1,382 research outputs found

    Fuzzy Interval-Valued Multi Criteria Based Decision Making for Ranking Features in Multi-Modal 3D Face Recognition

    Get PDF
    Soodamani Ramalingam, 'Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition', Fuzzy Sets and Systems, In Press version available online 13 June 2017. This is an Open Access paper, made available under the Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/This paper describes an application of multi-criteria decision making (MCDM) for multi-modal fusion of features in a 3D face recognition system. A decision making process is outlined that is based on the performance of multi-modal features in a face recognition task involving a set of 3D face databases. In particular, the fuzzy interval valued MCDM technique called TOPSIS is applied for ranking and deciding on the best choice of multi-modal features at the decision stage. It provides a formal mechanism of benchmarking their performances against a set of criteria. The technique demonstrates its ability in scaling up the multi-modal features.Peer reviewedProo

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Remote Sensing and Data Fusion for Eucalyptus Trees Identification

    Get PDF
    Satellite remote sensing is supported by the extraction of data/information from satellite images or aircraft, through multispectral images, that allows their remote analysis and classification. Analyzing those images with data fusion tools and techniques, seem a suitable approach for the identification and classification of land cover. This land cover classification is possible because the fusion/merging techniques can aggregate various sources of heterogeneous information to generate value-added products that facilitate features classification and analysis. This work proposes to apply a data fusion algorithm, denoted FIF (Fuzzy Information Fusion), which combines computational intelligence techniques with multicriteria concepts and techniques to automatically distinguish Eucalyptus trees, in satellite images To assess the proposed approach, a Portuguese region, which includes planted Eucalyptus, will be used. This region is chosen because it includes a significant number of eucalyptus, and, currently, it is hard to automatically distinguish them from other types of trees (through satellite images), which turns this study into an interesting experiment of using data fusion techniques to differentiate types of trees. Further, the proposed approach is tested and validated with several fusion/aggregation operators to verify its versatility. Overall, the results of the study demonstrate the potential of this approach for automatic classification of land types.A deteção remota de imagens de satélite é baseada na extração de dados / informações de imagens de satélite ou aeronaves, através de imagens multiespectrais, que permitem a sua análise e classificação. Quando estas imagens são analisadas com ferramentas e técnicas de fusão de dados, torna-se num método muito útil para a identificação e classificação de diferentes tipos de ocupação de solo. Esta classificação é possível porque as técnicas de fusão podem processar várias fontes de informações heterogéneas, procedendo depois à sua agregação, para gerar produtos de valor agregado que facilitam a classificação e análise de diferentes entidades - neste caso a deteção de eucaliptos. Esta dissertação propõe a utilização de um algoritmo, denominado FIF (Fuzzy Information Fusion), que combina técnicas de inteligência computacional com conceitos e técnicas multicritério. Para avaliar o trabalho proposto, será utilizada uma região portuguesa, que inclui uma vasta área de eucaliptos. Esta região foi escolhida porque inclui um número significativo de eucaliptos e, atualmente, é difícil diferenciá-los automaticamente de outros tipos de árvores (através de imagens de satélite), o que torna este estudo numa experiência interessante relativamente ao uso de técnicas de fusão de dados para diferenciar tipos de árvores. Além disso, o trabalho desenvolvido será testado com vários operadores de fusão/agregação para verificar sua versatilidade. No geral, os resultados do estudo demonstram o potencial desta abordagem para a classificação automática de diversos tipos de ocupação de solo (e.g. água, árvores, estradas etc)

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Generalized multi-stream hidden Markov models.

    Get PDF
    For complex classification systems, data is usually gathered from multiple sources of information that have varying degree of reliability. In fact, assuming that the different sources have the same relevance in describing all the data might lead to an erroneous behavior. The classification error accumulates and can be more severe for temporal data where each sample is represented by a sequence of observations. Thus, there is compelling evidence that learning algorithms should include a relevance weight for each source of information (stream) as a parameter that needs to be learned. In this dissertation, we assumed that the multi-stream temporal data is generated by independent and synchronous streams. Using this assumption, we develop, implement, and test multi- stream continuous and discrete hidden Markov model (HMM) algorithms. For the discrete case, we propose two new approaches to generalize the baseline discrete HMM. The first one combines unsupervised learning, feature discrimination, standard discrete HMMs and weighted distances to learn the codebook with feature-dependent weights for each symbol. The second approach consists of modifying the HMM structure to include stream relevance weights, generalizing the standard discrete Baum-Welch learning algorithm, and deriving the necessary conditions to optimize all model parameters simultaneously. We also generalize the minimum classification error (MCE) discriminative training algorithm to include stream relevance weights. For the continuous HMM, we introduce a. new approach that integrates the stream relevance weights in the objective function. Our approach is based on the linearization of the probability density function. Two variations are proposed: the mixture and state level variations. As in the discrete case, we generalize the continuous Baum-Welch learning algorithm to accommodate these changes, and we derive the necessary conditions for updating the model parameters. We also generalize the MCE learning algorithm to derive the necessary conditions for the model parameters\u27 update. The proposed discrete and continuous HMM are tested on synthetic data sets. They are also validated on various applications including Australian Sign Language, audio classification, face classification, and more extensively on the problem of landmine detection using ground penetrating radar data. For all applications, we show that considerable improvement can be achieved compared to the baseline HMM and the existing multi-stream HMM algorithms

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    A Fuzzy-logic based Alert Prioritization Engine for IDSs: Architecture and Configuration

    Get PDF
    Intrusion Detection Systems (IDSs) are designed to monitor a networked environment and generate alerts whenever abnormal activities are detected. The number of these alerts can be very large making their evaluation by security analysts a difficult task. The management is complicated by the need to configure the different components of alert evaluation systems. In addition, IDS alert management techniques, such as clustering and correlation, suffer from involving unrelated alerts in their processes and consequently provide results that are inaccurate and difficult to manage. Thus, the tuning of an IDS alert management system in order to provide optimal results remains a major challenge, which is further complicated by the large spectrum of potential attacks the system can be subject to. This thesis considers the specification and configuration issues of FuzMet, a novel IDS alert management system which employs several metrics and a fuzzy-logic based approach for scoring and prioritizing alerts. In addition, it features an alert rescoring technique that leads to a further reduction of the number of alerts. We study the impact of different configurations of the proposed metrics on the accuracy and completeness of the alert scores generated by FuzMet. Our approach is validated using the 2000 DARPA intrusion detection scenario specific datasets and comparative results between the Snort IDS alert scoring and FuzMet alert prioritization scheme are presented. A considerable number of simulations were conducted in order to determine the optimal configuration of FuzMet with selected simulation results presented and analyzed

    Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods

    Get PDF
    corecore