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Abstract

Intrusion Detection Systems (IDSs) are designed to monitor a networked environ-

ment and generate alerts whenever abnormal activities are detected. The number of

these alerts can be very large making their evaluation by security analysts a difficult

task. The management is complicated by the need to configure the different compo-

nents of alert evaluation systems. In addition, IDS alert management techniques, such

as clustering and correlation, suffer from involving unrelated alerts in their processes

and consequently provide results that are inaccurate and difficult to manage. Thus, the

tuning of an IDS alert management system in order to provide optimal results remains

a major challenge, which is further complicated by the large spectrum of potential

attacks the system can be subject to.

This thesis considers the specification and configuration issues of FuzMet, a novel

IDS alert management system which employs several metrics and a fuzzy-logic based

approach for scoring and prioritizing alerts. In addition, it features an alert rescoring

technique that leads to a further reduction of the number of alerts. We study the impact

of different configurations of the proposed metrics on the accuracy and completeness

of the alert scores generated by FuzMet. Our approach is validated using the 2000

DARPA intrusion detection scenario specific datasets and comparative results between

the Snort IDS alert scoring and FuzMet alert prioritization scheme are presented. A

considerable number of simulations were conducted in order to determine the optimal

configuration of FuzMet with selected simulation results presented and analyzed.
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Chapter 1

Introduction

1.1 Intrusion Detection Systems

Network attacks are growing more serious, forcing system defenders to deploy appro-

priate security devices such as firewalls, Information Protection Systems IPSs, and/or

Intrusion Detection Systems (IDSs). IDSs are either software or a hardware system,

whose purpose is to inspect user and/or network activity by looking for suspicious ac-

tivities that violate the system security policy. Suspicious activities could be caused by

an attacker’s attempt to access the systems from the Internet, authorized users trying

to gain additional privileges for which they are not authorized, and authorized users

who misuse the privileges given to them. In each case, IDS generates alerts notifying

the security analysts about the anomalous incidents in order to take appropriate action.

IDSs can be categorized into two main classes based on what type of data they

are inspecting namely, Network-based and Host-based IDS [9]. The Network-based

IDS (NIDS) monitor the traffic transmitted from/to all devices on the network based

on its place. This type of IDSs deals only with the packets data type to find intru-

sions. Several advantages are offered by NIDS. For example one NIDS can protect

a large network base and deploying NIDS does not interfere with the normal opera-

tion of a network [3]. However, drawbacks of NIDS include dropping packets when

1
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monitoring/analyzing fast/busy links, inability to analyze encrypted information, and

the inability to verify the success of the attack [33]. The second class of IDSs is the

Host-based IDS (HIDS) which analyze the activities within the host such as operating

system audit trails and system/application logs. Unlike the NIDS, HIDS can observe

the outcome of an attempted attack. However, HIDS can be disabled easily by at-

tacker who compromises the host. Generally, NIDS and HIDS are complimentary to

each other, since they are detecting different type of attacks.

Nevertheless, there are two common types of IDSs based on their method of in-

specting the traffic: signature-based and anomaly-based [9]. The signature-based IDS

generates an alert when the traffic contains a pattern that matches signatures of ma-

licious or suspicious activities. In turn, the anomaly-based IDS examines ongoing

activity and detects the attack based on the variation from normal behavior. How-

ever, both types suffer from a common problem of generating a large number of alerts.

These alerts need to be evaluated by security analysts before any further investigation

in order to take appropriate actions against the attacks.

1.2 Alert Management in Intrusion Detection Sys-

tems

After deploying IDS, handling alerts that are generated is the first task that the security

analyst should do. The challenge of IDS is not only by detecting intrusions but also by

managing alerts. Since the number of these alerts can be very large and mixed with

high false positive rate; making the management task of security analysts difficult to

handle which accordingly he/she could not identify the real attacks from the false ones

reported by the alerts. Several methods can be applied to manage alerts effectively.

Reducing the large number of alerts is of alert management. Also, differentiating

between legitimate alerts and false alerts is another task that security administrator

should accomplish in order to determine whether the actual attack is occurring. Since

attackers reach the final goal by launching their attacks in multiple steps, building the
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attacker’s scenarios can be achieved by alerts management techniques. Generally, alert

management techniques provide an effective ways to help the security administrator to

evaluate and manage alerts, thereby saving his or her time and effort.

There are two general alert management classes namely low-level and high-level.

Dealing with each alert individually to enrich its attributes or assign scores based on

potential impact can fall into the low-level alert operations. high-level alert manage-

ment techniques deal with a group of alerts and provide an general view of these alerts

(i.e. such as aggregation, clustering, correlation, and fusion). Low-level and high-level

alert management techniques are complementary to each other. First alerts need to be

enriched by the low-level operation and then the high-level proceeds the enriched alert

to provide more accurate results.

1.3 Motivation

IDSs usually generate a large number of alerts whenever abnormal activities are de-

tected [14]. Inspecting and investigating all reported alerts manually is a difficult,

error-prone, and time-consuming task. On the other hand, ignoring alerts might lead

to successful attacks. Dealing with this problem is a challenging task which involves

two alert evaluation phases: low-level and high-level. The low-level alert operations

deal with each alert individually to enrich its attributes or assign a score to it based on

potential risk. High-level alert management techniques, such as aggregation, clustering,

correlation, and fusion, were proposed to deal with a set of alerts and provide an ab-

straction of these alerts. However, the high-level techniques suffer from including alerts

that are not significant which consequently leads to inappropriate results. Therefore,

low-level evaluation techniques are needed to examine large number of alerts automat-

ically (or semi-automatically) and prioritize them, leaving only important alerts for

further inspection and investigation. Accordingly, the reduced set of alerts leads to

more precise high-level alert management results such as correlation and clustering.

The goal of this work is that the security administrator will be provided with an ef-

fective technique to evaluate and manage alerts, thereby saving his or her time and

effort.
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In addition, it is not only sufficient to propose new IDS alert management systems,

yet there is a need to study the degree of efficiency of these systems depending on

different configuration sets. The tuning of an IDS alert management system in order

to provide optimal results remains a major challenge. This hurdle is further complicated

by the large spectrum of potential attacks the system can be subject to. There is also

a need to consider whether there exist a unique optimal configuration which works all

the time or whether this optimal configuration changes depending on system state and

administrative policies.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

1. We proposed FuzMet, an alert evaluation and prioritization framework, by ad-

dressing the limitations of previous works that deal with alert ranking [31,23,32,

46]. Unlike the previous works, the use of new metrics such as, the sensor sensi-

tivity, relationship between alerts, services stability, and social activity between

source and target, allows us to accurately evaluate the alerts generated by either

a signature-base or anomaly-based IDS. In addition, The automatic evaluation

and prioritization processes make the management task for the security analysts

easier and controllable.

2. A re-scoring technique that dynamically scores alerts based on the relationship

between attacks or the level of maliciousness of attackers.

3. We applied Fuzzy-logic Inference approach as a reasoning technique to quanti-

tatively score each alert based on the values of the metrics defined earlier. To

the best of our knowledge, we are the first to use Fuzzy-logic for evaluating IDS

alerts.

4. A comprehensive study of the impact of different configurations of the proposed

metrics on the accuracy and completeness of the alert scores generated by FuzMet.

5. A survey and taxonomy of IDS alert management techniques.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews the background

and provide literature survey of alert management techniques in IDS including alert

prioritization approaches. Chapter 3 describes our proposed FuzMet alert prioritization

scheme along with the metrics and the Fuzzy-logic approach that we used to score IDS

alerts. Chapter 3 also investigates metrics configuration issues. Simulation results are

presented and discussed in Chapter 4. Finally, Chapter 5 concludes this thesis.



Chapter 2

Background and Literature Survey

2.1 Why Alert Management

An alert in intrusion detection systems is typically a formatted message describing a

circumstance relevant to network/host security that is derived from critical events [44].

Generated alerts are presented to the security administrators or some automatic control

system. This allows to notify the security administrator about the abnormal activity

that has been detected, and consequently take the proper action against the attack.

Most of the time, security analysts are overwhelmed by the large number of alerts gen-

erated by IDS(s), as well as the high rate of false positives [29,19]. As a result, security

administrators cannot easily distinguish between the alerts generated from legitimate

traffic and the ones generated from suspicious traffic by the information provided by

the alerts. In this content, alert management techniques were proposed to assist secu-

rity administrators in better understanding the state of the network/host under attack.

For instance, IDS alert prioritization techniques aim to score each alert based on its

seriousness and impact and prioritize the high scored alert, which consequently reduce

the overall number of alerts that are presented to security administrators. Alert cor-

relation is another example of an IDS alert management technique, where the steps of

the attack are linked together and the attack graph is constructed. Alert correlation

helps the security administrators to understand the steps of an attack from its first

6
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step to its final goal. Generally, alert management techniques are essential steps after

detecting the attack by the IDS.

2.2 IDS Alert Representation- IDEMF

Alert representation is the method that allows the IDS to provide the information

about an attack to the security administrators. The alert representation format varies

from one IDS product to another based on the strategy of each IDS to present the

attack. Since each IDS has it own representation format, it becomes difficult to deploy

different IDS products in the same network or to exchange data between heterogenous

IDSs. Therefore, standard alert representation formats have been proposed to deal

with the above problem.

The Intrusion Detection Message Exchange Format (IDMEF) is a standard for-

mat(RFC 4765) developed by Curry and Debar in the Intrusion Detection Working

Group (IDWG) [1]. This standard defines a data format for describing the suspicious

events that can be reported by the IDS [8]. IDMEF is an XML based specification for

an intrusion alert format. IDMEF is used between an IDS and the manager to which

it sends alerts. The IDMEF data model is an object-oriented representation of the alert.

