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Abstract: As an effective tool to express the subjective preferences of decision makers, the linguistic
term sets (LTS) have been widely used in group decision-making (GDM) problems, such as hesitant
fuzzy LTS, linguistic hesitant fuzzy sets, probabilistic LTS, etc. However, due to the increasing
complexity of practical decision-making (DM) problems, LTS still has a lot of room to expand in
fuzzy theory. Qualitative uncertainty information in the application of GDM is yet to be improved.
Therefore, in order to improve the applicability of linguistic terms in DM problems, a probabilistic
uncertain linguistic intuitionistic fuzzy set (PULIFS) that can fully express the decision-maker’s
(DM’s) evaluation information is first proposed. To improve the rationality of DM results, we give a
method for determining individual weights in the probabilistic uncertain linguistic intuitionistic fuzzy
preference relation (PULIFPR) environment. In addition, we present two consistency definitions
of PULIFPR to reflect both the assessment information and risk attitudes of decision makers.
Subsequently, a series of goal programming models (GPMs) are established, which effectively
avoid the consistency check and correction process of existing methods. Finally, the developed
method is applied to an empirical example concerning the selection of a virtual reality (VR) project.
The advantages of the proposed method are demonstrated by comparative analysis.

Keywords: group decision-making (GDM); probabilistic uncertain linguistic intuitionistic fuzzy
preference relation (PULIFPR); consistency; goal programming model (GPM); risk preference

MSC: 34A08; 34B10

1. Introduction

Because of the inherent subjective ambiguity of human thinking and the complexity of practical
decision-making (DM) problems, the use of qualitative information is almost an indispensable link
in DM. As the most commonly used qualitative information expression tool, linguistic terms (LT)
have been extensively studied by scholars. Since Zadeh [1] proposed linguistic variables in 1975,
various extended forms of LT have been proposed to model qualitative information and improve its
calculation. In order to have a general understanding of these extended LT, we will present the general
development process of LT in the form of Table 1.

It is easy to see from the table 1 that the development of LT can be mainly divided into two
stages. The first stage is some traditional linguistic models, whose main research object is single LT.
The second stage is the complex linguistic expression stage, whose linguistic information expression
form is generally more than one LT or implied multiple linguistic information. In addition, it is easy
to find that the LT of the later stage mostly introduces probability to comprehensively reflect the
subjective uncertainty of decision makers (DMs) and the randomness of objective existence. All of
these proposed sets give expression methods of qualitative information from different perspectives,

Symmetry 2019, 11, 234; doi:10.3390/sym11020234 www.mdpi.com/journal/symmetry1



Symmetry 2019, 11, 234

and all of them have been applied reasonably in the DM problem. However, the qualitative information
expressed by these sets has different degrees of defects. For example, although probabilistic uncertain
linguistic term sets (PULTS) expresses the DM’s preference information and its probability distribution,
it fails to consider the DM’s non-preference information, while linguistic intuitionistic fuzzy sets (LIFS)
only expressed the subjective hesitation of DMs from the perspective of preference and non-preference,
failing to consider the probability distribution of its information. Therefore, in order to improve the
expression of qualitative information and promote the use of LT in DM problems, this paper further
proposes a probabilistic uncertain linguistic intuitionistic fuzzy set (PULIFS) based on the above
research, which integrates the advantages of LIFS and PULTS.

Table 1. A brief history of the types of linguistic terms.

Year Event

Traditional 1975 Zadeh proposes the linguistic variable and introduced the fuzzy linguistic approach [1–3].
linguistic 1981 Yager presents an ordered structure model [4].
models 1988 Degani and Bortolan present the semantic model [5].

1993 Delgado and Verdegay propose the symbolic model [6].
2000 Herrera and Martinez introduce the two-tuple linguistic model [7].
2004 Xu defines the virtual linguistic model [8].

Complex 2004 Xu introduces the uncertain linguistic term (ULT) [9].
linguistic 2012 Rodriguez et al. present the concept of hesitant fuzzy linguistic term sets (HFLTS) [10].
expression 2014 Meng et al. propose the linguistic hesitant fuzzy sets (LHFS) [11].

2014 Zhang gives the concept of linguistic intuitionistic fuzzy sets (LIFS) [12].
2015 Ye presents the single-valued neutrosophic linguistic sets (SVNLS) [13].
2016 Pang et al. present the probabilistic linguistic term sets (PLTS) [14].
2107 Lin et al. define the probabilistic uncertain linguistic term sets (PULTS) [15].
2018 Bai et al. present the interval-valued probabilistic linguistic term sets (IVPLTS) [16].
2018 Zhang et al. propose the dual hesitant fuzzy linguistic term sets (DHFLTS) [17].

For example, when a decision team needs to evaluate and compare some alternatives, due to
the complexity of the actual decision-making environment, the decision-makers can only provide
qualitative preference and non-preference information based on the linguistic term set (LTS) S = {s0:
extremely poor, s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good, s6: good, s7: very
good, s8: extremely good}. Among them, 40% of the DMs gave preference information between the very
poor and the slightly poor, and the non-preference information was between the fair and the slightly
good. While 60% of DMs gave preference information between fair and good, and non-preference
information was between very poor and poor. Then the preference information given by this decision
team can be represented by PULIFS as

P = {〈([s1, s3], [s4, s5]), 0.4〉, 〈([s4, s6], [s1, s2]), 0.6〉}

From the above example, it can be seen that PULIFSs not only expresses the qualitative preference
and non-preference information of DMs, but also provides flexible linguistic selection space for DMs
and gives the probability distribution information of an uncertain linguistic. Moreover, the above
example is only one application case of PULIFS proposed, besides, PULIFS can also be used to
express individual preference information. So it is natural that we want to apply PULIFS to group
decision-making (GDM) problems to compensate for the application limitations of existing sets,
thus improving the application of qualitative information in fuzzy theory. This is the first focus of
this paper.

Considering the cognitive uncertainty and fuzziness of DMs in complex decision-making
environment, the application of uncertainty theory in decision-making has been widely studied.
For example, Pamucar et al. [18] combined with linguistic neutrosophic numbers presented the
selection method of power generation technology, and Liu et al. [19] established the selection model
of transportation service provider with single valued neutrosophic number. In addition, preference
relation (PR) has been widely used in GDM as an effective tool to express DMs’ preferences over

2
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alternatives. Its main types include fuzzy PR [20], multiplicative PR [21] and linguistic PR (LPR) [22].
On this basis, many forms of preference relations have been proposed, such as interval fuzzy PR [23],
interval multiplicative PR [24], intuitionistic PR [25], intuitionistic multiplicative PR [26], linguistic
intuitionistic PR [27], etc. These PRs all express the DM’s preference information in different forms from
different perspectives. However, the application of existing PRs in GDM have the following defects:

(1) Most of the PRs fail to reflect the distribution of information given by DMs.
(2) Most studies on PRs ignore the information that cannot be grasped by DMs or fail to take into

account information loss caused by certain objective factors.
(3) In the process of solving the priority weights, most of the GPMs only consider the principle of

minimum consistency deviation and ignore the risk attitude of decision makers, which may
result in the loss of original information and reduce the rationality of the ranking results.

(4) Almost all methods, none can guarantee the consistency of PRs in the process of solving priority
weights. They all need to test and improve the consistency of PRs, which greatly reduces the
accuracy of the results.

Therefore, in order to make up for the above defects of the existing methods, this paper
further proposes probabilistic uncertain linguistic intuitionistic fuzzy preference relation (PULIFPR)
based on the excellent nature of PULIFS proposed. To ensure the reasonable application of PR
in GDM, we divide the uncertain information represented by PULIFPR into vagueness uncertain
information and non-vagueness uncertain information, and its consistency is studied from two spatial
dimensions respectively. Among them, non-vagueness uncertain information refers to some relevant
information held by the decision maker for the alternatives to be compared. While vagueness uncertain
information refers to the decision information that cannot be given by decision makers due to lack
of relevant experience and knowledge, or the information loss caused by some objective factors.
The non-vagueness uncertainty information in PULIFPR is mainly presented in the form of qualitative
preference and non-preference information. For ease of understanding, the relationship between the
uncertain information of each dimension expressed by PULIFPR is shown in Figure 1.

Figure 1. The uncertainty space of probabilistic uncertain linguistic intuitionistic fuzzy preference
relation (PULIFPR).

From Figure 1, we can see intuitively that the uncertain space of PULIFPR is divided into
vagueness subspace and non-vagueness subspace, and non-vagueness subspace can be further divided
into preference information and non-preference information. Therefore, this paper will discuss the
consistency of PULIFPR from the perspectives of preference, non-preference and vagueness, so as
to guarantee the rationality and accuracy of the final results to the greatest extent. We will consider
the DM’s risk preference comprehensively based on the consistency proposed, so as to establish a
reasonable GPM and get a reasonable ranking result.

Based on the above analysis, the main contributions of this paper is organized as follows:

3
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(1) We put forward PULIFS, which is of great significance for improving the application of LT in
fuzzy theory and effectively promoting the application of qualitative information in GDM.

(2) We extracted fuzzy and non-fuzzy uncertain information from PULIFPR, and then used it
to define the distance measure of PULIFPRs, thus solving the problem of determining the
individual weight in GDM.

(3) We built a series of GPMs by taking into account the DMs’ qualitative preference, non-preference
and fuzzy information, and then give a reasonable ranking results of PULIFPR.

(4) We avoided the consistency test and correction of preference relation in GDM, thus simplifying
the process of GDM and improving the accuracy of decision result.

(5) The proposed method is applied to the industrial docking of virtual reality (VR) industry
conference, which solves the problem of project selection before industrial docking.

To sum up, compared with the existing group decision-making methods, the main advantages of
the proposed method are as follows:

(1) Most of the decision-making methods directly use the information provided by the
decision-maker to model and make judgments, but ignore the information that the
decision-maker fails to grasp or the information loss caused by some objective factors. In this
paper, uncertain information is divided into fuzzy uncertain information and non-fuzzy
uncertain information for comprehensive discussion, which improves the utilization of
information and ensures the rationality of decision-making results.

(2) Most of the existing decision-making models fail to consider the risk attitude of DMs and fail to
guarantee the consistency of preference information given by DMs. In this paper, two extreme
attitudes of DMs under uncertain conditions are considered to establish programming models,
which ensures the consistency of preference relations, simplifies GDM process and improves the
accuracy of decision-making results.

The remainder of this paper is organized as follows: Section 2 recalls some basic concepts,
including LIFS, PLTS, PULTS. Section 3 introduces the concepts of PULIFS and PULIFPR, and gives
the definition of the distance measure of PULIFSs. Section 4 discusses the consistency of PULIFPR
and establishes the corresponding GPM to obtain its comprehensive priority ranking weight. Then a
specific algorithm is developed for GDM with PULIFPRs. In Sections 5, a practical example about VR
industry and comparative analysis are given to demonstrate the proposed method. Finally, Section 6 is
concluding remarks.

2. Preliminaries

In this part, we review some basic concepts of LIFS, PLTS and PULTS, and point out the main
disadvantage of these fuzzy sets.

2.1. PLTS and PULTS

For convenience, all the LST mentioned in this article are represented by S = {sα|α ∈ [0, 2τ]}
except for special explanations. In order to present the probability distribution information of the
HFLTS, Pang et al. [14] proposed PLTS.

Definition 1 ([14]). Let S = {sα|α ∈ [0, 2τ]} be a continuous LTS, then a PLTS is defined as

L(p) = {L(k)(p(k))|L(k) ∈ S, p(k) ≥ 0, k = 1, 2, · · · , #L(p),
#L(p)

∑
k=1

p(k) ≤ 1}, (1)

4
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where L(k)(p(k)) is the linguistic term L(k) associated with the probability p(k), and #L(p) is the number of
all different linguistic terms in L(p). To further reflect the hesitation of DMs, Lin et al. [15] expanded PLTS
into PULTS:

S(p) = {〈[Lk, Uk], pk〉|pk ≥ 0, k = 1, 2 · · · , #S(p),
#S(p)

∑
k=1

pk ≤ 1}, (2)

where 〈[Lk, Uk], pk〉 represents the uncertain linguistic variable [Lk, Uk] associated with its probability pk.
Lk, Uk ∈ S are the linguistic terms, Lk ≤ Uk, and #S(p) is the cardinality of S(p).

2.2. LIFS

To reflect the DM’s qualitative non-preference information, Zhang [12] proposes LIFS.

Definition 2 ([12]). Let X be a finite universal set and S = {sα|α ∈ [0, 2τ]} be a continuous linguistic term
set. Then a LIFS L in X is given as

L = {(x, sθ(x), sσ(x))|x ∈ X} (3)

where sθ(x), sσ(x) ∈ S stand for the linguistic membership degree and linguistic nonmembership of the element
x to L, respectively, and 0 ≤ θ + σ ≤ 2τ for all x ∈ X.

PULTS only takes into account the DM’s qualitative preference information and its probability
distribution, however, in actual DM, DMs may need to give preference and non-preference
information from both sides due to various uncertainties. Although LIFS takes into account the
DMs’ non-preference information, it requires the DMs to give only single linguistic terms as decision
information, which cannot reflect the decision makers’ hesitation in a complex environment. Therefore,
in order to avoid the limitations mentioned above in actual DM, this paper proposes PULIFS in
combination with the advantages of PULTS and LIFS.

3. PULIFS and PULIFPR

3.1. PULIFS

Definition 3. Let S = {sα|α ∈ [0, 2τ]} be a continuous LTS, then a PULIFS on S is expressed by a
mathematical symbol:

U(p) = {〈([suk , suk ], [svk , svk ]), pk〉|pk ≥ 0, k = 1, 2 · · · , #U(p),
#U(p)

∑
k=1

pk ≤ 1}, (4)

where 〈([suk , suk ], [svk , svk ]), pk〉 is a PULIF element (PULIFE), which denotes the k-th uncertain linguistic
intuitionistic variable (ULIV) ([suk , suk ], [svk , svk ]) associated with its probability pk in U(p), and [suk , suk ] ⊆
[s0, s2τ ] , [svk , svk ] ⊆ [s0, s2τ ] represent non-vagueness qualitative uncertain preference and non-preference
information respectively. suk , suk , svk , svk ∈ S, are the linguistic terms, suk ≤ suk , svk ≤ svk , uk + vk ≤ 2τ,
and #U(p) is the cardinality of U(p). Similarly, the uncertain linguistic variable sπk = [sπk , s

πk ] represent
vagueness uncertain information, where πk = 2τ − uk − vk, πk = 2τ − uk − vk.

In actual DM, DMs tend to compare two alternatives and give preference information instead of
directly giving evaluation information to one alternative. Therefore, we further give the concept of
PULIFPR based on PULIFS. For convenience, we use u(p) = {([suk , suk ], [svk , svk ]), pk} to represent the
PULIFS, where k = 1, 2, · · · , #u(p), and #u(p) is the number of PULIFE in u(p).
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3.2. PULIFPR

Definition 4. Let U = (u(p)ij)n×n be a matrix on the object set X = {x1, x2, · · · , xn} for the LTS S =

{sα|α ∈ [0, 2τ]}, where u(p)ij = {(suk
ij
, svk

ij
), pk

ij} is a PULIFS, suk
ij
= [suk

ij
, suk

ij
] represents the preference of

DMs for xi over xj, svk
ij
= [svk

ij
, svk

ij
] represents the non-preference of DMs for xi over xj, and sπk

ij
= [sπk

ij
, s

πk
ij
]

indicates the hesitancy (vagueness) degree to the preference of DMs for xi over xj. πk
ij = 2τ − uk

ij − vk
ij, πk

ij =

2τ − uk
ij − vk

ij, k = 1, 2, · · · , #u(p)ij, and #u(p)ij is the number of PULIFE in u(p)ij. U is called a PULIFPR,
if it satisfies the following conditions:

(1) pk
ij, = pk

ji, pk
ii = 1;

(2) suk
ij
= svk

ji
, svk

ij
= suk

ji
;

(3) u(p)ii = {([sτ , sτ ], [sτ , sτ ]), 1} = sτ ;
(4) #u(p)ij = #u(p)ji;

for all i, j = 1, 2, · · · , n with i 	= j, and ∑
#u(p)ij
k=1 pk

ij ≤ 1, 0 ≤ uk
ij + vk

ij ≤ 2τ, suk
ij
⊆ [s0, s2τ ], svk

ij
⊆ [s0, s2τ ].

In particular, when #u(p)ij = 1 and (suk
ij
, svk

ij
) ∈ {([s0, s0], [s2τ , s2τ ]), ([s2τ , s2τ ], [s0, s0])}, it means that the

preference information given by the decision maker is certain and extreme for xi over xj. However, in a complex
decision-making environment, the decision maker often does not give such a judgment with extreme certainty,
so this paper only considers the case of (suk

ij
, svk

ij
) /∈ {([s0, s0], [s2τ , s2τ ]), ([s2τ , s2τ ], [s0, s0])}. In addition,

∑
#u(p)ij
k=1 pk

ij = 0 means that the decision maker cannot give preference information for xi over xj. Therefore,

in order to ensure the completeness of information, we assume that ∑
#u(p)ij
k=1 pk

ij > 0.

In GDM, it is often necessary to aggregate individual preference information into group
preference information. However, due to the knowledge and experience gaps between individuals,
the determination of individual weight in the aggregation process is particularly important. Therefore,
in order to determine a reasonable individual weight, we first introduce the definition of the distance
measure of PULIFPRs

3.3. The Distance Measure of PULIFSs

Considering that different PULIFS may have different numbers of PULIFE, it may be too
complicated to give the distance measurement directly. Therefore, before giving the distance measure
of PULIFS, we need to convert PULIFS. According to the partition of uncertain space of PULIFS in
Figure 1, we transform the information expressed by PULIFS into two parts: non-fuzzy uncertain
information and fuzzy uncertain information. Inspired by the conversion method of probabilistic
interval-valued intuitionistic hesitant fuzzy set (PIVIHFS) proposed by Zhai et al. [28], we present the
conversion function as follows

Definition 5. Let u(p) = {([suk , suk ], [svk , svk ]), pk} be a PULIFS associated with S, then its non-fuzzy
uncertain information transformation function f is defined as

f (u(p)) =
#u(p)

∑
k=1

pk ×
I(suk )− I(svk ) + I(suk )− I(svk ) + 4τ

8τ
(5)

and its fuzzy uncertain information transformation function g is defined as

g(u(p)) =
#u(p)

∑
k=1

pk ×
I(sπk ) + I(s

πk )

4τ
(6)

where #u(p) is the number of PULIFE in u(p), I(·) is the subscript function of the linguistic term, that is
I(st) = t. Moreover, f (u(p)) represents the non-fuzzy information part of PULIFS, I(suk ) − I(svk ) and
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I(suk )− I(svk ) in Equation (5) can be respectively interpreted as the pessimistic and optimistic attitude values
of DMs. On the contrary, g(u(p)) denotes the fuzzy information part of PULIFS, which can be interpreted as
the average of information that DMs fail to grasp or ignore.

Remark 1. On the premise that the original meaning expressed by PULIFS is not lost, we used Equations (5)
and (6) to transform the qualitative non-fuzzy and fuzzy information into the specific values in [0,1], so as to
simplify the calculation of distance measure. For convenience, we used v = ( f , g) to represent the converted
PULIFS and call it the conversion set (CS). Thus, for each PULIFPR U = (u(p)ij)n×n, there is a transformation
matrix V = (vij)n×n, where vij = ( fij, gij). Now, we give the definition of the distance measure of PULIFSs.

Definition 6. Let u1(p) and u2(p) be two PULIFSs associated with S, v1 = ( f1, g1) and v2 = ( f2, g2) be the
corresponding CSs of u1(p) and u2(p), then the Hamming distance between u1(p) and u2(p) is:

d(u1(p), u2(p)) = d(v1, v2) =
1
2
(| f1 − f2|+ |g1 − g2|) (7)

the Euclidean distance between u1(p) and u2(p) is:

d(u1(p), u2(p)) = d(v1, v2) = [
( f1 − f2)

2 + (g1 − g2)
2

2
]

1
2 (8)

It is obvious that the given distance measure satisfies the following properties:

(1) 0 ≤ d(v1, v2) ≤ 1;
(2) d(v1, v2) = 0 if and only if v1 = v2;
(3) d(v1, v2) = d(v2, v1).

For convenience, this paper only takes hamming distance for discussion, and based on the
relationship between distance measure and similarity degree, we further give the similarity degree
of PULIFSs.

s(u1(p), u2(p)) = 1− d(u1(p), u2(p)) = 1− 1
2
(| f1 − f2|+ |g1 − g2|) (9)

Lets give a simple example to show the distance calculation between PULIFSs u1(p) and u2(p).

Example 1. Let LTS S = {sα|α ∈ [0, 8]}, and the two PULIFSs are shown below:
u1(p) = {〈([s1, s2], [s4, s5]), 0.2〉, 〈([s0, s2], [s3, s5]), 0.3〉, 〈([s2, s3], [s4, s5]), 0.5〉}
u2(p) = {〈([s4, s6], [s0, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉}
the values of non-fuzzy function and fuzzy function corresponding to u1(p) and u2(p) can be easily obtained
from Equations (5) and (6) are as follows
f1 = 0.2× 1−5+2−4+16

32 + 0.3× 0−5+2−3+16
32 + 0.5× 2−5+3−4+16

32 = 0.3438,
g1 = 0.2× 8−2−5+8−1−4

16 + 0.3× 8−2−5+8−0−3
16 + 0.5× 8−3−5+8−2−4

16 = 0.2250,
f2 = 0.45× 4−1+6−0+16

32 + 0.5× 3−2+5−1+16
32 = 0.6797,

g2 = 0.45× 8−6−1+8−4−0
16 + 0.5× 8−5−2+8−3−1

16 = 0.2969,
then the distance between u1(p) and u2(p) is:
d(u1(p), u2(p)) = 1

2 (| f1 − f2|+ |g1 − g2|) = 1
2 (|0.3438− 0.6797|+ |0.225− 0.2969|) = 0.2039,

and the corresponding similarity degree is s(u1(p), u2(p)) = 1− d(u1(p), u2(p)) = 0.7961.

Remark 2. From the above example, it is not difficult to find that compared with the distance measure defined
in general literature, the distance measure proposed in this paper does not need to normalize the initial set,
which allows different sets to have different elements and allows for the absence of probability information
(0 < ∑

#u(p)
k=1 pk ≤ 1). In addition, under the premise that the original information is not lost, multiple elements

in PULIFS are integrated into two parts of fuzzy information and non-fuzzy information, which greatly simplifies
the calculation between sets.

7
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Based on the distance between PULIFSs, we give the distance measure of PULIFPRs.

Definition 7. Let Ul = (u(p)l
ij)n×n and Um = (u(p)m

ij )n×n be two PULIFPRs, and their corresponding

transformation matrices are Vl = (vl
ij)n×n and Vm = (vm

ij )n×n, where vl
ij = ( f l

ij, gl
ij), vm

ij = ( f m
ij , gm

ij ). Similar

to Equation (7), the hamming distance between individual PULIFPRs Ul and Um is defined as:

d(Ul , Um) = d(Vl , Vm) =
1

n× (n− 1)

n

∑
i<j

(| f l
ij − f m

ij |+ |gl
ij − gm

ij |) (10)

where f l
ij = ∑

#u(p)l
ij

k=1 pk
ij ×

I(s
uk

ij
)−I(s

vk
ij
)+I(s

uk
ij
)−I(s

vk
ij
)+4τ

8τ and gl
ij = ∑

#u(p)l
ij

k=1 pk
ij ×

I(s
πk

ij
)+I(s

πk
ij
)

4τ .

Then the similarity degree between Ul and Um is defined as:

s(Ul , Um) = 1− d(Ul , Um) (11)

Next, we have used the distance measure and similarity degree between individual PULIFPRs to
present the aggregation process of GDM.

3.4. Deriving Individual Weights and Aggregating Individual PULIFPRs

For GDM problems, without loss of generality, we supposed there are q DMs D = {d1, d2, · · · , dq}
who are invited to compare n alternatives X = {x1, x2, · · · , xn}, and Ul = (u(p)l

ij)n×n be the individual
PULIFPR provided by the DMs dl , (l = 1, · · · , q). Then, based on the similarity degree of PULIFPRs
given by the DMs, we defined the confidence degree of the l-th decision maker dl as:

csl =
q

∑
m=1,m 	=l

s(Ul , Um)(l = 1, 2, · · · , q) (12)

Obviously, the higher the confidence degree of a decision maker, the higher the overall similarity
between the decision maker and other DMs, and the greater the importance of the decision maker in
GDM. Therefore, we regarded the normalized confidence degree csN

l as the weight of individual in
GDM, where csN

l = csl
∑

q
l=1 csl

. Let the weight of the l-th decision maker be wl = csN
l , then ∑

q
l=1 wl = 1

and 0 ≤ wl ≤ 1, (l = 1, 2, · · · , q).
In order to aggregate individual PULIFPRs into a collective one, the basic operational laws

between PULIFSs u1(p) = {([suk
1
, suk

1
], [svk

1
, svk

1
]), pk

1} and u2(p) = {([suk
2
, suk

2
], [svk

2
, svk

2
]), pk

2} is given
as follows:

u1(p)
⊕

u2(p) =
⋃

k∈(1,··· ,#u1(p))

{〈([suk
1+uk

2
, suk

1+uk
2
], [svk

1+vk
2
, svk

1+vk
2
]),

pk
1 + pk

2
2
〉} (13)

λu1(p) =
⋃

k∈(1,··· ,#u1(p))

{([sλuk
1
, sλuk

1
], [sλvk

1
, sλvk

1
]), pk

1} (14)

where #u1(p) = #u2(p), when #u1(p) 	= #u2(p), we normalized it by the following method:
If #u1(p) 	= #u2(p), #u1(p) > #u2(p), then we have added #u1(p)− #u2(p) PULIFEs to u2(p) so

that the PULIFSs u1(p) and u2(p) have the same number of elements. The added uncertain linguistic
intuitionistic variables (ULIVs) are the smallest one(s) in u2(p), and the probabilities of the added
ULIVs are zero. In addition, the comparison method of two PULIFE ek = 〈([suk , suk ], [svk , svk ]), pk〉 and

8
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el = 〈([sul , sul ], [svl , svl ]), pl〉 in PULIFS is as follows
Let

fi = pi × [I(sui )− I(svi ) + I(sui )− I(svi )],

gi = pi × [I(sπi ) + I(sπi )], (i = k, l).
(15)

(1) If gk > gl , then ek < el ;
(2) If gk = gl , then

(a) If fk > fl , then ek > el ;
(b) If fk = fl , then ek = el .

The larger the PULIFE, the larger its corresponding ULIV. Based on this, we give the definition of
probabilistic uncertain linguistic intuitionistic weighted average (PULIWA) operator.

Definition 8. Given q PULIFSs ui(p) = {([suk
i
, suk

i
], [svk

i
, svk

i
]), pk

i }, (i = 1, 2, · · · , q), k = 1, 2 · · · , #ui(p),

the weight vector W = (w1, w2, · · · , wq), wi ∈ [0, 1], ∑
q
i=1 wi = 1, then we called

PWA(u1(p), · · · , uq(p)) =
q⊕

i=1

wiui(p)

=
⋃

k=1,2··· ,#ui(p)

{([s∑
q
i=1 wiuk

i
, s∑

q
i=1 wiuk

i
], [s∑

q
i=1 wivk

i
, s∑

q
i=1 wivk

i
]),

∑
q
i=1 pk

i
q
}

(16)

the PULIWA operator.

Example 2. Continuing with Example 1, assuming that the weight values of both PULIFS u1(p) and
u2(p) are 0.5. Since #u2(p) = 2 < #u1(p) = 3, we can easily know from Equation (15) that
g21 = 0.45 · [8 − 1 − 6 + 8 − 4 − 0] = 2.25 and g22 = 0.5 · [8 − 5 − 2 + 8 − 3 − 1] = 2.5 in u2(p).
Therefore, g21 < g22, e21 > e22, the normalized u2(p) = {〈([s4, s6], [s0, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉,
〈([s3, s5], [s1, s2]), 0〉}, and the PULIWA operator PWA(u1(p), u2(p)) = {〈([s2.5, s4], [s2, s3]), 0.325〉,
〈([s1.5, s3.5], [s2, s3.5]), 0.4〉, 〈([s2.5, s4], [s2.5, s3.5]), 0.5〉} of u1(p) and u2(p) can be obtained by using
Equation (16).

Obviously, it is easy to aggregate individual PR into collective PR by using Equation (16).
Therefore, the process of obtaining priority weights is given in the following discussion based on the
consistency of collective PULIFPR Ũ.

4. Consistency Analysis of PULIFPR and Acquisition of Its Priority Weight

4.1. Consistency Analysis of PULIFPR

At present, the research on the consistency of PR is mainly divided into two categories:
multiplicative consistency and additive consistency. Without loss of generality, this paper discusses
PULIFPR consistency based on multiplicative consistency. Therefore, before giving the definition of
PULIFPR consistency, lets review the multiplicative consistency of fuzzy preference relations (FPRs).

Definition 9. [29]. For the FPR R = (rij)n×n, (i, j = 1, 2, · · · , n), rij ∈ [0, 1], if we have

rij =
wi

wi + wj
. (17)

for all i, j = 1, 2, · · · , n, and which satisfies: 1) rii = 0.5; 2) rij + rji = 1; 3) ∑n
i=1 wi = 1. then we called the

FPR R is multiplicative consistent, where rij is the preference degree of the objectives xi over xj, and wi ∈ [0, 1],
w = (w1, w2, · · · , wn) is the priority vector of R.

9
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Inspired by this, we presented the following definition of consistency by combining the
preferences, non-preferences and vagueness information expressed by PULIFPR.

Definition 10. Let Ũ = (u(p)ij)n×n be a PULIFPR on the object set X = {x1, x2, · · · , xn} for the LTS
S = {sα|α ∈ [0, 2τ]}, its corresponding transformation matrix is V = (vij)n×n, where vij = ( fij, gij) is a CS.
Based on this, we can extract the FPR H = (hij)n×n from the PULIFPR Ũ, where

hij =

⎧⎪⎪⎨⎪⎪⎩
θij fij + (1− θij)gij, I f i < j

0.5, I f i = j

1− hji, I f i > j

(18)

If we have
hij =

wi
wi + wj

(19)

for all i, j = 1, 2, · · · , n, then we called PULIFPR Ũ multiplicative consistent, where θij ∈ [0, 1] represents
the importance of non-fuzzy information fij extracted from u(p)ij , and w = (w1, w2, · · · , wn) is the priority
vector of Ũ, satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1.

Remark 3. From Equations (5) and (6), it is not difficult to see that the values of non-fuzzy information fij
and fuzzy information gij extracted from PULIFPR are all located in [0,1]. Furthermore, it is easy to know that
fii = 0.5 and gii = 0 by the nature of PULIFPR. Therefore, the FPR H = (hij)n×n is generated by combining
the non-fuzzy and fuzzy information of the DMs, and the consistency of PULIFPR is transformed into the
consistency of the FPR. However, this definition of consistency only considers the fuzzy and non-fuzzy space
of PULIFPR in general. In order to make full use of the decision-making information expressed by PULIFPR,
we have considered the decision maker’s risk attitude and further discuss its consistency with the preference and
non-preference information in the non-fuzzy space.

Definition 11. Based on Definitions 4 and 5, we set aij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ as the maximum

preference (the most optimistic judgment) of DMs for xi over xj, while bij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ as
the minimum preference (the most pessimistic judgment) of DMs for xi over xj. So similarly, we can extract a
FPR D = (dij)n×n from the PULIFPR Ũ, where

dij =

⎧⎪⎪⎨⎪⎪⎩
tijaij + (1− tij)bij, I f i < j

0.5, I f i = j

1− dji, I f i > j

(20)

If we have

dij =
w′i

w′i + w′j
(21)

for all i, j = 1, 2, · · · , n, then we also called PULIFPR Ũ multiplicative consistent, where tij ∈ [0, 1] indicates
the degree of optimism of the DMs, the bigger the values of tij, the higher DM’s optimistic degree, and w =

(w′1, w′2, · · · , w′n) is the priority vector of Ũ, satisfying w′i ∈ [0, 1] and ∑n
i=1 w′i = 1.

Based on the two consistency definitions given above, we give the method to obtain the priority
weight of collective PULIFPR.

10
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4.2. Determine the Priority Weights of PULIFPR through the GPM

The consistency definition given by Equation (19) integrates the fuzzy uncertainty and non-fuzzy
uncertainty of the information given by the decision-maker. However, in actual decision-making,
we hope that the fuzzy uncertainty degree of information expressed by PULIFPR is as small as possible,
so as to make the ranking result as reasonable and accurate as possible. Therefore, the higher the
value of parameter θij, which indicates the importance of non-fuzzy uncertainty information, the more
reasonable the result will be. Based on this principle, we establish the following GPM to obtain the
priority weight of the PULIFPR.

max θ = ∑i<j θij

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
hij =

wi
wi+wj

, (1)

∑i 	=j wi > wj − 0.5, (2)

∑n
i=1 wi = 1, wi ≥ 0,

0 ≤ θij ≤ 1, (i, j = 1, 2, · · · , n; i < j).

(22)

In Equation (22), the constraint condition (1) guarantees the consistency of the FPR H extracted
from PULIFPR Ũ, and the constraint condition (2) avoids the occurrence of extreme judgment caused
by individual subjective preference, thus guaranteeing the objectivity of decision-making process.
In addition, the literature [30] shows that the consistency of the FPR only needs to discuss the upper
triangular part of it. So to simplify the calculation, we have i < j.

If the feasible region of Equation (22) is nonempty, the optimal solutions θij and priority weight
vector wi, (i = 1, 2, · · · , n) can be obtained by solving it. However, it does not guarantee that there will
always be nonempty feasible regions. Therefore, when the feasible region is empty, we expand the
feasible region of the model by appropriately increasing the fuzzy uncertain information value gij and
reducing the non-fuzzy uncertain information value fij, and the expanded model is as follows

max θ = ∑i<j θij −∑i<j(φij + ψij)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θij( fij − φij) + (1− θij)(gij + ψij) =

wi
wi+wj

,

∑i 	=j wi > wj − 0.5,

∑n
i=1 wi = 1, wi ≥ 0, φij, ψij ≥ 0,

0 ≤ θij ≤ 1, (i, j = 1, 2, · · · , n; i < j).

(23)

where φij and ψij are the deviation variables, satisfying φij ≥ 0, ψij ≥ 0. Then, by solving (23),
the optimal solutions θij and priority weight vector wi, (i = 1, 2, · · · , n) can be obtained.

Similarly, it is easy to know from Definition 11 that the bigger the value of tij, the higher the degree
of optimism of the decision maker. Therefore, we combine the two extreme attitudes of the decision
maker, the most optimistic and the most pessimistic, and respectively present the following GPM.

max t = ∑i<j tij

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dij =
w+

i
w+

i +w+
j

,

∑i 	=j w+
i > w+

j − 0.5,

∑i<j tij <
n×(n−1)

2 − 1,

∑n
i=1 w+

i = 1, w+
i ≥ 0,

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(24)

min t = ∑i<j tij

11
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dij =
w−i

w−i +w−j
,

∑i 	=j w−i > w−j − 0.5,

∑i<j tij > 1,

∑n
i=1 w−i = 1, w−i ≥ 0,

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(25)

where w+ = (w+
1 , w+

2 , · · · , w+
n ) represents the most optimistic weight vector and w− =

(w−1 , w−2 , · · · , w−n ) represents the most pessimistic weight vector. It is noted that different from

Model (22), Equations (24) and (25) have added restriction condition ∑i<j tij < n×(n−1)
2 − 1 and

∑i<j tij > 1 respectively, which ensures that the decision maker does not show overly optimistic or
pessimistic judgment information when in a rational state. Similarly, for Model (23), when the feasible
regions of Equations (24) and (25) are empty, we give the expansion model as follows

max t = ∑i<j tij −∑i<j(αij + βij)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

tij(aij − αij) + (1− tij)(bij + βij) =
w+

i
w+

i +w+
j

,

∑i 	=j w+
i > w+

j − 0.5,

∑i<j tij <
n×(n−1)

2 − 1,

∑n
i=1 w+

i = 1, w+
i ≥ 0, αij, βij ≥ 0.

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(26)

min t = ∑i<j tij + ∑i<j(αij + βij)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

tij(aij + αij) + (1− tij)(bij − βij) =
w−i

w−i +w−j
,

∑i 	=j w−i > w−j − 0.5,

∑i<j tij > 1,

∑n
i=1 w−i = 1, w−i ≥ 0, αij, βij ≥ 0.

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(27)

where αij and βij are the deviation variables, satisfying αij ≥ 0, βij ≥ 0.
By solving Equations (26) and (27), the optimal weight vectors w+

i and w−i (i = 1, 2, · · · , n) can
be obtained respectively. Combining w+

i with w−i , the compromise weight vector can be obtained
as follows:

w′i = λw+
i + (1− λ)w−i , i = 1, 2, · · · , n (28)

where λ ∈ [0, 1] represents the risk attitude of DMs. If 0 ≤ λ < 0.5, DMs are risk averse; If λ = 0.5,
DMs are risk neutral; If 0.5 < λ ≤ 1, DMs are risk taking.

Considering that the decision maker pays more attention to the final result in the actual decision,
we take the average value of priority weight obtained under the two consistency definitions as the

final ranking weight, namely w̄i =
wi+w′i

2 , i = 1, 2, · · · , n.

Remark 4. Compared with general programming models for solving priority weights, the main advantages of
the programming models presented in this paper are as follows:

(1) At present, most of the programming models proposed in many literatures only consider the principle of
minimum consistency deviation, such as literatures [27,31–34]. In this paper, the consistency of the newly
proposed PULIFPR is considered comprehensively from the three aspects of fuzzy and non-fuzzy uncertain
information and DM’s risk attitude. Therefore, the rationality of decision result is greatly improved.

12
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(2) Currently, most of the research on PR needs to test its consistency, and some literatures that needs to
test the consistency of acceptable PR fails to provide a reasonable test method, such as the research on
triangular FPR by Wang [35], and the research on interval-valued intuitionistic FPR by Wan et al. [36].
In this paper, the priority weight of consistent PULIFPR can be obtained directly through the proposed
programming models without considering the consistency test, which greatly simplifies the DM process.

4.3. A New Algorithm for Solving GDM with PULIFPR

Summarizing above analyses, a new method for GDM with PULIFPR is developed as follows:
Step 1. Calculate the distance measure d(Ul , Um) and similar measure s(Ul , Um)(l, m =

1, 2, · · · , q, l 	= m) between individual PULIFPRs by Equations (10) and (11).
Step 2. Use Equation (12) to calculate the confidence degree csl and determine the individual

weight wl(l = 1, 2, · · · , q).
Step 3. Aggregating individual PULIFPR U into collective PULIFPR Ũ by Equation (16).
Step 4. When feasible regions of Models (22), (24) and (25) are nonempty, priority weights wi, w+

i
and w−i can be solved respectively. Otherwise, priority weights wi, w+

i and w−i shall be obtained by
solving Equations (23), (26) and (27).

Step 5. Determining the risk parameter value λ, and then the compromise weight w′i is obtained
by Equation (28).

Step 6. Combining wi and w′i , the comprehensive weight w̄i =
wi+w′i

2 is obtained.
Step 7. According to the comprehensive weight value to compare the alternatives, the best

alternative has the bigger value.
The graphical process of solving GDM using PULIFPR is shown in Figure 2.

Figure 2. Process of group decision-making (GDM) with PULIFPRs.
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5. Case Application and Comparative Analysis

In order to demonstrate the effectiveness and practicability of the proposed method, this section
is mainly divided into two parts. The first part discusses the application of the proposed method in
the world VR industry conference 2018. The second part gives the comparative analysis between the
proposed method and other methods.

5.1. Application in VR Project Selection

In recent years, virtual reality (VR) technology has received unprecedented attention from all
sectors of society, and it is regarded as the portal of the next generation general computing platform
and Internet along with augmented reality (AR) and mixed reality (MR). In addition, as an important
force leading a new round of industrial reform in the world, it plays an important role in promoting
new economic development. Therefore, in order to explore the key and common problems in the
development of VR, as well as the industrial development trend and solutions, the 2018 world VR
industry conference was successfully held in nanchang, jiangxi province on 19 October. As one of the
important activities of the conference, the industrial counterpart conference was successfully held in
nanchang on 20 October.

However, in order to ensure the successful holding of the industrial docking conference, it is
particularly important for the organizers to have extensive and in-depth communication with the
investors in the early stage of the conference. On the one hand, it can enable investors to have a
deep and sufficient understanding of each VR project in our province so that investors can select the
best cooperation project. On the other hand, it is convenient for every VR industry company in our
province to select the best partner or investor. Finally, the cooperation agreements reached at the
industry conference are guaranteed. Therefore, the communication and mutual selection process is an
important preparation work in the early stage of the conference.

Due to the complexity of VR technology, VR project selection is a very challenging task for
investors. It requires investors to make a comprehensive analysis and judgment on the competitive
advantage, profitability, viability and development potential of VR project from the perspectives of
simulation technology and computer graphics, man-machine interface technology, sensor technology
and network technology,etc. Therefore, the project selection process is often a GDM. Without loss of
generality, in order to demonstrate the GDM process using the proposed method, we take the four
important projects selected by Microsoft as an example. The four projects are Touch display integration
project x1, Optoelectronic project x2, Network security industry center project x3 and Intelligent VR
visual equipment project x4 respectively.

In view of the complexity of VR project, Microsoft sent two investment teams (e1, e2) to inspect
the project content and one technical team (e3) to inspect the company’s technical equipment. Due to
the wide range of knowledge involved in VR project and the complexity of factors to be considered by
DMs, the decision team can only give judgment information from positive and negative aspects based
on the LTS S = {s0: extremely poor, s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good,
s6: good, s7: very good, s8: extremely good}.

For example, by analyzing and comparing projects x1 and x2, the decision team e1 gave the
following judgment information:

u(p)12 = {〈([s4, s6], [s1, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉}

where [s4, s6] indicates that the DM’s preference degree for x1 over x2 is between fair and good,
[s1, s1] expresses that the DM’s non-preference degree for x1 over x2 is very poor. The probability 0.45
indicates that 45% of the people in investment teams e1 give interval intuitionistic judgment information
([s4, s6], [s1, s1]). Similarly, PULIFE 〈([s3, s5], [s1, s2]), 0.5〉 indicated that 50% of the people in investment
team e1 gave the interval intuitionistic judgment information as ([s3, s5], [s1, s2]). In addition, 5% of the
people failed to give any judgment information.

14
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Now, we regard the three teams e1, e2 and e3 sent by Microsoft as three individuals, and take the
four projects of jiangxi province, x1, x2, x3, and x4 as the alternatives. The preference information given
by the three teams in the form of PULIFPR is as follows

U1 = (u1(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u1(p)11 = u1(p)22 = u1(p)33 = u1(p)44 = s4;

u1(p)12 = {〈([s1, s3], [s4, s5]), 0.3〉, 〈([s1, s2], [s5, s6]), 0.6〉}
u1(p)13 = {〈([s4, s6], [s0, s1]), 0.8〉, 〈([s5, s6], [s1, s2]), 0.2〉}
u1(p)14 = {〈([s3, s4], [s4, s4]), 0.6〉, 〈([s2, s3], [s4, s5]), 0.2〉}
u1(p)23 = {〈([s0, s2], [s6, s6]), 0.7〉, 〈([s1, s3], [s5, s5]), 0.3〉}
u1(p)24 = {〈([s5, s6], [s0, s1]), 0.2〉, 〈([s6, s7], [s0, s1]), 0.8〉}
u1(p)34 = {〈([s0, s1], [s5, s6]), 0.9〉, 〈([s0, s1], [s7, s7]), 0.1〉}

U2 = (u2(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u2(p)11 = u2(p)22 = u2(p)33 = u2(p)44 = s4;

u2(p)12 = {〈([s2, s3], [s4, s4]), 0.4〉, 〈([s3, s4], [s4, s5]), 0.6〉}
u2(p)13 = {〈([s1, s2], [s5, s5]), 0.3〉, 〈([s2, s3], [s4, s5]), 0.5〉}
u2(p)14 = {〈([s5, s6], [s1, s1]), 0.3〉, 〈([s6, s6], [s1, s2]), 0.6〉}
u2(p)23 = {〈([s6, s7], [s1, s1]), 0.4〉, 〈([s5, s6], [s1, s2]), 0.5〉}
u2(p)24 = {〈([s0, s2], [s5, s6]), 0.7〉, 〈([s1, s2], [s6, s6]), 0.3〉}
u2(p)34 = {〈([s3, s5], [s2, s2]), 0.4〉, 〈([s2, s5], [s1, s2]), 0.4〉}

U3 = (u3(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u3(p)11 = u1(p)22 = u1(p)33 = u1(p)44 = s4;

u3(p)12 = {〈([s2, s4], [s3, s4]), 0.2〉, 〈([s4, s5], [s3, s3]), 0.5〉}
u3(p)13 = {〈([s1, s2], [s5, s6]), 0.8〉, 〈([s2, s3], [s5, s5]), 0.2〉}
u3(p)14 = {〈([s7, s8], [s0, s0]), 0.3〉, 〈([s6, s7], [s1, s1]), 0.6〉}
u3(p)23 = {〈([s0, s1], [s6, s6]), 0.6〉, 〈([s1, s1], [s6, s7]), 0.3〉}
u3(p)24 = {〈([s4, s5], [s1, s2]), 0.7〉, 〈([s5, s5], [s2, s3]), 0.3〉}
u3(p)34 = {〈([s7, s7], [s0, s1]), 0.3〉, 〈([s5, s6], [s1, s2]), 0.6〉}

Since the upper triangle of PULIFPR has a one-to-one correspondence with the lower triangle,
we only give the upper triangle of the preference relation. According to Section 4.3, we can solve the
GDM problem about project selection as follows:

Step 1: According to Equation (10), the distance measure between U1 and U2 is d(U1, U2) =
1

4×3 (| f 1
12 − f 2

12|+ |g1
12 − g2

12|+ | f 1
13 − f 2

13|+ |g1
13 − g2

13|+ | f 1
14 − f 2

14|+ |g1
14 − g2

14|+ | f 1
23 − f 2

23|+ |g1
23 −

g2
23| + | f 1

24 − f 2
24| + |g1

24 − g2
24| + | f 1

34 − f 2
34| + |g1

34 − g2
34|) = 1

12 (|0.2531− 0.425|+ |0.775− 0.2719|+
|0.3563− 0.7031|+ |0.225− 0.7125|+ |0.8625− 0.2188|+ |0.1781− 0.5|+ |0.1313− 0.075|+ |0.275−
0.1188| + |0.0625− 0.0938| + |0.125− 0.0875| + |0.15− 0.15| + |0.2313− 0.25|) = 0.2313, Similarly,
we can calculate d(U1, U3) = 0.1930 and d(U2, U3) = 0.1398 respectively, so the corresponding
similarity degree is s(U1, U2) = 0.7687, s(U1, U3) = 0.8070 and s(U2, U3) = 0.8602 respectively.

Step 2: According to Equation (12), the confidence degree of the three teams can be calculated as
cs1 = s(U1, U2) + s(U1, U3) = 1.5758, cs2 = 1.6289 and cs3 = 1.6672, so the weight of each team can be
further determined as w1 = cs1

cs1+cs2+cs3
= 0.3234, w2 = 0.3344, and w3 = 0.3422.

Step 3: By using Equation (16), the collective PULIFPR Ũ can be obtained as follows
Ũ = (ũ(p)ij)4×4, (i, j = 1, 2, 3, 4)
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where

ũ(p)11 = ũ(p)22 = ũ(p)33 = ũ(p)44 = s4;

ũ(p)12 = {〈([s1.6766, s3.3442], [s3.6578, s4.3234]), 0.3〉, 〈([s2.6953, s3.6953], [s3.0717, s4.6390]), 0.5667〉};
ũ(p)13 = {〈([s1.9703, s3.2938], [s3.3828, s4.0484]), 0.6333〉, 〈([s2.9703, s3.9703], [s3.3719, s4.0297]), 0.3〉};
ũ(p)14 = {〈([s5.0375, s6.0375], [s1.6281, s1.6281]), 0.4〉, 〈([s4.7062, s5.3719], [s1.9703, s2.6281]), 0.4667〉};
ũ(p)23 = {〈([s2.0061, s3.3295], [s4.3283, s4.3283]), 0.5667〉, 〈([s2.3374, s3.3186], [s4.0048, s4.6814]), 0.3667〉};
ũ(p)24 = {〈([s2.9860, s4.3204], [s2.0140, s3.0140]), 0.5333〉, 〈([s3.9860, s4.6438], [s2.6905, s3.3562]), 0.4667〉};
ũ(p)34 = {〈([s3.3985, s4.3906], [s2.2859, s2.9516]), 0.5333〉, 〈([s2.3797, s4.0484], [s2.9407, s3.6172]), 0.3667〉}.

