deficient error containment capability of these OS 

functions. 
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The second contribution of this work uses the fuzzing concept to perform the 

injection of attacks on Wi-Fi DDs. We developed a methodology and an architecture 

capable of injecting Wi-Fi frames with controlled faulty values in the various frame 

fields of this medium. A target windows smartphone device is connected to both the 

Wi-Fi medium and to a host computer that monitors the results of the attacks. The 

results demonstrated that in most cases, Windows was able to handle correctly the 

malicious frames. However, the results also showed that Wdev-Fuzzer can be 

successfully applied to reproduce denial of service attacks using Disassociation and 

Deauthentication frames. The system revealed a potential implementation problem 

of the TCP-IP stack, uncovered by the use of disassociation frames when the target 

device was associated and authenticated with a Wi-Fi access point. The 

experiments also discovered a previously unknown vulnerability that causes OS 

hangs, when a specific value was assigned to the TIM element in the Beacon frame. 

Another contribution of the work resulted in the Intercept tool that instruments 

Windows DDs by logging the driver interactions with the OS at function level. It uses 

an approach where the DD binary is in full control of a DD wrapper layer and the 

execution is traced to a file recording all function calls, parameter and return values. 

The trace is directly generated in clear text with all the involved data structures. 

Intercept gives a clear picture of the dynamics of the driver, which can help in 

debugging and reverse engineering processes with low performance degradation. 

Results show the ability of the tool to identify bugs in drivers, by executing tests 

based on the knowledge obtained from the driver’s dynamics. 

The final contribution of the work is the Supervised Emulation Analysis 

methodology and the Discovery framework. The methodology takes advantage of 

the fact that DD have a well-defined structure, therefore limiting the number of 

possible path combinations per function and loops. The methodology uses 

emulation to exercise the DD through its interfaces, mimicking the OS behaviour 

and verifying the driver execution. The emulation platform controls the binary 

execution of the DD code with instruction granularity, which enables fine grain 

checks with Validators that ascertain the validity of the code being executed, this 

way enabling the detection of low level errors. The emulation platform also provides 

all the resources required by the DD. Therefore, the platform can catch function level 

errors related with parameter values, DD state, function call orders and resource 

leakage. Post Execution Validators can be used to verify the balance of resources 

and dormant code. Experimental results with Discovery confirmed that the DDs have 

a high dependency from the OS and do not check (and in most the cases have no 

way to check) the validity of the parameters passed by the OS, either when calling 

a DD function or when a OS service returns. The results also show that most the 
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tested DDs verifies the return values of the OS functions and act accordingly. 

Nevertheless, it was possible to detect cases where the DDs do not validate return 

values, present resource leakages and dormant code that may compromise system 

stability. 

8.2 Future Work 

Future works can naturally continue to improve and expand the functionalities of the 

presented tools, methodologies and frameworks to support the detection of DD 

errors and build more dependable computer systems. Next we present a few ideas 

for future work within the same research field. 

Emulation sandboxing for runtime protection 

The thesis addressed the detection of DD errors using an emulated platform to 

stimulate the DD code while facing specific input values. The operation is performed 

in an emulated environment. This idea could be extended to an active real-time 

detection and protection mechanism by creating an emulated sandboxing 

environment for runtime protection that validates the DD code path before it is 

executed. In the case of an error being detected, the sandbox can gracefully return 

to the OS.  

Binary code refactoring for error detection on OS resource usage 

OS provide resources to DDs. An incorrect use of such resources can lead to 

leakages and deadlocks. One potential research area that can expand the 

possibilities of Discovery involves code refactoring of the DD aiming for a fast and 

accurate detection on errors related with OS resource usage. The main idea is to 

identify the code paths that involve the allocation/deallocation of resources, 

acquisition and release of locking mechanisms (locks, semaphores and mutex) and 

strip out the remaining code. This way, it would be possible to continue to have the 

underlying usage logic of such resources striped out from the complexity of the other 

code. 