Under the top-level class of the IDMEF-message, there are two types of messages;

Alerts and Heartbeats. For the Alert message subclass, low-level subclasses are used

to present detailed information about the event that has been detected by the IDS,

as shown in fig 2.2. Whenever an IDS detects an intrusion, it generates an alert

message class to its manager(s), which contains several subclasses. The Analyzer

subclass carries unique information about the sensor that generated the alert. Three

time subclasses are provided in the alert message. The time when the analyzer gen-

erated the alert is described in the Createtime subclass. Attack detection time is

shown in the Detecttime subclass. The current time on the analyzer is describe in the

AnalyzerT ime. The source and the target of the event leading up to the alert are

represented in the Source and Target subclasses, respectively. The Classification
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Figure 2.1: The IDMEF data model

subclass carries information about the name of the alert (attack) and some references

that allow the IDS manager to obtain more information about the reported attack. The

impact of the event, response actions taken by the analyzer, as well as the analyzer

confidence can be described in the Assessment subclass. The last subclass in the alert

message is the AdditionalData which can be used for presenting any information that

does not fit into the data model.

For the second class of an IDMEF message, the Heartbeat messages class is trig-

gered by the IDS to be sent periodically to show its current status. Several advantages

are offered by the design of IDMEF format including:

• Flexibility to accommodate the needs of different IDSs, since one may wish to

deliver more or less information about certain types of attacks.

• Capability of presenting messages generated by both network and host based

sensors.

• The ease of extensions, either by using AdditionalData objects or by defining

new object types.
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However, IDMEF also has some disadvantages, such as:

• The format limits the semantic representation (i.e. two IDSs can name the attacks

differently) [45].

• Difficulties in creating an equivalent objectoriented representation in a relational

databases such as SQL.

2.3 IDS Alert Management Approaches

Alert management functions receive the alerts from IDS(s) and process them in order

to make them suitable for human control. The general purpose of these techniques is to

help the security administrator to fully understand what the IDS is addressing. In other

words, all alert management techniques such as, alert fusion, alert aggregation, alert

clustering, and alert correlation provide some form of high-level analysis and reasoning

capabilities beyond low-level sensor abilities [34]. For instance, security analysts can

be flooded by a large number of alerts in a short period of time, making the task of

managing these number of alerts manually difficult; therefore, reduction techniques are

needed. Another example for showing the need of alert management techniques can be

seen in enterprise networks, where security administrators can deploy heterogeneous

IDSs in different places; therefore, aggregating the alerts that have some common

features together in a centralized place is the task of the aggregation function. In the

following subsections we will briefly describe the most common IDS alert management

techniques.

2.3.1 Alert Reduction

One of the biggest problems associated with IDS is the number of alerts. IDSs usually

generate large number of alerts whenever abnormal activities are transmitted from/to

the protected network and/or hosts. It is common that an IDS reports 10-200 alerts

per day and this number increases when more than one IDS is deployed [24]. These

number of alerts can easily overwhelm the security analysts who manage the IDSs
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in the network. Accordingly, the task of managing the alerts becomes very difficult;

therefore, the security analysts will not fully understand the reported alerts, so that

action against the detected attack will be taken. Therefore, techniques for reducing

the number of alerts generated by IDS(s) are needed. Several alert management tech-

niques were proposed to deal with this problem from different angles, but all of them

fall into reducing the number of alerts. In this section, we first categorize the proposed

approaches of decreasing the number of alerts by their procedure, and then describe

each process individually providing the state-of-the-art approaches that exist in the

field. However, reducing the number of alerts can be done either before the IDS raises

the alerts or after the alerts are generated. Tuning the IDS, placing it correctly, or

configuring it efficiently are examples of the techniques that deal with reducing the

number of IDS alerts before they are generated, while, the techniques that treat the

raised alerts include alert merging, and clustering. The reduction techniques can be

described as follows:

Alert Aggregation: When IDS(s) generates the alerts, aggregation techniques

try to group a set of alerts together that have some common characteristics, such as

the source, the target, and the type of the attack. In the case of dealing with one IDS

or multiple homogenous IDSs, these techniques can be applied easily sice the alerts

format is the same. However, these methods become more complicated when heteroge-

nous IDSs are deployed. Generally, these techniques relieve the security analysts from

dealing with each alert individually. Debar and Wespi presented an aggregation algo-

rithm that is used in the design and implementation of an intrusion-detection console

built on top of the Tivoli Enterprise Console (TEC) [10]. In this approach, alerts are

aggregated into so-called ”situations”, which are a set of alerts that share certain char-

acteristics. Three alert attributes were involved to form the ”situation”, which are the

source, the target, and the class of the attack.

Alert Merging: As we discussed earlier, the IDS generates too many elemen-

tary alerts that confuse the security administrators. Consequently, alerts need to be

grouped together to form a global alert that gives the analyst a better understanding
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of the intrusion as described in the aggregation function. Alert merging techniques

aim to combine a group of alerts into one hyper-alert that represents the abstract view

of the underlaying alerts. For instance, an attacker performs a scan attack all hosts’

ports in one subnet, seeking an open-vulnerable port for a further attack. As a result,

IDS will generate too many alerts related to these scan attacks. However, generating

one global alert informing the security administrators that the attacker is scanning all

the sub-network will save the administrator effort, time, and most importantly he will

take the appropriate action against the seriousness of the attack. Yu et al proposed a

merging process that is applied to a group of alerts (cluster) that produce a synthesized

alert [46]. Since alerts can be received from multiple IDSs, conflict might occur between

alert attributes. They use a voting algorithm to solve the conflict by considering the

dominant characteristic of the alerts participating in the conflict. Cuppens proposed

another merging technique that uses expert rules to specify how the global alert is

derived from a set of alerts [7]. In this method, four alert attributes are involved in the

merging process namely, source, target, time, and classification. Conflict resolution is

applied by specifying an integrity constraint that should not be violated. If so, the

conflicting information will be provided in the additional data attribute of the global

alert. Generally, merging techniques attempt to create a new alert as a representation

of various of alerts that belong to same attack.

Alert Clustering: IDSs generate a number of similar alarms that represent one

attack. Similar alarms can be grouped together to reduce the total number of IDS

alerts. Alert clustering is a technique that groups alerts that share common features,

such as source/target IP address or port number into one cluster. Each cluster con-

tains alerts that share similar attributes. Several approaches have been proposed to

cluster the alerts generated by IDSs. K. Julisch proposed a clustering technique based

on forming a generalized view of false alarms [19]. The objective of this clustering

technique is to discover root causes of the false positive alerts. In this research, Julisch

discovers that 90% of the alerts correspond to a small number of root causes. Identi-

fying and removing these root causes leads to a 82% reduction of the total number of

alerts, making the IDS analysts focus on the alerts of the real attack. Another clus-
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tering technique was proposed by Cuppens [7] as part of the MIRADOR project [26].

First, alerts are transformed from XML format into rational database format. Then,

an expert system is used to decide when a new alert can join (or form) the cluster.

This decision is based on the similarity requirement defined by expert rules.

Network-based IDS Placement: Security administrators have full flexibility

to deploy network-based IDSs in any place in their network where they can perform a

better detection. However, the place of a network-based IDS can be one of the reasons

that a large number of alerts are produced. For instance, one can deploy the IDS to

monitor the traffic before it is filtered by the firewall to detect all attack trails, re-

gardless of whether they are stopped by the firewall [5]. In this scenario, the IDS will

generate more alerts than if it was deployed behind the firewall. In general, the place

of the network-based IDS can be a trade-off between maximizing the protection and

minimizing the number of alert generation.

Deactivating or Improving IDS Signatures: In signature-based IDSs, all

known attacks are stored as signatures which have to be matched within the traffic.

Disabling unnecessary signatures that detect normal traffic as abnormal can poten-

tially reduce the number of alerts. For instance, if the system administrator allows

remote login to the system while the IDS raises an alert whenever this service is used,

then disabling the signature that is related to the remote access service will reduce the

number of alerts generated by the IDS. Also, knowledge of the system environment

allows the system administrator to disable any unrelated signatures from the database.

For example, employing an IDS for Windows environments requires the system ad-

ministrator to disable any signature related to the Unix environment. Nonetheless,

in signature based IDSs, security experts write vulnerability signatures to accurately

match the exact attack pattern without making any false positives. However, poorly

written signatures can lead to false positives if legitimate traffic unexpectedly matches

the attack signature [5]. Therefore, the quality of the attack signature has an effect

on the number of generated alerts. Poor signatures need to be rewritten and improved

to accurately represent the pattern of only the real attack. As a result, the number of
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alerts will be reduced to the detection of the actual attack.

Tuning the anomaly-based IDS: As we mentioned in section 1.1, the anomaly-

based IDS monitors the traffic and raises alerts whenever a traffic varies from the norm

by a ceratin threshold. The number of alerts in this type of IDS can be very large

compared with the signature-based IDS. However, the number of alarms can be re-

duced by tuning the anomaly-based IDS. Tuning the anomaly-based IDS can be done

by setting the threshold to a proper value so that the number of alarms will be reduced.

However, adjusting the threshold value to reduce the number of alerts can either in-

crease or decrease the detection. When the detection rate increases the number of false

negative alerts increases [5]. But, when the detection rate decreases, then the rate of

false positive alerts increases. Therefore, there is a trade-off between the number of

alerts and the detection capability in the anomaly-based IDS.

2.3.2 Alert Correlation

Generally, correlation can be defined as the method of finding the relationship between

two objects or series of objects. Specifically, the process of discovering the connection

between different series of security events is defined as the alert correlation process.

