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ABSTRACT 

GENERALIZED MULTI-STREAM HIDDEN MARKOV MODELS 

Oualid Missaoui 

March 2nd, 2010 

For complex classification systems, data is usually gathered from multiple sources of infor­

mation that have varying degree of reliability. In fact, assuming that the different sources have the 

same relevance in describing all the data might lead to an erroneous behavior. The classification 

error accumulates and can be more severe for temporal data where each sample is represented by 

a sequence of observations. Thus, there is a compelling evidence that learning algorithms should 

include a relevance weight for each source of information (stream) as a parameter that needs to be 

learned. 

In this dissertation, we assumed that the multi-stream temporal data is generated by inde­

pendent and synchronous streams. Using this assumption, we develop, implement, and test multi­

stream continuous and discrete hidden Markov model (HMM) algorithms. For the discrete case, 

we propose two new approaches to generalize the baseline discrete HMM. The first one combines 

unsupervised learning, feature discrimination, standard discrete HMMs and weighted distances to 

learn the codebook with feature-dependent weights for each symbol. The second approach consists of 

modifying the HMM structure to include stream relevance weights, generalizing the standard discrete 

Baum-Welch learning algorithm, and deriving the necessary conditions to optimize all model pa­

rameters simultaneously. We also generalize the minimum classification error (MCE) discriminative 

training algorithm to include stream relevance weights. 

For the continuous HMM, we introduce a new approach that integrates the stream relevance 

weights in the objective function. Our approach is based on the linearization of the probability 

density function. Two variations are proposed: the mixture and state level variations. As in 

the discrete case, we generalize the continuous Baum-Welch learning algorithm to accommodate 
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these changes, and we derive the necessary conditions for updating the model parameters. We also 

generalize the MCE learning algorithm to derive the necessary conditions for the model parameters' 

update. 

The proposed discrete and continuous HMM are tested on synthetic data sets. They are 

also validated on various applications including Australian Sign Language, audio classification, face 

classification, and more extensively on the problem of landmine detection using ground penetrating 

radar data. For all applications, we show that considerable improvement can be achieved compared 

to the baseline HMM and the existing multi-stream HMM algorithms. 
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CHAPTER I 

Introduction 

The greatest challenge to any thinker is 

stating the problem in a way that will 

allow a solution 

Bertrand Russell 

Temporal data is sequential data that is ordered with respect to a given index [1, 2, 3]. The 

description and modeling of such data is based on the ordering concept which is not necessarily 

time. Time series form a well-known class of sequential data where records are indexed by time. 

Other examples of sequential data are text, pixels in an image, gene sequences, protein sequences, 

and lists of moves in a chess game. Temporal data has been studied extensively in data mining and 

statistics [4]. Classification is one of the main tasks in temporal data mining [1, 5]. Temporal data 

classification is needed in many applications such as speech recognition [6], gesture recognition [7] 

and handwritten word recognition [8]. 

One of the most commonly used temporal data classifiers is the Hidden Markov Models 

(HMMs) algorithm [6]. HMMs were introduced and studied in the late 1960s and early 1970s. They 

have great adaptability and versatility in handling sequential signals [9]. They have also been used 

for biological sequence classification [10, 11] and finance [12]. 

A hidden Markov model (HMM) (also known earlier as a probabilistic function of a Markov 

chain, or as a Markov source, or as a Markov regime model) is a stochastic process generated by two 

interrelated probabilistic mechanisms. The first mechanism consists of an underlying Markov chain 

with a finite number of states. At discrete instants of time, the process is assumed to be in some 

state and an observation is generated by the random function corresponding to the current state. 

The generated observations form the second probabilistic mechanism. The underlying Markov chain 

changes its state according to its transition matrix. 

In HMM, the observer sees only the output of the random functions associated with each 

state and cannot observe the states of the underlying Markov chain directly. Hence, the Markov 

chain is hidden and the name for the model family is hidden Markov model. 
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In principle, the outputs from the states of the hidden Markov chain may be either multi­

variate random processes having some continuous joint probability distribution or a discrete finite 

alphabet [13]. The former model is called Continuous HMM and the latter one is called Discrete 

HMM. 

For complex classification, multiple sources of information may contribute to the generation 

of sequences. In the standard HMMs, the different features contribute equally to the classification 

decision. However, these features may have different relevance degrees that depend on different 

regions of the feature space. Moreover, not all sources are always reliable. Consequently, treating 

these sources equally important and simply concatenating them and using a standard HMM might 

lead to a suboptimal classifier. Thus, lIlore complex HMM based structures are needed to handle 

temporal data with multiple sources of information. 

1.1 Related work 

Approaches toward the combination of different modalities can be divided into three main 

categories: feature level fusion or direct identification, decision level fusion or separate identifica­

tion (also known as late integration) and model level fusion (early/intermediate integration) [14]. 

In feature level fusion, multiple features are concatenated into a large feature vector and a single 

HMM model is trained [15]. This type of fusion has the drawback of treating heterogeneous fea­

tures equally important. It also cannot represent the loose timing synchronicity between different 

modalities easily. In decision level fusion, the modalities are processed separately to build inde­

pendent models [16]. This approach completely ignores the correlation between features and allows 

complete asynchrony between the streams. Also, it is computationally heavy since it involves two 

layers of decision. In model level fusion, an HMM model that is more complex than a standard one 

is sought. This additional complexity is needed to handle the correlation between modalities, and 

the loose synchronicity between sequences. Several HMM structures have been proposed for this 

purpose. Examples include factorial HMM [17], coupled HMM [18] and Multi-stream HMM [19]. 

Both factorial and coupled HMM structures allow asynchrony between sequences since a separate 

state sequence is assigned to each stream [20]. However, this is performed at the expense of an 

approximate parameter estimation. In fact, the parameters of factorial and coupled HMMs could 

be estimated via the EM (Baum-Welch) algorithm [6]. However, the E- step is computationally 

intractable and approximation approaches are used instead [18, 17]. 

Multi-stream HMM (MSHMM) is an HMM based structure that handles multiple modalities 

2 



for temporal data. It is used when the modalities (streams) are synchronous and independent. Since 

the streams are supposed to be synchronous, MSHMM assumes that for each time slot, there is a 

single hidden state, from which different streams interpret different observations. The independence 

of the streams means that their interpretation of the hidden state and their generation of the 

observations is performed independently. 

To the best of our knowledge, no work that attempts to integrate feature discrimination in the 

discrete HMM. However, limited work has been reported for the continuous HMM had been reported 

in the literature. In particular, feature weighting was introduced in audio-visual stream weighting 

in speech recognition using continuous HMM [21, 22, 23]. In the standard continuous HMM, the 

classification decision is related to the probability density of a given observation sample in each state 

of the model. The probability density function (pdf) has been treated as a mixture of Gaussians 

where each Gaussian is weighted by a relevance coefficient. In particular, the overall feature space is 

partitioned into sub-spaces, and partial Gaussian components are learned in the different sub-spaces. 

Two general approaches have been proposed. The first one consists of factorizing each mixture into 

a product of weighted partial pdf(s) [24], where each pdf models a different feature subset. The 

relevance weight of each subset is learnt via the Minimum Classification Error (MCE) approach or 

the Generalized Probabilistic Descent (GPD) [24]. There was no reported learning approaches using 

the Maximum Likelihood (ML) based Baum-Welch algorithm. In fact, it was shown [24] that it is 

not possible to derive the ML learning equations for the exponent weights. The second approach 

considers the pdf as a product of exponent weighted mixture of Gaussians [25]. In this case, the pdf 

is a product of summation of Gaussians, whereas in the former case, the pdf is a summation of a 

product of Gaussians. In the latter case, the exponent weights are either fixed a priori by the user 

or learnt via the MCE/GPD approach [26]. The only attempt to learn the exponent weights within 

the Baum-Welch learning algorithm had been reported in [27]. However, this approach restricts the 

HMM structure to one Gaussian component per state. 

1.2 Contributions 

In this dissertation, we argue that since the stream relevance weights are parameters of the 

HMM structure, it is not meaningful to learn them separately from the rest of the HMM parameters. 

For the discrete case, we generalize the discrete HMM by introducing a weight matrix that assigns a 

relevance weight to each feature subset of each codebook. We propose two new approaches to train 

the discrete HMM. The first one combines unsupervised learning, feature discrimination, standard 
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discrete HMM and weighted distance to learn the codebook with feature dependent weights for each 

symbol. In this case, the set of feature weights are optimized using the Simultaneous Clustering and 

Attribute Discrimination (SCAD) algorithm [28]. SCAD is a clustering algorithm that partitions 

the data into clusters and learns cluster-dependent feature relevance weights. After learning the 

feature relevance weights through clustering, the regular discrete HMM parameters are trained via 

the standard Baum-Welch algorithm. To avoid overfitting, the Baum-Welch training is followed by a 

discriminative training component using the Minimum Classification Error/Generalized Probabilistic 

Descent (MCE/GPD) algorithm. 

The second approach consists of generalizing the Baum-Welch algorithm to learn the weight 

of each feature subset. We assume that the probability of each codebook is a combination of 

the probabilities of the feature subset. Two forms of code book probabilities are proposed. The 

first is a linear combination of partial probabilities. The second one is a geometric combination. 

The standard Baum-Welch learning algorithm is generalized to support both forms. In particular, 

we formulate the MLE that includes the feature relevance weights, and we derive the necessary 

conditions to maximize this MLE. The MCE/GPD algorithm is also generalized to include stream 

relevance weight estimation. 

For the continuous HMM case, we treat the pdf as a sum of weighted linear combination of 

partial Gaussian components. We generalize the Baum-Welch algorithm and derive the necessary 

conditions to maximize the MLE learning equations. In particular, we introduce new structures 

of the continuous HMMs based on a linearization of the observation density of probability. This 

linearization is introduced to permit deriving the learning equations for all of the model parameters 

simultaneously. Two forms of linear pdf are introduced. The first one consists of a linear combination 

of the probability densities within different feature subspaces, each of them is a linear combination 

of mixture of Gaussians. The second one is a mixture of Gaussians, each is a linear combination of 

probability densities of different feature subspaces. For each method, we formulate the MLE that 

generalizes the Baum-Welch algorithm to include the necessary conditions to maximize this MLE. 

The MCE/GPD algorithm is also generalized to include stream relevance weight estimation. 

Figure 1 displays a diagram that summarizes the different multi-stream HMM structures 

that we propose. We will refer to them as Generalized Multi-stream HMM (GMSHMM). 

Figure (2) shows the diagram of a multi-modal temporal classifier based one of the structures 

in figure 1. It sketches the underlying components of a typical classifier. In fact, the data generated 

from the different streams is then fed to the GMSHMM. The GMSHMM takes into account the 
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Figure 1. Proposed generalized multi-stream hidden Markov model structures. 

multi-modal nature of the available sequences for training. In the case of C classes, the generalized 

Baum-Welch algorithm learns a separate GMSHMM for each class. A layer of discriminative training 

is then performed based on the generalized MCE/ GPD to tune the parameters of the different 

GMSHMM. Once the C models are learnt , if a testing point occurs, it is assigned to the classes that 

produces the higher likelihood. 

~a;::II=~ l' GMSHMM 1 ') ~ 1
0lIl
-' I P(o\l) 
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0 
~ 

~ 

I 
~ I __ cl I 
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3 
Figure 2. Architecture of the GMSHMM based classifier for multi-modal temporal data. 

The proposed GMSHMM structures are applied to multiple domains. First we evaluate these 

GMSHMM models on synthetic data sets. Then, we apply them to classify sequential data in various 

applications including landmine detection, sign language classification, music genre classification, 

and face classification. 
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1.3 Dissertation overview 

The organization of the rest of this dissertation is as follows. In chapter 2, we present the 

basics of Hidden Markov Models and the related optimization algorithms, namely, the Baum-Welch 

algorithm (BW) and the MCE/GPD algorithms. In chapter 3, we survey existing methods that 

handle multi-modal temporal data and their limitations. In chapter 4, we present our new approach, 

the generalized multi-stream discrete HMM (GMSDHMM), and we validate with synthetic data. In 

chapter 5, we present and validate, the generalized multi-stream continuous HMM (GMSDHMM). In 

chapter 6, we apply the proposed models to the problem of landmine detection, as well as to several 

other benchmark data sets widely used in the machine learning community. Chapter 7 presents the 

conclusions and future directions. 
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CHAPTER II 

Hidden Markov Models: Fundamentals 

Nothing is more practical than a good 

theory 

Vladimir Vapnik 

This chapter describes the basics of Hidden Markov Models (HMMs). We start by introduc­

ing the characteristics of the HMMs and the different HMM topologies. Then, we present the three 

main problems involved with HMMs and their correspondent solutions. In particular, we sketch 

the details of the Baum-Welch and the Minimum Classification Error/Generalized Probabilistic De­

scent algorithms for learning HMM parameters. These discussions form the base of our proposed 

generalized multi-stream HMMs. 

ILl Definition of Hidden Markov Models 

A hidden Markov model (HMM) is a model of a doubly stochastic process that produces a 

sequence of random observation vectors at discrete times according to an underlying Markov chain. 

At each observation time, the Markov chain may be in one of Ns states 81,'" ,8N" and, given that 

the chain is in a certain state, there are probabilities of moving to other states. These probabilities 

are called the transition probabilities. An HMM is characterized by three sets of probability density 

functions: the initial probabilities (7lt the transition probabilities (A), and the state probability 

density functions (B). Let T be the length of the observation sequence (i.e., number of time steps), 

let 0 = [01,'" ,OT] be the observation sequence, and let Q = [q1,'" ,qT] be the state sequence. 

The compact notation 

A = (7l',A,B) (II. 1.1 ) 

is generally used to indicate the complete parameter set of the HMM model. In (11.1.1), A = [aij] 

is the state transition probability matrix, where aij = Pr(qt = 8jlqt-1 = 8i), for i,j = 1,," ,Ns; 

7l' = [7l'i], where 7l'i = Pr(q1 = 8i) are the initial state probabilities; and B = bi(Ot),i = 1"" ,Ns , 

where bi(Ot) = Pr(otlqt = 8i) is the set of observation probability distribution in state i. To simplify 
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the notation, we will simply use i to denote Si . 

An HMM is called discrete if the observation probability density functions are discrete and 

continuous if the observation probability density functions are continuous. In the case of the dis-

crete HMM, the observation vectors are commonly vector quantized into a finite set of symbols, 

{V1,V2,··· ,VM}, called the codebook V. Each state is represented by a discrete probability den­

sity function (pdf) and each symbol has a probability of occurring given that the system is in a 

given state. In other words, B becomes a simple set of fixed probabilities for each class, that is, 

bi(Ot) = bij = Pr(vjlqt = i) , where Vj is the symbol of the nearest code book of Ot . 

Figure 3 shows a discrete HMM with 3 states and 3 observations as a graphical model. In 

this model, the solid clear nodes represent the hidden states (q1,q2 , q3) and the shaded solid nodes 

represent the observed vectors (01,02 ,03). Solid edges represent the conditional dependence between 

the nodes. The model parameters are shown as transparent nodes linked to dotted arcs. 

o .... c.y .... 

Figure 3. A graphical representation of the standard DHMM with 3 states and 3 observations. 

In the continuous HMM, bi(ods are defined by a mixture of some parametric probability 

density functions . The most common parametric pdf used in continuous HMM is the mixture of 

Gaussian density where 
M, 

bi(od = L uijbij(ot), i = 1, ··· , N s · 

j=l 

(II.1.2) 

In (II.1.2), lvIi is the number of components in state i, Uij is the mixture coefficient for the jth mixture 

component in state i, and satisfies the constraints Uij ~ 0, and L~\ Uij = 1, for i = 1, ... , N s , and 

bij(ot) is a p-dimensional multivariate Gaussian density with mean /-tij and covariance matrix Eij . 

Without loss of generality, we assume that all the states have the same number of components i.e., 

lvIi = lvI, V 1 ::; i ::; N s . Figure 4 shows a continuous HMM with 3 states as a graphical model. In 

this model, the solid clear nodes represent random variables indicating the hidden states (Q1, Q2, Q3). 

The random variables (m1 ,m2 ,m3) represent the occurring mixture component in each state. The 

8 



shaded solid nodes represent the observed vectors (01,02 , 03)' As for the discrete case, solid edges 

represent the conditional dependence between the nodes, and the model parameters are shown as 

transparent nodes linked to dotted arcs. 

(0 ··0 ···· ..... " . 

Figure 4. A graphical representation of the standard continuous HMM with 3 states. 

11.2 HMM topologies 

Depending on the state transition matrix, an HMM can be classified into one of the following 

types [9] : 

11.2.1 Ergodic model 

An ergodic model , as shown in figure 5, has full state transition. Being in any state, the 

model has the flexibility to move toward any other state. 

Figure 5. A graphical representation of an Ergodic HMM with 3 states. 

11.2.2 Left-to-right model 

A left-to-right model has only partial state transition such that aij = 0 Vj < i. This type of 

model is widely used in modeling sequential signals. Figures 6 represent two varieties of left-to-right 

HMMs. In figure 6(a), being in a given state, the model can only stay in the same state, or move 
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forward to the subsequent one. In figure 6(b), a model cannot move backward, and is allowed to 

move forward to any subsequent state. 

(b) 

Figure 6. Graphical representations of two types of left-to-right HMM with 5 states. (a) the model 
stays in the same state or moves to next state. (b) the model can move to any subsequent state. 

11.2.3 Cyclic model 

As shown in figure 7, cyclic HMM is the model in which a state transition path represents 

a cycle. 

Figure 7. A graphical representation of a Cyclic HMM with 4 states. 

11.3 Assumptions in the theory of HMMs 

The theory of HMMs is based on three basic assumptions that make inference within the 

HMM framework tractable. 

11.3.1 Markov assumption 

Intuitively, the Markov assumption indicates that the future is independent of the past given 

the present. In fact, the transition to a next state Qt+1, given both the present and the past, depends 
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only on the current state qt. In particular, 

(1I.3.1 ) 

11.3.2 Independence assumption 

This assumption means that the observations are statistically independent given their cor-

respondent states. In other words, 

Pr(OJQ,'>-) 

11.3.3 Stationarity assumption 

Pr(Ol,02,··· ,OTJql,q2,··· ,qT,'>-) 
T 

II Pr(OtJqt, .>-). 
t=l 

(1I.3.2) 

(1I.3.3) 

(11.3.4) 

Here, it is assumed that the state transition probabilities are independent from the actual 

time at which the transitions take place. Formally, 

(1I.3.5 ) 

for any tl and t2 in the range 1,· .. ,T. 

11.4 Main problems of HMMs 

Given the form of the hidden Markov model defined in (11.1.1), Rabiner [6] defines three key 

problems of interest that must be solved for the model to be useful in real-world applications: 

11.4.1 Problem 1: evaluation 

The classification problem involves computing the probability of an observation sequence 

o = [01,··· , aT] given a model .>-, that is, Pr(OJ.>-). Bayesian methods can be used to obtain the 

probability of the model given the observation. This probability can be computed with ()(T N'f) 

computations. 

11.4.2 Problem 2: decoding 

The problem of finding an optimal state sequence is also known as the decoding problem. 

There are several possible ways of finding an optimal state sequence associated with the given 

observation sequence, depending on the definition of the optimal state sequence. That is, there are 
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several possible optimality criteria. One that is particularly useful is to maximize Pr(O, QIA) over 

all possible state sequences Q. The Viterbi algorithm [29] is an efficient formal technique for finding 

this maximum state sequence and associate probabilities.In most applications, it often turns out 

that computing an optimal state sequence is more useful than Pr(OIA). 

11.4.3 Problem 3: classification 

The classification problem, also called the training problem, consists of learning the optimal 

model parameters given a set of training data. This problem is difficult because there are several 

levels of estimation required in an HMM. First, the states themselves must be estimated. This 

is usually inferred from the physical characteristics of the problem in hands or performed using a 

model selection technique. Then, the model parameters A = (11", A, B) need to be estimated. In 

the discrete HMM, first the codebook is determined, usually using clustering algorithms such as the 

K-means [6], or other vector quantization algorithms. In the continuous HMM, and for the case 

of Gaussian mixture density functions, the mixture component parameters, {tij, ~ij, Uij, are first 

initialized (usually by clustering the training data). Then for both cases, the parameters (11",A,B) 

are estimated iteratively. Two strategies can be followed to estimate these parameters (11", A, B). 

The first one is an iterative method called Baum-Welch algorithm [6] which is an Expectation­

Maximization (EM) [30] based algorithm that maximizes the likelihood function. In this maximum 

likelihood estimation (MLE) approach, the parameters of each class are learned independently. The 

optimality of the MLE criterion is conditioned on the availability of a large amount of training data 

and the correct choice of the model. Indeed, it was shown in [31] that if the true distribution of 

the samples to be classified can be accurately described by the assumed statistical model, and if the 

size of the training set tends to infinity, the MLE tends to be optimal. However, in practice, neither 

of these conditions are satisfied as the available training data is limited, and the assumptions made 

about the HMM structure are often inaccurate. As a consequence, the likelihood based training 

may not be effective. In this case, minimization of the classification error rate is a more suitable 

objective than minimization of the error of the parameter estimates. A common discriminative 

training method is the Minimum Classification Error (MCE)[32]. In fact, it has been reported 

since the mid nineties that discriminative training techniques were more successful, especially for 

automatic speech recognition [32]. The optimization of the error function is generally carried out by 

the Generalized Probabilistic Descent (GPD) algorithm [32], a gradient descent based optimization, 

and results in a classifier with minimum error probability. 

12 



11.5 Observation Evaluation: Forward-Backward Procedure 

Let 0 = (0102 ... OT) be an observation sequence where Ot is the observation symbol at time 

t and let Q = (q1q2 ... qT) be a state sequence where qt E S is the state at time t. Given a model 

)., and an observation sequence 0, we wish to evaluate Pr(OI).). The most straightforward way to 

determine Pr(OI).) is to find Pr(OIQ,).) for the fixed state sequence Q, multiply it by Pr(QI).), and 

then sum up over all possible Q's. We have 

Hence, 

T 

Pr(OIQ, ).) II bq,(Ot), and 

Pr(OI).) 

Pr(QI).) 

t=1 

T-1 

Irq, II aq,q'+l' 

t=1 

L Pr(OIQ, )')Pr(QI).) 
Q 

T-1 T 

L Irq, II aq,q'+1 II bq, (Ot). 
qlq2," ,qT t=1 t=1 

(11.5.1 ) 

(11.5.2) 

(II.5.3) 

(11.5.4) 

From (11.5.4) we see that the summation involves 21' - 1 multiplications, and there exists NT 

distinct possible state sequences Q. Hence, a direct computation of (11.5.4) will be in the order 

of 21' NT multiplications. Even for small values such as, Ns = 5 and l' = 100, this would involve 

approximately 1072 multiplications which could take eons to complete even for a supercomputer. 

Hence, a more efficient procedure to solve problem 1 is required. Such a procedure exists and is 

called the forward-backward procedure [6]. 

Consider the variable Qt(i), defined as: 

(11.5.5) 

i.e. the probability of the partial observation sequence up to time t and the state i at time t, given 

the model ).. The variable Qt(i) can be computed iteratively using the following three steps: 

1. 

(11.5.6) 

2. for t = 1,2, ... , l' - 1, 1 ~ j ~ Ns 

(11.5.7) 
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3. then we have: 
N" 

Pr(OI>-) = L>"l:T(i) (II.5.8) 
i=l 

In step (2), the goal is the computation of the probability of partial observation sequence up to time 

t + 1 and state j at time t + 1; state j can be reached (with probability aij) independently from any 

of the Ns states at time t. The summation in (11.5.7) refers to this fact. In step (3), we just sum up 

all possible (independent) ways of realizing the given observation sequence. 

In the Forward-Backward algorithm, step (1) involves Ns multiplications. Step (2) involves 

N multiplications plus one for the out of bracket bj (Ot+1) term, this has to be done for j = 1 to Ns 

and t = 1 to T - 1, making the total number of multiplication in step 2 (Ns + l)Ns(T - 1). Since 

step (3) involves no multiplications, the total number of multiplications is Ns + Ns(Ns + l)(T - 1) 

i.e. of the order of N;T as compared to the 2T.N; required for the direct method. 

In a similar way, the backward variable (3t(i) is defined as : 

(1I.5.9) 

i.e. the probability of the observation sequence from t + 1 to T given the state i at time t and the 

model >-. Note that here qt = i has already been given (it wasn't the case for the forward variable). 

This distinction has been made to be able to combine the forward and the backward variables to 

produce useful results. (3t(i) could be computed in 3 steps similar to the way G:t(i) was computed: 

1. 

(3T(i) = i, 1 :::; i :::; N. 

2. for t = T - 1, T - 2, ... ,1 , 1 :::; i :::; N 

3. 

N" 

(3t(i) = Laijbj(ot+1)(3t+1(j) 
j=l 

N" 

Pr(OI>-) = L 7fibi(Ol)(31(i) 
i=l 

(11.5.10) 

(11.5.11) 

(1I.5.12) 

The computation of Pr(OI>-) using (3t(i) also involves the order of N;T calculations. Hence both 

the forward as well as the backward method are equally efficient for the computation of Pr(OI>-). 

This solves problem 1. 
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11.6 State Sequence Decoding: The Viterbi Algorithm 

Problem 2 consists of finding the optimal state sequence associated with the given observation 

sequence. In other words, we have to find a state sequence Q = (q1, Q2, ... , qT) such that the 

probability of occurrence of the observation sequence 0 = (01, 02, ... , aT) from this state sequence is 

greater than that from any other state sequence. The problem is then to find Q that will maximize 

Pr(O,QI'x'). This can be achieved using the Viterbi Algorithm [6]. From (11.5.3) and (11.5.4) we 

have 

Pr(O, QI,X,) Pr( OIQ, 'x')Pr( QI'x') 
T-1 T 

7rq, II aqtqt+1 II bqt (at) 
t=l t=l 

T 

7rq, bq, (od II aqt_lqtbqt(ot) 
t=2 

By introducing a new variable: 

U(Q) -In(Pr(O, QI'x')) 

- [In(7rql bql (Od) + ~ln(aqt-1qtbqt(Ot))] , 

it can be shown that: 

Pr(O, QI'x') = exp( -U(Q)) 

Consequently the problem of optimal state estimation, namely, 

becomes equivalent to 

maxP(O,QI,X,) 
Q 

minU(Q) 
Q 

(11.6.1) 

(11.6.2) 

(11.6.3) 

(11.6.4) 

This new reformulation enables us to consider terms like - In( aqj qk bqk (at)) as the cost associated 

with the transition from state qj to state qk at time t. 

In the following, we describe the Viterbi algorithm which can be used to find the optimum 

state sequence. Let -In(aijbj(ot)) be the weight on the path from state i to state j where at is the 

observation symbol selected after visiting state j. Let -In(7ribi(Ot)) be the weight corresponding to 

the selection of the initial state i. 

Finding the optimum sequence is equivalent to finding the path (i.e. a sequence of states) 

with the minimum weight through which the given observation sequence occurs. Thus, the Viterbi 
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Algorithm is basically a dynamic programming approach for minimizing U(Q). Let Ot(i) denote the 

weight accumulated when we are in state i at time t as the algorithm proceeds and let 'lj;t(j) be the 

state at time t - 1 which has the lowest cost corresponding to the state transition to state j at time 

t. The Viterbi algorithm can be summarized by the following four steps: 

1. Initialization: for 1 ::; i ::; Ns 

o 

2. Recursive computation: for 2 ::; t ::; T For 1 ::; j ::; Ns 

3. Termination: 

argmin [Ot-l(i) -In(aij)] 
ls,is,Ns 

P* 

argmin [OT(i)] 
ls,is,Ns 

4. Tracing back the optimal state sequence For t = T - 1, T - 2, ... , 1 

(11.6.5) 

(1I.6.6) 

(1I.6.7) 

(1I.6.8) 

(1I.6.9) 

(11.6.10) 

(11.6.11) 

Hence, exp( - P*) gives the required state-optimized probability, and Q* = qi, q2' ... ,q:r is the 

optimal state sequence. Computationally, the Viterbi algorithm is similar to the forward-backward 

procedure except for the comparisons needed to find the maximum value. Therefore, its complexity 

is also of the order of N;T. This solves problem 2. 

11.7 The classification problem 

The classification problem is to determine a method to estimate the model parameters 

(Jr, A, B) based on the observation sequence O. This is the most difficult problem as there is 

no analytical solution to this problem. The general approach is to train the model with the available 

training data following some iterative procedure until its convergence. In particular, after an initial 

guess, a set of re-estimation formula would be repeated so that the parameter set could gradually 

approach the optimal values where the likelihood of the observation sequence is maximal. Similar 
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to problem 2, there are different criteria to interpret the problem. The maximum likelihood (ML) 

criterion [6J and the minimum classification error (MCE) criterion [32J are the most widely used 

ones. In the following, a description is given to both objectives for both the discrete and continuous 

HMM. 

11.7.1 Maximum Likelihood criterion: Baum-Welch algorithm 

The standard approach to estimate the HMM parameters is to use the expectation-

maximization (EM) algorithm [30], also known as the forward-backward or Baum-Welch (BW) 

algorithm [6] in this context, to find the maximum likelihood (ML) estimator. Let A represents 

the current model and let :\ represents a candidate model, i.e. the model that we want to built 

out of the current model and that optimizes a specific objective function. Our objective is to make 

Pr(OI:\) 2': Pr(OIA), or equivalently 10g(Pr(01:\)) 2': 10g(Pr(0IA)). Due to the presence of stochas-

tic constraints such that Lj aij = 1, it is easier to maximize an auxiliary function IQ(.) rather than 

to directly maximize 10g(Pr(01:\)). This auxiliary function, also called E-M auxiliary function, is 

defined as: 

IQ(A,:\) = LPr(QIO,A)ln(Pr(O,QI:\)). (11.7.1) 
Q 

The following two propositions show that maximizing of IQ( A, :\) is equivalent to maximizing Pr( 0 I A). 

Proposition 11.7.1. If the value of IQ(A,:\) increases, then the value of Pr( 0IA) also increases, 

i.e., 

IQ(A.:\) 2': IQ(A, A) =? Pr(OI:\) 2': Pr(OIA) (11.7.2) 

Proposition 11.7.2. A is a critical point of Pr( 0IA) if and only if it is a critical point of IQ(A, :\), 

i.e., 

alQ( A, :\) I ' 
a(Jp 'X=,X 

(II. 7.3) 

where (Jp is any individual parameter of A. 

The proofs of the proposition (11.7.1) and (11.7.2) are sketched in appendix A. 