Step 4: The non-fuzzy uncertain information values fij(i, j = 1, 2, 3, 4, i < j) and the fuzzy
uncertain information values gij(i, j = 1, 2, 3, 4, i < j) of PULIFPR Ũ are calculated respectively.
By substituting them into Equation (22), the following model can be obtained

max θ = θ12 + θ13 + θ14 + θ23 + θ24 + θ34

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0.3822θ12 + 0.1235(1− θ12)](w1 + w2)− w1 = 0,

[0.4195θ13 + 0.1619(1− θ13)](w1 + w3)− w1 = 0,

[0.6110θ14 + 0.0803(1− θ14)](w1 + w4)− w1 = 0,

[0.3731θ23 + 0.1091(1− θ23)](w2 + w3)− w2 = 0,

[0.5756θ24 + 0.1608(1− θ24)](w2 + w4)− w2 = 0,

[0.4910θ34 + 0.1682(1− θ34)](w3 + w4)− w3 = 0,

w1 + w2 + w3 > w4 − 0.5, w1 + w2 + w4 > w3 − 0.5,

w1 + w3 + w4 > w2 − 0.5, w2 + w3 + w4 > w1 − 0.5,

w1 + w2 + w3 + w4 = 1, w1, w2, w3, w4 ≥ 0,

0 ≤ θ12, θ13, θ14, θ23, θ24, θ34 ≤ 1.

(29)

By solving this model, priority weights and parameter values can be obtained as w1 =

0.1227, w2 = 0.1984, w3 = 0.3333, w4 = 0.3456, θ13 = 0.4162, θ14 = 0.3425, θ24 = 0.4916, θ12 = θ23 =

θ34 = 1.

Step 5: By calculating the optimistic judgment values aij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ and

pessimistic judgment values bij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ , (i, j = 1, 2, 3, 4, i < j) and substituting
them into Equations (24) and (25) respectively to solve the weight. But their feasible regions are all
empty. Therefore, substitute the values of aij and bij into Equations (26) and (27) respectively, then the
priority weights can be obtained as follows
w+

1 = 0.2149, w+
2 = 0.2631, w+

3 = 0.3700, w+
4 = 0.1520,

w−1 = 0.1395, w−2 = 0.3034, w−3 = 0.2432, w−4 = 0.3139.
Without loss of generality, assume that the value of risk parameter λ determined by Microsoft

is 0.5. Then the priority weights can be obtained as w′1 = 0.5w+
1 + (1− 0.5)w−1 = 0.1783, w′2 =

0.2823, w′3 = 0.3058, w′4 = 0.2336.
Step 6: Combining the results obtained in steps 4 and 5, the comprehensive ranking weight of Ũ

can be obtained as w̄1 = 0.1505, w̄2 = 0.2404, w̄3 = 0.3195, w̄4 = 0.2896. Therefore, the final ranking
result is w̄3 > w̄4 > w̄2 > w̄1 , namely, x3 is the best candidate partner of Microsoft.

In addition, the sorting results for different risk parameter values λ are shown in Table 2.
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Table 2. Ranking orders of alternatives with different parameter values λ.

λ w̄1 w̄2 w̄3 w̄4 Ranking Order

0.1 0.1350 0.2488 0.2945 0.3217 x4 > x3 > x2 > x1
0.2 0.1388 0.2467 0.3008 0.3137 x4 > x3 > x2 > x1
0.3 0.1427 0.2446 0.3070 0.3057 x3 > x4 > x2 > x1
0.4 0.1466 0.2425 0.3133 0.2976 x3 > x4 > x2 > x1
0.5 0.1505 0.2404 0.3195 0.2896 x3 > x4 > x2 > x1
0.6 0.1544 0.2382 0.3258 0.2816 x3 > x4 > x2 > x1
0.7 0.1583 0.2361 0.3321 0.2735 x3 > x4 > x2 > x1
0.8 0.1622 0.2340 0.3383 0.2655 x3 > x4 > x2 > x1
0.9 0.1660 0.2319 0.3446 0.2575 x3 > x4 > x2 > x1

It can be seen from Table 2 that different sorting results may occur for different risk parameter
values λ. When 0 < λ < 0.3, the sorting result is x4 > x3 > x2 > x1, and when 0.3 ≤ λ ≤ 0.9,
the sorting result is x3 > x4 > x2 > x1. This fully demonstrates the importance of DM’s risk attitude
in GDM and the rationality of the method proposed in this paper. In addition, to further reflect the
impact of risk parameter value λ on GDM. We give the variation trend diagram of the compromise
weight w′i and the comprehensive weight w̄ (see Figure 3).

Figure 3. The variation trend of weights w′i and w̄i based on different parameter values λ.

It can be seen intuitively from Figure 3 that the variation trend of the compromise weight w′i
and the comprehensive weight w̄i with the increase of λ. Furthermore, by comparing w′i and w̄i ,
it is easy to see that project x4 is greatly influenced by λ when only taking into account DM’s risk
attitude (as the value of λ increases, the value of w′4 decreases from the maximum to the minimum),
while its comprehensive weight w̄4 is less affected by λ. This further illustrates the necessity and
rationality of comprehensive consideration of risk attitude, fuzzy and non-fuzzy uncertain information
in GDM problems.

5.2. Comparison Analyses

As a new preference relation, PULIFPR expands the application scope of qualitative information
in fuzzy theory and improves the applicability of linguistic terms in GDM. Moreover, as an extension
form of LPR, it can be transformed into various LPRs through corresponding changes. Therefore,
the method proposed in this paper is also applicable to other types of preference relations, and its
specific advantages compared with existing series methods are shown in Table 3.
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It is easy to see from Table 3 that compared with other methods, the methods proposed in this
paper have many advantages, which not only make up for the deficiencies of current methods, but also
avoid the detection and correction of consistency in GDM problems. Specifically speaking, compared
with the model proposed by the existing methods, the specific advantages of the model proposed in
this paper are as follows

(1) Compared with models M-1 and M-3 in method [27], the model proposed in this paper can
directly obtain the priority weight of preference relation without consistency test and correction.

(2) Compared with Algorithms 1 and 2 in method [37], the algorithm proposed in this paper
provides a method to determine the individual weight, and the consensus collective preference
relation can be obtained directly without iterative calculation.

(3) Compared with the model proposed by wan et al. [36], the model proposed in this paper
considers the probability distribution of uncertain information, which is more suitable for
large-scale GDM problems in complex environments and can ensure the consistency of collective
preference relations.

(4) Compared with the GPM proposed by liao et al. [39], the model proposed in this paper considers
both the risk attitude of DMs and the information that they fail to grasp, which improves the
rationality and accuracy of decision-making results.

In addition, PULIFS proposed in this paper is a comprehensive extension of the LTS, which can be
converted into other sets according to the practical needs of decision problems. Therefore, PULIFS is
more general and representative than many existing fuzzy sets, and it is more flexible in the application
of decision problem. Furthermore, we classify the information expressed by PULIFPR as fuzzy and
non-fuzzy uncertain information to fully consider the preferences, non-preferences and unknown
information of the decision-maker. Thus, the method proposed in this paper comprehensively reflects
the subjective hesitation, uncertainty and objective randomness existing in actual decision-making
problems, and thus ensures the rationality of the DM results.

To sum up, the advantages of the proposed method in practical application can be summarized
as follows

(1) Compared with the general preference relation, the PULIFPR proposed in this paper can express
both individual preference and group preference, which is more suitable for the increasingly
complex decision-making environment. Therefore, the decision-making method proposed in
this paper has a broad application prospect. Such as the selection of investment projects, the
formulation of enterprise marketing plans, the introduction of talents in institutions, etc.

(2) The method proposed in this paper comprehensively considers the risk attitude and fuzzy
uncertain information of DMs, which is more in line with the actual decision-making situation
and is easily accepted and adopted by DMs.

(3) The proposed model can guarantee the consistency of the collective preference relation without
checking and revising, so it is more simple and accurate in practical application.

However, although the method proposed in this paper has many advantages, it also has some
limitations. On the one hand, this paper considers the risk attitude of decision makers, but fails to
give a method to determine the value of risk parameters; on the other hand, this paper does not
consider the group decision-making problem in the context of incomplete information. Therefore,
the method of determining the risk parameter value and extending the proposed method to an
incomplete environment will be the future research direction.

6. Conclusions

This paper first briefly summarizes the development history of LTS and puts forward PULIFS,
which extends the application of LT in fuzzy theory and promotes the application of qualitative
information in GDM. Secondly, the definition of PULIFPR is proposed, which can fully express
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the subjective hesitation of the decision-maker in the DM problem as well as the uncertainty and
randomness of the objective existence. We then defined the distance measure between PULIFSs and
used it to determine the individual objective weight, thus increasing the accuracy of information
aggregation. Subsequently, a series of GPMs for solving priority weights were established, which not
only fully considered the fuzziness of information and DM’s risk attitude, but also avoided the test
and correction of consistency in GDM. Moreover, we take the project selection of world VR industry
conference 2018 as an example demonstrates the effectiveness and practicality of the proposed method.

It is worth noting that this paper only discusses the application of qualitative information in
GDM, so it will be an interesting research direction to apply the method proposed in this paper to
the quantitative decision-making field, such as IVIFS [41] or PIVIHFS [28], and the decision problem
in heterogeneous environment (both qualitative and quantitative information should be considered).
In addition, since this paper studies the uncertain problem in a complex environment, it will be a
worthy research direction to combine the proposed method with the complex network with fuzzy
logic units [42].
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Abstract: In the age of the knowledge-based economy and the rapid development of information
technology, enterprise management is facing great challenges and has entered an era of prudent
management. Traditional enterprise performance evaluation focuses on the interests of shareholders.
Investors take financial data as their base and pay attention to the study of material attraction and the
results; if they do not, they cannot adjust to a new economy period. Therefore, enterprise performance
reflects the interests of shareholders and business strategists for the needs of stakeholders, which is
important for the future of lively competition. With that in mind, aggregation of information is
an important research tool that has recently drawn the attention of researchers for information
analysis. In this paper, we have developed multiple-attribute decision-making methods for enterprise
performance evaluation with picture fuzzy information. We have applied Hamacher aggregation
operators such as the picture fuzzy Hamacher weighted averaging (PFHWA) operator and picture
fuzzy Hamacher weighted geometric (PFHWG) operator in picture fuzzy environment for the
assessment of the best enterprise selection. Finally, we justified the proposed approach with the
existing methods for feasibility and effectiveness.

Keywords: multiple attribute decision making (MADM); picture fuzzy numbers; Hamacher operations;
picture fuzzy Hamacher aggregation operators; evaluation of enterprise performance

1. Introduction

Financial management is an important part of strategic management research, which investigates
how enterprises exploit proper strategies to create and maintain competitive advantages. Presently,
research into competition has grown exponentially. Mintzberg et al. [1] criticized overly analytical
orientation, upper management slant, lack of attention to action and learning, and neglect of the
elements that lead to the creation of strategies. Shrivastava [2] focused his research on organizational
learning processes; this has the potential to offer insights into these identified drawbacks. Brockman
and Morgan [3] showed that organizational knowledge is the basis for gaining and defending
competitive advantage and a key variable in the amplification of firm performance. Furthermore,
some studies showed evidence of a useful relationship between organizational learning and inflexible
performance. For example, Baker and Sinkula [4] proved that learning intention has a direct effect on
firm performance. Ussahawanitchakit [5] practiced an advance measure of knowledge and obtained
similar issues. Enterprise performance estimation is not only development of market economy within a
certain time, but also a scientific method and constructive tool to supervise enterprises for a nation with
current market economy. Work for the evaluation of enterprise performance of our country, how to
change our economy, social environment, and the trend of internationalization and how to show a
system of performance appraisal that fits our economic development plays an especially important
operational significance for enhancing the health of our enterprises, improving the management
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Symmetry 2019, 11, 75

level, sharpening the enterprise competitiveness, and further improving the economic growth quality.
Many MCDM or multiple attribute decision making (MADM) problems (such as business and strategic
financial management, medical diagnosis etc.) have been developed with the use of aggregation [6–8]
operators under probabilistic environment. Merigo et al. [9] introduced order weighted averaging
operator, induce aggregation operators, weighted averaging operator and then used these operators
to develop strategic decision making theory. Li [10] have studied decision and game theory in
management in the environment of intuitionistic fuzzy information. The study of aggregation functions
under different fuzzy environment is an important research instrument in decision science. In next
paragraph, we briefly overview of some fuzzy aggregation functions and their corresponding decision
making problems.

It is very difficult to take real attribute values, because of complexity presented in serious level
in the field of decision environment. In 1965, Zadeh [11] introduced theory of fuzzy sets (FS), a new
mathematical notion to handle easily multi-criteria decision making MCDM [12,13] problems and
multi-criteria group decision making MCGDM [14,15] problems. It is known to all that intuitionistic
fuzzy sets (IFSs) and interval-valued intuitionistic fuzzy sets (IVIFSs) [16] are the generalization of
IFS. All these traditional theories are very interesting research topics which have engaged attention
of the researchers, because these theories have successful applications in different directions such as
decision-making, medical diagnosis, pattern recognition, cluster analysis etc. Then many scholars
expressed intuitionistic fuzzy information in their excellent study as follows, Chen and Chou [17]
used particle swarm optimization method to develop a MADM problem under the information IVIF
numbers. Du and Liu [18] proposed to study a MADM problem based on VIKOR method using
intuitionistic trapezoidal fuzzy information. Garg [19] studied an MCDM problem with unknown
attribute values by defining a new score and accuracy function under IVIF environment. Kumar and
Garg [20] contributed an MADM problem for INVIF environment based on SPA. Li [21] proposed a
MADM to develop a closeness coefficient of nonlinear programming method based on IVIF values
in which preference values of the attribute are unknown. Lourenzutti and Krohling [22] used IFVs
to develop MCDM method using fuzzy-TODIM technique. Wan and Li [23,24] used to develop
heterogeneous MAGDM problems with A-IF (A-IVIF) information and then applicability of the
proposed method is justified with an example of real supplier selection. Ye [25] motivated to analyze
MCDM based on novel accuracy function under IVIF environment. Recently, researchers have drawn
attention to model covering-based IF rough sets with their applications to MADM problems [26,27].
Additionally, intuitionistic fuzzy rough graphs are helpful to understand these models and can solved
decision-making problems, which is explained in [28].

All the execution of the criteria for alternatives, weighted and order weighted aggregation
operators [29,30], have a major role in the course of the document aggregation. In that view, Xu [31,32]
introduced some weighted aggregation operators to solve MAGDM problems. Recently, aggregation
of information for operators is an interesting research subject, receiving great attention of the
researchers in the light of Hamacher operations. The operation introduced by Hamacher [33], known
as “Hamacher operation (HO)”, is a combination of algebraic TN and TCN, and Einstein TN and
TCN [34]. Huang [35] introduced intuitionistic fuzzy Hamacher aggregation operators and gave
application of these operators in MADM. Liu [36] presented some interval-valued intuitionistic fuzzy
Hamacher aggregation operators and applied it to MAGDM problems. Xiao [37] proposed order
weighted Hamacher geometric operator under IVIF environment. Li [38] gave the attention to the
study of Hamacher correlated averaging (HCA) operator with the help of Hamacher sum and the
Hamacher product operations based on IVIF information. The readers can get more information
about Hamacher and other aggregation functions and developed decision-making methods from the
following references [39–51].

Although IFS and IVIFS have been successfully applied to solve real world problems, in reality
there are some conditions which cannot be handled by IFSs. Suppose, that in case of voting, human
outlook involved more responses such as yes, abstain, no, refusal, which cannot be perfectly presented
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by traditional FS and IFS. To overcome this situation, the notion of picture fuzzy (PFS) set was
originated by Cuong [52–54] as a new mathematical tool for computational intelligence problems.
A PFS is identified by functions called (positive, neutral, refusal)-membership function during the
information analysis. With this point of view, a PFS can be considered as a generalization of IF and the
fuzzy sets. Recently, many researchers have studied PFSs and its applications: Sing [55] suggested
correlation coefficient of PFS, and gave an application in clustering analysis. Jana et al. [56] used
weighted Dombi aggregation operators in picture fuzzy environment, and using these operators
developed software selection method. Based on some new fuzzy algorithms on the basis of PFSs
environment, Son and others [57,58] provided weather forecasting and time series forecasting.
Thong [59] studied a novel fuzzy hybrid model for PF-clustering, and IF-systems for Medical
diagnosis and health care support systems. Son [60] investigated generalized PF-distance measure,
and applied it to solve clustering analysis problems under PFSs environment. Wei and others [61,62]
used PF-information aggregation to find ranking of EPR systems, picture 2-tuple linguistic Bonferroni
mean-based model, picture 2-tuple linguistic model for the solution of multi attribute decision making
problems. To see more information about PFS applied to risk management, picture preference relation
and picture 2-tuple linguistic [63–65] information used to find their corresponding decision making.
Recently, Wei [66] introduced Hamacher aggregation operator on picture fuzzy set. He studied different
kinds of Hamacher aggregation operators under picture fuzzy environment such as (PFHA) operators,
(PFHG) operators, (PFHCA) operators, (IPFHA) operators, (IPFHCA) operators, (PFHPA) operators,
(PFHPA) operators, and then provided a MADM problem for the utility and flexibility of proposed
method. Therefore, based on Hamacher operation, how to aggregate these PFS is a very useful topic.
In this paper, we shall define some PF Hamacher aggregation operators on the basis of traditional
arithmetic [29,30,32], geometric operations [31], and Hamacher operations [33,66].

The PFS has a powerful ability to model the ambiguous and imprecise information of the real
world. In literature, there are many different works related to applications of fuzzy aggregation method
in decision making problem based on Hamacher operations. With this motivation, we used picture
fuzzy Hamacher weighted averaging (PFHWA) operator, picture fuzzy Hamacher weighted geometric
(PFHWGA) operator to access the best enterprise on the basis of performance evaluation of enterprises.

2. Preliminaries

In this section, some basic definitions and operations related intuitionistic fuzzy sets and picture
fuzzy sets are recalled briefly.

2.1. Intuitionistic Fuzzy Sets

Let X be universe of discourse. Then, an intuitionistic fuzzy set (IFS) [16] is defined as follows:

A = {〈μ̂A(x), ν̂A(x)〉|x ∈ X}, (1)

where μ̂A : X → [0, 1] and ν̂A : X → [0, 1] are called membership function and non-membership
function of IFS A, respectively. Here 0 ≤ μ̂A + ν̂A ≤ 1 for all x ∈ X and π = 1− (μ̂A(x) + ν̂A(x) is
called degree of indeterminacy of x ∈ X in IFS A. The pair 〈μ̂A, ν̂A〉 is called intuitionistic fuzzy value
(IFV) or intuitionistic fuzzy number (IFN) by Xu [31].

2.2. Picture Fuzzy Sets

Let X be a universe of discourse objects. A picture fuzzy set over X, denoted by P̂, is defined
in [52,53] as follows:

P̂ = {〈μ̂P̂(x), η̂P̂(x), ν̂P̂(x)〉 : x ∈ X}, (2)
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where μ̂P̂ : X → [0, 1], η̂P̂ : X → [0, 1] and ν̂P̂ : X → [0, 1] are called positive (neutral, negative)-degree
of membership of picture fuzzy set P̂, respectively. Here 0 ≤ μ̂P̂(x) + η̂P̂(x) + ν̂P̂(x) ≤ 1 for all x ∈ X.
Besides, πP̂(x) denotes degree of refusal of x ∈ X, and is defined as πP̂(x) = 1− (μ̂P̂(x) + η̂P̂(x) +
ν̂P̂(x)). The pair (μ̂P̂, η̂P̂, ν̂P̂) is called picture fuzzy value (PFV) or picture fuzzy element (PFE).

Definition 1 ([67]). Let P̂ = (μ̂P̂, η̂P̂, ν̂P̂) be a PFN. Then, the score function Ŝ of PFN P̂, denoted by Ŝ(P̂),
is defined as follows:

Ŝ(P̂) = μ̂P̂ − ν̂P̂, Ŝ(P̂) ∈ [−1, 1]. (3)

Definition 2 ([67]). Let P̂ = (μ̂P̂, η̂P̂, ν̂P̂) be a PFN. Then, the accuracy function Ĥ of PFN P̂, denoted by
Ĥ(P̂), is defined as follows:

Ĥ(P̂) = μ̂P̂ + η̂P̂ + ν̂P̂, Ĥ(P̂) ∈ [0, 1]. (4)

Here, the larger value of Ĥ(P̂) implies a greater degree of accuracy of the PFE P̂ = (μ̂P̂, η̂P̂, ν̂P̂).

3. Hamacher Operations (HOs) on the Picture Fuzzy Set

3.1. Hamacher Operations

The TN and TCN are useful notions in fuzzy set theory, that are used to define general union
and intersection of fuzzy sets [68]. The definitions and conditions of TN and TCN are proposed by
Roychowdhury and Wang [69]. The generalized union and generalized intersection of intuitionistic
fuzzy sets based on TN and TCN were provided by Deschrijver and Kerre [70]. In 1978, Hamacher [33]
introduced HOs known as Hamacher product (

⊗
) and Hamacher sum (

⊕
), which are examples of TN

and TCN, respectively. Hamacher TN and Hamacher TCN are provided in the following definition

TH(u, v) = u
⊗

v =
uv

ξ + (1− ξ)(u + v− uv)
(5)

T∗H(u, v) = u
⊕

v =
u + v− uv− (1− ξ)uv

1− (1− ξ)uv
. (6)

Usually, when ξ = 1, then Hamacher TN and TCN will reduce to the form

TH(u, v) = u
⊗

v = uv (7)

T∗H(u, v) = u
⊕

v = u + v− uv (8)

which represent algebraic TN and TCN. When ξ = 2, then Hamacher TN and Hamacher TCN will
conclude to the form

TH(u, v) = u
⊗

v =
uv

1 + (1− u)(1− v)
(9)

T∗H(u, v) = u
⊕

v =
u + v

1 + uv
(10)

which are called Einstein TN and TCN respectively.
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3.2. Hamacher Operations(HOs) of Picture Fuzzy Set

Here, given some Hamacher operations on PFNs which are provided by Wei [66]. Let A and B
be two PFSs and κ > 0. Then, Hamacher product and Hamacher sum of the two PFSs A and B are
denoted by ( p̂1

⊗
p̂2) and ( p̂1

⊕
p̂2), respectively, and defined by

• p̂1
⊕

p̂2 =

(
μ̂1+μ̂2−μ̂1μ̂2−(1−ξ)μ̂1μ̂2

1−(1−ξ)μ̂1μ̂2
, η̂1 η̂2

ξ+(1−ξ)(η̂1+η̂2−η̂1 η̂2)
, ν̂1 ν̂2

ξ+(1−ξ)(ν̂1+ν̂2−ν̂1 ν̂2)

)

• p̂1
⊗

p̂2 =

(
μ̂1μ̂2

ξ+(1−ξ)(μ̂1+μ̂2−μ̂1μ̂2)
, η̂1+η̂2−η̂1 η̂2−(1−ξ)η̂1 η̂2

1−(1−ξ)η̂1η̂2
, ν̂1+ν̂2−ν̂1 ν̂2−(1−ξ)ν̂1 ν̂2

1−(1−ξ)ν̂1 ν̂2

)

• κ p̂1 =

(
(1+(ξ−1)μ̂1)

κ−(1−μ̂1)
κ

(1+(ξ−1)μ̂1)κ+(ξ−1)(1−μ̂1)κ , ξ(η̂)κ

(1+(ξ−1)(1−η̂1))κ+(ξ−1)(η̂)κ , ξ(ν̂1)
κ

(1+(ξ−1)(1−ν̂1))κ+(ξ−1)(ν̂1)κ

)
, κ > 0

• p̂κ
1 =

(
ξ(μ̂)κ

(1+(ξ−1)(1−μ̂1))κ+(ξ−1)(μ̂)κ , (1+(ξ−1)η̂1)
κ−(1−η̂1)

κ

(1+(ξ−1)η̂1)κ+(ξ−1)(1−η̂1)κ , (1+(ξ−1)ν̂1)
κ−(1−ν̂1)

κ

(1+(ξ−1)ν̂1)κ+(ξ−1)(1−ν̂1)κ

)
, κ > 0.

Now, we have drawn the attention on picture fuzzy Hamacher weighted averaing operator
(PFHWA) and picture fuzzy Hamacher weighted geometric (PFHWG) operator introduced by Wei [66]
that are as follows.

Definition 3 ([66]). Let p̂q = (μ̂q, η̂q, ν̂q) (q = 1, 2, . . . , s) be several picture fuzzy number (PFNs).
A picture fuzzy Hamacher weighted average (PFHWA) operator is defined as a mapping from P̃s to P̃

as follows:

PFHWAΨ( p̂1, p̂2, . . . , p̂s) =
s⊕

q=1

(Ψq p̂q) (11)

where Ψ = (Ψ1, Ψ2, . . . , Ψs)T is the weight vector of p̂q (q = 1, 2, . . . , s) with Ψq > 0 and
s
∑

q=1
Ψq = 1.

Now, we considered two special cases subsequently for the PFHWA operator when the parameter
ξ takes the values 1 or 2.

Case 1. If ξ = 1, then PFHWA operator will reduce to PFWA operator (Wei, 2017):

PFWAΨ( p̂1, p̂2, . . . , p̂s) =
s⊕

q=1

(Ψq p̂q)

=

(
1−

s

∏
q=1

(1− μ̂q)
Ψq ,

s

∏
q=1

(η̂q)
Ψq ,

s

∏
q=1

(ν̂q)
Ψq

)
.

Case 2. If ξ = 2, then PFHWA operator will reduce to picture fuzzy Einstein weighted averaging
(PFEWA) operator:
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PFEWAΨ( p̂1, p̂2, . . . , p̂s) =
s⊕

q=1

(Ψq p̂q)

=

( s
∏

q=1
(1 + μ̂q)

Ψq −
s

∏
q=1

(1− μ̂q)Ψ

s
∏

q=1
(1 + μ̂q)

Ψq +
s

∏
q=1

(1− μ̂q)
Ψq

,

2
s

∏
q=1

(η̂q)
Ψq

s
∏

q=1
(2− η̂q)

Ψq +
s

∏
q=1

(η̂q)
Ψq

, (12)

2
s

∏
q=1

(ν̂q)
Ψq

s
∏

q=1
(2− ν̂q)

Ψq +
s

∏
q=1

(ν̂q)
Ψq

)
.

Definition 4 ([66]). Let p̂q = (μ̂q, η̂q, ν̂q) (q = 1, 2, . . . , s) be several PFNs. A picture fuzzy Hamacher
weighted geometric (PFHWG) operator is defined as a mapping PFHWG : P̂s → P̂ by

PFHWGΨ( p̂1, p̂2, . . . , p̂s) =
s⊗

q=1

( p̂q)
Ψq (13)

where Ψ = (Ψ1, Ψ2, . . . , Ψs)T is the weight vector of p̂q (q = 1, 2, . . . , s) such that Ψq > 0 and
s
∑

q=1
Ψq = 1.

Case 1. If ξ = 1, PFHWG operator reduces to picture fuzzy weighted geometric (PFWG) operator:

PFWGΨ( p̂1, p̂2, . . . , p̂s) =
s⊗

q=1
( p̂q)

Ψq

=

(
s

∏
q=1

(μ̂q)
Ψq , 1−

s
∏

q=1
(1− η̂q)

Ψq , 1−
s

∏
q=1

(1− η̂q)
Ψq

)
.

(14)

Case 2. If ξ = 2, then PFHWG operator reduces to a picture fuzzy Einstein weighted geometric
(PFEWG) operator:

PFEWGΨ( p̂1, p̂2, . . . , p̂s) =
s⊗

q=1
( p̂q)

Ψq

=

( 2
s

∏
q=1

(μ̂q)
Ψq

s
∏

q=1
(2− μ̂q)

Ψq +
s

∏
q=1

(μ̂q)
Ψq

,

s
∏

q=1
(1 + η̂q)

Ψq −
s

∏
q=1

(1− η̂q)Ψ

s
∏

q=1
(1 + η̂q)

Ψq +
s

∏
q=1

(1− η̂q)Ψ
,

s
∏

q=1
(1 + η̂q)

Ψq −
s

∏
q=1

(1− η̂q)Ψ

s
∏

q=1
(1 + η̂q)

Ψq +
s

∏
q=1

(1− η̂q)Ψ

)
.

4. Model for MADM Using Picture Fuzzy Information

To this part, multiple attribute decision making (MADM) method is proposed based on PFHA
operators of which weights of attributes are real numbers and values of attributes are PFNs. To illustrate
effectiveness of the proposed MADM method, an application in evaluation of enterprises performance
under picture fuzzy information is given. Let Q = {Q1, Q2, . . . , Qr} be the discrete set of alternatives
and G = {G1, G2, . . . , Gs} be the set of attributes.

Let Ψ = (Ψ1, Ψ2, . . . , Ψs) be the weight vector of the attribute such that Ψb > 0 (b = 1, 2, . . . , s)

and
s
∑

b=1
Ψb = 1, and R = (μ̂ab, η̂ab, ν̂ab)r×s be a picture fuzzy decision matrix. Here, μ̂ab is the degree

of the positive membership for which alternative Qa satisfies the attribute Gb given by the decision
makers, η̂ab denote the degree of neutral membership such that alternative Qa does not satisfy the
attribute Gb, and ν̂ab provides the degree that the alternative Qa does not satisfy the attribute Gb given
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by the decision maker, where μ̂ab ⊂ [0, 1], η̂ab ⊂ [0, 1] and ν̂ab ⊂ [0, 1] such that 0 ≤ μ̂ab + η̂ab + ν̂ab ≤ 1,
(a = 1, 2, . . . , r) and (b = 1, 2, . . . , s).

In the following algorithm, a MADM method using PFHWA and PFHWG operators is proposed
to solve problems involving picture fuzzy information.

Step 1. Construction of decision matrix R by decision makers under PF-information:

R =

⎛⎜⎜⎜⎜⎝
β̂11 β̂12 · · · β̂1r
β̂21 β̂22 · · · β̂2r

...
...

. . .
...

β̂a1 β̂s2 · · · β̂ab

⎞⎟⎟⎟⎟⎠
Step 2. Finding of values of β̂a (a = 1, 2, ...r) based on decision matrix R: These values are found

by using PFHWA (or PFHWG) given as follow:

β̂a = PFHWA(β̂a1, β̂a2, . . . , β̂ab) =
s⊕

b=1
(Ψb β̂ab)

=

( s
∏

b=1
(1+(ξ−1)μ̂b)

Ψb−
s

∏
b=1

(1−μ̂b)
Ψb

s
∏

b=1
(1+(ξ−1)μ̂b)

Ψb+(ξ−1)
s

∏
b=1

(1−μ̂b)
Ψb

,
ξ

s
∏

b=1
(η̂b)

Ψb

s
∏

b=1
(1+(ξ−1)(1−η̂b))

Ψb+(ξ−1)
s

∏
b=1

(η̂b)
Ψb

,

ξ
s

∏
b=1

(η̂b)
Ψb

s
∏

b=1
(1+(ξ−1)(1−η̂b))

Ψb+(ξ−1)
s

∏
b=1

(η̂b)
Ψb

)
,

(15)

(a = 1, 2, . . . , r) or β̂a = PFHWG(β̂a1, β̂a2, . . . , β̂ab) =
s⊗

b=1
(β̂ab)

Ψb

=

(
ξ

s
∏

b=1
(μ̂b)

Ψb

s
∏

b=1
(1+(ξ−1)(1−μ̂b))

Ψb+(ξ−1)
s

∏
b=1

(μ̂b)
Ψb

,

s
∏

b=1
(1+(ξ−1)η̂b)

Ψb−
s

∏
b=1

(1−η̂b)
Ψb

s
∏

b=1
(1+(ξ−1)η̂b)

Ψb+(ξ−1)
s

∏
b=1

(1−η̂b)
Ψb

,

s
∏

q=1
(1+(ξ−1)η̂b)

Ψb−
s

∏
b=1

(1−η̂b)
Ψb

s
∏

b=1
(1+(ξ−1)η̂b)

Ψb+(ξ−1)
s

∏
b=1

(1−η̂b)
Ψb

)
,

(16)

(a = 1, 2, . . . , r) to obtain the overall preference values β̂a (a = 1, 2, . . . , r) of the alternative Qr.
Step 3. Calculate the score Ŝ(β̂a) (a = 1, 2, . . . , r) by using Equation (3) based on overall

PF-information β̂a (a = 1, 2, . . . , r) in order to rank all the alternative Qa (a = 1, 2, . . . , r) to choose
the best choice Qa. If score values of Ŝ(β̂a) and Ŝ(β̂c) are equal, accuracy degrees of Ĥ(β̂a) and Ĥ(β̂c)

based on overall picture fuzzy information of β̂a and β̂c are calculated, and rank the alternative Qa

depending with the accuracy of Ĥ(β̂a) and Ĥ(β̂c).
Step 4. To rank the alternatives Qa (a = 1, 2, . . . , r), choose the best one(s) in accordance with

Ŝ(β̂a) (a = 1, 2, . . . , r).
Step 5. Select the best alternative.
Step 6. Stop.

5. Numerical Example and Comparative Analysis

5.1. Numerical Example

The long-term stable development of enterprise hampered due to these issues: Development
of production, environmental pollution, poor quality production, waste of resources, and lack of
protection of the interests of the employees, as a result shareholders lose interest to invest their
wealth, and they urge to special-purpose investment to the company and bear the investment
risk. Thus, an enterprise’s growth and survival depends on its ability to effectively deal with the
relationship among various shareholders. The strategic management experts gradually realized that
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it is a small-minded behavior for enterprises if they want to achieve the goal of shareholder value
in the production of process, regardless of the interest of other stakeholders requirements. From the
standpoint of stakeholders, as a supervision and management system, the enterprise’s financial
performance is not only an enterprise’s important self-monitoring, self-restraint, self-evaluation, but
also have a vital instrumentation to effectively communicate with stakeholders, coordinating each
stakeholder’s interest, and finally achieving the strategic management goal of enterprise. In this
part, we shall present a project for the selection of best enterprise alternative(s) on the basis of the
present trend of enterprise financial performances in order to investigate our proposed method. Here,
we have evaluated the enterprise overall performance of five possible enterprises Qt (t = 1, 2, 3, 4, 5).
A company invests its money to an enterprize with the enterprise performances, and seeks to
maximize the expected profit. In that view, it is required to calculate the enterprise performance
of five possible enterprises as to select the desirable one. The whole decision-making process is
presented by a flow-chart in Figure 1. The investment company take a decision depending on the
following four attributes:

G1 Financial performance
G2 Customer performance
G3 Internal processes of performance
G4 Staff performance..

Figure 1. A flow chart of PFNs based on multiple attribute decision making (MADM) problem.
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To keep away from dominating each other, decision makers are required to exempted the
five possible enterprises Qa (q = 1, 2, 3, 4, 5) under the considered attributes whose weight vector
(0.2, 0.1, 0.3, 0.4) determined by decision makers. According to opinions of decision makers, decision
matrix R̃ = (β̂ab)5×4 is constructed under picture fuzzy information as in Table 1.

• Step 1. Decision matrix R is constructed by decision maker or expert under PF information
as follows:

Table 1. Decision matrix R under picture fuzzy (PF)-information.

G1 G2 G3 G4

Q1 (0.56, 0.34, 0.10) (0.90, 0.06, 0.04) (0.40, 0.33, 0.19) (0.09, 0.79, 0.03)
Q2 (0.70, 0.10, 0.09) (0.10, 0.66, 0.20) (0.06, 0.81, 0.12) (0.72, 0.14, 0.09)
Q3 (0.88, 0.09, 0.03) (0.08, 0.10, 0.06) (0.05, 0.83, 0.09) (0.65, 0.25, 0.07)
Q4 (0.80, 0.07, 0.04) (0.70, 0.15, 0.11) (0.03, 0.88, 0.05) (0.07, 0.82, 0.05)
Q5 (0.85, 0.06, 0.03) (0.64, 0.07, 0.22) (0.06, 0.88, 0.05) (0.13, 0.77, 0.09)

• Step 2. Let ξ = 3. By using the PFHWA operator of the overall performance values β̂a of
enterprises, Qa (a = 1, 2, 3, 4, 5) are obtained as follows:

β̂1 =
(

[(1+2×0.56)0.2×(1+2×0.90)0.1×(1+2×0.40)0.3×(1+2×0.09)0.4]−[(1−0.56)0.2×(1−0.90)0.1×(1−0.40)0.3×(1−0.09)0.4]
[(1+2×0.56)0.2×(1+2×0.90)0.1×(1+2×0.40)0.3×(1+2×0.09)0.4]+2×[(1−0.56)0.2×(1−0.90)0.1×(1−0.40)0.3×(1−0.09)0.4]

,

3×[(0.34)0.2×(0.06)0.1×(0.33)0.3×(0.79)0.4]
[(1+2×(1−0.34))0.2×(1+2×(1−0.06))0.1×(1+2×(1−0.33))0.3×(1+2×(1−0.79))0.4]−2×[(0.34)0.2×(0.06)0.1×(0.33)0.3×(0.79)0.4]

,

3×[(0.10)0.2×(0.04)0.1×(0.19)0.3×(0.03)0.4]
[(1+2×(1−0.10))0.2×(1+2×(1−0.04))0.1×(1+2×(1−0.19))0.3×(1+2×(1−0.03))0.4]−2×[(0.10)0.2×(0.04)0.1×(0.19)0.3×(0.03)0.4]

)
= (0.394, 0.434, 0.070)
by a similar way, β̂2, β̂3, β̂4, and β̂5 are obtained as follows: β̂2 = (0.492, 0.294, 0.107),
β̂3 = (0.520, 0.298, 0.063), β̂4 = (0.301, 0.517, 0.052), β̂5 = (0.351, 0.462, 0.067).

• Step 3. By using Equation (3) the score values Ŝ(β̂a) (a = 1, 2, 3, 4, 5) of the overall PFNs β̂a

(a = 1, 2, 3, 4, 5) are obtained as follows:

Ŝ(β̂1) = 0.394− 0.070 = 0.324. By a similar way, Ŝ(β̂2) = 0.386, Ŝ(β̂3) = 0.457, Ŝ(β̂4) = 0.249,
Ŝ(β̂5) = 0.284.

• Step 4. The ranking order in the performance of enterprises Qa (a = 1, 2, 3, 4, 5) in accordance
with the value of the score functions Ŝ(β̂a) (s = 1, 2, . . . , 5) of the overall PFNs is as follows:
Q3 � Q2 � Q1 � Q5 � Q4.

• Step 5. Q3 is selected as the most desirable enterprises.

• Step 6. Stop.

Figures 2 and 3 show the graph of score values of β̂a obtained by two different operators.
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Figure 2. Graph of score values of β̂a obtained by picture fuzzy Hamacher weighted averaging
(PFHWA) operator.

Figure 3. Graph of score values of β̂a obtained by picture fuzzy Hamacher weighted geometric
(PFHWG) operator.

If PFHWG operator is implemented instead, then the problem can be solved similarly as above.

• Step 1. Let us consider Table 1.

• Step 2. Let ξ = 3, using the PFHWG operator to evaluate the overall performance values β̂a of
enterprises Qa (a = 1, 2, 3, 4, 5)

β̂1 =
(

3×[(0.56)0.2×(0.90)0.1×(0.40)0.3×(0.09)0.4]
[(1+2×(1−0.56))0.2×(1+2×(1−0.90))0.1×(1+2×(1−0.40))0.3×(1+2×(1−0.09))0.4]−2×[(0.56)0.2×(0.90)0.1×(0.40)0.3×(0.09)0.4]

,

[(1+2×0.34)0.2×(1+2×0.06)0.1×(1+2×0.33)0.3×(1+2×0.79)0.4]−[(1−0.34)0.2×(1−0.06)0.1×(1−0.33)0.3×(1−0.79)0.4]
[(1+2×0.34)0.2×(1+2×0.06)0.1×(1+2×0.33)0.3×(1+2×0.79)0.4]+2×[(1−0.34)0.2×(1−0.06)0.1×(1−0.33)0.3×(1−0.79)0.4]

,

[(1+2×0.10)0.2×(1+2×0.04)0.1×(1+2×0.19)0.3×(1+2×0.03)0.4]−[(1−0.10)0.2×(1−0.04)0.1×(1−0.19)0.3×(1−0.03)0.4]
[(1+2×0.10)0.2×(1+2×0.04)0.1×(1+2×0.19)0.3×(1+2×0.03)0.4]+2×[(1−0.10)0.2×(1−0.04)0.1×(1−0.19)0.3×(1−0.03)0.4]

)
= (0.281, 0.531, 0.092)

by a similar way, β̂2, β̂3, β̂4, and β̂5 are obtained as β̂2 = (0.327, 0.435, 0.110), β̂3 = (0.312, 0.430, 0.067),
β̂4 = (0.129, 0.704, 0.054), β̂5 = (0.200, 0.669, 0.078).

• Step 3. Calculate the values of the score functions Ŝ(β̂a) (a = 1, 2, 3, 4, 5) of the overall picture
fuzzy numbers β̂a (a = 1, 2, 3, 4, 5) as follows:
Ŝ(β̂1) = 0.281− 0.092 = 0.189, by a similar way, the other score values are obtained as follows
Ŝ(β̂2) = 0.218, Ŝ(β̂3) = 0.246, Ŝ(β̂4) = 0.075, Ŝ(β̂5) = 0.122.

32



Symmetry 2019, 11, 75

• Step 4. Rank all of the enterprises Qa (s = 1, 2, . . . , 5) according to score values of the overall
PFNs β̂a (a = 1, 2, 3, 4, 5) as Q3 � Q2 � Q1 � Q5 � Q4.

• Step 5. Return Q3 is selected as the most desirable enterprise.

• Step 6. Stop.

From the analysis, it is clear that although overall rating values of the alternatives are different for
these two operators, graphically presented in Figures 2 and 3, the ranking orders of the alternatives
are similar, and the most desirable enterprise is Q3.

5.2. Comparison Analysis

In ordered to compare our proposed method more effective to the existing method [56,71], we use
PFDWA (PFDWGA) and PFWA (PFWGA) operators to aggregate picture fuzzy input arguments (Table
1) for the given decision matrix in Table 2 and their corresponding score values are given in Table 3 as
follows:

Table 2. Aggregated values of the alternatives using PFWA (PFWGA) and PFDWA (PFDWGA)
operators.

Alternative(Qs) PFWA PFWGA PFDWA PFDWG

Q1 (0.4431, 0.3969, 0.0683) (0.2555, 0.5656, 0.0957) (0.5825, 0.2914, 0.0515) (0.1766, 0.6381, 0.0984)
Q2 (0.5412, 0.2588, 0.1063) (0.2789, 0.4972, 0.1106) (0.6040, 0.1859, 0.1045) (0.1462, 0.6094, 0.1113)
Q3 (0.5801, 0.2665, 0.0627) (0.2595, 0.4914, 0.0672) (0.6908, 0.1929, 0.0575) (0.1236, 0.6196, 0.0675)
Q4 (0.3815, 0.4320, 0.0517) (0.1113, 0.7415, 0.0542) (0.5175, 0.2298, 0.0502) (0.0621, 0.8022, 0.0544)
Q5 (0.4264, 0.3785, 0.0662) (0.1760, 0.7117, 0.0806) (0.5816, 0.1779, 0.0569) (0.1181, 0.7801, 0.0824)

Table 3. Score values of alternatives using PFWA (PFWGA) and PFDWA (PFDWG) operators.

Alternative(Qs) PFWA PFWGA PFDWA PFDWG

Q1 0.3748 0.1598 0.7655 0.5391
Q2 0.4349 0.1683 0.7498 0.5175
Q3 0.5174 0.1923 0.8167 0.5281
Q4 0.3298 0.0571 0.7337 0.5039
Q5 0.3602 0.0954 0.7624 0.5179

It follows from Table 4 that although overall rating values of the alternatives are different for
these two operators, the most desirable alternative is Q3. In comparison with the other existing
method [56,71], the ranking order of alternatives is slightly different but the optimum alternative is
almost same. Thus, our proposed method is stable and can be applicable to handle different uncertain
environments. It is also notified in order to compare the effectiveness of the proposed technique
for MADM problems using PF-Hamacher aggregation, operators with other existing methods for
MADM problems based on IF Hamacher aggregation operators [35] and bipolar fuzzy Hamacher
aggregation operators [50] have some restraints and are not provided overall information about the
situation. Picture fuzzy set is a more generalization of IFS. Therefore, picture fuzzy Hamacher set has
provided more information (positive, neutral, negative, and refusal)-membership degrees to analyze
systems of information, whereas IF-Hamacher set provides (membership, non-membership)-degree
and BF-Hamacher set gives (positive, negative)-membership degree only. Therefore, the developed
models PF-Hamacher set can be regarded as a further generalization of IF-Hamacher set [35]. Thus,
our developed models are careful about the degrees of (positive, neutral, negative)-membership,
and the soundness of the information of refusal degree of membership. Thus, existing models
for IF-Hamacher set are particular cases of the proposed models of PF-Hamacher set. Hence,
the developed models and algorithms in this paper not only solve MADM technique under
PF-Hamacher environment, but also the MADM method with IF-Hamacher information, although the
method given in [35] is only suitable for MADM problems for IF-Hamacher information.
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Table 4. Ranking order of the alternatives.

Aggregation Operator Ranking Ordered

Wei [71] PFWA operator Q3 � Q2 � Q1 � Q5 � Q4
Wei [71] PFWGA operator Q3 � Q2 � Q1 � Q5 � Q4

Jana et al. [56] PFDWA operator Q3 � Q1 � Q5 � Q2 � Q4
Jana et al. [56] PFDWGA operator Q1 � Q3 � Q5 � Q2 � Q4

Proposed PFHWA operator Q3 � Q1 � Q5 � Q2 � Q4
Proposed PFHWGA operator Q3 � Q2 � Q1 � Q5 � Q4

6. Conclusions

Enterprises are an important factor of stockholders, employees, creditor, customer, government,
and other stakeholders. In the performance of enterprises, two characteristics should be considered:
Economic and society, hence we should consider all stakeholders’ benefit in performance of enterprise
evaluating time. We set up a performance evaluating system on the basis of stakeholder benefits. In this
article, we have studied a multi-attribute decision-making problem for emerging technology enterprise
performance evaluation with picture fuzzy information. We used a picture fuzzy Hamacher weighted
averaging (PFHWA) operator and a picture fuzzy Hamacher weighted geometric (PFHWGA) operator
to assess the best enterprise on the basis of performance evaluation of enterprises. In the future,
the application of our proposed model can be applied in decision-making theory, risk evaluation, and
other domains under ambiguous environments.
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Abstract: The green supplier selection (GSS) problem is one of the most pressing issues that can
directly affect manufacturer performance. GSS has been studied in previous literature, which is
considered to be a typical multiple criteria group decision making (MCGDM) problem. The ordered
weighted hesitant fuzzy MCGDM method can present the importance of each possible value, and the
priority relationship among criteria has rarely been studied. In this study, we first extend the
prioritized average (PA) operator to the ordered weighted hesitant fuzzy set (OWHFS) for solving
the both problems. The generalized ordered weighted hesitant fuzzy prioritized weighted average
operator (GOWHFPWA) is recommended, and some desirable properties are discussed. Based on this
operator, a novel MCGDM method for GSS is developed. A numerical example of GSS is then given
to prove the robustness of the proposed approach, and a sensitivity analysis is used to identify the
robustness of the proposed method. Finally, a comparative analysis based on the MCGDM approach
with the hesitant fuzzy prioritized weighted average (HFPWA) operator is illustrated to indicate the
validity and advantages of the proposed approach.

Keywords: green supplier selection; ordered weighted hesitant fuzzy set; GOWHFPWA operator;
multi-criteria group decision making

1. Introduction

Nowadays, with the increasingly global awareness of environmental responsibility, green
production has already become the development orientation of industrial production for most
manufacturing firms. Growing environmental concerns mean that it is necessary for manufacturing
companies to be more concerned about green supply chain management (GSCM) to reduce
environmental pollution from industrial sectors [1]. The green supplier selection (GSS) is a critical link
of GSCM, which can directly affect the sustainable development and performance of manufacturing
enterprises [2]. GSS can be regarded as a multiple criteria group decision making (MCGDM) problem
that involves many conflicting assessment criteria [3], such as cost, materials, recycling capacity, green
competencies, green technology, and green certification. Essentially, the act of decision making is
more complicated than in the traditional supplier selection since some environmental criteria need
to be considered, and these criteria are qualitative in nature and the weights cannot be provided
in advance [3,4]. Therefore, how to choose a suitable green supplier in GSCM has become a key
strategic consideration.

Researchers have come up with and applied a range of multi-criteria decision making (MCDM)
approaches for green supplier decision making problems [5,6]. To synthesize multiple qualitative or
quantitative environmental criteria and obtain a clear evaluation result, some MCDM approaches based
on precise information are used in green supplier decision making. Handfield et al. [7] evaluated the
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environmental standards of green suppliers by using the analytic hierarchy process(AHP). Likewise,
Lu et al. [8] used AHP to evaluate and coordinate green suppliers. Hsu and Hu [9] applied the the
analytic network process(ANP) for GSS. Kuo et al. [10] integrated artificial neural network and MCDM
approaches to GSS. Bai and Sarkis [11] came up with an analytical evaluation on the basis of rough set
theory. Yeh and Chuang [12] introduced an optimal mathematical planning approach for selecting
a green supplier. The ANP and radial basis function neural network approaches of choosing green
suppliers for China chemical industries was proposed by Zhou et al [13]. Kuo et al. [14] integrated ANP
with the data envelopment analysis (DEA) to evaluate green suppliers. A mathematical model based
on DEA for choosing green suppliers was proposed by Jauhar et al. [15]. Dobos and Vörösmarty [16]
used a DEA approach towards environmental issues. Freeman and Chen [17] designed an approach
for GSS by combining technique for order preferenceby similarity to ideal solution (TOPSIS), the AHP
model, and entropy approach. Hashemi et al. [18] combined the GSS approach with the ANP method.
Yazdani et al. [19] recommended a novel integrated MCDM basis of selecting most suitable green
suppliers. Liu et al. [20] expanded a linguistic group decision-making method in assessing big projects.