Emulation assisted symbolic execution 

An emulation execution platform, such as Discovery, enables the control of the 

execution engine. As seen during the experimental results of the Supervised 

Emulation Analysis, DD are highly dependent on the OS inputs. One possible way 

to achieve higher levels of independency of the OS is to execute each machine 
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instructions abstractly. Instead of executing the associated algorithm of each 

machine instruction, the execution engine can be changed to symbolically process 

the instructions and simplify the correlation between decision instructions, the input 

parameters of the function and potential errors. 
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This section relates to Chapter 4 Robustness Testing of the Windows Driver Kit. It 

contains the source code of the device driver template used by DevBuilder when 

building synthetic device drivers (see DevInjector.c next). 

DevBuilder rewrites the DevInjector.c file by adding specific code next to the 

following comment lines:  

• //INSERT DECLARATIONS HERE; 

• //INSERT FUNCTION CALL HERE; 

• //INSERT POSTCODE; 

• //INSERT DRIVER ENTRY CODE. 

The code to be inserted at the comment lines identified earlier is found at the 

XML file that describes the signature of the function to be tested. The next sections 

of this annex contain: 

• devInjector.c 

The synthetic template device driver source file; 

• IoCallDriver.XML 

The signature description file of the function IoCallDriver used to 

generate specific DD for testing the robustness of this function; 

• IoCallDriver_1.c 

The resulting source code of a synthetic driver by processing 

DevInjector.c and IoCallDriver.xml 



 

 

174 ANNEX I – Robustness Testing of the Windows DDK sample code  

 

 

DevInjector.c 

The following text is the source code of the synthetic template device driver used by 

DevBuilder to build synthetic device drivers. 

//---------------------------------------------------------------------- 
// 
// DevInjector.c 
//  
// Copyright (C) 2017 Manuel Mendonca, Nuno Neves 
// FCUL 
// 
// Template driver. 
// 
// V3.0 Support for post code  
// 
// 
//---------------------------------------------------------------------- 
#define _X86_  
#include "ntddk.h" 
#include "..\DD_Include\ioctlcmd.h" 
 
#define DEBUG_IOCTL_TEXT    "DInject - IOCTL_EXECUTE_ACTION invoked.\r\n" 
#define DEBUG_IOCTL_DEFAULT  "DInject - IOCTL_EXECUTE_ACTION default.\r\n" 
#define DEBUG_DRIVER_ENTRY "DInject - Driver Entry\r\n" 
#define DEBUG_DRIVER_ENTRYEND  "DInject - Driver Entry end.\r\n" 
#define DEBUG_UNLOAD  "DInject - Unload.\r\n" 
 
#define SYMBOL_LINK  L"\\Device\\DInject" 
#define DEVICE_LINK L"\\DosDevices\\DInject" 
 
 
//---------------------------------------------------------------------- 
// 
// DevInjectorDeviceControl 
// 
//---------------------------------------------------------------------- 
NTSTATUS   
DevInjectorDeviceControl(  

IN PFILE_OBJECT FileObject,  
IN BOOLEAN Wait, IN PVOID InputBuffer,   
IN ULONG InputBufferLength,  
OUT PVOID OutputBuffer,  
IN ULONG OutputBufferLength,   
IN ULONG IoControlCode,   
OUT PIO_STATUS_BLOCK IoStatus,  
IN PDEVICE_OBJECT DeviceObject,  
IN PIRP Irp)  

{ 
 //INSERT DECLARATIONS HERE 
     
 //IoStatus->Information = 0; 
 //OutputBufferLength = 0; 
 
 switch ( IoControlCode ) { 
  case IOCTL_EXECUTE_ACTION: 
    

//INSERT FUNCTION CALL HERE 
 
 