The closed form expression of IQ(A,:\) represents the E-step (Expectation step) of the Expectation-

Maximization algorithm (EM algorithm). 
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11.7.1.1 Discrete HMM 

The objective function in (II.7.1) can be expanded to: 

Q(A),) = L Pr(QIO, A) log(7Tq,) + 
Q 

T 

L L Pr(QIO, A) log(aq,q,+,) + 
t=l Q 

T 

L L Pr(QIO, A) log(bq,Qv(o,)J,)' 
t=l Q 

(II.7.4) 

By applying the Lagrange multipliers optimization method to the objective function in (11.7.4), it 

can be shown [6] that the parameters 7r, A, and B need to be updated using: 

7r; Pr(ql = ilO, A) 

'L.'i=l Pr(qt = i, qt+l = jlO, A) 

'L.'i=l Pr(qt = jlO, A) 

'L.'i=l Pr(qt = jlO, A)8(Qv(Ot),j) 

'L.'i=l Pr(qt = jlO, A) 

In the above, Qv is the quantization operation defined on an observation vector as QV(Ot) 

argmin1:::;j:::;M d(Ot, Vj) and 8(., .) is the Kronecker delta function defined as: 

8(i,j) = {I ifi=j 

o otherwise 
(II.7.5) 

The above expressions of the parameters 7r, A, and B, since they zero the gradient of the objective 

function in (II. 7.4), represent a critical point. However, it could be easily shown that this critical 

point makes the second derivative of (11.7.4) negative, and thus is a local maximum. 

Let "ft(i) = Pr(qt = iIO,A), and ~t(i,j) = Pr(qt = i,qt+l = JIO,A). As in [6], we can express "ft(i) 

and ~t(i,j) using the forward and backward variables (};t(j) and !3t(j): 

'L.f~l (};t(j)!3t(j) 
(};t (i)a;jbj (OHl )!3t+l (j) 

'L.;::l 'L.f~l (};t(i)a;jbj(ot+l)Bt+l(j) 

Thus, the update equations could be written as: 

"fl(i), 

'L.'i=l ~t(i,j) 
T ' 'L.t=l "ft(i) 

'L.'i-l "ft(i)8(Qv(ot),j) 

'L.'i=l "ft(i) 
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(II.7.8) 

(II. 7.9) 

(11.7.10) 



11.7.1.2 Continuous Baum-Welch 

In the continuous case, we recall that 

M 

bi(Ot) = Pr(otlqt = i,>.) = '2:.uijN(ot,f-Lij,L,ij). 
j=l 

(II.7.11) 

Let E = [el,··· ,eT] be the sequence of random variables representing the mixture component 

indices for each time step. In fact, the random variable et identifies the mixture component index 

within a given state at time t. Thus, if qt = i and et = k, then at time t state i and mixture 

component j occur. The kernel function N in (11.7.11) is a multivariate Gaussian that represents 

the probability density of a vector of continuous observation Ot, given that at time t the underlying 

state and mixture component are respectively i and j. In other words, 

(II.7.12) 

In the Gaussian case, the kernel function N is: 

(11.7.13) 

where lL,ij I is the determinant of the covariance matrix. In practice, the off-diagonal variances 

are assumed zero. In such case, the determinant lL,ijl is just the product of p scalar variances 

(11.7.14) 

Given a state i, the system randomly chooses one of its M possible mixture components within the 

state with a mixture emission probability Pr(et = jlqt = i, >.). This probability is assumed to be 

independent of t and thus, it can be represented by a parameter with no time index. In our notation, 

we let Uij = Pr(et = jlqt = i, >.) be the weight of the kth mixture component embedded in state 

i. The mixture component could be interpreted as low level hidden states et embedded within high 

level hidden states qt. Thus, the objective function in (11.7.1) is adapted to include the random 

vectors Q and E representing the high level and low level hidden states: 

1Ql(>',"X) = '2:. '2:. ln(Pr(O, Q, EI"X))Pr(Q, EIO, >.). (11.7.15) 
Q E 

It could be easily proven that this new form of IQl still satisfies the propositions in (11.7.1) and (II. 7.2). 

In fact, we only need to consider Q and E as one single hidden vector (Q, E) to satisfy the propo-

sitions (11.7.1) and (11.7.2). The objective function in (11.7.15) involves the quantity Pr(O,Q,EI"X) 
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which has the analytical form: 

T T 

Pr(O,Q,EIX) = ?Tql II Pr(qtlqt-1,X) II uq,e,N(Ot,/1q,e"L,q,e'). 

It follows then that, 

Ql(>', X) 

t=2 t=l 

L L Pr(Q, Elo, >.) In(7fq1 ) + 
Q E 

T-1 

L L L Pr(Q, Elo, >.) In(aq,qt+.} + 
t=l Q E 

T-1 

L L L Pr(Q, Elo, >.) In(uq,e,) + 
t=l Q E 

T-1 

L L L Pr(Q, Elo, >.) In N(ot,Jtq, e" Eq,e,) 
t=l Q E 

(11.7.16) 

(11.7.17) 

(11.7.18) 

Using the Lagrange multipliers optimization method, it can be shown [6] that the estimates of the 

parameters ?T, A, B, /1, and L, could be computed iteratively using: 

'J1ijd 

-2 (Yijd 

2:.;=1 Pr(qt = i, et = jlo, >.) 

2:.;=1 Pr( qt = ilo, >.) 

2:.;-1 Pr(qt = i, et = jlo, >')Otd 

2:.;=1 Pr)..(qt = ilo) 

2:.;=1 Pr(qt = i, et = jlo, >')(Otd - 'J1ijd)2 

2:.;=1 Pr( qt = ilo, >.) 

(11.7.19) 

(II. 7.20) 

(11.7.21) 

The above expression of the parameters ?T, A, and B, since they zero the gradient of the objective 

function in (11.7.15), represent a critical point. It could be easily shown that this critical point is 

also a local maximum since it makes the second derivative of (1I.7.15) negative. Since 

P ( -' _ kl ') _ P ( -'1 ') Uik¢(Ot, /1ik, L,ik) r qt - ~,et - 0, /\ - r qt - ~ 0, /\ ( ) 
bi Ot 

(11.7.22) 

and 'Yt(i, k) = Pr(qt = i, et = klo, >'), the learning equations in (11.7.19)-(11.7.21) can be rewritten: 

2:.;=1 'Yt(i,j) 

2:.;=1 "It (i) 
2:.;=1 'Yt(i,j)otn 

2:.;=1 "It ( i, j) 

2:.;=1 "It (i,j)(otl - 'J1ijn)2 

2:.;=1 'Yt(i,j) 

11.7.1.3 Multiple observation sequences 

(II. 7.23) 

(II. 7.24) 

(II. 7.25) 

In practice, one single observation sequence is not sufficient to learn all the parameters of an 

HMM model (discrete or continuous). Typically, multiple observation sequences are available and 
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are used to obtain reliable estimation of the model parameters [6]. Let 

I[]) = [0(1), O(2), ... ,OCR)] (II. 7.26) 

denote the set of R observation sequences, where oCr) = [air), a~r), ... ,a~!] is the rth observation 

sequence. Without loss of generality, we assume Tr=T 'if 1 ::; r ::; R. Usually, one does not know if 

these observation sequences are independent of each other or not, and a controversy can arise if one 

assumes the independence property while these observation sequences are statistically correlated. In 

either case, we have the following expressions without generality: 

Pr(I[])I-\) 

Pr(I[])I-\) 

Pr(O(1) 1-\)Pr(OC2) 10(1) -\) ... Pr(OCR)IOCR-l) ... OCl),-\) 

Pr(OC2)1-\)Pr(OC3)IOC2) -\) ... Pr(OCl)IOCR) ... O(2),-\) 

Pr(I[])I-\) = Pr(OCR)I-\)Pr(O(1)IOCK) -\) ... Pr(OCR-l) IOCR)OCR-2) ... 0(1),-\) 

Based on the above equations, the multiple observation probability given the model can be expressed 

as: 
R 

Pr(OI-\) = L wrPr(oCr)I-\), (II. 7.27) 
r=l 

where 

WI -kPr(OC2) 10(1), -\) ... Pr(OCR)IOCR-l) ... OCl),-\) 

W2 -kPr(OC3) 10(2) ,-\) ... Pr(O(1) IOCR) ... O(2),-\) 

are weights. These weights are conditional probabilities and, hence, they can characterize the 

dependence-independence property. Based on the above expression, we can construct the follow-

ing auxiliary function for model training: 

R 

1Q(-\,3::) = L wrlQr(-\' 3::), 
r=l 

where 3:: is the auxiliary variable corresponding to -\ and 

IQr(-\,3::) = L Pr(oCr), QI-\) In(Pr(OCr))I3::), 1::; r::; R 
Q 
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are Baum's auxiliary functions related to individual observations. Since W r , are not functions of X, 

propositions (II. 7.1) and (II. 7.2) hold for Q(>', X). Now, let us assume that the individual observations 

are independent of each other, i.e., 

R 

Pr(OI>') = II Pr(o(r) I>') (11.7.30) 
r=1 

In this case, the combinatorial weights reduce to: 

1 Pr(OI>') 
Wr = R Pr(O(r) I>')' 1::; r ::; R. (11.7.31) 

Using the same procedure as for one observation sequence, we can derive the following 

training equations for the discrete HMM: 

R 
7fi 1 L (r)C) . R 'h ~, 1 ::; ~ ::; Ns 

r=l 
'LR 'LT-1 ~(r) (. .) 

aij 
r-l t-I t ~,) 

'LR 'LT-1 (r)(") 
r=l t=1 "It ~ 

'LR 'LT (r) (")<,( r .) 
bij 

r-l t-l'Yt ~ °t,) 

'LR 'LTc (r) (") 
r=l t=l "It ~ 

Similarly, the following equations could be derived for the continuous HMM: 

7likn 

'L~-l 'Li-l 'Yt(i, kr 
'L~I 'Li=l 'Yt(i, k)r 

'L~-l 'Li-l 'Yt(i, k)IOtnO(r) 

'L~=l 'Li~l 'Yt(i, k)r 

'L::-l 'Li-I 'Yt(i, kt(otr -71ikn)2 

'Li=l 'Yt(i, k)r 

11.7.1.4 Forward-Backward variables scaling 

(II. 7.32) 

(11.7.33) 

(11.7.34) 

(11.7.35) 

(II. 7.36) 

(II. 7.37) 

As mentioned in [6], the computation of Cit (i) and flt (i) consists of the sum of a large number 

of terms, each of the form 

(II. 7.38) 

with qt = Si· Since A is a discrete probability distribution, its value is less than one. In addition, 

the values for B are usually less than one. Consequently, as t gets large (e.g., 10 or more), each term 

of Cit(i) starts to head exponentially to zero. In fact, for sufficiently large t (e.g., 100 or more) the 

dynamic range of the computed Cit (i) will exceed the precision range of essentially any machine (even 

in double precision). Hence, it is necessary to incorporate a scaling procedure. A common scaling 

procedure multiplies Cit(i) by a scaling coefficient that is independent of i (i.e., it depends only on 
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t). The goal is to keep the scaled at(i) within the dynamic range of the computer for 1 :s: t :s: 1'. A 

similar scaling is done to the !3t(i) coefficients since these also tend to zero exponentially fast. 

For each t, we first compute at(i) according to its basic formula, and then we multiply it by a 

scaling coefficient Ct = L t~1\'t(i)· Similarly, each !3t(i) is scaled by L t:11 i3t(i)· Obviously, the scaling 

of at(i) and !3t(i) affects the computation of Pr(OIA). However, we can still compute Pr(OIA) using 

Ct values. In fact, since ~~j: :~i:; = 1, we can write: 

2:~1 aT(i) 

2:;::1 aT(i) 
N, 

LaT(i) 
i=l 

However, we can induce that: 

Thus, we have: 

or 

or 

aT(i) = (11 cr) aT(j) 

T 

II Ct.Pr(OIA) = 1, 
t=l 

1 
Pr(OIA) = -T-' 

ITt=l Ct 

T 

InPr(OIA) = - L In(ct). 
t=l 

(II. 7.39) 

(II. 7.40) 

(11.7.41 ) 

(II. 7.42) 

(II. 7.43) 

(II. 7.44) 

Thus, InPr(OIA) can be computed, but not Pr(OIA) since it would be out of the dynamic range of 

the machine. 

11.7.2 Discriminative training: Minimum Classification Error / GPD algorithm 

For a C-class classification problem, each random sequence 0 is to be classified into one of 

the C classes. We denote these classes by Ce , C = 1,2, ... ,C. Each class c is modeled by an HMM 

Ae. Let ((}) = [0(1), . .. , OrR)] be a set of R sequences drawn from these C different classes and let 

ge(O) be a discriminant function associated with classifier C that indicates the degree to which 0 

belongs to class c. 

The classifier r (0) defines a mapping from the sample space 0 E ((}) to the discrete categorical 

set Cn C = 1,2, ... ,C. That is, 

r(o) = I iff 1= argmaxge(O). (II. 7.45) 
e 
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The parameters of model Ac can be optimized using several learning methods such as Baum-Welch 

[33], Segmental k-means [6], Maximum Mutual Information [34], MCE/GPD [32] algorithms etc .. 

In this dissertation, we are interested in the MCE/GPD algorithm. If sequence 0 = 

[01, ... ,OT] belongs to class c, then 

9c(0, A) = log[max9c(0, q, A)]. (II. 7.46) 
q 

In (II.7.46), q is a state sequence correspondent to the observation sequence 0, A includes the models 

parameters, and 

9c(0, q, A) Pr(O, q; Ac) 
T-l T 

1Tq6c) n a~~~t+l n b~~)(Ot). (II. 7.47) 
t=l t=l 

11.7.2.1 Discrete HMM 

For the discrete HMM, in (II.7.47), b~~) (Ot) = b(C)Q ( )' and Qv is the quantization operation , qt v 0t 

defined on an observation vector as 

QV(Ot) = argmind(ot,vk), 
l~k~M 

(II. 7.48) 

where dO is a distance measure. In this work, dO is taken as the Euclidean distance. Thus, 

9c(0, A) = log[9c(0, Q, A)], where Q = (I]o,(h,· .. , I]T) is the optimal state sequence that achieves 

maxQ 9c(0, Q, A), which could be computed using the Viterbi algorithm [29]. 

The misclassification measure of the sequence 0 is defined by: 

1 

dc(O) = -9c(0, A) + log [c ~ lL exp['I'/9j(0, A)]] " 
J,rlc 

(II. 7.49) 

where '1'/ is a positive number, dc(O) > 0 implies misclassification and dc(O) :s: 0 means correct 

decision. When '1'/ approaches 00, the term in the brackets becomes maxj,J#c9j(0,A). 

The misclassification measure is embedded in a smoothed zero-one function, referred to as 

loss function, defined as: 

where l is a sigmoid function, one example of which is: 

1 
l (d) - --..,---....,..---.,.. 

- 1 + exp( -(d + 0) 

(II. 7.50) 

(II.7.51) 

In (1I.7.51), 0 is normally set to zero, and (is set to a number larger than one. Correct classification 

corresponds to loss values in [0, ~), and misclassification corresponds to loss values in (~, 1]. An 
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equivocal case occurs when dc(O) = 0 or lc(O, A) = ~. The shape of the sigmoid loss function varies 

with the parameter ( > 0: the larger the,!, the narrower the transition region. Finally, for any 

unknown sequence 0, the classifier performance is measured by: 

c 
l(O;A) = L:>c(O;A)IT(O E Cc) 

c=l 

where IT(.) is the indicator function. 

(II. 7.52) 

For a set of training observation sequences OT) r = 1,2, ... , R, the empirical loss function 

on the entire data set is defined as 

R C 

L(A) = LLlc(O;A)IT(O E Cc). (II. 7.53) 
r=lc=l 

The empirical loss above is then used to approximate the total misclassification error. The DHMM 

parameters are therefore estimated by minimizing L(A) using a gradient descent algorithm. In 

order to ensure that the estimated DHMM parameters satisfy the stochastic constraints of aij :;:. 0, 

2:~:;1 aij = 1 and bij :;:. 0, 2:~1 bjk = 1, these parameters are typically mapped using 

aij -> 

bij -> 

aij 

bij 

= logaij 

= log bij 

(11.7.54) 

(II. 7.55) 

The parameters are updated w.r.t to A. Then, after updating, the parameters are mapped back 

using 

",Ns -
L..Jj'=l exp aij' 

(II. 7.56) 

expbij 
(11.7.57) M -' 2: j '=l exp bij , 

Using a batch estimation mode, the DHMM parameters are iteratively updated using 

A.(7+1)=A.(7)-EV'AL (A)I __ . 
A=A(T) 

(II. 7.58) 

It can be shown [32] that the parameters *;c), a;~), and b;~ need to be updated using: 

-(e) __ (c) BL(A) I 
aij (7 + 1) - aij (7) - f~ , 

Baij A=A(T) 

(II. 7.59) 

(II. 7.60) 

and 

(11.7.61) 
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where 

and 

The partial derivatives in (II. 7.62) and (II. 7.62) could be reduced to: 

and 

BL(A) 
Ba(e) 

'J 

BL(A) 

Bb;~ 

ReT 

L L L 'Y1m(Or, A)(l- lm(On A)) x 
r=l m=l t=l 

ReT 

L L L 'Ylm(Or, A)(l -lm(Or, A)) x 
r=l m=l t=l 

In the above, 

Bdc(O) { Bgm(O, A) 

and 

J(i=j,k=l) 

11.1.2.2 Continuous HMM 

-1 ifc=m 

exp[7)9c(0,All 
2: j,j,tc exp[7)9j (O,A)I ifc#m 

{

I if i = j and k = I 

o otherwise 

For the continuous HMM, the function in (II.7.47) can be expanded to: 

gc(O,Q,A) P(O, Q; Ac) 
T-1 T 

7fq6C) IT a~~~'+l IT b~~)(Ot) 
t=l t=l 

T-1 T M 

IT (e) IT" (e) b(c) ( ) 
7f q6c

) aq,q'+l L..- Uq,j q,j Ot 
t=l t=l j=l 
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In the above, bij(Ot) = N(Ot, /-Lij, Eij) where N(Ot, /-Lij, Eij) represents the normal density function 

with mean /-Lij and covariance E ij . The covariance matrix Eij is typically diagonal and Eij = 

[(O"ijd)2l~=1· Thus, gc(O,A) = 10g[gc(O,Q,A)], where Q = (ilo,lh, ... ,ilT) is the optimal state 

sequence that achieves maxq gc(O, q, A), which could be computed using the Viterbi algorithm [29], 

as for the discrete case. 

Following similar steps as those outlined for the discrete case, we define the empirical loss 

function as: 
R C 

L(A) = L L lc(O; A)IT(O E Cc ). (II. 7.65) 
r=lc=l 

In the above, Or, r = 1,2, ... ,R represent a given set of training observation sequences. 

Minimizing the empirical loss is equivalent to minimizing the total misclassification error. 

The CHMM parameters are therefore estimated by carrying out a gradient descent on L(A). In 

order to ensure that the estimated CHMM parameters satisfy the stochastic constraints of aij ;::: 0, 

2:f==l aij = 1 and Uij ;::: 0, 2:~1 Uij = 1 and /-Lijd ;::: ° and O"ijk ;::: 0, these parameters are mapped 

using 

aij -+ aij = logaij (II. 7.66) 

Uij -+ Uij = loguij (II.7.67) 

/-Lijd -+ 
- /-Lijd 

(II.7.68) /-Lij =--
O"ijd 

O"ijd -+ (Jijd = log O"ijd (II. 7.69) 

Then, the parameters are updated w.r.t to A. After updating, the parameters are mapped back 

using 

aij 
eXpaij 

(11.7.70) 2:N , -j'=l exp aij' 

Uij 
eXpUij 

(II. 7.71) 2:M 
-j'=l eXpUij' 

/-Lijd flijdO"ijd (II.7.72) 

O"ijd exp(Jijd (II.7.73) 

Using a batch estimation mode, the CHMM parameters are iteratively updated using 

(11.7.74) 

It can be shown [32] that the parameters a;;), uj~, fl~;~ and (J~~ need to be updated using: 

(II. 7. 75) 
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oL(A) I -(c)(r + 1) = ilY)(r) - E-- , 
U'J 'J 8-(c) _ _ 

v'J A=A(r) 

and 

where 

8L(A) ReT 

L L L (lm(Or, A)(l -lm(Or, A)) x 

and 

In the above, 

Cl-(C) 
U{Jijd 

8L(A) 
Cl- (c) 
UO"ijd 

8dc( 0) 

r=l m=l t=l 

(c) . (c) (r) _ (c) b~:j(Ot) 8dc (Or) , 
O"ijdJ(qt,Z)Vij (Otd {J'Jd) b~~)(Ot) 8gm(Oro A ) 

-1 ifc=m 

8gm(0,A) { eXpi1)9c (G,A)J 
Z j.#e exp[1)9j ( G,A)] if c f= m 
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11.8 Initial estimates of HMM parameters 

A key question in HMM is how to choose initial estimates of the HMM parameters to 

avoid local maxima of the likelihood function. Many ways of initialization have been proposed [6]. 

Examples include: 

• Random: the HMM parameters are generated randomly from an uniform distribution. 

• Manual segmentation: when the hidden states have a physical meaning, manual partitioning 

could be performed to split the data into the different states of the HMM and then the 

remaining parameters could be derived [35]. 

• Segmental k-means: starting form a random guess of the HMM parameters, and using the 

Viterbi algorithm to label the observation sequences, the segmental k-means clusters the se­

quences to learn the HMM parameters [6]. 

11.9 Chapter Summary 

In this chapter, the general form of the HMM is introduced for both discrete and contin­

uous probability distributions. The basic assumptions, as well the most general HMM topologies 

were described. Then we studied the three basic problems involved with any HMM. In particular, 

the classification problem is studied in details and the maximum likelihood and the discriminative 

learning algorithm were outlined. 
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CHAPTER III 

Related work 

We must learn our limits. We are all 

something, but none of us are everything. 

Blaise Pascal 

This chapter starts by introducing the problem of multi-modal temporal data analysis. It 

illustrates the importance of assigning relevance weights to the multiple sources of information. 

Then it sets the general hypothesis and assumptions of the present dissertation. Afterwards, a 

classification of the types of modalities is presented. The subsequent section surveys the existing 

approaches to combine multiple modalities/sources/streams for sequences in the context of hidden 

Markov models. We discuss and compare the hypotheses and assumptions of these methods and we 

highlight their limitations. 

111.1 Introduction 

For complex classification systems, data is usually gathered from multiple sources of infor­

mation that have varying degrees of reliability. in fact, assuming that the different sources have the 

same relevance in describing all the data might lead to a suboptimal solution. The classification error 

accumulates and can be more severe for temporal data. In fact, in the context of hidden Markov 

models, and for most real applications, different modalities could contribute to the generation of the 

sequence. 

In order to emphasize the importance of combining the outcome of multiple streams, we 

perform the following experiment. First, a 3-dimensional data set is generated. We assume that the 

data comes from two different classes and we use two normal distributions with means /-l1 = [2 2 2] 

and /-l2 = [4 4 1] and identity covariances 2:1 and 2:2. Let x, y, z denote the 3 dimensions of 

the generated data. This data set is displayed in figure 8 where points belonging to class 1 are 

displayed as red dots and class 2 are displayed as blue dots. To simulate the scenario where all 

features are not equally important in characterizing both classes, we corrupt the y feature of class 1 
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Figure 8. A two-class data set in the 3-dimensional feature spaCe. 

(a) (b) 

Figure 9. Projection of the data in figure 8, corrupted by additive noise, on the x-y and x-z planes. 

by adding random noise (uniformly distributed over the interval [- 14 14]) , thus, making this feature 

less relevant to this class. Similarly, we corrupt the z feature of class 2 by adding random noise 

(uniformly distributed over the interval [-14 14]). Figure 9 displays the corrupted data on the x-y 

and x-z planes. As it can be seen, the y feature is relevant for class 2 but not for class 1. Similarly, 

the z feature is relevant for class 1 but not class 2. 
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(a) (b) 

Figure 10. Projection of the data in figure 9 partitioned by the EM algorithm on the x-y and x-z 
planes. Points assigned to cluster 1 are shown by '+' signs and points assigned to cluster 2 are 
shown by '0' signs. 

In the following experiment we ignore the ground truth of both classes and attempt to cluster 

them using the Expectation Maximization (EM) algorithm [30]. Like most clustering algorithms, the 

EM treats the three sources of information (features x, y, and z) equally important. Consequently, 

the EM cannot partition the data correctly. Figure 10 displays 2 projections of the clustered data 

where data assigned to different cluster are displayed with different symbols. As it can be seen, the 

EM fails to group sample from each class in a different cluster. This is mainly due to the fact that 

the x , y , and z features were assumed to have the same degree of relevance in both classes. 

Ideally, if during the clustering process, the algorithm can learn that feature z is irrelevant 

to one of the clusters and that feature y is irrelevant to the other one, a better partition can be 

obtained. To illustrate this, we use an algorithm that can perform simultaneous clustering and 

feature weighting (SCAD) [36]. The partition obtained by SCAD is shown in Fig. 11. As it can be 

seen, SCAD achieves a clustering that is very close to the true distribution of the data in figure 9. 

This is mainly due to the cluster dependent feature relevance weights learned by SCAD. In fact , as 

we can see in table 1, the x and y features are given higher relevance weights for the cluster 1, and 

the x and z are given higher relevance weights for the other cluster. 

TABLE 1 

Feature relevance weights assigned to the two clusters 

cluster 1 ('0') 
cluster 2 ('+') 

x 
0.299 

0.2977 

32 

y 

0.5281 
0.1745 

z 
0.1729 
0.5279 
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Figure 11. Projection of the data in figure 9 partitioned by the SCAD algorithm on the x-y and 
x-z planes. Points assigned to cluster 1 are shown by '0 ' signs and points assigned to cluster 2 are 
shown by '+' signs. 

I-rom the previous example, we can conclude that varying reliability of different attributes 

should be taken into account to achieve higher performance. Otherwise, assuming equal relevance for 

the different sources of information might lead to unreliable results. The degradation in performance 

can be more severe [or sequential data. This is because the classification error can accumulate over 

the observations that form the sequence. 

111.2 Information sources 

In this work, we are interested in classifying sequential data that is gathered from multiple 

sources (or modalities or streams) that are synchronous and independent using an HMM classifier. 

Synchronicity means that at each time slot, we have access to the interpretation of each stream. 

The independence of the streams means that their interpretations of the original data and their 

generations of the sequences are performed independently. 

The multiple sources of information usually represent heterogeneous types of data. Multi-

modalities appear in several applications and could be broadly categorized into two groups. The 

first category consists of naturally available modalities that are intrinsical characteristics or inter-

pretation of the raw data. An example of such modalities is the audio and video descriptors, used 

for automatic audio-video speech recognition (AAVSR) systems [20]. In fact, both speech and lips 

movement (possibly captured as video) are available when someone speaks. Natural modalities also 

appear in sign language recognition applications where multi-stream HMM, based on the hand po­

sitions and movements , has been used [37]. In fact, the position and the movement information 

are always available whenever the signer signs. In the second category, the modalities are synthe-
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sized by several feature extraction techniques with different characteristics and expressiveness. They 

represent different (possibly independent) interpretations of the raw data. Such modalities include 

the Mel-frequency cepstral coefficients (MFCC) and formant-like features used to form automatic 

speech recognition (ASR) [38]. Synthesized modalities have also been used to combine upper contour 

features and lower contour features as two streams for off-line handwritten word recognition [39]. 

For both classes, the modalities could be synchronous or asynchronous. They can also represent 

independent interpretations of the raw data, or correlated ones. 

111.3 R e la t ed work 

111.3 .1 Multi-m odality information fusion using H MM 

Approaches toward the combination of different modalities can be divided into three main 

categories: feature level fusion or direct identification, decision level fusion or separate identification 

(also known as late integration) and model level fusion (intermediate integration) [14]. 

111.3.1.1 Feature level fusion 

In feature level fusion , a single HMM model is trained on the concatenated vector of the 

multiple features generated by different modalities [15]. In practice, the resulting feature vector can 

be large, causing inadequate modeling due to the curse of dimensionality and insufficient data. An 

appropriate transformation can remedy this, such as the projection of the concatenated vector to 

a lower dimensional vector while seeking the best discrimination among the different classes [40]. 

Figure 12 displays a diagram outlining the steps of the feature level fusion. This type of fusion has 

F=11 L::Je;) 

Raw data 
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Stream 1 

Stream 2 

StreamL 

Standard (single 
stream)HMM 

Figure 12. Diagram of the feature level fusion steps. 
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the drawback of treating heterogeneous features equally important. It also cannot easily represent 

the loose timing synchronicity between different modalities. 

111.3.1.2 Decision level fusion 

In decision level fusion, the modalities are processed separately to build independent models 

[16]. Learning the models corresponding to the different modalities is followed by an additional 

layer that combines the multiple decisions into a final one. The combination may apply to classifi­

cation labels only, or to the class-specific continuous valued outputs of the individual experts [41]. 

In the latter case, classifier outputs are often normalized to the [0,1] interval, and these values are 

interpreted as the support given by the classifier to each class, or even as class-conditional posterior 

probabilities [41]. Such interpretation allows forming an ensemble through algebraic combination 

rules (majority voting, maximum/minimum/sum/product or other combinations of posterior prob­

abilities) [42], fuzzy integral [43], Dempster-Shafer based classifier fusion [44], and more recently, 

decision templates [41]. Figure 13 displays a diagram outlining the steps of the decision level fusion. 

This approach assumes that the streams are completely independent and evolve asynchronously. In 

particular, it completely ignores the correlation between features and allows complete asynchrony 

between the streams. Also, it is computationally heavy since it involves two layers of decision. 

111.3.1.3 Model level fusion 

In model level fusion, an HMM model that is more complex than a standard one is sought. 

This additional complexity is needed to handle the correlation between modalities, and the loose 

synchronicity between sequences. Several HMM structures have been proposed for this purpose. 

Examples include factorial HMM [17], coupled HMM [18] and Multi-stream HMM [19]. 

Figure 14 displays a diagram outlining the main steps of the model level fusion. Figure 15 

illustrates the factorial HMM as a graphical model [45]. This model has two streams having three 

states each. The states of each stream emit altogether one observation. This architecture allows 

for asynchrony between sequences since the different streams are assigned separate state sequences. 

This is performed at the expense of an approximate parameter estimation. In fact, the parameters of 

factorial and coupled HMMs could be estimated via the EM (Baum-Welch) algorithm [6]. However, 

the E- step is computationally intractable and approximation approaches such as Gibbs sampling, 

variational methods (mean field approximation) [17] are used instead. In addition, for each time slot, 

multiple states contribute to the generation of the observation vector. However, the contribution of 
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Figure 13. Diagram of the decision level fusion steps. 

each stream's state is not explicit and is an absent information. 

Figure 16 shows the graphical model representation of a coupled HMM with two streams 

having three states each. Each state of each stream emits one observation. Similarly to the factorial 

HMM, this architecture allows for asynchrony between sequences since the different streams are 

assigned separate state sequences. The complexity of this architecture increases as the number of 

chains in the coupled HMM increases. In particular , for a large number of chains, the E-step becomes 

intractable and approximation for inference, such as the N-heads algorithm [46], may be needed. 