The major issue obstructing the ability to determine the right mathematical method for choosing
a green supplier is the absence of the ability to handle uncertain and inadequate information which
mostly happens in real-life conditions. In the practical problems of GSS, a great number of assessment
detailed information is unknown, and additionally, several criteria are affected by uncertainty.
Meanwhile, decision makers (DMs) usually cannot make completely reasonable judgements due
to uncertain and ambiguous information. DMs judgments are usually uncertain and difficult to
measure by exact numerical values, so a fuzzy set theory proposed by Zadeh [21] has become essential
for solving the complications characterized by vagueness and imprecision. Recently, several studies
have applied the typical MCDM methods to a range of fuzzy environments [22–25]. Chiou et al. [26]
applied a fuzzy AHP for GSS in China electronic industries. Lee et al. [27] extended a fuzzy AHP
decision model to identify GSS for high-tech industries. Tsai and Huang [28] came up with a
fuzzy goal programming technique for GSS. Tuzkaya et al. [29] developed a hybrid fuzzy MCDM
model, and Büyüközkan and Cifci [30] recommended a unique hybrid MCDM method to evaluate
green suppliers base on reference [29]. Datta et al. [31] presented a VlseKriterijuska Optimizacija I
Komoromisno Resenje (VIKOR) method together with the interval valued fuzzy set to choose the
best green supplier. Shen et al. [32] presented a fuzzy MCDM as basis for selecting green supplier
with linguistic preference. Wang and Chan [33] proposed the hierarchical fuzzy TOPSIS model to
choose the green supplier. Cao et al. [34] presented a unique intuitionistic fuzzy judgment matrix
integrated with the TOPSIS approach to define the subjective and objective weights in green supplier
assessment and selection. Kannan et al. [35] utilized a fuzzy axiomatic design method to choose the
most suitable green supplier. Hamdan and Cheaitou [36] proposed fuzzy TOPSIS and AHP methods
to define preference weights of respective supplier and criterion. Guo et al. [37] developed a fuzzy
MCDM method to solve the GSS in apparel manufacturing.

GSS is known as a MCGDM problem that involves both several interrelated evaluation criteria
and several DMs behavior characters. Moreover, the complexity of MCGDM problems is increased
when several DMs might be considered in assessment of the problems [38]. Tsui et al. [39] came up
with a hybrid MCGDM method based on entropy and AHP to assess GSS problems in manufacturing
enterprise. Based on group decision analysis, Darabi and Heydari [40] presented an interval-valued
hesitant fuzzy ranking method for selecting green suppliers. Gitinavard et al. [41] developed a unique
interval-valued hesitant fuzzy group outranking method for choosing green suppliers. Qin et al. [42]
recommended a comprehensive MCGDM approach for GSS in interval type-2 fuzzy sets. Tang [43]
employed the hesitant fuzzy Hamacher power weighted average operator to solve the GSS complexities
with hesitant fuzzy information.

As evidently shown in the above reviewed literature, various MCDM methods for GSS have
been extended to intuitionistic fuzzy sets [44], linguistic fuzzy sets [32], interval-valued fuzzy sets,
and type-2 fuzzy sets [31,42]. However, little study has been done on GSS by using a hesitant fuzzy
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set (HFS), which was first introduced by Torra [45,46]. As a generalization of fuzzy sets, HFS can
describe the situations that permit the expert’s preference judgment for a particular criterion that
have few different values, which is a very suitable method for tackling uncertain information and
for expressing DMs’ hesitancy in real group decision making [47–49]. Nowadays, to be able to solve
the MCGDM problems, varieties of extensions of the HFS have been proposed by scholars, such as
generalized HFS, dual hesitant fuzzy sets, hesitant fuzzy linguistic term sets, the higher order HFS,
and NaP-HFS [50–56].

However, the HFS method has its own shortcomings, because it only expresses the expert’s
judgment as several probable values lack considerations of their importance. In several applied
MCGDM problems, especially in GSS, experts usually come from the same field, and might often
make the same judgments on a given criterion. Thus, the possible value repeated many times is more
significant than that displayed only one time. For this reason, Zhang and Wu [57] developed the model
of weighted hesitant fuzzy set (WHFS), in which the importance of possible values provided by DMs
has been considered. Farhadinia and Xu [58] modified the definition of WHFS and proposed a new
extension of HFS as the ordered weighted hesitant fuzzy set (OWHFS), in which the importance of
DMs’ judgments is defined as the repetition rate of the possible values. Therefore, OWHFS can not
only express the experts’ judgments as several possible values but also give the importance of each
possible value.

Besides the importance of DMs’ judgments, the priority relationship among criteria of GSS
selection for OWHFS is one of the most critical research topics at present. To be able to aggregate
the evaluation values of criteria for an alternative, Yager [59] first presented a prioritized scoring
operator and prioritized average (PA) operator. Recently, several studies have concentrated on
aggregation operators for HFS and their application in MCDM. Xia and Xu [60] investigated a series of
aggregation operators for hesitant fuzzy information. Wei [61] developed hesitant fuzzy prioritized
operators. Qua et al. [62] examined induced generalized dual hesitant fuzzy Shapley hybrid operators.
Wei et al. [63] utilized Pythagorean hesitant fuzzy Hamacher aggregation operators. Farhadinia and
Xu [58] first presented several aggregation operators for OWHFS and used them for MCDM. However,
as far as we know, the priority relationship among criteria for OWHFS has rarely been investigated.

Moreover, by reviewing the existing literature, the criteria of GSS can usually be classified into
two categories: General and green criteria [64,65]. Generally, organizations consider criteria such
as cost, quality, and delivery performance when evaluating supplier performance. However, due
to enterprises facing double pressures of environmental laws and regulations and the increasing
demands of environmental protection, environmental performance is considered by many enterprises
in selecting suppliers. To solve the complexity of GSS problems in practice, the criteria of green supplier
evaluation were studied by scholars. For instance, Lee et al. [27] mentioned that quality, technology
capability, environment management, and green competencies are the most commonly referred criteria
in green supplier evaluation literature. Yeh and Chuang [12] developed assessment criteria for GSS
such as green image, product recycling, green design, green supply chain management, pollution
treatment cost, and environment performance assessment criteria. A summary of the most critical
standards for GSS are shown in Table 1.

In summary, the concept of GSS is a typical MCGDM problem, of which there are two critical
issues of concern. The first issue depicts the importance of DMs’ judgments. Another is mathematically
expressing the priority relationship among criteria. The focus of this study is to develop a novel group
decision making approach with ordered weighted hesitant fuzzy information for GSS that addresses
both of the above problems.

The remainder of this study is established as follows: Section 2 briefly introduces the basic
principles of OWHFS and the PA operator. Section 3 develops the generalized ordered weighted
hesitant fuzzy prioritized weighted average (GOWHFPWA) operator and investigates its desirable
properties. Section 4 proposes a novel MCGDM method for GSS with a GOWHFPWA operator.
Section 5 presents a numerical example of GSS to demonstrate the superiority and effectiveness of the
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proposed approach. Section 6 provides performance analysis and comparison, including sensitivity and
validity analysis of the proposed approach. Finally, conclusions and recommendations are discussed
in Section 7.

Table 1. Key criteria for green supplier selection.

Variable Criterion Definition Authors

c1 Cost Total cost of product and service Yeh and Chuang [12],
Govindan et al. [6],
Mousakhani et al. [65]

c2 Quality The quality of product and service Omurca [66], Govindan et al. [6],
Mousakhani et al. [65]

c3 Service Performance in terms of product
service and social service

Omurca [66], Kannan et al. [35],
Govindan et al. [6]

c4 Environment Environmental protection;
certification and materials
recycling capacity

Govindan et al. [6],
Mousakhani et al. [65],
Lee et al. [27]

c5 Technology Ability to facilitate the
development of green products

Lee et al. [27], Govindan et al. [6],
Mousakhani et al. [65]

c6 Management Capcity for environmental
management

Kuo et al. [12], Tseng et al. [24],
Mousakhani et al. [65]

c7 Responsibility Including safety production,
social morality and public interest

Galankashi, et al. [6],
Mousakhani et al. [65]

2. Preliminaries

In this section, some basic concepts related to ordered weighted hesitant fuzzy set (OWHFS) and
PA operator are reviewed, which will be useful for later analysis.

Definition 1. [58] Let X be the universe of discourse. An ordered weighted hesitant fuzzy set (OWHFS) on X
is defined as:

ω H = {< x, ωh(x) > |x ∈ X}

where, ωh(x) = ∪
1≤j≤Lx

{< hδ(j)(x), wδ(j)(x) >}, referred to as the ordered weighted hesitant fuzzy element

(OWHFE), is a set of some different values in [0,1]. It denotes all possible membership degrees of the element

x ∈ X to the set ω H , and wδ(j)(x) ∈ [0, 1] is the weight of hδ(j)(x) such that
Lx
∑

j=1
wδ(j)(x) = 1 for any x ∈ X.

It is worth noting that when wδ(1)(x) = wδ(2)(x) = . . . = wδ(Lx)(x) = 1/Lx for any x ∈ X,
then the OWHFS ω H will become a typical HFS. For the convenience of representation, OWHFE can
be denoted by ωh = ωh(x) = ∪

1≤j≤Lx
{< hδ(j), wδ(j) >}

Suppose that the membership degrees provided by k experts, of the element x in the set ω H,

where hδ(i)(x) is given by ki experts, i = 1, 2, . . . , L,
L
∑

i=1
ki = k. It should be noted that every expert

cannot persuade other experts to change their opinions. In such a situation, the membership degree of
the element x in the set ω H has L possible values hδ(1)(x), hδ(2)(x), . . . , and hδ(L)(x) associated with
weights wδ(1)(x) = k1

k , wδ(2)(x) = k2
k , . . . , and wδ(L)(x) = kL

k respectively.

Definition 2. [58] Let ωh = ∪
1≤j≤L

{
< hδ(j), wδ(j) >

}
, ωh1 = ∪

1≤j≤L
{< hδ(j)

1 , wδ(j)
1 >} and ωh2 =

∪
1≤j≤L

{< hδ(j)
2 , wδ(j)

2 >} be three OWHFEs. Then, some operations on the OWHFEs ωh, ωh1 and ωh2 are

defined as follows:

(1) ωhλ = ∪
1≤j≤L

{〈
(hδ(j))

λ
, wδ(j)

〉}
;
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(2) λωh = ∪
1≤j≤L

{〈
1− (1− hδ(j))

λ
, wδ(j)

〉}
;

(3) ωh1 ⊕ ωh2 = ∪
1≤j≤L

{〈
hδ(j)

1 + hδ(j)
2 − hδ(j)

1 hδ(j)
2 , (wδ(j)

1 + wδ(j)
2 )

〉}
;

where λ > 0 and (wδ(j)
1 + wδ(j)

2 ) =
wδ(j)

1 +wδ(j)
2

L
∑

j=1
(wδ(j)

1 +wδ(j)
2 )

(j = 1, 2, . . . , L).

Definition 3. [59] Let ωh = ∪
1≤j≤L

{
< hδ(j), wδ(j) >

}
, ωh1 = ∪

1≤j≤L

{
< hδ(j)

1 , wδ(j)
1 >

}
and ωh2 =

∪
1≤j≤L

{
< hδ(j)

2 , wδ(j)
2 >

}
be three OWHFEs. Δ(ωh) =

L
∑

j=1
hδ(j)wδ(j) is called the score function of ωh,

and ∇(ωh) =
L
∑

j=1
(Δ(ωh)− hδ(j))

2
wδ(j) is called the deviation function of ωh.

(1) If Δ(ωh1) > Δ(ωh2), then ωh1 >ω h2

(2) If Δ(ωh1) < Δ(ωh2), then ωh1 <ω h2

(3) If Δ(ωh1) = Δ(ωh2), then

⎧⎪⎨⎪⎩
∇(ωh1) > ∇(ωh2)⇒ ωh1 <ω h2

∇(ωh1) = ∇(ωh2)⇒ ωh1 =ω h2

∇(ωh1) < ∇(ωh2)⇒ ωh1 >ω h2

Definition 4. [59] Let C = {C1, C2, . . . , Cn} be a set of criteria, and there is a prioritization among the criteria
expressed by the linear ordering C1 � C2 � . . . � Cn, which indicates that criterion Cj has a higher priority
than Ci, if j < i. The value Cj(x) is the performance of any alternative x under criterion Cj, and satisfies
Cj(x) ∈ [0, 1]. If

PA(C(x)) =
n

∑
j=1

wjCj(x) (1)

where wj =
Ti

n
∑

i=1
Ti

, Tj =
j−1
∏
l=1

Cl(x)(j = 1, 2, . . . , n), T1 = 1. Then PA is called the prioritized average operator.

3. GOWHFPWA Operator and Its Properties

In this section, the GOWHFPWA operator is proposed to aggregate the OWHFEs, and some
properties are studied.

The PA operator has been commonly used in situations where the DMs’ judgments are the
exact values [59]. In this part, we shall extend the PA operator to ordered weighted hesitant fuzzy
environments and define the GOWHFPWA operator.

Definition 5. Let ωh1, ωh2, . . . , ωhn be a set of OWHFEs, then the GOWHFPWA operator is defined as follows:

GOWHFPWA(ωh1, ωh2, · · · , ωhn) =

⎛⎝ T1
n
∑

i=1
Ti

(ωh1)
α ⊕ T2

n
∑

i=1
Ti

(ωh2)
α ⊕ · · · ⊕ Tn

n
∑

i=1
Ti

(ωhn)
α

⎞⎠1/α

=

⎛⎝⊕ Ti(
ωhi)

α

n
∑

i=1
Ti

⎞⎠1/α

(2)

where, α > 0 is a parameter of GOWHFPWA operator, Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1 and Δ(ωhk)

is the score function of ωhk.
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Theorem 1. Let ωh1, ωh2, · · · , ωhn be a set of OWHFEs, then their aggregated value by using the
GOWHFPWA operator is also an OWHFE, and

GOWHFPWA(ωh1, ωh2, · · · , ωhn) = ∪
1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

n

∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, (
n

∑
i=1

wδ(j)
i )

〉⎫⎪⎪⎬⎪⎪⎭ (3)

where, Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1, Δ(ωhk) is the score function of ωhk, and L is the number of

basic units in ωhi(i = 1, 2, · · · , n).

Proof. For n = 1, the result can be obtained easily by Definition 5. In the following, we prove
the equation

GOWHFPWA(ωh1, ωh2, · · · , ωhn) = ∪
1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

n

∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, (
n

∑
i=1

wδ(j)
i )

〉⎫⎪⎪⎬⎪⎪⎭
by using mathematical induction for n(n ≥ 2).

For n = 2, since

T1
2
∑

i=1
Ti

ωhα
1 = ∪

1≤j≤L

⎧⎪⎨⎪⎩
〈

1− (1− (hδ(j)
1 )

α
)

T1
2
∑

i=1
Ti , wδ(j)

1

〉⎫⎪⎬⎪⎭
T2

2
∑

i=1
Ti

ωhα
2 = ∪

1≤j≤L

⎧⎪⎨⎪⎩
〈

1− (1− (hδ(j)
2 )

α
)

T1
2
∑

i=1
Ti , wδ(j)

2

〉⎫⎪⎬⎪⎭
then

T1
2
∑

i=1
Ti

ωhα
1 ⊕

T2
2
∑

i=1
Ti

ωhα
2 =

= ∪
1≤j≤L

⎧⎪⎨⎪⎩
〈

1− (1− (hδ(j)
1 )

α
)

T1
2
∑

i=1
Ti
+ 1− (1− (hδ(j)

2 )
α
)

T1
2
∑

i=1
Ti − (1− (1− (hδ(j)

1 )
α
)

T1
2
∑

i=1
Ti
)× (1− (1− (hδ(j)

2 )
α
)

T1
2
∑

i=1
Ti
), (wδ(j)

1 + wδ(j)
2 )

〉⎫⎪⎬⎪⎭
= ∪

1≤j≤L

⎧⎪⎨⎪⎩
〈

1−
2

∏
i=1

(1− (hδ(j)
i )

α
)

Ti
2
∑

i=1
Ti , (wδ(j)

1 + wδ(j)
2 )

〉⎫⎪⎬⎪⎭
That is, Equation (7) holds when n = 2.
Suppose that Equation (3) also holds when for n = l,

GOWHFPWA(ωh1, ωh2, · · · , ωhl) = ∪
1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

l

∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, (
l

∑
i=1

wδ(j)
i )

〉⎫⎪⎪⎬⎪⎪⎭
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when n = l + 1, the operational laws described in Definition 2 state that

GOWHFPWA(ωh1, ωh2, · · · , ωhl , ωhl+1) = ( 1
α

l
⊕

i=1
(

Ti
ωhα

i
l+1
∑

i=1
Ti

))⊕ 1
α (

Tl+1
l+1
∑

i=1
Ti

ωhα
l+1)

= ∪
1≤j≤L

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈⎛⎜⎜⎝1−

l
∏
i=1

(1− (hδ(j)
i )

α
)

Ti
l+1
∑

i=1
Ti

⎞⎟⎟⎠
1/α

, (
l

∑
i=1

wδ(j)
i )

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭+ ∪
1≤j≤L

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈⎛⎜⎜⎝1− (1− (hδ(j)

l+1)
α
)

Tl+1
l+1
∑

i=1
Ti

⎞⎟⎟⎠
1/α

, wδ(j)
l+1

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∪

1≤j≤L

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈⎛⎜⎜⎝1−

l+1
∏
i=1

(1− (hδ(j)
i )

α
)

Ti
l+1
∑

i=1
Ti

⎞⎟⎟⎠
1/α

, (
l+1
∑

i=1
wδ(j)

i )

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭
That is, Equation (3) holds for n = l + 1.
Thus, Equation (3) holds for all n.
Then,

GOWHFPWA(ωh1, ωh2, · · · , ωhn) = ∪
1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

n

∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, (
n

∑
i=1

wδ(j)
i )

〉⎫⎪⎪⎬⎪⎪⎭
Now, consider some desirable properties of the GOWHFPWA operator.

Theorem 2. (Idempotency). Let ωh1, ωh2, · · · , ωhn be a set of OWHFs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i =

1, 2, · · · , n), T1 = 1 and Δ(ωhl) is the score function of ωhl. If ωh1 = ωh2 = · · · = ωhn = ωh, then

GOWHFPWA(ωh1, ωh2, · · · , ωhn) = ∪
1≤j≤L

⎧⎪⎨⎪⎩
〈

1−
n

∏
i=1

(1− hδ(j)
i )

Ti
n
∑

i=1
Ti , (

n

∑
i=1

wδ(j)
i )

〉⎫⎪⎬⎪⎭ = ωh (4)

Proof. If ωh1 = ωh2 = · · · = ωhn = ωh = ∪
1≤j≤N

{
< hδ(j), wδ(j) >

}
, then

n
∑

i=1
wδ(j)

i = wδ(j).

GOWHFPWA(ωh1, ωh2, · · · , ωhn) = ∪
1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

n
∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, (
n
∑

i=1
wδ(j)

i )

〉⎫⎪⎪⎬⎪⎪⎭
= ∪

1≤j≤L

⎧⎪⎪⎨⎪⎪⎩
〈⎛⎜⎝1−

n
∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

, wδ(j)

〉⎫⎪⎪⎬⎪⎪⎭ = ∪
1≤j≤L

{〈
1− (1− hδ(j)), wδ(j)

〉}
=

∪
1≤j≤N

{〈
hδ(j), wδ(j)

〉}
. �

Theorem 3. (Boundedness). Let ωh1, ωh2, · · · , ωhn be a collection of OWHFEs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1, Δ(ωhl) is the score function of ωhl. Let ωh− = {< h−, 1 >}
ωh+ = {< h+, 1 >}, h− = min( min

hδ(j)
1 ∈ωh1

(hδ(j)
1 ), min

hδ(j)
2 ∈ωh2

(hδ(j)
2 ), · · · , min

hδ(j)
n ∈ωhn

(hδ(j)
n )) and h+ =

max( max
hδ(j)

1 ∈ωh1

(hδ(j)
1 ), max

hδ(j)
2 ∈ωh2

(hδ(j)
2 ), · · · , max

hδ(j)
n ∈ωhn

(hδ(j)
n )). Then

ωh− ≤ GOWHFPWA(ωh1, ωh2, · · · , ωhn) ≤ ωh+ (5)
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Proof. Since f (x) = (1− x)a(a ∈ (0, 1)) is a decreasing function about x ∈ [0, 1], then,

h− =

⎛⎜⎝1−
n
∏
i=1

(1− (h−)α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

≤

⎛⎜⎝1−
n
∏
i=1

(1− min
hδ(j)

i ∈ωhi

(hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

≤

⎛⎜⎝1−
n
∏
i=1

(1− (hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

≤

⎛⎜⎝1−
n
∏
i=1

(1− max
hδ(j)

i ∈ωhi

(hδ(j)
i )

α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

≤

⎛⎜⎝1−
n
∏
i=1

(1− (h+)α
)

Ti
n
∑

i=1
Ti

⎞⎟⎠
1/α

= h+, thus Δ(ωh−) ≤ Δ(ωhi) ≤ Δ(ωh+) and ωh− ≤

GOWHFPWA(ωh1, ωh2, · · · , ωhn) ≤ ωh+. �

Theorem 4. (Monotonicity). Let ωh1, ωh2, · · · , ωhn and ωh′1, ωh′2, · · · , ωh′n be two sets of OWHFEs, where

Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T′i =
i−1
∏
l=1

Δ(ωh′l)(i = 1, 2, · · · , n), T1 = T′1 = 1, Δ(ωhl) is the score

function of ωhl and Δ(ωh′l) is the score function of ωh′l , if hδ(j)
i ≤ h′i

δ(j)(i = 1, 2, · · · , n, j = 1, 2, · · · , L) and

wδ(j)
i = w′i

δ(j)(i = 1, 2, · · · , n, j = 1, 2, · · · , L), then

GOWHFPWA(ωh1, ωh2, · · · , ωhn) ≤ GOWHFPWA(ωh′1, ωh′2, · · · , ωh′n) (6)

Proof. According to the proof of Theorem 3, it is easy to prove that the GOWHFPWA operator satisfies
the above monotonicity, thus the proof process is omitted. �

Theorem 5. Let ωh1, ωh2, · · · , ωhn be a set of OWHFEs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1

and Δ(ωhl) is the score function of ωhl. If ωg is an OWHFE. Then

GOWHFPWA(ωh1 ⊕ ωg, ωh2 ⊕ ωg, · · · , ωhn ⊕ ωg)= GOWHFPWA(ωh1, ωh2, · · · , ωhn)⊕ ωg (7)

Theorem 6. Let ωh1, ωh2, · · · , ωhn be a set of OWHFEs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1

and Δ(ωhl) is the score function of ωhl. Then

GOWHFPWA(rωh1, rωh2, · · · , rωhn)= rGOWHFPWA(ωh1, ωh2, · · · , ωhn) (8)

where r is an arbitrary number greater than 0.

Theorem 7. Let ωh1, ωh2, · · · , ωhn be a set of OWHFEs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T = 1 and

Δ(ωhl) and is the score function of ωhl. If ωg is an OWHFE. Then

GOWHFPWA(rωh1, rωh2, · · · , rωhn)⊕ ωg = rGOWHFPWA(ωh1, ωh2, · · · , ωhn)⊕ ωg (9)

where r is an arbitrary number greater than 0.

Theorem 8. Let ωh1, ωh2, · · · , ωhn and ωg1, ωg2, · · · , ωgn be two set of OWHFEs, where Ti =
i−1
∏
l=1

Δ(ωhl)(i = 1, 2, · · · , n), T1 = 1 and Δ(ωhl) is the score function of ωhl. Then

GOWHFPWA(ωh1, ωh2, · · · , ωhn)⊕ GOWHFPWA(ωg1, ωg2, · · · , ωgn) = GOWHFPWA(ωh1 ⊕ ωg1, ωh2 ⊕ ωg2, · · · , ωhn ⊕ ωgn) (10)
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Proof. According to Definition 2, it is easy to prove that the GOWHFPWA operator satisfies Theorem
5, 6, 7, and 8, so the proof process is omitted. �

4. The MCGDM Approach with Order Weighted Hesitant Fuzzy Information

In this section, we present a novel MCGDM method based on ordered weighted hesitant fuzzy
information, which utilizes the above GOWHFPWA operator to rank the alternatives of GSS. Consider
a MCGDM for GSS problem, let X = {x1, x2, . . . xm} be a set of suppliers, C = {c1, c2, . . . cn} be a set
of criteria, and E = {e1, e2, . . . ek} be a set of DMs. In practice, there is a priority relationship among
the GSS evaluation criteria. For example, if DMs believe that environmental protection is the most
important criterion, they should take precedence over price, quality, and other criteria. Secondly,
if price is more important than quality and other criteria, the priority of price is higher than quality,
and so on. Such a prioritization among the criteria can be expressed by the ordering c1 � c2 � . . . � cn,
in which criterion cj has a higher priority than ci if j < i.

For an alternative under a criterion, all the DMs provide their evaluated values anonymously.
The evaluation values of alternative xp under criteria cq are provided by DM eu(u = 1, 2, . . . , k),
which can be represented by an OWHFE ωhpq. The ordered weighted hesitant fuzzy group decision
matrix M = (ωhpq)m×n is constructed from all of these OWHFEs.

In view of the above analysis, the procedure of the proposed approach is described under the
following steps:

Step 1. Calculate the values of Tpq(p = 1, 2, . . . m; q = 1, 2, . . . , n) based on Equation (11).

Tpq =
n−1

∏
q=1

Δ(ωhpq)(p = 1, 2, . . . , m, q = 1, 2, . . . , n) (11)

where Tp1 = 1.
Step 2. Aggregate the OWHFEs ωhpq for each supplier xp(p = 1, 2, . . . , m) by the GOWHFPWA

operator, then we can get the overall OWHFE ωhp(p = 1, 2, . . . , m) for the supplier xp(p = 1, 2, . . . , m)

as follows:

ωhp = GOWHFPWA(ωhp1, ωhp2, . . . , ωhpn) = ∪
1≤j≤Lp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈⎛⎜⎜⎝1−

n
∏

q=1
(1− (hδ(j)

pq )
α
)

Tpq
n
∑

q=1
Tpq

⎞⎟⎟⎠
1/α

, (
n
∑

q=1
wδ(j)

pq )

〉⎫⎪⎪⎪⎬⎪⎪⎪⎭ = ∪
1≤j≤Lp

{
< hδ(j)

p , wδ(j)
p >

}
. (12)

Step 3. Calculate the score functions Δ(ωhp)(p = 1, 2, . . . , m) of the OWHFE ωhp(p = 1, 2, . . . , m)

for the supplier xp(p = 1, 2, . . . , m), that is,

Δ(ωhp) =
Lp

∑
j=1

hδ(j)
p wδ(j)

p (13)

Step 4. Rank the score functions Δ(ωhp) in ascending order. Then, the supplier with the highest
priority is the most desirable green supplier.

5. Numerical Example

In light of the above discussion, we will further illustrate the procedure of the proposed method
by an example of GSS. The GSCM of manufacturing enterprises is affected by its green suppliers’
performance, and GSCM is considered as a strategic decision for manufacturing enterprises to maintain
a competitive advantage in the international market. Inspired by the advantages of GSCM, there is a
bus manufacturing enterprise who wants to choose the most appropriate green supplier for purchasing
the key components of its new bus equipment. After initial screening, five potential suppliers xi (i = 1,
2, 3, 4, 5) have been determined for further assessment. In order to choose the most suitable supplier,

47



Symmetry 2019, 11, 17

the company established a team of six DMs eu(u = 1, 2, . . . , 6) from the department of purchasing,
quality, and production who have abundant knowledge and experience in GSCM. Finally, four criteria
are chosen from the Table 1 criteria list by experts to evaluate possible green suppliers. The four
selected criteria are quality (c1), technology(c2), environment(c3), cost(c4), and the priority relationship
among the criteria is c1 � c2 � c3 � c4 in the evaluation process. For a supplier under a criterion,
six DMs need to give their evaluation values. As an instance, for the supplier x1 under the criterion c1,
the evaluation values 0.3, 0.5, and 0.8 are provided by two, one and three DMs, respectively, and then
an OWHFE ωh11 can be represented by {<0.3,2/6>,<0.5,1/6>,<0.8,3/6>}.

In the same manner, all of OWHFEs ωhpq(p = 1, 2, . . . , 5, q = 1, 2, 3, 4) can be obtained, as shown
in Table 2.

Table 2. Ordered weighted hesitant fuzzy decision matrix.

c1 c2 c3 c4

x1
{<0.3,2/6>,<0.5,
1/6>,<0.8,3/6>}

{<0.3,2/6>,<0.6,
1/6>,<0.7,3/6>}

{<0.3,2/6>,<0.6,
1/6>,<0.7,3/6>}

{<0.4,2/6>,<0.5,
1/6>,<0.6,3/6>}

x2
{<0.1,2/6>,<0.4,
1/6>,<0.5,3/6>}

{<0.2,2/6>,<0.3,
1/6>,<0.5,3/6>}

{<0.1,2/6>,<0.4,
1/6>,<0.5,3/6>}

{<0.2,2/6>,<0.3,
1/6>,<0.4,3/6>}

x3
{<0.1,2/6>,<0.2,
1/6>,<0.3,3/6>}

{<0.1,2/6>,<0.2,
1/6>,<0.4,3/6>}

{<0.1,2/6>,<0.2,
1/6>,<0.3,3/6>}

{<0.1,2/6>,<0.2,
1/6>,<0.4,3/6>}

x4
{<0.3,2/6>,<0.4,
1/6>,<0.7,3/6>}

{<0.2,2/6>,<0.3,
1/6>,<0.6,3/6>}

{<0.1,2/6>,<0.5,
1/6>,<0.7,3/6>}

{<0.3,2/6>,<0.4,
1/6>,<0.5,3/6>}

x5
{<0.7,2/6>,<0.8,
1/6>,<0.9,3/6>}

{<0.5,2/6>,<0.7,
1/6>,<0.8,3/6>}

{<0.4,2/6>,<0.6,
1/6>,<0.7,3/6>}

{<0.5,2/6>,<0.6,
1/6>,<0.7,3/6>}

Step 1. According to Equation (11), Tpq(p = 1, 2, . . . , 5, q = 1, 2, 3, 4) are calculated as follows:

T5×4 =

⎛⎜⎜⎜⎜⎜⎝
1.0000 0.5833 0.3208 0.1764
1.0000 0.3500 0.1283 0.0449
1.0000 0.2167 0.0578 0.0125
1.0000 0.5167 0.2153 0.1005
1.0000 0.8167 0.5581 0.3255

⎞⎟⎟⎟⎟⎟⎠
Step 2. Aggregate ωhpq(p = 1, 2, . . . , 5, q = 1, 2, 3, 4) by using a GOWHFPWA (α = 1) operator to

derive the overall OWHFEs ωhp(p = 1, 2, . . . , 5) for the supplier xp(p = 1, 2, . . . , 5).

ωh1 = {< 0.3091, 2/6 >,< 0.5462, 1/6 >,< 0.7470, 3/6 >}
ωh2 = {< 0.1305, 2/6 >,< 0.3755, 1/6 >,< 0.4973, 3/6 >}
ωh3 = {< 0.1000, 2/6 >,< 0.2000, 1/6 >,< 0.3190, 3/6 >}
ωh4 = {< 0.2514, 2/6 >,< 0.3866, 1/6 >,< 0.6654, 3/6 >}
ωh5 = {< 0.5703, 2/6 >,< 0.7163, 1/6 >,< 0.8233, 3/6 >}

Step 3. Calculate the score functions Δ(ωhp)(p = 1, 2, . . . , 5) of the OWHFEs ωhp(p = 1, 2, . . . , 5)
for the supplier xp(p = 1, 2, . . . , 5), that is,

Δ(ωh2) = 0.5676, Δ(ωh2) = 0.3547, Δ(ωh3) = 0.2262, Δ(ωh4) = 0.4809, Δ(ωh5) = 0.7211

Step 4. Rank all the suppliers xp(p = 1, 2, . . . , 5) in accordance with the score functions
Δ(ωhp)(p = 1, 2, . . . , 5) and the priority relationship of five suppliers can be obtained, that is,

x5 � x1 � x4 � x2 � x3

Thus, the most desirable green supplier is x5.
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6. Performance Analysis and Comparation Analysis

In this section, performance analysis is provided based on the numerical example above to prove
the validation and verification of the proposed method, including sensitivity analysis and effectiveness
analysis. Additionally, the proposed GOWHFPWA operator is further compared with the hesitant
fuzzy prioritized weighted average (HFPWA) operator suggested by Wei [61].

The sensitivity analysis is used to identify and determine the robustness of the proposed method.
In Equation (2), the parameter α may affect the final ranking result, so the sensitivity analysis can be
carried out by taking different α. The score functions Δ(ωhp) with different α can be calculated, and all
of the results are presented in Table 3 and Figure 1.

Table 3. The results of the generalized ordered weighted hesitant fuzzy prioritized weighted average
operator (GOWHFPWA) operator with different α.

α x1 x2 x3 x4 x5 Rankings

0.1 0.5666 0.3527 0.2255 0.4777 0.7176 x5 � x1 � x4 � x2 � x3
0.2 0.5667 0.3529 0.2256 0.4780 0.7180 x5 � x1 � x4 � x2 � x3
0.5 0.5670 0.3535 0.2258 0.4791 0.7192 x5 � x1 � x4 � x2 � x3
1 0.5676 0.3547 0.2262 0.4809 0.7211 x5 � x1 � x4 � x2 � x3
2 0.5689 0.3581 0.2270 0.4847 0.7254 x5 � x1 � x4 � x2 � x3
5 0.5737 0.3703 0.2309 0.4941 0.7389 x5 � x1 � x4 � x2 � x3

10 0.5836 0.3854 0.2389 0.5045 0.7581 x5 � x1 � x4 � x2 � x3

Figure 1. The curve of the score function with different α.

It can be seen from Table 3 that as parameter α takes different values, the priority relationships of
five suppliers are unchanged and the most desirable supplier is still x5. Therefore, the parameter α is
insensitive to the proposed method and the obtained result ranking is robustness.

Meanwhile, it can be observed from Figure 1 that the values of the score function for each
alternative will increase as α increases. From this point of view, the parameter α can be regarded as a
DM’s risk attitude. As the DMs can select different α in accordance with their own risk preferences,
the proposed GOWHFPWA operator can offer more choice opportunities for the DMs in the actual
GSS problems.

Additionally, since we proposed the GOWHFPWA operator based on the HFPWA operator [61],
a comparative analysis was conducted in order to illustrate the effectiveness of the proposed
GOWHFPWA operator. For convenience of comparison, we apply the HFPWA operator to the above
numerical example in this paper. The hesitant fuzzy decision matrix is shown in Table 4.

49



Symmetry 2019, 11, 17

Table 4. Hesitant fuzzy decision matrix.

c1 c2 c3 c4

x1 {0.3,0.5,0.8} {0.3,0.6,0.7} {0.3,0.6,0.7} {0.4,0.5,0.6}
x2 {0.1,0.4,0.5} {0.2,0.3,0.5} {0.1,0.4,0.5} {0.2,0.3,0.4}
x3 {0.1,0.2,0.3} {0.1,0.2,0.4} {0.1,0.2,0.3} {0.1,0.2,0.4}
x4 {0.3,0.4,0.7} {0.2,0.3,0.6} {0.1,0.5,0.7} {0.3,0.4,0.5}
x5 {0.7,0.8,0.9} {0.5,0.7,0.8} {0,4,0.6,0.7} {0.5,0.6,0.7}

Then tpq(p = 1, 2, . . . , 5, q = 1, 2, 3, 4) are calculated as follows:

t5×4 =

⎛⎜⎜⎜⎜⎜⎝
1.0000 0.5333 0.2844 0.1517
1.0000 0.3333 0.1111 0.0370
1.0000 0.2000 0.0467 0.0093
1.0000 0.4667 0.1711 0.0741
1.0000 0.8000 0.5333 0.3022

⎞⎟⎟⎟⎟⎟⎠
We aggregate all hesitant fuzzy elements hpq(p = 1, 2, . . . , 5, q = 1, 2, 3, 4) by using the

HFPWA operator to derive the overall hesitant fuzzy elements hp(p = 1, 2, . . . , 5) of the suppliers
xp(p = 1, 2, . . . , 5). Taking supplier x1 as an example, we have h1 = HFPWA(h11, h12, h13, h14) =
{0.3083,0.3179,0.3295,0.3620,0.3709,0.3816,0.3879,0.3965,0.4067,0.4055,0.4138,0.4238,0.4517,0.4593,0.4685,
0.4740,0.4813,0.4902,0.4501,0.4578,0.4670,0.4928,0.4998,0.5084,0.5134,0.5202,0.5284,0.4169,0.4250,0.4348,
0.4622,0.4697,0.4787,0.4841,0.4912,0.4999,0.4989,0.5059,0.5143,0.5378,0.5442,0.5520,0.5566,0.5628,0.5702,
0.5365,0.5429,0.5507,0.5724,0.5784,0.5856,0.5898,0.5956,0.6024,0.6338,0.6389,0.6451,0.6623,0.6670,0.6727,
0.6760,0.6805,0.6860,0.6853,0.6897,0.6950,0.7098,0.7138,0.7187,0.7216,0.7255,0.7301,0.7089,0.7130,0.7179,
0.7315,0.7353,0.7398,0.7424,0.7460,0.7504}.

The scores s(hp)(p = 1, 2, . . . , 5) of the suppliers xp(p = 1, 2, . . . , 5) are obtained as the following:
s(h1) = 0.5539, s(h2) = 0.3408, s(h3) = 0.2080, s(h4) = 0.4524, s(h5) = 0.7174. Finally, ranking all
the suppliers xp(p = 1, 2, . . . , 5) according to the scores s(hp)(p = 1, 2, . . . , 5), we can get the priority
relationship of six suppliers, that is,

x5 � x1 � x4 � x2 � x3

Thus, the most desirable supplier by using the HFPWA operator proposed by Wei [61] is also x5.
The comparative results can be shown in Table 5.

Table 5. The result of different approaches.

Methods x1 x2 x3 x4 x5 Ranking Order

GOWHFPWA 0.5676 0.3547 0.2262 0.4809 0.7211 x5 � x1 � x4 � x2 � x3
HFPWA 0.5689 0.3581 0.2270 0.4847 0.7254 x5 � x1 � x4 � x2 � x3

From Table 5, despite the evaluation result obtained by using the HFPWA operator being the same
as that of the GOWHFPWA operator, the proposed method has some advantages over the previous
method. Firstly, the proposed method in this paper extends a prioritized weighted average operator
from HFS to OWHFS which can solve the problem of the importance of the experts’ evaluation results
that the previous method cannot solve. Secondly, the computational complexity of the proposed
approach is much lower than that of the previous method. Therefore, the introduced model for GSS in
practice is more objective and reasonable than that obtained by using the HFPWA operator proposed
by Wei [61].
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7. Conclusions and Further Directions

In this paper, in order to overcome the limitation of MCGDM problems with GSS in practice,
we have focused on a novel MCGDM approach with a priority relationship under the ordered weighted
hesitant fuzzy environment to evaluate green suppliers, which can present the importance of each
DM’s judgment. Firstly, based on the ideal of the PA operator and HFPWA operator, the OWHFPWA
operator was introduced and the prominent characteristics of the propose operator were studied.
Secondly, we have utilized the OWHFPWA operator to develop MCGDM approaches to solve the
GSS problem. Finally, a practical example of GSS in bus manufacturing enterprise was given to verify
the practicality of the proposed method, meanwhile, its feasibility and effectiveness in dealing with
MCGDM problems was carried out by the performance analysis and comparative analysis.

In future research, we will develop another hesitant fuzzy prioritized aggregation operator to
solve the ordered weighted hesitant fuzzy MCGDM for GSS problems, namely, the generalized ordered
weighted hesitant fuzzy prioritized weighted geometric (GOWHFPWG) operator. Moreover, we will
combine the expanded hesitant fuzzy set (EHFS) [67] with the PA operator to deal with the MCDGM
for GSS problems for future research, which take into account that a single DM gives several hesitant
fuzzy elements in MCDGM problems.
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Abstract: A risk is a predominant problem in the developing countries construction projects.
Although numerous studies have been concerned on risk, there is a limited study on a mechanism to
identify the typical risks and effects level. This paper presents an approach for evaluating the risks in
case of schedule delays at the various lifecycles of construction projects. The methodology applied is
an integrated model of the technique for order preference by similarity to ideal solution (TOPSIS) and
fuzzy comprehensive evaluation (FCE). In this study, common criteria, sub-criteria, and attributes
are constructed to make a decision concerning the influence level of risk of delay at the construction
project lifecycle. The results showed that the construction stage (44%) is highly influenced, the second
highly influenced stage is post construction (37%), and the least risked stage is pre-construction (35%).
The construction projects in Ethiopia have faced an average delay risk of 38% at a high and very
high-risk level. This work is expected to serve as a tool to assist managers in the management and
control of schedule delays to mitigate their risks.

Keywords: FCE; Construction project; Evaluation of schedule delay risk; TOPSIS

1. Introduction

Construction projects have a complex nature owing to the site work difficulty, labour change
for every site, adverse weather effect, and the higher exposure to error [1]. Consequently, numerous
types of risks are occurred in different phases of projects and have an impact on time overrun, cost
overrun, quality, and safety [2]. Schedule delay risk has many effects such as increased cost, late
completion, disruption, third-party claims, loss of productivity and quality, disputes, and termination
of contracts [3]. Therefore, controlling risks in a construction project has been a fundamental part of
management in construction projects for decades [4].

A schedule is the main concern for construction projects, because of it influenced by several
risks, such as environmental condition, equipment efficiency, productivity, material delivery, and
soil types [5]. These factors are caused to delay and cost overruns that often jeopardize safety and
quality performance [6]. For example, 13% of the Australian construction projects have faced 40%
time overrun [7]. In the United Arab Emirates (UAE), the construction projects encountered 50%
schedule delay [8]. In Malaysia, the government projects faced approximately 20% of delay [9].
Construction projects in Saudi Arabia experienced 70% time overrun, among 56% of consultants
and 76% of contractors experienced 10–30% of delay, which causes to approximately 50% of cost
overruns [10]. In Ethiopia, 40–60% of the construction projects occurred delay [11]. The studies
indicate that the risk of schedule delay in developed and developing countries is critical and requires
further investigation.
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Risk of Schedule delay has a major negative effect on participating parties and projects [12].
Schedule delay often occurs because of many reasons attributable to owners or contractors.
The significant contribution of owners often related to issues such as the settlement of claims, slow
decision-making, early planning and design, change in the scope, schedule delay in payment, and
excessive bureaucracy. Conversely, the contribution of contractors includes cash flow problems,
difficulty in obtaining permits, and ineffective planning and scheduling [13]. The main groups of
schedule delay factors were classified as owner, contractor, design, consultant, labour, equipment,
material, external, and project-related [14]. The other important schedule delay factors mentioned are
a slow decision by authorities, lack of funding, errors in work, improper planning, and lack of need
identification [15].

Different scholars have conducted different studies on risk. However, the problem of risk is
still prevalent. Moreover, the problem requires a pioneering decision-making mechanism to evaluate
risk [16]. The evaluation of risk helps to quantify the risks level to mitigate their effects. Therefore,
managers need to emphasize on a decision-making mechanism for schedule risk evaluation [6].
The evaluation mechanism should consider the risk throughout the construction lifecycle. Evaluation
of risks on construction projects improves quality, safety, reduces cost, and increases the satisfaction
of stakeholders.

The objective of this study is to evaluate the delay risk level at the construction lifecycle and
comparing the lifecycle to each other. The study evaluates the risk impact level for criteria and
sub-criteria based on the different attributes. Finally, the study proposes a method for delay risk
evaluation using an integrated decision model of the Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) and fuzzy comprehensive evaluation (FCE).

2. Literature Review

Improper risk management is found to be the main cause for the time overrun, cost overrun,
and the problem of quality and safety [4]. Risk management is a crucial and important part of
the decision-making process for construction projects to reduce risk [17]. Risk management has
been investigated from a different viewpoint among certain countries because of the fact that the
risk effect varies in different instances [18]. Various researchers have studied the causes and effects
of risk for decades to identify the risk factors. Most of the previous studies focused more on the
identification of general risk factors and effects than identifying the typical level of impact at the
different construction lifecycles.

The studies in different countries identified different risk problems using different methods.
However, the method has a certain limitation. One of the most vital methods is the application of
the integrated methods of a relative importance index and fuzzy analytical hierarchy process, have
been used to reduce risk [19]. This assessment method has limitations in imprecision and involves
subjective judgment [14]. The integration of interpretive structural modelling with fuzzy logic has an
important role in risk assessment. The model used a computer program to form a relationship between
factors in a system [18]. However, this method overlooked the weight of the relationship between
factors that makes difficult to use in a complex system [20]. Bayesian belief network developed to
quantify the probability of delay risk in construction project considering the cause-effect relations
among factors [21,22]. In addition, System Dynamic (SD) plays a respective advantage for schedule
delay risk effects investigation based on the causal loop diagrams considering the simulation-based
scheduling [23]. Although the System Dynamics and Bayesian Belief Network are important for risk
assessment, the methods had restrictions on the structural relationship. Different studies may have
different structures of relations and assumptions between factors, this makes confined the models
because it may vary from one expert to another [22,24]. The structural equation modelling considers
the complex nature of factors and used a causal relationships modelling technique for analyzing the
relationship between the factors [25]. However, the method has a certain curb that the risk paths
in the design and the dynamic behaviour of the risk factors were not considered [18]. The different
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methods may have different contribution with certain limitations, especially for risk assessment [26].
In addition, the different studies in the different methods have still lacked a systematic approach to
consider the complex and dynamic nature of construction projects risk for better understanding and
effective risk management [27]. The aforementioned methods contributed for better assessment of
schedule delay risk but the studies still have some confined. First, the evaluation of risk impact level
throughout the construction lifecycle has limitations. Second, the assessment methods have been
identifying the relations and ranking of factors, but most of the studies were confined to evaluate the
level of impact of factors on different construction activities.

To fill this gap, this study aims to propose a hybrid model for delay risk assessment in construction
projects with the aid of FCE and TOPSIS. The hybrid model helps managers to have appropriate
decision-making mechanism to minimize schedule risk impact. The integrated model of FCE and
TOPSIS is an important mechanism to detect typical delay risk impact in construction projects, which
is beyond the identification of factors and relationships between factors.

3. Research Methodology

FCE and TOPSIS are essential for selecting and ranking a set of factors with usually
incommensurate and independent attributes [28]. FCE and TOPSIS are supporting tools for
decision-making in a finite number of alternatives [29]. The integrated model plays the respective
advantage of flexibility in order to achieve a better result and make the right decision by identifying the
typical level delay risk on construction activities. The layout of the evaluation mechanism of schedule
delay risk using integrated models of FCE and TOPSIS is described in Figure 1.

Figure 1. The layout of delay risk evaluation using integrated models of fuzzy comprehensive
evaluation (FCE) and the technique for order preference by similarity to ideal solution (TOPSIS).
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3.1. Set Significant Delay Risk Factors

Set significant delay risk factors: it involves the identification and classification of delay risk factors
and their consequences [19]. The procedure of selecting factors expressed as, based on the extensive
literature review, a questionnaire for pilot study was developed, then the pilot study was assessed
in fifteen different projects and participant were interviewed and responded to the questionnaire.
Next based on the literature review and pilot study final questionnaire was developed. Finally, the
developed questionnaire was validated to confirm clarity, completeness, and applicability in the
case study.

In this study, the construction project lifecycle considers the three basic stages of pre-construction
stage, construction stage, and post-construction stage according to the pilot to fit for the empirical
assessment. The risk factors listed in Table 1 were selected based on the impact that directly or
indirectly associated with the three-construction lifecycle. However, the influence level of risk is
completely different among the lifecycles, which is essential for decision-making in risk. The final
questionnaire was consisted of four criteria, eight sub-criteria, and fifty-two attributes, as summarized
in Table 1. Then based on this questionnaire data were collected.

Table 1. Schedule delay risk factors evaluation indexing system and reference.

Criteria Related Sub-Criteria Related Attribute Related Reference

(A) Responsibility

A1 Client

A11 Lack of on-time payments
and finance [4,19,30,31]

A12 Client interference [4,31,32]
A13 Leisureliness in
decision-making [15,19]

A14 Late at delivery of site for
design and construction [4,17,30]

A15 Inadequate feasibility study [4,19,31]
A16 Poor coordination and
communication with other [4,19,31]

A2 Contractor

A21 Problems related to
subcontractor [4,19,31]

A22 Poor site performance and
management [15,33]

A23 Ineffective scheduling and
planning [4,19,30,32]

A24 Improper construction
methods [19,22,33]

A25 Poor coordination and
communication with other [4,30,31]

A26 Inadequate experience of the
contractor [19,22,25]

A27 Rework for unsatisfactory
work [17,19,22]

A3 Consultant

A31 Inadequate consultant
experience [15,19]

A32 Late in receiving and
approving of work [4,19,22,30]

A33 Late in performing inspection
and testing and poor supervision [34]

A34 Poor coordination and
communication with other [19]
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Table 1. Cont.