//INSERT POSTCODE 
    
  DbgPrint(DEBUG_IOCTL_TEXT);    
  DbgPrint(OutputBuffer); 
  IoStatus->Status = STATUS_SUCCESS; 

break; 
 

    default:  
         IoStatus->Status = STATUS_NOT_SUPPORTED; 
  DbgPrint(DEBUG_IOCTL_DEFAULT); 

break; 
 } 

return IoStatus->Status; 
} 
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//---------------------------------------------------------------------- 
// 
// DevInjectorDispatch 
// 
// In this routine requests to our own device. The only  
// requests we care about handling explicitely are IOCTL commands that 
// we will get from the GUI. We also expect to get Create and Close  
// commands when the GUI opens and closes communications with us. 
// 
//---------------------------------------------------------------------- 
NTSTATUS DevInjectorDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) 
{ 
 PIO_STACK_LOCATION      iosp; 
 PVOID                   inputBuffer; 
 PVOID                   outputBuffer; 
 ULONG                   inputBufferLength; 
 ULONG                   outputBufferLength; 
 ULONG                   ioControlCode; 
 NTSTATUS                status; 

// 
// Switch on the request type 
// 

 iosp = IoGetCurrentIrpStackLocation (Irp); 
 switch (iosp->MajorFunction) { 
 

case IRP_MJ_CREATE: 
case IRP_MJ_CLOSE: 

         status = STATUS_SUCCESS; 
break; 

 
case IRP_MJ_DEVICE_CONTROL: 

         inputBuffer       = Irp->AssociatedIrp.SystemBuffer; 
inputBufferLength = iosp->Parameters.DeviceIoControl.InputBufferLength; 
outputBuffer      = Irp->AssociatedIrp.SystemBuffer; 
outputBufferLength = iosp-> Parameters.DeviceIoControl.OutputBufferLength; 
ioControlCode      = iosp-> Parameters.DeviceIoControl.IoControlCode; 

 
        status = DevInjectorDeviceControl(  

iosp->FileObject,  
TRUE,inputBuffer, inputBufferLength, outputBuffer, 
outputBufferLength, ioControlCode, &Irp->IoStatus,  

                      DeviceObject, Irp); 
  break; 
 

default: 
 
        status = STATUS_INVALID_DEVICE_REQUEST; 
        break;         

} 
 

// 
// Complete the request 
// 
Irp->IoStatus.Status = status; 

 IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
 return status; 
} 
 
 
//---------------------------------------------------------------------- 
// 
// DevInjectorUnload 
// 
// Our job is done - time to leave. 
// 
//---------------------------------------------------------------------- 
VOID  
DevInjectorUnload(IN PDRIVER_OBJECT DriverObject) 
{ 
 WCHAR                   deviceLinkBuffer[]  = SYMBOL_LINK; 
 UNICODE_STRING          deviceLinkUnicodeString; 
 

// 
 // Delete the symbolic link for our device 

// 
 RtlInitUnicodeString( &deviceLinkUnicodeString, deviceLinkBuffer ); 
 IoDeleteSymbolicLink( &deviceLinkUnicodeString ); 
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// 
 // Delete the device object 

// 
 IoDeleteDevice( DriverObject->DeviceObject ); 
 DbgPrint(DEBUG_UNLOAD); 
} 
 
 
 
//---------------------------------------------------------------------- 
// 
// DriverEntry 
// 
// Installable driver initialization. Here we just set ourselves up. 
// 
//---------------------------------------------------------------------- 
NTSTATUS  
DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath) 
{ 

NTSTATUS                status; 
WCHAR                   deviceNameBuffer[]  = SYMBOL_LINK; 
UNICODE_STRING          deviceNameUnicodeString; 
WCHAR                   deviceLinkBuffer[]  = DEVICE_LINK; 
UNICODE_STRING          deviceLinkUnicodeString;   
PDEVICE_OBJECT          interfaceDevice = NULL; 
ULONG                   startType, demandStart; 
RTL_QUERY_REGISTRY_TABLE paramTable[2];  
UNICODE_STRING          registryPath;  
LARGE_INTEGER           crashTime; 

 
//INSERT DRIVER ENTRY CODE 

 DbgPrint(DEBUG_DRIVER_ENTRY); 
 

// 
// Create a named device object 
// 
RtlInitUnicodeString (&deviceNameUnicodeString,deviceNameBuffer ); 
 
status = IoCreateDevice ( DriverObject, 

                                0, 
                                &deviceNameUnicodeString, 
                                FILE_DEVICE_DEVINJECT, 
                                0, 
                                TRUE, 
                                &interfaceDevice ); 

if (NT_SUCCESS(status)) { 
  // 

 // Create a symbolic link that the GUI can specify to  
// gain access to this driver/device 