Multi-stream HMM (MSHMM) is an HMM based structure that handles multiple modalities 

for temporal data. It is used when the modalities (streams) are synchronous and independent. Since 

the streams are supposed to be synchronous, MSHMM assumes that for each time slot, there is a 

single hidden state, from which different streams interpret different observations. The independence 

of the streams means that their interpretation of the hidden state and their generation of the 

observations is performed independently. 

Figure (17) shows the graphical model representation of a multi-stream HMM with three 
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Figure 15. A graphical representation of a Factorial HMM with 2 streams, having 3 states each, and 
the states of each stream emit one observation. 
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Figure 16. A graphical representation of a coupled HMM with 2 streams, having 3 states each, and 
each state emit one observation. 

Figure 17. A graphical representation of a multi-stream HMM with 3 states and 2 streams, each 
stream generates an observation vector within each state. 
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states and two streams. Each stream generates an observation vector. More generally, multi-stream 

HMM (MSHMM) is considered as an HMM based structure that handles multiple modalities for 

temporal data. It is used when the modalities (streams) are synchronous and independent. Since the 

streams are supposed to be synchronous, MSHMM assumes that for each time slot, there is a single 

hidden state, from which different streams interpret different observations. The independence of the 

streams means that their interpretation of the hidden state and their generation of the observations 

is performed independently. 

IlI.3.2 Multi-stream HMM 

Few varieties of MSHMM have been proposed in the literature to address stream relevance 

weighting to discriminate between the audio and visual streams in speech recognition using con-

tinuous HMM [27, 24]. In these methods, the feature space is partitioned into different subspaces 

generated by different streams, and different probability density functions (pdf) are learned for 

the different spaces. The relevance weights for each subspace or stream could be fixed a priori 

by an expert [19], or learned via Minimum Classification Error/Generalized Probabilistic Descent 

(MCE/GPD) [24]. In [27], the authors have adapted the Baum-Welch algorithm [33] to learn the 

stream relevance weights. However, to derive the maximum likelihood equations, the model was 

restricted to include only one Gaussian component per state. The stream relevance weighting has 

been introduced within the pdf formula characterizing the continuous HMM. 

111.3.2.1 Architecture of existing MSHMM 

Two approaches have been proposed for the MSHMM: the mixture level weighting, and state 

level weighting. 

111.3.2.1.1 Mixture level weighting This approach consists of factorizing each mixture into 

the product of weighted streams related pdf(s) [24]. In particular, the probability density of an 

observation Ot with respect to a state j is defined as: 

(1II.3.1) 

subject to: 
M L 

L Ujk = 1 and L Wjkl = l. (III.3.2) 
k=l 1=1 
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In (IlL3.1), Ujk is the mixing coefficient of the kth component of state j, Wjkl is the exponent 

stream weight of stream I, in the kth component and ith state. The function ¢(o~l), /l>jkl, 2;jkl) is a 

probability density function describing the Ith stream with mean /l>jkl and covariance 2;jkl. 

The geometric form in (III.3.1) is motivated by the following probabilistic reasoning: 

bi(Ot) Pr(otlqt = i;'\) 
M 

LPr(otlqt =i,et =j;.\)Pr(et =jlqt =i;'\) 
j=l 

M 

L Pr(et = jlqt = i; .\)Pr(o?), . .. ,o~1) Iqt = i, et = j;.\) 
j=l 

M L 

L Pr(et = jlqt = i;'\) II Pr(o~k) Iqt = i, et = j;.\) 
j=l k=l 

M L 

:::; L Pr(et = jlqt = i;'\) II [Pr(o~k) Iqt = i, et = j; .\)rijk 

j=l k=l 

where et is a random variable that represents the index of the stream that occurs in time t. Notice 

that (IIl.3.1) does not represent a probability distribution in general, and was therefore referred to 

as "score". 

111.3.2.1.2 State level weighting This formulation considers the pdf as a product of exponent 

weighted mixture of Gaussians [25J. In this case, the pdf is a product of summation of Gaussians, 

whereas in the former case, the pdf is the summation of a product of Gaussians. In particular, the 

probability density of an observation at in a state j is defined as: 

(IlL3.3) 

subject to: 
M L 

L Ujlk = I and L Wjl = 1. (1II.3A) 
k=l 1=1 

As in (IlL3.1), we note that (IlL3.3) does not represent a probability distribution in general, and is 

also referred to as "score" . 
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The geometric form in (111.3.3) is motivated by the following probabilistic reasoning: 

bi(Ot) Pr(Otlqt = i;'\) 

Pr(o~l), ... ,O~L) Iqt = i;'\) 
L 

IT Pr(o~k)lqt = i;'\) 
k=l 

L 

::::; IT [Pr(o~k)lqt = i; .\)rik 

k=l 

where et is a random variable that represents the index of the component that occurs in time t. 

111.3.2.2 Parameter estimation of the MSHMM parameters 

Due to the form of the emission scores in (1II.3.1) and (1II.3.3), the stream exponents cannot 

be obtained by maximum likelihood estimation [25, 47]. In this case, It was shown in [24] that it is 

not possible to derive the maximum likelihood learning equation for the exponent weights. Thus, 

the exponent weights are learnt via MCE/GPD approach as explained in the previous section, and 

the remaining HMM parameters are estimated independently by means of traditional maximum 

likelihood techniques [26]. The only attempt for exponent weights equation learning within Baum­

Welch was reported in [27]. However, this alternative solution restricts the HMM structure to only 

one Gaussian component per state. In particular, the authors in [27] have used a pdf to model two 

streams (audio, visual) through the following form: 

2 

bj(Ot) = IT (bjs(o~))Wj" (1II.3.5 ) 
s=l 

subject to the constraint: 
2 

2)Wjs)m = K, (1II.3.6) 
s=l 

where m and K are constants. 

It can be shown that using (1II.3.5) within the Baum-Welch algorithm leads to the following 

equation to update the feature relevance weights: 

(111.3.7) 

41 



An alternative constraint to the one in (111.3.6) is to use: 

2 

LmWjS =K. 
.. =1 

In this case, it can be shown that the feature relevance weights need to be updated using: 

(111.3.8) 

(111.3.9) 

learning steps are needed. The first step consists of a maximum likelihood based learning using the 

standard Baum-Welch algorithm in order to learn the parameters 'Jr, A, and B. These parameters 

could be updated by running the standard Baum-Welch on the concatenation of the observations 

generated by the different streams. Alternatively, different sets of parameters could be learned 

from the different streams via the standard Baum-Welch, and then averaged to form values of the 

parameters. 

The second learning step consists of the estimation of the stream relevance weights. These 

weights could be fixed using a priori knowledge. Alternatively, they could be learned using dis-

criminative training techniques. Some of these methods seek to minimize a smooth function of the 

resulting multi-stream HMM on the data, and employ the generalized probabilistic descent (GPD) 

algorithm [32] for stream exponent estimation [25]. In fact, each parameter ¢ .. that we wish to opti-

mize is iteratively re-estimated in order to minimize a cost function £ representing the classification 

error. At iteration k, ¢8 is updated by gradient descent of the cost function, i.e., 

8£ ] 
¢8,k = ¢8,k-1 - 'I] ¥ ' 

"Ps <Pk_l 

(III.3.1O) 

where rl is the learning rate. If we assume that we have a set of training samples {01 , ... ,Os}, and 

there is a set of classes {A 1, ... , AC }, the cost function can be defined as: 

1 s 
£ = s L lm(Om), (111.3.11) 

m=l 

where 1m (Om) is the cost function for the event Om. Typically, it is defined as a sigmoid function 

1 
lm(Om) = , (III 3 12) 

1 + exp[-adm(Om)] .. 

where a is the transition parameter from correct to incorrect classification. The error measure 

(III.3.13) 
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where 9i(m) = 9i(Om, Ai) is the discriminant functions and Ak(m) is the correct class for sample Om. 

It can be shown that the discriminant is given by, 

(III.3.14) 

Other techniques use maximum mutual information (MMI) training [34, 48], or the maximum 

entropy criterion [49]. 

111.3.3 Limitations of existing methods 

Even though existing MSCHMM structures can outperform the baseline HMM, they are not 

general enough and they have several limitations. In particular, there is no solution for the discrete 

case. In addition, existing multi-stream continuous HMMs have the following limitations: 

1. They do not provide an optimization framework that learns all the HMM parameters simulta-

neously. In general, a two step training approach is needed. First, the Baum-Welch learning 

algorithm is used to learn the parameters of the HMM relative to each subspace. Then, the 

MCE/GPD algorithm is used to learn the relevance weights. Typically, this is not due to the 

desirable minimization of the classification error, but rather to the difficulty that arises when 

using the proposed pdf within the Baum-Welch learning algorithm. 

2. The only approach that extends the Baum-Welch learning was derived for the special case that 

restricts the number of components per state to one. This can be too restrictive for most real 

applications. 

3. Since the MCE/GPD learning algorithm usually comes after a layer of ML learning (e.g., 

Baum-Welch) to minimize the miss-classified cases, the feature relevance weights trained with 

the MCE/GPD approach only may not correspond to local minima of the ML optimization. 

Thus, the learned feature relevance weights may not achieve their objective. 

To overcome the above limitations, we propose a generic approach that integrates stream discrimi-

nation within the HMM classifier. Our proposed solution can be used for both the continuous and 

discrete cases. All the parameters of the proposed model could be optimized simultaneously. 

111.4 Chapter Summary 

In this chapter, multi-modal temporal data is introduced. Synchronicity and independence 

are set as the underlying assumptions on the nature of the modalities generating the temporal data 
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studied in this dissertation. The state of the art is surveyed for techniques based on hidden Markov 

models that tackles the classification of such temporal data. In particular, multi-stream hidden 

Markov models (MSHMMs) are the underlying machine used for temporal data generated from 

synchronous and independent streams. A sketch of the MSHMM structures has been presented as 

well as their limitations. 
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CHAPTER IV 

Generalized Multi-stream Discrete Hidden Markov Models 

We can only see a short distance ahead, 

but we can see plenty there that needs to be 

done. 

Alan Thring 

One of the limitations of the state of the art in discrete HMM is the absence of any treat­

ment for the multi-stream case. In this chapter, we propose various multi-stream Discrete HMM 

(MSDHMM) structures that integrate stream relevance weights. For each structure, we generalize 

the Baum-Welch and the MCE/GPD training algorithms. In particular, we generalize the objective 

function to include the stream relevance weights and derive the necessary conditions to update the 

parameters. We assume that we have L streams of information. These streams could have been 

generated by different sensors and/or different feature extraction algorithms. Each stream is thus 

represented by a different subset of features. Instead of treating the streams equally important or 

using user-specified weights, the proposed MSDHMM structure integrates an additional component 

to learn a relevance weight for each stream. We propose two different data driven methods to learn 

the relevance weights. The first one is based on distance weighting and the second one is based on 

probability weighting. In the distance based approach, a weight is assigned to each feature subset 

(i.e., each stream), and the distance computation between samples becomes a weighted aggregation 

of the partial distances from the different streams. In the probability based approach, a partial 

probability is assigned to each stream of each symbol and the overall observation probability of 

each symbol is computed as an aggregation between the stream relevance weights and the partial 

probabilities. For the probability based approach, we propose linear and geometric aggregations 

methods. 
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IV.l A Distance-based approach to learn multi-stream relevance weights 

The proposed distance based MSDHMM (referred to as MSDHMMD
) structure is defined 

as: 

A = (1f, A, B, W) (IV.l.l) 

where 1f, A and B are the state prior probabilities, the transition probabilities and the observa­

tion probabilities respectively. These are the same parameters used in the baseline discrete HMM 

structure. The additional parameter W = [Wjk] is an !vI x L matrix that represents the relevance 

weight of each symbol with respect to each stream. In particular, a stream relevance weight Wjk 

is assigned to each symbol j to indicate the relevance of stream k for this symbol. The proposed 

structure assumes a dependency between the streams and the states. 

From a graphical model perspective, a MSDHMMD could be represented by a graph as 

shown in figure 18. This figure displays a MSDHMMD with 3 states and 2 streams. As illustrated, 

the streams (in red and green) generate observations independently. For instance, for state 1, the 

generated observations 011 and 012 are generated by stream 1 (red) and stream 2 (green) respectively 

and are two different interpretations of the hidden state Q1. Moreover, the two observations are 

available at the same time. This makes the two streams synchronous. 

Optimization of MSDHMMD parameters can be achieved in two steps. The first step com­

bines the initialization and the learning of W. The second step uses the standard Baum-Welch 

algorithm [6] to learn the A and B parameters. 

For each MSDHMMD model, Ac, the initialization step consists of learning the Ns states, 

learning the codebook, and assigning initial probabilities to each symbol. The states and the code­

book could be obtained by partitioning and quantizing the training data. Any clustering algorithm, 

such as the k-means [50] or the fuzzy c-means [51] could be used for this task. In our application 

we use the Simultaneous Clustering and Attribute Discrimination (SCAD) [36]. SCAD can perform 

clustering and feature weighting simultaneously and in an unsupervised manner. It learns a feature 

relevance weight for each feature subset in each cluster. More details of the SCAD algorithm are 

given in Appendix (B). The feature relevance weights learned by SCAD have two main advantages. 

First, they guide the clustering process in identifying more meaningful clusters by identifying clus­

ters in subspaces of the original high dimensional feature space. Second, the learned feature weights 

could be used subsequently as the relevance weights of the symbols with respect to the different 

streams. 
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Figure 18. A Multi stream DHMM with 3 states and 2 streams. 

First , using SCAD, we partition the training data into Ns clusters that correspond to the 

Ns states. A representative vector, Sj (centroid of cluster j ) is selected as the mean vector of each 

state. In this step, we use our prior knowledge about the features and the expected HMM structure 

to fix the number of clusters and initialize them. Second, we use SCAD to cluster the training data 

into a larger number of clusters (M) and learn the codebook. In other words, we used SCAD to 

initialize the code book V and the feature relevance weights W associated with each symbol. 

Let d~j be the partial distance between data vector Xj and cluster i with respect to the kth 

stream. Note that the distance d~j is not required to be the Euclidean distance. Moreover, different 

distance measures could be used for different streams. We only require the different measures to be 

normalized to yield values within the same dynamic range . The total distance, d ij , between Xj and 

cluster i is then computed by aggregating the partial degrees of similarities and their weights. That 

is, we let 
L 

d;j = L Wik(d~j)2. (IV. 1.2) 
k=l 
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SCAD is an iterative algorithm. It starts with an initial set of centers vJO) and an initial set 

of equal weights wj~) = t. In each iteration, SCAD would first compute a partial degree of similarity 

of each subset of features, and update the degree of relevance of each subset in each center. After 

few iterations, SCAD would converge to the optimal clusters' prototypes and weights that minimize 

the sum of intra-cluster distances. Let Vj represent the center of each of the M clusters, and let Wjk 

represent the learned stream relevance of each cluster. After learning the code book, the DHMM 

requires associating a probability value with each symbol in each state. The probability of Vj in 

state i represents its likelihood in that state. We use an FCM-type [51] membership function to 

initialize these probabilities, i.e., we let: 

(IV.l.3) 

where d( v j, Si) is the distance dij defined in (IV. 1. 2), and the correspondent partial distance, 

dk(vj, Si) is the £2 norm. The closer Vj is to Si, the higher its likelihood is in state i, which 

explain the usage of the inverse of the distance in the numerator of (IV.l.3). The denominator 

in (IV.l.3) is a normalizing factor. Expanding (IV.l.3) to include the partial distances and their 

relevance weights, we obtain: 

(IV.l.4) 

To satisfy the requirement that L~l bij = 1, we scale bij using: 

bij 
bij +--- M . 

Lk=l bik 
(IY.l.5) 

After the initialization step, the DHMM model parameters A, Band 7r are then estimated 

using the standard Baum-Welch algorithm [6] as outlined in chapter II with a minor modification. 

Recall that the learning equation of bij in the discrete Baum-Welch is: 

b 
.. _ L;=lrt(i)J(Qv(Ot),j) 
'J - T 

Lt=l rt(i) 
(IV.l.6) 

where rt(i) and J(.,.) are as defined in (11.7.6) and (11.7.63) respectively. 

In (IV.l.6), Qv is the quantization operation defined on an observation vector Ot as the index of its 

closest symbol. In our case, to identify the closest symbol to an observation, we take advantage of 

the stream relevance weights associated with each symbol. That is, the closest symbol to Ot is the 

symbol which index QV(Ot) satisfies: 

L 

QV(Ot) = argmin L WjklIO~ - 11] 112. 
l~j~M k=l 
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In (IV.1.7), Wjk emphasizes the contribution of the stream k in the decision of the closest symbol to 

0t. Thus, these learned weights affect the bij update equation in the Baum-Welch algorithm. 

The steps of the resulting training procedure for the parameters of A are outlined in Algo­

rithm (1). The stopping criterions are either the likelihood Pr(OIA) becomes less than a threshold, 

or the number of iterations exceeds a predefined limit. In this version of the MSDHMMD, the stream 

Algorithm 1 Baum-Welch Training of the Distance-based MSDHMM 

Require: Training data [0(1),.·· , OCR)], oCr)=[Ol,···, OT]. Fix the variables N" M, and L. 
Ensure: 

1: Cluster training data into Ns clusters using SCAD, and let Si, the center of each cluster, be the 
representative of state i 

2: Cluster the training data (using SCAD) to quantize it into M symbols and learn the stream 
relevance weights Wjk. The center of each cluster Vj is a symbol. 

3: while stopping criteria not satisfied do 
4: Compute the closest observation to 0t using (IV.1.7); 
5: update A using (II.7.9); 
6: update Busing (11.7.10); 
7: end while 

relevance weights are learned during the initial clustering step and are not updated in the HMM 

parameter learning. In addition, the discriminative training version of this MSDHMM is carried out 

in the same way as the baseline DHMM, using the quantization operation in (IV.1.7). Algorithm 

(2) outlines the steps needed to learn the parameters of all the models Ac using the MCE/GPD 

framework. The distance weighting approach provides a simple structure of the multi-stream dis-

Algorithm 2 MCE/GPD Training of the Distance-based MSDHMM 

Require: Training data [0(1),··· , OCR)], oCr)=[Ol,···, OT]. Fix the variables N s , M, and L for 
each model Ac. 

Ensure: 
1: For each Ac, cluster training data into N.. clusters using SCAD, and let Si, the center of each 

cluster, be the representative of state i. 
2: For each Ac, cluster the training data (using SCAD) to quantize it into M symbols and learn 

the stream relevance weights Wjk. The center of each cluster Vj is a symbol. 
3: while stopping criteria not satisfied do 
4: Compute the closest observation to each 0t using (IV.1.7); 
5: Compute the loss function of each sequence 0 using (II.7.52); 
6: update A of each Ac using (11.7.60); 
7: update B of each Ac using (II.7.61); 
8: end while 

crete HMM. However, it has two main limitations. First, the stream weights are independent of the 

states. Second, the weights are learned independently from the rest of the DHMM parameters and 

do not necessarily maximize the Likelihood estimates. To overcome these limitations, we propose 

an alternative approach that is based on assigning partial probabilities to the different streams. 
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IV.2 A Probability b ased a pproach to learn multi-stream relevance weights 

Similarly to the MSDHMMD, the probability based MSDHMM has the following compact 

representation: 

>. = (-rr, A , B , W ) (IV.2.1) 

However, in this case, W is an Ns x M x L stream relevance weight matrix. In particular, we assume 

that a stream relevance weight Wijk is assigned to each symbol j of each stream k within each state 

i. This choice takes into account the additional dependency between the streams and the states. 

We refer to this new structure of MSDHMM as MSDHMMP The graphical representation of this 

model is shown in figure 19 where an MSDHMMP with 3 states and 2 streams is illustrated. This 

diagram is similar to the one in figure 19. The only difference here is that streams 1 and 2 depend 

also on the hidden states. 
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Figure 19. A Multi stream DHMM with 3 states and 2 streams. 

In the proposed MSDHMMP structure, each symbol j of each stream k, i.e. vj , is assigned 

a partial probability bijk in each state i . The partial probability bijk measures the likelihood of vj 

in state i. The stream relevance weights Wijk and the probabilities bijk are combined to form the 

observation state probabilities bij . Two different combination methods are proposed. The first one 
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uses a linear combination of the weights and the partial probabilities, while the second one uses a 

geometric combination. 

IV.2.1 Linear aggregation 

In this method, the observation state probabilities are computed using: 

subject to 

L 

bij = L Wijkbijk, 
k=l 

L M 

L Wijk = 1, and L bijk = l. 
k=l j=l 

(IV.2.2) 

(IV.2.3) 

This linear form of the observation probability in (IV.2.2) is motivated by the following probabilistic 

reasoning: 

bij Pr(otlqt = i; A) 
L 

L Pr(vjlqt = i, It = k; A)Pr(ft = klqt = i; A) 
k=l 

L 

L Pr( V; 1) , ... ,vjL) Iqt = i, It = k; A)Pr(ft = klqt = i; A) 
k=l 

L 

::::; L Pr( v?) Iqt = i, It = k; A)Pr(ft = klvj, qt = i; A) 
k=l 

where It is a random variable representing the index of the stream that occurs in time t. It follows 

then that: 

and 

We will refer to this .e.robability based MSDHMM with linear aggregation as MSDHMMP1 . In 

(IV.2.2), the higher the value of Wijk, the more the kth stream contributes to the overall probability 

of Vj in the state i. 

For a C-class classification problem, each random sequence 0 is to be classified into one of 

the C classes. Each class, c, is modeled by a DHMM Ac. Let ([]) = [0(1), ... , O(R)] be a set of R 

sequences drawn from these C different classes and let gc(O) be a discriminant function associated 

with classifier c that indicates the degree to which 0 belongs to class c. The classifier r (0) defines 
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a mapping from the sample space 0 E ((J) to the discrete categorical set {I, 2, ... , C}. That is, 

1'(0)=1 iff l=argmaxgc (O). (IV.2.4) 
c=l,··· ,C 

We propose two main approaches for learning the MSDHMMP1 parameters. The first one is based 

on maximizing the likelihood of the data correspondent to each model. The second approach is 

based on discriminative training and aims at minimizing the classification error over all classes. 

IV.2.1.1 Parameters initialization 

As in the distance based approach, the learning starts by clustering the training data into 

Ns clusters using SCAD [36]. The center Si of each cluster is used as the state's representative. 

Next, SCAD is used to partition the data into a larger number of clusters and build the codebook 

v = [Vi"", VM]. SCAD also learns an initial stream relevance weight, Wjk, for each symbol. 

Since the MSDHMMP, structure requires a weight in each state, initially we duplicate the weights 

computed via SCAD, i.e., we let Wijk = Wjk for i = 1· .. N s . The probability of each symbol1,j in 

each stream k and within each state i can be represented by the fuzzy membership degree of vj in 

this state. That is, we use: 
l/dk (v k sk) b .. - J' , 

'Jk - ",N k k k' 
~1:11/d (Vj' sl) 

(IV.2.5) 

where dk (vj , s7) is the partial distance between symbol V j and state Si taking into account only 

features from stream k. To satisfy the requirement that L~l bijk = 1, we scale the values using: 

(IV.2.6) 

The overall probability of Vj in state i is then computed using (IV.2.2). 

IV.2.1.2 Generalized Baum-Welch learning algorithm for MSDHMMP ] 

After initialization, the model parameters can be tuned using the maximum Likelihood 

approach. Given a sequence of training observations 0 = [01, ... , aT], the parameters of Ac could 

be learned by maximizing the likelihood of the observation sequence 0, i.e., Pr(OIA). We achieve 

this by generalizing the Baum-Welch algorithm to include a stream relevance weight component. In 

particular, we define the generalized Baum-Welch algorithm by extending the auxiliary function in 

(11.7.1) to 

IQ(A,,X,) = LLlnPr(O,Q,FI'x')Pr(Q,FIO,A), 
Q F 

52 

(IV.2.7) 



where F = [h, ... , iT] is a sequence of random variables representing the stream indices for each 

time step. It can be shown that a critical point of Pr(OI>'), with respect to >., is a critical point of 

the new auxiliary function Q(>', 5.) with respect to 5. when 5. = >., that is: 

8Pr(01)') _ 8Q(>', 5.) 1_ 
8A - 8>' ,k)" 

(IV.2.8) 

Equation (IV.2.8) could be proved by using the same steps needed to prove propositions (1I.7.1) and 

(11.7.2). 

Maximizing the likelihood Pr(OI>') is equivalent to maximizing the auxiliary function Q(>', 5.) 

which could be rewritten as: 

Q(>', 5.) = £~(Q,F)fO,.\ [log Pr( 0, Q, FI5.) J . (IV.2.9) 

The above formulation of the auxiliary function Q(>',5.) could be interpreted as the conditional 

expectation of the log likelihood of the complete data (observed sequence and hidden parameters: 

O,Q,F) using the model 5., with respect to the distribution of the hidden data (Q and F) conditioned 

to the observed sequence ° and using the initial guess >.. More explicitly, the Q(>', 5.) function has 

the following integral form: 

Q(A, 5.) = 1 logPr(O,Q,FI5.)Pr(Q,FIO,>')dQdF 
.Q,J 

(IV.2.1O) 

where Q and F belong to the spaces .Q and J respectively. Since.Q and J are discrete, the integral 

in (IV.2.10) form above is equivalent to the form in (IV.2.7). It follows that the formulation of the 

maximization of the likelihood Pr(OI>') through maximizing the auxiliary function Q(>', 5.) is an EM 

[30] type optimization that is performed in two steps: the estimation step and the maximization 

step. 

The estimation step consists of computing the conditional expectation in (IV.2.7) and 

write it in an analytical form if possible. The objective function in (IV.2.7) involves the quan­

tity Pr(O,Q,FI5.) which could be expressed analytically as: 

T-l T 

Pr(O, Q, FI5.) = 7rq, II aq,q'+l II WqtQv (otlftbq,Qv (otlf, (IV.2.11) 
t=l t=l 

where Qv is the quantization operation defined on an observation vector 0t as: 

(IV.2.12) 

In particular, Qv maps each observation Ot to the index of its closest symbol. Thus, the objective 
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function in (IV.2.7) can be expanded as: 

Q(>',:\) = LLlog7tq,Pr(Q,FIO,>.)+ 
Q F 

T-1 

L L Llogaq,qt+,Pr(Q, FlO, >.) + 
t=l Q F 

T 

LL Llogwq,Qv(o,)f,Pr(Q,FIO, >.) + 
t=l Q F 

T 

LL L logbq,Qv(Ot)f,Pr(Q, FlO, >.). 
t=l Q F 

(IV.2.13) 

After the estimation step, the maximization step consists of finding the parameters of:\ that 

maximize the function in (IV.2.13). The expanded form of the function Q(>',:\) in (IV.2.13) has 4 

terms involving W, a, wand b. To find the values of Wi, aij, Wijko and bijk that maximize Q(>',:\) 

, we consider the terms in (IV.2.13) that depend respectively on W, a, w, and b. In particular, 

the first and second terms in (IV.2.13) depend respectively on Wand a, and they have the same 

analytical expressions sketched in the case of the baseline DHMM in (11.7.4). It follows that the 

update equations for Wi, and aij are the same as in the DHMM, that is: 

7ri "fd i), 

L.i'-1 ~t(i, j) 
T . 

L.t=l "ft(i) 

To find the value of Wijk that maximizes the auxiliary function Q(., .), only the third term 

of the expression in (IV.2.13) is considered since it is the only part of Q(.,.) that depends on Wijk. 

This term can be expressed as: 

T 

L L L Pr(Q, FlO, >.) logwqtQv(Ot)/t 
t=l Q F 

T 

L L L L lOgWijk L L Pr(Q, FlO, >')6(i, qt)6(j, Qv(ot))6(k, it), (IV.2.14) 
t=l i j k Q F 

where 6(i, qt)6(j, Ot)6(k, it) keeps only those cases for which qt = i, QV(Ot) = j and it = k. That is, 

L L Pr(Q, FlO, >')6(i, qt)6(j, Qv(ot))6(k, it) = Pr(qt = i, it = klO, >')6(j, QV(Ot)), (IV.2.15) 
Q F 

therefore: 

T 

L L L Pr(Q, FlO, >.) log(wq,Qv(o,)!t) 
t=l Q F 

T Ns M L 

L L L L Pr(qt = i, it = klO, >')6(j, Qv(ot}) In(wijk) (IV.2.16) 
t=l i=l j=l k=l 
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To find the update equation of Wijk, we use the Lagrange multipliers optimization (see Appendix 

C) with the constraint in (IV.2.3), and obtain: 

where 

Pr(qt = i, It = klO, A) = Pr(qt = ilO, A) wiQvb°tlkbiQV(Otlk. 

iQv(o,) 

Let, 'Yt(i, k) = Pr(qt = i, It = klO, A). Since Pr(qt = ilO, A) = 'Yt(i), it follows that, 

( . k) _ (.) WiQv(o,)kbiQv(o,)k 
'Yt l, - 'Yt lb' 

iQv(otl 

Thus, the update equation for Wijk becomes: 

(IV.2.17) 

(IV.2.18) 

(IV.2.19) 

(IV.2.20) 

The numerator in (IV.2.20) reflects the quantity of information provided by stream k while the 

denominator is used for normalization. It is possible that none of the closest symbols to 0t, 1 :S t :S T, 

is Vj. If this situation occurs, the expression in (IV.2.20) becomes undefined. To avoid this case, we 

generalize the update equation in (IV.2.20) to the following: 

{ 

"L;-l ,,(,(i,k)6(Qv(o,),j) 

-W, 'k - "L:~l "(,(i)6(Qv(o,),j) 
'J -

1 
T otherwise. 

Similarly, it can be shown that the partial probabilities need to be updated using: 

{ 

"L; 1 ,,(,(i,k)6(Qv(o,),j» 

-b, 'k - "L:~l ,,(,(i,k) 
'J -

1 
M 

iElt,8(Qv(od,j) = 1 

otherwise 

(IV.2.21) 

(IV.2.22) 

In (IV.2.22), the numerator represents the contribution of each stream k for each code j within 

state i, and the denominator is a normalization factor. The details of the derivations of the above 

equations can be found in appendix D. 

In the case of multiple observations [0(1), ... , O(R)], it can be easily shown that the learning 

equations need to be updated using: 

iElt,8(Qv(or),j) = 1 
(IV.2.23) 

otherwise 

and 

if :Jt,8(Qv(or),j) = 1 
(IV.2.24) 

otherwise 
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The variables 'Yt)(i) and ~ft)(i, k) in (VI. 1. 11) and (IV.2.24) are the same variables as 'Yt(i) and 

'Yt(i, k) for each sequence Orr). Algorithm (3) outlines the steps of the MLE training procedure of 

the different parameters of the MSDHMMP
,. 

Algorithm 3 Generalized BW training for the probability based MSDHMM with linear aggregation 

Require: Training data [0(1),.·· ,O(R)], o(r)=[Ol,"" OTJ. Fix the variables N s , M, and L. 
Ensure: 

1: Cluster training data into Ns clusters, and let, the center of each cluster, Si, be the representative 
of state i. 