Criteria Related Sub-Criteria Related Attribute Related Reference

A4 Designer

A41 In adequate details and
unclear specification [19,25,30,33]

A42 Late design documents and
design [19]

A43 Design errors and mistakes [4,19,30,31]
A44 Misunderstanding
requirements of client’s [15]

(B) Resource

B1 Material

B11 Absence of quality materials [4,30,31]
B12 Leisurely delivery of material [17,19,25,30]
B13 Changes in specifications and
material types [25,31]

B14 Damage of materials [17,25,32]
B15 Inflation of price for materials [4,31–33]

B2 Finance

B21 Problem for a financial claim [25]
B22 Problem of funding processes
from government [2,15]

B23 Late release budget [2,35]
B24 Global financial crisis [17,19,25,33]

B3 Labor

B31 Less productivity [4,17,25]
B32 Low morale and motivation [18]
B33 Unqualified workers [17,19,23,30]
B34 Discipline problem (conflicts) [15]
B35 Labour injuries and accidents [17,32]

B4 Equipment

B41 Insufficient or equipment
shortage [4,22,33]

B42 Low efficiency and
productivity of equipment [34]

B42 Lack of spare parts and
failures of equipment [4,17,30,31]

B43 Problem of mobilization and
allocation [16]

B45 Equipment outdated [16,34]

(C) Contrac condition

C1 Absence of alternative dispute
resolution (ADR) [4,30,33]

C2 Discrepancies and mistakes in
contract [33]

C3 Unrealistic cost and duration
contract [4,17,30]

C4 Poor incentives and
inadequate penalties in contract [4]

C5 Insufficient details of the
contract documents [25,33]

C6 Absence of clear
understanding for contract [15,25]

(D) External

D1 Adverse weather condition [4,22,30,32]
D2 Force of majeure [4,19,30,31]
D3 Corruption [35]
D4 Effect of cultural and social
factors [19,33]

D5 Government commitment and
policy [4,19,30,31]

D6 Unavailability of utilities in a
site [25,32]
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3.2. Fuzzy Comprehensive Evaluation (FCE)

FCE model is used to obtain reliable results in evaluating alternatives widely in an uncertain
environment [35]. The FCE approach has strong evaluation abilities that lead to appropriate
decision-making. The FCE generates the weight of factors and priorities factors based on expert
judgment [36]. FCE determines the risk of criteria and sub-criteria of delay factors on the construction
project lifecycle. To get priorities in an organized way, the FCE technique requires to decompose the
decision through the following steps, based on the different studies aforementioned.

Firstly, set criteria, sub-criteria, and attributes. This step was segmented the complex problem of
delay risk factors into a structured hierarchy of three levels, which are level one (criteria), level two
(sub-criteria), and level three (attributes), as shown in Table 1.

Secondly, develop a pairwise comparison matrix. This matrix was constructed using the rate of
scale that denotes how much one element dominates over another with respect to a given attribute.
The scale value measures the degree of relative importance in a pairwise comparison matrix using
linguistic variables for delay risk factors, as described in Table 2.

Table 2. The Linguistic Variables for Schedule Delay Risk Factor.

Linguistic Terms Fuzzy Number

Very small risk level 1
Small risk level 3

Medium risk level 5
High risk level 7

Very high risk level 9

The matrix for pairwise comparison was developed based on the judgment of respondents, as
described in the matrix (1):

A =

⎡⎢⎢⎢⎢⎣
1 w1

w2
. . . w1

wn
w2
w1
...

wn
w1

1
...

wn
w2

. . .
. . .
. . .

w2
wn
...
1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . a1n
a21
...

an1

a22
...

an2

. . .
. . .
. . .

a2n
...

ann

⎤⎥⎥⎥⎥⎦. (1)

where A is the matrix with aij element of the pairwise matrix in i column and j row and the rated
weight of factors W = (w1, w2, . . . , wn), where (i, j = 1, 2, . . . , n) and n is the number of factors.

Thirdly, estimate normalized weight. It computed from the pairwise matrix using the arithmetic
mean. The normalized weight computed by Equation (2):

wi =
wi

∑n
i=1 wi

but wi =
n

∑
j=1

aij (i = 1, 2, . . . , n) and (j = 1, 2, 3, . . . , n). (2)

where wi is normalized weight from the cumulative weight w = (w1, w2, . . . , wn).
Determining consistency ratio aids to identify consistency of decision. First, compute random

indexing (RI) and consistency index (CI) then determine the consistency ratio (CR). Finally, if CR is
greater than or equal to zero and less than or equal to 0.1, the judgment is consistent [37]. The relations
for the checking consistency can be expressed as Equations (3):

CR =
CI
RI

but CI =
λmax − n

n− 1
Where; λmax =

n

∑
i

aij × wi . (3)

Finally, compute multi-comprehensive evaluation. In a multi-comprehensive evaluation, the first
step is to establish a grade factor and element set. According to the delay risk factors in Table 1, the
main element set is U = {A, B, C, D}, which represents responsibility, resource, contract condition,
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and external related factors, respectively. The five grade factors determined by V = {v1 v2 v3 v4 v5},
which represents very small risk level (1), small risk level (2), medium risk level (3), high-risk level (4),
and very high-risk level (5), respectively. The second step, establish a single fuzzy matrix. The single
fuzzy matrix uses the respondent’s rate to evaluate the risk level of attributes. The single fuzzy matrix
computed using Equation (4):

rik =
ri
N

then R =

⎡⎢⎢⎢⎢⎣
r11 r12 r13 r14 r15

r21 r22 r23 r24 r25
...

rn1

...
rn2

...
rn3

...
rn4

...
rn5

⎤⎥⎥⎥⎥⎦. (4)

where n is attributes or element set, grade factor k = {1, 2, 3, 4, 5 }, the rate of respondents for grade
factor ri, the total population of respondents N and single fuzzy matrix R.

Lastly, evaluate the comprehensive and multi comprehensive. Comprehensive evaluation
compiles a single fuzzy matrix of attributes with a normalized weight of sub-criteria from the pairwise
matrix to priorities influence of sub-criteria. This can be expressed using Equation (5):

Bi = Wi × Ri =

⎡⎢⎢⎢⎣
W1

W2

. . .
Wn

⎤⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎣

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25
...

rn1

...
rn2

...
rn3

...
rn4

...
rn5

⎤⎥⎥⎥⎥⎦ =
[

bi1 bi2 bi3 bi4 bi5

]
. (5)

where normalized weight of sub-criteria Wi, single fuzzy matrix Ri, and Bi is prioritized result of
sub-criteria, namely

[
bi1 bi2 bi3 bi4 bi5

]
.

The multi-comprehensive evaluation used to priorities the influence of criteria on alternatives.
It can be computed based on Equation (6):

Bi = Wi × Ri =

⎡⎢⎢⎢⎣
W1

W2

. . .
Wn

⎤⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎣

b11 b12 b13 b14 b15

b21 b22 b23 b24 b25
...

bn1

...
bn2

...
bn3

...
bn4

...
bn5

⎤⎥⎥⎥⎥⎦ =
[

bi1 bi2 bi3 bi4 bi5

]
. (6)

where Bi is prioritized result of criteria, Ri is a matrix of prioritized result from Equation (5) and Wi is
a normalized weight of criteria from the pairwise matrix

3.3. Technique For Order Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS is important to reasonable and rational decision-making under uncertainty, subjectivity,
ambiguity, and biases [29]. TOPSIS suggests both the best and worst alternatives. The best alternative
has the short distance from the positive ideal solution and the farthest distance from the negative ideal
solution and vice versa [28].

In this study, precise scores of alternatives were determined by formulating a decision matrix from
the linguistic variables and then forming a normalized decision matrix. Multiplying the normalized
decision matrix with the normalized weight of fuzzy comprehensive evaluation has a result of weighted
normalized decision matrix of attributes. Based on the weighted normalized decision matrix, the
negative and positive ideal solutions, Euclidean distance, and closeness coefficient were computed.
Comparing the closeness coefficient, the typical delay risk on construction project lifecycle was detected.
The procedure for implementing TOPSIS presented as:
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Firstly, compute normalized decision matrix. This matrix is important because each factor has a
different rated value and this rate values should convert into a single unit to enable direct comparison.
The normalized decision matrix computed using Equation (7):

rij =
aij√

∑n
i=1 a2

ij

, j = 1, 2, 3, . . . , n J, i = 1, 2, 3, . . . , n (7)

where rij is normalized decision matrix, aij is rated value of i th factor and j th alternative and n is the
total number of alternatives in the construction lifecycle.

Secondly, estimate the weighted normalized decision matrix. In this phase, the normalized weight
from the pairwise matrix of fuzzy comprehensive evaluation multiplied with the normalized decision
matrix. The weighted normalized decision matrix vij calculated based on expression as (8):

vij = wi × rij, j = 1, 2, 3, . . . , n J, i = 1, 2, 3, . . . , n. (8)

where wi is the normalized weight of i th factors and rij is normalized decision matrix.
Thirdly, identify the negative ideal solution (NIS) and positive ideal solution (PIS). The other

important thing in TOPSIS is to identify the positive ideal solution and negative ideal solution. These
can be determined from weighted normalized decision matrix using Equations (9) and (10):

A∗ = {v∗1, v∗2, v∗3, . . . , v∗n }maximum values, where v∗i
{

max
(
vij
)

i f j ∈ J
}

(9)

A− =
{

v−1 , v−2 , v−3 , . . . , v−n
}

maximum values, where v−i
{

min
(
vij
)

i f j ∈ J
}

. (10)

where negative ideal solution (NIS) and positive ideal solution (PIS) denoted by A− and
A∗, respectively.

Fourthly, determine the Euclidean distance of alternative. The Euclidean distance from the
positive ideal solution (PIS) is represented by d∗i and the Euclidean distance from the negative ideal
solution (NIS) is represented by d−i can be determined by Equations (11) and (12):

d∗i =

√√√√ n

∑
j=1

(vij − v∗j )
2, j = 1, 2, 3, . . . , J (11)

d−i =

√√√√ n

∑
j=1

(vij − v−j )
2, j = 1, 2, 3, . . . , J. (12)

Finally, estimate closeness coefficient (CC). The risk level of delay determines based on closeness
coefficient (CC) that deems to measure the influence level of the construction project lifecycle. The
closeness coefficient (CC) expressed by Equation (13):

CCi =
d−i

d∗i + d−i
, i = 1, 2, 3, . . . J. (13)

The closeness coefficient (CCi) ideal solution estimates one and the closeness coefficient (CCi)

non-ideal solution estimates zero. Therefore, the risk level of schedule delay risk on the construction
project lifecycle estimates based on the value of closeness coefficient (CCi) ideal solution.

4. Descriptive Case Study

The study demonstrated through an empirical analysis in the construction projects in Ethiopia.
To gather data, participants were nominated based on the purposive sampling based on their experience
in the different parts of the country. The participants were experienced and they serve as clients,
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contractors, consultants, managers, engineers, designers, surveyors, and other concerned positions.
To minimize the subjectivity data were collected in discussion form, from 77 different groups in the
participating construction projects and each group consists of at least five experts. For the questionnaire
survey, the five-point Likert scale was employed, where each point corresponded to very small level
risk (1), small level risk (2), medium level risk (3), high-level risk (4), and very high-level risk (5).

Based on the pairwise matrix the normalized weight of factors are computed, this used as a weight
for comprehensive and multi-comprehensive evaluation in FCE and normalized weight for TOPSIS.
The product of the normalized weight with a single fuzzy matrix can give the risk impact level of
sub-criteria. The impact level of sub-criteria multiplied with the weight of criteria will give risk impact
level of criteria. Then, the risk level of criteria multiplied with weight will give the level of risk for the
construction lifecycle, as described from Formula 3 to 6. Whereas for TOPSIS, from the normalized
weight of attributes and the normalized decision matrix, the weighted normalized decision matrix can
be determined so based on the weighted normalized decision matrix the negative ideal solution (NIS),
positive ideal solution (PIS), and Euclidian distance is estimated, then, finally, the closeness coefficient
(CC) can be computed, as shown in formula 7 to 13.

The comprehensive evaluation of the sub-criteria such as client, contractor, consultant, and
designer represented by {A1, A2, A3, A4}, respectively, under responsibility related criteria and the
evaluation of sub-criteria, finance, material, labour, and equipment represented by {B1, B2, B3, B4}
respectively under resource related criteria, computed in Table 3.

Table 3. Comprehensive Evaluation of Sub-Criteria Risk on Construction Process.

Sub-Criteria
Pre-Construction Construction Post-Construction

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A1 0.11 0.24 0.31 0.21 0.13 0.09 0.24 0.30 0.26 0.11 0.09 0.21 0.35 0.17 0.18
A2 0.18 0.29 0.23 0.19 0.11 0.09 0.22 0.24 0.28 0.17 0.08 0.22 0.31 0.24 0.15
A3 0.10 0.28 0.29 0.19 0.14 0.09 0.23 0.24 0.27 0.17 0.14 0.30 0.30 0.15 0.11
A4 0.09 0.22 0.27 0.20 0.22 0.07 0.24 0.25 0.22 0.22 0.14 0.27 0.28 0.21 0.10
B1 0.08 0.22 0.30 0.20 0.20 0.05 0.22 0.28 0.23 0.22 0.13 0.24 0.28 0.21 0.14
B2 0.12 0.23 0.31 0.19 0.15 0.10 0.18 0.29 0.24 0.19 0.09 0.22 0.32 0.21 0.16
B3 0.13 0.25 0.27 0.19 0.16 0.10 0.22 0.29 0.24 0.15 0.09 0.31 0.30 0.17 0.13
B4 0.17 0.26 0.29 0.18 0.10 0.08 0.21 0.27 0.25 0.19 0.08 0.22 0.25 0.20 0.25

The multi-comprehensive evaluation results of delay risk on alternatives based on the criteria of
{A, B, C, D} that represent responsibility, resource, contract condition, and external related, described
in Table 4.

Table 4. Multi-Comprehensive Evaluation of Criteria Risk on Construction Process.

Criteria
Pre-Construction Construction Post-Construction

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A 0.12 0.26 0.28 0.20 0.14 0.09 0.23 0.26 0.27 0.15 0.13 0.24 0.28 0.21 0.14
B 0.11 0.23 0.30 0.19 0.17 0.08 0.21 0.28 0.24 0.19 0.09 0.23 0.32 0.20 0.16
C 0.10 0.32 0.28 0.18 0.12 0.09 0.26 0.26 0.23 0.16 0.09 0.30 0.30 0.18 0.13
D 0.10 0.20 0.28 0.18 0.24 0.07 0.15 0.23 0.27 0.28 0.08 0.22 0.25 0.20 0.25

4.1. Evaluation of Schedule Delay Risk on Pre-Construction Stage

The pre-construction stage has the least risk alternative with 35% of a high and very high-risk
level of schedule delay as described in Table 5. The most influential criteria responsibility related
is embraced by the substantial sub-criteria sequenced as designer, client, consultant, and contractor
related (Tables 3 and 4). The second important criteria external related include influential factors such
as corruption and unavailability of utilities at a site (Table 4). The third critical criteria resource related
has momentous sub-criteria ranked as material, finance, labour, and equipment related (Tables 3 and 4).
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The least one is a contract condition related that has top contributing attributes of unrealistic cost and
duration in the contract and insufficient details of the contract documents (Table 4).

4.2. Evaluation of Schedule Delay Risk on Construction Stage

The construction stage has the highest risk, which exposes 44% of the high and very high-risk
level of schedule delay as denoted in Table 5. In the construction stage, the most influential criterion
is responsibility related, with dominant sub-criteria sequenced as consultant, designer, contractor,
and client related (Tables 3 and 4). The second influential criterion is resource that has important
sub-criteria ranked as finance, construction material, labour, and equipment related (Tables 3 and 4).
The third contract condition, which considerate influential attributes of unrealistic cost and duration in
contract, and poor incentives and inadequate penalties in contract (Table 4). The external related is
least one, counting the most contributing factors of corruption and unavailability of utilities at a site
(Table 4).

4.3. Evaluation of Schedule Delay Risk on Post-Construction Stage

The second influenced by risk is the post-construction stage that covered 37% of the high and very
high-risk level of schedule delay (Table 5). In this stage, the most persuasive criterion is responsibility
related, with the extensive risk of sub-criteria sequenced as consultant, designer, contractor, and
client related (Tables 3 and 4). The second influential criteria external related include the dominant
attributes of corruption and unavailability of utilities at a site (Table 4). Contract condition is the third
noticeable criterion, with top contributing attributes of unrealistic cost and duration in contract, and
poor incentives and inadequate penalties in contract (Table 4). The least contributing criteria resource
related, containing influential sub-criteria ranked as finance, construction material, equipment, and
labour (Tables 3 and 4).

4.4. The Schedule Delay Risk Comparison at Each Construction Lifecycle

From multi-comprehensive evaluation matrix result of Table 5, the construction stage (44%)
is high-risk, the second high-risk stage is post construction (37%), and the least risk stage is
pre-construction (35%).

Table 5. Risk of Schedule Delay on Construction Process.

Alternatives 1 2 3 4 5

Pre-construction 0.11 0.25 0.29 0.19 0.16
Construction 0.08 0.22 0.26 0.25 0.19

Post-construction 0.10 0.25 0.28 0.20 0.17
Average schedule delay risk of Ethiopia construction projects 0.10 0.24 0.28 0.21 0.17

From the weighted normalized decision matrix, negative ideal solution, positive ideal solution,
and Euclidean distance (Table 6) then the closeness coefficients (CC) is computed in Table 7. The higher
value of closeness coefficient for a specific alternative denotes higher risk influence.
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Table 6. Weighted Normalized Decision Matrix, positive ideal solution (PIS), negative ideal solution
(NIS), and Euclidian Distance of Alternatives.

Factors Pre-Construction Construction Post-Construction PIS(A*) NIS(A-)

A11 0.120 0.168 0.120 0.168 0.120
A12 0.149 0.106 0.064 0.149 0.064
A13 0.062 0.062 0.021 0.062 0.021
A14 0.162 0.116 0.116 0.162 0.116
A15 0.168 0.056 0.056 0.168 0.056
A16 0.056 0.019 0.019 0.056 0.019
A21 0.041 0.095 0.123 0.123 0.041
A22 0.109 0.140 0.140 0.140 0.109
A23 0.147 0.082 0.115 0.147 0.082
A24 0.043 0.099 0.043 0.099 0.043
A25 0.014 0.041 0.040 0.041 0.014
A26 0.042 0.099 0.099 0.099 0.042
A27 0.012 0.035 0.081 0.081 0.012
A31 0.122 0.073 0.073 0.122 0.073
A32 0.171 0.171 0.220 0.220 0.171
A33 0.121 0.121 0.170 0.170 0.121
A34 0.122 0.171 0.171 0.171 0.122
A41 0.197 0.154 0.110 0.197 0.110
A42 0.206 0.206 0.160 0.206 0.160
A43 0.197 0.154 0.110 0.197 0.110
A44 0.070 0.070 0.070 0.070 0.070
B11 0.136 0.136 0.136 0.136 0.136
B12 0.136 0.136 0.136 0.136 0.136
B13 0.104 0.104 0.074 0.104 0.074
B14 0.099 0.043 0.071 0.099 0.043
B15 0.136 0.136 0.136 0.136 0.136
B21 0.142 0.142 0.142 0.142 0.142
B22 0.137 0.098 0.176 0.176 0.098
B23 0.140 0.180 0.180 0.180 0.140
B24 0.099 0.139 0.139 0.139 0.099
B31 0.174 0.104 0.104 0.174 0.104
B32 0.102 0.170 0.102 0.170 0.102
B33 0.245 0.245 0.175 0.245 0.175
B34 0.036 0.036 0.036 0.036 0.036
B35 0.030 0.089 0.030 0.089 0.030
B41 0.181 0.325 0.253 0.325 0.181
B42 0.097 0.289 0.161 0.289 0.097
B43 0.040 0.040 0.040 0.040 0.040
B44 0.040 0.040 0.040 0.040 0.040
B45 0.040 0.040 0.040 0.040 0.040
C1 0.018 0.018 0.088 0.088 0.018
C2 0.025 0.02 0.025 0.025 0.025
C3 0.123 0.172 0.172 0.172 0.123
C4 0.069 0.115 0.161 0.161 0.069
C5 0.126 0.126 0.126 0.126 0.126
C6 0.125 0.075 0.075 0.125 0.075
D1 0.052 0.017 0.017 0.052 0.017
D2 0.055 0.018 0.055 0.055 0.018
D3 0.182 0.182 0.182 0.182 0.182
D4 0.020 0.020 0.020 0.020 0.020
D5 0.099 0.099 0.139 0.139 0.099
D6 0.182 0.182 0.182 0.182 0.182
d* 0.343 0.253 0.311
d- 0.264 0.325 0.250
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On the other hand, based on TOPSIS ideal solution of closeness coefficient rank in Table 7,
construction stage (0.563) is high-risk, post construction stage (0.446) the second, and pre-construction
stage (0.435) the least.

Table 7. Ranking of Risk Level of Schedule Delay on Construction Process.

Rank Alternatives Closeness Coefficient

1 Construction 0.563
2 Post construction 0.446
3 Pre-construction 0.435

As a result, the risk of schedule delay at the different lifecycle of construction projects has a
difference or the risk impact different either in level or in type. These differences are important to
mitigation delay risk in the construction projects of Ethiopia by recognizing the exact influence level of
risk at each activity for a better decision. Overall, Figure 2 shows the comparison of the risk of the
major schedule delay risk factors, external, resource, responsibility, and contract condition related.

 

Figure 2. Risk of criteria on construction stage.

The study detects the influence of schedule delay risk in the construction projects of Ethiopia.
The construction projects in Ethiopia have faced an average of 38% schedule delay risk at high and very
high-risk level (Table 6). The rank, based on TOPSIS Closeness Coefficient and multi-comprehensive
evaluations of risk at high and very high-risk level of alternatives are denoted in Figure 3.
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Figure 3. Comparison of risk of schedule delay by FCE and TOPSIS on the construction lifecycle.

5. Conclusions

Schedule delay risk was analyzed to provide a decision regarding the typical risk of delay in
construction lifecycle to mitigate risk. This was achieved through the application of the hybrid model
of FCE and TOPSIS. The application of this combined model can evaluate not only the typical risk of
the schedule delay but also reflects the general risk of schedule delay. Based on the empirical study, the
results identified that the risk level of the schedule delay varies at the construction projects lifecycle.
The comparison on the empirical study shown that the construction stage (44%) is high risk, the second
high-risk stage is post construction (37%), and the least risk is pre-construction (35%). The construction
projects in Ethiopian have faced an average of 38% of schedule delay risk at the high and very high-risk
level. This helps the construction managers to identify which schedule delay risk factor is highly
influential and which construction lifecycle is highly risky and to make the right decision on how to
mitigate the risk. The application of the integrated model of FCE and TOPSIS is a viable tool in delay
risk management of construction project. The model can be applied at any time, with different project
types by adapting the factors and evaluated weight.
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5. Szymański, P. Risk management in construction projects. Procedia Eng. 2017, 208, 174–182. [CrossRef]
6. Gonzalez, P.; Gonzalez, V.; Molenaar, K.; Orozco, F. Analysis of Causes of Delay and Time Performance in

Construction Projects. J. Constr. Eng. Manag. 2014, 140. [CrossRef]

67



Symmetry 2019, 11, 12

7. Han, S.; Love, P.; Peña-Mora, F. A system dynamics model for assessing the impacts of design errors in
construction projects. Math. Comput. Model. 2013, 57, 2044–2053. [CrossRef]

8. Faridi, A.S.; El-Sayegh, S.M. Significant factors causing schedule delay in the UAE construction industry.
Constr. Manag. Econ. 2006, 24, 1167–1176. [CrossRef]

9. Sambasivan, M.; Soon, Y.W. Causes and effects of delays in Malaysian construction industry. Int. J. Proj.
Manag. 2007, 25, 517–526. [CrossRef]

10. Assaf, S.A.; Al-Hejji, S. Causes of schedule delay in large construction projects. Int. J. Proj. Manag. 2006, 24,
349–357. [CrossRef]

11. Ayalew, T.; Dakhli, Z.; Lafhaj, Z. Assessment on Performance and Challenges of Ethiopian Construction
Industry. J. Arch. Civ. Eng. 2016, 2, 1–11.

12. Abd El-Razek, M.E.; Bassioni, H.A.; Mobarak, A.M. Causes of Schedule delay in Building Construction
Projects in Egypt. J. Constr. Eng. Manag. 2008, 134, 831–841. [CrossRef]

13. Frimpong, Y.; Oluwoye, J.; Crawford, L. Causes of schedule delay and cost overruns in construction of
groundwater projects in a developing countries; Ghana as a case study. Int. J. Proj. Manag. 2003, 21, 321–326.
[CrossRef]

14. Gunduz, M.; Nielsen, Y.; Ozdemir, M. Quantification of Delay Factors Using the Relative Importance Index
Method for Construction Projects in Turkey. J. Manag. Eng. 2013, 29, 133–139. [CrossRef]

15. Larsen, J.K.; Shen, G.Q.; Lindhard, S.M.; Brunoe, T.D. Factors Affecting Schedule Schedule delay, Cost
Overrun, and Quality Level in Public Construction Projects. J. Manag. Eng. 2016, 32. [CrossRef]

16. Xu, X.; Wang, J.; Li, C.Z.; Huang, W.; Xia, N. Schedule risk analysis of infrastructure projects: A hybrid
dynamic approach. Autom. Constr. 2018, 95, 20–34. [CrossRef]

17. Abd El-Karim, M.S.B.; Mosa El Nawawy, O.A.; Abdel-Alim, A.M. Identification and assessment of risk
factors affecting construction projects. HBRC J. 2015, 13, 202–216. [CrossRef]

18. Tavakolan, M.; Etemadinia, H. Fuzzy Weighted Interpretive Structural Modeling: Improved Method for
Identification of Risk Interactions in Construction Projects. J. Constr. Eng. Manag. 2017, 143. [CrossRef]

19. Hossen, M.M.; Kang, S.; Kim, J. Construction schedule delay risk assessment by using combined AHP-RII
methodology for an international NPP project. Nucl. Eng. Technol. 2015, 47, 362–379. [CrossRef]

20. Attri, R.; Grover, S.; Dev, N.; Kumar, D. Analysis of barriers total productive maintenance (TPM). Int. J. Syst.
Assur. Eng. Manag. 2013, 4, 313–326. [CrossRef]

21. Kim, D.Y.; Han, S.H.; Kim, H.; Park, H. Structuring the prediction model of project performance for
international construction projects: A comparative analysis. Expert Syst. Appl. 2009, 36 Pt 1, 1961–1971.
[CrossRef]

22. Luu, V.T.; Kim, S.-Y.; Tuan, N.V.; Ogunlana, S.O. Quantifying schedule risk in construction projects using
Bayesian belief networks. Int. J. Proj. Manag. 2009, 27, 39–50. [CrossRef]

23. Wang, J.; Yuan, H. System Dynamics Approach for Investigating the Risk Effects on Schedule Delay in
Infrastructure Projects. J. Manag. Eng. 2017, 33. [CrossRef]

24. Adams, F.K. Risk perception and Bayesian analysis of international construction contract risks: The case of
payment delays in a developing economy. Int. J. Proj. Manag. 2008, 26, 138–148. [CrossRef]

25. Eybpoosh, M.; Dikmen, I.; Birgonul, M.T. Identification of Risk Paths in International Construction Projects
Using Structural Equation Modeling. J. Constr. Eng. Manag. 2011, 137, 1164–1175. [CrossRef]

26. Wang, W.-C.; Lin, C.-L.; Wang, S.-H.; Liu, J.-J.; Lee, M.-T. Application of importance-satisfaction analysis and
influence-relations map to evaluate design delay factors. J. Civ. Eng. Manag. 2014, 20, 497–510. [CrossRef]

27. Boateng, P.; Chen, Z.; Ogunlana, S. A dynamic framework for managing the complexities of risks in
megaprojects. Int. J. Technol. Manag. Res. 2016, 5, 1–13.

28. Karim, R.; Karmaker, C. Machine Selection by AHP and TOPSIS Methods. Am. J. Ind. Eng. 2016, 4, 7–13.
[CrossRef]

29. Jang, W.; Hong, H.; Baek, S. Optimal Supply Vendor Selection Model for LNG Plant Projects Using
Fuzzy-TOPSIS Theory. J. Constr. Eng. Manag. 2017, 33. [CrossRef]

30. El-Sayegh, S.M. Risk assessment and allocation in the UAE construction industry. Int. J. Proj. Manag. 2008,
26, 431–438. [CrossRef]

31. Yoon, Y.; Tamer, Z.; Hastak, M. Protocol to Enhance Profitability by Managing Risks in Construction Projects.
J. Manag. Eng. 2015, 31. [CrossRef]

68



Symmetry 2019, 11, 12

32. Kuo, Y.-C.; Lu, S.-T. Using fuzzy multiple criteria decision making approach to enhance risk assessment for
metropolitan construction projects. Int. J. Proj. Manag. 2013, 31, 602–614. [CrossRef]

33. Dikmen, I.; Birgonul, M.T.; Anac, C.; Tah, J.H.M.; Aouad, G. Learning from risks: A tool for post-project risk
assessment. Autom. Constr. 2008, 18, 42–50. [CrossRef]

34. Rao, R.; Zhang, X.; Shi, Z.; Luo, K.; Tan, Z.; Feng, Y. A Systematical Framework of Schedule Risk Management
for Power Grid Engineering Projects’ Sustainable Development. Sustainability 2014, 6. [CrossRef]
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Abstract: This paper presents a new route planning system for the purpose of evaluating the strategic
prospects for future Arctic routes. The route planning problem can be regarded as a multi criteria
decision making problem with large uncertainties originating from multi-climate models and experts’
knowledge and can be solved by a modified A* algorithm where the hesitant fuzzy set theory is
incorporated. Compared to the traditional A* algorithm, the navigability of the Arctic route is firstly
analyzed as a measure to determine the obstacle nodes and three key factors to the vessel navigation
including sailing time, economic cost and risk are overall considered in the HFS-A* algorithm.
A numerical experiment is presented to test the performance of the proposed algorithm.

Keywords: hesitant fuzzy sets; multi criteria decision making; A* algorithm; route optimization; navigability

1. Introduction

The dramatic variation of sea ice in the Arctic region, due to global warming, has attracted
many researchers in science and engineering, where shipping in the Arctic water is one of the hottest
issues. Compared to the traditional shipping routes, the Arctic routes have shorter distances linking
Asia and North America, as well as linking Asia and Europe, and are a more open navigation
environment, more access to the abundant oil and gas resources and lower piracy risk [1]. Therefore,
navigation through Arctic routes is considered to be a money-making opportunity for shipping and oil
gas companies.

Compared to the traditional ship path planning problem [2–6], sea ice condition becomes a key
factor to the route planning in the Arctic region due to its impact on travel time and fuel consumption,
as well as the risk of being stuck in the ice [7].

Reference [7] introduced a system for route optimization in ice-covered water, which consisted of
an ice model, a ship transit model, and an end-user system. The system was operated on commercial
vessels in the Baltic Sea, and its performance was tested. Reference [8] developed an ice navigation
system combined with a sea ice model, transit model and a model for route planning which simulated
the whole Arctic area. The system employed a modified transit model devised by [9], which integrated
various parameters such as ice-breaking fee, port charge, capital cost, etc. Reference [10] developed
another ice navigation system where the uncertainty of sea ice prediction and the extremely severe
conditions were taken into consideration. The route optimization problem in ice-covered water was
regarded as a dynamic stochastic path planning problem, and a heuristic route optimization model
was proposed to solve it. Reference [11] devised an automatic ice navigation support system to find
the safest- and- shortest routes in the Arctic area for different types of vessels with a geographic
information system.

However, unlike the real-time path planning system, the model in this paper is mainly devised
to evaluate the strategic prospects for future Arctic routes. Therefore, most data are incorporated for
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future prediction, where large uncertainties arise from the bias of current multi-climate models and
the inconsistency of experts’ cognition. Additionally, for commercial navigating in the Arctic routes,
sailing safety, as well as economic benefits, should be guaranteed according to the harsh weather
conditions in the Arctic area. Therefore, sailing time, economic cost, and navigation safety are all key
factors to influence the route planning, which makes the problem a multi-criteria decision making
(MCDM) problem.

Owing to the MCDM problem with large uncertainties in the route optimization model,
information on each grid has variation so that a new path planning method is required for the
model to handle this uncertain decision problem. Many studies have examined that the hesitant fuzzy
sets theory is a powerful tool to solve the mentioned kind of problem [12–17]. Therefore, this paper
develops a new ice navigation system with a modified A* path planning algorithm called HFS-A*
algorithm, where the hesitant fuzzy set theory is incorporated to improve the traditional A* algorithm.
Three key factors, including sailing time, economic benefits, and navigation safety, are considered to
the final decision-making in this system where multi-models of sea ice prediction and multiple experts’
knowledge are used as input. More details related to hesitant fuzzy set theory and A* algorithm can
be seen in Section 2. Section 3 introduces the establishment of the HFS-A* algorithm. A numerical
experiment has been used to examine the proposed model in Section 4, and the conclusion can be seen
in Section 5.

2. Preliminaries

2.1. Traditional A* Algorithm

2.1.1. Basic Concepts

A* algorithm is a heuristic algorithm widely used for finding an optimal path in static road
network presented by [18], which is derived from the Dijkstra algorithm [19] and the Greedy
algorithm [20]. The Dijkstra algorithm can find the shortest path, but has to traverse the entire
network with low efficiency, and the Greedy algorithm has fast search speed but cannot guarantee to
find the best path. The A* algorithm can balance both search speed and global optimality by using
the specific utility function f (n), which consists of a kind of cost function g(n) and a kind of cost
function q(n):

f (n) = g(n) + q(n) (1)

where g(n) represents the actual cost from initial node to the current node, and q(n) is the estimated
cost from the current node to the end node. When q(n) = 0, only q(n) works, then the A*
algorithm degenerates to the Dijkstra algorithm, which can only guarantee finding the optimal route.
When h(n) ≤ q(n), then the A* algorithm can maintain the search speed and the global optimality,
and the search speed will be slower when the value of q(n) becomes smaller. When h(n) � q(n),
then the A* algorithm degenerates to the Greedy algorithm, which can run faster but may fall into
local optimum.

2.1.2. Work Flow

The flow of the algorithm can be seen in Figure 1.

Step 1 Initiate two ordered lists called “OPEN” list and “CLOSE” list and generate two nodes called
“START” node and “END” node.

Step 2 The utility function f (n) is calculated by Equation (1) at “START” node and put the “START”
node into “OPEN” list. Where, f (n) is the estimated value from the “START” node to the “END”
node through the current node n; g(n) is the actual value from the “START” node to the current
node n; g(n) is the estimated value from the current node n to the “END” node.

72



Symmetry 2018, 10, 765

Step 3 Take out the node of minimum utility from “OPEN” list and mark it as the current node n.
This node will be saved in “CLOSE” list.

Step 4 If and only if the node n is not the “END” node, continue the algorithm.
Step 5 Evaluate each adjacent node of node n and skip the one which has already existed in “CLOSE”

list. Then, compute the utility of this node if it is not in “OPEN” list and save it in “OPEN” list.
If the node has already existed in “OPEN” list, recalculate the utility of this node and choose the
smaller value by comparing the utility with the previous one. Finally, node n is assigned as the
parent node of the node.

Step 6 If “OPEN” list is not empty, back to Step 3. Otherwise, exit and report the failure of route search.

Figure 1. Work flow of the traditional A* algorithm.

2.2. Basic Concepts of Hesitant Fuzzy Set

2.2.1. Hesitant Fuzzy Set

Hesitant fuzzy set, proposed by [21], is a more general fuzzy set. An HFS is defined in terms of a
function that returns a set of membership values for each element in the domain [21].

Definition 1 ([21]). A hesitant fuzzy set A on X is a function hA that when applied to X returns a finite subset
of [0,1], which can be represented as the following mathematical symbol:

A = {〈x, hA(x)〉|x ∈ X}, (2)

where hA(x) is a set of some values in [0,1], denoting the possible membership degrees of the element x ∈ X to
the set A. For convenience, hA(x) is named a hesitant fuzzy element (HFE) [22].
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Definition 2 ([21]). For a hesitant fuzzy set represented by its membership function h = hA(x), we define its
complement as follows:

hc = ∪γ∈h{1− γ}. (3)

Definition 3 ([22]). For an HFE h, Sc(h) = 1
lh ∑γ∈h γ, is called the score function of h, where lh is the

number of elements in h and Sc(h) ∈ [0, 1]. For two HFEs h1 and h2, if Sc(h1) > Sc(h2), then h2 ≺ h1,
if Sc(h1) = Sc(h2), h2 ≈ h1.

Some operations on the HFEs (h, h1 and h2) and the scalar number λ are defined by [22]:

h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2γ1γ2}, (4)

h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}, (5)

hλ = ∪γ∈h

{
γλ
}

, (6)

hλ = ∪γ∈h

{
γλ
}

. (7)

2.2.2. The Aggregation Operators for Hesitant Fuzzy Information

Reference [23] proposed an aggregation principle for HFEs:

Definition 4 ([23]). Let A = {h1, h2, . . . , hn} be a set of n HFEs, Θ be a function on A, Θ : [0, 1]N → [0, 1] ,
then

ΘA = ∪γ∈{h1×h2×...×hn}{Θ(γ)}. (8)

Based on Definition 4, some new aggregation operators for HFEs were given by [22]:

Definition 5 ([22]). Let hi (i = 1, 2, . . . , n) be a collection of HFEs, w = (w1, w2, . . . , wn)
T be the weight

vector of them, such that wi ∈ [0, 1] and ∑n
i=1 wi = 1. A generalized hesitant fuzzy weighted averaging

(GHFWA) operator is a mapping Hn → H , and

GHFWAλ(h1, h2, . . . , hn) =
(
⊕n

i=1
(
wihi

λ
)) 1

λ = ∪γ1∈h1,γ2∈h2,...,γn∈hn

{(
1−∏n

i=1
(
1− γλ

i
)wi
) 1

λ

}
. (9)

Definition 6 ([22]). Let hi (i = 1, 2, . . . , n) be a collection of HFEs, w = (w1, w2, . . . , wn)
T be the weight

vector of them, such that wi ∈ [0, 1] and ∑n
i=1 wi = 1. A generalized hesitant fuzzy weighted geometric

(GHFWG) operator is a mapping Hn → H , such that

GHFWGλ(h1, h2, . . . , hn) = 1
λ

(
⊗n

i=1(λhi)
wi
)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
1−
(

1−∏n
i=1

(
1− (1− γi)

λ
)wi
) 1

λ

}
.

(10)

2.2.3. Decision Making Based on Hesitant Fuzzy Information

The decision method based on the above definitions can be derived as follows:

Step 1 The possible alternative Xi of the attribute Ai provided by decision makers or other sources are
denoted by the hesitant fuzzy elements hi(i = 1, 2, . . . , n).
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Step 2 The aggregation operators mentioned above are utilized to obtain the hesitant fuzzy elements
hi(i = 1, 2, . . . , m) for the possible alternative Xi(i = 1, 2, . . . , m).

Step 3 The score values Sc(hi) of hi(j = 1, 2, . . . , m) are calculated by Definition 3.
Step 4 Choose the optimal alternative X∗ by the comparison of Sc(hi).

Example 1. The vessel, which includes four directions Xi(i = 1, 2, 3, 4) to navigate, is planed to determine the
optimal Arctic route for the following year. Suppose there are three factors Ai(i = 1, 2, 3) that affect the decision
making—A1: navigation time; A2: economic cost; A3: navigation risk. It should be noted that all of them are of
the minimization type. The weight vector of the attributes is w = (0.3, 0.4, 0.3)T .

Then, the optimal route can be determined by using the mentioned method.

Step 1 The decision matrix H = (hij)n×n is presented in Table 1, where hij(i = 1, 2, 3, 4; j = 1, 2, 3) are
in the form of HFEs.

Step 2 Two operators, GHFWA and GHFWG, are used to obtain the HFE hi(i = 1, 2, 3, 4) for the
directions Xi(i = 1, 2, 3, 4). Take direction X1 as an example and let λ = 2; we have

hA
1 = GHFWA2(h11, h12, h13) =

(
⊕3

j=1

(
wjh2

1j

)) 1
2

= ∪γ11∈h11,γ12∈h12,γ13∈h13

⎧⎨⎩
(

1−
3

∏
j=1

(
1− γ2

1j

)wj

) 1
2
⎫⎬⎭

= {0.2157, 0.2652, 0.3503, 0.4351, 0.4577, 0.5040, 0.5966, 0.6099, 0.6383, 0.2630, 0.3039,
0.3789, 0.4566, 0.4788, 0.5213, 0.6093, 0.6220, 0.6492, 0.3166, 0.3503, 0.4149, 0.4847,

0.5040, 0.5442, 0.6263, 0.6383, 0.6639}.

hG
1 = GHFWG2(h11, h12, h13) =

1
2

(
⊗3

j=1
(
2h1j
)wj
)

= ∪γ11∈h11,γ12∈h12,γ13∈h13

⎧⎨⎩1−
(

1−
3

∏
j=1

(
1−
(
1− γ1j

)2
)wj

) 1
2
⎫⎬⎭

= {0.1814, 0.2541, 0.2915, 0.2672, 0.3857, 0.4514, 0.2848, 0.4142, 0.4875, 0.1958, 0.2754,
0.3168, 0.2898, 0.4226, 0.4983, 0.3092, 0.4551, 0.5411, 0.2065, 0.2915, 0.3361, 0.3071,

0.4514, 0.5361, 0.3279, 0.4875, 0.5851}.

Step 3 The score values Sc(hi), i = 1, 2, 3, 4 are calculated by Definition 3, which can be seen in Table 2.
Step 4 From Table 2, X4 will be chosen as the optimal direction based on both the GHFWA operator

and GHFWG operator where λ is set as 2.

Table 1. Hesitant fuzzy decision matrix.

A1 A2 A3

X1 (0.1, 0.3, 0.5) (0.2, 0.6, 0.8) (0.3, 0.4, 0.5)
X2 (0.2, 0.4, 0.7) (0.1, 0.2, 0.4) (0.3, 0.4, 0.6)
X3 (0.3, 0.5, 0.6) (0.2, 0.4, 0.5) (0.3, 0.5, 0.7)
X4 (0.3, 0.5, 0.6) (0.4, 0.5, 0.6) (0.2, 0.5, 0.6)

Table 2. Score values obtained by the GHFWA operator and GHFWG operator and the rankings of
alternatives (λ = 2).

X1 X2 X3 X4 Ranking

GHFWA2 0.4777 0.3993 0.4644 0.4887 X4 > X1 > X3> X2
GHFWG2 0.3649 0.3052 0.3052 0.3052 X4 > X3 > X1> X2
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3. An Improved A* Algorithm (HFS-A*)

In light of the harsh weather conditions in the Arctic region, the primary task for route planning
is to identify the obstacles (e.g., sea ice). The Coupled Model Intercomparison Project, phase 5 (CMIP5)
provided 39 Global Climate Models (GCMs) to predict sea ice data, from history to 21st century, under
different representative concentration pathways (RCPs) [23,24]. Unlike the route planning in other
regions, for the current sea ice forecasts in the Arctic region, there exists large uncertainty among these
GCMs [25,26], which leads to the uncertainty of the length of the navigation season and the economic
risk of exploiting the Arctic routes [27]. Therefore, only treating the shortest distance as the optimal
route in the Arctic region is not reasonable; more factors, including the navigation risk, the navigation
time, and the economic cost during navigation should be considered. Compared to the traditional A*
algorithm, the HFS-A* algorithm is used to tackle the multi-criteria decision-making (MCDM) problem
with large uncertainty derived from multi-model outputs and expert knowledge. The improved parts
mainly focus on t, the identification of obstacles, and the construction of utility function.

3.1. Navigability of the Arctic Routes

With the impact of global warming, the extent of Arctic sea ice continues to decline [27]. Human’s
enthusiasm to explore and develop the Arctic routes are aroused by shorter sailing distance, longer
navigation season and increased access to natural resources. There are three criteria related to sea ice
conditions for evaluating the navigability in the Arctic area.

Criterion 1 (navigation uncertainty). Sea ice concentration is considered only for no ice-breaking or
ice-strengthening ships, and it is navigable when sea ice concentration is less than 15% [28–31].

Criterion 2 (navigation time). Sea ice thickness derived from an empirical regression model is considered and for
no ice-breaking or ice-strengthening ships, it is navigable when sea ice thickness is no more than 1.2 m [32,33].

Criterion 3 (navigation economic cost). Both sea ice concentration and thickness are considered by computing
the Ice Numeral (IN) index from the Arctic Ice Regime Shipping System (AIRSS) provided by the Canada
Transport [34–37]. The Ice Numeral is given by

IN = Ca IMa + Cb IMb + . . . + Cn IMn (11)

where Cn is the concentration in tenths of ice type n, and IMn is the Ice Multiplier for ice type n. Ice type
describes the specific stage of development of ice, which is closely related to the ice age. Ice Multipliers, determined
by ship class and ice type, are a series of integers, which are used to reflect the impact of sea ice type to the
specific vessel. A negative IM represents the obstacle effect of vessel sailing. Ice types are determined by [34,38],
which are presented in Appendix A. For no ice-breaking or ice-strengthening ships, it is navigable when the IN
index is larger than zero. Details about vessel type and IM can also be seen in Appendix A.

Additionally, geographical environment, including water depth and channel width, is also a key
factor for ships to navigate, which is related to the vessel type and dimension.

Overall, various evaluation criteria will add to the uncertainty of the sea ice navigability projection.
In this paper, we take all three criteria into consideration with geographical restriction to make sure
the navigability of the Arctic region, in another words, for one region, can be defined as navigable if
and only if the criteria mentioned above are all reached.

3.2. Route Planning Criterion 1: Uncertainty of Sea Ice Condition

In this paper, a series of GCMs have been chosen based on their reasonable projections for
future sea ice conditions evaluated by literature studies [39–42] (see Appendix B). In order to obtain
the uncertainty of each model, these model outputs were compared with the Pan-Arctic Ice Ocean
Modeling and Assimilation System (PIOMAS) estimate data set, which is a reanalysis with good spatial
and temporal consistency constrained by the quality of the assimilated observations [43–46].
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Suppose we have M GCMs, let each model data-set be Xi, i = 1, 2, . . . , M, the PIOMAS data set
be X̃, then the uncertainty of each model can be obtained as follows:

hi1 = 0.5− 0.5× Xi ·X̃
‖Xi‖×‖X̃‖

, i = 1, 2, . . . , M (12)

where, Xi ·X̃
‖Xi‖×‖X̃‖

is called cosine similarity, which is a measure of similarity between two non-zero

vectors introduced by [47]. hi1, i = 1, 2, . . . , M represents the bias from the model to the “real state”,
which can also be regarded as model uncertainty. When hi1 is equal to zero, it represents that the
model data sets can well reflect the “real state”, while when hi1 is equal to one, the model uncertainty
reaches its maximum.

3.3. Route Planning Criterion 2: Time for Navigation on the Arctic Routes

The navigation time for each grid can be depicted as follows:

Ti =
Si
Vi

, i = 1, 2, . . . , M, (13)

where, Si is the distance of each grid, and vi is the velocity of the vessel on each grid. hi2 is the
normalization of Ti.

On the Northern Sea Route (NSR), the vessel speed is mainly impacted by sea ice conditions. A h-v
curve presented by [48] can reflect, well, the relationship between sea ice thickness and vessel speed.
In this h-v curve, the ice resistance and the net thrust of the engine to overcome the ice resistance
should both be considered.

Step 1 The ice resistance can be presented as follows:

Rch = 0.5μBρΔgH2
FKP

(
1
2 + HM

2HF

)2
[B + 2HF(cosδ− 1/tanψ)](μhcosφ + sinψsinα)

+μBρΔgK0μhLpar H2
F + ρΔg

(
LT
B2

)3
HM AWFF2

n ,
(14)

where μB = 0.5 represents the ice porosity factor, ρΔ = 0.8 is the density difference between ice
and water. In this model, these two factors are considered to be constant for simple situations,
e.g., when the temperature changes. Variables include the waterline area of the foreship AWF,
the Froude number Fn, the length L, the parallel midbody length at waterline Lpar, the width B,
the friction coefficient μh and the vessel draft T. KP and K0 are mechanical factors of ice found
by [49]. The thickness of the brash ice HF can be determined as follows:

HF = HM +
B
2

tanγ + (tanγ + tanδ)

√√√√B

(
HM + B

4 tanγ

tanγ + tanδ

)
. (15)

Both γ and δ represent the slope angles of the brash ice.

The formula can be simplified by an approximation when B > 10 m and HM > 4 m [39]:

HF = 0.26 + (BHM)0.5. (16)

The flare angle ψ mentioned above can be obtained with the bow angles φ and α:

ψ = arctan
(

tanφ

sinα

)
. (17)
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Step 2 The net thrust can be calculated by the following formula:

Ttot(v)(1− t) = Row(v) + Ri(v), (18)

Ttot(v)(1− t) = Row(v) + Ri(v), (19)

where Ttot is the total thrust, (1− t) represents the thrust deduction factor, and Ri(v) and Row(v)
are the resistance in ice and in open water respectively.