Attackers usually launch their attacks in multiple steps to achieve the final goal. Con-

sequently, traditional IDSs focus on low level attacks and generate alerts for each one

individually. In this case, security analysts face difficulties in manually checking the

alert log to find the relationship between the attacks, since the number of alerts is large

and the rate of false positives is high. Therefore, alert correlation techniques become es-

sential techniques in order to uncover the relationship between alerts, and to construct

the corresponding attack scenarios. Researchers proposed several techniques that deal

with this problem which fall into three classes. The first class includes correlating alerts

based on the similarity of the attributes, such as IP addresses, ports etc. The second

class is based on specifying a known sequence of attacks. The third class is based

on the dependencies between alerts by matching prerequisites with the consequences
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of attacks. The three alert correlation classes will be described in more detail as follows:

Correlating alerts based on similarity: An alert is usually divided into a

number of attributes such as, source IP address, target IP address, port number for

the source and the target, time, and attack type. In this class, alerts will be corre-

lated together if their attributes are similar. Similarity functions are computed on the

alerts attributes to make the correlation decision. In fact, these techniques promise to

correlate some alerts that are sharing some features such as the source and target IPs.

However, they fail to uncover the casual relationship between alerts. Valdes and Skinner

developed a probabilistic alert correlation method aiming to correlate multiple attack

steps and build the corresponding attacks scenarios [37]. Their probabilistic approach

suggested a unified mathematical framework with appropriate similarity functions for

each appropriate alert feature. Alerts will be correlated if the results of the similarity

functions are closely matched, subject to meet a minimum degree of matching which is

controlled by both a single configurable parameter and the weighted average of similar-

ity values over the overlapping features. Any new alert will be merged with an existing

meta alert as long as they result in the highest similarity values and pass the specified

threshold.

Attack scenario predefinition: In this type of correlation method, alerts will

be correlated based on the known attack scenarios. Attack scenarios can be defined

by security experts or learned through training datasets. The alerts sequence will be

compared with the known attack scenario in order to correlate them together and con-

struct the detected attack steps. These methods can discover the causal relationship

between attacks, but they are restricted to known attack strategies.

The dependencies between attacks: Most alerts are related to different alerts,

since the early steps of attack prepare for later ones. Based on this observation, the

connections (or relationship) between these alerts can be used to construct an attack

scenario. Several techniques have been proposed to construct an attack plan by cor-

relating alerts based on the prerequisites (what makes the attack successful) and the
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consequences (what are the outputs of the attack) of each attack (corresponding alert).

Two attacks will be correlated if any of the prerequisites of the later attack match any

of the consequences of the early one. For these techniques to work, specific knowledge

about the attacks are required to identify their prerequisites and consequences. These

techniques promise to discover the casual relationship between alerts, and they are not

restricted to known attack scenarios. However, they have a common weakness, that

is, they fail to correlate unknown attacks (that they have no specific prerequisites and

consequence). Ning et al. use logical predicates to model the alert as prerequisites and

consequences of attacks [28]. The idea of the ”hyper-alert” was introduced to represent

every type of attack. A hyper-alert consists of facts, prerequisites, and consequences.

A fact is a set of names (for attributes). Prerequisites and consequences form a logical

combination of predicates where its variable can be found in fact. For instance, con-

sider the buffer overflow attack against the remote administrator to ”Sadmind.” The

type of hyper-alert will be:

SadmindBufferOverflow = ((V ictimIP , V ictimPort), (ExistHost(V ictimIP )
∧

V ulnerableSadmind(V ictimIP )), (GainRootAccess(V ictimIP )))

2.3.3 Alerts Visualization

IDSs report the alerts to the security analysts in row format stored in a database. Un-

derstanding the general view of what these alerts are addressing is difficult to achieve

from looking at the alerts records. Therefore, alert visualization techniques were pro-

posed to deal with this issue. These techniques will take the row alerts and represent

all alerts visually. This visual representation can help the network administrator to

have an overall picture of what is occurring in the network. For instance, visualizing

all events targeting one specific host can cut down the time for the analyst to under-

stand the reported situation. As a result, security analysts can efficiently analyze a

graphical layout of alert logs easier and faster than analyzing alert textual logs. Several

approaches have been proposed to visualize the alerts of an IDS. One example of the

existing tools that visualize Snort IDS alarm log is SnortView [20].



16

2.3.4 Alert Scoring & Prioritization

Inspection devices, such as IDS, present attacks to a security administrator through

alerts. The IDS often generates a large number of alerts. However, these alerts should

not be treated equally since their importance and impact are different. Therefore, alert

scoring and prioritizing techniques are needed to determine the important alerts to a

security administrator for further action. Indeed, few works have been proposed to

deal with this problem.

Porras et al [30] developed a prototype system called M-Correaltor, which ranked

alerts based on the likelihood of success, the importance of victims, and attack type

interest. The likelihood of success examines the matching between the vulnerability

requirement and the target topology. Alerts are also prioritized based on the degree

to which they targeted critical assets, and the amount of interest the user has towards

the attack type. Mathematically, each incident will be ranked using an adoption of

Bayesian belief network. As shown in figure 2.2, the Bayesian tree is made of three

main branches: outcome, relevance, and priority. The outcome branch represents the

information provided by the security devices. The priority subtree represents both the

incident class importance and the severity of the attack. The last branch concerns the

compression between the target environment and the vulnerability requirement of the

corresponding attack. Bays net is used here because it is effective even with the lack

of information in the network, such as the relevance subtree.

Jinqiao Yu et al [46] evaluated alerts based on two aspects: first, alerts that do

not correspond to any attack in the vulnerability knowledgebase will be prioritized for

further investigation; second, the applicability of the attack towards the protected net-

work is checked. Similarly, Qin and Lee [32] prioritize alerts based on their relevance

to the protected networks and hosts, as well as the severity level of the corresponding

attacks assessed by security experts. As shown in figure 2.3, this technique employed

the simple structure of Bayesian networks (one level) to compute the priority values

for each alert. For each alert, Jinqiao Yu et al compared the relevance of the attack
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Figure 2.2: M-Correlator Incident Ranking

Figure 2.3: Alert Priority Computation Model

reported in the alert against the configuration of the target networks which include

OS, Service/port, and Applications. The the existence of the target service/user in

the hosts configuration was also analyzed. The interest of attacks can be specified

by the security analysts based on the nature and mission of the attack. Finally, the

compression results will be evaluated by the Bayesian networks.
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Figure 2.4: Alert Management Techniques Classification

2.4 Classification of Alert Management Techniques

Alert management techniques can be divided into two general classes: low-level and

high-level. The low-level alert operations deal with each alert individually to enrich

its attributes or assign scores based on potential risk. high-level alert management

techniques, such as aggregation, clustering, correlation, and fusion, were proposed to

deal with a set of alerts and provide an abstraction of these alerts. In fact, low-

level alert preparation methods can help the high-level operations to provide more

accurate results. For example, low-level evaluation techniques can examine a large

number of alerts automatically (or semi-automatically) and prioritize them, leaving

only important alerts for further inspection and investigation. As a result, high-level

techniques will improve their outcomes due to the early low-level evaluation steps.

Baker and Benaten described the alert management techniques separation issue with

its benefit [4]. As shown in fig 2.4, low-level alert preparation techniques receive alerts

from IDSs and enhance them before the high-level alert operations take place.

2.5 Comparison of Alert Prioritization techniques

In this section, we briefly revisit the alert ranking techniques before comparing them.

Porras et al. ranked alerts based on their applicability, target importance, and attack
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Table 2.1: Alert Prioritization techniques Comparison

M-correlator TRINETR Qin’s Approach
Signature-based alert Yes Yes Yes
Anomaly-based alert some All No

Zero-day attack No No No
Training (Bays net) Yes No Yes

severity [30]. Jinqiao Yu et al. calculated the alert priority based on its applicability

and its existence in the vulnerability knowledgebase [46]. Qin and Lee evaluated the

alert based on attack severity and its applicability.

As shown in table 2.1, All techniques can successfully evaluate and prioritize alerts

generated by signature-based IDSs. This capability is due to that the signatures provide

more information about the corresponding attacks. However, in the case of anomaly-

based IDS alerts, M-correlater will prioritize all the alerts that target important assets.

In this context, non-critical alerts that target critical machines will be prioritized even

if these alerts should not be prioritized. TRINETR will prioritize all alerts generated by

the anomaly-based IDS since this approach prioritizes any alerts that have no reference.

Finally, Qin’s approach completely fails to evaluate these types of alerts. M-correlater

and Qin’s approach need to train the Bayesian network in order to provide accurate

results whereas TRINETR is required to encode too much expert rules. Generally,

these techniques are promising to evaluate alerts generated by signature-based IDSs,

but they cannot correctly evaluate alerts raised by anomaly-based IDSs, since they

heavily rely on the vulnerability knowledge base of the known attacks.

2.6 Conclusion

In this chapter, we explained the need of alert management in intrusion detection

systems. The standard alert representation format, IDMEF, was described in more

detail due to its wide acceptance in the IDS research community. We tried to briefly

cover all of the state-of-the-art management techniques that deal with IDS alert. Alert



20

scoring and prioritization approaches were studied extensively. Generally, All alert

management techniques aim to help the security analysts to understand what the IDS

is stating and accordingly appropriate actions will be taken



Chapter 3

Alert Evaluation Architecture and

Priority Scheme

In this chapter, we present FuzMet, an approach for prioritizing alerts generated by

IDS, aiming to make the management process of the security analysts effortless and

accurate. First, we generally explain FuzMet architecture and how it works. As we

discussed in 2.3.4, researchers have proposed number of criteria to prioritized alerts

which are not excluded from the following ones: the applicability of the attack, the

severity of attack, and importance of the asset. However, in section 3.2, we extensively

describe FuzMet metrics that are used to prioritize alerts and how they differ from

the existing ones. The Fuzzy-logic reasoning approach and the advantages of using

it in FuzMet scheme are shown in section 3.3. A re-scoring technique is presented in

section 3.4. In Section 3.5, we present FuzMet configuration related issues. Finally,

conclusion of the scoring and re-scoring approaches as well as the configuration issues

are presented in section 3.6.