2: Quantize the training data into AI symbols and learn initial stream relevance weights Wjk. The 
center of each cluster Vj is a symbol. 

3: Let Wijk = Wjk, for 1 :::; i :::; Ns 

4: while stopping criteria not satisfied do 
5: Compute the closest observation to Ot using (IV.2.12); 
6: update A using (II.7.9); 
7: update W using (VI.l.11); 
8: update Busing (IV.2.24); 
9: end while 

IV.2.1.3 Generalized MCE/GPD learning algorithm for the MSDHMMP , 

The minimization of the classification error via a gradient descent scheme is the most com­

mon discriminative training method for HMMs. We generalize this approach to the MSDHMMP, 

structure. In particular, we let, 

ge(0, A) = log[maxge(0, Q, A)] 
Q 

(IV.2.25) 

be the discriminant function, associated with classifier Ae , that indicates the degree to which 0 

belongs to class c. In (IV.2.25), Q is a state sequence correspondent to the observation sequence 0, 

A includes the models parameters, and 

ge(0, Q, A) 

(IV.2.26) 

where b~~~(Ot) = b~~kv(Ot)k' w~~~(Ot) = w~~kv(O,)k' and Qv is defined in (IV.2.12). 

The misclassification measure of the sequence 0 is defined by: 

1 

de(O) = -9c(0, A) + log [c ~ 1 L exp[17 9j(0, A)]j'i 
],roFC 

(IV.2.27) 

where 17 is a positive number. A positive dc(O) implies misclassification while a negative dc(O) 

indicates a correct decision. The misclassification measure is embedded in a smoothed zero-one loss 

56 



function, defined as: 

(IV.2.28) 

where l is the sigmoid function in (11.7.51). Finally, for any unknown sequence 0, the classifier 

performance is measured by: 
c 

l(O; A) = L lc(O; A)JI(O E C c ) (IV.2.29) 
c=l 

where JI(.) is the indicator function. 

Given a set of training observation sequences o(r), r = 1,2, ... ,R, an empirical loss function 

on the training data set is defined as: 

R C 

L(A) = LLlc(O(r);A)JI(o(r) E C c ). (IV.2.30) 
r=l c=l 

The empirical loss above approximates the true Bayes risk [52]. The MSDHMMP
, parameters are 

therefore estimated by minimizing L(A) using a gradient descent algorithm. In order to ensure that 

the estimated MSDHMMP
, parameters satisfy the stochastic constraints of aij :2': 0, L~;:l aij = 1, 

Wijk :2': 0, L~=l Wijk = 1, bijk 2: 0, and L~l bijk = 1, we map these parameters using 

aij -7 aij = logaij (IV.2.31) 

Wijk -7 Wijk = log Wijk (IV.2.32) 

bijk -7 bijk = log bijk (IV.2.33) 

Then, the parameters are updated with respect to A. After updating, we map them back using 

aij 
eXpaij 

(IV.2.34) 
L N , -j'=l exp aij' 

Wijk 
eXpWijk 

(IV.2.35) 
LL -k'=l exp Wijk' 

bijk 
expbijk 

(IV.2.36) M _. 

Lj'=l expbij'k 

Using a steepest descent batch estimation mode, the MSDHMMP
, parameters are iteratively updated 

using: 

A(T+1)=A(T)-EV'AL(A)I __ , 
A=A(r) 

(IV.2.37) 

where E is the learning rate, and V' is the gradient operator. 

The updating mechanism in (IV.2.37) applies for the variables 1f, a, ill, and b. However, it 

could be shown that 1f, a could be updated similarly to the standard DHMM as in (11.7.59) and 

(11.7.60). 
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and 

It can be shown that w1~L and b;~L need to be updated using: 

_(c) ( ) _ -(c) () oL(A) I w ijk T + 1 - w ijk T - f~ 
oW··k - -

'J A=A(T) 

-(c) _ -(c) oL(A) I bk(T + 1) - bk(T) - f-_-
'J 'J ob(c) _ _ 

'Jk A=A(T) 

(IV.2.38) 

(IV.2.39) 

For the parameters iV, and 5, the derivatives 8~~~f and 8~f~) in (IV.2.38) and (IV.2.39) respectively 
8wljk 8bijk 

could be expanded using the chain rule as follows: 

(IV.2.40) 

and 

oL(A) __ LR LC 
8lm(0,A) odm(O) ogc(O,A) Ob;;~lI(O C) 

x x () x () E c, "'b-(c) od (0) ogc(O, A) "'b c
k 

"'b- c
k u ijk r=l m=l m U 'J U 'J 

(IV.2.41) 

where 

{

-I 

exp[T/9c(G,A)] 

ifc=m 
(IV.2.42) 

I: j.j#c exp[T/9j (G,A)] ifc#m 

ogc(O,A) ;"'(q 'Q() J.)b;;L 
-(c) =~u t=" VOt = Tl' 

oWijk t=l bij 

o (c) 
w ijk = w(c) [1 _ w(C)] ow (c

k
) 'Jk 'Jk . 

'J 

and 
ob(c) 
--.3:i!:.. = b(c) [1 _ b(C)] ob(c

k
) 'Jk 'Jk . 

'J 

A closed form of 8~\~) and 8~1~) could be then inferred: 
8wijk 8bijk 

R C T b(c) 
oL(A) "" "" "" rl ( A)( l (0 A)) (c) ( (c») ijk J( r . Q (r) .) odc(Or) ~ = ~ ~~., m Or, 1- m r, W ijk 1-wijk Tl qt =~, V °t =J 0 (0 A)' 
OWijk r=l m=l t=l bij gm r, 

and 

R C T (~ 

oL(A) "" "" "" rl (0 A) ( l (0 A))b(c) ( b(c») Wijk J( r . Q (r) .) odc( Or) ~ = ~ ~ ~., m ro 1 - m r, ijk 1 - ijk ~ qt =~, V °t = J 0 (0 A)' 
obijk r=l m=l t=l bij gm r, 

Algorithm (4) outlines the steps needed to learn the parameters of all the models Ac in the MCEjGPD 

framework. 
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Algorithm 4 Generalized MCE/GPD training for the probability-based MSDHMM with linear 
aggregation 

Require: Training data [0(1),.·· ,O(R)], o(r)=[ol,···,oTl .. Fix the variables N s , M, and L for 
each model Ac. 

Ensure: 
1: For each Ac, cluster training data into Ns clusters and let the center of each cluster, Si, be the 

representative of state i. 
2: For each Ac, quantize the training data into M symbols and learn initial stream relevance weights 

Wjk. The center of each cluster Vj is a symbol. 
3: Let Wijk = Wjk, for 1 ::; i ::; N" 
4: while stopping criteria not satisfied do 
5: Compute the closest observation to each 0t using (IV.1.7). 
6: Compute the loss function of each sequence ° using (V.1.24); 
7: update A of each Ac using (11.7.60); 
8: update B of each Ac using (IV.2.39); 
9: update W of each Ac using (IV.2.38); 

10: end while 

IV.2.2 Geometric aggregation 

In this method, the partial probabilities are combined using: 

subject to 
L 

L 

bij = II [bijklWijk , 
k=l 

M 

L wrjs = Ii. and L bijk = 1. 
j=l k=l 

(IV.2.43) 

(IV.2.44) 

The geometric form of the observation probability in (IV.2.43) is motivated by the following proba-

bilistic reasoning: 

It follows that: 

bij Pr( Vj Iqt = i; A) 

Pr(1'Y)"" ,vjL)lqt=i;A) 

L 

II Pr(v;k)lqt = i; A) 
k=l 

L 

II [ (k) ] Wijk 
~ Pr(vj Iqt=i;A) 

k=l 

We will refer to this Erobability based MSDHMM with ~eometric aggregation as MSDHMMPg. The 

exponential weight Wijk weighs the contribution of each stream to state i. In (IV.2.44), Ii is a 

constant, usually set to one and 1I E (1, oc) is an exponent that controls the discrimination between 

the different streams. 
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Similarly to the linear aggregation case, two main approaches are considered for the training 

of the MSDHMMPg parameters. The first one consists of maximizing the likelihood of the data 

correspondent to each model. The second approach consists of a discriminative training that aims 

at minimizing the classification error over all classes. 

IV.2.2.1 Parameter initialization 

For the initialization of the model parameters, we follow the same steps as those used for the 

linear combination. The only difference resides in using (IV.2.43) instead of the linear combination 

in (IV.2.2). 

IV.2.2.2 Generalized Baum-Welch learning algorithm for MSDHMMPg 

After initialization, the model parameters can be tuned using the maximum Likelihood 

approach. Given a sequence of training observation ° = [01,.'" OT], the parameters of Ac could be 

learned by maximizing the likelihood of the observation sequence 0, i.e., Pr(OIA). We achieve this 

by generalizing the Baum-Welch algorithm to include a stream relevance weight component. We 

define the generalized Baum-Welch algorithm by extending the auxiliary function in (II.7.1) to 

Q(A, X) = L 2:)nPr(O, Q, FIX)Pr(Q, FlO, A), 
Q F 

(IV.2.45) 

where F = [/l, ... , IT] is a sequence of random variables representing the stream indices for each 

time step. It can be shown that a critical point of Pr(OIA), with respect to A, is a critical point of 

the new auxiliary function Q(A, X) with respect to X when X = A, that is: 

8Pr(0IA) _ DQ(A, X) I_ 
DA - DA ),=),' 

(IV.2.46) 

The proof of (IV.2.46) could be achieved using the same steps needed to prove propositions (11.7.1) 

and (II.7.2). 

Similar to the linear aggregation case, it could be shown that the formulation of the maxi-

mization of the likelihood Pr(OIA) through maximizing the the auxiliary function Q(A, X) is an EM 

[30] type optimization that is performed in two steps: the estimation step and the maximization 

step. The estimation step consists of computing the conditional expectation in (IV.2.45) and write 

it in an analytical form. The objective function in (IV.2.45) involves the quantity Pr(O, Q, FIX) 

which could be expressed analytically as: 

(IV.2.47) 
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Thus, the objective function in (IV.2.45) can be expanded as follows: 

IQ(A, ,\) LLPr(Q,FIO,A)10g7rq1 + 
Q F 

T-1 

L L L Pr(Q, FlO, A) logaqtq,+l + 
t=l Q F 

T 

L L L Pr(Q, FlO, A)Wq,Qv(otl!, log bqtQv(otl!t' 
t=l Q F 

(IV.2.48) 

After the estimation step, the maximization step consists of finding the parameters of ,\ that 

maximize the function in (IV.2.48). The expanded form of the function IQ(A,'\) in (IV.2.48) has 3 

terms involving 7f, a, and (w, b) independently. To find the values of 7fi, aij, Wijk, and bijk that 

maximize IQ(A,,\) , we consider the terms in (IV.2.48) that depend on 7f, a, w, and b. In particular, 

the first and second terms in (IV.2.48) depend on 7f and a, and they have the same analytical 

expressions sketched in the case of the baseline DHMM in (11.7.4). Thus, the update equations for 

7fi, and aij are the same as in the DHMM, that is: 

7ri 'Y1(i), 

L;-l ~t(i,j) 
T . 

Lt=l 'Yt(i) 

To find the value of Wijk that maximizes the auxiliary function IQ(., .), only the third term of the 

expression in (IV.2.48) is considered since it is the only part of IQ(.,.) that depends on Wijk. This 

term can be expressed as follows: 

T T 

L L L Pr(Q, FlO, A)WqtQv(otl!t 10g(bqtQv(otl!,) = L L L L 109(Wijk) x 
t=l Q F t=l i j k 

L L Pr(Q, FlO, A)c5(i, qt)c5(j, QV(Ot))c5(k, It), (IV.2.49) 
Q F 

where c5(i,qt)c5(j,Qv(Ot))c5(k,lt) keeps only those cases for which qt = i, QV(Ot) = j and it = k. 

That is, 

LL Pr(Q,FIO,A)c5(i,qt)c5(j,Qv(Ot))c5(k,it) = Pr(qt = i,it = kIO,A)c5(Qv(Ot),j). (IV.2.50) 
Q F 

Therefore: 

T 

L L L Pr(Q,FIO, A)Wq,Qv(o,J!t 10g(bq,Qv(otl!,) = 
t=l Q F 

T N, M L 

L L L L Pr(qt = i, it = klO, A)c5(ot,j)wq,Qv(otl!, In(bijk) 
t=l i=l j=l k=l 
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To find the update equation of Wijk we use the Lagrange multipliers optimization with the constraint 

in (IV.2.44), and obtain 

(IV.2.52) 

where 
T 

D ijk = L'Yt(i, k)t5(ot,j) logbijk . (IV.2.53) 
t=l 

The numerator in (IV.2.52) reflects the quantity of information provided by stream k while the 

denominator is used for normalization. It is possible that none of the closest symbols to 0t, 1 :S t :S T, 

is Vj. If this situation occurs, the expression in (IV.2.52) becomes undefined. To avoid this case, we 

generalize the update equation in (IV.2.52) to: 

(IV.2.54) 

otherwise 

Similarly, it can be shown that the update equation for the partial probabilities is: 

iEit, t5(Qv(on,j) = 1 
(IV.2.55) 

otherwise 

In (IV.2.55), the numerator represents the contribution of each stream k for each code j within state 

i, and the denominator is a normalization factor. The detailed derivation of the above equations 

could be found in appendix D. 

In the case of multiple observations [0(1), ... , O(R)], it can be easily shown that the update 

equations become: 

iEit,t5(Qv(on,j) = 1 
(IV.2.56) 

otherwise 

and 

iEit,t5(Qv(on,j) = 1 
(IV.2.57) 

otherwise 

where 
T 

Di;k = L 'Y;r)(i, k)t5(QV(O~T»),j) logbijk . (IV.2.58) 
t=l 

Algorithm (5) outlines the steps of the generalized MLE training procedure of the different 

parameters of the MSDHMMPg. 
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Algorithm 5 Generalized BW training for the probability-based MSDHMM with geometric aggre­
gation 

Require: Training data [0(1),.·· ,O(R)], o(r)=[Ol," ,aT]' Fix the variables N" M, and L. 
Ensure: 

1: Cluster training data into Ns clusters and let the center of each cluster, Si, be the representative 
of state i. 

2: Quantize the training data into M symbols and learn initial stream relevance weights Wjk. The 
center of each cluster Vj is a symbol. 

3: Let Wijk = Wjk, for 1 :S i :S N., 
4: while stopping criteria not satisfied do 
5: Compute the closest observation to at using (IV.2.12); 
6: update A using (11.7.9); 
7: update W using (IV.2.56); 
8: update Busing (IV.2.57); 
9: end while 

IV.2.2.3 Generalized MCE/GPD learning algorithm for the MSDHMMPg 

Let, 

gc(O, A) = log[nQaxge(O,Q,A)l (IV.2.59) 

be the discriminant function, associated with classifier A, that indicates the degree to which ° 
belongs to class c. In (IV.2.59), Q is a state sequence correspondent to the observation sequence 0, 

A includes the models parameters, and 

ge(O, Q, A) Pr(O, Q; Ae) 
T-l T L (e) ( ) 

7rq~c) II a~~~t+l II II [b~~~(Ot)rqtk Ot , 

t=l t=l k=l 

(IV.2.60) 

where b~~~(Ot) = b~:~v(O,)k' w~:~(Ot) = w~:~v(O,)k' and Qv is defined in (IV.2.12). 

Thc misclassification measure of the sequcnce ° is defined by: 

de(O) = -ge(O, A) + log [c ~ 1L exp[1] gj(O, A)l] i 
J,ri'c 

(IV.2.61) 

where 1] is a positive number. The misclassification measure is embedded in a smoothed zero-one 

loss function, defined as: 

(IV.2.62) 

where I is the sigmoid function in (II.7.51). For any unknown sequence 0, the classifier performance 

is measured by: 
c 

1(0; A) = L le(O; A)IT(O E Ce) (IV.2.63) 
e=l 

where IT(.) is the indicator function. 
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Given a set of training observation sequences o(r), r = 1,2, ... ,R, an empirical loss function 

on the training data set is defined as 

R C 
L(A) = LLuo(r);A)IT(o(r) E Cc ). (IV.2.64) 

r=lc=l 

The MSDHMMPg parameters are estimated by minimizing L(A) using a gradient descent algorithm. 

In order to ensure that the estimated MSDHMMPg parameters satisfy the stochastic constraints of 

parameters using 

aij ---> aij = logaij (IV.2.65) 

Wijk ---> Wijk = log Wijk (IV.2.66) 

bijk ---> bijk = log bijk (IV.2.67) 

Then, the parameters are updated with respect to A. After updating, we map them back using: 

aij 
eXpaij 

(IV.2.68) 
L N , -j'=l eXpaij' 

-v 

Wrjk '" 
expwijk 

(IV.2.69) 
LL -v 

k'=l exp W ijk' 

bijk 
exp bijk 

(IV.2.70) M -' 
Lj'=l exp bij , k 

Using a steepest descent batch estimation mode, the MSDHMMPg parameters are iteratively updated 

using: 

A(r+l)=A(r)-tV'AL(A)I __ . 
A=J\(T) 

(IV.2.71) 

where E is the learning rate, and V' is the gradient operator. It can be shown that w(ck) and b(c)k need 
'J 'J 

to be updated using: 

and 

-(c) -(c) oL(A) I 
bijk(r + 1) = bijk(r) - E---::w 

ob k - -
'J J\=J\(T) 

(IV.2.72) 

(IV.2.73) 

The derivatives ~~~~) and a~i~) in (IV.2.38) and (IV.2.38) respectively could be expanded 
8w ijk 8bijk 

using the chain rule as follows: 

(IV.2.74) 
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and 

where 

{ 

1 if c = m 

- expi'79c(O,A)] if c #- m 
t J.N, exp['79j (O.A)) 

T 
oge(O, A) "'.I"( . () .) I b(e) 

_(e) =~uqt=t,QVOt =J og ijk' 
OWijk t=1 

OW;]k _ vr.:[ -(e)jl/-1 (e) [1 _ [ (e)jl/] 

0
- (e) - V K Wijk Wijk Wijk , 

W ijk 

and 

A closed form of 8~\~) and 8~i~) could be then inferred: 
8w ijk ab ijk 

and 

oL(A) 

O 
_(e) 

W ijk 

oL(A) 
o"6(e

k
) 

'J 

(e) ( [(e)] 1/) I b(e).I"( r _ . Q (r) _ .) ode( Or) 
XWijk 1 - Wijk og ijk U qt - t, V at - J 0 (0 A)' 

gm To 

ReT 

L L L (lm(Or, A)(l -lm(Or, A)) x b;]k(1- b;]k) x 
r=1 m=1 t=1 

(IV.2.75) 

(IV.2.76) 

(IV.2.77) 

Algorithm (6) outlines the steps needed to learn the parameters of all the models Ae in the MCE/GPD 

framework. 

IV.3 Inference 

To test a new observation sequence 0=[01, .. ',OT]' we need to compute Pr(OIAe ), with 

respect to each model Ae. This computation can be performed efficiently using the Viterbi algorithm 
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Algorithm 6 Generalized MCE/GPD training of the probability-based MSDHMM with geometric 
aggregation 

Require: Training data [0(1),··· ,O(R)], o(r)=[Ol,'" ,OT]' Fix the variables N" M, and L for 
each model Ac. 

Ensure: 
1: For each Ac, cluster training data into Ns clusters and let the center of each cluster be, Si, the 

representative of state i. 
2: For each Ac , quantize the training data into M symbols and learn initial stream relevance weights 

Wjk. The center of each cluster Vj is a symbol. 
3: Let Wijk = Wjk, for 1 S; i S; Ns 
4: while stopping criteria not satisfied do 
5: Compute the closest observation to each 0t using (IV.I.7). 
6: Compute the loss function of each sequence ° using (V.I.24); 
7: update A of each Ac using (H.7.60); 
8: update B of each Ac using (IV.2.73); 
9: update W of each Ac using (IV.2.72); 

10: end while 

[29]. The Viterbi algorithm computes also the correspondent optimal state sequence [ql, ... , qT] to 

0. This in turn requires the computation of bi(Ot). For the MSDHMM, this can be computed using: 

(IV.3.1) 

where j = QV(Ot) and is computed using (IV.2.12). 

IV.4 Convergence properties 

The aim of the BaurIl-Welch algorithm is to find estimates of the parameters of the HMM 

that maximizes the likelihood Pr(OIA). It is well known that the maximum likelihood estimator 

(MLE) have the following properties [53]: 

• Unbiasedness:The MLE could be biased or unbiased. However, when the MLE is a biased 

estimator, its bias tends to 0 as n--+oo. 

• Consistency: Subject to fairly weak regularity conditions, ML estimators are consistent. 

• Efficiency:Since ML estimators may be biased we can only talk in general about asymptotic 

efficiency. However, it has been shown that MLE is asymptotically efficient. It has also the 

asymptotic normality. It is then called best asymptotically normal (BAN). 

• Sufficiency: If {) is the unique MLE of a parameter (J, then {) must be a function of the 

minimal sufficient statistic for (J. This does not mean that {) is necessarily sufficient, although 

it often is. 
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Appendix (E) gives the technical definition of the unbiasedness, consistency, efficiency, and suffi-

ciency of general estimators. 

It could be inferred then that in the presence of "enough" data, the MLE is almost optimal. 

This however is not possible in all cases. In addition, we wish to have the global maximum of the 

likelihood objective function. The Baum-Welch algorithm carries out an EM like optimization of the 

likelihood function. As stated previously, the estimation step consists of writing an analytical form of 

the auxiliary functions in (IV.2.7), and (IV.2.45), which have the form of a conditional expectation. 

The maximization step consists of finding a maximum (local at least, global if possible) of the 

auxiliary function IQ(.\, >.). However, it is shown that the solutions found by the algorithms (3), and 

(5) are proven to be critical points of the likelihood function Pr(OI.\). Therefore, it is of interest to 

see if these solutions are (local) maximum of their correspondent objective functions. This is given 

by the following theorem: 

Theorem IV.4.1. The generalized Baum- Welch ensures a convergence to a local maximum for 

MSDHMMP" and MSDHMMPg. 

Proof. It could be shown that the computed critical points are local maximum since the second 

derivative of each objective function is negative when evaluated on the correspondent found critical 

points. In the following we show that the objective functionlQ(.\, >.) in (IV.2.7) is locally maximized 

when evaluated in the points computed in (II.7.9), (IV.2.21), and (IV.2.22). In fact, for Wijkl 

(IV.4.I) 

The same result could be found for the rest of the parameters. Thus, it could be concluded that the 

solutions in (II.7.9), (IV.2.2I), and (IV.2.22) represent a local maxima of the objective IQ(.\, >.) in 

the case of MSDHMMP1 . Similar steps lead to the same conclusion for the MSDHMMPg. D 

For the discriminative training, it has been proven in [52] that the MCE empirical cost 

measured on a finite training set approximates the theoretical classification risk. As the training 

data set grows larger, the MCE estimates have the property to minimize the Bayes risk. In addition, 

reducing the MCE empirical loss can always be achieved by the steepest descent mechanism if a 

sufficiently small learning rate is chosen. However, this almost guaranteed convergence does not 

always imply a fast convergence rate [54]. 
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IV.5 Experimental Evaluation 

IV.5.l Data generation 

To validate the proposed MSDHMM structures, we generate two synthetic data sets. The 

first set is a single stream sequential data, and the second one is a multi-stream one. Both sets 

are generated using two discrete DHMMs to simulate a two class problem. We follow a similar 

approach to the one used in [55] to generate sequential data using a discrete HMM with Ns = 4 and 

]v! = 120 symbols with 4 dimensions. We start by fixing Ns different vectors P,i E ]R4, i = 1, ... , Ns to 

represent the different states. Then, we randomly generate ~ vectors from each normal distribution 

with mean P,i and identity covariance matrix. A code book with M symbols is then formed. For each 

symbol, the membership in each state is computed using 

(IV.5.1) 

and then scaled using: 

bij 
bij <---- M . 

L1=1 bi/ 
(IV.5.2) 

In (IV.5.1), Vj denotes the jth symbol. The initial state probability distribution and the state 

transition probability distribution are generated randomly from a uniform distribution in the interval 

[0,1]. The randomly generated values are then scaled to satisfy the stochastic constraints. 

For the single stream sequential data, we generate R sequences of length T = 15 vectors 

with dimension p for each of the two classes. We start by generating a discrete HMM with Ns states 

and M symbols as described above. Then, we generate the single stream sequences using Algorithm 

(12). 

Algorithm 7 Single stream sequential data generation for each class. 

for r = 1 to R do 
Select the initial state according to the initial states probability distribution 7r 

Randomly pick a vector v from the M symbols among those representing the selected state 
Sample an observation from a normal distribution with mean v and covariance (]' I 
for t = 2 to T do 

Select next state according to the probabilities transition matrix A, 
Randomly pick a symbol v among those representing the selected state, 
Sample an observation Ot from the normal distribution which mean v and covariance (]' I. 

end for 
end for 

For the multi-stream case, we assume that the sequential data is synthesized by L=2 streams, 

and that each stream k is described by Ns states, where each state is represented by vector p,7 of 
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dimension Pk=4. To construct a set of M symbols based on the L streams, for each state i, 30 symbols 

are generated from each stream k, and concatenated to form a double-stream set of symbols. To 

simulate streams with various relevance wights, we create 3 groups of symbols in each state. The first 

group is formed by concatenating 10 symbols from each stream by just appending the features (Le., 

both streams are relevant). The second group of symbols are formed by concatenating noise (instead 

of stream 2 features) to stream 1 features (i.e., stream 1 is relevant and stream 2 is irrelevant). The 

last group of symbols are formed by concatenating noise (instead of stream 1 features) to stream 

2 features (Le., stream 1 is irrelevant and stream 2 is relevant). Thus, for each state i we have a 

set of double-stream symbols where the streams have different degrees of relevance. Once the set of 

double-stream symbols is generated, a state transition probability distribution is generated, and the 

double-stream sequential data is generated using Algorithm (7). 

IV.5.2 Results 

In the first experiment, we apply the baseline DHMM and the proposed multi-stream DHMM 

structures to the single stream sequential data where the features are generated from one homoge­

neous source of information. The MSDHMM architectures treat the single stream sequential data 

as a double-stream one (each stream is assumed to have 2-dimensional observation vectors). In 

this experiment all models are trained using standard Baum-Welch (for the baseline DHMM and 

distance based MSDHMM), the generalized Baum-Welch (for the probability based MSDHMM), 

the standard and generalized MCE/GPD algorithms, or a combination of the two (Baum-Welch 

followed by MCE/GPD). The results of this experiment are reported in table 2. As it can be seen, 

the performance of the proposed MSDHMM structures and the baseline DHMM are comparable 

for most training methods. This is because when both streams are equally relevant for the entire 

data the different streams receive nearly equal weights in all states and the MSDHMM reduces to 

baseline DHMM. Fig. 20 displays the weights for all symbols learned by the MSDHMMD
. As it can 

be seen, most weights are clustered around 0.5 (between 0.35 and 0.7). Since the weights of both 

streams must sum to 1, both weights are considered equally important for all symbols. 

Fig. 21 and 22 display the weights of stream 1 in all 4 states learned by the MSDHMMP, 

and MSDHMMPg methods. As it can be seen, most weights are clustered around 0.5. Thus, as for 

the MSDHMMD
, the weights are treated equally important for all symbols. 

The second experiment involves applying both the baseline DHMM and the proposed MS­

DHMM to the double stream sequential data where the features are generated from two different 
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Figure 20. Stream relevance weights of the symbols learned by the MSDHMMD model for the 
single-stream sequential data. 
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Figure 21. Stream 1 relevance weights of the symbols in all 4 states, learned by the MSDHMMP, 
model for the single-stream sequential data. 
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Figure 22. Stream 1 relevance weights of the symbols in all 4 states, learned by the MSDHMMPg 
model for the single-stream sequential data. 
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TABLE 2 

Classification rates of the different DHMM structures of the single stream data 

Classifier Baum-Welch MCE BW and MCE 

Baseline DHMM 90.08 % 90.5% 91.25% 
MSDHMMD 91.075 % 92.00% 93.75% 
MSDHMMPa 91.25 % 92.25 % 98.75% 
MSDHMMPg 90.25 % 92.50% 95.75% 

streams. In this experiment the various models are trained using Baum-Welch, MCE, and Baum-

Welch followed by MCE training algorithms. First , we note that using stream relevance weights, the 

generalized Baum-Welch and MCE training algorithms converge faster and result in a small error. 

Fig. 23 displays the number of misclassified samples versus the number of iterations for the baseline 

DHMM and the proposed MSDHMM using MCE/ GPD training. As it can be seen, learning stream 

relevance weights causes the error to drop faster. In fact, at each iteration, the classification error 

for the MSDHMM structure is lower than the baseline DHMM. In particular, for the probability 

based linear MSDHMM, the error reaches the minimum after only two iterations. 
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Figure 23. Number of misclassified points versus the training iteration number for the standard and 
the multistream DHMMs. 

The testing results of the second experiment are reported in table 3. First , we note that 

all proposed multi-stream DHMMs outperform the baseline DHMM for all training methods. This 

is because the data set used for this experiment was generated from two streams with different 

degrees of relevancy and the baseline DHMM treats both streams equally important. The proposed 

MSDHMMs on the other hand , learn optimal relevance weights for each symbol within each state. 

The learned weights for streams 1 and 2 by the MSDHMMD are displayed in Fig. 24. As 

it can be seen, some symbols are highly relevant (weight close to 1) , while others are completely 
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irrelevant (weight close to 0). The latter ones correspond to symbols where the stream features were 

replaced by noise in the data generation. 
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Figure 24. Stream 1 relevance weights of the symbols learned by the MSDHMMD model for the 
double-stream sequential data 

The learned weights for streams 1 by the MSDHMMP, and MSDHMMPg are displayed in 

Fig. 25 and 26. As it can be seen, some symbols are highly relevant (weight close to 1) in some 

states , while others are completely irrelevant (weight close to 0). The latter ones correspond to 

symbols where stream 1 features were replaced by noise in the data generation. 
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Figure 25. Stream 1 relevance weights of the symbols in all 4 states learned by the MSDHMMP, 
model for the double-stream sequential data 

From table 3, we also notice that the probability based MSDHMMs outperform the distance­

based MSDHMM. This can be attributed to two main factors. First, the MSDHMMD learns an 

initial set of relevance weights and does not optimize these weights in the subsequent learning phase. 

Second, these weights are not state-dependent. The results also indicate that using the generalized 

Baum-Welch followed by the MCE to learn the model parameters is a better strategy. This is 

consistent with what have been reported for the baseline HMM [32]. 
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Figure 26. Stream 1 relevance weights of the symbols in all 4 states learned by the MSDHMMPg 
model for the double-stream sequential data 
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Figure 27. (a) Scatter plot of the MSDHMMPI confidence values versus the baseline DHMM confi­
dence values. (b) Stream 1 relevance weights of the closest symbols associated with 15 observation 
of a sequence extracted from RI . 