The effect of vessel speed is approximated by a quadratic factor called bollard pull TB [50], with the
maximum open water speed vow, and the net thrust can be rewritten as

Tnet(v) =

(
1−

1
3 v

vow
− 2

3

(
v

vow

)2
)

TB, (20)

TB = Ke(PDDP)
2
3 , (21)

where v is the vessel speed in the ice, Ke is the bollard pull quality factor, DP is the propeller diameter
and PD is the actual power delivered.

3.4. Route Planning Criterion 3: Economic Cost for Navigation on the Arctic Routes

The economic cost of navigation on the Arctic routes are consist of four parts, which are capital
cost, fuel cost, operation cost, and transit cost:

Costeconomic = Costcapital + Cost f uel + Costoperation + Costtransit (22)

3.4.1. Model for Capital Cost

Capital cost is related to the price of new ship building or the cost of a ship with loans and
depreciations [51]. Generally, the annual capital cost can be computed as follows [52]:

Costcapital =

(
P× (1− eq)× (1 + r)y × r

(1 + r)y − 1

)
+ (eq× C)/y (23)

where P is a new ship price, eq is the equity, r is the interest rate, and y is the term of loan. The former
item is called annual interests, while the latter item is called cash price.

3.4.2. Model for Fuel Cost

Fuel cost is often depicted as the major cost on the marine transportation, which is the largest
single cost factor to most related simulations, ranging from 36.7% to 61% [53].

Fuel cost is impacted by the rate of fuel consumption and the price of fuel, which can be descripted
as follows:

Cost f uel = Fuelconsumption × Fuelprice (24)

The fuel consumption of a vessel can be influenced by ship dimensions (e.g., the ship size, hull
design, engine profile, speed) and external factors (e.g., sea ice, wind, wave, current, foggy) [51].
The fuel consumption for a specific type of vessel is basically computed by multiplying SFOC (specific
fuel oil consumption) (g/kWh), engine power (kw) and sailing hours (h) [54].

Most authors consider speed as the key factor impacting the fuel consumption when the type
of a vessel is determined and a simple exponential law based on empirical data are derived: the
fuel consumption per unit distance is proportional to the square of the speed [55–57], which can be
presented as

V2
1

F1
=

V2
2

F2
, (25)
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where F1 and F2 are the fuel consumption rate under the velocity V1 and V2, respectively. Fuel price is
affected by the fluctuation of the global economic market. Low fuel price indicates the depression of
global economy, while high fuel price reflects the booming global market.

3.4.3. Model for Operation Cost

Operation cost mainly includes crew cost, insurance cost and maintenance fee which is presented
as follows:

Costoperation = Costcrew + Costmaintenance + Costinsurance (26)

1. Crew cost

Crew cost is determined by the vessel type, automation level and numerous other factors [51].
Compared to the open water, the crews in the Arctic region require additional ice navigation
experience and the ability to cope with hash weather conditions, which may increase the crew cost [53].
The increased crew cost may come from the higher wage [58] for each member or the larger size
of members [59].

2. Maintenance cost

For the purpose of preventing the occurrence of breakdowns and following the scheduled
maintenance program, the cost of regular maintenance is needed for vessels.

3. Insurance cost

In face of the risk of Arctic navigation (e.g., collision, engine damage, propeller damage, local hull
damage, grounding, etc.) analyzed IN some studies [60,61], maritime insurance is a good tool to
mitigate the associated risks, which can be approximately separated into three major components:
protection and indemnity (P&I), hull and machinery (H&M), and cargo insurance. The third-party
liabilities encountered during the commercial operation of a ship are charged by P&I. H&M covers
the cost of damage done to the ship or its equipment. Cargo insurance provides the payment for the
damage to the cargo itself [62].

3.4.4. Model for Transit Cost

On the NSR, the transit fee based on vessel type and ice conditions mainly includes ice pilot fee
and ice breaking fee and can be given as

Costtransit = Costicebreaking × Load× Payload + Costicepilot (27)

These services are mainly provided by the Russian icebreaking service provider, Atomflot, and are
compulsively charged subject to the law of the Russian Federation, which is dependent on the vessel
type (e.g., the size and the ice-class of a vessel), and the navigation length and pilotage distance [62].
In general, higher ice-classed vessels are charged with lower icebreaking fees.

3.5. Work Flow of HFS-A* Algorithm

In this HFS-A* algorithm, the work flow can be seen in Figure 2. The method of obstacle identification
has been discussed in Section 3.1 while the modified utility function can be described as follows:

f ∗(i) = g∗(i) + q∗(i) (28)

When the current node i is determined, the actual cost g∗(i) is equal to the score value Sc(hi),
which can be computed by Definition 3.

More specifically, we assume each selected node has three criteria Cj(j = 1, 2, 3) that affect the
decision making—C1: uncertainty of sea ice condition; C2: navigation time; C3: navigation economic
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cost. It should be noted that all of them are of the minimization type. The weight vector of the attributes
is w = (w1, . . . , wj)

T .

Figure 2. Work flow of the HFS-A* algorithm.

The heuristic estimated cost function can be approximately evaluated:

q∗(i) = Sc(hi)× D (29)

where, D is the heuristic distance (Manhattan, Euclidean or Chebyshev) from the evaluated node to
the END node [63].

Step 1 Map initialization

• Initialize map grid and interpolate the mentioned data into grid.
• Set the “START” node, “END” node, “OPEN” list and “CLOSE” list.
• Find the obstacle nodes in terms of the constrain conditions mentioned in Section 3.1.

Step 2 The construction of utility function

• Each time, compare all the adjacent nodes i of the current node n by

f ∗(i) = Sc(hi)× (D + 1) (30)

where, Sc(hi) = GHFWGλ(hi1, hi2, hi3) or Sc(hi) = GHFWAλ(hi1, hi2, hi3), hi1 is the HFEs of
navigation uncertainty (see Section 3.2), hi2 is the HFEs of navigation time (see Section 3.3), and hi3
is the HFEs of navigation economic cost (see Appendix ??).

Step 3–6 The same as the traditional A* algorithm.

4. Case Study and Conclusion

4.1. Study Area and Data Description

This experiment is to find the optimal route on the Northern Sea Route (NSR) based on the
proposed method from Shanghai to Bergen port for an IB-classed 3800TEU container vessel.

80



Symmetry 2018, 10, 765

Data related to water depth is derived from a product called ETOPO1 provided by the National
Geophysical Data Center (NGDC), with a resolution of 1 arc-minute [64]. Data related to AIRSS
system can be seen in Appendix A. Data related to sea ice conditions (both sea ice thickness and
sea ice concentration) can be seen in Appendix B. Data related to vessel information can be seen in
Appendix C. Data related to economic cost can be seen in Appendix D. All the climate model outputs
and data related to water depth are interpolated to the grid size of 360 × 120 for the comparison with
PIOMAS estimate data set, which the spatial coverage is 45◦ N to 90◦ N and the temporal resolution
is monthly.

4.2. Route Planning by HFS-A* Algorithm

4.2.1. Navigability of the NSR

The numerical simulation firstly examines the navigability of the IB-classed 3800 TEU container
vessels on the NSR for each month in the year of 2050 (see Figure 3). According to the ensemble model
predictions, the open time of the NSR for that vessel to access may last for 3 to 5 months in the year
of 2050. Most model outputs show the navigable time starts from August to the October, while merely
2 to 4 models extend the navigable time (from July to November).

Figure 3. The navigability of IB-classed 3800 TEU container vessels on the NSR for each month in the
year of 2050 based on multi-models. (The color of orange in the map reflects the geographic information,
the white color represents the area that cannot access during that month, different blue colors reflect
different amount of the models that give the navigable prediction for each grid during that month.).

4.2.2. Selection of the Aggregation Operators and Route Optimization

Secondly, route planning criteria (uncertainty, time and economic cost) have been calculated based
on the models mentioned in Sections 3.2–3.4, and the results can be seen in Appendix D. These factors
can be normalized respectively between 0 and 1, which can be described as:

hi −min(hi)

max(hi)−min(hi)
, i = 1, 2, . . . , M (31)

Thirdly, the optimal routes for IB-classed 3800 TEU container vessels from Shanghai to Bergen
port on the NSR in September of 2050 can be found by two kinds of the aggregation operators
(GHFHAλ, λ = 1, 2, 6 and GHFHGλ, λ = 1, 2, 6), which are used to aggregate the normalized
results mentioned above. The detailed results can be seen in Table 3. Compared these two kinds
of aggregation operators, the performance of the GHFHGλ, λ = 1, 2, 6 operators in the route
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optimization is better than the GHFHAλ, λ = 1, 2, 6 operators from the view of total sailing distance,
sailing time, economic cost and average uncertainty. In the light of the comparison of different λ

for each operator, the performance of the GHFHGλ becomes better with the λ increase, while the
performance of the GHFHGλ becomes better when λ decreases. Therefore, the GHFHG1 operator has
been examined as the best aggregation operator in this numerical study (The weights vectors for this
experiment are assigned as 0.4, 0.3, and 0.3 for three criteria).

Table 3. Results of route optimization for IB-classed 3800 TEU container vessels on the NSR from Shanghai
to Bergen port in September of 2050 with different aggregation operators based on HFS-A* algorithm.

Distance (Nautical Miles) Sailing Time (day) Economic Cost (Million USD) Uncertainty (Mean)

GHFHA1 9900 25.99 1.20 0.5105
GHFHA2 10,110 26.53 1.21 0.5104
GHFHA6 10,142 26.98 1.23 0.5102
GHFHG1 8451 22.61 1.08 0.4700
GHFHG2 8513 22.78 1.09 0.4704
GHFHG6 8341 22.33 1.07 0.4901

Finally, the optimal route determined by HFS-A* algorithm with the GHFHG1 operator can be
seen in Figure 4. Three other routes according to simple single criterion (uncertainty, time, or economic
cost) are also drawn in Figure 4. The detailed results can be seen in Table 4, where it can be found
that path planning based on a single factor shows a slight advantage in its related aspect, but shows
significant disadvantage in any other aspect compared with the optimal route. In other words,
the optimal route can better balance these three key factors and show more realistic performance of the
proposed route planning algorithm than the other three single factor route planning.

Table 4. Results of route optimization for IB-classed 3800 TEU container vessels on the NSR from
Shanghai to Bergen port in September of 2050 based on HFS-A* algorithm and simple A* algorithm
(The percentages in brackets are compared with the values in GHFHG1).

Distance (Nautical Miles) Sailing Time (Day) Economic Cost (Million USD) Uncertainty (Mean)

GHFHG1 8451 22.61 1.08 0.4700
Uncertainty 10,674 (+26.0) 27.87 (+23.3%) 1.26 (+16.7%) 0.4404 (-6.3%)

Time 8603 (+1.7%) 21.97 (−2.8%) 1.07 (-0.9%) 0.5148 (+9.5%)
Economic cost 8167 (−3.4%) 21.07 (−6.8%) 1.04 (-3.7%) 0.5516 (+17.4%)

Figure 4. Route optimization for IB-classed 3800 TEU container vessels on the NSR from Shanghai to
Bergen port in September of 2050 by HFS-A* algorithm. (The red line represents the route planning
based on navigation uncertainty, the blue line based on the navigation time, the yellow line based on
navigation economic cost, the dark line represents the optimal route integrated of these three criteria
by the GHFHA1 operator.)
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5. Conclusions

The opening of Arctic routes will be no longer a dream in the coming future with climate change;
route planning is necessary for vessels to navigation on the Arctic region from different points of view
(safe, economic cost, time etc.). This paper presents a modified A* algorithm where the hesitant fuzzy
set theory is incorporated for the purpose of solving the MCDM problem in Arctic route planning
with large uncertainties originating from multi-climate models and experts’ knowledge. Compared
to the traditional A* algorithm, the navigability of the Arctic route is firstly analyzed as a measure
to determine the obstacle nodes, and three key factors to vessel navigation, including sailing time,
economic cost and risk are overall considered in the HFS-A* algorithm.

A numerical experiment, which is to find the optimal route between Bergen port and Shanghai
port on the NSR, is presented to test the performance of the proposed algorithm. Multi-model ensemble
forecast displays that the IB-class 3800 TEU container vessels can navigate on the NSR lasting for 3
to 5 months in the year of 2050. Most model outputs show the navigable time starts from August to
October, while merely 2 to 4 models extend the navigable time (from July to November). The sensitivity
analysis for the aggregation operators examines that the GHFHG1 operator has an advantage over
other aggregation operators in route optimization, and its performance of integrating the three key
factors in route planning is better than the performance of any other single factor.

In this paper, the improvement effects for this new approach have been evaluated theoretically
and practically. Theoretically speaking, the simple A* algorithm cannot handle the Arctic path planning
problem which has multi-criteria attribution with large uncertainties. Even if we can synthesize the
time, economic and uncertainty factors by addition and multiplication, the uncertainties existing
in climate model prediction and expert knowledge cannot be portrayed by a simple A* algorithm.
Practically speaking, we compared the route planning result of HFS-A* algorithm and single factor
route planning result (see Figure 4). It can be found that there is a more realistic performance of
the HFS-A* route planning algorithm than compared with the simple A* route planning algorithm.
Overall, this new HFS-A* algorithm can be well-applied to the Arctic region and to evaluate the
strategic prospects for future Arctic routes.

Author Contributions: Conceptualization, Y.W..; methodology, Y.W.; software, Y.W.; validation, Y.W.; formal
analysis, Y.W.; investigation, Y.W.; resources, L.Q.; data curation, L.Q.; writing—original draft preparation, Y.W.;
writing—review and editing, R.Z.; supervision, R.Z.; funding acquisition, R.Z., L.Q.

Funding: This work has received funding from the National Natural Science Foundation of China under grant
agreement number 51609254 and number 41375002.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Ice Type [28,29].

Ice Type Characteristic

New (Open Water)
Newly formed ice, include ice crystal, grease like ice, crushed ice clusters, etc.
These types of ice are just loosely frozen together, can only been seen in the
process of floating. The ice thickness is less than 10 cm.

Grey Young ice, has a thickness of 10–15 cm which is lower than that of nilas and is
easy to expand and break

Grey-white Young ice has a thickness of 15–30 cm

Thin first year 1st stage One year ice, which the formation time does not exceed one winter, has a
thickness of 30–50 cm.

Thin first year 2 nd stage One year ice, which the formation time does not exceed one winter, has a
thickness of 50–70 cm.

Medium first year One year ice has a thickness of 70–120 cm
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Table A1. Cont.

Ice Type Characteristic

Thick first year One year ice has a thickness of 120–220 cm

Second year Adult ice, which has gone through at least one summer’s melting, has a
thickness of 220–250 cm

Multiyear Multiyear ice, which has gone through at least two summers’ melting, has a
thickness beyond 250 cm

Table A2. Ice Multiplier for ice type [28].

Open
Water

Grey
Ice

Grey White
Ice

Thin First Year
1st Stage

Thin FIRST
Year 2nd Stage

Medium First
Year

Thick First
Year

Second
Year

Multi
Year

CAC 3 2 2 2 2 2 2 2 1 −1
CAC 4 2 2 2 2 2 2 1 −2 −3
Type A 2 2 2 2 2 1 −1 −3 −4
Type B 2 2 1 1 1 −1 −2 −4 −4
Type C 2 2 1 1 −1 −2 −3 −4 −4
Type D 2 2 1 −1 −1 −2 −3 −4 −4
Type E 2 1 −1 −1 −1 −2 −3 −4 −4

Table A3. Vessel type [28].

Vessel Type Description

CAC3 Commercial cargo ship, which can navigate in the area on all kinds of ice types but
will escape the area of multiyear ice

CAC4
Commercial cargo ship, which is able to navigate on the area of arbitrary
one-year-old ice, while the speed on the area of multiyear ice will be
extremely reduced.

Type A (IAS, PC6) Vessel, which can navigate on the area of thick first year ice.

Type B (IA, PC7) Vessel, which can navigate on the area of medium first year ice.

Type C (IB) Vessel, which can navigate on the area of thin first year ice

Type D (IC) Vessel, which can navigate on the area of grey-white ice.

Type E (ID) Vessel, which can navigate on the area of grey-ice.

Appendix B

Table A4. Key sources of Global Cliamte Models (GCMs) used in this paper.

Model Country Oceanic Resolution

ACCESS1.0 Australia 1◦ × 1◦ L50
ACCESS1.3 Australia 1◦ × 1◦ L50
BNU-ESM China 360(lon)× 200(lat) L50

CCSM4 United States Nominal 1◦ (1.125◦ in longitude, 0.27–0.64◦ in latitude) L50
CESM1-BGC United States Nominal 1◦ (1.125◦ in longitude, 0.27–0.64◦ in latitude) L60

CESM1-CAM5 United States Nominal 1◦ (1.125◦ in longitude, 0.27–0.64◦ in latitude) L60
CNRM-CM5 France Average 0.7◦ L42

HADGEM2-CC United Kingdom 1.875◦ × 1.25◦

MIROC5 Japan 0.5–1.4◦ × 1.4◦ L50
MPI-ESM-MR Japan Approx. 1◦ × 1◦ L40
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Appendix C

Table A5. Ship dimensions [57].

Vessel Type IB

Deadweight 50,000 ton SFOC 145.8 g/kWh
Payload 3800 TEU engine power 35,000 kWh

Load Factor 0.65 Engine load 0.8
L 250 m vow 24 knots

LPAR 130 m α 23
◦

B 32.2 m φ 90
◦

T 12 m μh 0.02
PD 19,600 kW AWF 806.5 m2

Ke 0.78 DP 7.5 m
Kp 6.5

Appendix D

Appendix D.1 Data Related to Economic Cost

An ordinary 3800 TEU container ship, which usually navigates on the open water, should cost
60 million, the equity is 30%, and the interest rate is 3% with a 20-year loan [65]. Therefore, we can
obtain the ordinary capital cost by Equation (23): 10,200 USD/day.

On the NSR, an IB-classed 3800 TEU container ship may have extra building cost due to the
principal structure and strength, propulsion system, hull form, etc. [59]. Literature related to extra
building cost can be seen in Table A6. From Table A6, the range of the extra building cost for IB-classed
vessel is from 5% to 35%.

Suppose C is a new ship price, eq is the equity, r is the interest rate and i is the term of loan.

Table A6. Extra building cost for a commercial ice-classed vessel.

Ice Class Category Considered Extra Building Cost Resource

CAC3 +30% [58]
IAS +20% [53]
IB +7.5% [66]

PC7 to PC4 1 +20% [56]
Ice class +30% Expert suggestions
IA-IAS +5%–7% [67]

IB +20%–30% [59]
Ice class +10%–35% [68]

1 According to approximate equivalence of ice class classification systems made by [44], PC6 is equal to 1AS and
PC7 is equal to 1A.

The fuel consumption of an ordinary 3800 TEU vessel under the designed speed can be
derived based on Table A5: 97.98 ton/day. The current fuel price can be obtained by Bunker Index
(www.bunkerindex.com): 450 USD/ton.

It is relatively well-documented in the literature that the fuel consumption of an ice-classed
vessel will be more than an ordinary vessel with the same size due to extra weight, bow shape, hull
appendages, which increases the frictional resistance [66]. Data related to extra fuel consumption can
be seen in Table A7.

85



Symmetry 2018, 10, 765

Table A7. Extra fuel consumption rate for a commercial ice-class ship.

Extra Fuel Consumption Rate Resource

IB +67% [59]
IAS +20% [53]

Ice class +30% [52]
Ice class +10% [54]

IB +3% [65]

The crew cost for a 3800 TEU ordinary vessel is 2740 USD/day [57]. Data related to extra crew
cost can be found in Table A8.

Table A8. Extra crew cost for a 3800 TEU IB-classed vessel.

Extra Crew Cost Resource

+0% Japan Ship owners Association (JSA), 2012
+0% [65]
+10% [59]
+10% [53]

+11%–14% [58]

The Maintenance cost of a 3800 TEU ordinary vessel is 1644 USD/day [57]. On the NSR,
the IB-classed vessel needs to undergo more challenging operation conditions, which will put extra
cost on vessel and equipment (see Table A9).

Table A9. Extra maintenance cost for a 3800 TEU IB-classed vessel.

Extra Maintenance Cost Resource

+20% [53]
+20% [56]
+23% [68]
+100% [59]
+100% [69]
+150% [58]

The maintenance cost of a 3800 TEU ordinary vessel is 1644 USD/day [57]. Data related to the
extra insurance fee of the IB-classed vessel can be seen in Table A10.

Table A10. Extra insurance cost for a 3800 TEU IB-classed vessel.

Extra Insurance Cost
Resource

P&I H&M Cargo

+0% +0% +0% [66]
+25% +100% +0% [59]
+43% +100% +0% [70]
+50% +0% +0% [53]
+100% +30% +0% [67]

Ice breaking and ice pilot remain necessary for safe navigation for an IB-classed vessel [71].
The ice-breaking cost of an IB-classed vessel is 356250 USD/trip [62].
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Appendix D.2 The Calculation of Economic Cost Based on HFS

The economic cost of an IB-classed 3800 TEU vessel can be derived as follows:

CostEC_NSR =
(

1 + Ecapital

)
× Costcapital +

(
1 + Ef uel

)
× Cost f uel

+(1 + Ecrew)× Costcrew + (1 + Emaintenance)× Costmaintenance
+(1 + Einsurance)× Costinsurance + Costicebreaking

(A1)

where, the value of each kind of extra cost on the NSR can be determined by 1000 times random
sampling from the information mentioned above by Monte Carlo methods using the software of
Matlab (Table A11).

Table A11. Parameters related to the economic cost of an IB-classed 3800 TEU vessel.

Parameters Value

Ecapital 0.196
Ef uel 0.260
Ecrew 0.065
Emaintenance 0.688
Einsurance 0.299

From Equations (22)–(27), the economic cost of an IB-classed 3800 TEU vessel for each grid can be
obtained as follows:

ECi =

(
20, 028 + 55, 555× 3

√
vi
24

)
× Si

24vi
(A2)

Specially, the icebreaking fee for each route on the NSR is the same (356,250 USD), so it can be
omitted when used as a criterion of route optimization. hi3 is the normalization of ECi.
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63. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified A
Star Algorithm for a Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

89



Symmetry 2018, 10, 765

64. Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis;
NOAA Technical Memorandum NESDIS NGDC-24; National Oceanic and Atmospheric Administration:
Boulder, CO, USA, 2009.

65. Omre, A. An Economic Transport System of the next Generation Integrating the Northern and Southern Passages.
Master’s Thesis, Institutt for marin teknikk, Trondheim, Norway, 2012.

66. Erikstad, S.O.; Ehlers, S. Decision Support Framework for Exploiting Northern Sea Route Transport
Opportunities. Ship Technol. Res. 2012, 59, 34–42. [CrossRef]

67. Pruyn, J.F.J. Will the Northern Sea Route Ever Be a Viable Alternative? Marit. Policy Manag. 2016, 43, 661–675.
[CrossRef]

68. Ostreng, W.; Eger, K.M.; Fløistad, B.; Jørgensen-Dahl, A.; Lothe, L.; Mejlænder-Larsen, M.; Wergeland, T.
Shipping in Arctic Waters: A Comparison of the Northeast, Northwest and Trans Polar Passages; Springer:
Chichester, UK, 2013.

69. Verny, J.; Grigentin, C. Container Shipping on the Northern Sea Route. Int. J. Prod. Econ. 2009, 122, 107–117.
[CrossRef]

70. Srinath, B.N. Arctic Shipping—Commercial Viability of the Arctic Sea Routes. Master’s Thesis, Delft University of
Technology, Delft, The Netherlands, 2010.

71. Gritsenko, D.; Kiiski, T. A Review of Russian Ice-Breaking Tariff Policy on the Northern Sea Route 1991–2014.
Polar Rec. 2016, 52, 144–158. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

90



symmetryS S
Article

A Fuzzy Logic Based Intelligent System for
Measuring Customer Loyalty and Decision Making

Usman Ghani *, Imran Sarwar Bajwa and Aimen Ashfaq

Department of Computer Science & IT, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan;
imran.sarwar@iub.edu.pk (I.S.B.); aimenashfaq62@gmail.com (A.A.)
* Correspondence: usmanrazi@hotmail.com

Received: 10 November 2018; Accepted: 12 December 2018; Published: 17 December 2018

Abstract: In this paper, an intelligent approach is presented to measure customers’ loyalty to a
specific product and assist new customers regarding a product’s key features. Our approach uses
an aggregated sentiment score of a set of reviews in a dataset and then uses a fuzzy logic model to
measure customer’s loyalty to a product. Our approach uses a novel idea of measuring customer’s
loyalty to a product and can assist a new customer to take a decision about a particular product
considering its various features and reviews of previous customers. In this study, we use a large sized
data set of online reviews of customers from Amazon.com to test the performance of the customer’s
reviews. The proposed approach pre-processes the input text via tokenization, Lemmatization and
removal of stop words and then applies fuzzy logic approach to take decisions. To find similarity and
relevance to a topic, various libraries and API are used in this work such as SentiWordNet, Stanford
Core NLP, etc. The approach utilized focuses on identifying polarity of the reviews that may be
positive, negative and neutral. To find customer’s loyalty and help in decision making, the fuzzy logic
approach is applied using a set of membership functions and rule-based system of fuzzy sets that
classify data in various types of loyalty. The implementation of the approach provides high accuracy
of 94% of correct loyalty to the e-commerce products that outperforms the previous approaches.

Keywords: fuzzy logic; decision making; customer loyalty; customer reviews

1. Introduction

The World Wide Web (WWW) has revolutionized our lives with many different services to
facilitate its users such as online shopping, online study courses, online banking and many more.
For the last decade, e-commerce (the act of buying and selling of products through internet) is growing
day by day and has emerged into the future of shopping. The trend setters in modern e-commerce
are Amazon, E-Bay, Ali Baba Express, olx, Daraz.com, and many others. One of the largest retailing
e-commerce website is AMAZON.com. Recently, there are approximately 244 million Active buyer
accounts, 200 million active products on Amazon and 2.2 billion sales in the past 12 months (average
6 million sales a day [1]. Shopping by e-commerce creates much ease for the customers and businesses
as well. However, a challenge faced by the e-commerce users is the need for a better and improved
platform to compare and select products and its prices for best choice selection [2]. If such a platform is
available, it can save a customer’s time, money and energy and can help in buying better products that
fulfill their requirements. A big source of knowledge is customers’ reviews and feedbacks of a product
at social media and e-commerce websites that can effectively guide new customers about previous
customers’ opinions, interests, past experience and brand loyalty [3–7]. Such information can be very
helpful for new customers to buy online with satisfaction and select a right product.

To know about a customer’s loyalty to a product, the easiest and widely used technique for
measuring customer satisfaction is to understand their sentiments or opinions, which they expressed

Symmetry 2018, 10, 761; doi:10.3390/sym10120761 www.mdpi.com/journal/symmetry91
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in the form of comments [8–10]. The most important way to understand their feelings, mood and
sentiments or what they are trying to say is to judge their reviews and comments about the product and
services [11]. After collecting the information about the consumer’s opinion, we can distinguish what
is necessary and what is not. The tracking of opinions, feeling, responses and mood of the customers is
known as opinion mining and sentiment analysis [12]. The recent type of text analysis that targets to
conclude the opinion and polarity of reviews is referred to as Sentiment Analysis. It is a kind of text
analysis that deals with a wide aspect of natural language processing, computational semantics and
text mining [13].

The current web is a huge repository of valuable information in the scattered form such as
micro-blogging websites, such as Twitter or Facebook, have billions of comments and opinions
uploaded on daily basis. Sentiments, such as opinions, attitudes, views and emotions, are personal
experiences of individuals that are not open to impartial observation. They are stated in language
that uses subjective opinions which express sentiment analysis. Most of the organizations carried
opinion mining and sentiment analysis of the reviews of online posts [14–17]. The opinions expressed
on social networking sites are very effective for the decision making process of business organizations.
Organizations use these posts to extract the opinions of the people and to perform sentiment analysis.
Sentiment analysis provides a part of text to be positive, neutral or negative in sense.

Previously, general purpose sentiment analysis of tweets and posts have been carried out [3–12],
however a task-oriented sentiment analysis of users’ reviews of a product to find key features liked by
the users and measuring their confidence level is a new idea. A challenge in performing a task-oriented
sentiment analysis is measuring a customer’s loyalty to a specific product on the basis of customers’
views about a product. In this paper, we propose a novel idea of using sentiment score of each customer
review of a product and then take the aggerate of the sentiment score and then use such a score to
measure customers’ loyalty with a product. In this paper, a fuzzy logic method is used for measuring
customers’ loyalty to a product with the help of sentiment analysis score as shown in Figure 1.

Figure 1. A sketch of proposed approach for Customer Loyalty Measurement.

In our approach, we identify sentiments of users by reading their comments of social network
users and by analyzing this we can view them as positive, neutral or negative. We measure the
“PN-polarity” of subjective terms, i.e., recognizes whether a text can be positive or negative in which
opinions and emotions are expressed. Stanford core NLP is a set of tools and techniques that provides
sense to the computer to understand the speech of a human. Stanford Core NLP is transcribed in
Java and requires Java 1.8+. Java is required to be connected to execute Core NLP. However, other
languages for code writing, e.g., Python or JS (Java Script), can be used and some other languages [18].
With the help of Core NLP, our approach easily understands what people are trying to express through
their words. To retrieve sentiments and polarity of input text apply, SentiWordNet library [19] is used
to measure the customer involvement level towards a product. Here, we apply the sentiment analysis
on the products reviews and also performs P-N polarity on this set of data that tells the positivity,
neutral and negativity of reviews and tries to provides accurate results.

Finally, to measure customers’ loyalty on the basis of sentiment score calculated from the reviews,
the fuzzy logic method is applied. Fuzzy Logic is a process of reasoning that looks a lot like human
reasoning [20]. This approach replicates the way of decision making in a human being that includes all
the possibilities between digital values YES and NO. The standard logic that a computer can easily
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understand is to takes specific input and produces a certain output as TRUE or FALSE, or1 or 0, which
is equal to the human YES or NO. The fuzzy logic works on the levels of possibilities of input to achieve
the definite output and is also called many valued logic which only deals with the truth values [4]. It is
also known as many valued logic and deals with truth values only. The values of truth varies from all
the values in between 0 and 1. These truth values can encompasses all the numbers between 0 and 1.
It does not hold only with both true and false values such as Boolean algebra. The membership
functions organized these truth values. It basically provides approximate reasoning.

The rest of the paper is structured into a set of sections. Section 2 discusses the related work
of sentiment analysis. Section 3 presents an architecture of the designed approach based on fuzzy
logic for measuring customer loyalty using sentiment analysis. Section 4 presents the results of the
experiments and the paper is concluded with the future work in Section 5.

2. Literature Survey

In the recent years, sentiment analysis has gained much attention in the field of research. It has
many paybacks and useful applications in the field of business, most probably in e-commerce [3–7].
It can give business many profitable gains and visions into how customers think and feel about
products and services [8]. It also provides people a better option when they are trying to buy anything
online. They know everything which they want to know just by clicking the button and reading
the previous reviews about the product [9,10]. Sentiment analysis is a vast area of research because
it is a very valuable action for businesses running online. Many people performed research on the
sentiment analysis from the previous years and it always provides a remarkable gain in the business.
Many researchers show much interest towards it and nowadays it gains major attention [11]. It takes
a wide range of importance in industry as well as from a study point of view. Sentiment analysis
provides measurable study for mining out the knowledge coming from a consumer’s opinion, moods,
emotions and feelings towards the product and their characteristics [12]. Today the world has become
a global village and the use of internet is excessively growing day by day. So, the demand of the
internet is also increased and people prefer online shopping rather than going to malls. So, the review
(sentiments) from online customers becomes a need for businesses, other consumers and producers as
well [13].

Fuzzy logic is a method which calculates value based on degrees of truth other than the typical
1 or 0. The modern computer is based on Boolean logic (True or False). A lot of work has done
on sentiment analysis by using fuzzy logic approach. A method for feature mining from the online
reviews of the product was suggested by Indhuja et al. [14]. The feature-based sentiment extraction
method categorized into positive, negative and neutral features. Research has been done on it to
eliminate noises and for feature mining. It was prolonged to include the result of linguistic borders
and fuzzy roles to copy the product of concentrators, transformers and also dilators. The technique
was evaluated on SFU (Simon Fraser University) review corpus and the conclusions indicated that
fuzzy logic executed flawlessly in sentiment analysis. A theory based on fuzzy logic approach in
which sentiment sorting of Chinese sentence-level was projected [15]. This theory of fuzzy set provides
the direct way to allocate the core fuzziness between the polarity modules of sentiments [20,21].
For a further procedure of fuzzy sentiment extraction, at the beginning it mentions a technique for
measuring the intensity of sentiment sentences. After this it describes fuzzy set which determines
the sentiment polarity score. It provides three fuzzy sets which are positive, negative and neutral
sentiments. It builds a membership functions on the basis of sentiment intensities which designate the
sentiment text measure in many fuzzy sets. The conclusion gives polarity of sentiment sentence level
by the use of the maximum membership value.

A technique used for the collection of reviews, blogs and comments from the social networking
sites, it differentiates subjective and objective reviews. We take a subjective type review in order to
extract sentiment scores from the dictionary of SentiWordNet. Here the polarity of relative sentence
structure is obtained from the SentiWordNet dictionary which are positive, negative and neutral scores.
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This technique of research performs machine learning and word-level approaches [17]. This proposed
technique attains a precision of 97.8% at the view andfeedback level and 86.6% at the sentence level.

In a paper addressing sentiment analyzing techniques using movie reviews using sentiment
sorting methods [18], the text at document level yields the polarity scores of the person discussed in
reviews. It uses a dictionary of SentiWordNet to analyze every word scores involved in the reviews
or comments. There are three types of scores of sentiment words which are positive, negative and
neutral as well. It also uses a fuzzy logic technique and its rule base method for carrying out the output.
It also uses precision, Recall and accuracy method in order to determine the efficiency of the project.
In a similar research, a fuzzy logic approach was used to solve the cloudiness in natural languages.
This paper proposed an aspect oriented sentiment classification. They use fuzzy logic for extracting the
polarity scores of opinions such as positive, strongly positive, negative and strongly negative [20,21].
It includes objective and subjective types of sentences. It also involves non-opinionated reviews by
using the IMS (Imputation of Missing Sentiment) technique. IMS is used for extracting accurate results.
Researchers used fuzzy logic for the sentiment modules of reviews. The results explore that for mining
of the effective conclusions, this framework is feasible [22].

A model [23] was proposed which provides broadcasting of the fuzzy logic for conception
polarities. The researchers describe the ambiguity created by the fuzzy logic useful to diverse areas.
This technique joined two linguistic properties, which are named as SenticNet and WordNet. After that
a graph is plotted by the propagation algorithm of consequent data. It was broadcasted sentiment of
characterized (labeled and un-labeled) datasets. The proposed work was implemented and performed
on the dataset. The conclusions show the achievability in problems. Applications of Sentiment analysis
took a very vital role in the social networking sites [24]. Nowadays social media becomes a place where
mostly people express their emotion, feelings and also comment about their current shopping from any
social networking. A particular attention should be given also to the application of sentiment analysis
in social networks. The social network environment explores new tasks because many different
behaviors and people show their opinions, as defined in this paper, which discuss “noisy data”, which
is actually the main obstacle in the analysis of the text extracted from social networks [25,26].

Negation recognition and polarity enhancer influence the polarity score in a very unusual way. So,
the polarity of a specific word is not sufficient and dependable for overall results. This paper describes
all the probable techniques which are used to sense problems for the exact polarity of sentences and
for the accuracy of sentiment analysis [27–29]. Some other works in sentiment analysis and opinion
mining are addressing the problem in general [30–32]. None of these works target task-oriented
sentiment analysis.

3. Materials and Methods

An approach is presented for measuring sentiments of users regarding their comments of a
particular product. In our approach, we have attributed polarity analysis and then used a fuzzy
logic approach to attribute the loyalty of a customer to a product. The used approach also involves
a set of libraries such as core NLP, SentiWordNet library, etc. The users’ comments, or reviews are
collected from social media and famous e-shopping website AMAZON.com. The sentiment analysis
is performed on the products’ reviews to measure P-N polarity. Afterwards, to measure customer
loyalty on the basis of sentiment score calculated from the reviews, a fuzzy logic method [20] is applied.
This approach replicates the way of decision making in human being that includes all the possibilities
between digital values YES and NO. The standard logic that a computer can easily understand takes
specific input and produces a certain output as TRUE or FALSE or 1 or 0, which is equal to the human
YES or NO. The fuzzy logic works on the levels of possibilities of input to achieve the definite output
and is also called many valued logic, which only deals with the truth values [4]. It is also known as
many valued logic and deals with truth values only. The values of truth varies from all the values
in between 0 and 1. These truth values can encompasses all the numbers between 0 and 1. It does
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not hold only with both true and false values such as Boolean algebra. The membership functions
organized these truth values. It basically provides approximate reasoning.

Figure 2 shows the basic structure of sentiment analysis architecture. Sentiment analysis has
many different structures based on a phrase, sentence and documents level. The process of collection
of data and recognition is the calculating the data obtained from different means.

 

Figure 2. Research Architecture of proposed methodology.

After the lemmatization process, we tagged text by PoS (Parts-of-Speech) tagger. We take POS
tagger of Stanford Core NLP (natural language processing). A PoS tagger is very beneficial for
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sentiment analysis because a POS tagger can differentiate words that can be used in different parts of
speech and it is capable of filtering out the words which are not necessary, i.e., we do not need nouns or
pronouns because they do not contain any type of sentiments and at the same time adjectives express
the sentiments. After this step, we do the most important thing which is sentiment analysis on the text
reviews which are being parsed by Stanford POS tagger. We use SentiWordNet 3.0.0 (ISTI, CNR, Rome,
Italy) for the analysis. We use a technique for calculating in which a review is positive, negative or
neutral and calculate the polarity of reviews by focusing upon adjectives because an adjective names
an attribute or quality from which one canit easily discern the positivity, negativity and neutrality
scores of the reviews. Then we find out the polarity scores using SentiWordNet database dictionary.

3.1. Data Collection of Customer Reviews

The processing of the used approach starts with the collection of users’ reviews, comments,
posts and tweets regarding a particular product from various sources such as social media, shopping
websites, etc. In our approach, we have collected the dataset from Facebook and AMAZON.com
website. The data is collected for a particular product suggested by the user. In this study,
the customers’ views and reviews of Apple products (such as Apple iPhone 6 and iPhone 7) are
collected. The user gives reviews dependent of their feelings, experience or like and dislike of the
product. In this study 3500 reviews were collected from social media and Amazon’s website.

3.2. Tokenization

Each review in the data set is individually processed. The preprocessing of the reviews starts by
the tokenization phase that splits a piece of review into small units such tokens. A typical tokenization
process can confiscate punctuation marks from the given text and create tokens of the text. A token
can be anything, a word or a symbol, etc. Here, we use Core NLP PTB Tokenizer which is actually
PENN TREEBANK way of tokenization of English writing and it splits the reviews into sentences in
order to make a simple review file.

3.3. Stop Words Removal

A set of meaningless or irrelevant words in a piece of text can seriously affect the accuracy of the
output. Hence, removal of such stop words from the input text is an important phase in sentiment
analysis of the text. In the collected user reviews, a stop word can be a number, a preposition or a
person’s name, a product’s name, etc. Each review after tokenization goes through the stop words
removal phase. The used approach uses Core NLP library [33], which helps in identifying a list of
stop words.

3.4. Lemmatization

Lemmatization is a process that extracts core form of a word to a common base. The used approach
banks on lemmatization phase to extract core form of a token or a word to achieve more accurate results
in sentiment analysis phase [34]. It can drive linked forms of words to a mutual base. Many textual
documents use dissimilar forms of a word, e.g., mobile, mobiles, mobile’s are all attributed to ‘mobile’.

3.5. Parts-of-Speech Tagging

After the lemmatization phase, the review’s text is Parts-of-Speech tagged to identify the lexical
position and significance of that word in the sentence. Such lexical position and significance helps in
identifying the impact of the word in the sentence. The used approach performs PoS tagging with the
help of the Stanford POS tagger that is part of the Stanford CoreNLP library [33]. In this PoS tagging
phase, each word in a review text, gives a list of its parts of speech, e.g., Noun, Verb, Adjective, etc.
The used PoS tagger “Penn Treebank Tag set” is used for PoS tagging. Besides its three English models,
here we use a POS tagger which is also an English tagger and it is known as the “Penn Treebank Tag”
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set. It can also tokenize the sentence which means it splits the sentences for the quick understanding.
It can break down the text into pieces, e.g.,

• Input: This phone has best features e.g., screen, sound system, etc.
• Output: [This/DT] [phone/NN] [has/VBZ] [best/JJS] [features/NNS] [e.g.,/VBG] [screen/NN]

[,/,] [sound/JJ] [system/NN] [,/,] [etc./FW] [./.]

3.6. Polarity Analysis of Reviews

Measuring polarity of a customer’s review is a key phase in the used approach. In the used
approach, the SentiWordNet 3.0.0 library [35] is used to identify the polarity score of each word in a
user’s review. The polarity score of each word is further accumulated to find the accumulative polarity
score of each review. It can formed by examining an automated classifier Φ to coordinate to each
synsets of WordNet. It produces numerical scores of three types, Φ(s, p) (for p P = {Positive, Negative,
Objective}) telling the powerfulness of the words in s, which consists of each of these three score values.
The hypothesis shows change terms to synsets is that dissimilar nature of the same term with unlike
opinion properties sometimes. Each of the three Φ(s, p) scores ranges from 0.0 to 1.0, and their sum is
1.0 for each synsets.

The Figure 3 shows the graphical representation used by SentiWordNet which represents the
properties of opinion of a synset [13]. This shows that for all of the three classes, synset may have
non-zero scores that specify the similar terms have, in the sense for the synset. Therefore, it shows that
SentiWordNet is used for the identifying and extracting polarity for subjectivity sentences. Table 1
shows output of PoS tag process and Table 2 shows the processed example of a review statement.

Polarity

Subjective
Positive

Objective

+

Figure 3. The graphical representation of sentiment analysis.

Table 1. PoS Type output of user reviews.

Pos_ID Pos_Name Pos_Abbreviation SentiWordNet_Abr

1 Noun NN N
2 Adjective JJ A
3 Verb VB V
4 Adverb RB R
5 Noun plural NNS N
6 Adjective Superlative JJS A
7 Verbs VBZ V
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Table 2. Methodology applied for sentiment analysis.

Type Values

Original sentence iPhone 6 is one of the good models of Apple phone.
Sentence After Drop Stop-Words iPhone 6 + one + good + models + Apple phone.

Tagged Stanford POS tagger To Sentence iPhone/NNP 6/CD is/VBZ one/CD of/IN the/DT good/JJ
models/NNS of/IN Apple/NNP phone/NN ./.

After Lemmatized Sentence iPhone 6 + one + good + model + Apple phone
Tagged SentiWordNet POS tagger To Sentence iPhone#n 6#n one#n good#a model#n Apple#n phone#n

Sentence token score per word:

iPhone#n ==> SentiWordNet Score: 0.0
one#v ==> SentiWordNet Score: 0.0

good#a ==> SentiWordNet Score: 0.634
model#n ==> SentiWordNet Score: 0.0
Apple#n ==> SentiWordNet Score: 0.0
phone#n ==> SentiWordNet Score: 0.0

review#n ==> SentiWordNet Score: 0.053
scoreSum: 0.343

Sentence Score: Positive
Positive: 34.35%

Negative: 0.0%
Neutral: 5.0%

By applying all the methods and techniques of sentiment analysis process, we reach our results.
The first line explains that we enter a simple review in a sentence form, then we remove stop words
from a review in the second step. In the third step, we apply lemmatization on that review. In the
fourth step, we use the Stanford Parts-of-Speech (POS) tagger which is used specify the important
and useful parts of speech in the context. After applying POS tagging, we use another tagger of
SentiWordNet POS tagger in the fifth step, which is almost same as that of the POS tagger but it
calculates the score of that POS words by its weights. Here, we apply some constraints on it that it only
calculates the score of adjectives in the given reviews. We only focus on the adjective based reviews
because adjective is a quality word or the word that describes a noun, which is clearly represents the
sentiment behind the reviews.

In the sixth step, we calculate Sentence token score per word using Equation (1) but we only use
the score of adjective words in the text. In the seventh step, the score sum is used to identify the sum
of all sentiment words in the given sentence. Equation (1) shows how the score sum is calculated by
adding score of all words in a review:

Sum_Score =
n

∑
k=0

(
n
k

)
Wk (1)

After that the eighth step shows the most important feature of sentiment analysis, which is
the sentence type of the review. The sentence type of the review shows that whether the review is
considered positive, neutral or negative. The sentence type of this review is positive obtained by using
SentiWordNet dictionary. In the last three lines, the code executes that how much a review is positive,
neutral or negative and the final result shows that it is positive because it has the highest positive
score percentage.

3.7. Used Fuzzy Logic System

For finding the customer loyalty to a product, a fuzzy logic system is used. This system is based
on the fuzzy set theory [36]. The fuzzy sets and rule-based approach provides high performance and
working for the sentiment analysis purpose. It provides a degree of truth and human reasoning. It is
also used in decision making techniques. The used fuzzy logic system is based on following principles
of fuzzy logic [37]:

(1) In fuzzy logic, accurate reasoning is experimented as a case of limit for approximate reasoning.
(2) All relation used are the relation of degree in fuzzy logic.
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(3) It also provides that each logical method can be fuzzified.
(4) Fuzzy logic restricts on the choice of on a collecting the variables and knowledge is understood

as a flexible collection.
(5) The result of inference system is broadcasting of flexible limitation.

The used fuzzy logic system introduces fractional truth values, between YES and NO.

A = {(x, uA(x))| x ∈ X} (2)

Here, Equation (2) shows that μA (X) is called the membership function or grade of membership,
it is also a degree of truth, of x in A that plots X to the membership position M. While M contains only
the two points 0 and 1, A is non-fuzzy and μA (X) is alike to the distinctive function of a non-fuzzy set.
Zero degree elements of membership are usually not taken. It can show the fractional membership to
that set. It shows that the element from the set has particular degree and some particular membership
functions are used that provides the degree of membership of fuzzy logic. These membership functions
are the trapezoidal membership function, triangular membership function, Bell membership function
and Gaussian membership function. In the proposed research, we apply a triangular membership
function which is completely discussed in fuzzy membership functions approach. The core of a
membership function for some fuzzy set A is defined asthat area of the universe that is specified by the
whole membership in the set A. It shows that the core consists of those elements x of the universe such
that μA(x) = 1. The membership function’s support for some fuzzy set A is defined as the area of the
universe that is indicated by nonzero membership in the set A. Figure 4 shows, the support contains
by the elements x of the universe such that μA(x) > 0.

Figure 4. Support of element x in a membership function.

3.7.1. Fuzzification

The first step in the used fuzzy logic systems is to recognize the input and output variables.
In this process, the crisp input data is converted into a fuzzy set with the membership functions [38].
Input variables of the fuzzy logic system are represented on the fuzzy sets by use of linguistic terms,
membership functions and linguistic variables. The linguistic terms and variables are frequently the
terms or the complete sentences of used natural language. When we are setting the linguistic variables,
we are confident enough that no numerical values are used in the linguistic variables. The two vital
points Fuzzy sets and fuzzy membership functions which are needed to be used to obtain the fuzzified
values. The conversion of crisp input values into fuzzy values are performed by use of Membership
Functions and this method of transformation is known as fuzzification. Every membership function
signifies a feature of the linguistic variable being fuzzified. As we take this the membership function
approach of linguistic variables in our research, we take “Sentiment Score” and “Customer Loyalty”
as an input variables which may “Pos” “Neu” “Neg”, and the membership function of linguistic
variable “Customer Loyalty” is “Pesudo” and “Latent”, ”True”. We described the fuzzified set by
following relation:

A = μ1K(x1) + μ2K(x2) + . . . + μnK(xn) (3)
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In equation (3), the fuzzy set K(xi) is called as kernel of fuzzification. To apply this technique,
μA is constant and xA is being converted to a fuzzy set K(xi). This equation is used in the fuzzification
process in which Universe of Discourse and membership function are being applied.

In our paper, we take the sentiment analysis score as an input linguistic variable and customer
loyalty as an output linguistic variable as shown in Table 3.

Table 3. Input and output Linguistic Variables for proposed method.

Type Linguistic Variables

Input Linguistic Variable Sentiment analysis score (SA)
Output Linguistic Variable Customer loyalty (LO)

We again define linguistic terms for each input and output linguistic variables. The input linguistic
variable is sentiment scores and we assigned mainly three linguistic terms. These linguistic terms are
Positive, neutral, negative as shown in Table 4.

Table 4. Input Linguistic Variable and Terms.

Type Linguistic Variable Linguistic Terms

Input Sentiment analysis score (SA) {Positive, neutral, negative}

The output linguistic variable we taken Customer loyalty (LO) also have three linguistic terms,
these linguistic terms are True loyalty, pseudo loyalty and latent loyalty, shown in Table 5.

Table 5. Output Linguistic Variable and Terms.

Type Linguistic Variable Linguistic Terms

Output Customer loyalty (LO) {True loyalty, pseudo loyalty, latent loyalty}

3.7.2. Membership Function

For taking decision on the input crisp values, a triangular membership function is used in our
approach. The function of fuzzy sets that are achieved by crisp values of linguistic variables and show
the relationships of these crisp values to the set are divided as a membership function. It is actually
degree of truth that occurs between 0 and 1. There are many different kinds of membership functions,
i.e., triangular MF, Trapezoidal MF, Gaussian MF, etc. It is used to plot the values of non-fuzzy sets to
linguistic fuzzy sets.