3.1 FuzMet Architecture Overview

This section describes FuzMet- an automatic IDS alert evaluation approach. The latter

assists security analysts in automatically measuring the seriousness of each alert based

21
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Figure 3.1: General Evaluation Process

on some criteria. We logically assign a numerical score to the alert using fuzzy logic.

Typically, IDS alert management techniques, such as clustering and correlation, suffer

from involving unrelated alerts in their processes. This consequently lead to imprecise

results. Therefore, we introduce an alert rescoring technique that allows to a further

reduction of the number of alerts.

As shown in figure 3.1 in the doted areas, FuzMet alert management architecture

involves three main components: (a) data collection, (b) alert scoring metrics and

inference, and (c) alert analysis.

3.1.1 Data Collection

Data collection includes four main resources: alert attributes, monitored environment,

security administrator parameters, and vulnerability knowledge base. Alert attributes
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consist of several fields that provide information about the attack. The information

provided varies from one IDS product to another. However, we assume that the alert

is compatible with IDMEF format [8], which has recently became an industry stan-

dard. In the protected environment, we need some information to help us evaluate IDS

alerts. Different environments contain different parameters based on the running ser-

vices, applications, or operating systems. The security administrator of the protected

network can specify the parameters that are involved in the evaluation process. For

instance, we need information about all running services, applications, and operating

systems, such as version, release time and existing vulnerabilities. Furthermore, the

security administrator can specify the importance of each host in the network includ-

ing the monitoring devices, the IDS. The public vulnerability knowledge bases, such

as the National Vulnerability Database (NVD) [25] and Bugtraq [17], contain detailed

information about known attacks. The availability of such data bases can help in the

alert evaluation process. The data collection component makes the above resources

available to the alert scoring metrics & inference component.

3.1.2 Priority Metrics & Inference

Priority metrics and inference constitute the core components of FuzMet architecture.

Based on the information received from the data collection component, several metrics

are computed and used as indicators to accurately evaluate the alerts. In this per-

spective, the computed metric values are passed to the Fuzzy-logic inference engine to

calculate the overall alert score. The scoring metrics and reasoning approach will be

discuss in more details in the later sections.

3.1.3 Alert analysis

This component provides an additional evaluation of the IDS alert. This component

includes four main functions namely, rescoring, attack distance, occurrence time, and

response plan. In this thesis, we investigate the rescoring function whereas the other

functions have been described briefly and included in the our future works.
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3.1.4 Flow Illustration

The flow of the evaluation diagram shown in figure 3.1 illustrates the alert evaluation

process. First, the monitored environment information, the security administrator

parameters, and the vulnerability knowledge base should be available before an alert

is generated by the IDS. Second, when the alert is raised for evaluation, we compute

the value of each scoring metric (which we will describe in detail later) based on the

input data from the first step. Then, a fuzzy logic inference is used as a reasoning with

the large number of alerts and present an abstraction of these technique to score each

alert based on the metric values. The alert is then stored in the alert database with its

score. The alert is also passed to the alert analysis component for further investigation.

The analysis component measures the distance of the current attack from its possible

goals. It rescores the alerts that are suspicious to be a preparation step for later

attacks. It also detects suspicious activities which violate predefined system usage

(such as using a port number which is only allowed during working hours). Finally,

it provides a response plan to the intercepted attacks and makes it available to the

system administrator for further investigation. As result, high scored alerts stored in

the database can be presented to the security administrator for further investigation

where appropriate actions will be taken. Furthermore, High-level alert management

functions can benefit from the results offer by both the scoring and rescoring techniques

to provide accurate outcomes.

3.2 Alert Scoring Metrics

The alert scoring metrics shown in Figure 3.1 are used to evaluate the criticality of

alerts and to calculate a value for each one. Some of these metrics have been used in

previous works ( i.g., [31, 32, 46, 23]) but none associated all of them together. Addi-

tionally, we define new metrics that help us to accurately evaluate IDS alerts. FuzMet

scoring technique does not require all the metrics to be available during the evaluation.

Intuitively, the presence of a large number of indicators will definitely increase the

accuracy of the alert score. However, most of the metrics are easy to obtain, especially
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Figure 3.2: Attack Applicability Decision Process

those that deal with protected environments and the vulnerability knowledge base. We

will describe the alert scoring metrics in greater detail in the following subsections.

3.2.1 Applicability

Applicability is a process that checks whether an attack that raises an alert is applica-

ble in our environment or not. As shown in figure 3.2, in order to make a decision, this

process requires checking with one of the vulnerability knowledge bases and knowing

all the running services, applications, and operation systems. From alert’s attributes,

we extract the attack’s specification which uniquely identifies the attack. Then, we

can check with vulnerability knowledge bases to see whether the attack is applicable

in our network or not. To illustrate the process, first, information about the protected

environment and the attack should be available before the alert is generated. When-

ever alert is raised, we select the target address and the attack identification from its

attributes. From the environment knowledgebase, we can check what are the services

(also version) are running in the target address reported in the alert. Form the vulner-

ability knowledgebase, we can check the infected services by the reported attack. As
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result, if there is match between the running systems and any of the infected infected

system, attack will be considered applicable at this point. Otherwise, attack is mis-

takenly reported and the alert is treated as a false positive alert.

Furthermore, we further investigate the vulnerability that the attacker is trying to

exploit to check whether it is patched or not. If it is patched, then the attack will

be considered not applicable since there are no possibilities for that attack to success.

But, the attack will be considered applicable if the corresponding vulnerability has

not been patched. In general, figuring out the applicability of the attack on a given

network is reduced to a search problem.

3.2.2 Importance of Victim metric

This metric is used to specify the criticality of the target machine reported in the

alert. Several elements will participate in deciding the importance of the system in the

environment including services, applications, and accounts. The goal of this metric is

to increase the score of alerts related to suspicious activities that target critical system

components, such as a main server. Before introducing the function that calculates the

criticality of the target machine, we will present a general weighted equation that is

used in this metric and the rest of the thesis.

w′(a) = w(a)× a (3.1)

w(a) =


low if 0 ≤ a < thl,

med if thl ≤ a < thh,

high if thh ≤ a < 1.

(3.2)

Equation 3.1 aims to compute the value of any element based on its weight. A high

weight is chosen if the object is critical and vice versa. In this metric, the criticality

of a machine is calculated based on the running services/applications and the account

associated with them. Different services have different weights according to their im-

portance to the environment as well as the accounts. Equation 3.3 gives the formula
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Figure 3.3: Different IDSs Placement Values

used for the importance metric.

I(m) =

∑
s runs on m

w′(I(s)× I(Ac(s)))∑
s runs on m

w(I(s)× I(Ac(s)))
(3.3)

Importance describes the significance of the victim machine that is running in the

protected environment. The value of the importance is calculated on a scale from zero

to one. A zero indicates that the victim machine reported in the alert does not include

any important host, service, application, account, or directory. Scores closer to one

indicate that the attack is targeting critical system component.

3.2.3 Sensor Status

What part of the environment does the monitoring device cover? Is it configured? Is

it uptodate? What is its accuracy? Answering these questions for each sensor in the

environment will describe its status. Let Sensor Status denote the status of the IDS
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Table 3.1: Sensor Status Parameters

Variable Placement Configuration Up to Date Accuracy (BDR)
Critical Configure Updated

States Moderate Not Configure Not updated Probability (0-1)
Regular

that generates the alerts. The Sensor Status is affected by its placement, configuration,

uptodate and accuracy status. The security administrator has a full flexibility to deploy

multiple IDSs in different places in the environment. However, not all places have the

same value of sensitivity and criticality. The illustration example shown in figure 3.3

declares that several IDSs can be installed in a simple network to fully fulfill the security

requirements [14]. The IDS protecting the DeMilitarized Zone (DMZ), which includes

the Web and Mail servers, is considered to be in a critical place situation; therefore,

a high value will be chosen for this IDS placement parameter. In contradict, The IDS

running on monitoring the testing LAB segment has a low IDS placement value. For the

configuration parameter, security administrator is usually aware of the configuration

status of each IDS in the environment. This awareness is based on several constraints

such as, deactivating unnecessary signatures, tuning threshold value, and service and

rules compatibility. The uptodate status is determined based on the procedure of

applying all the relevant signatures including the most recent ones. Like the antivirus

tools, the IDSs vendors generate signature whenever a new attack is globally identified.

If the security administrator is perfectly tracking the vendors’ signatures generation

then the value of uptodate status will be high and vice versa. Finally, the accuracy

value of the sensor can be calculated offline using Bayesian Detection Rate (BDR)

proposed in literature by Stefan Axelsson [2].

Formally, let I and ¬I denote intrusive and nonintrusive behavior, respectively, and

A and ¬A denote the presence or absence of an intrusion alert. The Bayesian detection

rate is the is simply computing the probability of the true positive P (A/I) (alert is

raised given attack is present). In order to calculate the BDR formula, one uses the

past experience of the sensor inspection as follow:
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P (A|I) =
P (I)P (A|I)

P (I)P (A|I) + P (¬I)P (A|¬I)
. (3.4)

Where:

- I: Attack has occurred.

- ¬I: No Attack has occurred.

- A: Alert has been raised.

- ¬A: No Alert has been raised.

Table 3.1 shows all possible values that can be entered by the security expert who

manages the sensors. For instance, if the place of the sensor is ”Critical”, its accuracy

is high, it is well Configured, and it is uptodate. Then we expect that the value of

the Sensor Status to be high. Accordingly, the final alert’s score will be increased.