  // 
  RtlInitUnicodeString (&deviceLinkUnicodeString, deviceLinkBuffer); 
  status = IoCreateSymbolicLink (&deviceLinkUnicodeString,  
    &deviceNameUnicodeString ); 
 
  // 

// Create dispatch points for all routines that must be  
// injected 

  // 
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DevInjectorDispatch; 

         DriverObject->DriverUnload = DevInjectorUnload; 
} 

 
if (!NT_SUCCESS(status)) { 

// 
  // Something went wrong, so clean up  
  // 
        DbgPrint("Something Went Wrong"); 
  if( interfaceDevice ) { 

IoDeleteDevice( interfaceDevice ); 
} 

    } 
 

//  
// Query our start type to see if we are supposed to monitor starting 
// at boot time 
//  
registryPath.Buffer = ExAllocatePool( PagedPool, RegistryPath->Length +     

sizeof(UNICODE_NULL));  
 
if(!registryPath.Buffer) {  
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   return STATUS_INSUFFICIENT_RESOURCES;  
}  

  
registryPath.Length = RegistryPath->Length + sizeof(UNICODE_NULL);  
registryPath.MaximumLength = registryPath.Length;  

 
RtlZeroMemory( registryPath.Buffer, registryPath.Length );  
RtlMoveMemory( registryPath.Buffer,  RegistryPath->Buffer, RegistryPath->Length);  

 
demandStart = SERVICE_DEMAND_START; 
startType = demandStart; 
RtlZeroMemory( &paramTable[0], sizeof(paramTable));  
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;  
paramTable[0].Name = L"Start";  
paramTable[0].EntryContext = &startType; 
paramTable[0].DefaultType = REG_DWORD;  
paramTable[0].DefaultData = &demandStart; 
paramTable[0].DefaultLength = sizeof(ULONG);  

 
RtlQueryRegistryValues( RTL_REGISTRY_ABSOLUTE, registryPath.Buffer, &paramTable[0],      

NULL, NULL); 
 DbgPrint(DEBUG_DRIVER_ENTRYEND); 

return status; 
} 
     

 

IoCallDriver.XML 

The following text is the XML signature definition of the IoCallDriver function. It will 

be used by DevBuilder to write the source code of the multiple synthetic device 

drivers used to perform the robustness test campaign of the IoCallDriver function. 

 

<?xml version="1.0" encoding="utf-8" standalone="yes"?> 
<functions xmlns="www.fcul.pt">   
 <function functionName="IoCallDriver"> 
  <returnValue>NTSTATUS</returnValue>   
  <preCode codeLines="PRECODE">      
  </preCode> 
 
  <postCode codeLines="POSTCODE">      
  </postCode> 
   
  <parameter parameterName="PDEVICE_OBJECT"> 
   <value></value> 
   <value>NULL</value>  
   <value>DeviceObject</value>   
  </parameter>   
 
  <parameter parameterName="PIRP"> 
   <value></value> 
   <value>NULL</value>  
   <value>Irp</value>   
  </parameter>   
 
 </function> 
</functions>  

 

IoCallDriver0.c 

The following text is the source code of the first synthetic device used at the 

robustness testing campaign of the IoCallDriver function. 

 

//---------------------------------------------------------------------- 
// 
// IoCallDriver0.c – rewritten from devInject.c 
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//  
// Copyright (C) 2017 Manuel Mendonca, Nuno Neves 
// FCUL 
// 
//---------------------------------------------------------------------- 
#define _X86_  
#include "ntddk.h" 
#include "..\DD_Include\ioctlcmd.h" 
 