To illustrate the advantages of the MSDHMM further , in Fig. 27, we display a scatter plot 

of the baseline DHMM vs. the MSDHMMPI confidence values . AB it can be seen, the confidence 

values are highly correlated. However, for few sequences (e.g. highlighted regions RI for class 1 and 

R2 for class 2) the MSDHMMPI outperforms the baseline DHMM. To verify that this difference is 

attributed to the learned relevance weights, in Fig. 27 we display the learned stream 1 relevance 

weights for the symbols associated with the 15 observations for one of the sequences in region RI . 

As it can be seen, only 4 symbols have equal relevance weights in all 4 states. 

IV,6 Cha p ter s ummary 

In this chapter, we have presented the details of the generalized multi-stream discrete HMM 

(GMSDHMM) structures. These models are proposed to take into account the different degree of 
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TABLE 3 

Comparison of BW and MCE algorithms [or the different DHMM structures 

Classifier Baum-Welch MCE BW and MCE 
Baseline DHMM 54.075 % 59.075 % 60.025% 

MSDHMMD 62.075 % 64.075% 71.25% 
MSDHMMPa 60.25% 70.25 % 72.65% 
MSDHMMPg 58.25 % 65.25 % 75.00 % 

relevancy of different streams. Our approach is data driven. It relies OIl training data to associate 

feature relevance weights to each symbol in the code book. Two approaches have been proposed: 

distance based and probability based. In both cases, the Baum-Welch and MCE/GPG learning 

algorithms have been generalized to allow for simultaneous learning of all the model parameters. We 

derive the necessary conditions to update the different model parameters. The proposed structures 

have been evaluated using synthetic data sets. Results show that the MSDHMMD and MSDHMMP 

structures outperform the baseline DHMM. 
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CHAPTER V 

Generalized Multi-stream Continuous Hidden Markov Models 

It is not knowledge, but the act of learning, 

not possession but the act of getting there, 

which grants the greatest enjoyment. 

Carl Friedrich Gauss 

In this chapter, we propose two multi-stream Continuous HMM (MSCHMM) structures that 

integrate stream relevance weights and alleviate the limitations of existing multi-stream continuous 

HMM structures by linearizing the observation probability density function. This linearization 

allows the generalization ofthe Baum-Welch and the MCE/GPD training algorithms. In particular, 

We generalize the objective function to include stream relevance weights and derive the necessary 

conditions to update the parameters of both algorithms. 

We assume that we have L streams of information. These streams could have been generated 

by different sensors and/or different feature extraction algorithms. Each stream is thus represented 

by a different subset of features. Instead of treating the streams equally important or using USer-

specified weights, the proposed MSCHMM structure introduces a built-in component to learn a 

relevance weight to each stream. Two forms of pdfs are proposed. A mixture level streaming pdf, 

and a state level streaming pdf. The former method models local stream relevance that depends on 

states and components. The latter method models a less local stream relevance that depends only 

on the states. We refer to the proposed MSCHMM structures with linear pdfs as MSCHMML
. 

V.I Multi-stream CHMM with mixture level streaming 

Let bijk(O~k») be the jth component in state i using only the feature subset coming from 

stream k, and let Wijk be the stream relevance weight of this component. To COVer the entire feature 

space (i.e. the L streams), we USe a mixture of L components, i.e., 

(V.U) 
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where o~k) is the kth stream contribution to the observation vector 0t. Then, to model each state 

by a mixture of JlI components, let 

(V.1.2) 

subject to 
L M 

LWijk = 1, and LUij = 1. (V.1.3) 
k=l j=l 

The component bijk (.) is assumed to be a normal distribution N(., !1ijk, Eijk) where !1ijk is its mean 

and E ijk is its diagonal covariance matrix. The distribution N(., !1ijk, E ijk ) applies to the kth stream 

contribution o~k) of each observation vector 0t. The parameter Uij is similar to the mixing coefficient 

in the standard HMM. In this case, it is a weight assigned to the mixture of L components that 

cover the entire feature space and not to a single component. We will refer to this mixture level 

MSCHMML as MSCHMMLm. 

The linearization of the pdf in (V.1.2) could be inferred from the following: 

Pr(Otlqt = i; A) 
M 

L Pr(otlqt = i, et = j; A)Pr(et = jlqt = i; A) 
j=l 

M L 

L L Pr(otlqt = i, et = j, It = k; A)Pr(et = jlqt = i; A)Pr(ft = klqt = i, et = j; A) 
j=lk=l 

M L 

:::: L Pr(et = jlqt = i; A) L Pr(ft = klqt = i, et = j; A)Pr(o~k)lqt = i, et = j, it = k; A) 
j=l k=l 

where et and It are two random variables that represent the indices of the component and stream 

that occur in time t. It follows then that: 

Pr(ft = klqt = i, et = j; A), 

Pr(et = jlqt = i; A). 

V.1.1 Generalized Baum-Welch learning algorithm for MSCHMMLm 

The MSCHMMLm parameters can be learned using the maximum Likelihood approach. 

Given a sequence of training observation 0 = [01, ... ,OT], the parameters of A could be learned by 

maximizing the likelihood of the observation sequence 0, i.e., Pr(OIA). We achieve this by gener­

alizing the Baum-Welch algorithm to include stream relevance weights. We define the generalized 
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Baum-Welch algorithm by extending the auxiliary function in (1I.7.1) to 

Q(A,~) = LLLPr(Q,E,FIO.A)lnPr(O,Q,E,FI~) (V.1A) 
Q E F 

where E = [el,'" ,eT] and F = [II,'" ,iT] are two sequences of random variables representing 

respectively the component and stream indices at each time step. It can be shown that a critical 

point of Pr(OIA), with respect to A, is a critical point of the new auxiliary function Q(A,~) with 

respect to ~ when ~ = A, that is, 

oPr(OIA) _ OQ(A, ~) l_ 
OA - OA ).=).' 

(V.1.5) 

The proof of (V.1.5) could be achieved using the same steps needed to prove propositions 

(11.7.1) and (1I.7.2). 

Similar to the discrete case, it could be shown that the formulation of the maximization of 

the likelihood Pr(OIA) through maximizing the the auxiliary function Q(A,~) is an EM [30] type 

optimization that can be performed by an estimation step and a maximization step. The estimation 

step consists of computing the conditional expectation in (V.1.4) and writing it in an analytical form. 

The objective function in (V.1.4) involves the quantity Pr(O, Q, E, FI~) which could be expressed 

analytically as: 

T-I T 

Pr(O,Q,E,FI~c) = 7rq6C) II a~~~t+l II U~~~tW~~~dtb~~~dt(Ot) 
t=l t=l 

Thus, the objective function in (V.1.4) can be expanded as follows: 

Q(A, ~) LLLPr(Q,E,FIO,A)log1fq, + 
Q E F 

T-I 

L L L L Pr(Q, E, FlO, A) logaqtqt+l + 
t=l Q E F 

T-I 

L LLLPr(Q,E,FIO,A)logUqtet + 
t=l Q E F 

T-I 

L LLLPr(Q,E,FIO. A)logwqtedt + 
t=l Q E F 

T-I 

L L L L Pr(Q, E, FlO, A) 10g.N"(oVtl,{Lqtedt, Eqted,) 
t=l Q E F 

(V.1.6) 

(V.l. 7) 

After the estimation step, the maximization step consists of finding the parameters of ~ that max­

imize the function in (V.1.7). The expanded form of the function Q(A,~) in (V.1.7) has 5 terms 

involving 'if, a,and (w, b) independently. To find the values of 'ifi, aij, Wijk, and bijk that maximize 
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1Q(.\,5.) , we consider the terms in (V.1.7) that depend on?T, a, w, and b. In particular, the first and 

second terms in (V.1.7) depend on ?T and a, and they have the same analytical expressions sketched 

in the case of the baseline CHMM (refer to (II.7.4)). It follows that the update equations for ?Ti, 

aij, and 'ITij are the same as in the standard CHMM. That is, 

and 

?Ti 1'1 (i), 

"Li'-1 ~t(i,j) 
T ' 

"Lt=l1't(i) 

"Li'=1 Pr(qt = i, et = jlo, .\) 

"Li'=1 Pr(qt = ilo,.\) 

To find the value ofwijk that maximizes the auxiliary function IQ(., .), only the fourth term 

of the expression in (V.1.7) is considered since it is the only part of IQ(.,.) that depends on Wijk. 

This term can be expressed as: 

T T 

LLLLPr(Q,E,FIO,A)logWq,etf, = LLLLlog(wijk) x 
t=l Q E F t=l i j k 

L L L Pr(Q, E, FlO, .\)6(i, qt)6(j, et)6(k, ft), (V.1.8) 
Q E F 

where 6(i, qt)6(j, et)6(k, ft) keeps only those cases for which qt = i, et = j and ft = k. That is, 

L L L Pr(Q, E, FlO, .\)6(i, qt)6(j, et}6(k, it) = Pr(qt = i, et = j, ft = klot , .\), 
Q E F 

therefore: 

T 

LLLLPr(Q,E,FIO,.\)logwq,etf, = 
t=l Q E F 

T Ns M L 

L L L L Pr( qt = i, et = j, ft = klot,.\) log wq,etf, 
t=l i=l j=l k=l 

(V.l.g) 

(V. 1.10) 

To find the update equation of Wijk we use the Lagrange multipliers optimization with the 

constraint in (V.1.3), and obtain 

(V.l.ll) 

where 

(V.1.12) 

(V.l.13) 
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and 

It(i,j,k) (V.l.l4) 

Similarly, it can be shown that the update equations for the rest of the parameters are: 

!kijkd (V.l.l5) 

and 

O"ijkd = 
",T ( .. k)( (k) )2 
L...d=l It ~,], 0td - !kijkd 

L:;=llt(i,j,k) 
(V.1.16) 

The details of deriving the above update equations can be found in appendix D. 

In the case of multiple observations [0(1), ... ,O(R)], it can be shown that the update equa-

tions become: 

Wijk (V.l.l7) 

!kijkd (V.l.l8) 

and 

O"ijkd 

",R ",T (r)( .. k)( (k) )2 
L...,r=l L...,t=l It ~,], 0td - !kijkd 

L:~l L:;=l It(i,j, k) 
(V.l.l9) 

The parameters It)(i), ,t)(i,j), and ~(r)(i,j,k) are the same as those for It(i), It(i,j), and 

It(i,j, k) when observation sequence o(r) is used. 

Algorithm (8) outlines the steps of the Generalized Baum-Welch training algorithm for the 

parameters of the MSCHMMLm. 

Algorithm 8 Generalized BW training for the mixture level MSCHMM 

Require: Training data [0(1),··· , O(R)], o(r)=[Ol,"" OT]. Fix the variables N" M, and L. 
Ensure: 

1: Cluster training data into Ns subsets and identify the Ns states. 
2: Cluster each subset into M clusters and initialize the coefficients Uij, stream relevance weights 

Wijk, the centers and the matrices. 
3: while stopping criteria not satisfied do 
4: Compute the probability density bi(Ot) for each observation vector 0t using (IV.2.I2); 
5: update A using (II.7.9); 
6: update Uij using (II. 7.23); 
7: update Wijk using (V.1.I7); 
8: update !kijkd using (V.1.I8); 
9: update O"ijkd using (V.l.I9); 

10: end while 
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V.1.2 Generalized MCE/GPD learning algorithm for MSCHMMLm 

The minimization of the classification error via a gradient descent scheme is the most common 

discriminative training method for HMMs. In this section, we propose our generalized version for 

the MSCHMMLm. Let 

ge(0, A) = log[maxge(0, Q, A)] 
Q 

(V. 1.20) 

be the discriminant function, associated with classifier A, that indicates the degree to which ° 
belongs to class c. In (V.1.20), Q is a state sequence corresponding to the observation sequence 0, 

A includes the models parameters, and 

ge(0,Q,A) Pr(O, Q; Ae) 
T-1 T 

7r II a(e) II bee) (0 ) 
q6c ) q,qt+l q, t 

t=l t=l 

T-1 T M L 

II (e) II ~ (e) ~ (e) bee) ( ) 
7rqbC) aqtqt+l ~ uq,j ~ wq,jk qtjk at (V.1.21) 

t=l t=l j=l k=l 

Thus, ge (0, A) = log [ge (0, Q, A)], where Q = [iiI, ... , iiT] is the optimal state sequence that achieves 

maxq ge(0, q, A), which could be computed using the Viterbi algorithm [29]. 

The misclassification measure of sequence ° is defined by: 

1 

de(O) = -ge(0, A) + log [c ~ lL exp[119j(0, A)]] ;; 
J,JoF e 

(V.1.22) 

where r] is a positive number. The misclassification measure is embedded in a smoothed zero-one 

function, referred to as loss function, defined as: 

(V.1.23) 

where I is the sigmoid function in (11.7.51). For an unknown sequence 0, the classifier performance 

is measured by: 
c 

I(O;A) = L1e(0;A)IT(0 E Ce) (V.1.24) 
c=l 

where IT(.) is the indicator function. 

Given a set of training observation sequences o(r), r = 1,2, ... ,R, an empirical loss function 

on the training data set is defined as 

R C 

L(A) = L L le(O; A)IT(O E Ce). (V.1.25) 
r=lc=l 

Minimizing the empirical loss is equivalent to minimizing the total misclassification error. The 

MSCHMMLm parameters estimated by carrying out a gradient descent on L(A). In order to ensure 
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that the estimated MSCHMMLm parameters satisfy the stochastic constraints of aij ~ 0, L~~1 aij = 

1, Uij ~ 0, L~1 Uij = 1, 11Iijk ~ 0, L~=1 11Iijk = 1, J.Lijkd ~ 0, and (Jijkd ~ 0, we map these 

parameters using 

aij -+ aij = log aij, (V.l.26) 

Uij -+ Uij = log Uij, (V.l.27) 

11Iij k -+ Wijk = log 11Iijk, (V.l.28) 

J.Lijkd -+ 
- J.Lijkd (V.l.29) J.Lijk = --, 

(Jijkd 

(Jijkd -+ (Yijkd = log (Jijkd· (V.l.30) 

Then, the parameters are updated with respect to A. After updating, we map them back using 

aij 
eXpaij 

(V.l.31) 
LN. -' 

j'=1 expaij' 

Uij 
eXpUij 

(V.l.32) 
LM -' j'=1 exp uij' 

11Iijk 
exp Wijk 

(V.l.33) 
L -' 

Lk'=1 exp 11Iijk' 

J.Lijkd ilijkd(Jijkd, (V.l.34) 

(Jijkd exp (Yijkd. (V.l.35) 

Using a steepest descent batch estimation mode, the MSCHMMLm parameters are iteratively up­

dated using: 

where E is the learning rate, and 'V is the gradient operator. 

and 

I b h th -(e) _(e) d _(e) d b d d . t can e s own at 11Iij , J.Lijkd' an (Jijkd nee to e up ate usmg: 

_ (e) __ (e) oL(A) I 
(Jijkd(r + 1) - (Jijkd(r) - E~ 

O(Jijkd A=A(7") 

(V.l.36) 

(V.l.37) 

(V.l.38) 

(V.l.39) 

The derivatives 8~~~;, 8~(~t), and 8~«ct) in (V.1.37), (V.l.38), and (V.1.39) could be expanded using 
8W~jk 8J.1- ij kd 8CTijkd 

the chain rule as follows: 

(V.l.40) 
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and 

where 

and 

a (e) 
aL(A) LR ~ 8lm (0, A) adm(O) x age(O, A) x J-tijkdrr(O E C

e
), 

-- = ~ (0) x a (0 A) (e) a-(e) 
a -(e) adm ge, aJ-t "kd J-tiJ"kd J-tijkd r=l m=l 'J 

{ 

-1 

- exp[1J9c(0,A)] 

2: j"J*C CXP[1J9j (O,A)I 

a (e) 
Uij = u(e) [1 _ u(e)] . 

ajj(e) 'J 'J 
'J 

a (e) 

W
ijk = Week) [1 - Week)] . 

a -(e) 'J 'J 
W ijk 

a (e) 
J-tijkd (e) 
-- = C7""kd' a-(e) 'J 

J-tijkd 

a (e) 
C7ijkd (el 
~ =C7ijkd · 
aC7ijkd 

ifc=m 

if c -I- m 

A closed form of aa~~~)' :~tc~) , and :~tc~) could be then inferred: 
W ijk f..Ltjkd lJkd 
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(V.1.41) 

(V.1.42) 

(V.1.43) 

(V. 1.44) 

(V. 1.45) 

(V. 1.46) 

(V.1.47) 

(V.1.48) 



oL(A) ~ ~ ~ )( (A)) [ (e) ] -1 "( .) (e)( (r) (e)) ~ = L.. L.. L..(lm(Or,A 1 -1m Or, O"ijkd U qt,~ U ij 0td - J.1ijkd X 

OJ.1ijkd r=l m=l t=l 

and 

(V.1.50) 

Algorithm (9) outlines the steps needed to learn the parameters of all the models Ae in the 

MCE/GPD framework. 

Algorithm 9 Generalized MCE/GPD training of the MSCHMML
= 

Require: Training data [0(1),··· ,OCR)], o(r)=[Ol,,,,,orj. Fix the variables N" M, and L for 
each model Ae. 

Ensure: 
1: For each Ae , cluster training data into Ns subsets and identify the Ns states. 
2: For each Ae, Cluster each subset into M clusters and initialize the coefficients Uij, stream rele-

vance weights Wijk, the centers and the matrices. 
3: while stopping criteria not satisfied do 
4: Compute the probability density bi(Ot) of each observation vector Ot using (IV.1.7). 
5: Compute the loss function of each sequence 0 using (V.1.24); 
6: update A of each Ae using (11.7.60); 
7: update Uij of each Ae using (IV.2.39); 
8: update Wijk of each Ac using (IV.2.38); 
9: update J.1ijkd of each Ac using (IV.2.38); 

10: update O"ijkd of each Ac using (IV.2.38); 
11: end while 

V.2 Multi-stream CHMM with state level streaming 

In this case, we assume that the streaming of data is performed at the state level, i.e., each 

state is generated by L different streams, and each stream embodies M Gaussian components. Let 

bik be the probability density function of state i within stream k. Since stream k is modeled by a 

mixture of M components, bik can be written as: 

M 

bik(O~k)) = L Uijkbijk(O~k)), (V.2.1) 
j=l 

where Uijk represent the mixing coefficient of the jth component in each state i and generated by 

the kth stream, and bijk(.) is a normal distribution N(.,J.1ijk,"E ijk ) with mean J.1ijk and diagonal 
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covariance matrix that applies to the kth stream contribution of observation vector Ot. Let Wik be 

the relevance weight of stream k. The probability density function covering the entire feature space 

is then approximated by: 

L M 

bi(Ot) = L Wik L UikjN(o~k), /-tikj, ~ikj) 
k=1 )=1 

L M 

bi(Ot) = L Wik L Uijkbijk(O~k)), 
k=1 j=1 

subject to: 
L M 

LWik = 1, and LUijk = 1 
k=1 j=1 

We will refer to this §.tate level MSCHMML as MSCHMMLs. 

The linearization of the pdf in (V.2.3) could be inferred from: 

bi(Ot) Pr(otlqt = i; A) 
L 

L Pr(otlqt = i, It = k; A)Pr(ft = klqt = i; A) 
k=1 

L 

~ L Pr(o~k) Iqt = i, It = k; A)Pr(ft = klqt = i; A) 
k=1 

L M 

(V.2.2) 

(V.2.3) 

(V.2.4) 

L Pr(ft = klqt = i; A) L Pr(et = jlqt = i, It = k; A)Pr(o~k)lqt = i, It = k, et = j; A) 
k=1 j=1 

where et and It are two random variables that represent the indices of the component and stream 

that occur at time t. It follows then that 

N (k) 
(Ot ,/-tikj, L.ikj) 

Pr(ft = klqt = i; A). 

V.2.1 Generalized Baum-Welch learning algorithm for MSCHMMLs 

The MSCHMML, model parameters can be learned using a maximum Likelihood approach. 

Given a sequence of training observation ° = [01, ... , OT], the parameters of A could be learned 

by maximizing the likelihood of the observation sequence 0, i.e., Pr(OIA). We achieve this by 

generalizing the Baum-Welch algorithm to include a stream relevance weight component. We define 
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5 terms involving 7f, a, w, 'ii, and (J.l, E). To find the values of 7fi, aij, Wik, 'iiikj, 71ikjd, and (Jikjd 

that maximize Q(>',.\) , we consider the terms in (V.2.8) that depend on 7f, a, w, 'ii, and (J.l, E). 

In particular, the first and second terms in (V.1.7) depend on 7f and a, and they have the same 

analytical expressions sketched in the case of the baseline CHMM in (11.7.4). It follows that the 

update equations for 7fi, and aij are the same as in the standard CHMM. That is, 

and 

To find the value of Wik that maximizes the auxiliary function Q(., .), only the third term of 

the expression in (V.2.8) is considered since it is the only part of Q(., .) that depends on Wik. This 

term can be expressed as: 

T T 

L L L L Fr(Q, E, FlO, >.) logwqt!t = L L L Fr(Q, FlO, >.) logwqt!t = 
t=l Q F E t=l Q F 

T 

L L L log(wik) xL L Fr(Q, FlO, >')J(i, qt)J(k, ft), 
t=l i k Q F 

where J(i, qt)J(k, ft) keeps only those cases for which qt = i, and It = k. That is, 

therefore: 

L L Fr(Q, FlO, >')J(i, qt)J(k, ft) = Fr(qt = i, ft = klot , >.), 
Q F 

T 

LLLFr(Q,FIO,>')logwqt!t = 
t=l Q F 

T N., L 

L L L Fr(qt = i, ft = klot , >.) logwqt!t 
t=l i=l k=l 

(V.2.9) 

(V.2.10) 

(V.2.11) 

To find the update equation of Wik we use the Lagrange multipliers optimization with the constraint 

in (V.1.3), and obtain 

(V.2.12) 

where, 

I't(i) Fr(qt = ilO, >.), 

and 
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Similarly, it can be shown that the update equations for the rest of the parameters are: 

UikJ 
'Li=l rt(i, k, j) 

(V.2.13) 
'Li=l rt(i, k) 

, 

'LT C k .) (l) 

Jlikjd 
t-lrt z, ,J 0td (V.2.14) 

'Li=l rt(i,k,j) 
, 

'LT (. k .)( (k) (k))2 

(Jikjd 
t=l rt Z, ,J 0td - J-lijd 

(V.2.15) 
'Li=l rt(i, k, j) 

where 

rt(i,k,j) = 
N( (k) 

(.) WikUijk at, J-lijk' I;ijk) 
rt Z bi(ot) 

The details of deriving the above update equations can be found in appendix D. 

For the case of multiple observations [0(1), ... , O(R)], it can be shown that the learning 

equations need to be updated using: 

Jlijkd 

and 

(Jijkd 

'L~-l 'Li-l r[(i, k) 
",R ",T r(·) , L..,r=l L..,t=l rt Z 
'L~-l 'Li-l rHi, k, j) 

'L~l 'Li=l r[(i, k) , 
R ",T . . (k)(l) 'Lr=l L..,t=l rt (z, k, J )Otd 

'L~=l 'Li=l ~(t (i, k, j) 

",R ",T r(' k .)( (k)(r) )2 L..,r=l L..,t=l rt Z, ,J 0td - J-lijkd 

'L~=l 'Li=l r[(i, k,j) 

(V.2.16) 

(V.2.17) 

(V.2.18) 

(V.2.19) 

Algorithm (11) outlines the steps of the MLE learning algorithm for the different parameters of the 

MSCHMML,. 

Algorithm 10 Generalized BW training for the state level MSCHMM 

Require: Training data [0(1),··· ,O(R)], o(r)=[Ol,"" aT]. Fix the parameters N s , M and L. 
Ensure: 

Cluster training data into Ns clusters and initialize stream relevance weights Wik. 

Cluster each subset into M clusters and initialize the coefficients Uikj ) the centers and the matrices. 
while stopping criteria not satisfied do 

Compute the probability density bi(ot) of each observation vector at using (V.2.3). 
Update A using (II.7.9) 
Update Wik using (V.2.16) 
Update Uikj using (V.2.17) 
Update J-likjd using (V.2.18) 
Update (Jikjd using (V.2.19) 

end while 
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V.2.2 Generalized MCEjGPD learning algorithm for the MSCHMMLs 

We generalize the MCE/GPD training approach to the case of MSCHMML
,. Let 

ge(0, A) = log[maxge(0, Q, A)l 
Q 

(V.2.20) 

be the discriminant function, associated with classifier A, that indicates the degree to which 0 

belongs to class c. In (V.2.20), Q is a state sequence correspondent to the observation sequence 0, 

A includes the models parameters, and 

ge(0,Q,A) P(O, Q; Ae) 
T-1 T 

II (e) II b(e)( ) 
7r q~c) aqtqt+l qt Ot 

t=l t=l 

T-1 T L M 

7rq6C) II a~~L, II L w~~~ L u~~jkb~~jk(Ot). (V.2.21) 
t=l t=lk=l j=l 

Thus, ge(0,A) = log[ge(0,Q,A)], where Q (ilQ, ill, ... ,ilT) is the optimal state sequence that 

achieves maxq ge(0,q,A), which could be computed using the Viterbi algorithm [29l. 

The rnisclassification measure of the sequence 0 is defined by 

1 

de(O) = -ge(0, A) + log [e ~ IL exp[179j(0, A)l] ;; 
J,JoF e 

(V.2.22) 

where rl is a positive number. The misclassification measure is first embedded in a smoothed zero-one 

function, referred to as loss function, defined as: 

(V.2.23) 

where l is the sigmoid function in (11.7.51). Then, for any unknown sequence 0, the classifier 

performance is measured by: 
c 

l(O;A) = Lle(O;A)H(O E ee) (V.2.24) 
e=l 

where H(.) is the indicator function. For a set of training observation sequences o(r), r = 1,2, ... ,R, 

an empirical loss function on the training data set is defined as 

R C 

L(A) = LLle(O;A)H(O E ee). (V.2.25) 
r=lc=l 

The MSCHMMLs parameters can be estimated by carrying out a gradient descent on L(A). In order 

to ensure that the estimated MSCHMMLs parameters satisfy the stochastic constraints of aij 2: 0, 
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these parameters using 

aij -; aij = logaij, 

Wik -; Wik = log Wik, 

'Uikj -; Uikj = loguikj, 

/-!ikjd -; iiikjd = 
/-!ikjd 

lJikjd 

and 

Then, the parameters are updated w.r.t to A. After updating, we map them back using 

aij 
eXpaij 

2:N
s -' j'=l exp aij' 

expWik 
Wik 2:L 

-
, 

k'=l exp Wik' 

Uikj 
eXpUikj 

2:M 
-

, 
j'=l exp Uikj' 

/-!ikjd iiikjdlJikjd, 

and 

eXpaikjd. 

(V.2.26) 

(V.2.27) 

(V.2.28) 

(V.2.29) 

(V.2.30) 

(V.2.31) 

(V.2.32) 

(V.2.33) 

(V.2.34) 

(V.2.35) 

Using a batch estimation mode, the the MSCHMMLs parameters are iteratively updated using: 

A(r+1)=A(r)-EV'AL (A)I __ . 
A=A(T) 

(V.2.36) 

where ( is the learning rate, and V' is the gradient operator. 

I b h th t _(c) _(c) _(c) d _(c) d t b d t d . t can e s own a wij , u ikj ' /-!ijkd' an lJijkd nee 0 e up a e usmg: 

(V.2.37) 

_(c) -(c) 8L(A) I 
uikj(r + 1) = uikj(r) - E~ , 

8Uikj A=A(T) 

(V.2.38) 

-(c) _(c) 8L(A) I 
/-!ikjd(r + 1) = /-!ikjd(r) - E 8-(c) , 

/-!ikjd A=A(T) 

(V.2.39) 
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and 

and 

where 

-(e) ( ) __ (e) () aL(A) I 
eJikjd T + 1 - eJikjd T - E~ . 

aeJikjd ,\=,\(r) 

The above partial derivatives could be expanded using chain rule as follows: 

Rea (e) 
aL(A) = '" '" atm(O, A) adm(O) age(0, A) eJijkdlI(O ) 

_(e) L L ad (0) x a (0 A) x (e) X -(e) E Ce , 
aeJijkd r=l m=l m ge, aeJijkd aeJijkd 

{

I if c = m 

- exp[1)gc(O.A)] if c i= m 
2: j .#o exp[1)gj(O,A)] 

aW(k
e

) (e) [ (e)] -'-=w. l-w. 
a-(e) ,k ,k' 

W ik 

a (0 A) T (e) (e) (k) (e) )b(e) 
9m , = '" WqtkUqtkj °td - f.tikjd qdk 5( .) 

(e) L (e) 2 qt, Z , 
af.tikjd t=l (eJikjd ) bqt(o,) 

a (e) 
f.tikjd _ (e) 

a
-(e) - eJikjd · 
f.tikjd 

a (0 A) 
T (e) (e) bee) (k) (e) 

9m , = '" WqtkUq,kj q,kj ( (e) )_l((Otd - f.t ijkd )2 _ 1)5( .) 
(e) L b eJ,k]d (e) qt, Z , 

aeJikjd t=l qt(o,) eJijkd 

90 

(V.2.40) 

(V.2.41) 

(V.2.42) 

(V.2.43) 

(V.2.44) 

(V.2.45) 

(V.2.46) 

(V.2.47) 

(V.2.48) 

(V.2.49) 



and 
" (c) 
U(Jikjd (c) 
,,_ (c) = (Jikjd' 
u(Jikjd 

A closed form of 8~\~1, 8~\~), 8~(~~), and 8~(~~) could then be inferred: 
8wik 8uikJ 8J.L i kjd aa ikjd 

8L(A) ~ ~ ;- i[ (0 A)( [(0 A)) [ (c) ] -1 "( .) (c) (c) ((r) (c)) 
r -(c) = ~ ~ ~., m r, 1 - m r, (Jikjd u qt, ~ wik u ikj 0td - Jlikjd x 
OJlikjd r=l m=l t=l 

(V.2.50) 

(V.2.51) 

(V.2.53) 

Algorithm (11) outlines the generalized MCE/GPD training procedure for the different pa­

rameters of the MSCHMML
,. 

V.3 Inference 

To test a new observation sequence 0=[01, ... ,OT]' we need to compute Pr(OIAc) with respect 

to each model Ac. This computation can be performed efficiently using the Viterbi algorithm [29]. 

The Viterbi algorithm also computes also the corresponding optimal state sequence [q1, ... , qT] of 

O. This in turn requires the computation of bi(Ot). For the MSCHMM, it could be computed using 

(V.1.2) in the case of mixture level MSCHMM, and (V.2.1) in the case of state level MSCHMM. 
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Algorithm 11 Generalized MCE/GPD training for the state level MSCHMM 

Require: Training data [0(1),··· ,OCR)], o(r)=[Ol,···,OT]' Fix the variables N s , M, and L for 
each model >'c. 