Triangular Membership Function: In our research we use a triangular membership function which
describes in fuzzy membership functions approach as shown in Figure 5. Fuzzy logic involves precise
logical operations and these are little bit unlike those used in logic of approximate degree of truth,
they are conjunction, disjunction and negation. In order to get the smallest values from the all available
fuzzy variables, we use a minimum function known as conjunction.

 
Figure 5. Graphical representation of Triangular Membership Function.
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Figure 5 shows a triangular membership function. For example, we take three fuzzy variables a, b
and m and also with their truth values of 0.3, 0.6 and 0.9, correspondingly; as shown in Equation (4):

a ˆ b ˆ m = min(a; b; m) = 0:3. (4)

Just like the last solved example, we take the max function now just as we find the min function.
Here, disjunction involves the maximum function as shown in Equation (5):

a _ b _ m = max(a; b; m) = 0:9. (5)

In our research, we use a triangular membership function. We use this membership function
because it maintains three variables and creates a relation between them. Here we categorize sentiments
analysis score into three linguistic terms that identifies the sentiment scoring of reviews. These
linguistic variables are used for evaluating customer loyalty. These terms are Positive (a), Negative (b),
Neutral (m). Here we take only the subjective reviews for sentiment analysis because subjective reviews
can easily state the opinion of the consumer. Here we prefer triangular membership function also
known as trimf because we take three linguistic variables, i.e., a, b and x, where trimf describe by a
lower limit a, an upper limit b, and a value c, where a < c < b as shown in Equation (6).

Triangular(x; a, b, m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x < a 0

a ≤ x ≤ m (x−a)
(m−a)

m ≤ x ≤ b (b−x)
(b−m)

m ≤ x 0

(6)

where a, b and m represent the x-coordinates for triangle, x represents the crisp value from the isolated
variable fuzzy universe of discourse. We classified the sentiment score into three parts:

• positive score;
• neutral score;
• negative score.

We use these sentiment scores in order to evaluate loyalty of customers towards online products.
In our proposed method, we use three types of loyalty which distinguish how much the consumer
is loyal towards the product and services and their values lies according the fuzzy logic triangular
membership function.

• In Pseudo Loyalty, the value in trimf lies between 0.0 < x < 0.30 because the consumer is not
long-lasting whether they are buying from you in the future or choose any other opportunity. It is
referred as low loyalty.

• In Latent Loyalty, the value in trimf lies between 0.30 ≤ x < 0.70 because the consumer prefers not
to purchase anything from any brand but if they are going to purchase they will always buy from
one brand. It is referred as medium loyalty.

• In True loyalty, the value in trimf lies between 0.70 ≤ x ≤ 1.0 because the consumer is only loyal to
a product. They are trustworthy and always refer the product to their family, friends and relatives.
They will never switch from the brand. It is also known as High Loyalty.

Here we take three different types of customer loyalty which are denoted by triangular
membership functions as shown in Equation (7):

LO(x) =

⎧⎪⎪⎨⎪⎪⎩
if 0.0 ≤ x < 0.3 PseudoLoyalty

if 0.3 ≤ x < 0.7 LatentLoyalty

if 0.7 ≤ x ≤ 1.0 TrueLoyalty

(7)
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Fuzzy Rules Based System: Three most common types of fuzzy rule based systems, which are
named as Mamdani, Sugeno, Tsukamoto, etc. These first two kinds of fuzzy rule-based systems are
used to executed on regression problems and the output of these systems is a real value, and the third
type is used to implement to problems which relates to categorization. We use Mamdani inference
system in our research.

Mamdani Fuzzy Inference System: Mamdani fuzzy inference system is proposed by Ebrahim
Mamdani it in 1975. It is most general and highly useful approach used in the research methods. It was
the first control system constructed by the use of fuzzy set theory. It has six basic stages:

(1) Building of fuzzy rules.
(2) By using membership function, find fuzzification of input.
(3) The fuzzified inputs are shared by following the fuzzy set theory.
(4) The allocation of rule strength and output membership function to find results of the rules.

MISO (Multiple Input Single Output) and MIMO (Multiple Input Multiple Output) systems is
used in Mamdani FIS.

(5) In order to obtain an allocation of output just by sum up the outcomes.
(6) Output membership function can be Defuzzified.

In this study, we use Mamdani fuzzy inference: Mamdani systems are instinctive that means it is
usually based on what a person feels about something to be true even without knowing a reasonable
answer. It is fully appropriate to human input.

We used Mamdani rule based systems which is being implemented on MATLAB. When we plot a
graph for membership functions, the curve of membership function is built in MATLAB and it is used
to plot membership values between 0 and 1 where 0 shows the starting point and 1 is the peak point.
The values occurs between 0 and 1 represents that how input is plotted to membership function value.
The membership function for sentiment analysis is given in Equation (8):

A = {x, pA(x), oA(x), nA(x)| x ∈ X} (8)

where “x” is the review taken from the file, “pA(x)” is the membership of positive reviews, oA(x) is the
membership of neutral reviews and nA(x) is the membership of negative reviews.

We take sentiment analysis as an input, which shows that the value lies between

• 0.0 to 0.3 is taken as negative.
• 0.3 to 0.7 is taken as neutral.
• 0.7 to 1.0 is taken as positive.

We plot a graph showing these sentiment values and terms by using MATLAB which is
given below:

By taking the input linguistic variables- Sentiment analysis score. The Figure 6 shows indicates
that Sentiment analysis score greater 0.7 is positive. Hence, all scores lie between 0.7 and 1 will always
be positive.

Fuzzy Rules: The backbone of any fuzzy logic system is its fuzzy rules. By using these rules,
we can easily describe the controlled output and the conclusion is taken. These are simple IF-ELSE
rules. Suppose we have a variable x included in the problem (which is our sentiment score), so the
loyalty output has its own membership function which is low, medium and high e.g., when we apply
rules (shown in Table 6), it will give:

• If x is low THEN loyalty is low.
• If x is medium THEN loyalty is medium.
• If x is high THEN loyalty is high.
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Table 6. The fuzzy rules for calculating Customer Loyalty.

S# RULE

1 if (“SENTIMENT SCORE IS NEGATIVE”) then CUSTOMER LOYALTY is “PSEUDO”
2 if (“SENTIMENT SCORE IS NEUTRAL”) then CUSTOMER LOYALTY is “LATENT”
3 If (“SENTIMENT SCORE IS POSITIVE”) then CUSTOMER LOYALTY is “TRUE”

 

Figure 6. The triangular fuzzy membership function plot for sentiment analysis as inputs.

Table 6 defines rules which are written in the form of given technique in MATLAB. The given
figure shows that if our sentiment score is positive, i.e., it lies in the values between 0.7 to 1, then our
loyalty is true.

By following these rules, suppose the degree of membership for x is 0.45 to the MF medium, then
the loyalty will be also 0.45 medium.

3.7.3. Defuzzification

Defuzzification is the method which generates quantifiable results in crisp logic which is achieved
from fuzzy sets and membership functions with consistent degrees. It is the method that plots a fuzzy
set to a crisp set. It uses a set of rules that change a number of variables into a fuzzy result. It produces
computable results which contains fuzzy sets and membership functions. It performs mapping output
of fuzzy sets into crisp values. Here, we take triangular MF which defines the exact conclusions. If the
degree of the membership function is not equal to 1, we have to use a trapezoidal shape instead of
a triangle shape. Here are some rules which tell us relation between sentiment score and type of
loyalty [14].

The last step in the fuzzy logic system is the defuzzification. After the implementation is complete
in the inference step, we achieve an output value and the output value obtained from it is known
as fuzzy value. In order to signify this fuzzy value in a proper way, we required to convert it into
Crisp Output Value. The process of converting the fuzzy value into Crisp Output Value is known
as Defuzzification

Output Membership Function for “Customer Loyalty”: We convert the fuzzy output to the crisp
output which is formed by the steps of fuzzy inference system, the Customer Loyalty Membership
function is taken as output MF. It consists of the different types of Customer Loyalty which are
calculated by firm value of sentiment score. Such as, if sentiment score is in between 0.75 then
loyalty will also be increase at the almost same level of 0.75 and this type of loyalty is known as
“True Loyalty”. We apply defuzzification rules to clarify the relation process between sentiment score
and customer loyalty.
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Defuzzification rules: Here are some rules of defuzzification where ‘x’ denotes the sentiment
score while ‘y’ denotes the type of loyalty:

if (0.0 ≤ x < 0.30), then y = ‘Pseudo Loyalty’

if (0.30 ≤ x < 0.70), then y = ‘Latent Loyalty’

if (0.70 ≤ x ≤ 1.0), then y = ‘True Loyalty’

Figure 7 shows a graphical representation of triangular membership functions in which we
consider sentiment score on the x-axis while membership on the y-axis. These score of sentiments
analysis shows how much loyalty we achieved from the reviews of the online products. We noticed that
the most of the sentiment values occurs between 0 and 1; this shows our graph gives almost positive
results. Here is algorithm which presents the functionality and working of triangular membership
function graph. This graph shows x as a vector and three points a, b and c are the scalar, where “a” is
the lower limit from where our sentiment score starts increasing, it is also known as “min” function
while “b” is the peak limit or level from the sentiment score are stop increasing and it is also known
as “max” function and “c” is the middle point or the value where our sentiment score achieve its
highest point, such as in the following chart, the curve of the graph is at the highest level of 0.7, which
means that most of our reviews lies at this point between positive and neutral. Here x-axis denotes the
sentiment score lie between 0.0–1.0 and the y-axis denotes the values of membership.

 

Figure 7. The triangular fuzzy membership function plot for loyalty as an outputs.

Algorithm:

x = 0:0.1:1;
y = trimf(x, [0.30 0.70 1.0]);
plot(x,y)
xlabel(‘trimf, P = [0.3 0.7 1.0]’)
ylim([−0.05 1.05]

4. Experiments and Results

The results can be obtained by the use of algorithm of SentiWordNet and fuzzy logic. We collect
reviews as an input. These are opinion sentences collection which is collected from the website
www.Amazon.com and these are the reviews or comments expressed by the customers. We collect
and store 1000 comments for two different Apple products. Once the reviews are taken out, then we
applied pre-processing on it, parsed, tokenize and lemmatize these reviews. These sentences show
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positive, negative and neutral type sentiments scores. So the results of sentiments scores are measured
by using SentiWordNet 3.0 software. Here we show sentiment analysis process of a single review and
we applied these above mentioned techniques in Java by using the platform “Eclipse”. We choose this
software because it takes less effort and made our task easier. We take simple review as an input and
achieve our desired results.

We take the complete results of the sentiments analysis achieved by the reviews. We take a
sentence level approach in which we take a single review and apply sentiment analysis on it. In order
to calculate the percentage of total number of positive reviews, total number of neutral reviews and
total number of negative reviews, we collect the total results obtained from sentiment analysis and
take their percentage. From the above mentioned results shows that we have 320 reviews are positive,
105 are neutral reviews while 75 are negative reviews from the collection of 500 reviews. In order to
calculate the percentage of positive, neutral and negative, we use a following formula.

• Positive Sentiment Percentage:
Positive (%) = (Number of Neutral Sentiments/Total Number of Reviews) × 100 = (320/500) × 100
Positive (%) = 64%

• Neutral Sentiment Percentage:
Neutral (%) = (Number of Neutral Sentiments/Total Number of Reviews) × 100 = (105/500) × 100
Neutral (%) = 21%

• Negative Sentiment Percentage:
Negative (%) = (Number of Negative Sentiments/Total Number of Reviews)× 100 = (75/500)× 100
Negative (%) = 15%

Table 7 shows the accuracy of different types of reviews. We can more explain the number of
Positive, neutral and negative reviews in the form of bar graph and their corresponding percentages in
the form of pie graph of Apple iPhone 6s plus as shown in Figures 8 and 9.

Table 7. Overall percentage of Sentiment Analysis of Samsung Galaxy S8.

Sentiment Positioning Sentence Level Accuracy

Positive 94%
Negative 91%
Neutral 85%

 
Figure 8. Bar chart for the number of reviews of Apple iPhone 6s plus.
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Figure 9. Pie chart for the sentiment score Apple iPhone 6s plus (In percentage).

We also use fuzzy logic for the evaluating the loyalty with sentiment scores. We apply the rules
which are simulated in MATLAB, these rules show the relation between sentiment score with types of
loyalty, e.g., we see in the following figure that if we have sentiment score say 0.5 than our loyalty is
also 0.5. Sentiment score are directly proportional to the type of customer loyalty, we can also say that
if our sentiment score is 0.5, it is considered as neutral, the loyalty also lies at 0.468, very close to the
value of sentiment score and this type of loyalty is considered as Latent loyalty (see Figure 10).

 
Figure 10. Rule Inference System in MATLAB.

We reached the conclusion that the online customers of Apple iPhone 6s plus mobile are very loyal
as compared to other mobiles. It achieves the loyalty score of 64%. The features of Apple iPhone 6s plus
are more reliable and their most of the online customers are satisfied with this product and services
as well. It supports all the new versions and feature such as camera, memory and battery timings, etc.
Table 8 shows a comparison of the results of our approach with the results of previous approaches.

The results shown in Table 8 represent that previous approaches mainly performed in precision
that varies from 58.2 to 87.5% whereas recall for the previous approaches is quite low and ranges
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from 52.0 to 79.44%. Similarly, the F-Score of previous approaches is also lower 53.0 to 77.98%.
Our approach performs better as precision of our approach is 89.32%, recall is 80.36% and F-Score
is 83.69%. The improvement in precision is minor however, the major improvement is in recall
and F-measure.

Table 8. Comparison of results with other approaches.

Sr. No. Work Application Precision % Recall % F-Score %

1 Grabner, et al. [2] Sentiment Analysis of customer reviews 83.0 40.0 53.0
2 Bagheri, et al. [3] Sentiment Analysis of customer reviews 87.5 65.0 70.3
3 Guzman, et al. [39] Sentiment Detection on Twitter 58.2 52.0 54.9
4 Thet et al. [40] Sentiment Analysis of Movie Reviews 76.5 79.44 77.98
5 This Approach Sentiment Analysis for Customer Loyalty 89.32 80.36 83.69

The results of the presented approach for measuring customer loyalty to a product using
sentiment analysis are shown in Figure 11 and the results are also compared with the previous
approaches. The results show that our approach performs better than the previous approaches
available in literature.

 

Comprison with previous appraoches

Figure 11. Rule Inference System in MATLAB.

A limitation of the presented implementation is that it processes only English language text that
is grammatically correct and has no spelling mistakes in text.

5. Conclusions and Future Work

This paper addresses an important problem of measuring customer’s loyalty to a specific product.
Previously, general purpose sentiment analysis of tweets and posts are carried out however a
task-oriented sentiment analysis of users’ reviews of a product to find key features liked by the
users and their confidence level is a new idea. In this paper, we presented a novel idea of using a fuzzy
logic approach for measuring customer’s loyalty to a product with the help of a sentiment analysis
score. We use a Fuzzy logic approach which used membership functions and rule-based system of
fuzzy sets which is used classifies the types of loyalty. It attained the average accuracy of 94% of
positive which shows the number of customers which are loyal to the e-commerce products.

In this study we have experimented with the small sized reviews that are processing in separate
sentences. In future, we aim to extend the ability of the implementation to process and handle large
sized text. In the future, this work can be extended by considering both sentence types, i.e., subjective
as well as objective. It aims to achieve more accuracy by these techniques. It also improves the speed
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when dealing with a large amount of data. Additionally, every organization or e-commerce site can
use sentiment analysis because it is a very beneficial technique and, by using this, organizations take
their business at the peak and will grow rapidly.
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Abstract: In the real world, there commonly exists types of multiple attribute decision-making
(MADM) problems with partial attribute values and weights totally unknown. Symmetry among
some attribute information that is already known and unknown, and symmetry between the pure
attribute set and fuzzy attribute membership set can be a considerable way to solve this type of
MADM problem. In this paper, a fuzzy attribute expansion method is proposed to solve this type of
problem based on two key techniques: the spline interpolation technique and the attribute weight
reconfiguration technique, which are respectively used for the determination of attribute values
and the reconfiguration of attribute weights. The spline interpolation technique to expand attribute
values can enhance the performance of some regression methods and clustering methods by the
comparisons between the results of these methods dealing with practical cases with and without the
application of the technique, which further illustrates the effectiveness of this technique. For MADM
problems with partial attribute values and weights totally unknown, compared with traditional fuzzy
comprehensive evaluation (FCE), FCE with the application of fuzzy attribute expansion method can
obtain results more similar with the ones when all attribute values and weights are known, which is
proved by the practical power quality evaluation example.

Keywords: fuzzy set; fuzzy attribute expansion; MADM

1. Introduction

Since fuzzy set was proposed by Zadeh [1] in 1965, fuzzy theory is used to quantitatively depict
the fuzziness of processes or attributes of things, especially for multiple attribute decision-making
(MADM) in some real-life problems.

The applications of fuzzy theory and related techniques in the MADM area can be basically
classified into two categories: (1) Applications based on modifications of fuzzy set theory and its
extension theories. Fuzzy comprehensive evaluation (FCE) is one of the most classic applications of
fuzzy set theory to MADM. One-level FCE can effectively deal with an evaluation problem with a small
number of evaluation index parameters (also called attributes). Zhao [2] proposed an electrocardiogram
signal quality evaluation method based on one-level FCE and simple heuristic fusion. Yang [3]
proposed a method to evaluate exposure, sensitivity, and adaptive capacity based on one-level FCE
for better flood vulnerability assessment. Multi-level FCE is preferred as the number of attributes is
large. To map porphyry-copper prospectivity in the Gangdese district, Tibet, western China, Zuo [4]
established a two-level binary geoscience FCE including favorable rocks, intrusive rocks, faults, and
geochemical anomalies. Besides, FCE also has been successfully applied to other MADM problems,
e.g., image analysis [5,6], risk assessment [7,8], energy management [9,10], personnel selection [11], etc.
As a successful extension of fuzzy set, intuitionistic fuzzy set (IFS) was initiated by Atanassov [12]. IFS
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uses membership degree, non-membership degree, and hesitancy degree to deal with fuzziness and
uncertainty information, which is very useful for the resolution of MADM problems with incomplete
attribute weights and uncertain attribute information [13–17]. Xu [13] proposed the models for MADM
with intuitionistic fuzzy information based on IFS theory. Wan [14] proposed a new risk attitudinal
method for IFS and applied it to the MADM of the teacher selection problem. Furthermore, with
the initiation of interval-valued intuitionistic fuzzy set (IVIFS) by Atanassov [18], MADM based
on IVIFS becomes a hot topic for researchers [19–27]. The applications of type-2 fuzzy sets [28–30],
hesitant fuzzy sets [31,32], and dual hesitant fuzzy linguistic term sets [33] were also reported recently.
From these applications, we can find that the extension theories provided researchers with more
and more profound theoretical models of fuzzy theory to depict and solve the complicated real-life
MADM problems. (2) Applications based on the combination between fuzzy theory and other MADM
methods. There are about 20 MADM methods in the literature [34]. The analytic hierarchy process
(AHP) [35,36] and technique for order of preference by similarity to ideal solution (TOPSIS) [37–39] are
two of the most popular methods combined with fuzzy theory in the area of supplier evaluation [40].
These applications are based on the methodology that one MADM method can be modified by the
combination of the other MADM methods. It could be useful in most cases, but the disadvantage is
that an increase in computational complexity is also obvious, which is rarely discussed by researchers.

The applications mentioned above focus on the representation and calculation of fuzziness
and uncertainty of attributes in MADM problems, the attribute information of which is completely
given. As the deepening of understanding of MADM problems grows, researchers began to study
MADM problems with incomplete attribute information in recent years. Here, we call such property
of attribute information as the incompleteness of attribute, which has two forms, i.e., incomplete
weights or values of partial attributes. For the type of problems with incomplete attribute weights
information, Park [41] provided mathematical tools for interactive MADM from the perspective of
pairwise dominance. Xu [42] determined the attribute weights by the optimization model based on the
maximizing deviation method. Wei [43] proposed a gray relationship analysis method to calculate the
weights for IFS. Bao [44] proposed an intuitionistic fuzzy decision method based on prospect theory
and the evidential reasoning approach. For the type of problems with incomplete attribute values and
weights, Eum [45] established dominance and potential optimality to evaluate whether the alternative
outperforms for a fixed feasible region denoted by the constraints. There also exists the third type of
MADM problems with some partial attribute values and weights totally unknown, i.e., no constraints
of incomplete attributes, which is the extreme type of the above two types of problem. Actually, this
type of problem is common in the real world, e.g., decision maker could not provide some attribute
values and weights because of discreet principles or cognitive impairment, or some attribute values
could not be obtained because of the failure of the data acquisition system, or there exists some unclear
or undefined attributes of new things or processes. Thus, it is necessary to study and find out a solution
to these type of MADM problems.

In the real world, attributes are partially correlated and continuous in the attribute space. Hence,
if the fuzzy mapping is linear, the fuzzy values and weights of these attributes are also continuous,
which means that for the correlated attributes of things or processes, fuzzy values and weights of
some unknown attributes can be approximately estimated by the ones of some known attributes.
Thus, based on the above new cognition of the mapping relationship between the objective world
and fuzzy attribute set, we propose a fuzzy attribute expansion method, which consisted of the spline
interpolation technique and attribute weight reconfiguration technique, to deal with the MADM
problems with some partial attribute values and weights totally unknown.

The rest of the paper is organized as follows: Section 2 provides some basic definitions about the
fuzzy set and some related sets. In Section 3, the formulaic expression of the third type of MADM
problem is given based on the definitions in Section 2. The geometric analysis of the pure attribute
set (PAS), the measurable attribute set (MAS), and the fuzzy attribute membership set (FAMS) of
the problem is conducted in Section 4, which is the theoretic basis of the fuzzy attribute expansion

112



Symmetry 2018, 10, 717

method proposed in Section 5. Applications in regression, clustering, and power quality evaluation
are presented in Section 6. In Section 7, the conclusions of the paper are given.

2. Basic Definitions

In this section, some basic concepts related to the method proposed in this paper are introduced
and defined.

Definition 1. ([1]) A fuzzy set A in the universe of discourse X = {x1, x2, · · · , xn} is defined as follows:

A = {〈x, μA(x)〉|x ∈ X }, (1)

where μA(x) : X → [0, 1] is the membership function.

Definition 2. Assume that x has m kind of striking attributes (denoted as ax
j (j = 1, · · · , m) ), if a set Ux

p of x
satisfying the following conditions:

(a) ∀ax
j (j = 1, · · · , m) ∈ Ux

p

(b) ax
i ∝ ax

j (i 	= j),

(c) ax
i
∼= hi

(
ax

1, · · · , ax
i−1, ax

i+1 · · · , ax
m
)
,

where hi is relationship function, then Ux
p is defined as the pure attribute set (PAS) of x.

If t (t� m) kind of attributes of x are only known, then define these t kind of attributes as knowable fuzzy
attributes (KFA) and the other (m− t) kind of attributes as unknowable fuzzy attributes (UFA).

Definition 3. If a set Ux
m of x satisfying the following conditions:

(a) ∀ax
j (j = 1, · · · , m) ∈ Ux

p,

(b) ∀ax
j =j

(
ax

j

)
(j = 1, · · · , m) ∈ Ux

m, j

(
ax

j

)
: ax

j → R1×1 ,

where j is an unknown function to measure the attribute j in the real world, ax
j is the projection of attribute

vector ax
j in some kind of space and expressed in numerical form, then Ux

m is defined as the measurable attribute
set (MAS) of x.

Definition 4. If a set Ux
f of x satisfying the following conditions:

(a) ∀ax
j (j = 1, · · · , m) ∈ Ux

p,

(b) ∀ax
j =j

(
ax

j

)
(j = 1, · · · , m) ∈ Ux

m,

(c) ∀ãx
j = νj

(
ax

j

)
(j = 1, · · · , m) ∈ Ux

f , νj

(
ax

j

)
: ax

j → [0, 1] ,

where νj

(
ax

j

)
: ax

j → [0, 1] is the attribute membership function, ãx
j is fuzzy membership grade for attribute j

of x, then Ux
f is defined as the fuzzy attribute membership set (FAMS) of x.

For example, if ax
j is the volume attribute of a box, ax

j could be the length of the box and the length unit is
meter, vj is the length attribute membership of satisfaction for customer, then ãx

j is the fuzzy membership grade
of length of the box.

3. Problem

In this section, some further definitions are defined based on the following theorems. Then, the
main problem this paper focuses on is raised and expressed by these definitions.

Theorem 1. PAS and FAMS of x are equivalent: PAS ∼ FAMS.
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Proof. ∵ ∀ãx
j = νj

(
ax

j

)
(j = 1, · · · , m), ∀ax

j =j

(
ax

j

)
(j = 1, · · · , m). ∴ ∀ãx

j =

vj

(
oj

(
ax

j

))
(j = 1, · · · , m), which means there exists one-to-one correspondence (bijection) from PAS

to FAMS. Besides, |PAS| = |FAMS| = m. Thus, PAS ∼ FAMS is proved. �

Theorem 2. PAS and FAMS of x are countable sets.

Proof. Choose random two attributes from FAMS of x and denote them as ãx
1 and ãx

m, the other
attributes are ranked by the similarity with ãx

1 and ãx
m from large to small and inserted between ãx

1 and
ãx

m, which comes out as the sequence

S̃x = 〈ãx
1, ãx

2, · · · , ãx
m〉.

By this method to rank PAS of x, it also comes out as the sequence

Sx = 〈ax
1, ax

2, · · · , ax
m〉.

Thus, PAS and FAMS of x are both countable sets. �

Definition 5. Based on Theorem 2, the attribute vector sequence of x is defined as follows:

Sx = 〈ax
1, ax

2, · · · , ax
m〉. (2)

The measurable attribute sequence is defined as:

Sx =
〈

ax
1, ax

2, · · · , ax
m
〉

=
〈

ax
i−1, · · · , ax

j−1, · · · , ax
k−1

〉
︸ ︷︷ ︸

Sx
KFA

+
〈

ax
i , · · · , ax

j , · · · , ax
k

〉
︸ ︷︷ ︸

Sx
UFA

. (3)

The fuzzy measurable attribute sequence of x has the following form:

S̃x =
〈

ãx
1, ãx

2, · · · , ãx
m
〉

=
〈

ãx
i−1, · · · , ãx

j−1, · · · , ãx
k−1

〉
︸ ︷︷ ︸

S̃x
KFA

+
〈

ãx
i , · · · , ãx

j , · · · , ãx
k

〉
︸ ︷︷ ︸

S̃x
UFA

. (4)

Definition 6. It is affirmative that KFA and UFA are correlated:

S̃x
UFA ∝ S̃x

KFA,

consider the function relations among these attributes is undefined:

ãx
j−1 = f

(
ãx

j

)
,

where function f has no exact analytic expression, so UFA can only be depicted by approximate estimation:

ˆ̃S
x
UFA
∼= g
(

S̃x
KFA

)
,

where function g is the function for approximately estimating S̃x
UFA with S̃x

KFA as the independent variable.

Based on the above definitions, the main problem this paper focused on can be described
as follows:
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Problem description: Given a set of fuzzy membership grades of KFA:{〈
i, S̃xi

KFA

〉
|xi ∈ X, i = 1, · · · , n

}
,

evaluate xi under the following conditions:

(a) The length of S̃xi
KFA is t, t� m;

(b) The sequence of attribute weights is λ = 〈λ1, λ2, · · · , λt〉;
(c) Evaluation value of xi falls into the interval [0, 1], the greater the evaluation value is, the higher

the evaluation is.
(d) The evaluation values are as similar to those obtained under the condition that some UFAs are

given as possible.

Research about the problem with all conditions as mentioned above is rarely conducted. In fact,
the condition (d) is an important index to evaluation. To satisfy condition (d), we suggest a fuzzy
attribute expansion method to evaluate xi: before the final evaluation, use KFAs to approximately
estimate UFAs.

4. Geometric Analysis of PAS, MAS, and FAMS

In this section, the geometric analysis of PAS, MAS, and FAMS of the problem is conducted. Firstly,
the generalized geometric structures (GGS) of PAS, MAS, and FAMS are modeled and represented
in the form of a diagrammatic sketch. Secondly, the geometric relationship between GGS of PAS and
GGS of FAMS is analyzed. Thirdly, GGS of x in FAMS can be approximately estimated by the S̃x

KFA of
x based on interpolation technique is discussed.

These three kinds of sets depict attributes, the relationships between attributes, and attribute
membership degrees from different spatial cognition. PAS is an abstract set to characterize nonlinear
relationships between attributes, especially the vague attributes. Each vector represents different
attributes, all of the vectors represent x. MAS and FAMS are the numerical mapping of PAS. In fact,
they are the projection of the PAS in the distance space. Both of them fail to show the attribute
correlation because of the loss of vector directivity.

To understand these three kinds of sets intuitively, the generalized geometric structures (GGS) in
different sets are modeled based on Theorem 2 as follows:

GGS in PAS: Use different dotted lines with direction to represent different attributes. These
dotted lines are straight lines or curves, which depends on the linear relationship between each of
attributes. To reduce complexity, choose one attribute as the unified reference attribute, then compare
other attributes with it; if the relationship is linear (or nonlinear), the dotted lines of these attributes
are straight lines (or curves). PAS of x is depicted by the combination of the m vectors whose ends are
located on the curves, as Figure 1 illustrates. The surface consisting of all vector ends is defined as the
GGS of x in PAS. The GGS in PAS is a smooth and continuous surface.

GGS in MAS: Use different line segments to represent the projections of different attributes in
distance space (such as Euclidean space) which are arranged in sequence, such as the integer sequence.
Sx

KFA and Sx
UFA are respectively indicated with solid line segments and dotted line segments. MAS of x

is depicted by the combination of m line segments, as Figure 2 illustrates. The dotted curve consisting
of m line segment ends is defined as the GGS of x in MAS.

GGS in FAMS: Use different line segments to represent the projections of different measurable
attributes in [0, 1], which are arranged in the same sequence with MAS. S̃x

KFA and S̃x
UFA are respectively

indicated with solid line segments and dotted line segments. If the fuzzy membership function is
linear, FAMS of x is depicted by the combination of m line segments, as Figure 3 illustrates. The dotted
curve consisting of m line segment ends is defined as the GGS of x in FAMS. The GGS in FAMS is a
smooth and continuous curve.
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Figure 1. Illustration of generalized geometric structures (GGS) in a pure attribute set (PAS).

Figure 2. Illustration of GGS in a measurable attribute set (MAS).

Figure 3. Illustration of GGS in a fuzzy attribute membership set (FAMS) with a linear fuzzy
membership function.
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From the above set models, it is easy to intuitively understand that MAS and FAMS are the
low-dimensional embedding of PAS. The value ranges of set elements are different for MAS and FAMS.
FAMS is linear mapping of MAS, which is determined by the fuzzy membership function of each
attribute. In FAMS, some fuzzy attribute membership grades may approach 1 while the value of it in
MAS is quite small or even negative. Furthermore, after defining and studying the GGS of x in these
three sets, we find that GGS of x in PAS is a surface, while in MAS it is a curve and in FAMS it is a
curve. The curves intercept the surface.

Thus, if we want to depict the GGS of x in PAS (the surface) more precisely to solve the problem
raised at the beginning of the paper, the GGS of FAMS (the curve) should be calculated more precisely
by the S̃x

KFA of x, which is a feasible and considerable way. Interpolation technique is a commonly
used and effective technique to approximate estimation. From all of the interpolation techniques, the
spline interpolation has the best smoothing ability which is the most important for the estimation
for the curve. Since the GGSs in PAS and FAMS are smooth and continuous, the spline interpolation
technique can be used as the interpolation technique to approximately estimate the GGS in FAMS.

5. The Fuzzy Attribute Expansion Method

In this section, the new fuzzy attribute expansion method to solve the problem is proposed.
The method is basically consisted of two sub methods: (1) the method to approximately estimate UFA
and (2) the method to generate the final evaluation. The detailed descriptions of these methods are
given as follows.

5.1. The Technique to Approximate Estimate UFAs Based on Interpolation

The basic idea of the method is: UFAs can be approximately estimated by inputting specified
attribute sequence numbers into the interpolation function, which is the result of applying the curve
interpolation technique to KFAs. Notably, the UFAs and KFAs here are correlated. Otherwise, the
technique will not work. Basically, this technique can be divided into five steps.

Step 1: Rearrange S̃x
KFA. For new samples, rearrangement of S̃x

KFA based on Theorem 2 is needed.
Step 2: Determine the attribute sequence number. There are no special restrictions on the selection

of sequence number form. Normally, we can simply number the attribute sequence with the form of
the positive integer sequence:

NKFA = 〈1, 2, · · · , t〉. (5)

Step 3: Generate the interpolation function of KFAs. Choose a suitable interpolation. Taking

NKFA as the independent variable E =
[

e1 e2 · · · et

]T
and S̃x

KFA as the dependent variable

Y =
[

y1 y2 · · · yt

]T
, minimizes the objective:

J = p∑
i
(yi − s(ei))

2 + (1− p)
∫ (d2s

de2

)2

de, (6)

where s is the smoothing spline, p is smoothing parameter which is defined between 0 and 1 (p = 0.95
in this paper). When the optimum solution is found, the finalist s is the interpolation function.

Step 4: Generate UFA number sequence.

NUFA = 〈1 + α1, 1 + α2, · · · , 1 + αi, · · · , 1 + αr〉︸ ︷︷ ︸
r

, (7)

whose length is r with 1 + α1 as the start and 1 + αr as the end, 1 + α1 ≥ 1, 1 + αr ≤ t, r ≥ m− t. For
different problems, r is different and determined by the heuristic knowledge, which can be shown
in the examples in Section 6. αr is determined by two adjacent attributes of the attribute sequence.
The sequence is distributed evenly and linear, step size αi should be fixed as:

117



Symmetry 2018, 10, 717

αi = i×
[

t− 1
r

]
, (8)

and the UFA number sequence becomes:

NUFA = 〈1 +
[

t− 1
r

]
, · · · , 1 + r×

[
t− 1

r

]
〉. (9)

Step 5: Approximately estimate UFAs finally. Input NUFA into s, so the UFA membership grades
sequence can be estimated as:

ˆ̃S
x
UFA = s(NUFA), (10)

and the total estimated membership grades sequence is:

ˆ̃S
x

=
〈

ãx
1, ˆ̃a

x
1+α1

, · · · , ˆ̃a
x
1+αj

, · · · , ãx
i , · · · , ˆ̃a

x
1+αr , ãx

t

〉
= 〈ãx

1, · · · , ãx
i , · · · , ãx

t 〉︸ ︷︷ ︸
S̃x

KFA

+
〈

ˆ̃a
x
1+α1

, · · · , ˆ̃a
x
1+αj

, · · · , ˆ̃a
x
1+αr

〉
︸ ︷︷ ︸

ˆ̃S
x
UFA

. (11)

For this technique, membership grades of UFA and KFA are considered as vertical coordinate
values of the attribute vector sequence curve. The interpolation technique is used to depict the
curve. Once the function is interpolated, the estimation result could be calculated after inputting

the customized horizontal ordinate values. The result ˆ̃S
x
UFA is an estimation of S̃x

UFA to some degree.
Its accuracy depends on the quality of the interpolation technique, which means the interpolation
function s is the key to the method. For spline interpolation, s is the optimal result of all. Meanwhile,
the attribute number sequence is another key. The cognition of the KFA determines the generation
of the sequence. For instance, if some attributes of KFA are more important for x, which is usually
judged artificially, then steps between each of them should be smaller than others.

5.2. The Technique to Generate the Final Evaluation Based on Attribute Weight Reconfiguration

Since the UFA membership grades sequence has been approximately estimated, we propose a
new technique to generate the final evaluation based on attribute weight reconfiguration.

Step 1: Regenerate a new sequence of attribute weights. Let every element of λ be divided into
certain parts, the number of which is equal to how many estimated UFAs locate between two KFAs,
then the new sequence of attribute weights can be written as:

λ̂ =

〈
λ̂1

1, · · · , λ̂i−1
i−1, · · · , λ̂i−1_i

1+αj
, · · · , λ̂i

i, · · · , λ̂t
t

〉
, (12)

λ̂i
i =

λi
di

, (13)

λ̂i−1_i
1+αj

=
λi−1

di−1
+

λi
di

, (14)

where if i ∈ (1, t), then di is the size of NUFA within the [i− 1, i + 1]. If i = 1, then d1 is the size of NUFA

within the [1, 2]. If i = t, then dt is the size of NUFA within the [t− 1, t].

Step 2: Calculate the multiplication of corresponding elements from λ̂ and ˆ̃S
x
:〈

λ̂1
1 × ãx

1, λ̂1_2
1+α1
× ˆ̃a

x
1+α1

, · · · , λ̂i−1_i
1+αj

× ˆ̃a
x
1+αj

, · · · , λ̂i
i × ãx

i , · · · , λ̂t−1_t
1+αr

× ˆ̃a
x
1+αr , λ̂t

t × ãx
t

〉
. (15)

Step 3: Sum and obtain final evaluation of x:

Ê = λ̂1
1 × ãx

1 + λ̂1_2
1+α1
× ˆ̃a

x
1+α1

+ · · ·+ λ̂i−1_i
1+αj

× ˆ̃a
x
1+αj

+ · · ·+ λ̂i
i × ãx

i + · · ·+ λ̂t−1_t
1+αr

× ˆ̃a
x
1+αr

+ λ̂t
t × ãx

t . (16)
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6. Applications

In this section, the proposed methods are respectively used to enhance the performance of
some research methods related to fuzzy attributes membership: regression, clustering, and fuzzy
evaluation. Four samples are presented with the detailed description and comparisons of the results
from different methods.

6.1. Applications for Regression

For some regression problems, the size of KFA is small for some reason, which definitely affects
the regression performance. These KFAs are partially correlated, which can be figured out by a
known mechanism or experience for researchers. To deal with this type of problem, the technique
to approximately estimate UFA in Section 4 is applied to enhance the performance of regression.
We firstly use the estimation method to approximately estimate the UFA of samples and combine the
estimated UFAs and KFA as the attributes of predictor before regressing. The support vector machine
regression model (SVMR) and Gaussian kernel regression model using random feature expansion
(GKR) are chosen as the regression models. For GKR, there are two kinds of learners: SVM learner and
linear regression via ordinary least squares.

Example 1. Let X = {x1, x2, · · · , xn}, n = 392 be a set of car samples, the measurable attribute sequence of
node xi is defined as:

Sxi =
〈

axi
1 (weight), axi

2 (cylinders), axi
3 (horsepower), axi

4 (model year), axi
5 (MPG)

〉
. (17)

Let fuzzy membership grade for attribute j of x be calculated by:

ãxi
j = νj

(
axi

j

)
, (18)

νj

(
axi

j

)
=

axi
j −min(ax)

max(ax)−min(ax)
, (19)

where νj

(
ax

j

)
: ax

j → [0, 1] , j = 1, 2, 3, 4, is the attribute membership function.
The fuzzy measurable attribute sequence of xi is:

S̃xi =
〈

ãxi
1 , ãxi

2 , · · · , ãxi
9
〉
, (20)

Choose some attributes from ãx
1 , ãx

2 , ãx
3 , ãx

4 as predictor variables, ãx
5 as the response variable, calculate the

regression model between predictor variables and the response variable by SVMR and GKR, respectively, with
and without the application of the proposed method to approximately estimate UFA in Section 4. To compare these
regression results, calculate loss indexes: Huber loss (HL), mean squared error (MSE), and epsilon-insensitive
function (EI) of results. The smaller the values of these three indexes are, the better performances of the regressions
are. EI index is appropriate for SVM learners only.

If ãx
1, ãx

2, ãx
3 are predictor variables, ãx

5 is the response variable, then ãx
1, ãx

2, ãx
3 are KFAs, so

the KFA attribute sequence number is NKFA = 〈1, 2, 3〉 in Step 2 of the technique to approximately
estimate UFAs. Calculate the regressions respectively by SVMR, GKR-SVM learner (denoted as GKR-1),
GKR-linear regression (denoted as GKR-2) with and without the application of the proposed method.
Take 20% of samples out as test samples. The comparisons of loss indexes of results are shown in
Table 1. Notably, for the SVMR method, the more estimated UFAs to learn, the better performance of
learning is. Meanwhile, the GKR method can use the small size of UFAs to expand features. If the size
of UFAs is too large, it can result in the over learning for the GKR methods. Thus, the size of UFAs for
the SVMR method should be much larger than the ones for GKR methods. After lots of tests, the best
NUFA in Step 4 for different methods is shown in Table 1.
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Table 1. The comparisons of loss indexes of results if ãx
1 , ãx

2 , ãx
3 are knowable fuzzy attributes (KFAs).

Regression Model A 1 HL (Train/Test) MSE (Train/Test) EI (Train/Test) NUFA
2

SVMR
0 2.6426/2.5052 18.4283/18.3963 2.3938/2.3395 /
1 2.6427/2.4991 18.3377/18.3808 2.3949/2.3379 <1.08:0.08:2.92>

GKR-1
0 2.1724/2.2637 15.5750/17.2569 1.9958/2.0781 /
1 2.1362/2.1400 15.4048/16.1185 1.9793/1.9573 <1.08:0.8:2.68>

GKR-2
0 2.0406/2.2523 12.8566/17.0757 / /
1 1.9960/2.0937 12.5828/15.6837 / <1.08:0.8:2.68>

1 A = 1: with the application of proposed method, A = 0: without the application of proposed method. 2 〈α : β : γ〉:
the sequence (the starting point is α, step is β, the endpoint is γ). HL: Huber loss; MSE: mean squared error; EI:
epsilon-insensitive function; SVMR: support vector machine regression; GKR: Gaussian kernel regression.

If ãx
1, ãx

2, ãx
3, ãx

4 are predictor variables, ãx
5 is the response variable, then ãx

1, ãx
2, ãx

3 ãx
4 are KFAs, so

the KFA attribute sequence number is NKFA = 〈1, 2, 3, 4〉 in Step 2 of the technique to approximately
estimate UFAs. Calculate the regressions, respectively, by SVMR, GKR-1, and GKR-2 with and without
the application of the proposed method. Take 20% of samples out as test samples. The UFA number
sequences of each regression and the comparisons of loss indexes of results are shown in Table 2.

Table 2. The comparisons of loss indexes of results if ãx
1 , ãx

2 , ãx
3 ,ãx

4 are KFAs.

Regression Model A 1 HL (Train/Test) MSE (Train/Test) EI (Train/Test) NUFA
2

SVMR
0 2.0199/1.8340 12.5788/10.6975 1.8338/1.6461 /
1 2.0220/1.8295 12.4889/10.5811 1.8323/1.6459 <1.08:0.08:3.96>

GKR-1
0 1.7104/1.7270 11.0732/13.1882 1.5813/1.6434 /
1 1.5242/1.5924 10.5474/10.5426 1.4230/1.4778 <1.8:1:3.8>

GKR-2
0 1.4146/1.7246 7.1309/11.8654 / /
1 1.1562/1.5241 5.9034/9.0240 / <1.8:1:3.8>

1 A = 1: with the application of proposed method, A = 0: without the application of proposed method. 2 〈α : β : γ〉:
the sequence (the starting point is α, step is β, the endpoint is γ).

From Tables 1 and 2, we can find that the index values of the regression results (both training
results and test results of the regression) with the application of the proposed method are all smaller
than ones without the application, especially in Table 2. Thus, it is concluded that the application of
the proposed method in the regression problem, where the size of KFAs is quite small and known
attributes are correlated, is effective.

6.2. Applications for Clustering

For some clustering problems, only some attributes of given samples are given, which definitely
lower the accurate rates of clustering results. In this section, the proposed methods are respectively
used to enhance the performance of fuzzy c-means clustering (FCM), K-means clustering (K-means),
and K-medoids clustering (K-medoids): the estimation method proposed is applied to approximately
estimate the UFA of the sample and the estimated UFAs and KFAs are combined as the attributes of
samples before clustering. These three clustering methods are partition-based clustering methods. To
analyze and compare the clustering results, accurate rate (AR), Rand index (RI), normalized mutual
information (NMI) of clustering results are calculated. The larger the values of these indexes are, the
better the performances of clustering are.

Example 2. Let X = {x1, x2, · · · , xn}, n = 150 be a set of iris samples, the measurable attribute sequence of
node xi is defined as:

Sxi =
〈

axi
1 (sepal length), axi

2 (sepal width), axi
3 (petal length), axi

4 (petal width)
〉
. (21)

Let fuzzy membership grade for attribute j of x be calculated by Equations (18) and (19).
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The fuzzy measurable attribute sequence of xi is:

S̃xi =
〈

ãxi
1 , ãxi

2 , · · · , ãxi
4
〉
. (22)

For all 150 iris samples, they can be divided into three clusters, each cluster contains 50 samples.

ãx
1, ãx

2, ãx
3, ãx

4 are KFAs, so the KFA attribute sequence number is NKFA = 〈1, 2, 3, 4〉 in Step 2 of the
technique to approximately estimate UFAs. For the iris, the four attributes of the sample set are the
depiction of its geometry. Thus, the size of UFAs can be large. Calculate the clustering respectively
by FCM, K-means, and K-medoids with and without the application of the proposed method. Every
method is calculated 100 times. All clustering calculations choose Euclidean distance. The UFA number
sequences of each clustering and the comparisons of clustering indexes of results are shown in Table 3.

Table 3. The comparisons of clustering indexes of results.

Clustering Method A 1 AR
(Worst/Mean/Best)

RI
(Worst/Mean/Best)

NMI
(Worst/Mean/Best)

NUFA

FCM
0 0.8800/0.8879/0.8933 0.8679/0.8748/0.8797 0.7225/0.7328/0.743 /
1 0.9200/0.9200/0.9200 0.9055/0.9055/0.9055 0.7855/0.7855/0.785 <1.8:0.5:3.8>

K-means
0 0.5800/0.7822/0.8867 0.7214/0.8210/0.8737 0.5927/0.6830/0.741 /
1 0.5067/0.8373/0.9533 0.7204/0.8648/0.9417 0.6011/0.7653/0.846 <1.8:0.5:3.8>

K-medoids
0 0.9000/0.9040/0.9067 0.8859/0.8897/0.8923 0.7578/0.7596/0.761 /
1 0.9333/0.9333/0.9333 0.9195/0.9195/0.9135 0.8038/0.8038/0.804 <1.8:0.5:3.8>

1 A = 1: with the application of proposed method, A = 0: without the application of proposed method. AR: accurate
rate; RI: Rand index; NMI: normalized mutual information; FCM: fuzzy c-means.

From Table 3, we can find that the index values of clustering results (worst, mean, and best values
of AR, RI, and NMI) with the application of the proposed method are all larger than ones without the
application. It is concluded that the application of the proposed method in the clustering problem,
where the size of KFAs is quite small and known attributes are correlated, is effective.

6.3. Applications for Power Quality Evaluation

Let X = {x1(node1), x2(node2), x3(node3), x4(node4), x5(node5)} be a set of power net nodes, the
measurable attribute sequence of node xi is defined as:

Sxi =
〈

axi
1 ( f requency deviation), axi

2 (voltage deviation), axi
3 (voltage sag),

axi
4 (three phase imbalance), axi

5 (voltage f luctuation), axi
6 (voltage f licker),

axi
7 (voltage harmonics), axi

8 (reliability index), axi
9 (service index)

〉 (23)

which detailed values are shown in Table 4, the smaller the value of the measurable attribute is, the
better the power quality is.

Table 4. Power quality values.

Measurable Attributes Node1 Node2 Node3 Node4 Node5

ax
1 (Frequency deviation) 0.0922 0.1562 0.1180 0.1787 0.1892

ax
2 (Voltage deviation) 3.2120 6.6800 4.3500 5.3300 4.2200

ax
3 (Voltage sag) 79.6300 15.8900 51.5600 58.5600 48.6300

ax
4 (Three phase imbalance) 0.8300 1.3600 1.3500 1.7400 1.8300

ax
5 (Voltage fluctuation) 1.3300 1.5300 1.9500 1.3700 1.5800

ax
6 (Voltage flicker) 0.4730 0.8470 0.6340 0.8260 0.8280

ax
7 (Voltage harmonics) 1.7200 4.3800 2.6700 3.3600 4.5700

ax
8 (Unreliability index) 0.1670 0.2380 0.2040 0.2600 0.2360

ax
9 (Unserviceable index) 0.1680 0.2870 0.1360 0.3160 0.2170
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Let the fuzzy membership grade for attribute j of x be calculated by Equations (18) and (19).
The fuzzy measurable attribute sequence of xi is:

S̃xi =
〈

ãxi
1 , ãxi

2 , · · · , ãxi
9
〉
, (24)

the detailed values of S̃xi are shown as follows:

S̃x1 =
〈

ãx1
1 (0.0000), ãx1

2 (0.0000), ãx1
3 (1.0000) ,

ãx1
4 (0.0000), ãx1

5 (0.0000), ãx1
6 (0.0000) ,

ãx1
7 (0.0000), ãx1

8 (0.0000), ãx1
9 (0.1778)

〉
,

S̃x2 =
〈

ãx2
1 (0.6598), ãx2

2 (1.0000), ãx2
3 (0.0000),

ãx2
4 (0.5300), ãx2

5 (0.3226), ãx2
6 (1.0000),

ãx2
7 (0.9333), ãx2

8 (0.7634), ãx2
9 (0.8389)

〉
,

S̃x3 =
〈

ãx3
1 (0.2660), ãx3

2 (0.3281), ãx3
3 (0.5570) ,

ãx3
4 (0.5200), ãx3

5 (1.0000), ãx3
6 (0.4304)

ãx3
7 (0.3333), ãx3

8 (0.3978), ãx3
9 (0.0000) ,

〉
,

S̃x4 =
〈

ãx4
1 (0.8918), ãx4

2 (0.6107), ãx4
3 (0.6694) ,

ãx4
4 (0.9100), ãx4

5 (0.0645), ãx4
6 (0.9439) ,

ãx4
7 (0.5754), ãx4

8 (1.0000), ãx4
9 (1.0000)

〉
,

S̃x5 =
〈

ãx5
1 (1.0000), ãx5

2 (0.2907), ãx5
3 (0.5136) ,

ãx5
4 (1.0000), ãx5

5 (0.4032), ãx5
6 (0.9492) ,

ãx5
7 (1.0000), ãx5

8 (0.7419), ãx5
9 (0.4500)

〉
.