Basically, this indicator helps us to treat the alert based on the confidence that we

have towards the sensor that generates the alert. The value of the Sensor Status is

computed based on the values of the four indicators following the formula:

Sensor status = γ1 × Place+ γ2 × Conf.+ γ3 × Update+ γ4 ×BDR (3.5)

3.2.4 Attack Severity

Severity score measures the risk levels posed by a particular vulnerability. Security

analysis sources, such as MITRE Common Vulnerabilities and Exposures (CVE) [38],

Secunia [39],Internet Security Systems [40] and product’s corporation (e.g., Microsoft)

provide a severity score for all known attacks. For any raised alert, we will use multiple

scores provided by the above organizations and take the weighted average to represent

the severity score of the reported alert. The reasons behind involving multiple or-

ganizations to find the overall alert severity score are that each organization has its

own metrics to calculate the severity score value and the severity score value may vary

from one organization to another. For instance, the FileZilla unspecified format string

vulnerability has been reported in NIST as a very severe vulnerability scored 10 out

of 10 [41] unlike the Secunia who reported this vulnerability as a moderately criti-
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cal [42]. The goal of this metric is to present an accurate attack severity score which

accordingly affect the overall alert score. Each attack severity score can fall into one

of the three categorized classes namely high, medium, and low and a corresponding

weight is chosen. For instance, attack severity score with value 9 is considered to be

in the high class and the weight for this score will be high too. Doing this, allow us to

be more biased to the high severity score reported in several attack analysis sources.

Furthermore, we include the confidence value of each source that provides a severity

score for known attacks. The goal of this constraint is to increase the trustfulness of

the source which its services has been targeted. For example, if the attacker targeted

a Microsoft’s component (i.e. SQL server) then the attack severity score provided by

Microsoft will have more trust values among the other participant scores. However,

this parameter will make our overall severity score equation more dynamic.

SS(a) =

∑n
i=1w

′(SSi(a))× δ(i, v(a))∑n
i=1w(SSi(a))

(3.6)

SS(a) represents the severity of the attack that triggers the alert. Security analysis

experts publish severity scores (SS) for all discovered vulnerabilities. Several opinions

from multiple vulnerability analysis databases will be collected as well as the opinion

of the vendor whose service is being targeted. However, severity score representations

come in different formats: numeric or categorical. Therefore, we would first normalize

the severity score to a value between zero and one. Then, we can calculate the weighted

average of the participants’ severity scores as shown in equation 3.6. Obviously, the

high severity score opinion will be given a high weight and vice versa.

3.2.5 Service vulnerability metric

We adopt the method proposed by Abedin et al [13] to analyze only the service that

the attacker is targeting. This method is used to calculate a unified score representing

the strength or weakness of the targeted service. The result is then used in the overall

alert scoring.

Since the targeted service is listed in the alert’s content, it is possible to check

the set of current vulnerabilities of that service. A second source of information is
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Figure 3.4: Evolution of Service Vulnerabilities Over Time
Generated from data provide in [18]

to mine the vulnerability knowledge bases to check how vulnerable this service has

been in the past. This is related to those vulnerabilities that have been discovered

through scanning softwares. In addition, since newly released services tend to have

more vulnerabilities than services that have been in use since long, using the service

release time contributes too to the overall service vulnerability analysis. in summary,

it is possible to measure the Vulnerability Score VS(s) of a service s which appeared

in the alert a based on the current vulnerability score V Sc(s), the past vulnerability

score V Sp(s), and the release time RT (s) of the service.

In order to determine the set of services, applications, and operating systems that

the network is running, and consequently find out the current and historical vulnera-

bilities associated with them, available network scanning software, such as Nmap [16],

or Nessus [11] can be used. For both existing and historical vulnerabilities, we are in-

terested in the severity score SS. The service release time RT (s) serves an indicator of

the stability of the service. As shown in figure 3.4, experience has shown that services

in the early days of their release have more vulnerabilities than those released longer

in the field.
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Existing vulnerability metric

A raised alert a explicitly mentions the targeted service s (including the application,

OS, or service) that the attacker is trying to violate. In may cases, the targeted service

can also be determined from the port number that is stated in the alert. For a specific

or group of targeted services Si(s), we can explore the existing vulnerabilities Vi(s) and

calculate the value of the EV S based on the severity score SS of these vulnerabilities.

However, there is a difference between vulnerabilities having a published solution that

has not yet been applied, and vulnerabilities that still wait for a solution. The V Se score

is more biased towards the highest severity score SS(v) of the existing vulnerabilities.

The following equation calculates the EV S by the weighted arithmetic mean as follows:

V Se(s) =

∑
v∈Ve(s)

w(v)× SS(v)∑
v∈Ve(s)

w(v)
(3.7)

Historical vulnerability metric

For the historical vulnerability score V Sh(s) of service s, vulnerability knowledge bases,

such as CVE, are consulted to measure the stability of the service in the past. The

criticality, represented by the severity score SS, of the past vulnerabilities can be

high, medium, or low. High risk vulnerabilities receive a high score while low risk

vulnerabilities receive a low score. In addition, the severity of a vulnerability decreases

as it gains in age, reflecting the fact that vulnerabilities known since long tend to be no

more efficient. As a result, old vulnerabilities receive low scores. Equation 3.8 shows

how V Sh(s) is computed.

V Sh(s) =

∑
v∈Vh(s)

w(v)× SS(v)× λ−age(v)

∑
v∈Vh(s)

w(v)
(3.8)
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Finally, the overall vulnerability score V S(s) of a service s is computed as the weighted

average of V Se, V Sh, and RT :

V S(s) = η1 × V Se(s) + η2 × V Sh(s) + η3 ×RT (s) (3.9)

3.2.6 Relationship Between Alerts

Usually attackers launch their attacks in multiple steps in order to achieve the final

goal. The early steps are a preparation for the later ones. Calculating the final score

of the alert will involve evaluation of the relationship between the current alert and

the previous ones. The score of the currently evaluated alert will increase if there

is a relationship with any of the stored alerts. In this metric, we will restrict our

investigation to the alerts that happened in a short period -say a couple hours- from

the current alert. This restriction helps discarding very old alerts and focusing on

recent ones since attackers typically try to achieve their goal as soon as possible before

they can be identified.

The relationship between two alerts ai and aj is based on computing the simi-

larity between their respective source IP addresses (Simsip), destination IP addresses

(Simdip), source ports (Simspt), and destination ports (Simdpt). The source IP ad-

dresses similarity Simsip is computed by using the simple matching coefficient equa-

tion as shown in e eq.3.10. A similar formula exists for Simdip. However, calculating

the similarity between two sources IP addresses is subject to two constraints. First,

taking into consideration the subnet that the IP addresses are belong to. If the source

addresses of the current alert and the previous alert share the same subnet then the

(Simsip) will be high. Secondly, any difference in the Most Significant bits of the IP

addresses will make the (Simsip) low, unlike the changed of the last significant bits.

For the ports number, Simspt and Simdpt are computed booleanly which produces one

if the port numbers match and zero otherwise.

Simsip(a1, a2) =

∑
similar bits(SIP (a1), SIP (a2))∑
all bits(SIP (a1), SIP (a2))

(3.10)
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Figure 3.5: Attack Type Similarity provided in [37]

The overall similarity is a weighted sum of the four similarities mentioned above.

Sim(ai, aj) =
wsipSimsip + wdipSimdip + wsptSimspt + wdptSimdpt

wsip + wdip + wspt + wdpt

(3.11)

The relationship between two alerts (eq.3.12) is then computed by taking into

account the follow up probability record between the corresponding type of attack

of the alerts. This is a measure of the probability that an attack of type T (aj) is

followed by an attack of type T (ai). The values of these are taken from the statistical

analysis proposed by Valdes et al in [37]. As shown in figure 3.5, attacks are categorized

into several incident classes based on their type. The probability that one incident class

can be followed by another one is also provided in the figure. For instance, a probe

incident class can be followed by access violation incident class with high probability,

but this is not the case when it is the other way around since this it is not symmetric.
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Algorithm 1 Alerts Relationship Algorithm

Require: Current Alert, Alert Log `
Ensure: Relationship Degree

1: A= {ai | ai ∈ ` & Timestamp(ai) within time window RW }, n = |A|.
2: for i = 0 to n do
3: Calculate the Relationship Score between Current Alert and ai

4: if Relationship Score > Highest Relationship Score then
5: Highest Relationship Score= Relationship Score
6: else
7: Keep the Highest Relationship Score
8: end if
9: end for

10: Return Relationship Score

R(ai, aj) = P (T (aj), T (ai))× Sim(ai, aj) (3.12)

Finally, the relationship score of an alert ai (eq.3.13) is equal to the maximum

relationship score it has with the alerts that occurred at most RW time units before ai

(i.e. 0 < ts(ai)− ts(aj) < RW ).

R(a) = max
0<ts(ai)−ts(aj)<RW

R(ai, aj) (3.13)

Algorithm 1 illustrates the procedure of evaluating the relationship between alerts.

The algorithm starts by specifying the time window RW that the relationship scores

will be calculated between the current alert and the previous ones. We will consider

the highest relationship score between two alerts as the overall alert relationship score.

3.2.7 Social Activity- Target and Source

A social network is a social structure made of nodes that are tied by one or more

specific types of relations [15]. In this metric, we are trying to construct and analyze

the social network for the source and target that are stated in the alerts’ attribute.

The node of the social network will be the source address, target address, attack ID,
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Figure 3.6: Portion of Fuzzy Logic Inference System

and the sites the user has visited. The relationship between the nodes differs according

to the object of the node. For instance, the social relationship between an attacker and

a victim raises an ”alerted” situation, whereas if it were a worm and host, we would

have an ”infected” situation. Our main goal in this metric is to find a triangular

relationship that involves a hidden participant. This hidden participant could be a

previous activity of the recent attacker.
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Table 3.2: Fuzzy Logic Inference Rules
Criteria Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Rule10

Applicability High High Avg Avg - High Avg High Avg -
Importance High High High High Avg High Avg Low Avg Low

Sensor Status High High Avg Low Avg Avg Avg High Avg Low
Severity High High High Avg Low Avg - Avg - Low

Weaknesses High Avg High - Avg Low - - Low Low
Relationship High High Avg Avg Avg - Low Low Low -

Social Activity High Avg High Avg - Low - - Low Low
Alert Score High High High Avg Low High Avg Avg High Low

3.3 Fuzzy Logic Inference Approach

A Fuzzy logic system reasons about the data by using a collection of fuzzy membership

functions and rules. It makes clear conclusions possible to derive from imprecise infor-

mation. In this regard, it resembles human decision making because of its ability to

work with approximate data and find precise results. Fuzzy logic differs from classical

logic in that it does not require a deep understanding of the system, exact equations,

or precise numeric values. It incorporates an alternative way of thinking, which allows

for complex modeling of systems using a high-level of abstraction of gained knowledge

and experience. Fuzzy logic allows the expression of qualitative knowledge, includ-

ing phrases such as “too hot” and “not bad”, which are mapped to exact numeric

ranges [27, 36].