#define DEBUG_IOCTL_TEXT   "IoCallDriver0 - IOCTL_EXECUTE_ACTION invoked.\r\n" 
#define DEBUG_IOCTL_DEFAULT  "IoCallDriver0 - IOCTL_EXECUTE_ACTION default.\r\n" 
#define DEBUG_DRIVER_ENTRY  "IoCallDriver0 - Driver Entry\r\n" 
#define DEBUG_DRIVER_ENTRYEND   "IoCallDriver0 - Driver Entry end.\r\n" 
#define DEBUG_UNLOAD   "IoCallDriver0 - Unload.\r\n" 

 
#define SYMBOL_LINK    L"\\Device\\IoCallDriver0" 
#define DEVICE_LINK    L"\\DosDevices\\IoCallDriver0" 

 
 
 

//---------------------------------------------------------------------- 
// 
// DevInjectorDeviceControl 
// 
//---------------------------------------------------------------------- 
NTSTATUS  DevInjectorDeviceControl(  

IN PFILE_OBJECT FileObject,  
IN BOOLEAN Wait,  
IN PVOID InputBuffer,   
IN ULONG InputBufferLength,  
OUT PVOID OutputBuffer,  
IN ULONG OutputBufferLength,   
IN ULONG IoControlCode,   
OUT PIO_STATUS_BLOCK IoStatus,  
IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )  

{ 
PDEVICE_OBJECT p0; 
PIRP p1; 
//INSERT PRECODE HERE 
 
switch ( IoControlCode ) { 
 case IOCTL_EXECUTE_ACTION: 
   DbgPrint("IoCallDriver0.c - IOCTL_EXECUTE_ACTION invoked V1.0.\r\n"); 

  IoStatus->Status = IoCallDriver( p0,  p1); 
  if (IoStatus->Status == STATUS_PENDING){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is 
STATUS_PENDING.", 50); 

   OutputBufferLength = 50; 
  } 
  else 
  if (IoStatus->Status == STATUS_HANDLE_NOT_CLOSABLE  ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
STATUS_HANDLE_NOT_CLOSABLE.", 62); 

OutputBufferLength = 62; 
  } 
  else 
  if (IoStatus->Status == STATUS_INVALID_HANDLE ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS.  
Value is STATUS_INVALID_HANDLE.", 57); 
OutputBufferLength = 57; 

  } 
  else 
  if (IoStatus->Status == STATUS_ACCESS_DENIED ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
  STATUS_ACCESS_DENIED.", 56); 
OutputBufferLength = 56; 

  } 
  else 
  if (IoStatus->Status == STATUS_INSUFFICIENT_RESOURCES ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
  STATUS_INSUFFICIENT_RESOURCES.", 65); 
OutputBufferLength = 65; 

  } 
 else 
 if (IoStatus->Status == STATUS_ILLEGAL_FLOAT_CONTEXT ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
  STATUS_ILLEGAL_FLOAT_CONTEXT.", 64); 
OutputBufferLength = 64; 

 } 
 else 
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 if (IoStatus->Status == STATUS_SUCCESS){ 
RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
 STATUS_SUCCESS.", 50); 
OutputBufferLength = 50; 

} 
else 
if (IoStatus->Status == STATUS_ALERTED){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
 STATUS_ALERTED.", 50); 
OutputBufferLength = 50; 

} 
else 
if (IoStatus->Status == STATUS_USER_APC){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
 STATUS_USER_APC.", 51); 
OutputBufferLength = 51; 

} 
else 
if (IoStatus->Status == STATUS_TIMEOUT ){ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is  
 STATUS_TIMEOUT.", 50); 
OutputBufferLength = 50; 

} 
else 
{ 

RtlCopyMemory(OutputBuffer, "Return Type is NTSTATUS. Value is not  
  STATUS_SUCCESS.", 54); 
OutputBufferLength = 54; 

} 
IoStatus->Information = OutputBufferLength; 

 
 

//INSERT POSTCODE 
   
 DbgPrint(DEBUG_IOCTL_TEXT);    
 DbgPrint(OutputBuffer); 
 IoStatus->Status = STATUS_SUCCESS; 
 //IoStatus->Information = OutputBufferLength; 
 break; 
 
 
    default:  

IoStatus->Status = STATUS_NOT_SUPPORTED; 
 DbgPrint(DEBUG_IOCTL_DEFAULT); 

break; 
} 
return IoStatus->Status; 