Ensure: 
For each >'e, cluster training data into Ns clusters and initialize stream relevance weights Wik. 

For each >'e, cluster each subset into M clusters and initialize the coefficients Uikj , the centers 
and the matrices. 
while stopping criteria not satisfied do 

Compute the probability density bi(ot) of each observation vector Ot using (V.2.3). 
Compute the loss function of each sequence 0 using (V.2.24); 
Update A of each >'e using (11.7.60) 
Update Wik of each >'e using (V.2.37) 
Update Uikj of each >'e using (V.2.38) 
Update !Likjd of each >'e using (V.2.39) 
Update (Jikjd of each >'e using (V.2.40) 

end while 

V.4 Convergence properties 

V.4.1 On the convergence properties of the Generalized Baum-Welch algorithm 

The aim of the Baum-Welch algorithm is to find estimates of the HMM parameters that 

maximize the likelihood Pr(OI>'). As mentioned in the previous chapter, it is well known that the 

maximum likelihood estimator (MLE) is asymptotically (in the presence of infinite data collection) 

optimal [53]. This however may not be possible for most applications. 

In addition, it is desirable to reach the global maximum of the likelihood objective function. 

The Baum-Welch algorithm carries out an EM like optimization of the likelihood function. As stated 

previously, the estimation step consists of writing an analytical form of the auxiliary functions in 

(V.1.4), and (V.2.5) which have the form of a conditional expectation. The maximization step 

consists on finding a maximum (local at least, global if possible) of the auxiliary function Q(>', >..). 

However, it was shown that the solutions found by algorithms 8 and 11 are proven to be critical 

points of the likelihood function Pr( 01>'). Therefore, it is of interest to ensure that these solutions 

are (local) maximum of their correspondent objective functions. This is given by the following 

theorem: 

Theorem V.4.1. The generalized Baum- Welch ensures convergence to a local maximum for the 

MSCHMMLm and the MSCHMML, . 

Proof. It could be shown that the computed critical points are local maximum since the second 

derivative of each objective function is negative when evaluated on the obtained critical points. 

In the following we show that the objective function Q(>., >..) in (V.1.4) is locally maximized when 
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evaluated in the points computed in (II.7.9), (V.l.I7), (V.US), and (V.l.I9). In fact, for Wijk, 

cPQ()., .\) T Ns M L .. -2 

8w2 = - L L L L Pr(qt = Z,et =}, it = klo,).) [Wijk] ::::: 0 
Dk t=l i=lj=lk=l 

(V.4.I) 

The same result could be found for the rest of the parameters. Thus, it could be concluded that 

the solutions in (II.7.9), (V.U7), (V.l.IS), and (V.l.I9) represent a local maxima of the objective 

Q().,.\) in the case of MSCHMMLm. Similar steps lead to the same conclusion for the MSCHMMLs. 

o 

V.4.2 On the convergence properties of the Generalized MCE/GPD algorithm 

It has been proven in [52] that the MCE empirical cost measured on a finite training set 

approximates the theoretical classification risk. As the training data grows larger, the MCE estimates 

have the property to minimize Bayes risk. In addition, reducing the MCE empirical loss can always 

be achieved by the steepest descent mechanism if a sufficiently small learning rate is chosen. However, 

this almost guaranteed convergence does not always imply a fast convergence rate [54]. 

V.4.3 Evaluation on a synthetic data 

V.4.4 Data generation 

To validate the proposed MSCHMM structures, we generate two synthetic data sets. The 

first set is a single stream sequential data, and the second one is a multi-stream one. Both sets 

are generated using two continuous HMMs to simulate a two class problem. We follow a similar 

approach to the one used in [55] to generate sequential data using a continuous HMM with N. = 4 

states and M = 4 components with 4 dimensions. We start by fixing Ns different vectors J1-i E ]R4, 

i = 1,· .. ,Ns to represent the different states. Then, we randomly generate M vectors from each 

normal distribution with mean J1-i and identity covariance matrix to form the mixture components of 

each state. The mixture weights of the components of each state are randomly generated and then 

normalized. The covariance matrix of each mixture component is set to identity. The initial state 

probability distribution and the state transition probability distribution are generated randomly 

from a uniform distribution in the interval [0,1]. The randomly generated values are then scaled to 

satisfy the stochastic constraints. 

For the single stream sequential data, we generate R sequences of length T = 15 vectors 

with dimension p = 4 for each of the two classes. We start by generating a continuous HMM with 
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Ns states and M components as described above. Then, we generate the single stream sequences 

using Algorithm (12). 

Algorithm 12 Single stream sequential data generation for each class. 

for r = 1 to R do 
Select the initial state according to the initial states probability distribution 7r 

Randomly pick a component v from the j\1 components representing the selected state according 
to its mixture weights 
Sample an observation from a normal distribution with mean v and covariance (J" I 
for t = 2 to T do 

Select next state according to the probabilities transition matrix A, 
Randomly pick a component l' among those representing the selected state, 
Sample an observation Ot from the normal distribution which mean v and covariance (J"I. 

end for 
end for 

For the multi-stream case, we assume that the sequential data is synthesized by L=2 streams, 

and that each stream k is described by N.. states, where each state is represented by vector /-l~ of 

dimension Pk=4. To construct a set of lVI components based on the L streams, for each state i, 

three components are generated from each stream k, and concatenated to form a double-stream 

components. To simulate components with various relevance wights, we create 3 combinations of 

components in each state. The first combination consists of concatenating a component from each 

stream by just appending the features (i.e., both streams are relevant). The second combination 

consists on concatenating noise (instead of stream 2 features) to stream 1 features (i.e., stream 1 is 

relevant and stream 2 is irrelevant). The last combination consists on concatenating noise (instead 

of stream 1 features) to stream 2 features (Le., stream 1 is irrelevant and stream 2 is relevant). Thus, 

for each state i we have a set of double-stream components where the streams have different degrees 

of relevance. Once the set of double-stream components is generated, a state transition probability 

distribution is generated, and the double-stream sequential data is generated using Algorithm (12). 

V.4.5 Results 

In the first experiment, we apply the baseline CHMM and the proposed multi-stream CHMM 

structures to the single stream sequential data where the features are generated from one homoge-

neous source of information. The MSCHMM architectures treat the single stream sequential data 

as a double-stream one (each stream is assumed to have 2-dimensional observation vectors). In 

this experiment all models are trained using standard Baum-Welch (for the baseline CHMM), the 

generalized Baum-Welch (for the MSCHMM), the standard and generalized MCE/GPD algorithms, 

or a combination of the two (Baum-Welch followed by MCE/GPD). The results of this experiment 
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are reported in table 5. As it can be seen, the performance of the proposed MSCHMM structures 

and the baseline CHMM are comparable for most training methods. This is because when both 

streams are equally relevant for the entire data, the different streams receive nearly equal weights 

in all states' components and the MSCHMM reduces to baseline CHMM. 

Fig. 28 displays stream 1 relevance weights for components of the 4 states learned by the 

MSCHMMLm . As it can be seen, most weights are clustered around 0.5 (maximum weight is less 

than 0.6 and minimum weight is more than 0.4). Since weights of both streams must sum to 1, 

both weights use equally important for all symbols. The stream relevance weights learned by the 

MSCHMMLs are shown in table 4 . Similar results are obtained for the MSCHMMLm. 
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Figure 28. Stream 1 relevance weights of the mixture components in all 4 states, learned by the 
MSCHMMLm model for the single-stream sequential data. 

TABLE 4 

Stream relevance weights of the MSCHMML• learned from the single stream data 

state \ stream k=l k=2 

i=l 0.4770 0.5230 
i=2 0.5889 0.4111 
i=3 0.4950 0.5050 
i=4 0.5022 0.4978 
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TABLE 5 

Classification rates of the different CHMM structures for the single stream data 

Classifier 

Baseline CHMM 
MSCHMMLm 
MSCHMML, 

Baum-Welch 

89.00 % 
93.25 % 
92.75 % 

MCE 

91.25% 
94.00% 
95.25 % 

BW and MCE 

93.15% 
95.00% 
97.45% 

The second experiment involves applying the baseline CHMM and the MSCHMML structures 

to the double stream sequential data where the features are generated from two different streams. In 

this experiment the various models are trained using Baum-Welch, MCE, and Baum-Welch followed 

by MCE training algorithms. First , we note that using stream relevance weights, the generalized 

Baum-Welch and MCE training algorithms converge faster and result in a small error. Fig. 29 

displays the number of misclassified samples versus the number of iterations for the baseline CHMM 

and the MSCHMML structures using MCE/GPD training. As it can be seen, learning stream 

relevance weights causes the error to drop faster. In fact, at each iteration, the classification error 

for the MSCHMML structure is lower than the baseline CHMM. 

260 

(J) ...... 240 
C 
"0 -- Baseline CHMM 
c.. 220 --MSCHMM: Mixtu re level 
"0 --MSCHMM: State level V 
It= 200 
"iii 
(J) 

180 CO 
(3 
(J) 

160 "E 
'0 140 .... 
V 
.0 120 
E 
;:, 

100 Z 

80 
0 5 10 15 20 25 

Number of training iterations 

Figure 29. Number of misclassified samples versus the number of iterations for the standard and 
MSCHMML 
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The testing results are reported in table 7. First, we note that all MSCHMML structures 

outperform the baseline CHMM for all training methods. This is because the data set used for 

this experiment was generated from two streams with different degrees of relevancy and the baseline 

CHMM treats both streams equally important. The MSCHMML structures on the other hand, learn 

the optimal relevance weights for each symbol within each state. The learned weights for stream 

1 by the MSCHMML= are displayed in Fig. 31. As it can be seen, some components are highly 

relevant (weight close to 1) in some states, while others are completely irrelevant (weights close to 

0). The latter ones correspond to the components where stream 1 features were replaced by noise 

in the data generation. 

Table 6 shows the stream relevance weights learned by the MSCHMMLs. As it can be seen, 

the learned relevance vary. This is consistent with the fact that the two streams of data do not have 

the same relevance. Also, all the proposed MSCHMML outperform the existing MSCHMMG struc­

tures [25, 24]. This is mainly due to the fact that the parameters of MSCHMML structures are up­

dated simultaneously by both Baum-Welch and MCE/GPD training. However, for the MSCHMMG 

parameters are learned separately. 

From table 7, we also notice that using the generalized Baum-Welch followed by the MCE 

to learn the model parameters is a better strategy. This is consistent with what have been reported 

for the baseline HMM [32]. 

To illustrate the advantages of the MSCHMML further, in Fig. 30, we display a scatter plot 

of the baseline CHMM vs. the MSCHMML= confidence values. As it can be seen, the confidence 

values are highly correlated. However, for few sequences (e.g. highlighted regions RI for class 1 and 

R2 for class 2) the MSCHMML= outperforms the baseline CHMM. To verify that this difference 

is attributed to the learned relevance weights, we consider one of the sequences in R I . For all the 

15 observations, the learned stream 1 relevance weights for the components of the most likely state 

of MSCHMML
= are displayed in Fig. 32 . As it can be seen, none of the components have equal 

stream relevance weights in all 4 states. 

V.5 Chapter summary 

In this chapter, we have presented the details of the generalized multi-stream continuous 

HMM (GMSCHMM) structures. These models are proposed to take into account the different de­

gree of relevancy of different streams. Our approach is data driven. It relies on training data to 

associate feature relevance weights to each state and/or mixture component. The proposed GM-
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Figure 32. Stream 1 relevance weights of the mixture components in most likely state corresponding 
to the observation of a sequence from Rl in Fig.fig:SynthScatterMissedPointCHMM, learned by the 
MSCHMMLm 

TABLE 6 

Stream relevance weights of the MSCHMML, learned from the double stream data 

state \ stream k=l k=2 

i=l 0.2857 0.7143 
i=2 0.3636 0.6364 
i=3 0.4000 0.6000 
i=4 0.1429 0.8571 

SCHMM architectures include stream relevance component via the linearization of the observation 

pdf. The pdf linearization meets the independence assumption between streams of data. Two form 

of pdf have been proposed: mixture and state level pdfs. In both cases, the Baum-Welch and 

MCE/ GPG learning algorithms have been generalized to allow for simultaneous learning of all the 

model parameters. We derive the necessary conditions to update the different model parameters. 

The proposed structures have been evaluated using synthetic data sets. Results show that the 

MSCHMMLm and MSCHMML, structures outperform the baseline CHMM. 
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TABLE 7 

Comparison of BW and MCE algorithms for the different CHMM structures 

Classifier 

Baseline CHMM 
MSCHMMLm 
MSCHMML, 
MSCHMMGm 
MSCHMMG, 

Baum-Welch 

63.25 % 
70.35 % 
71.65% 

100 

YICE 

65.75 % 
72.75% 
71.25 % 

BW and MCE 

68.85% 
79.65% 
80.00% 
70.65% 
72.00% 



CHAPTER VI 

Applications 

Experience does not ever err; it is only 

your judgment that errs in promising itself 

results which are not caused by your 

experiments 

Leonardo da Vinci 

In this chapter, the proposed multi-stream Hidden Markov models structures are evaluated 

using real data sets for landmine detection, Australian sign language classification, audio classi­

fication, and face classification. We show that the proposed MSHMM structures outperform the 

standard HMM as well as existing multi-stream HMM. 

VI. I Landmine detection using ground penetrating radar 

VI. 1. I Introduction 

Detection, localization and subsequent neutralization of buried antipersonnel (AP) and anti­

tank (AT) landmines is a worldwide humanitarian and military problem. The latest statistics show 

that in 2006, a total of 5,751 casualties from mines were recorded in 68 countries and areas, including 

1,367 people killed and 4,296 injured. In fact, the number of mine survivors in the world continue 

to grow and reached over 473,000 in 2006, many needing life-long care. Detection and removal of 

landmines is therefore a significant problem, and has attracted several researchers in recent years. 

One challenge in landmine detection lies in plastic or low metal mines that cannot or are difficult 

to detect by traditional metal detectors. Varieties of sensors have been proposed or are under in­

vestigation for landmine detection. The research problem for sensor data analysis is to determine 

how well signatures of landmines can be characterized and distinguished from other objects under 

the ground using returns from one or more sensors. Ground Penetrating Radar (GPR) offers the 

promise of detecting landmines with little or no metal content. Unfortunately, landmine detection 

via GPR has been a difficult problem [56, 57]. Although systems can achieve high detection rates, 
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they have done so at the expense of high false alarm rates. The key challenge to mine detection 

technology lies in achieving a high rate of mine detection while maintaining low level of false alarms. 

The performance of a mine detection system is therefore commonly measured by a receiver operating 

characteristics (ROC) curve that jointly specifies rate of mine detection and level of false alarm. 

Automated detection algorithms can generally be broken down into four phases: pre­

processing, feature extraction, confidence assignment, and decision-making. Pre-processing algo­

rithms perform tasks such as normalization of the data, corrections for variations in height and 

speed, removal of stationary effects due to the system response, etc. Methods that have been used 

to perform this task include wavelets and Kalman filters [58], subspace methods and matching to 

polynomials [59], and subtracting optimally shifted and scaled reference vectors[60]. Feature ex­

traction algorithms reduce the pre-processed raw data to form a lower-dimensional, salient set of 

measures that represent the data. Principal component (PC) transforms are a common tool to 

achieve this task [61,62]. Other feature analysis approaches include wavelets [63] image processing 

methods of derivative feature extraction [64], curve analysis using Hough and Radon transforms 

[65], as well as model-based methods. Confidence assignment algorithms can use methods such as 

Bayesian [65], hidden Markov Models [64, 66, 35], fuzzy logic [67], rules and order statistics[68]' 

neural networks, or nearest neighbor classifiers [69, 70], to assign a confidence that a mine is present 

at a point. Decision-making algorithms often post-process the data to remove spurious responses 

and use a set of confidence values produced by the confidence assignment algorithm to make a final 

mine/no-mine decision. 

In [64, 66], hidden Markov modeling was proposed for detecting both metal and nonmetal 

mine types using data collected by a moving-vehicle-mounted GPR system and has proved that HMM 

techniques are feasible and effective for landmine detection. This (baseline) system uses observation 

vectors that encode the degree to which edges occur in the diagonal and anti-diagonal directions. It 

assumes that mine signatures have a rising edge (with an orientation close to 45°) and a falling edge 

(with an orientation close to 135°). This assumption may be too restrictive for some signature and 

may degrade the performance of the HMM detector. In this dissertation, we propose an alternative 

approach to extract features for the HMM detector that does not impose an explicit structure on 

the signature. This approach is based on Gabor filters and encodes the signature by its response 

to multiple filters at different scales and orientations [35]. Moreover, the edge histogram descriptors 

(EHD) [70], an MPEG7 based feature extraction mechanism, is also used in this application. Since 

the different features are not equally important in characterizing different mine types in different 
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Figure 33. NIITEK vehicle mounted GPR system 

environments, we will use the proposed multi-stream HMM structures to assign different weights to 

different features. 

VI.1.2 Data Preprocessing and Pre-screening 

VI.1.2.1 GPR D ata 

The input data consists of a sequence of raw GPR signatures collected by a NIITEK Inc. 

landmine detection system comprising a vehicle-mounted 51-channel GPR array [71] (see Fig. 33). 

The NIITEK GPR collects 51 channels of data. Adjacent channels are spaced approximately 5 

centimeters apart in the cross-track direction, and sequences (or scans) are taken at approximately 

6 centimeter down-track intervals. The system uses a V-dipole antenna that generates a wide-band 

pulse ranging from 200 MHz to 7 GHz. Each A-scan, that is, the measured waveform that is collected 

in one channel at one downtrack position, contains 416 time samples at which the GPR signal return 

is recorded. Each sample corresponds to roughly 8 picoseconds. We often refer to the time index 

as depth although, since the radar wave is traveling through different media, this index does not 

represent a uniform sampling of depth. Thus , we model an entire collection of input data as a three­

dimensional matrix of sample values , S( z, x , y) , z = 1" " , 416; x = 1" " ,51; Y = 1" " ,Ns, where 

N s is the total number of collected scans, and the indices z, x,and y represent depth, cross-track 

position, and down-track positions respectively. A collection of scans, forming a volume of data, is 

illustrated in Fig. 34. 

Fig. 35 displays several B-scans (sequences of A-scans) both downtrack (formed from a 
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Figure 35. NIITEK Radar down-track and cross-track (at position indicated by a line in the down­
track) B-scans pairs for (a) an Anti-Tank (AT) mine, (b) an Anti-Personnel (AP) mine, and (c) a 
non-metal clutter alarm. 

time sequence of A-scans from a single sensor channel) and crosstrack (formed from each channels 

response in a single sample). The surveyed object position is highlighted in each figure. The objects 

scanned are (a) a high-metal content antitank mine, (b) a low-metal antitank mine, and (c) a wood 

block. 
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VI.1.2.2 Data preprocessing 

Preprocessing is an important step to enhance the mine signatures for detection. In general, 

preprocessing includes ground-level alignment and signal and noise background removal. First, we 

identify the location of the ground bounce as the signals peak and align the multiple signals with 

respect to their peaks. This alignment is necessary because the vehicle-mounted system cannot 

maintain the radar antenna at a fixed distance above the ground. The early time samples of each 

signal, up to few samples beyond the ground bounce are discarded. The remaining signal samples 

are divided into N depth bins, and each bin would be processed independently. The reason for this 

segmentation is to compensate for the high contrast between the responses from deeply buried and 

shallow anomalies. Next, the adaptive least mean squares (LMS) pre-screener proposed by Torrione 

et al. [72J is used to focus attention and identify regions with subsurface anomalies. The goal of a 

pre-screener algorithm in the framework of vehicle-mounted realtime landmine detection is to flag 

locations of interest utilizing a computationally inexpensive algorithm so that more advanced feature­

processing approaches are applied only to the small subsets of data flagged by the pre-screener. The 

LMS is applied to the energy at each depth bin and assigns a confidence value to each point in the 

cross-track, down-track plane based on its contrast with a neighboring region. The components that 

satisfy empirically pre-determined conditions are considered as potential targets. Their cross-track 

Xs, and down-track Ys positions of the connected component center are reported as alarm positions 

for further processing by the feature-based discrimination algorithm to attempt to separate mine 

targets from naturally occurring clutter. 

VI.1.3 Feature Extraction 

VI.1.3.1 Gradient based features 

Landmines (and other buried objects) appear in time domain CPR as shapes that are similar 

to hyperbolas corrupted by noise. Thus, the feature representation adopted by the HMM-based 

system is based on the degree to which edges occur in the diagonal and anti-diagonal directions, 

and the features were extracted to accentuate these edges. Figure 36 displays a hyperbolic curve 

superimposed on a preprocessed metal mine signature to illustrate the features of a typical mine 

signature. First, we compute the first and second derivative of the signal S(x, y, z) along the down-
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Figure 36. Shape of a typical mine signature and the interpretation of the 4 states of the HMM 
stucture. 

track (y) direction using: 

Dy(x, y , z) 

Dyy(x , y, z) 

[S(X, Y + 2, z) + 2S(x, y, z) - 2S(x, y - 1, z) - S(x , y - 2, z)] 
3 

[Dy(x , y + 2, z) + 2Dy(x, y - 1, z) - Dy(x , y - 2, z)] 
3 

Then, the derivative values are normalized using 

N( ) 
_ Dyy(x, y, z) - J-t(x, z) 

x, y, z - () , CI x,z 

(VI.1.1) 

(VI.1.2) 

where J-t(x, z) and CI( X, z) are the running mean and standard deviation updated using a small 

background area around the target flagged by the prescreener. 

The down-track dimension is taken as the time variable in the HMM model. The goal is 

to produce a confidence that a mine is present at various positions, (x, y), on the surface being 

traversed. To fit into the HMM context, a sequence of observation vectors must be produced for 

each point. These observation vectors encode the degree to which edges occur in the diagonal and 

antidiagonal directions. The observation vector at a point (xs, Ys) consists of a set of 15 features 

that are computed on a normalized array of GPR data of size 32 x 8. Let Xs and Ys be given and 

let A denote the array 

A = A(y, z) = N(x, y, z), (VI.1.3) 
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where x = xs, y = Ys - 3, ... ,Ys + 4, and z = 1,2, ... ,32. The array A is then broken into positive 

and negative parts according to the formulas 

A+(y, z) = { :(y z) 

A (y, z) = { ~A(Y, z) 

if A(y,z) 21 
(VL1.4) 

otherwise 

if A(y,z)::;-1 
(VI.l.5) 

otherwise 

Next, for each point in the positive and negative parts of A, the strengths of the diagonal 

and anti-diagonal edges are estimated. The strengths are measured by taking the local minimum in 

either the 45° or 135° direction around the column Ys + 1. Four types of edges that correspond to 

the, positive anti-diagonal (PA), negative anti-diagonal (NA), positive diagonal (PD), and negative 

diagonal (ND) edges are defined. These edges are computed using 

PA(z) 

NA(z) 

PD(z) 

ND(z) 

min A- (Ys, z - 1), A - (Ys + 1, z), A - (Ys + 2, z + 1), A - (Ys + 3, z + 2) 

minA+(ys, z + 2), A+(ys + 1, z + 1), A+(ys + 2, z), A+(ys + 3, z - 1) 

min A - (Ys, z + 2), A - (Ys + 1, z + 2), A-(ys + 2, z), A - (Ys + 3, z - 1) 

For each edge type, we find the position of the maximum value over a neighborhood of 32 

depth values. For example, in the array P A we compute 

mpa = argmax{PA(z) : z = 1,2,··· ,32} (VL1.6) 

where mpa denotes "maximum of the positive anti-diagonal". The variables mpd, m na , and mnd 

are defined similarly. The values of the positive and negative diagonal and anti-diagonal arrays 

are used to define the 4-dimensional (4-D) observation vector associated with the point (xs,Ys), 

O(xs,Ys) = [PD(mpd),PA(mpa),ND(mnd),NA(mna)]' Observation sequences of length 15 are 

formed at point (x, y) by extracting the observation sequence: 

O(x, y - 7), O(x, y - 6)"" ,O(x, y - 1), O(x, y), O(x, y + 1)"" , O(x, y + 7). 

VI.1.3.2 Gabor based features 

The edge features assume that mine signatures have a diagonal (45°) rising edge and an 

anti-diagonal (135°) falling edge. However, this assumption may be too restrictive and may not be 

satisfied for some mine signatures. In fact, a rising edge could follow other orientations such as (30°) 
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or (60°) depending on the radar resolution and the sampling rate. In addition, the gradient edge 

features are extracted locally and thus, they do not consider the global variability or the frequencies 

of the signature. 

In this section, we adopt the Homogeneous Texture Descriptor [73] to capture the spatial 

distribution of the edges within the 3-D GPR alarms. In particular, we propose extracting features 

by expanding the signature's B-scan using a bank of scale and orientation selective Gabor filters. 

We fix the number of scales to four and the number of orientations to four at a 45° intervals. 

Let S(x, y, z) denote the 3-D GPR data volume of an alarm. To keep the computation 

simple, we use 2-D filters (in the y - z plane) and average the response over the third dimension. 

Let Sx (y, z) be the xth plane of the 3-D signature S(x, y, z). Let SG~k) (y, z), k = 1, ... ,16 denote 

the response of Sx(y, z) to the 16 Gabor filters. Fig. 37(a) displays a strong signature of a typical 

metal mine and its response to the 16 Gabor filters. As it can be seen, the signature has a strong 

response to the ()2 (45°) filters (especially scale 1 and scale 2 to a lesser degree) on the left part 

of the signature (rising edge), and a strong response to the ()4 (135°) filters on the right part of 

the signature (falling edge). Similarly, the middle of the signature has a strong response to the ()3 

(horizontal) filters (flat edge). Fig. 37(b) displays a weak mine signature and its response to the 

Gabor filters. For this signature, the edges are not as strong as those in Fig. 37(a). As a result, it 

has a weaker response at all scales (scale 2 has the strongest response), especially for the falling edge. 

Fig. 37(c) displays a clutter signature (with high energy) and its response. As it can be seen, this 

signature has strong response to the ()4 (135°) degree filters. However, this response is not localized 

on the right side of the signature as it is the case for most mine signatures. 

In our HMM models, we take the down-track dimension as the time variable (Le., y corre-

sponds to time in the HMM model). Our goal is to produce a confidence that a mine is present at 

various positions, (x,y), on the surface being traversed. To fit into the HMM context, a sequence 

of observation vectors must be produced at each point. The observation sequence of Sx(y, z) at a 

fixed depth z, is the sequence of 15 observation vectors 

O(x, y - 7, z), O(x, y - 6, z), ... ,O(x, y - 1, z), O(x, y, z), O(x, y + 1, z), ... ,O(x, y + 7, z), 

where 

O(x,y,z) = [Ol(X,y,Z),··· ,016(x,y,z)], (VI. 1. 7) 

and 
45 

Ok(x, y, z) = 4
1
5 L SG~k)(y, z), 

z=l 

(VI. loS) 
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Figure 37. Response of 3 alarms to the 16 Gabor filters at different scales and orientations. (a) 
Strong mine signature, (b) Weak mine signature, and (c) clutter signature with high energy. 

encodes the response of Sex, y, z) to the kth Gabor filters. 

VI.1.3.3 Edge histogr am d escript ors 

The Edge Histogram Descriptors (EHD) [74] captures the salient properties of the 3-D alarms 

in a compact and translation-invariant representation. This approach, inspired by the MPEG-7 EHD 

[75], extracts edge histograms capturing the frequency of occurrence of edge orientations in the data 

associated with a ground position. The basic MPEG-7 EHD has undergone rigorous testing and 

development , and thus, represents one of the mature, generic, and efficient texture descriptors. For 

a generic image, the EHD represents the frequency and the directionality of the brightness changes 

in the image. Simple edge detector operators are used to identify edges and group them into five 

categories: vertical, horizontal, 450 diagonal , 1350 antidiagonal, and isotropic (nonedges). The EHD 

would include five bins corresponding to the aforementioned categories. For our application, we 

adapt the EHD to capture the spatial distribution of the edges within a 3-D GPR data volume. 

To keep the computation simple, we still use 2-D edge operators. In particular, we fix the cross-
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track dimension and extract edges in the (depth, down-track) plane. The overall edge histogram is 

obtained by averaging the output of the individual (depth, down-track) planes. Also, since vertical, 

horizontal, diagonal, and antidiagonal edges are the main orientations present in the mine signatures, 

we keep the five edge categories of the MPEG-7 EHD. 

Let S~~) be the xth plane of the 3-D signature S(x, y, z). First, for each S~~), we compute four 

categories of edge strengths: vertical, horizontal, 45° diagonal, 135° antidiagonal. If the maximum 

of the edge strengths exceeds a certain preset threshold Be, the corresponding pixel is considered to 

be an edge pixel. Otherwise, it is considered a nonedge pixel. 

In our HMM models, we take the down-track dimension as the time variable (i.e., y corre-

sponds to time in the HMM model). Our goal is to produce a confidence that a mine is present at 

various positions, (x, y), on the surface being traversed. To fit into the HMM context, a sequence of 

observation vectors must be produced for each point. The observation sequence of si~) at a fixed 

depth z, is the sequence of 15 observation vectors Hi~:, i = 1, ... ,15, each represents a five-bin edge 

histogram correspondent to sg!. 
The overall sequence of observation vectors computer from the 3-D signature S(x, y, z) is 

then: 

(VI. 1.9) 

where H ZYi is the cross-track average of the edge histograms of subimage S~~! over Nc channels, i.e. 

(VI.l.lO) 

The extraction of the EHD is illustrated in Fig. 38. 

Figs. 39 and 40 display the edge histogram feature for a strong mine and a false alarm 

identified by the prescreener due to its high-energy contrast. As can be seen, the EHD of the 

mine signature can be characterized by a stronger response to the diagonal and antidiagonal edges. 

Moreover, the frequency of the diagonal edges is higher than the frequency of the antidiagonal edges 

on the left of the image (rising edge of the signature) and lower on the right part (falling edge). 

This feature is typical in mine signatures. The EHD of the false alarm, on the other hand, does not 

follow this pattern. The edges do not follow a specific structure, and the diagonal and antidiagonal 

edges are usually weaker. 
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Figure 38. Illustration of the EHD feature extraction process. 

VI.1.4 HMM parameters learning 

VI.1.4.1 Baseline (single stream) HMM 

The baseline HMM classifier for landmine detection consists of two HMM models , one for 

mine and one for background. Each model has three or four states and produces a probability value 

by backtracking through model states using the Viterbi algorithm [29]. The mine model, Am , is 

designed to capture the hyperbolic spatial distribution of the features. Typically, Am has 3 states, 

they correspond to the rising edge, fiat , and decreasing edge. The mine model is left to right model 

in that states are ordered and the transition probabilities for moving to a lower numbered state are 

zero. 