For the above reasons, we used a Fuzzy logic system to reason about IDS alerts.

Results coming from the metrics presented in the previous section are used as input

to Fuzzy logic Inference engine in order to investigate the seriousness of the generated

alerts. The Fuzzy logic system requires a definition of the membership functions of all

input metrics. In addition, fuzzy rules need to be defined in order to formulate the

conditional statements that make the fuzzy inference. There are five parts of the fuzzy

inference process: (1) fuzzification of the input variables, (2) application of the fuzzy

operator (AND or OR) to the antecedent, (3) implication from the antecedent to the

consequent, (4) aggregation of the consequents across the rules, and (5) defuzzification.
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Membership Functions (MF) are curves that define how each point in the input

space is mapped to a membership value (or degree of membership) between 0 and 1. To

achieve the smoothness and concise notation [43], we use Gaussian distribution curve

as the type of the membership functions.

Rules are defined from domain expert as shown in Table 3.2. Rules in a fuzzy expert

system are usually of a form similar to the following:

if applicability is High and severity is Avg then set alert score to High

where applicability and Severity are input variables, score is an output variable, High

is a membership function (fuzzy subset) defined on applicability, Avg is a membership

function defined on severity, and High is a membership function defined on the alert

score.

In FuzMet approach, we use Fuzzy Logic to score the alerts generated by any IDS,

given some evidence from several sources namely, the alert itself, the environment

where the alert is raised, and the vulnerability knowledge base. As shown in figure 3.6,

Fuzzy Logic Inference first takes the input values from the metrics (e.g., applicability,

severity, importance, and relationship metrics) and then fuzzify these inputs by using

the membership functions. Then, the rules will be evaluated to generate the output

set for each active rule. All the outputs will be aggregated and a single fuzzy set will

be provided. Then this fuzzy set will be defuzzified in order to give a numeric value

that represents the seriousness of the alert.

3.4 Alert Rescoring Approach

The main goal of the alert re-scoring technique is to score alerts that are already

scored based on their relationship with the current alert. One of the reasons for re-

scoring alerts is to notify the security administrators with the early steps of the attack,

that may be scored low. Another reason is to emphasize the previous activities of

an attacker who is launching a very critical attack. However, the method of scoring

alerts only once will limit the security administrators in identifying the non-critical
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early-steps of the attack, especially if a filtering technique is used discarding those

low scored alerts. Also, high-level alert management techniques such as correlation or

clustering can benefit from re-scoring and provide more accurate results.

Alert management techniques such as aggregation, grouping, scoring, filtering, clus-

tering, correlation, and fusion were proposed to deal with the large number of alerts

and present an abstraction of these alerts. First, alerts are aggregated from multiple

IDSs then similar alerts will be grouped together into hyper-alerts. Scoring function

will evaluate the hyper-alerts and assign a score for each one according to its impor-

tance or seriousness. Low-score alerts will be discarded and they will not be involved in

any further analysis. Then, correlation functions may be applied to present the attack

scenarios. Clearly, scoring alerts once will discard the early non-critical attack that

prepare for a later critical attack. Consequently, the early steps of the attackers will

not be involved in any further analysis such as attack scenario construction. For in-

stance, attackers first scan the victim machine by launching an IPSweep attack. This

probe will be scored low according to its seriousness and impact. Later, the attackers

launch a SadmindBufferOverflow attack based on the vulnerability findings of the

scanned machine. This attack will be assigned a high score since it is a critical at-

tack. The security administrator can not see the early steps of the attack if a filtering

operation is applied. On one hand, involving only the critical alerts in the high-level

operations, such as correlation, will prevent the non-critical early steps of the attack to

be considered. On the other hand, involving all alerts in the high-level operation will

make the total number of correlated alerts unmanageable manually. Hence it is impor-

tant to highlight only the critical alerts and their related alerts. Therefore, we perform

a re-scoring of alerts based on the prepare − for relationship and the trustfulness of

attacks. The prepare − for checks if there is any relationship between the currently

evaluated alert and the entire alerts log. The trustfulness examines the previous activ-

ities of the current source of the attack if the launched attack is critical. Then we can

adjust the value of trustfulness for this source in our source evaluation metric.

Security analysts can apply the rescoring function periodically (at the end of the

day) or before applying the high-level management techniques. Algorithm 2 illustrates

the rescoring process in FuzMet. The algorithm starts by taking the alert log, the
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Algorithm 2 Alerts Rescoring Algorithm

Require: Alert Log `, Score threshold ST , Relationship threshold WT
Ensure: Rescored Alert log

1: A= {a(i) | a(i) ∈ ` }, n=|A|.
2: B= {a(j) | a(j) ∈ `

∧
0 < Timestamp(a(i))- Timestamp(a(j)) < WT }, m=|B|.

3: for i=0 to n do
4: for i=0 to m do
5: Calculate Relationship: R = Relationship(a(i), a(j))
6: if R > ν

∧
AlertScore(a(i)) > ST then

7: Fetch the Applicability of a(j)
8: if a(j) is Applicable

∧
AlertScore(a(j)) < υ then

9: Rescore a(j) where AlertRescore(a(j)) > ST
10: else
11: Keep the Alert Score
12: end if
13: else
14: Keep the Alert Score
15: end if
16: end for
17: end for
18: Return Alert with Rescore Value

score threshold for prioritizing alerts, and the window time WT that limits the alerts

involved in calculating the relationship degree. For each alert in the log, we calculate

its relationship with the previous alerts within the window time WT . If the score of the

current alert is high and the relationship degree is strong, then the involved previous

alert is a candidate for rescoring. In order to rescore this alert, we further investigate

its applicability against the protected network as well as its score should be low. If

the conditions have been satisfied, then the alert will be rescored and prioritized for

further investigation.
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3.5 FuzMet configuration issues

The FuzMet IDS uses a number of metrics, fuzzy inference rules, and alert rescoring

mechanisms all of which have several configurable parameters which influence the pre-

cision of intrusion detection and alert prioritization. The security administrator has a

number of parameters that can be configured while others are not. Non-configurable

parameters include the severity score values SSi(a) gathered from security expert or-

ganizations, sensor update status and accuracy, and the attack follow up probability

matrix P (eq.3.12). The set of configurable parameters includes the five parameters of

the weight function w (sec.3.2) which in turn influence the machine importance metric

I(m) (eq.3.3), the severity score metric SS (eq.3.6), the existing vulnerability metric

V Se (eq.3.7), and the historical vulnerability metric V Sh (eq.3.8). The importance

I(s) of each service s and the importance of each user account I(a) need also to be

configured in order to reflect the criticality of each service, user account, and machine.

The sensor status metric has four configurable weight parameters. The severity score

metric (eq.3.6) requires the definition of δ(i, v(a)) for each severity score provider i

and targeted victim v(a) tuple. This parameter can be made into a more static form

δi if only a single trust value is given to a severity score provider independent of the

target victim. The service vulnerability metric (eq.3.9) has an additional four param-

eters including the decay coefficient λ as well as the three ηi weights. The relationship

metric (eq.3.13) has also four additional parameters. This makes the overall number

of configurable parameters equal to:

Ncfgp = 17 + |services|+ |accounts|+ |scoresources| × |victims| (3.14)

Besides metric configuration, there is a need to define the appropriate fuzzy in-

ference rules which help in capturing the severity of each attack. As can be noticed,

providing an optimal configuration of the FuzMet system is not trivial to say the least.
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3.6 Conclusion

In this chapter, we presented FuzMet automatic method of evaluating alerts generated

by IDS. Our main gaol was prioritizing the critical alerts to the security analysts among

large number of alerts mixed with high rate of false positive. In order to achieve this,

number of criteria were proposed. Applicability of the attack, the importance of victim,

the relationship between the alert under evaluation and the previous alerts, and the

social activities between the attackers and the victims are examples of the metrics we

use to prioritize IDS alerts. These metrics are used as inputs of a Fuzzy-logic system in

order to investigate the seriousness of the generated alerts and quantitatively calculate a

score for each alert. This evaluation process will prioritize alerts when presented to the

security administrator for further investigation. Additionally, we propose a rescoring

technique to dynamically score alerts based on the relationship between attacks or the

trustworthiness of the attackers.



Chapter 4

Experimental Results and

Evaluation

This Chapter reports our evaluation methods conducted to validate the effectiveness

of our proposed approach. First, the most popular datasets used in our experiments

are described in section 4.2, namely, DARPA 2000 specific intrusion detection scenario

dataset. [21]. In Section 4.3, we present the accomplished results of alert prioritization

approach, FuzMet, which are divided into two parts. The first part shows the results of

FuzMet carries out with only one configuration parameter set while the second present

the experiments conducted with different configuration parameters sets and both are

compared with snort results. Also, the consequences of the rescoring technique are

shown in section 4.4. Finally, we conclude this chapter by describing the lessons gained

by the conducted experiments in Section 4.5.

4.1 Overview of Alert Evaluation Experiments

One of the first concerns faced by those who are working in IDS alert management

is how to find data sets that are appropriate for testing, evaluating, and validating

their proposed algorithms. Generally, there are two methods used in this context.