} 
 
 

//---------------------------------------------------------------------- 
// 
// DevInjectorDispatch 
// 
// In this routine requests to our own device. The only  
// requests we care about handling explicitely are IOCTL commands that 
// we will get from the GUI. We also expect to get Create and Close  
// commands when the GUI opens and closes communications with us. 
// 
//---------------------------------------------------------------------- 
NTSTATUS DevInjectorDispatch(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) 
{ 
 PIO_STACK_LOCATION      iosp; 
 PVOID                   inputBuffer; 
 PVOID                   outputBuffer; 
 ULONG                   inputBufferLength; 
 ULONG                   outputBufferLength; 
 ULONG                   ioControlCode; 
 NTSTATUS                status; 
 
    // 
    // Switch on the request type 
    // 
 iosp = IoGetCurrentIrpStackLocation (Irp); 
 switch (iosp->MajorFunction) { 

case IRP_MJ_CREATE: 
case IRP_MJ_CLOSE: 

status = STATUS_SUCCESS; 
break; 

  case IRP_MJ_DEVICE_CONTROL: 
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inputBuffer        = Irp->AssociatedIrp.SystemBuffer; 
inputBufferLength  = iosp-> 
  Parameters.DeviceIoControl.InputBufferLength; 
outputBuffer       = Irp->AssociatedIrp.SystemBuffer; 
outputBufferLength = iosp-> 
  Parameters.DeviceIoControl.OutputBufferLength; 
ioControlCode      = iosp->  
  Parameters.DeviceIoControl.IoControlCode; 

 
status = DevInjectorDeviceControl( iosp->FileObject, TRUE, 

                                               inputBuffer, inputBufferLength,  
                                               outputBuffer, outputBufferLength, 
                                               ioControlCode, &Irp->IoStatus,  
                                               DeviceObject, Irp ); 
  break; 
 

default: 
status = STATUS_INVALID_DEVICE_REQUEST; 
break;         

 } 
 
    // 
    // Complete the request 
    // 

Irp->IoStatus.Status = status; 
 IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
 return status; 
} 

 
 

//---------------------------------------------------------------------- 
// 
// DevInjectorUnload 
// 
// Our job is done - time to leave. 
// 
//---------------------------------------------------------------------- 
VOID  
DevInjectorUnload(IN PDRIVER_OBJECT DriverObject) 
{ 
 WCHAR                   deviceLinkBuffer[]  = SYMBOL_LINK; 
 UNICODE_STRING          deviceLinkUnicodeString; 
 

// 
 // Delete the symbolic link for our device 

// 
 RtlInitUnicodeString( &deviceLinkUnicodeString, deviceLinkBuffer ); 
 IoDeleteSymbolicLink( &deviceLinkUnicodeString ); 
 

// 
 // Delete the device object 

// 
 IoDeleteDevice( DriverObject->DeviceObject ); 
 DbgPrint(DEBUG_UNLOAD); 
} 
 
 
 
 
//---------------------------------------------------------------------- 
// 
// DriverEntry 
// 
// Installable driver initialization. Here we just set ourselves up. 
// 
//---------------------------------------------------------------------- 
NTSTATUS  
DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath) 
{ 

NTSTATUS                status; 
WCHAR                   deviceNameBuffer[]  = SYMBOL_LINK; 
UNICODE_STRING          deviceNameUnicodeString; 
WCHAR                   deviceLinkBuffer[]  = DEVICE_LINK; 
UNICODE_STRING          deviceLinkUnicodeString;   
PDEVICE_OBJECT          interfaceDevice = NULL; 
ULONG                   startType, demandStart; 
RTL_QUERY_REGISTRY_TABLE paramTable[2];  
UNICODE_STRING          registryPath;  
LARGE_INTEGER           crashTime; 
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 DbgPrint("IoCallDriver0 - DRIVER ENTRY invoked V1.0.\n"); 
 DbgPrint(DEBUG_DRIVER_ENTRY); 
 