If the sequences of attribute weights of each node are same and the attribute weights are equal:

λ =
〈

λ1

(
1
9

)
λ2

(
1
9

)
λ3

(
1
9

)
λ4

(
1
9

)
, λ5

(
1
9

)
, λ6

(
1
9

)
, λ7

(
1
9

)
, λ8

(
1
9

)
, λ9

(
1
9

) 〉
, (25)

then the evaluation of the power quality of nodes by the traditional fuzzy evaluation method is
calculated by:

Exi = S̃xi ·λxi =
9

∑
j=1

ãxi
j × λj. (26)

The evaluation results are shown in Table 5. The smaller the evaluation value is, the better the
power quality of the node is. From Table 5, we can conclude that: x1 � x3 � x2 � x5 � x4, where �
means better than.

Table 5. Evaluation results by the traditional method with all attribute information known.

Node1 Node2 Node3 Node4 Node5

0.1309 0.6720 0.4262 0.7405 0.7054

Furthermore, if the conditions mentioned in Section 2 are taken into consideration, evaluate the
following examples based on the proposed method mentioned in Section 5, and compare the result
with other methods.

Example 3. Assume that only measurable attributes ãx
1 , ãx

2 , ãx
3 , ãx

4 , ãx
5 are known, the other four attributes are

unknown in this example. According to the power quality theory, these unknown attributes are correlated with
those five attributes, which means the fuzzy measurable attribute sequence of xi is redefined as follows:
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S̃xi =
〈

ãxi
1 , ãxi

2 , · · · , ãxi
9
〉

=
〈

ãxi
1 , ãxi

2 , ãxi
3 , ãxi

4 , ãxi
5
〉︸ ︷︷ ︸

S̃
xi
KFA

+
〈

ãxi
6 , ãxi

7 , ãxi
8 , ãxi

9
〉︸ ︷︷ ︸

S̃
xi
UFA

. (27)

Additionally, the sequence of attribute weights is redefined as follows:

λ =

〈
1
5

,
1
5

,
1
5

,
1
5

,
1
5

〉
. (28)

Apply the proposed evaluation method to solve this example, and the process is:
Firstly, approximately estimate S̃xi

UFA based on the proposed method. Taking NKFA = 〈1, 2, · · · , 5〉
as the independent variable E in Step 2 of the technique to approximately estimate UFAs and S̃xi

KFA
as the dependent variable Y, interpolate the function curve of each node. There is less heuristic
knowledge for us to determine the size of UFA r. Thus, r = 4 is the best choice conservatively. We can
choose the median values of adjacent pairs of NKFA as UFA. Generate the UFA number sequence
NUFA = 〈1.5, 2.5, 3.5, 4.5〉 in Step 4 of the technique to approximately estimate UFAs. Calculate the
estimation based on the fit function with NUFA as its input and the results are:

ˆ̃S
x1

UFA =
〈

ˆ̃a
x1
1.5(−0.4063), ˆ̃a

x1
2.5(0.6563), ˆ̃a

x1
3.5(0.6564), ˆ̃a

x1
4.5(−0.4062)

〉
,

ˆ̃S
x2

UFA =
〈

ˆ̃a
x2
1.5(1.2571), ˆ̃a

x2
2.5(0.4079), ˆ̃a

x2
3.5(0.1352), ˆ̃a

x2
4.5(0.7405)

〉
,

ˆ̃S
x3

UFA =
〈

ˆ̃a
x3
1.5(0.2291), ˆ̃a

x3
2.5(0.4695), ˆ̃a

x3
3.5(0.5435), ˆ̃a

x3
4.5(0.6264)

〉
,

ˆ̃S
x4

UFA =
〈

ˆ̃a
x4
1.5(0.7162), ˆ̃a

x4
2.5(0.5901), ˆ̃a

x4
3.5(0.8289), ˆ̃a

x4
4.5(0.7196)

〉
,

ˆ̃S
x5

UFA =
〈

ˆ̃a
x5
1.5(0.4976), ˆ̃a

x5
2.5(0.3168), ˆ̃a

x5
3.5(0.7975), ˆ̃a

x5
4.5(0.9317)

〉
.

Secondly, generate the final evaluation based on the attribute weight reconfiguration. Because
four attributes are estimated from five attributes, the new sequence of attribute weights is calculated
by Step 1 of the technique to generate the final evaluation:

λ̂x =
〈

λ̂1
1, λ̂1_2

1.5 , λ̂2
2, λ̂2_3

2.5 , λ̂3
3, λ̂3_4

3.5 , λ̂4
4, λ̂4_5

4.5 , λ̂5
5

〉
=
〈

1
10 , 1

6 , 1
15 , 2

15 , 1
15 , 2

15 , 1
15 , 1

6 , 1
10

〉 , (29)

and the evaluation of power quality of nodes is calculated by Step 3 of the technique to generate the
final evaluation:

Êxi = ãxi
1 × λ̂1

1 +
ˆ̃a

xi
1.5 × λ̂1_2

1.5 + ãxi
2 × λ̂2

2 +
ˆ̃a

xi
2.5 × λ̂2_3

2.5 + ãxi
3 × λ̂3

3 +
ˆ̃a

xi
3.5 × λ̂3_4

3.5 + ãxi
4 × λ̂4

4 +
ˆ̃a

xi
4.5 × λ̂4_5

4.5 + ãxi
5 × λ̂5

5. (30)

The evaluation results are shown in Table 3. The smaller the evaluation value is, the better the
power quality of the node is. From Table 6, we can find that: the evaluation result by the traditional
method is x1 � x2 � x3 � x4 � x5, while by the proposed method is x1 � x3 � x2 � x5 � x4, which
is the same as the result by the traditional method with all attributes known. To compare the results
quantitatively, hamming distance can be used to calculate the similarity between two evaluation results.
The Hamming distance between two equal-length sequences is defined as the ratio of the minimum
number of substitutions required to change one of them into another to the length of the ranking.
Hamming distance between the decision result by the traditional method with all attributes known and
the decision result by the traditional method with KFAs only known is 0.8, while the proposed method
is 0, i.e., the proposed method to deal with the decision-making problem with incomplete attribute
information can obtain the same decision result of the problem with complete attribute information
calculated by the traditional method.
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Table 6. Evaluation results with KFAs known.

Methods Node1 Node2 Node3 Node4 Node5 Hamming Distance

Traditional 0.2000 0.5025 0.5347 0.6293 0.6415 0.8
Proposed 0.1063 0.6281 0.4757 0.6884 0.6436 0

Example 4. Assume that only measurable attributes ãx
1 , ãx

2 , ãx
4 , ãx

5 are known, the other five attributes are
unknown in this example. According to the power quality theory, these unknown attributes are correlated with
those four attributes, which means the fuzzy measurable attribute sequence of xi is redefined as follows:

S̃xi =
〈

ãxi
1 , ãxi

2 , · · · , ãxi
9
〉

=
〈

ãxi
1 , ãxi

2 , ãxi
4 , ãxi

5
〉︸ ︷︷ ︸

S̃
xi
KFA

+
〈

ãxi
3 , ãxi

6 , ãxi
7 , ãxi

8 , ãxi
9
〉︸ ︷︷ ︸

S̃
xi
UFA

. (31)

Additionally, the sequence of attribute weights is redefined as follows:

λ =

〈
1
4

,
1
4

,
1
4

,
1
4

〉
. (32)

Apply the proposed evaluation method to solve this example, and the process is:
Firstly, approximately estimate S̃xi

UFA based on the proposed method. Taking NKFA = 〈1, 2, 3, 4〉
as the independent variable E in Step 2 of the technique to approximately estimate UFAs and S̃xi

KFA
as the dependent variable Y, interpolate the function curve of each node. Here, we can also let r = 5
from a conservative perspective. To avoid the excessive effect of ãxi

1 , we chose 1.5 as the starting point
of UFA. Generate the UFA number sequence NUFA = 〈1.5, 2.1, 2.7, 3.3, 3.9〉 in Step 4 of the technique
to approximately estimate UFAs. Calculate the estimation based on the fit function with NUFA as its
input and the results are:

ˆ̃S
x1

UFA =
〈

ˆ̃a
x1
1.5(0), ˆ̃a

x1
2.1(0), ˆ̃a

x1
2.7(0), ˆ̃a

x1
3.3(0), ˆ̃a

x1
3.9(0)

〉
,

ˆ̃S
x2

UFA =
〈

ˆ̃a
x2
1.5(0.9982), ˆ̃a

x2
2.1(0.9718), ˆ̃a

x2
2.7(0.6922), ˆ̃a

x2
3.3(0.3914), ˆ̃a

x2
3.9
(0.3009)

〉
,

ˆ̃S
x3

UFA =
〈

ˆ̃a
x3
1.5(0.2908), ˆ̃a

x3
2.1(0.3389), ˆ̃a

x3
2.7(0.4394), ˆ̃a

x3
3.3(0.6265), ˆ̃a

x3
3.9
(0.9345)

〉
,

ˆ̃S
x4

UFA =
〈

ˆ̃a
x4
1.5(0.5709), ˆ̃a

x4
2.1(0.6430), ˆ̃a

x4
2.7(0.8619), ˆ̃a

x4
3.3(0.8550), ˆ̃a

x4
3.9
(0.2497)

〉
,

ˆ̃S
x5

UFA =
〈

ˆ̃a
x5
1.5(0.2977), ˆ̃a

x5
2.1(0.3427), ˆ̃a

x5
2.7(0.8004), ˆ̃a

x5
3.3(1.0821), ˆ̃a

x5
3.9
(0.5993)

〉
.

Secondly, generate the final evaluation based on the attribute weight reconfiguration. Because
four attributes are estimated from five attributes, the new sequence of attribute weights is calculated
by Step 1 of the technique to generate the final evaluation:

λ̂x =
〈

λ̂1
1, λ̂1_2

1.5 , λ̂2
2, λ̂2_3

2.1 , λ̂2_3
2.7 , λ̂3

3, λ̂3_4
3.3 , λ̂3_4

3.9 , λ̂4
4

〉
=
〈

1
8 , 1

6 , 1
16 , 9

80 , 9
80 , 1

20 , 2
15 , 2

15 , 1
12

〉 , (33)

and the evaluation of the power quality of nodes is calculated by Step 3 of the technique to generate
the final evaluation:

Êxi = ãxi
1 × λ̂1

1 +
ˆ̃a

xi
1.5 × λ̂1_2

1.5 + ãxi
2 × λ̂2

2 +
ˆ̃a

xi
2.1 × λ̂2_3

2.1 + ˆ̃a
xi
2.7 × λ̂2_3

2.7 + ãxi
3 × λ̂3

3 +
ˆ̃a

xi
3.3 × λ̂3_4

3.3 + ˆ̃a
xi
3.9 × λ̂3_4

3.9 + ãxi
4 × λ̂4

4. (34)

The evaluation results are shown in Table 4. The smaller the evaluation value is, the better the
power quality of the node is. From Table 7, we can find that: the evaluation result by the traditional
method is x1 � x3 � x4 � x2 � x5, while by the proposed method is x1 � x3 � x4 � x5 � x2.
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Hamming distance between the result by the traditional method with KFAs only known and the result
by the traditional method with all attributes known is 0.6, while the proposed method is 0.4.

Table 7. Evaluation results with KFAs known.

Methods Node1 Node2 Node3 Node4 Node5 Hamming Distance

Traditional 0 0.6281 0.5285 0.6192 0.6735 0.6
Proposed 0 0.6650 0.5133 0.6242 0.6354 0.4

Thus, we can conclude that the proposed method is more effective than the traditional method to
deal with this type of power quality evaluation problem.

7. Conclusions

In this paper, the GGS of PAS, MAS, and PAMS was modeled and analyzed, which gives out a new
idea to enhance the existing methods involving fuzzy membership to deal with MADM problems with
partial attribute values and weights unknown. A fuzzy attributes expansion method was proposed.
The proposed method can be applied to some research fields, such as regression, clustering, and fuzzy
evaluation, which is proven to be effective in four examples when only part KFAs were given. By
application of this method, the results of FCE were more consistent with the actual situation than
traditional FCE.

For this method, it was necessary and critical to find out the appropriate size of the UFA number
sequence for different practical problems by experiments. We are now considering applying this
method to evaluate the power system under massive attack, where partial attribute information of
some nodes could be incomplete or even totally unknown for researchers. Meanwhile, extending the
proposed method from fuzzy set theory to other related fuzzy theories is also worth considering.
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Abstract: In this paper, we propose a new hybrid model, multi Q-hesitant fuzzy soft multi-granulation
rough set model, by combining a multi Q-hesitant fuzzy soft set and multi-granulation rough set.
We demonstrate some useful properties of these multi Q-hesitant fuzzy soft multi-granulation
rough sets. Furthermore, we define multi Q-hesitant fuzzy soft (MkQHFS) rough approximation
operators in terms of MkQHFS relations and MkQHFS multi-granulation rough approximation
operators in terms of MkQHFS relations. We study the main properties of lower and upper
MkQHFS rough approximation operators and lower and upper MkQHFS multi-granulation rough
approximation operators. Moreover, we develop a general framework for dealing with uncertainty in
decision-making by using the multi Q-hesitant fuzzy soft multi-granulation rough sets. We analyze
the photovoltaic systems fault detection to show the proposed decision methodology.

Keywords: Q-hesitant fuzzy soft set; multi Q-hesitant fuzzy soft rough set; photovoltaic systems
fault detection approach; decision-making method

1. Introduction

The notion of rough set theory was introduced by Pawlak in 1982 [1]. It is a mathematical approach
concerning uncertainty that comes from noisy, inexact or incomplete information. In rough set theory,
the equivalence relation plays a significant role in creating the upper and lower approximations of the
set. Currently, rough set approximations [2] have been constructed into fuzzy sets [3], intuitionistic
fuzzy sets [4], hesitant fuzzy sets [5] and covering sets [6]. The soft set theory, originally initiated by
Molodtsov [7], is a general tool for dealing with uncertainty. Different from some traditional tools
for dealing with uncertainties, such as the theory of fuzzy sets [3], the theory of probability and the
theory of rough sets [1], the advantage of soft set theory is that it is free from the inadequacy of
the parametrization tools of those theories. According to Molodtsov [7], the soft set theory applied
successfully to many fields such as functions’ smoothness, game theory, theory of measurement and
so on. Maji and Roy [8] introduced the soft set into the decision-making problems with the help of
the rough theory. Necessary and possible hesitant fuzzy sets, and probabilistic soft sets and dual
probabilistic soft sets in decision-making have discussed in [9,10]. Moreover, many new rough set
models have been established by combining the Pawlak rough set with other uncertainty theories such
as soft set theory. Feng [11] provided a framework to combine fuzzy set, rough set, and soft set all
together, which gave rise to several interesting new concepts such as rough soft set, soft rough set and
soft rough fuzzy set [12]. Zhang et al. [13] proposed the notion of soft rough intuitionistic fuzzy sets

Symmetry 2018, 10, 711; doi:10.3390/sym10120711 www.mdpi.com/journal/symmetry129



Symmetry 2018, 10, 711

and intuitionistic fuzzy soft rough sets, which are generalized soft rough set models. Akram et al. [14]
presented a new hybrid model, a hesitant N-soft set model for group decision-making. Several research
works have been done to solve different real life decision-making problems (see [15–19]). All of these
models have always been described by the expression of a one-dimensional membership function
that can not be able to deal with the information that appears in a two-dimensional universal set.
From this point of view, the idea of Q-fuzzy sets was came out. Afterwards, the concept of multi
Q-fuzzy soft sets [20–24] was established to combine the key feature of soft sets and Q-fuzzy sets with
multi membership values. The notion of multi Q-hesitant fuzzy soft sets is the generalization of multi
Q-fuzzy soft sets. This extension can easily handle the difficulty more objectively than other developed
Q-fuzzy set approaches. The combination of multi Q-hesitant fuzzy soft sets and rough sets will be an
improved model of hesitant fuzzy rough approaches that concern both areas theoretical and practical
applications. Qian et al. [25] proposed the model of multi-granulation rough sets. The main idea of
this model is based on defined multiple equivalence relations in a given universe that eliminated the
restrictions that may occur through the single equivalence relations in classical rough sets [1] perfectly.
The notions of multi-granulation fuzzy rough sets and multi-granulation hesitant fuzzy rough sets
are presented by Sun et al. [26] and Zhang et al. [27], respectively, to solve decision-making problems.
For other notations and terminologies not mentioned in this paper, the readers are referred to [28–33].

In the field of electrical engineering, photovoltaic systems fault detection is one of the challenging
tasks that electrical experts have faced in recent years dealing with a substantial amount of uncertain
information. Different experts would give their different judgments towards the systems fault detection
data. Hence, by combining multi Q-hesitant fuzzy soft sets with multi-granulation rough sets, we
constructed the concept of a multi Q-hesitant fuzzy soft multi-granulation rough set model and its
application in photovoltaic systems fault detection through developing a new data analysis model
in fault detection procedures under the framework of Q-hesitant fuzzy soft information. In this
paper, we propose a new hybrid model, multi Q-hesitant fuzzy soft multi-granulation rough set
model, by combining a multi Q-hesitant fuzzy soft set and a multi-granulation rough set. We present
some of its fundamental properties. We develop a general framework for dealing with uncertainty
decision-making by using the multi Q-hesitant fuzzy soft multi-granulation rough sets. We use the
photovoltaic systems fault detection to indicate the principle steps of the decision methodology.

The presentation of the article is organized as follows: In Section 2, we recalled some basic
concepts of rough sets, soft sets and hesitant fuzzy soft sets. In Section 3, we have presented multi
Q-hesitant fuzzy soft sets and discussed some properties. In Section 4, we have introduced a rough
set model based on multi Q-hesitant fuzzy soft relation and have examined some properties of this
model. In Section 5, we have generalized the notion of multi Q-hesitant fuzzy soft rough sets into
multi Q-hesitant fuzzy soft multi-granulation rough set model. In Section 6, we have established a
general approach to decision-making based on multi Q-hesitant fuzzy soft multi-granulation rough
sets and illustrated the principal steps of the proposed decision method by a numerical example.
Finally, in Section 7, we have concluded the paper with a summary and outlook for further research.

2. Preliminaries

In this section, we recall some basic notions and definitions which will be used in this paper.

Definition 1 ([1]). Let U be a non-empty finite universe and R be an equivalence relation on U. We use U/R
to denote the family of all equivalence classes of R (or classifications of U), and [x]R to denote an equivalence
class of R containing the element x ∈ U. The pair (U, R) is called an approximation space. For any X ⊆ U,
we can define the lower and upper approximations of X as follows:

R(X) = {x ∈ U : [x]R ⊆ X},

R(X) = {x ∈ U : [x]R ∩ X 	= φ}.
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The pair (R(X), R(X)) is referred to as the rough set of X. The rough set (R(X), R(X)) gives rise to a
description of X under the present knowledge, i.e., the classification of U.

Furthermore, the positive region, negative region, and boundary region of X about the approximation space
(U, R) are defined as follows, respectively:

pos(X) = R(X), neg(X) =∼ R(X), bn(X) = R(X)− R(X),

where ∼ X stands for complementation of the set X.

Definition 2 ([7]). Let E be the set of parameters with the connection to the objects in U. A pair (F, E) is called
a soft set over U, where F is a mapping given by F : E −→ P(U), P(U) is a set of all subsets of U.

This definition shows that a soft set over U is a parameterized family of subsets of the universe U.
For e ∈ E, F(e) is regarded as the set of e-approximate elements of the soft set (F, E).

Definition 3 ([5]). Given a non-empty subset A of X, a hesitant fuzzy set
HX = {(x, hX(x) : x ∈ X)} on X satisfying the following condition:

hX(x) = φ for all x /∈ A

is called a hesitant fuzzy set related to A (briefly, A-hesitant fuzzy set) on X and is represented by HA =

{(x, hA(x) : x ∈ X)}, where hA is a mapping from X to p([0, 1]) with hA(x) = φ for all x /∈ A.

Definition 4 ([34]). Let H̃(U) be the set of all hesitant fuzzy sets in U. A pair (F̃, Ã) is called a hesitant fuzzy
soft set over U, where F̃ is a mapping given by

F̃ : A −→ H̃(U).

A hesitant fuzzy soft set is a mapping from parameters to H̃(U). It is a parameterized family of hesitant
fuzzy subsets of U. For e ∈ A, F̃(e) may be considered as the set of e-approximate elements of the hesitant fuzzy
soft set (F̃, A).

3. Multi Q-Hesitant Fuzzy Soft Sets

We first introduce the notion of Q-hesitant fuzzy soft sets as a generalization of Q-fuzzy soft sets.

Definition 5. Let U be a universal set and Q be non-empty set. A Q-hesitant fuzzy set AQ is a set given by

AQ = {〈(uq), hAQ(uq)〉 : u ∈ U, q ∈ Q},

where hAQ : U ×Q −→ [0, 1]. The function hAQ(uq) is called the membership function of Q-hesitant fuzzy
set, and the set of all Q-hesitant fuzzy sets over U ×Q will be denoted by QHF(U ×Q).

Definition 6. Let U be a non-empty finite universe and Q be a non-empty set. For any AQ, BQ ∈ QHF(U ×
Q), then, for all u ∈ U, q ∈ Q, we have

1. hAc
Q
(uq) =∼ hAQ(uq) =

⋃
γ∈hAc

Q
(uq){1− γ}.

2. AQ ∪ BQ = {〈(uq), hAQ(uq) ∨ hBQ(uq)〉, u ∈ U, q ∈ Q}.
3. AQ ∩ BQ = {〈(uq), hAQ(uq) ∧ hBQ(uq)〉, u ∈ U, q ∈ Q}.
4. AQ ⊕ BQ =

⋃
γ1∈hAQ

(uq),γ2∈hBQ (uq){γ1 + γ2 − γ1γ2}.
5. AQ ⊗ BQ =

⋃
γ1∈hAQ

(uq),γ2∈hBQ (uq){γ1γ2}.

Definition 7. Let U be a universal set and Q be non-empty set, I be a unit interval [0, 1] and k be a positive
integer. A multi Q-hesitant fuzzy set H̃Q in U ×Q is a set defining by
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H̃Q = {〈(uq), hi
H̃Q

(uq)〉 : u ∈ U, q ∈ Q for all i = 1, 2, · · · , k},

where hi
H̃Q

: U ×Q −→ Ik for all i = 1, 2, · · · , k. The function h1
H̃Q

(uq), h2
H̃Q

(uq), · · · , hk
H̃Q

(uq) is called the

membership function of multi Q-hesitant fuzzy set and k is called the dimension of hi
H̃Q

. The set of all multi

Q-hesitant fuzzy set of dimension k in U ×Q is denoted by MkQHFS(U ×Q).

Definition 8. Let AQ, BQ be a multi Q-hesitant fuzzy sets over U × Q. Then, AQ is said to be a multi
Q-hesitant fuzzy subset of BQ if

hi
AQ

(uq) ≤ hi
BQ

(uq)

holds for any u ∈ U, q ∈ Q, i = i, 2, · · · , k and it is denoted by AQ ⊆ BQ.

Definition 9. Let U be a universal set and be non-empty set, E be the set of parameters and MkQHF(U ×Q)

be the set of all multi Q-hesitant fuzzy sets on U × Q with the dimension k. Let A ⊆ E the pair (HQ, A) is
called a multi Q-hesitant fuzzy soft set (MkQHFSS) over U, where (HQ, A) is given by the form

(HQ, A) = {(e, hi
Q(e)) : e ∈ A, hi

Q(e) ∈ MkQHFS(U ×Q)},

where hi
Q : A −→ MkQHF(U ×Q) such that hi

Q(e) 	= φ if e /∈ A. The set of all multi Q-hesitant fuzzy soft
sets over U ×Q will be denoted by MkQHFSS(U ×Q).

Example 1. Suppose that a company wants to buy three types of products from two brands and wants to take
the opinion of two specialists about these products (k= 2). Let U = {u1, u2, u3} be a set of products, Q = {p ,
q} be a set of brands, and E = {e1 = easy to use, e2 = quality, e3 = price} is the set of decision parameters.
Then we can define the multi Q-hesitant fuzzy soft sets(HQ, A) as follows:

(HQ, A)= {〈e1, ( u1 p
(0.2,0.3)(0.1) ), (

u1q
(0.1,0.3)(0.4,0.8) ), (

u3 p
(0.6,0.5)(0.2,0.2) ), (

u3q
(0.2,0.4)(0.1) )〉,

〈e2, ( u2 p
(0.3,0.1)(0.2,0.3,0,6) ), (

u2q
(0.5,0.3)(0.5,0.5,0.2) ), (

u3 p
(0.2,0.2)(0.4) ), (

u3q
(0.7,0.3)(0.2,0.9) )〉,

〈e3, ( u1 p
(0.1,0.1)(0.4,0.4) ), (

u1q
(0.1,0.3)(0.7,0.6) ), (

u2 p
(0.4,0.3)(0.4,0.1) ), (

u2q
(0.2,0.6)(0.7,0.3) )〉}.

Definition 10. Let (HQ, A) and (FQ, B) be two multi Q-hesitant fuzzy soft sets, (HQ, A) is said to be
multi Q-hesitant fuzzy soft subset of (FQ, B) if A ⊆ B and HQ(e) ⊆ FQ(e) for all e ∈ E and denoted by
(HQ, A) ⊆ (FQ, B).

Proposition 1. Let (HQ, A), (FQ, B) and (GQ, C) be three multi Q-hesitant fuzzy soft sets. Then,

1. (HQ, A) ⊆ (U, E),
2. (φ, A) ⊆ (HQ, B),
3. If (HQ, A) ⊆ (FQ, B) and (FQ, B) ⊆ (GQ, C), then (HQ, A) ⊆ (GQ, C).

Definition 11. A multi Q-hesitant fuzzy soft set (HQ, A) of dimension k over U ×Q is called the null multi
Q-hesitant fuzzy soft set if HQ(e) = φk for all e ∈ A and it is denoted by φk

A.

Definition 12. A multi Q-hesitant fuzzy soft set (HQ, A) of dimension k over U × Q is called the absolute
multi Q-hesitant fuzzy soft set if HQ(e) = 1k for all e ∈ A and it is denoted by Uk

A.

Definition 13. Let (HQ, A) be a multi Q-hesitant fuzzy soft set of dimension k over U × Q. Then, the
complement of (HQ, A) is denoted by (HQ, A)c and defined by (HQ, A)c=(Hc

Q, A), where Hc
Q : A −→

MkQHFS(U ×Q) is mapping given by Hc
Q(e) = (HQ(e))c for all e ∈ A.
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Remark 1. Clearly, ((HQ, A)c)c= (HQ, A) and (φk
A)

c = Uk
A, (Uk

A)
c = φk

A.

Definition 14. The union of two multi Q-hesitant fuzzy soft sets of dimension k over U, (HQ, A) and (FQ, B)
is the multi Q-hesitant fuzzy soft set (GQ, C), where C = A ∪ B, and for all e ∈ C, GQ(e) = HQ(e) ∪ FQ(e).
We write (HQ, A) ∪ (FQ, B) = (GQ, C).

Definition 15. The intersection of of two multi Q-hesitant fuzzy soft sets of dimension k over U, (HQ, A)

and (FQ, B) with A∩ B 	= φ is the multi Q-hesitant fuzzy soft set (GQ, C), where C = A∩ B, and for all e ∈ C,

GQ(e) =

⎧⎪⎨⎪⎩
HQ(e) for e ∈ A− B,
FQ(e) for e ∈ B− A,

HQ(e) ∪ FQ(e) for e ∈ A ∩ B.

In this case, we write (HQ, A) ∩ (FQ, B) = (GQ, C).

Theorem 1. Let (HQ, A) and (FQ, B) be two multi Q-hesitant fuzzy soft sets of dimension k over U ×Q. Then,

1. (HQ, A) ∪ (HQ, A) = (HQ, A),
2. (HQ, A) ∩ (HQ, A) = (HQ, A),
3. (HQ, A) ∪ φk

A = (HQ, A),
4. (HQ, A) ∩ φk

A = φk
A,

5. (HQ, A) ∪Uk
A = Uk

A,
6. (HQ, A) ∩Uk

A = (HQ, A),
7. (HQ, A) ∪ (FQ, B) = (FQ, B) ∪ (HQ, A),
8. (HQ, A) ∩ (FQ, B) = (FQ, B) ∩ (HQ, A).

4. Multi Q-Hesitant Fuzzy Soft Rough Set

Definition 16. Let (HQ, A) be a multi Q-hesitant fuzzy soft set over U ×Q. A multi Q-hesitant fuzzy subset
of (U×Q)× (E×Q) is called a multi Q-hesitant fuzzy soft relation (MkQHFSR) from (U×Q) to (E×Q)

given by
RQ = {〈(uq, eq), hi

RQ
(uq, eq)〉, uq ∈ U ×Q, eq ∈ E×Q, i = 1, 2, · · · , k},

where hi
RQ

: (U ×Q)× (E×Q) −→ [0, 1]k.

Definition 17. Let U be nonempty universe, Q be a nonempty set and E be the set of parameters. RQ is a multi
Q-hesitant fuzzy soft relation RQ ∈ MkQHFSR((U × Q)× (E× Q)) and the triple ((U, Q), (E, Q), RQ)

is multi Q-hesitant fuzzy soft approximation space. For any AQ ∈ MkQHFS(E), the lower and upper
approximations of AQ with respect to (U, E, Q, RQ) denoted by RQ(AQ) and RQ(AQ), are two multi
Q-hesitant fuzzy soft sets, respectively, defined as follows:

RQ(AQ) = {〈(uq), hRQ(AQ)(uq)〉 : (uq) ∈ U ×Q},

RQ(AQ) = {〈(uq), hRQ(AQ)(uq)〉 : (uq) ∈ U ×Q},

where

hRQ(AQ)(uq) = {〈
∧
e∈E
{(1− hi

RQ
(uq, eq)) ∨ hi

AQ
(eq)}〉 : (uq) ∈ U ×Q, i = 1, 2, ..., k},

hRQ(AQ)(uq) = {〈
∨
e∈E
{hi

RQ
(uq, eq) ∧ hi

AQ
(eq)}〉 : (uq) ∈ U ×Q, i = 1, 2, ..., k}.
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RQ(AQ) and RQ(AQ) are, respectively, called the lower and upper Q-hesitant fuzzy soft rough
approximations’ operators. The pair (RQ(AQ), RQ(AQ)) is called the multi Q-hesitant fuzzy soft rough
set of AQ with respect to (U, E, Q, RQ). Moreover, if RQ(AQ) = RQ(AQ), then AQ is called definable.

Example 2. Suppose that U = {u1, u2, u3} is the set of cars that Mr X wants to buy and Q = {q1, q2}
represents the companies of the different cars. They form the universe (U,Q) and let E = {e1 = size, e2 =

price, e3 = colour} be the set of parameters. Consider a multi Q-hesitant fuzzy soft relation RQ : U ×Q −→
E×Q with dimension k = 2 is given by Table 1.

Table 1. Multi Q-hesitant fuzzysoft relation RQ.

RQ e1q1 e1q2 e2q1 e2q2

(u1q1) {(0.2)(0.6,0.4)} {(0.3,0.7)(0.6)} {(0.5,0.4,0.6)(0.6,0.5)} {(0.4,0.2)(0.1,0.3)}
(u1q2) {(0.8,0.5)(0.2)} {(0.6,0.9)(0.2,0.9)} {(0.3)(0.2,0.7)} {(0.5,0.2,0.1)(0.1,0.5)}
(u2q1) {(0.1,0.3)(0.9,0.7,0.2)} {(0.5,0.1,)(0.6,0.2)} {(0.4)(0.5)} {(0.2,0.4)(0.2,0.8)}
(u2q2) {(0.5)(0.6)} {(0.9,0.5)(0.6,0.7,0.4)} {(0.6)(0.3,0.1)} {(0.2)(0.6,0.1)}

Now, if Mr X gives the optimum decision object AQ ∈ MkQHF(E), which is a Q-hesitant fuzzy subset
defined as follows:

AQ = {〈((e1q1), {(0.1, 0.3)(0.4, 0.5)}), ((e1q2), {(0.2, 0.4)(0.5, 0.6)})〉, 〈((e2q1), {(0.3, 0.6)(0.6, 0.7)}),
((e2q2), {(0.2, 0.5), (0.2, 0.8)})〉}.

Then, by Definition 17, we have

hRQ(u1q1) =
∧

e∈E{(1− h2
RQ

)(u1q1, eq) ∨ h2
AQ

(eq)}
= ({(0.8), (0.4, 0.6)} ∨ {(0.1, 0.3)(0.4, 0.5)}) ∧ ({(0.7, 0.3), (0.4)} ∨ {(0.2, 0.4)(0.5, 0.6)})
∧ ({(0.5, 0.6, 0.4), (0.4, 0.5)} ∨ {(0.3, 0.6)(0.6, 0.7)}) ∧ ({(0.6, 0.8), (0.9, 0.7)} ∨ {(0.2, 0.5), (0.2, 0.8)})

= {(0.8, 0.8), (0.4, 0.6)} ∧ {(0.7, 0.4), (0.5, 0.6)} ∧ {(0.5, 0.6, 0.6), (0.6, 0.7)} ∧ {(0.6, 0.8), (0.9, 0.8)}
= {(0.5, 0.4, 0.4), (0.4, 0.6)}.
Similarly, we have

hRQ(u1q2) = {(0.2, 0.4, 0.4)(0.8, 0.6)},
hRQ(u2q1) = {(0.5, 0.6)(0.4, 0.5, 0.7)},
hRQ(u2q2) = {(0.2, 0.5)(0.4, 0.5, 0.5)},
hRQ

(u1q1) = {(0.3, 0.4, 0.6)(0.6, 0.6)},
hRQ

(u1q2) = {(0.3, 0.4, 0.4)(0.2, 0.7)},
hRQ

(u2q1) = {(0.3, 0.4)(0.5, 0.8, 0.8)},
hRQ

(u2q2) = {(0.3, 0.6)(0.5, 0.6, 0.5)}.

Thus, we conclude that:

RQ(AQ) = {〈(u1q1), {(0.5, 0.4, 0.4), (0.4, 0.6)}〉, 〈(u1q2), {(0.2, 0.4, 0.4)(0.8, 0.6)}〉,
〈(u2q1), {(0.5, 0.6)(0.4, 0.5, 0.7)}〉, 〈(u2q2), {(0.2, 0.5)(0.4, 0.5, 0.5)}〉},

RQ(AQ) = {〈(u1q1), {(0.3, 0.4, 0.6)(0.6, 0.6)〉, 〈(u1q2), {(0.3, 0.4, 0.4)(0.2, 0.7)}〉,
〈(u2q1), {(0.3, 0.4)(0.5, 0.8, 0.8)}〉, 〈(u2q2), {0.3, 0.6)(0.5, 0.6, 0.5)}〉}.

The pair (RQ(AQ), RQ(AQ)) is called a multi Q-hesitant fuzzy soft rough set with dimension 2.
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Theorem 2. Let (U, E, Q, RQ) be multi Q-hesitant fuzzy soft approximation space. The lower and upper
Q-hesitant fuzzy soft rough approximations operators RQ(AQ) and RQ(AQ), respectively, for any AQ, BQ ∈
MkQHF(E) satisfy the following properties:

1. RQ(Ac
Q) = (RQ(AQ))

c, RQ(Ac
Q) = (RQ(AQ))

c,

2. AQ ⊆ BQ ⇒ RQ(AQ) ⊆ (RQ(BQ)) , AQ ⊆ BQ ⇒ RQ(AQ) ⊆ (RQ(AQ)),

3. RQ(AQ ∩ BQ) = RQ(AQ) ∩ (RQ(BQ)), RQ(AQ ∪ BQ) = RQ(AQ) ∪ (RQ(BQ)),

4. RQ(AQ ∪ BQ) ⊇ RQ(AQ) ∪ (RQ(BQ)), RQ(AQ ∩ BQ) ⊆ RQ(AQ) ∩ (RQ(BQ)).

Proof. 1. By Definition 17, we have
RQ(Ac

Q) = {〈(uq), hi
RQ(∼AQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),

∧
e∈E{hi

∼RQ
(uq, eq) ∨ hi

∼AQ
(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),∼ (
∨

e∈E{hi
RQ

(uq, eq) ∧ hi
AQ

(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),∼ hi

RQ(AQ)
(uq)〉 : (uq) ∈ U ×Q, i = 1, 2, ..., k}

= (RQ(AQ))
c.

Similarly, we can obtain that RQ(Ac
Q) = (RQ(AQ))

c.

2. If AQ ⊆ BQ, by Definition 8, hi
AQ

(uq) ≤ hi
BQ

(uq) for all u ∈ U, q ∈ Q. Therefore,
∧

e∈E{(1−
hi

RQ
)(uq, eq) ∨ hi

AQ
(eq)} ≤ ∧e∈E{(1− hi

RQ
)(uq, eq) ∨ hi

BQ
(eq)}, thus hi

RQ(AQ)
(uq) ≤ hi

RQ(BQ)
(uq).

It follows that RQ(AQ) ⊆ RQ(BQ).

3. RQ(AQ ∩ BQ) = {〈(uq), hi
RQ(AQ∩BQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),

∧
e∈E(1− hi

RQ
)(uq, eq) ∨ hi

AQ∩BQ
(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∧

e∈E(1− hi
RQ

)(uq, eq) ∨ (hi
AQ

(eq) ∧ hi
BQ

(eq))〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),

(∧
e∈E((1− hi

RQ
)(uq, eq) ∨ hi

AQ
(eq))

)
∧
(∧

e∈E((1− hi
RQ

)(uq, eq) ∨ hi
BQ

(eq))
)
〉 : uq ∈

U ×Q, i = 1, 2, ..., k}
= {〈(uq), hi

RQ(AQ)
(uq) ∧ hi

RQ(BQ)
(uq)〉 : uq ∈ U ×Q}

= RQ(AQ) ∩ RQ(BQ).

Hence, RQ(AQ ∩ BQ) = RQ(AQ) ∩ RQ(BQ).

Similarly, we can prove that RQ(AQ ∩ BQ) = RQ(AQ) ∩ RQ(BQ).

4. RQ(AQ ∪ BQ) = {〈(uq), hi
RQ(AQ∪BQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),

∧
e∈E(1− hi

RQ
)(uq, eq) ∨ hi

AQ∪BQ
(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∧

e∈E(1− hi
RQ

)(uq, eq) ∨ (hi
AQ

(eq) ∨ hi
BQ

(eq))〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= {〈(uq),

(∧
e∈E((1− hi

RQ
)(uq, eq) ∨ hi

AQ
(eq))

)
∨
(∧

e∈E((1− hi
RQ

)(uq, eq) ∨ hi
BQ

(eq))
)
〉 : uq ∈

U ×Q, i = 1, 2, ..., k}
= {〈(uq), hi

RQ(AQ)
(uq) ∨ hi

RQ(BQ)
(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= RQ(AQ) ∪ (RQ(BQ)).

Hence, RQ(AQ ∪ BQ) = RQ(AQ) ∪ RQ(BQ).

Similarly, we can prove that RQ(AQ ∪ BQ) = RQ(AQ) ∪ RQ(BQ).
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Theorem 3. Let RQ, SQ be multi Q-hesitant fuzzy soft relations from (U × Q) to (E× Q) , if RQ ⊆ SQ,
for any A ∈ QHF(E), then:

1. RQ(AQ) ⊇ SQ(AQ),

2. RQ(AQ) ⊆ SQ(AQ).

Proof. 1. If RQ ⊆ SQ , then, by Definition 8, we have hi
RQ

(uq, eq) ≤ hi
SQ
(uq, eq) for all uq ∈ U ×Q,

eq ∈ E×Q, then
RQ(AQ) = {〈(uq), hi

RQ(AQ)
(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∧

e∈E{(1− hi
RQ

)(uq, eq) ∨ hi
AQ

(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
≥ {〈(uq),

∧
e∈E{(1− hi

SQ
)(uq, eq) ∨ hi

AQ
(eq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq), hi
SQ(AQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}
= SQ(AQ).

2. Similarly, it can be proved.

5. Multi Q-Hesitant Fuzzy Soft Multi-Granulation Rough Set

Definition 18. Let U be a universal set and Q be non-empty set, and E be the set of parameters and
RQj ,(j=1,2,. . . ,m) be multi Qm-hesitant fuzzy soft relations over (U × Q) × (E × Q), and (U, E, Q, RQj)

be called multi Q-hesitant fuzzy soft multi-granulation approximation space, for any AQ ∈ MkQHF(E),
the optimistic lower and upper approximation of AQ with respect to (U, E, Q, RQj) are defined as follows:

m

∑
j=1

RQj

o

(AQ) = {〈(uq), hi
∑m

j=1 RQj
o(AQ)

(u, q)〉 : uq ∈ U ×Q},

m

∑
j=1

RQj

o

(AQ) = {〈(uq), hi
∑m

j=1 RQj
o(AQ)

(u, q)〉 : uq ∈ U ×Q},

where

h∑m
j=1 RQj

o(AQ)(uq) = {〈
m∨

j=1

k∧
i=1

{(1− hi
RQj

)(uq, eq) ∨ hi
AQ

(eq)}〉 : uq ∈ U ×Q},

h
∑m

j=1 RQj
o(AQ)

(uq) = {〈
m∧

j=1

k∨
i=1

{hi
RQi

(uq, eq) ∧ hi
AQ

(eq)}〉 : uq ∈ U ×Q}.

The pair (∑m
j=1 RQj

o(AQ), ∑m
j=1 RQj

o(AQ)) is called an optimistic multi Q-hesitant fuzzy soft

multi-granulation rough set of AQ with respect to (U, E, Q, RQj).

Theorem 4. Let (U, E, Q, RQj) be multi Q-hesitant fuzzy soft multi-granulation approximation space
and RQj ∈ MkQHFSR((U × Q)× (E× Q)),(j =1,2,...,m) be multi Qm hesitant fuzzy soft relations over
(U ×Q)× (E×Q), for any AQ, BQ ∈ MkQHF(E), the optimistic lower and upper approximation satisfy the
following properties:

1. ∑m
j=1 RQj

o(Ac
Q) = (∑m

j=1 RQj
o(AQ))

c,

∑m
j=1 RQj

o(Ac
Q) = (∑m

j=1 RQj
o(AQ))

c.

2. AQ ⊆ BQ ⇒ ∑m
j=1 RQj

o(AQ) ⊆ ∑m
j=1 RQj

o(BQ) ,

AQ ⊆ BQ ⇒ ∑m
j=1 RQj

o(AQ) ⊆ ∑m
j=1 RQj

o(BQ).
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3. ∑m
j=1 RQj

o(AQ ∩ BQ) = ∑m
j=1 RQj

o(AQ) ∩∑m
j=1 RQj

o(BQ),

∑m
j=1 RQj

o(AQ ∪ BQ) = ∑m
j=1 RQj

o(AQ) ∪∑m
j=1 RQj

o(BQ).

4. ∑m
j=1 RQj

o(AQ ∪ BQ) ⊇ ∑m
j=1 RQj

o(AQ) ∪∑m
j=1 RQj

o(BQ),

∑m
j=1 RQj

o(AQ ∩ BQ) ⊆ ∑m
j=1 RQj

o(AQ) ∩∑m
j=1 RQj

o(BQ).

Proof. 1. By Definition 18, we have,

∑m
j=1 RQj

o(Ac
Q) = {〈(uq), hi

∑m
j=1 RQj

o(∼AQ)
(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∨m

j=1
∧k

i=1{∼ hi
RQj

(uq, eq) ∨ hi
∼AQ

(eq)〉 : uq ∈ U ×Q}
= {〈(uq),∼ (

∧m
j=1
∨k

i=1{hi
RQj

(uq, eq) ∧ hi
AQ

(eq))〉 : uq ∈ U ×Q}
= {〈(uq),∼ hi

∑m
j=1 RQj

o(AQ)
(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= (∑m
j=1 RQj

o(AQ))
c.

Similarly, we can obtain that ∑m
j=1 RQj

o(Ac
Q) = (∑m

j=1 RQj
o(AQ))

c.

2. If AQ ⊆ BQ, by Definition 8, hi
AQ

(u, q) ≤ hi
BQ

(uq) for all u ∈ U, q ∈ Q, therefore,
∨m

j=1
∧k

i=1{(1−
hi

RQj
)(uq, eq) ∨ hAQ(e, q)} ≤ ∨m

i=1
∧k

i=1{(1− hi
RQj

)(uq, eq) ∨ hi
BQ

(eq)}, thus hi
∑m

j=1 RQj
o(AQ)

(uq) ≤

hi
∑m

j=1 RQj
o(BQ)

(uq) it follows that ∑m
j=1 RQj

o(AQ) ⊆ ∑m
j=1 RQj

o(BQ).

3. ∑m
j=1 RQj

o(AQ ∩ BQ) = {〈(uq), hi
∑m

j=1 RQj
o(AQ∩BQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∨m

j=1
∧k

i=1(1− hi
RQj

)(uq, eq) ∨ hi
AQ∩BQ

(eq)〉 : uq ∈ U ×Q}
= {〈(uq),

∨m
j=1
∧k

i=1(1− hi
RQj

)(uq, eq) ∨ (hi
AQ

(eq) ∧ hi
BQ

(eq))〉 : uq ∈ U ×Q}

= {〈(uq),
(∨m

i=1
∧k

i=1((1− hi
RQj

)(uq, eq) ∨ hi
AQ

(eq))
)
∧(∨m

j=1
∧k

i=1((1− hi
RQj

)(uq, eq) ∨ hi
BQ

(eq))
)
〉 : uq ∈ U ×Q}

= {〈(uq), hi
∑m

i=1 RQi
o(AQ)

(uq) ∧ h∑m
i=1 RQi

o(BQ)(uq)〉 : uq ∈ U ×Q}
= ∑m

j=1 RQj
o(AQ) ∩ (∑m

j=1 RQj
o(BQ)).

Hence, ∑m
j=1 RQj

o(AQ ∩ BQ) = ∑m
j=1 RQj

o(AQ) ∩∑m
j=1 RQj

o(BQ).

Similarly, we can prove that ∑m
j=1 RQj

o(AQ ∩ BQ) = ∑m
j=1 RQj

o(AQ) ∩∑m
j=1 RQj

o(BQ).

4. ∑m
j=1 RQj

o(AQ ∪ BQ) = {〈(uq), hi
∑m

j=1 RQj
o(AQ∪BQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∨m

j=1
∧k

i=1(1− hi
RQj

)(uq, eq) ∨ hi
AQ∪BQ

(eq)〉 : uq ∈ U ×Q}
= {〈(uq),

∨m
j=1
∧k

i=1(1− hi
RQj

)(uq, eq) ∨ (hi
AQ

(eq) ∨ hi
BQ

(eq))〉 : uq ∈ U ×Q}

= {〈(uq),
(∨m

j=1
∧k

i=1((1− hi
RQj

)(uq, eq) ∨ hi
AQ

(eq))
)
∨(∨m

i=1
∧k

i=1((1− hi
RQj

)(uq, eq) ∨ hi
BQ

(eq))
)
〉 : (uq) ∈ U ×Q}

= {〈(uq), hi
∑m

j=1 RQj
o(AQ)

(uq) ∨ hi
∑m

j=1 RQj
o(BQ)

(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= ∑m
j=1 RQj

o(AQ) ∪ (∑m
j=1 RQj

o(BQ)).
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Hence, ∑m
j=1 RQj

o(AQ ∪ BQ) = ∑m
j=1 RQj

o(AQ) ∪ RQ(BQ).

Similarly, we can prove that ∑m
j=1 RQj

o(AQ ∪ BQ) = ∑m
j=1 RQj

o(AQ) ∪∑m
j=1 RQj

o(BQ).

Theorem 5. Let RQj , SQj ∈ MkQHFSR((U ×Q)× (E×Q)) (j = 1, 2, ..., m) be multi Qm hesitant fuzzy
soft relations over (U × Q)× (E× Q), if RQj ⊆ SQj , for any AQ ∈ MkQHF(E), the following properties
are true:

1. ∑m
j=1 RQj

o(AQ) ⊇ ∑m
j=1 SQj

o(AQ),

2. ∑m
j=1 RQj

o(AQ) ⊆ ∑m
j=1 SQj

o(AQ).