These methods are not only for evaluating alert management techniques but also for

43
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testing new intrusion detection algorithms. The first method is building a simulated

network and collecting the relevant data for further investigations. However, creating

a simulated network environment with hundreds of computers is often difficult and ex-

pensive. Also, simulated network environments may yield traffic that does not mimic

a real network due to the inherent nature of simulated traffic [22]. Most importantly,

comparing the results obtained through a simulated network environment with other

results is not possible since both are using different environments. The second possible

method is using the previously collected data sets. These data sets contain real attack

instances on real networks which are publicly available for research purposes. Using

the available data sets saves the development time and efforts. It is possible to com-

pare results conducted by applying different approaches to the same data set. Several

popular data sets are available such as, the DARPA Evaluation data sets cite[DARPA],

the Knowledge Discovery and Data Mining (KDD) CUP 1999 competition data set [6],

and DEFCON [35]. In our experiments, we used the second method for testing and

validating the FuzMet approach. The characteristics of the data sets were suitable for

our requirements. Particularly, we used the 2000 DARPA Intrusion Detection Scenario

Specific Data Sets.

4.2 2000 DARPA Intrusion Detection Scenario Spe-

cific Data Sets

For the sake of testing and evaluating the efficiency of the IDS, the Defense Advanced

Research Projects Agency (DARPA) has provided a number of Intrusion Detection

Evaluation Data Sets including the 1998, 1999, 2000 Data sets. In this thesis, we used

the latter one. The 2000 data set contains attack scenario that includes a distributed

denial of service attack “DDoS”. This attack scenario is carried out over multiple

network and audit sessions in which an attacker probes the network, breaks into a host

by exploiting existing vulnerability, installs the software required to launch a DDoS

attack, and finally launches the DDoS attack against an off-site server. The 2000

dataset is divided into two data sets namely, LLDOS 1.0 and LLDOS 2.0.
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4.2.1 LLDOS 1.0 Data sets

In general, Distributed Denial of Service (DDoS) is the type of attack conducted in this

data set. in order for the attacker to achieve this gaol, number of different attacks are

used as preparation steps. The attacker starts by using a scripted attack to break into

a variety of hosts. This step is conducted by scanning all subnets in the target network

looking for alive hosts, and identifying which alive hosts are running Solaris sadmind

service by using rpc port scan. Then, the attacker uses the Solaris sadmind exploit,

a well-known Remote-To-Root attack, to successfully gain root privileges in Solaris

hosts in the targeted network. With the root access in the compromised machine, the

attacker install the Mstream DDOS tool, that is capable of flooding target systems

with high volumes of TCP packets [12], as the final preparation steps for lunching

DDoS. Finally, the attacker launch a DDOS from the compromised network (by the

installed DDoS tool) to an off-site server.

During the time of launching the attack, number of sensors were install in the

network to record all the traffic including all attack instances. The DARPA LLDOS

1.0 dataset contains traffic collected from two network zones: “DMZ” and “inside”.

The series of attacks in the dataset are carried over multiple sessions or phases, the

interval times of which are shown in Table 4.1. A summary of the five phases of the

attack scenario are:

1. Scans the network in order to launch a DDOS attack against an off-site server.

2. Looks for the sadmind daemon of live IP.

3. Break in hosts by exploiting a sadmind vulnerability.

4. Installing a mstream Trojan on the compromised machine.

5. Launches the DDoS attack against the remote site.

4.2.2 LLDOS 2.0 Data sets

The second attack scenario data set includes a similar sequence of attacks run by an

attacker who is a bit more complicated than the one in version LLDOS 1.0. The main
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difference between LLDOS 2.0. and LLDOS 1.0 is that in LLDOS 2.0.2 the attacker

uses DNS HINFO queries for probing the host, platform, and operating system rather

than Sweeping IP’s and using RPC port scaning. Also, the attacker tries to break in one

host by exploiting the sadmind vulnerability and gain root privileges where he continues

to compromise other hosts unlike the LLDOS 1.0 where the attack compromise each

vulnerable host individually. From this point, the attacker proceeds to install the DDoS

componenet and launches the DDoS attack. The five phases of the attack scenario are

summarized as follows:

1. Probe of one host, Eyrie’s public DNS server, via the HINFO query

2. Break in the host via the sadmind exploit.

3. Upload of mstream DDoS software and attack script (to break-into more hosts).

4. Initiate attack on other hosts

5. Launching the DDoS

4.3 Prioritizing Attacks Observations

In order to validate the effectiveness of the FuzMet approach for prioritizing IDS alerts.

The DARPA 2000 intrusion detection LLDOS dataset 1.0 [21] was used and the gener-

ated alerts were stored in a MySQL database. Java was used to compute the different

metrics related to the alerts. These metrics were then input to the fuzzy rule set of

in order to generate FuzMet alert scores. Matlab Fuzzy Logic toolbox [36] was used

for the fuzzy rules specification. Finally, we compared FuzMet alert scores with the

ones generated by Snort. This results section is divided into two parts. The first part

shows the output of Snort and FuzMet for one configuration set and details the com-

parison between them. The second part focuses on the optimal configuration problem

and presents the result of a selected set of results from among a set of 200 conducted

simulations.
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Table 4.1: Prioritized alerts of the DARPA 2000 LLDOS 1.0 Dataset using Snort

4.3.1 Alert scoring

Snort was used with the maximum detection capability to scan and detect intrusions

within the binary tcpdump file of both of the “inside” and “DMZ” traffics. Snort

reported 3502 alerts (321 inside, and 3181 DMZ). In order to filter out redundant

alerts, we employed a grouping of alerts based on exact similarity within a specific

window of time. This resulted in a new total of 156 alerts (Table 4.1), thus a gain of

95.5%.

The FuzMet scoring technique was applied to the alerts generated by Snort. For

each alert, we compute the value of all the metrics we defined earlier, except for the

sensor status, service vulnerability, and social activity metrics because the used dataset

does not provide knowledge about the status of the targeted services and applications

of the evaluation network. However, the other metrics were good enough to prioritize

the most critical alerts. The attacker in the first phase tries to scan the network by

employing the ICMP echo-request, looking for “up” hosts. Snort generates 816 alerts as

a response to attacker’s ICMP requests and the hosts ICMP replies. FuzMet evaluated

these antecedents and scored them as low (1.2-2.3) as shown in Table 4.1. In the second

phase, we received 259 alerts from the traffic of both the DMZ and inside parts, which
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Figure 4.1: Fuzzy logic inference engine

represents the attacker’s attempts to probe the discovered live hosts from the previous

phase to determine which hosts are running the sadmind remote administration tool.

We scored these alerts differently based on the context in which they occurred. For

instance, the “RPC portmap sadmind request UDP” alert that was triggered by the

activity targeting the inside firewall interface is scored low. However, this alert is scored

high when the target host is running a sadmind service. The remote-to-root exploit

has been tried several times in the third phase and Snort raised 92 alerts of which we

prioritized 34. Since we focus on evaluating alerts generated by Network-IDSs, we did

not involve the audit data from the hosts in the network and, therefore, phase 4 was

not included. The DDOS attacks in phase five triggered 141 alerts which we prioritized

as critical events.

Table 4.1 summarizes the results of the FuzMet alert scoring (with and without the

grouping function) technique on the DARPA 2000 dataset. FuzMet alert prioritization
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Figure 4.2: FuzzMet vs. Snort scores (Over Time)

was effective in identifying the false positive alerts which Snort failed to detect. For

example, Snort generates a “MS-SQL version overflow attempt” alert with the highest

priority, but we scored this alert low based on our criteria since the target address

is running a Mac operating system and this attack is impossible to succeed in this

context. Figure 4.2 and 4.3 show that after we score the alert, a security administrator

can be provided with the most important alerts unlike the result of Snort which assigns

a level-two priority (out of 3) to most of the alerts.

4.3.2 FuzMet optimal configuration

As discussed in section 3.5, the parametrization of the FuzMet alert scoring system

determines its effectiveness. Mis-configuration can easily lead to imprecise outcomes,

which consequently results into missed attacks. The objective is hence to determine

the optimal configuration of the FuzMet set of parameters. Because the used dataset

does not come with information about network topology, set of running services, and

the different user accounts, a number of FuzMet metrics couldn’t be involved in the

experiments. These include the sensor status, service vulnerability, and social relation-
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Figure 4.3: FuzzMet vs. Snort scores (By Number)

ship metrics. The metrics which were used are the applicability, importance, severity,

and relationship metrics. For simplicity, all severity score sources were given equal

confidence (δ(i, v(a)) = 1).

200 simulations have been conducted with different configuration parameters in

order to determine an optimal configuration set. An optimal configuration set is the one

which makes FuzMet prioritize only those alerts which actually belong to the DDOS

attack phases. Due to space limitation, only four representative simulations will be

shown in this section. Table 4.4 shows the parameters of the severity and relationship

metrics for the selected simulations. The weight group contains the configuration

parameters for the w function which directly affects the severity score metric (eq.3.6).