// 
// Create a named device object 
// 
RtlInitUnicodeString (&deviceNameUnicodeString, deviceNameBuffer); 
status = IoCreateDevice ( DriverObject, 

             0, 
&deviceNameUnicodeString, 
FILE_DEVICE_DEVINJECT, 
0, 
TRUE, 
&interfaceDevice); 

if (NT_SUCCESS(status)) { 
 
    // 
    // Create a symbolic link that the GUI can specify to gain access 
    // to this driver/device 
    // 
    RtlInitUnicodeString (&deviceLinkUnicodeString, 
        deviceLinkBuffer ); 
    status = IoCreateSymbolicLink (&deviceLinkUnicodeString, 
  &deviceNameUnicodeString ); 
 
    // 
    // Create dispatch points for all routines that must be injected 
    // 

   DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]  = DevInjectorDispatch; 
   DriverObject->DriverUnload                          = DevInjectorUnload; 
} 

 
if (!NT_SUCCESS(status)) { 

          // 
    // Something went wrong, so clean up  
    // 
          DbgPrint("Something Went Wrong"); 
    if( interfaceDevice ) { 

IoDeleteDevice( interfaceDevice ); 
   } 
} 

 
//  
// Query our start type to see if we are supposed to monitor starting 
// at boot time 
// 
registryPath.Buffer = ExAllocatePool( PagedPool,  

                                       RegistryPath->Length + sizeof(UNICODE_NULL));  
if(!registryPath.Buffer) {  

  
         return STATUS_INSUFFICIENT_RESOURCES;  
    }  
  
    registryPath.Length = RegistryPath->Length + sizeof(UNICODE_NULL);  
    registryPath.MaximumLength = registryPath.Length;  
 
    RtlZeroMemory( registryPath.Buffer, registryPath.Length );  
    RtlMoveMemory( registryPath.Buffer,  RegistryPath->Buffer, RegistryPath->Length  );  
 
    demandStart = SERVICE_DEMAND_START; 
    startType = demandStart; 
    RtlZeroMemory( &paramTable[0], sizeof(paramTable));  
    paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;  
    paramTable[0].Name = L"Start";  
    paramTable[0].EntryContext = &startType; 
    paramTable[0].DefaultType = REG_DWORD;  
    paramTable[0].DefaultData = &demandStart; 
    paramTable[0].DefaultLength = sizeof(ULONG);  
 

RtlQueryRegistryValues( RTL_REGISTRY_ABSOLUTE, registryPath.Buffer, &paramTable[0],  NULL,   
 NULL  ); 

    DbgPrint(DEBUG_DRIVER_ENTRYEND); 
    return status; 
} 
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This annex relates to Chapter 7 Supervised Emulation Analysis. It briefly presents 

Discovery - an application developed to interface with the Discovery framework and 

locate errors in DD. 

Figure AnII-1 depicts the main window of Discovery platform where the DCPU, 

integrated debugger and main console are shown. 

 

 

Figure AnII-1: Discovery Main Window (general view). 
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Figure AnII-2: Discovery5 Console. 

Figure AnII-2 depicts the console of Discovery through which the user can select the 

device driver for analysis. The text box labelled “Binary File” contains the path for 

the device driver under test. 

The current version of Discovery allows access to the emulation platform and 

interaction with the DCPU and integrated debugger (see Figure AnII-3). 

 

Figure AnII-3: DCPU and integrated debugger windows. 
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Function Call Graph 

Discovery builds the function call graph of the device driver under test. Figure AnII-4 

depicts the function call graph available at Discovery with focus on the DriverEntry 

function of the device driver under test. 

 
 

Figure AnII-4: Example of Driver Entry Call Graph (pre-Expanded) 

 

Figure AnII-5 depicts an example of the DriverEntry expanded function call graph. 

The code highlighted in green shows instructions that where analysed by the 

platform during the execution of the test sets. 
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Figure AnII-5: Example of Driver Entry Call Graph (Expanded) 

Report 

Figure AnII-6 depicts the dynamic report being built as a result of the analysis 

performed at the device driver and errors being detected by the implemented 

validators. 

 

Figure AnII-6: Dynamic Report
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