Another architecture is to have Am with four states. These states correspond to the non-

edge, the rising edge, fiat, and decreasing edge. The mine model is illustrated in Fig. 41. In addition 

to the mine model Am, a clutter model A b is needed to capture the background characteristics and 

to reject clutter. The clutter model, have three or four states depending on the corresponding 

mine modeL The probability value produced by the mine (clutter) model can be thought of as an 

estimate of the probability of the observation sequence given that there is a mine (clutter) present . 
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Figure 39. EHD feature of a strong mine signature. (a) Mine signature in the (depth, down-track) 
plane. (b) Pixels classified to the closest edges (c) EHD features for the 15 observations 
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Figure 40. EHD feature of a false alarm signature. (a) False alarm in the (depth, down-track) plane. 
(b) Pixels classified to the closest edges (c) EHD features for the 15 observations 
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Figure 41. Illustration of the HMM mine model with four states. 

The architecture of the HMM mine detector is illustrated in Fig.42. 
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Figure 42. Illustration of the baseline HMM mine detector 

For the baseline HMM, we treat all feature sets (Gradient, Gabor, and EHD) equally impor-

tanto For the discrete case, to generate the codebook, we cluster the training data into M clusters 

using the FCM algorithm [51]. To generate the state components for the continuous HMM, we 
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cluster the training data relative to each state into M clusters also using the FCM algorithm [51]. 

For both DHMM and CHMM, the parameters are then estimated using the Baum-Welch algorithm 

[6], the MCEj GPD algorithm [32] , or a combination of the two. 

VI.1.4 .2 Multi-stream HMM 

In the baseline HMM, the different features are assumed to be equally important in charac-

terizing alarm signatures. However , this assumption may not be valid for most cases. For instance, 

some alarms may be better characterized with the gradient features , while others may be better 

characterized with Gabor or EHD features . Also, even within the same features set, components 

may not be equally important . For instance, within the Gabor features , some alarms may be better 

characterized at lower scales, while others may be better characterized at higher scales. The different 

feature sets could then be treated as different sources of information, i.e., different streams. Since 

it is not possible to know a priori which feature is more discriminative, we propose considering the 

different features as different streams of information and use the training data to learn Multi-Stream 

HMMs (discrete and continuous). 

The MSHMM based landmine detector 's architecture is illustrated in Fig.43. We use L 

MSHMM 

rn 
~~ 

background model "r7l 
"lSLJ 

Figure 43. Illustration of the multi-stream HMM mine detector 

streams where each stream (Gradient, EHD, Gabor, or Gabor response at a fixed scale) produces 

a Pk-dimensional feature vectors. For the discrete case (MSDHMM), to generate the codebook, we 

cluster the training data in M clusters using SCAD [36] and learn initial stream relevance weights 

for each symbol. The state transition probabilities A and the observation probabilities B are learned 

using the generalized Baum-Welch (see section IV.2) , the generalized MCEjGPD (section IV.2.2.3 
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), or a combination of the two. 

To generate the state components for the continuous case (MSCHMM), we cluster the train­

ing data relative to each state in M clusters using SCAD [36] and learn initial stream relevance 

weights for each state and component. The state transition probabilities A, the mixing coefficients 

U, and the component parameters and the observation probabilities B are learned using the general-

ized Baum-Welch (see section IV.2), the generalized MCE/GPD (section IV.2.2.3 ), or a combination 

of the two. 

VI.1.4.2.1 Confidence value assignment The confidence value assigned to each observation 

sequence, Conf(O), depends on: (1) the probability assigned by the mine model, Pr(OINn); (2) 

the probability assigned by the clutter model, Pr(OI.\C); and (3) the optimal state sequence. In 

particular, we use: 

{ 

(1 Pr(OIA=) 0) 
max og Pr(OIAc) , 

Conf(O) = 0 
if #{St = 1, t = 1,··· , T} :::: Tmax 

(VI.1.11) 
otherwise 

Since each alarm has over 500 depth values and only 45 depths are processed at a time, we divide 

the test alarm into 10 overlapping sub-alarms and test each one independently to obtain 10 partial 

confidence values. These values could be combined using various fusion methods such as averaging, 

artificial neural networks [76], or an order-weighted average (OWA) [77]. In our work, we use the 

average of the top 3 confidences. This simple approach has been successfully used in [78]. 

VI. 1.5 Evaluation Measure: Receiver Operating Characteristic Curve 

The Receiver Operating Characteristic Curve (ROC) curve is a graphical plot of the sen-

sitivity vs. specificity for a binary classifier system as its discrimination threshold is varied. The 

ROC can also be represented equivalently by plotting the fraction of true positives (TPR = true 

positive rate) vs. the fraction of false positives (FPR = false positive rate). Consider a two-class 

prediction problem (binary classification), in which the outcomes are labeled either as positive (p) 

or negative (n) class. There are four possible outcomes from a binary classifier. If the outcome from 

a prediction is p and the actual value is also p, then it is called a true positive (TP); however if 

the actual value is n then it is said a false positive (FP). Conversely, a true negative occurs when 

both the prediction outcome and the actual value are n, and false negative is when the prediction 

outcome is n while the actual value is p. Let us define an experiment from P positive instances 

and N negative instances. The four outcomes can be formulated in a 2 x 2 contingency table or a 
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confusion matrix, (refer to Table.8). To draw an ROC curve, only the true positive rate (TPR) and 

false positive rate (FPR) are needed. TPR determines a classifier or a diagnostic test performance on 

classifying positive instances correctly among all positive samples available during the test. FPR, on 

the other hand, defines how many incorrect positive results while they are actually negative among 

all negative samples available during the test. 

An ROC space is defined by FPR and TPR as x and y axes respectively, which depicts relative 

trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent with 

sensitivity and FPR is equal to I-specificity, the ROC graph is sometimes called the sensitivity vs 

(I-specificity) plot. Each prediction result or one instance of a confusion matrix represents one point 

in the ROC space. 

TABLE 8 

Contingency Table 

p n total 
p' True Positive False Positive P' 
n' False Negative True Negative N' 

total P N P+N 

VI.L6 Experimental results 

VI.L6.l MSHMM with four Gabor scales 

In this experiment we use only Gabor features to illustrate the need for treating features at 

multiple scales differently. In particular, each Gabor scale is considered as a separate stream. Thus, 

we use our MSHMM with L = 4 streams. 

The data collection used in this experiment includes 600 mine and 600 clutter signatures. We 

use a 5-fold cross validation scheme to evaluate the proposed MSHMM structures and compare them 

to the baseline HMM as well as the existing MSHMM structures. For each cross-validation, we use 

a different subset of the data that has 80% of the alarms for training and test on the remaining 20% 

of the alarms. As mentioned earlier, the evaluation is performed in terms of the receiver operating 

characteristics (ROC) curve. For the probability based DHMM with geometric aggregation, we set 

the values of v and K, in (IV.2.44) to 1.25 and 1 respectively. 

For the MCE/GPD training, the parameter of the sigmoid loss function was empirically 

chosen as ( = 1, () = o. In general, in MCE training the step size parameter E needs to be carefully 

chosen to balance learning rate and convergence behavior. A large E leads to fast learning but may 
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cause divergence, while a small E leads to slow learning but is safe in convergence. Our experiments 

revealed that the best step size E was often data dependent, and it also depended on how well the 

baseline models fit the data. In this dissertation we report the results when, the step-size is set to 

10-3 for the first iteration, and is increased by a step of 10-3 . It has been noticed that the number 

of iterations required for convergence is around 50. 

VI.1.6.1.1 Discret e case Fig. 44 compares the ROC curves generated using each of the four 

streams (Gabor features at each scale). All results were obtained when the model parameters are 

learned using Baum-Welch followed by the MCE/GPD training method. We note that the DHMM 

with Gabor features at scale 2 outperforms all other features (for FAR :S 40) . In this figure, the 

individual scales (with the baseline DHMM) are also compared to the case where all scales are 

concatenated (with the baseline DHMM). We note that the baseline DHMM with all 4 scales is not 

much better than the DHMM at scale 2. In fact, for some FAR, the performance can be worse. This 

is due mainly to the way the four scales are combined equally. 
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Figure 44. Comparison of the baseline DHMM with the individual Gabor scales and when all scales 
are concatenated. 

To illustrate the complementary information provided by the different scales, in Fig. 45 we 

display a scatter plot of the confidence values generated by the baseline DHMM that uses Gabor 

features at scale 1 and scale 2. As it can be seen, for many alarms, the confidence values generated 

by both DHMMs are correlated. However, there are few alarms, e.g., those highlighted in region R3 , 
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Figure 45. Scatter plot of the confidence values generated using 2 baseline DHMM that use Gabor 
features at scales 1 and 2. 

(a) GPR data (b) Response to scale 1 Gabor 
filters at 4 orientations 

(c) Response to scale 2 Gabor fil­
ters at 4 orientations 

Figure 46. A sample mine signature (from region Rl III Fig.45) where the DHMM with scale 2 
outperforms the DHMM with scale 1 

where the DHMM with scale 1 features is more reliable than the DHMM with scale 2. The alarm 

shown in Fig. 46 is one of those alarms, and as it can be seen, the alarm's response to scale 1 Gabor 

filters is more dominant . Similarly, there are few alarms, e.g., those highlighted in region R 1 , where 

the DHMM with scale 2 features is more reliable than the DHMM with scale 1. The alarm shown 

in Fig. 47 is one of those alarms. For this alarm, its response to scale 2 is more noticeable. This 

difference in behavior exists for clutter alarms too as highlighted in R2 . The proposed MSDHMM is 

designed to identify the different types of alarms and construct a codebook where the symbols have 

stream dependent relevance weights in each state. 

Fig. 48 compares the ROC curves generated using each of the four streams (Gabor features 
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(a) GPR data (b) Response to scale 1 Gabor (c) Response to scale 2 Gabor fil-
filters at 4 orientations ters at 4 orientations 

Figure 47. A sample mine signature (from region R3 in Fig.45) where the DHMM with scale 1 
outperforms. the DHMM with scale 2 

at each scale) and their combination using simple concatenation (Baseline DHMM) and using the 

different variations of the multi-stream DHMM. As it can be seen, all MSDHMM structures out per-

form the baseline DHMM. Moreover, the MSDHMM with linear aggregation outperforms the other 

structures. These results are consistent with those obtained with the synthetic data. 
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Figure 48. Comparison of the different variations of the proposed multi-stream DHMM to the 
baseline DHMM. 

Fig. 49 displays the number of misclassified samples versus the number of iterations for the 

baseline DHMM and the proposed MSDHMM using MCEj GPD training. As it can be seen, learning 

stream relevance weights causes the error to drop faster. In fact , at each iteration, the classification 

error for the MSDHMM structure is lower than the baseline DHMM. 
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Figure 49. Number of misclassified samples versus the number of iterations for the standard and 
MSDHMM. 

VI.1.6.1.2 Continuous case Fig. 50 compares the ROC curves generated using each of the four 

streams (Gabor features at each scale). All results were obtained when the model parameters are 

learned using Baum-Welch followed by the MCE/ GPD training method. We note that the CHMM 

with Gabor features at scale 2 and 4 are very comparable and outperform all other features (for 

F AR ~ 40). In this figure, the individual scales (with the baseline CHMM) are compared to the case 

where all scales are concatenated (with the baseline CHMM). As it can be seen, the baseline CHMM 

with all 4 scales is not much better than the CHMM at scale 2 and 4 especially for F AR ~ 30. In 

fact, for some FAR, the performance can be worse. This is due mainly to the way the four scales 

are combined equally. 

As in the discrete case, in Fig. 51 we display a scatter plot of the confidence values generated 

by baseline CHMM that use Gabor features at scale 1 and scale 2. As it can be seen, for most alarms, 

the confidence values generated by both CHMMs are correlated. However , there are few alarms, 

e.g. , those highlighted in region R3 , where the CHMM with scale 1 features is more reliable than the 

CHMM with scale 2. The alarm shown in Fig. 37 (a) is one of those alarms, and as it can be seen, 

the alarm's response using scale 1 Gabor filters is more reliable. Similarly, there are few alarms. 

e.g., those highlighted in region R1 , where the DHMM with scale 2 features is more reliable than 

the DHMM with scale 1. The alarm shown in Fig. 37 (b)is one of those alarms. For this alarm, 
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Figure 50. Comparison of the baseline CHMM with the individual Gabor and all scales concatenated. 

its response to scale 2 is more reliable. This difference in behavior exists for clutter alarms too as 

highlighted in R2 . 

Fig. 52 compares the ROC curves generated using each of the four streams (Gabor features 

at each scale) and their combination using simple concatenation (Baseline CHMM) , the proposed 

MSCHMM variations, and the existing MSCHMM. All results were obtained when the model pa­

rameters are learned using Baum-Welch followed by the MCE/ GPD training method. As it can 

be seen, all MSCHMM structures outperform the baseline CHMM. Moreover, the MSCHMM with 

mixture level streaming outperforms the other structures. The proposed MSCHMM structures also 

outperform the MSCHMMG [25, 24] approach (outlined in section IIL3.2.1). This is due to the fact 

that the stream relevance weights are learned separately from the rest of the model parameters. 

These results are consistent with those obtained with the synthetic data in sections IV.5 and VA.3. 

VI.1.6.2 MSHMM with Gradient , Gabor and EHD feature sets 

VI.1.6.2.1 Discrete case In this experiment , we apply the proposed MSHMM structures to a 

bigger collection of data that contains 5215 alarms. The number of mine alarms is 1554, and the 

number of 3878 clutter alarms. We use the same settings as in the previous experiment. However, 

we consider the three feature collections (Gradient, Gabor, and EHD) as three separate streams. 
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Figure 51. Scatter plot of the confidence values generated using 2 baseline CHMM that use Gabor 
features at scales 1 and 2. 
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baseline CHMM and the existing MSCHMMG
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Fig. 53 compares the ROC curves generated using each of the three streams (Gradient, 

Gabor, and EHD). All results were obtained when the model parameters are learned using Baum-

Welch followed by the MCE/ GPD training method. We note that the DHMM with EHD features 

outperforms all other features (for F AR ~ 25). The baseline DHMM with gradient features has 

the lowest performance. The individual features (with the baseline CHMM) are also compared to 

the case where all features are concatenated (with the baseline DHMM). We note that the baseline 

DHMM with all 3 features is not better than the DHMM with EHD and Gabor. In fact, for some 

regions of the ROC, the performance can be even worse. This is due mainly to the way the three 

features are treated equally important for all alarms combined equally. 
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Figure 53. Comparison of the baseline DHMM with the individual features (Gradient, Gabor, and 
EHD) and all features concatenated. 

In Fig. 54, we display a scatter plot of the confidence values generated by the baseline DHMM 

that uses the EHD and Gabor features. As it can be seen, for most alarms, the confidence values 

generated by both DHMMs are correlated. However, there are few alarms, e.g. , those highlighted 

in region R 3 , where the DHMM with EHD features is more reliable than the DHMM with Gabor 

features. 

Fig. 55 compares the ROC curves generated using each of the three streams (Gradient, 

Gabor, and EHD features) and their combination using simple concatenation (Baseline DHMM) 

and using multi-stream DHMM. All results were obtained when the model parameters are learned 
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Figure 54. Scatter plot of the confidence values generated using 2 baseline DHMM that use EHD 
and Gabor features. 

using Baum-Welch followed by the MCE/ GPD training method. We note that MSDHMM structures 

outperform the baseline DHMM. Moreover, the MSDHMM with linear aggregation outperforms the 

other structures. These results are consistent with those obtained with the third experiment. 

V I.1.6.2.2 Continuous case Fig. 56 compares the ROC curves generated using each of the 

three streams (Gradient, Gabor, and EHD) with the baseline CHMM. All results were obtained 

when the model parameters are learned using Baum-Welch followed by the MCE/ GPD training 

method. We note that the three modalities have comparable performance. The individual features 

(with the baseline CHMM) are also compared to the case where all scales are concatenated (with 

the baseline CHMM). We note that the baseline CHMM with all 3 features is not better than the 

CHMM with individual features . As in the discrete case, this is due mainly to the way the different 

sets of features are treated equally important for all alarms. 

Fig. 57 compares the ROC curves generated when all the streams are combined using simple 

concatenation (Baseline CHMM), the proposed MSCHMM variations, and the existing MSCHMMG 

algorithms [25, 24]. All results were obtained when the model parameters are learned using Baum-

Welch followed by the MCE/GPD training method. We note that all MSCHMM structures out-

perform the baseline CHMM. Moreover, the MSCHMM with mixture level streaming outperforms 

the other structures. Also, the proposed MSCHMM structures outperform the MSCHMMG
. This 
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Figure 55. Comparison of the different variations of the proposed multi-stream DHMM to the 
baseline DHMM. 
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Figure 56. Comparison of the baseline CHMM with the individual features (Gradient, Gabor, and 
EHD) and all features concatenated. 
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is due to the fact that the stream relevance weights in MSCHMMG are learned separately from the 

rest of the model parameters. 
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Figure 57. Comparison of the different variations of the proposed multi-stream CHMM to the 
baseline CHMM .. 

VI. 2 A ustralian sign language classification 

V I.2. 1 D at a collection 

This dataset (from the University of California-Irvine 1) consists of multiple Australian 

sign-language gestures , each represented by 27 instances of 22-dimensional time-series sequences. 

V I.2.2 Feature extract ion 

The 22-dimensional vectors encode information gathered from the movement of both hands 

while signing [79]. Figure 58 shows the glove based system used for gathering this information. In 

particular, each hand is represented by the following 11 attributes: 

• x, y , and z : encode the position of the hand relative to a zero point set slightly below the chin. 

These attributes are real numbered expressed in meters. 

Ihttp://www.cse.unsw.edu.au/waleed/tml/data 
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Figure 58. The user starting to sign. 

• roll: 0 being palm down. Positive means the palm is rolled clockwise from the perspective of 

the signer. To get degrees, multiply by 180. The range of this attribute is [-0.5 0.5] . 

• pitch: 0 being palm flat (horizontal). Positive means the palm is pointing up . To get degrees, 

multiply by 180. The range of tills attribute is [-0.5 0.5]. 

• yaw: 0 being palm straight ahead from the perspective of the signer. Positive means clockwise 

from the perspective above the signer. To get degrees, multiply by 180. The range of this 

attribute is [-1 1] . 

• thumb, forefinger, middle finger, ring finger , little finger: real attributes in the range of [0 1]. 

They encode the position correspondent to each finger. A value of zero means totally flat, and 

a value of one means totally bent. 

VI.2.2.1 R esults 

Among the 95 classes (words), we consider binary classification of semantically-related ex­

pressions such as write and draw or antonyms such as give and take. These expressions were assumed 

to have similar real-world symbols and formed the basis of the experiment with this dataset. To fit 

this data set into the multi-stream context , we assume that the attributes correspondent to each 

hand represent a separate interpretation of the original "signal" and thus a separate stream. Both 

discrete and continuous HMM models in this experiment have Ns = 5 states. In the discrete case, the 

training data is summarized into M = 100 symbols. In the continuous case, each state is represented 

by a mixture of !If = 4 Gaussian components. 

Table 9 shows a comparison of the accuracy of the baseline DHMM, MSDHMMD , 
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MSDHMMP" and MSDHMMPg over the classification of 10 such pairs of sequences. It could be 

seen from table 9 that the proposed MSDHMM are outperforming both the baseline DHMM. 

Table 10 shows a comparison of the accuracy of the baseline CHMM, MSCHMMGm, 

MSCHMMGs, MSCHMMLm, and MSCHMMLs over the classification of 10 such pairs of sequences. 

It could be seen from table 10 that the proposed MSCHMML are outperforming both the baseline 

CHMM and the state of the art MSCHMMG. 

All results were obtained when the model parameters are learned using Baum-Welch followed 

by the MCE/GPD training method. 

TABLE 9 

Comparison of the performance of the different DHMM structures over the AUSLAN data 

Simple pairs Baseline DHMM MSDHMMD MSDHMMP, MSDHMMPg 

'hot' vs 'cold' 53.025 % 56.55% 58.075 % 58.25% 
'eat' vs 'drink' 60.075 % 60.00% 68.00% 70.00% 

'happy' vs 'sad' 58.25% 67.35% 70.25 % 72.65% 
'yes' vs 'no' 55.00 % 59.50 % 67.00 % 73.25 % 

'give' vs 'take' 70.00 % 75.00 % 79.45 % 80.00% 

'paper' vs 'pen' 75.25 % 75.00 % 78.00 % 78.00% 

'science' vs 'research' 79.00 % 81.00 % 82.50 % 84.25% 

'soon' vs 'hurry' 62.45 % 64.00 % 66.00 % 70.00% 

'spend' vs 'cost' 66.00 % 68.00 % 75.00 % 72.00 % 

'write' vs 'read' 95.25 % 96.00 % 98.00 % 99.00% 

To illustrate the advantages of combining the different features coming from the two hands 

into a MSHMM structure and learning stream dependent relevance weights, in Fig. 59 and 60 we 

display a scatter plot of the confidence values generated by the baseline DHMM and CHMM that use 

the feature relative to left and right hand. As it can be seen, for most alarms, the confidence values 

generated by both CHMMs are correlated. However, there are few points, where the DHMM with 

the left hand features is more reliable than the DHMM with the right hand. The same observation 

could be noticed with the CHMM. 

In Fig. 61, we display a point from the class of "YES" words that has been missed by 

both standard discrete and continuous HMMs, and was correctly classified by all the multi-stream 

structures. Fig. 62 shows stream 1 (right hand) relevance weight of the closest symbols to the 

sequence in Fig. 61, learned by the model MSDHMMP,. It could be inferred that both streams 

(hands) do not have similar relevance in a considerable number of symbols. Also Fig. 63 display 
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the stream 1 (right hand) relevance weight in all the components of each state learned by t he 

MSCHMMLm . As it can be seen, most of the components do not have similar relevance weights in 

all 5 states. 
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Figure 61. Features of a sample from "YES" class misclassified by standard DHMM and CHMM, 
and correctly classified by the MSHMM structures. 

VI.3 Audio classification 

In this experiment we apply the proposed MSCHMM structures to the problem of music 

classification. We exploit several feature extraction mechanisms that we assume are different inter-
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pretations (streams) of the underlying characteristics of the image. 

VI.3.1 Data collection 

We use the benchmark data set for audio classification and clustering proposed in [80]. This 

data consists of 10 seconds samples of 1886 songs from Garageband website. Each song is encoded 

using mp3 with a sampling rate of 44.1kHz and a bitrate of 128kbit/s. The songs belong to 9 

different genres as shown in table 11. 
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VI.3.2 Feature extraction 

Two different set of features are considered in this experiment. The first one is the Mel­

frequency cepstral coefficient (1-1FCC) [81] and the second one is the Linear predictive coding (LPC) 

[82] 

VI.3.2.1 Mel-frequency cepstral coefficient (MFCC) 

The MFCC is a low-level audio feature representation that gained popularity within the 

research community [83, 84]. The human ear resolves frequencies non-linearly across the audio 

spectrum, and the log-scale bands introduced in the AudioSpectrumEnvelope Descriptor are used 

to address this problem. However, experiments have showed that simple rectangular form filters, 

placed on log-scale in the AudioSpectrumEnvelope Descriptor, do not match the human perception 

accurately. In [84], a Mel frequency scale that takes into account how humans perceive the difference 

between sounds of different frequencies was introduced. The input signal is divided into overlapping 

frames typically 20ms to 40ms with 50% overlap. To minimize signal discontinuities at the borders, 

a Humming windowing function is used. A Fast Fourier Transform (FFT) is then applied to each 

frame and the absolute value is taken to obtain the magnitude spectrum. The spectrum is then 

processed with a Mel-filter bank, a set of triangular shape filters, whose center frequencies are 

spaced according to the mel scale [83]. The response of each filter is log transformed, thus, resulting 

in a reduced representation of the spectrum. The cepstral coefficients are finally obtained through 

a Discrete Cosine Transform of the reduced log-energy spectrum. 

VI.3.2.2 Linear predictive coding (LPC) 

This feature is extracted using an approach that performs spectral analysis with an all­

pole modeling constraint. It is fast and provides accurate estimates of speech parameters. The 

basic idea behind linear predictive analysis is that a speech sample can be approximated as a linear 

combination of past speech samples. By minimizing the sum of the squared differences (over a finite 

interval) between the actual speech samples and the linearly predicted ones, a unique set of predictor 

coefficients can be determined. (The predictor coefficients are the weighting coefficients used in the 

linear combination.) [?]. 
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VI.3.3 Results 

In this experiment we compare the performance of the proposed multi-stream HMM struc­

tures to the standard HMM as well as the existing MSHMM. Cross validation with 10 folds is 

performed where 10% of the data is set for testing and the remaining 90% for training. For all the 

HMM structures, the number of states is set to N s =5. For the discrete case, M = 100 symbols are 

generated. For the continuous case, each state has M =5 Gaussian mixtures. For the multi-stream 

structure, the number of streams is set to L = 2, and the streams are the MFCC and LPC feature 

sets. Table 12 displays the performance for the various DHMM structures. As it can be seen, the 

proposed MSDHMMP structures outperform the baseline DHMM. Table 13 displays the performance 

of the various CHMM structures. As it can be seen, the proposed MSCHMML structures outperform 

both the state of the art MSCHMMG structures and the baseline CHMM. 

To illustrate the advantages of combining the different features (MFCC and LPC) into a 

MSHMM structure and learning stream dependent relevance weights, in Fig. 64 and 65 we display 

a scatter plot of the log-likelihood values generated by the baseline DHMM and CHMM that use 

MFCC and LPC features individually for the Rock vs Non-Rock subset. As it can be seen, for most 

alarms, the confidence values generated by both CHMMs are correlated. However, there are few 

points, where the DHMM with the MFCC features is more reliable than the DHMM with the right 

hand. The same observation could be noticed for the CHMM. 

To highlight the advantage of the proposed multi-stream strcuture, we consider a point from 

the class of Rock songs that has been missed by both standard discrete and continuous HMMs, 

and was correctly classified by all the multi-stream structures. Fig. 66 shows the stream relevance 

weights of the closest symbols to the sequence correspondent to this point, learned by the model 

MSDHMMD
. As it can be seen, both streams (MFCC and LPC) have different relevance weights in a 

considerable number of symbols. Fig. 67 displays stream 1 (MFCC) relevance weights in all states of 

the closest symbols to the sequence correspondent to this point, learned by the model MSDHMMP
] . 

Fig. 68 displays stream 1 (MFCC) relevance weight in all the states' components learned by the 

MSDHMMP
] for the same sequence. As it can be noticed, the stream relevance weights relative to 

both MFCC and LPC features can vary significantly. In fact, for the first component of state 2, the 

LPC features are of negligible relevance compared to the relevance of the MFCC. 
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Figure 64. Scatter plot of the log-likelihood generated by the baseline CHMM using each feature set 
independently. 

VIA Face vs non-face image classification 

In this experiment, we apply the MSDHMM structures to the problem of binary classification 

of face images versus non-face images. We exploit several feature extraction mechanisms that we 

assume are different interpretations (streams) of the underlying characteristics of the face image. 

VI.4.1 Data collection 

In this application, we consider a subset of the data set available on the CBCL webpage [?]. 

The CBCL data set consists of 2901 images for face , and 28121 images for non face. All the images 

are of size 19 x 19. Figure 69 displays samples of face images and figure 70 displays samples of the 

non-face images. 

VI.4.2 Feature extraction 

For frontal face images, the significant facial regions (hair, forehead, eyes, nose, mouth) come 

in a natural order from top to bottom, even if the images are taken under small rotations in the 
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Figure 68. Stream 1 (MFCC) relevance weights of the state components learned by the MSCHMMLm 

image plane and/ or rotations in the plane perpendicular to the image plane. In particular, the face 

images available within the CBCL data set include only the eyes, nose and mouth as in figure 71. 

To fit this within the HMM context, each of these facial regions is assigned to a state in a left to 

right discrete HMM. The state transition structure of the face model are shown in figure 72 . Each 

face image of width Wand height D is divided into overlapping blocks of height Z and width W. 

The amount of overlap between consecutive blocks is P (figure 71). 

The number of observation vectors T, that is the number of blocks extracted from each face 

image is given by: 
D-Z 

T= Z-P +1. (VI.4.l) 

The choice of the parameters P and Z can affect the system recognition rate. A high amount of 

overlap P can increase the recognition rate because it allows the features to be captured in a manner 

that is independent of the vertical position. The choice of the parameters Z is not trivial. A small 

value of Z can bring insufficient discriminant information to the observation vector, while a large 
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Figure 69. Sample of 100 face images 

value can increase the probability of cutting across the features. However , the system recognition 

rate is not very sensitive to variations in Z, as long as P is sufficiently large (P :::; Z - 1). 

The use of the pixel values as observation vectors has two important disadvantages: first , 

pixel values do not represent robust features , are sensitive to image noise as well as image rotation, 

shift or changes in illumination. Second, the large dimension of the observation vector leads to high 

computational complexity of the system. This can be a major problem for face recognition over 

large databases or when the recognition system is used for real time applications. In this work, each 

block is interpreted through four transformations: 
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Eyes Nose Mouth 

Figure 72. Left to right HMM for face recognition 

VI.4.2.1 Discrete Cosine Transform (DCT) 

Like other transforms, the Discrete Cosine Transform (DCT) attempts to decorrelate the 

image data [85]. After decorrelation each transform coefficient can be encoded independently with­

out losing compression efficiency. The DCT possess some desirable properties, i.e., de-correlation, 

energy compaction, separability, symmetry and orthogonality. These attributes led to widespread 

deployment of the DCT in virtually every image/video processing standard of the last decade. 

For an M x N image, we have an M x N DCT coefficient matrix covering all the spatial frequency 

components of the image. The DCT coefficients with large magnitude are mainly located in the 

upper-left corner of the DCT matrix. Accordingly, we scan the DCT coefficient matrix in a s zig-zag 

manner starting from the upper-left corner and subsequently convert it to a one-dimensional vector. 

In our application, we keep the largest 9 coefficients. Figure 73 displays a sample face image with 9 

DCT coefficient of the 15 subimages. 

VI.4.2.2 Fast Fourier Transform (FFT) 

We use the FFT to extract the important frequencies (in magnitude), that encodes the 

important activity within each sub-image. For an M x N image, we have an M x N FFT coefficient 

matrix covering all the spatial frequency components of the image. In our application, we keep 

the largest 9 coefficients. Figure 74 displays a sample face image with 9 DCT coefficient of the 15 

subimages. 

VI.4.2.3 Edge Histogram Descriptor (EHD) 

The EHD feature encodes important infOl:mation about the signature of each block of each 

image in a compact form. Each block is transformed to a feature vector that encodes the response 

of edge detection filters [74]. The edges considered are the horizontal, vertical, diagonal (45°), 

antidiagonal (135°). A non-edge dimension is also considered to capture the non-well defined edges. 

Hence, a 5-dimensional observation vector is formed in each level as it is shown in figure 75. More 
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Figure 73. A face image with the correspondent DCT feature of each block. 

details about this feature were given in section VI.1.3.3. 