Table 4.2 shows the configuration parameters related to the importance metric. A value

of 1 indicates of low importance while a value of 3 indicates a highest importance. A

value of 0 indicates the case where the target machine is unknown or that the value

has not yet been configured. Simulation S1 showed the worst result among the 200

simulations. Only one single alert was given high priority (figure 4.4(a)). The result

can be explained by the fact that the machines running the sadmind service, core to
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Figure 4.4: Configuration results



Experimental Results and Evaluation 53

the DDOS attack, have been assigned a null importance (172.16.112.10, 172.16.112.50,

and 172.16.115.20). In S2, 31 alerts have been assigned high priority (figure 4.4(b)). S2

differs from S1 mainly in the importance metrics where the machines that are running

Sadmind have now a non zero importance. S3 gives a high priority to 11 alerts only

(figure 4.4(c)). However, if the high priority threshold is lowered from 8 down to 7,

S3 records a number of 66 high priority alerts, hence equaling those generated by S4

(figure 4.4(d)). S4 manages to generate the best result among the 200 simulations

with a number of 66 high score alerts and the highest average score of 4.02. S3 and

S4 have the same importance configuration and differ in the weight and relationship

parameters. S4 is considered the best configuration not only based on the number

of high alert scores. In fact, out of the four identifiable phases of the DDOS attack,

only S4 manages to detect all of them with a strong precision for phases 2 and 3 and a

high-medium precision for phases 1 and 5 (phase 4 is only detectable by a host IDS and

as such is excluded from the evaluation). In contrast, Snort manages to identify only

phase 2. Figure 4.4(e) plots the results of S4 based on time rather than on the number

of alerts and shows the concentration of high score alerts for phases 2 and 3 which last

09:03 and 01:51 mins respectively. S4 records 58 high score alerts for phase 3, with a

duration of 01:49 mins. This interval is almost equal to the exact duration of phase 3

of the attack which corresponds to the exploitation of the sadmind vulnerability. It is

to note also that even S1 manages to generate one high score alert for phase 3 while

Snort misses that phase completely and only detects phase 2 out of the four detectable

phases.

4.4 Rescoring Alert Results and Advantages

We applied FuzMet rescoring technique to the alerts that are scored previously. As

we discussed earlier in section 4.3.1, a simple alert grouping technique was applied

to the alert log to remove the alerts redundancy (similar alerts occur in close time).

This technique groups together the alerts that are similar in their IP addresses, port

numbers, attack type. The grouped alerts represent all the attacker’s steps used to

launch a DDOS attack which are considered for rescoring. Since LLDOS 1.0 dataset



54

Figure 4.5: Alert Rescoring approach (By Number)

consists of only one complete attack scenario, the first phase, which contains non-

critical attacks (regular scanning), is good candidate for rescoring for two reasons.

First, it is considered to be a preparation step for later attacks. Second, FuzMet scores

the alerts generated by this phase as low. Therefore, we focus our analysis on the alerts

related to the first phase to check the usefulness of our rescoring approach.

In phase one, the attacker starts to scan the network at 09:51:36 until 09:52:02 by

performing a scripted IPsweep of multiple class C subnets on the victim network.

Previously, this phase was scored low by FuzMet according to its seriousness and

impact. FuzMet successfully rescored this phase to be attached with the other phases

of DDoS attack scenario. As shown in figure 4.5, the alerts related to phase one were

scored between (1.35 to 4.38) but after applying the rescoring function their score

increased to be 8. The rescoring value were chosen to be 8 to insure that the rescored

alerts will be included in the prioritized alert set. As a result, all the critical alerts

as well as the preparation steps have been prioritized and presented to the security

analyst.
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4.5 Conclusion

This chapter presented the experimentation results of FuzMet; a system that uses

fuzzy logic inference to evaluate and prioritize IDS alerts based on several metrics. We

defined seven metrics related to the applicability of the alert, importance of the target,

sensor status, alert severity score, service vulnerability, alerts static relationships, and

the social relationships between system users. In the experiments, we use Snort with

its maximum detection capability to scan the DARPA 2000 LLDOS 1.0 dataset. We

applied our scoring algorithm to the alerts generated by snort and the results showed

that the security analyst can recognize the critical alerts among the others. A number

of 200 simulations were conducted in order to determine optimal configuration for

FuzMet since it has high number of configuration parameters required by the different

metrics and fuzzy logic engine.

While Snort detected only one phase of the four detectable phases of the attack

the best configuration of FuzMet managed to detect all of those phases with a good

precision for two of the phases and a very good precision for the others. Unexpectedly,

even worst case configuration of FuzMet did also good in the sense that it managed to

raise one single high score alert for a phase which Snort did not detect at all.

The conducted simulations showed the viability of the FuzMet approach at least

for the selected intrusion scenario. In addition, the divergent behavior of FuzMet

depending on how it is configured helped in identifying the configuration which leads

to best performance wherein all attack phases are identified.
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Conclusion And Future Work

After implementing an intrusion detection system, one realizes that detecting intrusions

is not the only challenge to solve. In fact, managing the large number of generated alerts

is also a demanding task for the security analysts. Evaluating these alerts manually can

be difficult, error-prone, and time-consuming. Therefore, automatic alert evaluation

and prioritization are needed to keep the number of alerts in a human control. We

argue that with the presence of the attack knowledge base, network information, basic

alert attributes, and some security administrator we can judge about the seriousness of

each alerts generated by an IDS. As a result, only critical alerts (which are reasonably

in small number) will be prioritized for further investigation by security administrators.

Involving unrelated alerts at the high-level management techniques such as clustering

and correlation is another problem we are trying to address in this thesis. With these

unrelated alerts, the results of the high-level management approaches will be either

inaccurate (by involving only critical alerts) or difficult to manage (by involving all

reported alerts). For instance, one of the correlation graph produced by correlating a

large number of alerts, consist of 2,940 nodes and 25,321 edges as reported in [29]. A

human user will have difficulties in analyzing such a graph in a short period of time.

Therefore, we proposed a rescoring approach aiming to involve into the prioritized alert

set those non critical alerts that prepare for critical ones. As a result, the critical alerts

as well as the preparation steps will be prioritized and presented to security analyst.

56



Conclusion And Future Work 57

5.1 Summary of Contributions

The contributions of this thesis can be summarized as follows:

• An automatic alert evaluation and prioritization framework that make the man-

agement task for the security analysts easier and controllable.

• A re-scoring technique that dynamically score alerts based on relationship be-

tween attacks.

• A comprehensive study of the impact of different configurations of the proposed

metrics on the accuracy and the completeness of the alert scores generated by

FuzMet.

• A survey and taxonomy of IDS alert management techniques.

5.2 Thesis Summary and Concluding Remarks

In this thesis, we presented FuzMet; an approach that automatically evaluates IDS

alerts band prioritizes the critical ones based on a number of criteria. These include

the applicability of the attack, the importance of victim, status of the sensor, the

severity of the attack, the relationship between the alert under evaluation and the

previous alerts, and the social relationships between system users. We used a Fuzzy-

logic inference mechanism in order to score alerts. This score represents the seriousness

of the alerts. The Fuzzy-logic approach receives the values calculated by the metrics

for each alert as inputs and compute the overall score for that alert. Furthermore,

we developed a rescoring technique that enabled us to rescore alerts to show the early

steps of the attackers. This technique tries to increase the score of the alerts that were

already scored low but which participated in preparing for later attacks. Additionally,

this thesis presents the specification and configuration issues of FuzMet. Because of the

high number of configuration parameters required by the different metrics and fuzzy

logic engine, this paper particularly emphasized the problem of optimal configuration
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for FuzMet. The simulations were specifically conducted in order to determine such a

configuration.

In the experimentation, the FuzMet approach has been applied onto the alerts

generated by Snort with its maximum detection capability and using the DARPA 2000

LLDOS 1.0 dataset. The dataset features a distributed denial of service attack on a

remote site. For the scoring approach, we successfully prioritized the most critical alerts

which are relatively small comparing with the number of generated alerts. FuzMet

prioritized the critical alerts that are related to the launched attacks, unlike Snort which

scores most of the alerts as medium. For rescoring approach, the results showed that

all the non critical alerts that prepared for any critical ones were rescored and included

with the set of the prioritized alerts. For finding the best configuration parameters

of FuzMet metrics, a number of simulations were conducted and selected results were

presented. The conducted simulations showed the viability of the FuzMet approach at

least for the selected intrusion scenario. In addition, the divergent behavior of FuzMet

depending on how it is configured helped in identifying the configuration which leads

to best performance wherein all attack phases are identified. However, even with the

obtained results, we did not completely solve the configuration problem of FuzMet.

In fact, many of the metrics were not configurable due to the absence of their related

data from the chosen scenario dataset. In addition, it is not possible to prove that the

identified best simulation is the actual optimal configuration; or even whether it is the

best just for that particular data set. The search space involves a considerable number

of parameters and further analytical analysis is required.

Although, our objective is to make the evaluation process more manageable for the

security analysts, still we are concerned about the detection of the real attack in our

evaluation process. Since our mechanism of prioritizing the critical alerts depends on

the successful attack detection by the deployed IDS, the attacks will not be prioritized

if the IDS missed them. Additionally, the computing time for calculating the values of

each metrics and the application of the Fuzzy-logic reasoning eliminates the real-time

alert prioritization approach. However, real-time alert ranking is not essential in an

Intrusion Detection Systems, unlike intrusion Prevention Systems (IPS) which require

real-time alert detection and prioritization mechanism.
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5.3 Future Directions

In the state of our work, several future research avenues can be followed:

• The used dataset was conducted in 2000 by DARPA. It is interesting to use

more recent data sets that contain new attack instances to test FuzMet with.

Also validating the capability of FuzMet by using real attack scenarios designed

particulary to prove its effectiveness is required.

• The alert relationship metrics defined in section 3.3.6 is based on the similarity

between alert. It is interesting to test different relationship strategies such as

the one that is based on the prerequisites and consequences of the attacks.(these

were discussed in section 2.3.4).

• As discussed in section 2.2.1, anomaly-based IDSs generate alerts whenever the

traffic differs from the norm by a certain threshold. Investigating the usefulness

of FuzMet as an anomaly-based IDS is an interesting direction since no work has

been done in this regard.

• Providing an analytical study of the alert prioritization, rescoring mechanism,

the configuration problem of the identified metrics, and the Fuzzy-logic rules and

inference engine is an appropriate extension to this research. By doing so, we

can validate the conducted results by comparing the results carried out by the

simulations with the results carried out by the analytical models.

• Investigating the alert analysis component that includes attack distance, occur-

rence time, and response plan is considered for our future works.
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