VI.4.2 .4 Gabor feature extraction 

The Gabor feature is based on a bank of Gabor filters or kernels. They are similar to 

the receptive field profiles in cortical simple cells, which are characterized as localized, orientation 

selective, and frequency selective. A family of Gabor kernels is the product of a Gaussian envelope 

and a plane wave. These kernel are available at different scales and different orientations. More 

details about these features are presented in appendix F . We extract Gabor features from each block 

of each image (face or non-face) . We choose 3 scales and 6 orientations, resulting in a total of 18 
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Figure 74. A face image with the correspondent FFT feature of each block. 

Gabor functions in our study. We take the average of the largest 10 values of each filter response, 

so that we get each block represented by an 18 dimensional vector as it is shown in figure 76. 

VI.4 .2 .5 R esults 

For our experiments we take at random 1000 face images and 1000 non face images from 

the CBCL data set. We perform lO-fold cross validation. We set Z = 10, and P = 9. Since the 

image size is 19 x 19, each image is transformed to a sequence of 15 observation vectors. We train 

HMMs with N. = 3 states. For the discrete case, we generate M = 80 symbols as codebook, and 

for the continuous case, each state is represented by M = 5 components. The number of streams is 

set for L=4. We use the baseline HMM with the concatenation of all the streams to learn a model 

for face images and a model for non-face images. In addition, for each stream, a face and non-face 

models are learned. The proposed MSHMM structures: MSDHMMD
, MSDHMMP" MSDHMMPg, 

MSCHMMLm , and MSCHMML, are also used to learn a face model and a non-face model. 

Table 14 summarizes the result of the experiments performed using single and multi­

stream DHMMs . As it can be seen, the multi-stream DHMM structures outperform the baseline 

DHMM with all the stream concatenated and with the individual streams. We also notice that the 
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Figure 75. A face image with the correspondent EHD feature of each block. 

MSDHMMP, has a slight advantage over the other two structures: MSDHMMD and MSDHMMPg. 

Table 15 summarizes the result of the experiments performed using single and multi-stream 

CHMM. As it can be seen, the MSCHMML structures outperform the baseline CHMM with all the 

stream concatenated and with the individual streams, as well as the existing MSCHMMG structures. 

To confirm that the increase in performance for the proposed multi-stream HMM structures 

is due to the stream weighting component, we consider a sequence that has been misclassified by 

the standard HMM and correctly classified by the proposed MSHMM strucLures. The [ace image in 

figure 73 is one of those samples. Figure 77 displays the stream relevance weights of the sequence 

closest symbols learned by the MSDHMMP, . As it can be noticed, only very few symbols have 

comparable stream relevance weights. 
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Figure 76. A face image with the correspondent Gabor feature of each block. 

Fig. 78 display the learned stream relevance weights for the components of the states of 

MSDHMMLm. As it can be seen, none of the components have equal stream relevance weights in all 

3 states. 

V I .5 Chapter summary 

In this chapter, the proposed multi-stream Hidden Markov models structures have been 

applied to the problems of Landmine detection, Australian sign language classification, audio clas-

sification, and face classification. For the landmine application, several experiments performed on 

various data collections have shown that the propo ed MSHMM structures outperform the standard 

HMM as well as the multi-stream HMM available in the literature. The same observation is no-

ticed with the other applications. In particular, the MSDHMM structures proposed outperform the 

baseline DHMM in a setting of multi-modal temporal data. This is mainly due to the stream weight-
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Figure 77. The stream relevance weights of the closest symbols to a missed face image standard 
HMMs but correctly classified by the MSHMM, learned by the MSDHMMP, 
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Figure 78. The stream relevance weights of the closest symbols to a missed face image standard 
HMMs but correctly classified by the MSHMM, learned by the MSDHMMLm 
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ing component the MSDHMM includes. The proposed MSCHMM structures outperform existing 

MSCHMM. This is due mainly to the simultaneous parameter optimization that is made possible 

within the newly proposed structures. 
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TABLE 10. Comparison of the performance of the different CHMM structures over the AUSLAN data 

Simple pairs Baseline CHMM MSCHMMGm MSCHMMG, MSCHMMLm MSCHMML, 

'hot' vs 'cold' 54.075 % 52.00 % 55.5% 59.075 % 60.025% 
'eat' vs 'drink' 62.075 % 61.00% 60.00% 64.075% 71.25% 

'happy' vs 'sad' 60.25% 63.86 % 67.35% 70.25 % 72.65% 
'yes' vs 'no' 58.25 % 57.25 % 58.00 % 65.25 % 75.00 % 

>-' 'give' vs 'take' 70.15 % 72.15 % 75.00 % 79.45 % 80.00% ~ 
00 

'paper' vs 'pen' 75.25 % 75.00 % 75.00 % 78.00 % 78.00% 

'science' vs 'research' 80.25 % 79.00 % 81.00 % 83.00 % 86.00% 

'soon' vs 'hurry' 65.35 % 65.25 % 66.00 % 70.00 % 69.00% 

'spend' vs 'cost' 75.65 % 75.00 % 74.00 % 75.00 % 77 % 

'write' vs 'read' 99.25 % 100% 100% 100% 100% 



TABLE 11 

Music data statistics 

Genre Pop Rock Folk/Country Alternative Jazz Electronic Blues Rap/HipHop Funk/Soul 

Size 116 504 222 145 319 113 120 300 47 

TABLE 12 

Comparison of the performance of the different DHMM structures over the music data 

Classifier 

Baseline DHMM (MFCC) 
Baseline DHMM (LPC) 

Baseline DHMM (MFCC + LPC) 
MSDHMMD 

MSDHMMPI 
MSDHMMPg 

TABLE 13 

Recognition rate 

26.00 % 
24.00 % 
27.00 % 
29.00 % 
33.00 % 
31.00 % 

Comparison of the performance of the different CHMM structures over the music data 

Classifier 

Baseline CHMM (MFCC) 
Baseline CHMM (LPC) 

Baseline CHMM (MFCC + LPC) 
MSCHMMG= 

MSCHMMG , 

MSCHMML = 
MSCHMML , 

TABLE 14 

Recognition rate 

25.23 % 
26.56 % 
28.3 % 

30.35 % 
31.65 % 
35.88 % 
38.95 % 

Comparison of standard DHMM and MSDHMMs on the face data base 

Classifier 

Baseline DHMM (all streams) 
Baseline DHMM (2D-DCT) 
Baseline DHMM (2D-FFT) 
Baseline DHMM (Gabor) 
Baseline DHMM (EHD) 

MSDHMMD 

MSDHMMP, 
MSDHMMPg 
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Recognition rate 

64.025% 
68.5% 
62.65% 
60.00% 
65.85% 
78.25% 
84.65% 
82.00 % 



TABLE 15 

Comparison of standard CHMM, MSCHMMG
, and MSCHMML on the face data base 

Classifier 

Baseline CHMM (all streams) 
Baseline CHMM (2D-DCT) 
Baseline CHMM (2D-FFT) 
Baseline CHMM (Gabor) 
Baseline CHMM (EHD) 

MSCHMMG= 

MSCHMMG, 

MSCHMML = 
MSCHMML , 
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Recognition rate 

67.35% 
63.45% 
65.25% 
61.50% 
63.00% 

68.00% 
70.00% 
73.00% 

75.00 % 



VII. 1 Conclusions 

CHAPTER VII 

Conclusions and future directions 

An expert is a man who has made all the 

mistakes, which can be made, in a very 

narrow field. 

Niels Bohr 

This dissertation addressed the problems associated with modeling multi-modal temporal 

data with Hidden Markov Models. We have assumed that the original (raw data) can be charac­

terized better by various sources of information (modalities/streams/views) that do not necessarily 

share the same relevance or power of expressiveness. We also assumed that these views repre­

sent separate interpretations of the raw data, and generate synchronous sequences. Given these 

assumptions, we have proposed Generalized Multi-stream HMM structures for both discrete and 

continuous distributions. We argued that the proposed structures alleviate the limitations of the 

existing multi-stream HMM structures. 

We have proposed multi-stream HMM for the discrete case. This problem has not been 

addressed in the literature. We have proposed two different approaches: the first one is distance 

based and the second is probability based. The distance based approach consists of a two step 

learning method. The first step aims at initializing the model parameters and learning the stream 

relevance weights that are symbol dependent. The second step uses the standard Baum-Welch 

algorithm to learn the rest of the model parameters. 

The probability based approach consists of a novel DHMM structure asserting that each symbol 

of the codebook is assigned a set of partial probabilities and relevance weights relative to each 

stream. Combining both partial probabilities and stream relevance weights had lead to the linear 

and geometric probability based MSDHMM. For these structures, we have generalized the Baum­

Welch and the MCE/GPD learning algorithms to allow for the simultaneous learning of all model 

parameters including the stream relevance weights. 
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For the continuous case, our approach consists of approximating the pdfs by a linear combina­

tion of pdfs representing the individual streams. This approximation is motivated by the assumption 

that in the presence of the information about the most relevant stream occurring at time t, the like­

lihood of an observation vector Ot reduces to the likelihood of the contribution of stream k, say, o~k). 

This is performed at the state, and the mixture levels. This linearization allows for a maximum 

likelihood based learning. In fact, the standard Baum-Welch algorithm is generalized to allow for 

simultaneous learning of all of the model parameters. A discriminative training is also proposed by 

generalizing of the MCE/GPD algorithm. The necessary conditions are then derived to learn the 

different parameters. 

For both the discrete and continuous multi-stream HMM, we have proven that the gener­

alized Baum-Welch algorithm guarantees a convergence toward a local maximum of the likelihood 

function. For the discriminative training part, the MCE/GPD algorithm was selected since its 

objective function approximates the true Bayes risk when large amount of training data is available. 

Evaluation of the proposed models on several applications shows that the GMSHMM out­

perform the baseline HMM as well as the existing HMM. Furthermore, extensive experiments with 

various landmine data collections show that the GMSHMM based landmine detector is more ac­

curate than the standard HMM based landmine detector. Also, for all the MSHMM variations, 

the generalized Baum-Welch algorithm combined with the generalized MCE has been shown to 

perform better than the individual Baum-Welch and MCE. This mainly due to the discriminative 

component embedded within the MCE algorithm, that guarantees maximum separation between the 

models learned by the Baum-Welch, and hence better generalization. 

In the discrete case, even though all the variations of the proposed MSDHMM outperform 

the baseline DHMM, the MSDHMMP, has a superior performance. This is mainly due to the linear 

form of the observation probability distribution that has a less sensitivity than the geometric form 

in the MSDHMMPg. 

In the continuous case, the MSCHMML", has the most superior performance, especially 

for the land mine data. This is basically due to the fact that MSCHMMLm captures deep stream 

relevance: in the mixture level of each state. However, we notice a comparable performance with 

the MSCHMML, when the streams relevance variability is not high within the feature space. 
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VII.2 Future directions 

The proposed GMSHMM, by the addition of the stream relevance weights, have more pa­

rameters than the standard HMM. Thus, it has higher complexity. Accordingly, in the presence of 

not enough data, the GMSHMM tends to overfit more than the baseline HMM. One approach to 

alleviate this limitation is to use regularization theory to control the complexity of the proposed 

models. 

The proposed models have been studied under the frequentist probabilistic approach, and 

no prior knowledge have been used. The full Bayesian approach allows the use of prior knowledge. 

This approach could be adapted to the proposed MSHMM to alleviate the overfitting problem in 

the presence of limited data. 
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APPENDIX A 

Proof of propositions (11.7.1) and (11.7.2) 

A.l Proof of the proposition (11.7.1) 

Proposition A.I.I. If the value of IQ( A, 3:) increases, then the value of Pr( 0IA) also increases, 

i.e., 

IQ(A, 3:) ~ IQ(A, A) ==} Pr(OI3:) ~ Pr(OIA) 

Proof. We have IQ(A,3:) = L::Q Pr(QIO, A) In(Pr(O, QI3:))· 

In one hand, we can write: 

IQ(A,3:) -IQ(A, A) = L Pr(QIO, A) In(Pr(O, QI3:)) - L Pr(QIO, A) In(Pr(O, QI3:)) 

In another hand, 

Q Q 

L Pr(QIO, A) In Pr(O, QI3:) 
Q Pr(O, QIA) 

In Pr(OI3:) 
Pr(OIA) 

In L Pr(O, QI3:) 
Q Pr(OIA) 

In L Pr(O, QIA) Pr(O, QI3:) 
Q Pr(OIA) Pr(O, QIA) 

In L Pr(QIO, A) Pr(O, QI3:) 
Q Pr(O,QIA) 

Using the Jensen's inequality due to the convexity of the logarithm function, we can get: 

In L Pr(QIO, A) Pr(O, QI3:) > L Pr(QIO, A) In Pr(O, QI3:) 
Q Pr(O,QIA) - Q Pr(O,QIA) 

Thus, 

Pr(OI3:) -
In Pr(OIA) ~ IQ(A, A) -IQ(A, A) 

We conclude then that, 

IQ(A,3:) ~ IQ(A,A) ==} Pr(OI3:) ~ Pr(OIA) 
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A.2 Proof of the proposition (11.7.2) 

Proposition A.2.1. A is a critical point of Pr( 0IA) if and only if it is a critical point of QI(A, X), 

i.e., 

Proof· 

BQI(A, X) I 
BOp A=,), 

BPr(OIA) = BQI(A, X) I ' 
BOp BOp A=,), 

aLQPr(QIO,A)lnPr(O,QIX) I 

BOp A=,), 

LPr(QIO,A) BlnPr(O,QIX) I 
Q aop A=,), 

aPr(O,QIA) 

" P (QIO .\) aop 

~ r , Pr(O, QIX) _ 
,),=,), 

aPr(O,QI')') 

~ Pr(QIO, A) pr(~~PQIA) 

L 1 BPr(O,QI.\) 
Q Pr(OIA) BOp 

1 aLQPr(O,QIA) 

Pr(OIA) aop 
1 BPr(OIA) 

Pr(OIA) BOp 
BlnPr(OIA) 

BOp 
BPr(OIA) 

BOp 
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APPENDIX B 

Simultaneous Clustering and Attribute Discrimination: SCAD 

The initial SCAD algorithm [28], was designed to search for the optimal clusters' prototypes 

and the optimal relevance weight for each feature of each cluster. However, for high dimensional 

data, learning a relevance weight for each feature may lead to overfitting. To avoid this situation, 

a coarse version of SCAD [36] (called SCADc ) was proposed. Instead of learning a weight for each 

feature, the set of features is divided into logical subsets, and a weight is learned for each feature 

subset. 

Let X = {Xj E RPlj = 1, ... , N} be a set of N feature vectors. Let B = Uh, ... , !3c) represent 

a C-tuple of prototypes each of which characterizes one of the C clusters. Each !3i consists of a set 

of parameters. Let Uij represent the membership of Xj in cluster !3i. The C x N fuzzy C-partition 

U = [Uij] statisfies [16]: 
C 

Uij E [0,1] Vi, and L Uij = lVj. (B.0.1) 
i=1 

Assume that the p features have been partitioned into K subsets: F S1, F S2, ... ,F SK, and that each 

subset F SS, includes kS features. Let dij be the partial distance between x j and cluster i using the 

sth feature subset. Let V = [Vis] be the relevance weight for FSs with respect to cluster i. The total 

distance, D ij , between Xj and the cluster i is then computed by aggregating the partial distances 

and their weights. Typically DTj = L~=1 Vis (dij f· 
SCADc minimizes 

C N K C K 

J = L L u?J L Vis (dij? + L bi L v;s' 
i=1 j=1 s=1 i=1 s=1 

subject to (B.D. 1 ) and 
K 

Vis E [0,1] Vi, s; and L Vis, Vi, 
s=1 

To optimize J, with respect to V, we use the Lagrange multiplier technique, and obtain 
N 

Vis = ~ + 2~ L(Uij)ffi[DUK - (diY]· 
, j=1 

(B.0.2) 

(B.0.3) 

(B.O.4) 

The first term in (B.O.4), (1/ K), is the default value if all K subsets are treated equally and no 

discrimination is performed. The second term is a bias that can be either positive or negative. It 
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is positive for compact feature subsets where the partial distance is, on the average, less than the 

total distance. If a feature subset is more compact for the most of the points that belong to a given 

cluster ( high Uij), then it would be very relevant for that cluster. 

Minimization of J with respect to U yields 

1 
(B.O.5) 

Minimization of J with respect to the prototype parameters depends on the choice of dij. 

Since the partial distances are treated independent of each other (Le., disjoint feature subsets), 

and since the second term in (B.O.2) does not depend on the prototype parameters explicitly, the 

objective function in (B.O.2) can be decomposed into K independent problems: 

C N 

Js = LLu:'jVis(dijf, for s = 1, ... ,K. (B.O.6) 
i=l j=l 

Each Js would be optimized with respect to a different set of prototype parameters. For instance, if 

dij is the Euclidean distance, minimization of Js would yield the following update equation for the 

centers of subset s 
",N m s 

s ~j=l UijXj 
Ci = N m 

Lj=l u ij 

(B.O.7) 

SCADc is an iterative algorithm that starts with an initial partition and alternates between 

the update equations of Uij , Vis, and ci-
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APPENDIX C 

Lagrange multipliers optimization 

Suppose we seek the position Xo of an extremum of a scalar-valued function f(x), subject 

to some constraint. If a constraint can be expressed in the form g(x) = a , then we can find the 

extremum of f(x) as foll~ws. First we form the Langrangian function: 

L(x, p) = f(x) + pg(x), 
'-v-" 

=0 

(C.O.8) 

where p is a scalar called the Lagrange undetermined multiplier. We convert this constraint 

optimization problem into an unconstrained problem by taking the derivative, 

_a L--:,:-( X--,-,' Pc....:..) = _a f_( x_) + p_ag_( x_) 
ax ax ax 

(C.O.g) 

and using standards methods from calculus to solve the resulting equations for p and the 

extremizing value of x. (Note that the term p~ does not vanish, in general.) The solution gives x 

position of the extremum, and it is a simple matter of substitution to find the extreme value of f(.) 

under the constraints. 
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APPENDIX D 

Generalized Baum-Welch for the proposed Multi-stream HMM 

strucutres 

In this section, we outline the step by step approach followed to generalize the Baum-Welch 

algorithm in order to learn the parameters of the MSDHMMP
, structure. 

The objective function to optimize is the following: 

Q(A,.\) = L L In Pr(O, Q, FI.\)Pr(Q, FlO, A), 
Q F 

where F = [h, ... , tTl is a sequence of random variables representing the stream indices for each 

time step. 

This objective function involves the quantity Pr(O, Q, FI.\) which could be expressed ana-

lytically as: 
T-l T 

Pr(O, Q, FI.\) = 7rq, II aQ,q'+l II wq,Qv(otlftbq,Qv(Ot)!t 
t=l t=l 

where Qv is the quantization operation defined on an observation vector 0t as: 

Thus, the objective function expands as follows: 

LLlog7rq, Pr(Q,FIO,A) + 
Q F 

T-l 

L LLlogaq,qt+l Pr(Q,FIO,A) + 
t=l Q F 

T 

L L L log WqtQv(otl!tPr(Q, FlO, A) + 
t=l Q F 

T 

LLLlogbq,QvCo,)!,Pr(Q,FIO,A). 
t=l Q F 

(D.O.10) 

To find the value of Wijk that maximizes the auxiliary function Q(., .), only the third term 

of the expanded expression is considered since it is the only part of Q(.,.) that depends on Wijk. 
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This term can be expressed as follows: 

T 

L L L Pr(Q, FlO, A) logwqtQv(otli, 
t=l Q F 

T 

L L LL logu'ijk L L Pr(Q,FIO, A)6(i,qt)6(j, Qv(ot))6(k, ft), 
t=l i j k Q F 

T T 

L L L L logwijk L'" L L'" L 6(i, qt)8(j, Qv(ot))8(k, It) II Pr(qt" ftllot!' A), 
t=l i k q, qT h iT t,=l 

Let T the expression L q, ... L qT Lh ... LiT 8(i, qt)8(j, Qv(ot))8(k, ft) rr;'=l Pr(qt" ftllotl' A). It 

could be expanded to: 

T 

8(j, Qv(ot))Pr(qt = i, ft = klot ; A) II Pr(qt" It, lOt!' A) 

fI [LL Pr(qt"It,lot"A)] Pr(qt = i,ft = klot ;A)8(j,Qv(Ot)) 
t,=l,t,,it q'l i'l 

Pr(qt = i, ft = klot ; A)8(j, Qv(Ot)) 

That is, 

T 

L L L Pr(Q, FlO, A) log(wq,Qv(o,)it) 
t=l Q F 

T N, M L 

L L L L Pr(qt = i, ft = klO, A)8(j, QV(Ot)) In(wijk) 
t=l i=l j=l k=l 

To find the update equation ofwijk, we use the Lagrange multipliers optimization with the constraint 

L~=l Wijk = 1. The value of Wijk that maximizes the objective function IQ(A,'x) is exactly the same 

value that maximizes 

T N, M L 

IQw(A,'x) = L L L L Pr(qt = i, ft = klO, A)8(j, QV(Ot)) In(wijk) 
t=l i=l j=l k=l 

Adding the constraint term, we obtain an extended objective: 

TN,ML N,M L 

Qw(A,,X) = L L L L Pr(qt = i, ft = klO, A)6(j, Qv(Ot)) In(wijk) + L L Pij(l - LWijk) 
t=l i=l j=l k=l i=l j=l k=l 

Thus, 
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Setting aQ..,(>''-\) to zero leads to: 
8W t jk 

That is, 

T 

WijkPij = - L Pr(qt = i, It = kiO. A)r5(j, QV(Ot)), 

L 

LWijkPij 
k=l 

Pij 

t=l 

L T 

- L L Pr(qt = i, it = klO, A)r5(j, Qv(otl), 
k=lt=l 

T 

- L Pr(qt = iiO. A)r5(j, QV(Ot)), 
t=l 

Injecting the value of Pi]· into the expression of a~w(>',5.) gives: 
Wtjk 

- - T T 

8~:;i~: A) = - ~ Pr(qt = i, it = klO, A)r5(j, Qv(Otl)W~jk + ~ Pr(qt = ilO, A)r5(j, QV(Ot)) 

Setting the new expression of a~(>..>.) to zero gives the update equation of Wijk : 
Wtjk 

(D.O.ll) 

We recognize in Pr(qt = ilO, A) the intermediate variable rt(i). For Pr(qt = i, it = klot , A), it could 

be computed as follows: 

Let, rt(i, k) = Pr(qt = i, it = klO, A). It follows that, 

_ L-i'=l rt(i, k)r5(od) 
W,]k = T 

L-t=l rt(i)r5(Ot, j) 

Following the same procedure, we can derive the update equations for the parameters 'ifi, 

aij, and bijk. 

Similarly, the necessary conditions to learn the parameters of MSDHMMPg, MSCHMML= , 

and MSCHMMLs could be obtained. 
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APPENDIX E 

Estimator properties 

suppose that we have a random sample (Xl, X2,'" ,xn ) from a probability distribution with 

pdf f(x; B), and that we wish use the values, Xl, X2,'" ,Xn to estimate B, which is unknown. In 

particular, let B(XI,X2,'" ,xn) be a function of XI,X2,'" ,Xn which we use as a (point) estimate 

of B; the corresponding function B(XI' X 2 ,'" ,Xn ) of the random variables (rvs) Xl, X 2 ,'" ,Xn , 

which is iteself a rv, is an estimator for B. 

In any situation, there will be a variety of possible estimators, though some may be more 

obvious than others, and we need some way of choosing between them. Here we look at a number of 

desirable properties which we might like estimators to possess - unbiasedness, consistency, efficiency, 

and sufficiency. These might be named 'classical' properties of estimators. 

E.I U nbiasedness 

definition E.1.1. B is an unbiased estimator for e if E[e] = e ; otherwise it is biased. The bias of 

B is defined to be bias(B) = E[B]- e. 

Intuitively this means that the distribution of B is centered at B, and there is no persistent 

tendency to under or overestimate B. 

E.2 Consistency 

Although some bias may be acceptable in an estimator, we would like the bias to tend to 0 

as the sample size, n, tends to 00. In addition we would like the variance to tend to 0 as n tends to 

00. These requirements are related to the idea of consistency. 

definition E.2.1. An estimator B for e is (weakly) consistent if Pr[JB - BI] -> 0 as n -> 00, that is, 

the pdf of B becomes increasingly concentrated around e for large n. 

Strong consistency corresponds to convergence with probability 1. 
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E.3 Efficiency 

Using unbiasedness and consistency lIlay still leave a (possibly infinite) number of candidate 

estimators. How can we choose between them (if we feel that is is necessary to make a choice)? One 

fairly strategy is to try to minimize variance, and since it does not make sense to compare estimators 

with different biases with respect to variance alone, we only compare estimators with the same bias. 

Further, to keep things simple, the study is usually restricted to unbiased estimators, and the goal 

becomes looking for minimum variance unbiased estimators (MVUEs). 

The words 'efficient' and 'efficiency', when applied to estimators, refer to the variances of 

the estimators. The lower the variance of an unbiased estimator, the more efficient it is. 

definition E.3.1. An unbiased estimator is said to be efficient if it has the minimum possible 

variance; the efficiency of an unbiased estimator is the ratio of the minimum possible variance to 

the variance of the estimator. 

The relative efficiency of two (unbiased) estimators is the reciprocal of the ratio of their 

variances. 

Since efficiencies may vary with sample sizes, the asymptotic efficiencies and asymptotic 

relative efficiencies (as n -> 00 ) are often used as one-and-for-all measures. 

E.4 Sufficiency 

definition E.4.1. As usual, suppose that Xl, X 2 , "', Xn form a random sample from f(x;B). 

Suppose further that t( Xl, X2, ... ,Xn ) is a function of the observation Xl, X2, ... ,Xn , and not of B 

and that T(XI ,X2,··· .Xn) is the corresponding random variable. T is then a statistic, and Tis 

sufficient for B - a sufficient statistic for 0 - if the conditional distribution of X I, X 2 , ... ,Xn, given 

the value of T, does not depend on O. 
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APPENDIX F 

Gabor Functions and Wavelets 

A two dimensional Gabor function g(x,y) and its Fourier transform C(u,v) can be written: 

(F.O.l) 

(F.O.2) 

where O"u = 2",la
x 

and 0"" = 2:ay . Gabor functions form a complete but nonorthogonal basis set. 

Expanding a signal using this basis provides a localized frequency description. A class of self-similar 

functions, referred to as Gabor wavelets in the following discussion, is now considered. Let g(x, y) 

be the mother Gabor wavelet, then this self-similar filter dictionary can be obtained by appropriate 

dilations and rotations of g(x, y) through the generating function: 

gmn(X, y) 

x' 

y' 

a-mC(x',y'),a> l,m,n = integer 

a-rn(xcos(O) +ysin(O)),and 

a-m(-xsin(O) +ycos(O)), 

(F.O.3) 

(F.O.4) 

(F.O.5) 

where 0 = '}; and K is the total number of orientations. The scale factor a-m [86] is used to ensure 

that the energy is independent of m. 

The nonorthogonality of the Gabor wavelets implies that there is redundant information un 

the filtered images, and the following strategy is used to reduce this redundancy. Let Ul and Uh 

denote the lower and upper center frequencies of interest. Let K be the number of orientations 

and S be the number of scales in the mutliresolution decomposition. Then the design strategy is to 

ensure that the half-peak magnitude support the filter responses in the frequency spectrum touch 

each other [86]. This results in the following formulas for computing the filter parameters 0" u and 
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crv (and thus crx and cry). 

a (~;)S'-l, (F.0.6) 

(a - 1)Uh 

(a + 1)V21og2' 
(F.0.7) 

7f cr2 (2 log 2?cr2 
1 

tan(-)[Uh-2log(2.)][2log2- 2 U]-2, 
2k Uh Uh 

(F.0.8) 

where W = Uh and m = 0, 1, ... , S - 1. 
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HMM 
CHMM 
DHMM 
FHMM 
MSHMM 
MSDHMM 
MSCHMM 
MSDHMMD 

MSDHMMP 

MSDHMMP1 

MSDHMMPg 

MSCHMMG 

MSCHMMGm 

MSCHMMGs 

MSCHMML 

MSCHMMLm 
MSCHMML, 
MFCC 
LPC 
pdf 
MLE 
MCE 
GPD 
SCAD 
EHD 

APPENDIX G 

Acronyms 

Hidden Markov Model 
Continuous Hidden Markov Model 
Discrete Hidden Markov Model 
Factorial Hidden Markov Model 
Multi-stream Hidden Markov Model 
Multi-stream Discrete Hidden Markov Model 
Multi-stream Continuous Hidden Markov Model 
Distance based Multi-stream Discrete Hidden Markov Model 
Probability based Multi-stream Discrete Hidden Markov Model 
Linear Probability based Multi-stream Discrete Hidden Markov Model 
Geometric Probability based Multi-stream Discrete Hidden Markov Model 
Multi-stream Geometric Continuous Density Hidden Markov Model 
Mixture level Multi-stream Geometric Continuous Density Hidden Markov 
Model 
State level Multi-stream Geometric Continuous Density Hidden Markov Model 
Multi-stream Linear Continuous Density Hidden Markov Model 
Mixture level Multi-stream Linear Continuous Density Hidden Markov Model 
State level Multi-stream Linear Continuous Density Hidden Markov Model 
Mel-frequency cepstral coefficients 
Linear predictive coding 
probability density function 
Maximum Likelihood Estimator/Estimation 
MinimuIIl Classification Error 
Gradient Probabilistic Descent 
Simultaneous Clustering and Attribute Discrimination 
Edge Histogram Descriptor 
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APPENDIX H 

Notations 

the probability of an event it is also used to note a probability mass function 
(in the case of discrete random variable) or a probability density function (in 
the continuous case) 
the number of classes 
the index of a given class among the C classes 
compact notation of an HMM model 
initial state probabilities 
probability transition matrix 
observation probability matrix 
stream relevance weight matrix 
the set of symbols or code book in the case of DHMM 
Dimension of the data 
number of states 
represents the ith state 
number of symbols/gaussian mixtures 
the jth symbol of the code book V 
number of data generating streams 
index of the state 5, 
index of a symbol/gaussian mixture component 
index of a generating stream 
the transition probability from state i to state j 
the probability of an observation Vj given a state i 
sequence length, it might vary from a sequence to another" 
index of time along a sequence 
an observation sequence 
an observation vector at time t in sequence 0 
The training data consisting of a set of sequences 
Number of sequences in the training data 
index of an observation sequence in the training data 
the state sequence correspondent to each observation sequence 0 
the state generating the observation 0t 

the sequence of the Gaussian mixture components correspondent to each ob­
servation sequence 0 
The Gaussian mixture component generating the observation Ot 

the sequence of stream indicies correspondent to each observation sequence 0 
The relevant feature subset for each observation 0t 

objective function for MLE 
objective function for MCE training 
iteration number of the MCE training 
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