Proof. 1. If RQj ⊆ SQj , then, by Definition 8, we have hi
RQj

(uq, eq) ≤ hi
SQj

(uq, eq) for all

(u, q) ∈ U ×Q, eq ∈ E×Q, then
∑m

j=1 RQj
o(AQ) = {〈(uq), hi

∑m
j=1 RQj

o(AQ)
(uq)〉 : uq ∈ U ×Q, i = 1, 2, ..., k}

= {〈(uq),
∨m

j=1
∧k

i=1{(1− hi
RQj

)(uq, eq) ∨ hi
AQ

(eq)〉 : uq ∈ U ×Q}
≥ {〈(uq),

∨m
j=1
∧k

i=1{(1− hi
SQj

)(uq, eq) ∨ hi
AQ

(eq)〉 : uq ∈ U ×Q}
= {〈(uq), hi

∑m
j=1 SQj

o(AQ)
(uq)〉 : uq ∈ U ×Q}

= ∑m
j=1 SQj

o(AQ).

2. It can be proved similarly to 1.

Definition 19. Let U be a universal set and Q be a non-empty set, and E be the set of parameters and
RQj ,(j=1,2,...,m) are multi Qm-hesitant fuzzy soft relations over (U ×Q)× (E×Q), the triple(U, E, Q, RQj)

is called multi Q-hesitant fuzzy soft multi-granulation approximation space, for any AQ ∈ MkQHF(E), and
the pessimistic lower and upper approximation of AQ with respect to (U, E, Q, RQj) are defined as follows:

m

∑
j=1

Rp
Qj
(AQ) = {〈(uq), hi

∑m
j=1 Rp

Qj
(AQ)

(u, q)〉 : uq ∈ U ×Q},

m

∑
j=1

Rp
Qj
(AQ) = {〈(uq), hi

∑m
j=1 RQj

p(AQ)
(u, q)〉 : uq ∈ U ×Q},

where

h∑m
j=1 RQj

p(AQ)(uq) = {〈
m∧

j=1

k∧
i=1

{(1− hi
RQj

)(uq, eq) ∨ hi
AQ

(eq)}〉 : uq ∈ U ×Q},

h
∑m

j=1 RQj
p(AQ)

(uq) = {〈
m∨

j=1

k∨
i=1

{hi
RQi

(uq, eq) ∧ hi
AQ

(eq)}〉 : uq ∈ U ×Q}.

The pair (∑m
j=1 RQj

p(AQ), ∑m
j=1 RQj

p(AQ)) is called an pessimistic multi Q-hesitant fuzzy soft

multi-granulation rough set of AQ with respect to (U, E, Q, RQj).

Theorem 6. Let (U, E, Q, RQj) be multi Q-hesitant fuzzy soft multi-granulation approximation space and
RQj ∈ MkQHFSR((U × Q)× (E× Q),(i=1,2,...,m) be multi Qm hesitant fuzzy soft relations over (U ×
Q)× (E× Q), for any AQ, BQ ∈ MkQHF(E), the pessimistic lower and upper approximation satisfy the
following properties:
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1. ∑m
j=1 RQj

p(Ac
Q) = (∑m

j=1 RQj
p(AQ))

c,∑m
j=1 RQj

p(Ac
Q) = (∑m

j=1 RQj
p(AQ))

c.

2. AQ ⊆ BQ ⇒ ∑m
j=1 RQj

p(AQ) ⊆ ∑m
j=1 RQj

p(BQ) ,

AQ ⊆ BQ ⇒ ∑m
j=1 RQj

p(AQ) ⊆ ∑m
j=1 RQj

p(BQ).

3. ∑m
j=1 RQj

o(AQ ∩ BQ) = ∑m
j=1 RQj

p(AQ) ∩∑m
j=1 RQj

p(BQ),

∑m
j=1 RQj

p(AQ ∪ BQ) = ∑m
j=1 RQj

p(AQ) ∪∑m
j=1 RQj

p(BQ).

4. ∑m
i=1 RQi

p(AQ ∪ BQ) ⊇ ∑m
j=1 RQj

p(AQ) ∪∑m
j=1 RQj

p(BQ),

∑m
j=1 RQj

p(AQ ∩ BQ) ⊆ ∑m
j=1 RQj

p(AQ) ∩∑m
j=1 RQj

p(BQ).

Proof. It can easily be proved by using Theorem 4 and Definition 19.

Theorem 7. Let (U, E, Q, RQj) be multi Q-hesitant fuzzy soft multi-granulation approximation space and
RQj , SQj ∈ MkQHFSR((U × Q) × (E × Q),(i=1,2,...,m) be multi Qm hesitant fuzzy soft relations over
(U ×Q)× (E×Q), if RQj ⊆ SQj , for any AQ ∈ MkQHF(E), the following properties are true :

1. ∑m
j=1 RQj

p(AQ) ⊇ ∑m
j=1 SQj

p(AQ),

2. ∑m
j=1 RQj

p(AQ) ⊆ ∑m
j=1 SQj

p(AQ).

Proof. It can be easily proved by Theorem 5 and Definition 19.

6. Photovoltaic Systems Fault Detection Approach

Fuzzy sets and rough sets are both mathematical tools to handle uncertainties, they have a wide
applications in many practical problems, especially in the area of decision-making. In many instances,
we can not successfully utilize these classical methods to deal with decision-making problems since
various types of uncertainties involved in these problems which require that second dimension must
be added to the expression of the membership value.

Inspired by this, we construct a new model to the decision-making problem of photovoltaic
system fault detection depending on the notion of MkQHFS multi-granulation rough set.

6.1. The Application Model

Photovoltaic systems (solar panel) can be explained as a piece of equipment converting sunlight
(photons) to electric energy. Loss of power in photovoltaic systems can occur suddenly any time.
Therefore, it is necessary to detect faults as early as possible. Unexpected power loss is usually detected
by comparing the output to a reference figure.

By employing the model of multi Q-hesitant fuzzy soft multi-granulation rough sets, we can
indicate the loss of power in photovoltaic systems expressed as multi Q-hesitant fuzzy soft elements.

Let U = {u1, u2, ...., uv} be the fault type set, Q = {q1, q2} represents the set of condition
degrees and E = {e1, e2, ...., es} be the set of power measurement. Let RQj ∈ MkQHFSR((U ×
Q)× (E× Q)) (j = 1, 2, ..., m), which was employed to indicate the electrical information given by
m experts via the membership degrees between the fault detected with condition degrees and the
power measurement with condition degrees. In addition, AQ ∈ MkQHF(E) represents the power
measurements with the condition degree of each measurement. Then, we construct a multi Q-hesitant
fuzzy soft decision information system (U, E, Q, RQj) of the electrical detection procedure.

First, based on the the score function definition given by Xia and Xu [29], we define the score
function of MkQHFS element as follows:
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Definition 20. Let hi
Q(uq) be MkQHFS element, then the score function can be fined as follows:

S(hi
Q(uq)) = { 1

l(hi
Q)

∑
γ∈hi

Q

γ, i = 1, 2, ..., k},

where l(hi
Q) is the number of values in (hi

Q(uq)).

By Definition 20, we can define the sum of AQ and BQ as follows:

Definition 21. Letting AQ and BQ be two MkQHFSS in U ×Q, we define the sum of hi
AQ

(uq) and hi
BQ

(uq)
such that i = 1, 2, ..., k by

hi
AQ

(uq)⊕ hi
BQ

(uq) = {〈h1
AQ

(uq)+ h1
BQ

(uq)− h1
AQ

(uq)h1
BQ

(uq), h2
AQ

(uq)h2
BQ

(uq), ..., hk
AQ

(uq)hk
BQ

(uq)〉}.

Based on the decision-making strategy developed in [14], we introduce the following three
measurement indices which are denoted by:

T1 =
{
(S, T)|maxusqt S

(
∑m

j=1 RQj
o(AQ)(usqt)⊕∑m

j=1 RQj
o(AQ)(usqt)

)}
,

T2 =
{
(X, Y)|maxuxqy S

(
∑m

j=1 RQj
p(AQ)(uxqy)⊕∑m

j=1 RQj
p(AQ)(uxqy)

)}
,

T3 =
{
(V, N)|maxuvqn S

(
(∑m

j=1 RQj
o(AQ)⊕∑m

i=1 RQj
o(AQ))⊕ (∑m

i=1 RQj
p(AQ)⊕∑m

j=1 RQj
p(AQ))

)}
.

Now, the decision rules for photovoltaic systems fault detection by using a multi Q-hesitant fuzzy
soft multi-granulation rough set are given as follows :

1. If T1 ∩ T2 ∩ T3 	= φ, then the decision maker will choose (m, n) as the optimal object, where (m, n)
∈ T1 ∩ T2 ∩ T3.

2. If T1 ∩ T2 ∩ T3 = φ and T1 ∩ T2 	= φ, then the decision maker will choose (m, n) as the optimal
object, where (m, n) ∈ T1 ∩ T2.

3. If T1 ∩ T2 ∩ T3 = φ and T1 ∩ T2 = φ , then (m, n) ∈ T3 is the determined fault type in level.

In the following, we present our method in an Algorithm 1 for the photovoltaic systems fault
detection model by using a multi Q-hesitant fuzzy soft multi-granulation rough set.

Algorithm 1. Photovoltaic systems fault detection

1. Input the universal set (U,Q).
2. Input the set (E,Q).
3. Construct multi Q-hesitant fuzzy soft relation according to m experts.
4. Give the testing set AQ ∈ MkQHF(E).

5. Compute the MkQHFS operators ∑m
j=1 RQj

o(AQ),

∑m
j=1 RQj

o(AQ) ,∑m
j=1 RQj

p(AQ), ∑m
j=1 RQj

p(AQ).

6. Calculate ∑m
j=1 RQj

o(AQ)⊕∑m
j=1 RQj

o(AQ) ,∑m
j=1 RQj

p(AQ)⊕∑m
j=1 RQj

p(AQ) and(
(∑m

j=1 RQj
o(AQ)⊕∑m

j=1 RQj
o(AQ))⊕ (∑m

j=1 RQj
p(AQ)⊕∑m

j=1 RQj
p(AQ))

)
.

7. Determine the score function values of ∑m
j=1 RQj

o(AQ) ⊕ ∑m
j=1 RQj

o(AQ) ,∑m
j=1 RQj

p(AQ) ⊕
∑m

j=1 RQj
p(AQ) and(

(∑m
j=1 RQj

o(AQ)⊕∑m
j=1 RQj

o(AQ))⊕ (∑m
j=1 RQj

p(AQ)⊕∑m
j=1 RQj

p(AQ))
)

.

8. Compute T1 ∩ T2 ∩ T3 and T1 ∩ T2 , and confirm the determined fault type and its degree.
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6.2. Example

For illustrating the efficiency of the proposed algorithm, we use a photovoltaic system fault
diagnose problem with multi Q-hesitant fuzzy soft decision information.
Suppose that U = {u1, u2, u3} be the set of fault type where uv stands for, partial shading, delamination,
cracks in cells, respectively. Q = {q1 = low, q2 = high} represent the set of status levels and E =

{e1, e2, e3} be the set of power measurement where es stands for current, voltage, and series resistance,
respectively. The photovoltaic system fault detection knowledge base with MkQHFS information with
dimension k = 1 is presented in Tables 2–4.

In photovoltaic system fault detection, assume that we take a fault testing sample, which is
presented by the following multi Q-hesitant fuzzy soft information:

AQ = {〈((e1, q1), 0.9, 0.4), ((e1, q2), 0.6, 0.8, 0.4)〉, 〈((e2, q1), 0.1, 0.9), ((e2, q2), 0.2, 0.5)〉,
〈((e3, q1), 0.2, 0.4, 0.1), ((e3, q2), 0.3, 0.7)〉}.

Table 2. Knowledge given by expert 1.

RQ1
e1q1 e1q2 e2q1 e2q2 e3q1 e3q2

(u1q1) {0.1,0.4,0.8} {0.9,0.3} {0.5,0.7,0.1} {0.2,0.6,} {0.9,0.3} {0.1,0.2,0.4}
(u1q2) {0.5,0.2} {0.2,0.6} {0.3,0.1,0.4} {0.1,0.8} {0.1,0.3} {0.4,0.9,0.3}
(u2q1) {0.8,0.1} {0.1,0.8,0.7 } {0.8,0.3} {0.2,0.6,0.3} {0.2,0.4,0.9} {0.6,0.3}
(u2q2) {0.3,0.4,0.5} {0.8,0.3} {0.5,0.4,0.3} {0.1,0.6,0.7} {0.2,0.9} {0.3,0.1,0.6}
(u3q1) {0.2,0.1} {0.4,0.7,0.8} {0.6,0.9,0.4} {0.7,0.1} {0.8,0.7,0.2} {(0.4,0.5)}
(u3q2) {0.1,0.2,0.4} {0.7,0.2,0.5} {0.5,0.6} {0.1,0.2,0.8} {0.4,0.2} {0.7,0.3,0.1}

Table 3. Knowledge given by expert 2.

RQ2
e1q1 e1q2 e2q1 e2q2 e3q1 e3q2

(u1q1) {0.6,0.2,0.7} {0.3} {0.4,0.8,0.2} {0.1,0.4} {0.2,0.7,0.3} {0.5,0.9}
(u1q2) {0.2,0.6} {0.3,0.4} {0.2,0.3} {0.6,0.2} {0.3,0.9} {0.1,0.6,0.3}
(u2q1) {0.4,0.2,0.6} {0.1,0.2} {0.7,0.5,0.7 } {0.8,0.3,0.9} {0.9,0.8,0.4} {0.4,0.3}
(u2q2) {0.9,0.6} {0.4,0.8} {0.3,0.1,0.9} {0.6,0.5} {0.7,0.3,0.6} {0.1,0.7}
(u3q1) {0.2,0.1,0.2} {0.7,0.4} {0.1,0.5,0.6} {0.7,0.1,0.3} {0.2,0.1} {0.5,0.9,0.6}
(u3q2) {0.7,0.8} {0.3} {0.4,0.8} {0.1,0.2,0.4} {0.2,0.7,0.3} {0.4,0.5}

Table 4. Knowledge given by expert 3.

RQ3
e1q1 e1q2 e2q1 e2q2 e3q1 e3q2

(u1q1) {0.6,0.2,0.1} {0.2,0.3} {0.1,0.2,0.9} {0.2,0.8} {0.8,0.5,0.6} {0.7,0.3,0.6}
(u1q2) {0.5,0.3} {0.3,0.1,0.4} {0.2,0.3} {0.9,0.1,0.6} {0.5,0.4} {0.2,0.7,0.1}
(u2q1) {0.4,0.6,0.5} {0.5,0.1} {0.2,0.8,0.7 } {0.8,0.7} {0.5,0.2,0.1} {0.4,0.3}
(u2q2) {0.3,0.4} {0.8,0.2,0.5} {0.4,0.9} {0.1,0.2} {0.8,0.5,0.3} {0.5,0.3}
(u3q1) {0.4,0.3,0.6} {0.5,0.4} {0.4,0.7,0.5} {0.4,0.6} {0.7,0.6,0.2} {0.8,0.9,0.2}
(u3q2) {0.8,0.2} {0.3,0.1,0.3} {0.9,0.1} {0.4,0.6,0.7} {0.3,0.8} {0.6,0.4,0.7}

Now, by applying the steps of algorithm that we mentioned above, we first calculate the lower
and upper approximation of optimistic and pessimistic multi Q-hesitant fuzzy soft multi-granulation
rough sets of AQ with respect to (U, E, Q, RQj), respectively:

∑3
j=1 RQj

o
(AQ) = {〈(u1q1), {0.5, 0.5, 0.4}〉, 〈(u1q2), {0.6, 0.6, 0.5}〉,

〈(u2q1), {0.2, 0.5, 0.5}〉, 〈(u2q2), {0.5, 0.5, 0.5}〉, 〈(u3q1), {0.3, 0.7, 0.6}〉, 〈(u3q2), {0.6, 0.7, 0.5}〉},

∑3
j=1 RQj

o
(AQ) = {〈(u1q1), {0.6, 0.5, 0.5}〉, 〈(u1q2), {0.3, 0.6, 0.4}〉,

〈(u2q1), {0.4, 0.5, 0.3}〉, 〈(u2q2), {0.6, 0.5, 0.6}〉, 〈(u3q1), {0.4, 0.7, 0.5}〉, 〈(u3q2), {0.6, 0.5, 0.6}〉},
and
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∑3
j=1 RQj

p
(AQ) = {〈(u1q1), {0.2, 0.4, 0.4}〉, 〈(u1q2), {0.2, 0.4, 0.1}〉,

〈(u2q1), {0.2, 0.4, 0.1}〉, 〈(u2q2), {0.2, 0.4, 0.1}〉, 〈(u3q1), {0.2, 0.4, 0.4}〉, 〈(u3q2), {0.1, 0.4, 0.2}〉},

∑3
j=1 RQj

p
(AQ) = {〈(u1q1), {0.6, 0.8, 0.9}〉, 〈(u1q2), {0.5, 0.7, 0.5}〉,

〈(u2q1), {0.8, 0.8, 0.7}〉, 〈(u2q2), {0.9, 0.9, 0.9}〉, 〈(u3q1), {0.6, 0.9, 0.6}〉, 〈(u3q2), {0.8, 0.8, 0.8}〉}.
Then, by Definition 21, we have:

∑3
j=1 RQj

o
(AQ)⊕∑3

j=1 RQj

o
(AQ) = {〈(u1q1), {0.8, 0.75, 0.7}〉, 〈(u1q2), {0.72, 0.84, 0.7}〉,

〈(u2q1), {0.52, 0.75, 0.65}〉, 〈(u2q2), {0.8, 0.75, 0.8}〉,
〈(u3q1), {0.58, 0.91, 0.8}〉, 〈(u3q2), {0.84, 0.85, 0.8}〉},

∑3
j=1 RQj

p
(AQ)⊕∑3

j=1 RQj

p
(AQ) = {〈(u1q1), {0.68, 0.88, 0.94}〉, 〈(u1q2), {0.6, 0.82, 0.55}〉,

〈(u2q1), {0.84, 0.88, 0.73}〉, 〈(u2q2), {0.92, 0.94, 0.91}〉,
〈(u3q1), {0.86, 0.94, 0.76}〉, 〈(u3q2), {0.82, 0.88, 0.84}〉},((

∑3
j=1 RQj

o
(AQ)⊕∑3

j=1 RQj

o
(AQ)

)
⊕
(

∑3
j=1 RQj

p
(AQ)⊕∑3

j=1 RQj

p
(AQ)

))
= {〈(u1q1), {0.936, 0.97, 0.982}〉, 〈(u1q2), {0.888, 0.9712, 0.865}〉,
〈(u2q1), {0.9232, 0.97, 0.905}〉, 〈(u2q2), {0.984, 0.985, 0.982}〉,
〈(u3q1), {0.8656, 0.9946, 0.952}〉, 〈(u3q2), {0.9712, 0.982, 0.968}〉}.

In what follows, according to Definition 20, we calculate the score function values of multi
Q-hesitant fuzzy soft elements

S
(

∑3
j=1 RQj

o
(AQ)⊕∑3

j=1 RQj

o
(AQ)

)
= {〈(u1q1), {0.75}〉, 〈(u1q2), {0.753}〉,

〈(u2q1), {0.64}〉, 〈(u2q2), {0.78}〉, 〈(u3q1), {0.76}〉, 〈(u3q2), {0.83}〉}.

S
(

∑3
j=1 RQj

p
(AQ)⊕∑3

j=1 RQj

p
(AQ)

)
= {〈(u1q1), {0.83}〉, 〈(u1q2), {0.65}〉,

〈(u2q1), {(0.81}〉, 〈(u2q2), {0.92}〉, 〈(u3q1), {0.79}〉, 〈(u3q2), {0.84}〉}.

S
((

∑3
j=1 RQj

o
(AQ)⊕∑3

j=1 RQj

o
(AQ)

)
⊕
(

∑3
j=1 RQj

p
(AQ)⊕∑3

j=1 RQj

p
(AQ)

))
= {〈(u1q1), {0.96}〉, 〈(u1q2), {0.90}〉, 〈(u2q1), {0.93}〉, 〈(u2q2), {0.98}〉,
〈(u3q1), {0.94}〉, 〈(u3q2), {0.97}〉}.

Then, we obtain that

T1 =

⎧⎨⎩(S, T)|max
usqt

S

⎛⎝ m

∑
j=1

RQj

o

(AQ)(usqt)⊕
m

∑
j=1

RQj

o

(AQ)(usqt)

⎞⎠⎫⎬⎭ = (3, 2),

T2 =

⎧⎨⎩(X, Y)|max
uxqy

S

⎛⎝ m

∑
j=1

RQj

p

(AQ)(uxqy)⊕
m

∑
j=1

RQj

p

(AQ)(uxqy)

⎞⎠⎫⎬⎭ = (2, 2),

T3 =

⎧⎨⎩(V, N)|max
uvqn

S

⎛⎝(
m

∑
j=1

RQj

o

(AQ)⊕
m

∑
j=1

RQj

o

(AQ))⊕ (
m

∑
j=1

RQj

p

(AQ)⊕
m

∑
j=1

RQj

p

(AQ))

⎞⎠⎫⎬⎭ = (2, 2).

According to the above results, the decision maker will choose the type of fault u2 and condition
degree q2. Thus, we find that the photovoltaic systems fault is initiated by a high degree of
delamination.
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6.3. Comparative Analysis and Discussion

To explore the effectiveness of the proposed model based on multi-Q hesitant fuzzy soft
multi-granulation rough sets, we compare it with the method proposed in [27]. The method
given in [27] deals with the decision-making problems of one-dimensional universal sets U and
V with hesitant fuzzy information, while the model proposed in the present paper can handle the
decision-making problems of two-dimensional universal sets U ×Q and E×Q with multi hesitant
fuzzy soft information that contains much more information to deal with uncertainties in data related
to an object with parameter value and the information expressed more precisely and objectively during
the decision-making process. Thus, the proposed method is more general and its application domain
is wider than that of the method in [27]. Reference [27] proposed a decision-making method based
on the TODIM approach, and the basic parts of the previous method compute the dominance degree
ζ(pi, pk) = ∑n

j=1 Φj(pi, pk) of each alternative pi over each alternative pk and the overall prospect
values ζ(pi) for alternative pi according to the following expression, respectively:

Φj(pi, pk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

wjr(hij − hkj)/(∑
n
j=1 wjr) if hij − hkj > 0,

0 if hij − hkj = 0,

−
√
(∑n

j=1 wjr)(hij−hkj)/wjr

θ if hij − hkj < 0,

and

ζ(pi) =
∑n

j=1 Φj(pi, pk)−mini{∑n
j=1 Φj(pi, pk)}

maxi{∑n
j=1 Φj(pi, pk)} −mini{∑n

j=1 Φj(pi, pk)}
.

As presented in [27], the optimistic decision criterion ∑m
j=1 RQj

o(AQ) ⊕ ∑m
j=1 RQj

o(AQ),

pessimistic decision criterion ∑m
j=1 RQj

p(AQ)⊕∑m
j=1 RQj

p(AQ) and the weighted decision criterion

1
2

⎛⎝ m

∑
j=1

RQj

o

(AQ)⊕
m

∑
j=1

RQj

o

(AQ)

⎞⎠⊕ 1
2

⎛⎝ m

∑
j=1

RQj

p

(AQ)⊕
m

∑
j=1

RQj

p

(AQ)

⎞⎠
are three alternatives, the fault types with condition degrees are the criteria, and the obtained evaluation
values of the alternative with respect to the criterion are the elements in the decision matrix. The
alternative with the largest overall prospect value is the optimal alternative. Then, in the optimal
alternative, the fault type and condition degree with the largest score value are the determined fault
type with its degree. Through utilizing the above procedure, we could obtain that ζ(p1) = 0.22,
ζ(p2) = 0.35 and ζ(p3) = 0.36. Since the greater ζ(pi) is, the better alternative pi will be, the weighted
decision criterion can be considered as the best alternative.

Then, we compute the score value of the fault types with condition degrees in the weighted
decision criterion, which means the type of fault u2 and condition degree q2. Thus, we find that the
photovoltaic systems fault is initiated by a high degree of delamination.

Discussion: Based on the above analysis, the results obtained by the proposed method in
this paper are consistent with the one obtained using the compared method in [27], which further
demonstrate the effectiveness and feasibility of the proposed model. There are two advantages of a
multi Q-hesitant fuzzy soft multi-granulation rough set model in photovoltaic systems fault detection
procedure. One advantage is that the hesitancy membership function in multi Q-hesitant fuzzy soft
sets provides the electrical engineers with much more access to convey their understanding about
the electrical knowledge base and another advantage is that the decision makers can control the size
of the loss of information by adding another dimension to the universal sets. In light of the above,
the greatness of the multi Q-hesitant fuzzy soft multi-granulation rough set model could decline the
uncertainty to a great extent and enhance the accuracy and reliability of electrical detection effectively.
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7. Conclusions

A multi Q-hesitant fuzzy soft multi-granulation rough set is a new hybrid model, which is a
combination of powerful topics: multi Q-hesitant fuzzy soft sets and multi-granulation rough sets. We
have defined MkQHFS rough approximation operators in terms of MkQHFS relations and MkQHFS
multi-granulation rough approximation operators in terms of MkQHFS relations. We have investigated
the properties of lower and upper MkQHFS rough approximation operators and lower and upper
MkQHFS multi-granulation rough approximation operators. Finally, we have developed a general
framework for dealing with uncertainty decision-making by using the multi Q-hesitant fuzzy soft
multi-granulation rough sets. We have used the photovoltaic systems fault detection to indicate the
principle steps of the decision methodology. In the future, we will mainly focus on investigating
uncertain measures and knowledge reductions of the MkQHFS rough sets.
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Abstract: In this paper, to combine single valued neutrosophic sets (SVNSs) with covering-based
rough sets, we propose two types of single valued neutrosophic (SVN) covering rough set models.
Furthermore, a corresponding application to the problem of decision making is presented. Firstly,
the notion of SVN β-covering approximation space is proposed, and some concepts and properties
in it are investigated. Secondly, based on SVN β-covering approximation spaces, two types of SVN
covering rough set models are proposed. Then, some properties and the matrix representations of the
newly defined SVN covering approximation operators are investigated. Finally, we propose a novel
method to decision making (DM) problems based on one of the SVN covering rough set models.
Moreover, the proposed DM method is compared with other methods in an example.

Keywords: covering; single valued neutrosophic; matrix representation; decision making

1. Introduction

Rough set theory, as a a tool to deal with various types of data in data mining, was proposed
by Pawlak [1,2] in 1982. Since then, rough set theory has been extended to generalized rough sets
based on other notions such as binary relations, neighborhood systems and coverings.

Covering-based rough sets [3–5] were proposed to deal with the type of covering data.
In application, they have been applied to knowledge reduction [6,7], decision rule synthesis [8,9],
and other fields [10–12]. In theory, covering-based rough set theory has been connected with matroid
theory [13–16], lattice theory [17,18] and fuzzy set theory [19–22].

Zadeh’s fuzzy set theory [23] addresses the problem of how to understand and manipulate
imperfect knowledge. It has been used in various applications [24–27]. Recent investigations have
attracted more attention on combining covering-based rough set and fuzzy set theories. There are
many fuzzy covering rough set models proposed by researchers, such as Ma [28] and Yang et al. [20].

Wang et al. [29] presented single valued neutrosophic sets (SVNSs) which can be regarded as
an extension of IFSs [30]. Neutrosophic sets and rough sets both can deal with partial and uncertain
information. Therefore, it is necessary to combine them. Recently, Mondal and Pramanik [31] presented
the concept of rough neutrosophic set. Yang et al. [32] presented a SVN rough set model based on
SVN relations. However, SVNSs and covering-based rough sets have not been combined up to now.
In this paper, we present two types of SVN covering rough set models. This new combination is a
bridge, linking SVNSs and covering-based rough sets.

As we know, the multiple criteria decision making (MCDM) is an important tool to deal with more
complicated problems in our real world [33,34]. There are many MCDM methods presented based on
different problems or theories. For example, Liu et al. [35] dealt with the challenges of many criteria in
the MCDM problem and decision makers with heterogeneous risk preferences. Watróbski et al. [36]
proposed a framework for selecting suitable MCDA methods for a particular decision situation.
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Faizi et al. [37,38] presented an extension of the MCDM method based on hesitant fuzzy theory.
Recently, many researchers have studied decision making (DM) problems by rough set models [39–42].
For example, Zhan et al. [39] applied a type of soft rough model to DM problems. Yang et al. [32]
presented a method for DM problems under a type of SVN rough set model. By investigation,
we have observed that no one has applied SVN covering rough set models to DM problems. Therefore,
we construct the covering SVN decision information systems according to the characterizations of
DM problems. Then, we present a novel method to DM problems under one of the SVN covering
rough set models. Moreover, the proposed decision making method is compared with other methods,
which were presented by Yang et al. [32], Liu [43] and Ye [44].

The rest of this paper is organized as follows. Section 2 reviews some fundamental definitions
about covering-based rough sets and SVNSs. In Section 3, some notions and properties in SVN
β-covering approximation space are studied. In Section 4, we present two types of SVN covering rough
set models, based on the SVN β-neighborhoods and the β-neighborhoods. In Section 5, some new
matrices and matrix operations are presented. Based on this, the matrix representations of the SVN
approximation operators are shown. In Section 6, a novel method to decision making (DM) problems
under one of the SVN covering rough set models is proposed. Moreover, the proposed DM method is
compared with other methods. This paper is concluded and further work is indicated in Section 7.

2. Basic Definitions

Suppose U is a nonempty and finite set called universe.

Definition 1 (Covering [45,46]). Let U be a universe and C a family of subsets of U. If none of subsets in C is
empty and

⋃
C = U, then C is called a covering of U.

The pair (U, C) is called a covering approximation space.

Definition 2 (Single valued neutrosophic set [29]). Let U be a nonempty fixed set. A single valued
neutrosophic set (SVNS) A in U is defined as an object of the following form:

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},

where TA(x) : U → [0, 1] is a truth-membership function, IA(x) : U → [0, 1] is an indeterminacy-membership
function and FA(x) : U → [0, 1] is a falsity-membership function for any x ∈ U. They satisfy 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3 for all x ∈ U. The family of all single valued neutrosophic sets in U is denoted by SVN(U).
For convenience, a SVN number is represented by α = 〈a, b, c〉, where a, b, c ∈ [0, 1] and a + b + c ≤ 3.

Specially, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, α ≤ β ⇔ a ≤ d, b ≥ e and c ≥ f .
Some operations on SVN(U) are listed as follows [29,32]: for any A, B ∈ SVN(U),

(1) A ⊆ B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U.
(2) A = B iff A ⊆ B and B ⊆ A.
(3) A ∩ B = {〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U}.
(4) A ∪ B = {〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.
(5) A′ = {〈x, FA(x), 1− IA(x), TA(x)〉 : x ∈ U}.
(6) A⊕ B = {〈x, TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)〉 : x ∈ U}.

3. Single Valued Neutrosophic β-Covering Approximation Space

In this section, we present the notion of SVN β-covering approximation space. There are two
basic concepts in this new approximation space: SVN β-covering and SVN β-neighborhood. Then,
some of their properties are studied.

148



Symmetry 2018, 10, 710

Definition 3. Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉,
we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥ β. We also call (U, Ĉ) a SVN β-covering approximation space.

Definition 4. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN
β-neighborhood Ñ

β
x of x induced by Ĉ can be defined as:

Ñ
β
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}. (1)

Note that Ci(x) is a SVN number 〈TCi (x), ICi (x), FCi (x)〉 in Definitions 3 and 4. Hence, Ci(x) ≥ β

means TCi (x) ≥ a, ICi (x) ≤ b and FCi (x) ≤ c where SVN number β = 〈a, b, c〉.

Remark 1. Let Ĉ be a SVN β-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U,

Ñ
β
x = ∩{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≤ b, FCi (x) ≤ c}. (2)

Example 1. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.3, 0.8〉. We can see that Ĉ is
a SVN β-covering of U in Table 1.

Table 1. The tabular representation of single valued neutrosophic (SVN) β-covering Ĉ.

U C1 C2 C3 C4

x1 〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
x2 〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
x3 〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
x4 〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
x5 〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

Then,

Ñ
β
x1 = C1 ∩ C2, Ñβ

x2 = C1 ∩ C2 ∩ C4, Ñβ
x3 = C3 ∩ C4, Ñβ

x4 = C1 ∩ C4, Ñβ
x5 = C2 ∩ C3 ∩ C4.

Hence, all SVN β-neighborhoods are shown in Table 2.

Table 2. The tabular representation of Ñβ
xk (k = 1, 2, 3, 4, 5).

Ñ
β
xk x1 x2 x3 x4 x5

Ñ
β
x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñ
β
x2 〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñ
β
x3 〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉

Ñ
β
x4 〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉

Ñ
β
x5 〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

In a SVN β-covering approximation space (U, Ĉ), we present the following properties of the SVN
β-neighborhood.

Theorem 1. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, the following statements hold:

(1) Ñ
β
x(x) ≥ β for each x ∈ U.

(2) ∀x, y, z ∈ U, if Ñβ
x(y) ≥ β, Ñβ

y (z) ≥ β, then Ñ
β
x(z) ≥ β.

(3) For two SVN numbers β1, β2, if β1 ≤ β2 ≤ β, then Ñ
β1
x ⊆ Ñ

β2
x for all x ∈ U.
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Proof.

(1) For any x ∈ U, Ñβ
x(x) = (

⋂
Ci(x)≥β

Ci)(x) =
∧

Ci(x)≥β

Ci(x) ≥ β.

(2) Let I = {1, 2, · · · , m}. Since Ñ
β
x(y) ≥ β, for any i ∈ I, if Ci(x) ≥ β, then Ci(y) ≥ β. Since Ñ

β
y (z) ≥ β,

for any i ∈ I, Ci(z) ≥ β when Ci(y) ≥ β. Then, for any i ∈ I, Ci(x) ≥ β implies Ci(z) ≥ β.
Therefore, Ñβ

x(z) ≥ β.
(3) For all x ∈ U, since β1 ≤ β2 ≤ β, {Ci ∈ Ĉ : Ci(x) ≥ β1} ⊇ {Ci ∈ Ĉ : Ci(x) ≥ β2}. Hence,

Ñ
β1
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β1} ⊆ ∩{Ci ∈ Ĉ : Ci(x) ≥ β2} = Ñ

β2
x for all x ∈ U.

Proposition 1. Let Ĉ be a SVN β-covering of U. For any x, y ∈ U, Ñβ
x(y) ≥ β if and only if Ñβ

y ⊆ Ñ
β
x .

Proof. Suppose the SVN number β = 〈a, b, c〉.
(⇒): Since Ñ

β
x(y) ≥ β,

T
Ñ

β
x
(y) = T ⋂

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

TCi (y) ≥ a, I
Ñ

β
x
(y) = I ⋂

TCi
(x)≥a

ICi
(x)≤c

FCi
(x)≤b

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

ICi (y) ≤ b,

and

F
Ñ

β
x
(y) = F ⋂

TCi
(x)≥a

ICi
(x)≤c

FCi
(x)≤b

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

FCi (y) ≤ c.

Then,

{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≤ b, FCi (x) ≤ c} ⊆ {Ci ∈ Ĉ : TCi (y) ≥ a, ICi (y) ≤ b, FCi (y) ≤ c}.
Therefore, for each z ∈ U,

T
Ñ

β
x
(z) =

∧
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

TCi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

TCi (z) = T
Ñ

β
y
(z),

I
Ñ

β
x
(z) =

∨
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

ICi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

ICi (z) = I
Ñ

β
y
(z),

F
Ñ

β
x
(z) =

∨
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

FCi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

FCi (z) = F
Ñ

β
y
(z).

Hence, Ñβ
y ⊆ Ñ

β
x .

(⇐): For any x, y ∈ U, since Ñ
β
y ⊆ Ñ

β
x ,

T
Ñ

β
x
(y) ≥ T

Ñ
β
y
(y) ≥ a, I

Ñ
β
x
(y) ≤ I

Ñ
β
y
(y) ≤ b and F

Ñ
β
x
(y) ≤ F

Ñβ
y
(y) ≤ c.

Therefore, Ñβ
x(y) ≥ β.

The notion of SVN β-neighborhood in the SVN β-covering approximation space in the
following definition.
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Definition 5. Let (U, Ĉ) be a SVN β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

we define the β-neighborhood N
β
x of x as:

N
β
x = {y ∈ U : Ñβ

x(y) ≥ β}. (3)

Note that Ñβ
x(y) is a SVN number 〈T

Ñ
β
x
(y), I

Ñ
β
x
(y), F

Ñ
β
x
(y)〉 in Definition 5.

Remark 2. Let Ĉ be a SVN β-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

N
β
x = {y ∈ U : T

Ñ
β
x
(y) ≥ a, I

Ñ
β
x
(y) ≤ b, F

Ñ
β
x
(y) ≤ c}. (4)

Example 2 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉, then we have

N
β
x1

= {x1, x2}, N
β
x2

= {x2}, N
β
x3

= {x3, x5},N
β
x4

= {x2, x4}, N
β
x5

= {x5}.

Some properties of the β-neighborhood in a SVN β-covering of U are presented in Theorem 2 and
Proposition 2.

Theorem 2. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, the following statements hold:

(1) x ∈ N
β
x for each x ∈ U.

(2) ∀x, y, z ∈ U, if x ∈ N
β
y , y ∈ N

β
z , then x ∈ N

β
z .

Proof.

(1) According to Theorem 1 and Definition 5, it is straightforward.

(2) For any x, y, z ∈ U, x ∈ N
β
y ⇔ Ñ

β
y (x) ≥ β ⇔ Ñ

β
x ⊆ Ñ

β
y , and y ∈ N

β
z ⇔ Ñ

β
z (y) ≥ β ⇔ Ñ

β
y ⊆ Ñ

β
z .

Hence, Ñβ
x ⊆ Ñ

β
z . By Proposition 1, we have Ñ

β
z (x) ≥ β, i.e., x ∈ N

β
z .

Proposition 2. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, for all x ∈ U, x ∈ N
β
y

if and only if N
β
x ⊆ N

β
y .

Proof. (⇒): For any z ∈ N
β
x , we know Ñ

β
x(z) ≥ β. Since x ∈ N

β
y , Ñβ

y (x) ≥ β. According to (2) in

Theorem 1, we have Ñ
β
y (z) ≥ β. Hence, z ∈ N

β
y . Therefore, N

β
x ⊆ N

β
y .

(⇐): According to (1) in Theorem 2, x ∈ N
β
x for all x ∈ U. Since N

β
x ⊆ N

β
y , x ∈ N

β
y .

The relationship between SVN β-neighborhoods and β-neighborhoods is presented in the
following proposition.

Proposition 3. Let Ĉ be a SVN β-covering of U. For any x, y ∈ U, Ñβ
x ⊆ Ñ

β
y if and only if N

β
x ⊆ N

β
y .

Proof. According to Propositions 1 and 2, it is straightforward.

4. Two Types of Single Valued Neutrosophic Covering Rough Set Models

In this section, we propose two types of SVN covering rough set models on basis of the SVN
β-neighborhoods and the β-neighborhoods, respectively. Then, we investigate the properties of the
defined lower and upper approximation operators.
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Definition 6. Let (U, Ĉ) be a SVN β-covering approximation space. For each A ∈ SVN(U) where
A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the single valued neutrosophic (SVN) covering upper
approximation C̃(A) and lower approximation C

∼
(A) of A as:

C̃(A) = {〈x,∨y∈U [TÑβ
x
(y) ∧ TA(y)],∨y∈U [IÑβ

x
(y) ∧ IA(y)],∧y∈U [FÑβ

x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [FÑβ

x
(y) ∨ TA(y)],∧y∈U [(1− I

Ñ
β
x
(y)) ∨ IA(y)],∨y∈U [TÑβ

x
(y) ∧ FA(y)]〉 : x ∈ U}. (5)

If C̃(A) 	= C
∼
(A), then A is called the first type of SVN covering rough set.

Example 3 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉, A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+
(0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then,

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Some basic properties of the SVN covering upper and lower approximation operators are
proposed in the following proposition.

Proposition 4. Let Ĉ be a SVN β-covering of U. Then, the SVN covering upper and lower approximation
operators in Definition 6 satisfy the following properties: for all A, B ∈ SVN(U),

(1) C̃(A′) = (C
∼
(A))′, C

∼
(A′) = (C̃(A))′.

(2) If A ⊆ B, then C
∼
(A) ⊆ C

∼
(B), C̃(A) ⊆ C̃(B).

(3) C
∼
(A
⋂

B) = C
∼
(A)

⋂
C
∼
(B), C̃(A

⋃
B) = C̃(A)

⋃
C̃(B).

(4) C
∼
(A
⋃

B) ⊇ C
∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

Proof.
(1)

C̃(A′) = {〈x,∨y∈U [T
Ñ

β
x
(y) ∧ TA′ (y)],∨y∈U [I

Ñ
β
x
(y) ∧ IA′ (y)],∧y∈U [F

Ñ
β
x
(y) ∨ FA′ (y)]〉 : x ∈ U}

= {〈x,∨y∈U [T
Ñ

β
x
(y) ∧ FA(y)],∨y∈U [I

Ñ
β
x
(y) ∧ (1− IA(y))],∧y∈U [F

Ñ
β
x
(y) ∨ TA(y)]〉 : x ∈ U}

= (C
∼
(A))′.

If we replace A by A′ in this proof, we can also prove C
∼
(A′) = (C̃(A))′.

(2) Since A ⊆ B, so TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U. Therefore,

TC
∼
(A)(x) = ∧y∈U [F

Ñ
β
x
(y) ∨ TA(y)] ≤ ∧y∈U [F

Ñ
β
x
(y) ∨ TB(y)] = TC

∼
(B)(x),

IC
∼
(A)(x) = ∧y∈U [(1− I

Ñ
β
x
(y)) ∨ IA(y)] ≥ ∧y∈U [(1− I

Ñ
β
x
(y)) ∨ IB(y)] = IC

∼
(B)(x),

FC
∼
(A)(x) = ∨y∈U [T

Ñ
β
x
(y) ∧ FA(y)] ≥ ∨y∈U [T

Ñ
β
x
(y) ∧ FB(y)] = FC

∼
(B)(x).
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Hence, C
∼
(A) ⊆ C

∼
(B). In the same way, there is C̃(A) ⊆ C̃(B).

(3)

C
∼
(A
⋂

B)

= {〈x,∧y∈U [F
Ñ

β
x
(y) ∨ TA

⋂
B(y)],∧y∈U [(1− I

Ñ
β
x
(y)) ∨ IA

⋂
B(y)],∨y∈U [T

Ñ
β
x
(y) ∧ FA

⋂
B(y)]〉 : x ∈ U}

= {〈x,∧y∈U [F
Ñ

β
x
(y) ∨ (TA(y) ∧ TB(y))],∧y∈U [(1− I

Ñ
β
x
(y)) ∨ (IA(y) ∨ IB(y))],∨y∈U [T

Ñ
β
x
(y) ∧ (FA(y)

∨FB(y))]〉 : x ∈ U}
= {〈x,∧y∈U [(F

Ñ
β
x
(y) ∨ TA(y)) ∧ (F

Ñ
β
x
(y) ∨ TB(y))],∧y∈U [((1− I

Ñ
β
x
(y)) ∨ IA(y)) ∨ (1− I

Ñ
β
x
(y))∨

IB(y))],∨y∈U [(T
Ñ

β
x
(y) ∧ FA(y)) ∨ (T

Ñ
β
x
(y) ∧ FB(y))]〉 : x ∈ U}

= C
∼
(A)

⋂
C
∼
(B).

Similarly, we can obtain C̃(A
⋃

B) = C̃(A)
⋃
C̃(B).

(4) Since A ⊆ A ∪ B, B ⊆ A ∪ B, A ∩ B ⊆ A and A ∩ B ⊆ B,

C
∼
(A) ⊆ C

∼
(A ∪ B), C

∼
(B) ⊆ C

∼
(A ∪ B), C̃(A ∩ B) ⊆ C̃(A) and C̃(A ∩ B) ⊆ C̃(B).

Hence, C
∼
(A
⋃

B) ⊇ C
∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

We propose the other SVN covering rough set model, which concerns the crisp lower and upper
approximations of each crisp set in the SVN environment.

Definition 7. Let (U, Ĉ) be a SVN β-covering approximation space. For each crisp subset X ∈ P(U) (P(U) is
the power set of U), we define the SVN covering upper approximation C(X) and lower approximation C(X) of
X as:

C(X) = {x ∈ U : N
β
x ∩ X 	= ∅},

C(X) = {x ∈ U : N
β
x ⊆ X}.

(6)

If C(X) 	= C(X), then X is called the second type of SVN covering rough set.

Example 4 (Continued from Example 2). Let β = 〈0.5, 0.3, 0.8〉, X = {x1, x2}, Y = {x2, x4, x5}. Then,

C(X) = {x1, x2, x4},C(X) = {x1, x2},
C(Y) = {x1, x2, x3, x4, x5},C(Y) = {x2, x4, x5},
C(U) = U,C(U) = U,C(∅) = ∅,C(∅) = ∅.

Proposition 5. Let Ĉ be a SVN β-covering of U. Then, the SVN covering upper and lower approximation
operators in Definition 7 satisfy the following properties: for all X, Y ∈ P(U),

(1) C(∅) = ∅, C(U) = U.
(2) C(U) = U, C(∅) = ∅.
(3) C(X′) = (C(X))′, C(X′) = (C(X))′.
(4) If X ⊆ Y, then C(X) ⊆ C(Y), C(X) ⊆ C(Y).
(5) C(X

⋂
Y) = C(X)

⋂
C(Y), C(X

⋃
Y) = C(X)

⋃
C(Y).

(6) C(X
⋃

Y) ⊇ C(X)
⋃
C(Y), C(X

⋂
Y) ⊆ C(X)

⋂
C(Y).

(7) C(C(X)) ⊆ C(X),C(C(X)) ⊇ C(X).
(8) C(X) ⊆ X ⊆ C(X).
(9) X ⊆ Y or Y ⊆ X ⇔ C(X ∩Y) = C(X) ∩C(Y),C(X ∪Y) = C(X) ∪C(Y).

Proof. It can be directly followed from Definitions 5 and 7.
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5. Matrix Representations of These Single Valued Neutrosophic Covering Rough Set Models

In this section, matrix representations of the proposed SVN covering rough set models are
investigated. Firstly, some new matrices and matrix operations are presented. Then, we show
the matrix representations of these SVN approximation operators defined in Definitions 6 and 7.
The order of elements in U is given.

Definition 8. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then, MĈ = (Cj(xi))n×m is named a matrix representation of Ĉ, and Mβ

Ĉ
= (sij)n×m is called a β-matrix

representation of Ĉ, where

sij =

{
1, Cj(xi) ≥ β;
0, otherwise.

Example 5 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉.

MĈ =

⎛⎜⎜⎜⎜⎜⎝
〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

⎞⎟⎟⎟⎟⎟⎠, Mβ

Ĉ
=

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

⎞⎟⎟⎟⎟⎟⎠.

Definition 9. Let A = (aik)n×m and B = (〈b+kj , bkj, b−kj〉)1≤k≤m,1≤j≤l be two matrices. We define
D = A ∗ B = (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤l , where

〈d+ij , dij, d−ij 〉 = 〈∧m
k=1[(1− aik) ∨ b+kj ], 1−∧m

k=1[(1− aik) ∨ (1− bkj)], 1−∧m
k=1[(1− aik) ∨ (1− b−kj)]〉. (7)

Based on Definitions 8 and 9, all Ñβ
x for any x ∈ U can be obtained by matrix operations.

Proposition 6. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then

Mβ

Ĉ
∗MT

Ĉ
= (Ñ

β
xi (xj))1≤i≤n,1≤j≤n, (8)

where MT
Ĉ

is the transpose of MĈ.

Proof. Suppose MT
Ĉ

= (Ck(xj))m×n, Mβ

Ĉ
= (sik)n×m and Mβ

Ĉ
∗ MT

Ĉ
= (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤n.

Since Ĉ is a SVN β-covering of U, for each i (1 ≤ i ≤ n), there exists k (1 ≤ k ≤ m) such that
sik = 1. Then,

〈d+ij , dij, d−ij 〉

= 〈∧m
k=1[(1− sik) ∨ TCk (xj)], 1−∧m

k=1[(1− sik) ∨ (1− ICk (xj))], 1−∧m
k=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1[(1− sik) ∨ TCk (xj)], 1−∧sik=1[(1− sik) ∨ (1− ICk (xj))], 1−∧sik=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1TCk (xj), 1−∧sik=1(1− ICk (xj)), 1−∧sik=1(1− FCk (xj))〉

= 〈∧Ck(xi)≥βTCk (xj), 1−∧Ck(xi)≥β(1− ICk (xj)), 1−∧Ck(xi)≥β(1− FCk (xj))〉

= (
⋂

Ck(xi)≥β Ck)(xj)

= Ñ
β
xi (xj), 1 ≤ i, j ≤ n.

Hence, Mβ

Ĉ
∗MT

Ĉ
= (Ñ

β
xi (xj))1≤i≤n,1≤j≤n.
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Example 6 (Continued from Example 1).

Mβ

Ĉ
∗MT

Ĉ

=

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ ∗
⎛⎜⎜⎜⎜⎜⎝
〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

⎞⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ ∗
⎛⎜⎜⎜⎝
〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.6, 0.2, 0.4〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉
〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

⎞⎟⎟⎟⎟⎟⎠
= (Nβ

xi (xj))1≤i≤5,1≤j≤5.

Definition 10. Let A = (〈c+ij , cij, c−ij 〉)m×n and B = (〈d+j , dj, d−j 〉)n×1 be two matrices. We define
C = A ◦ B = (〈e+i , ei, e−i 〉)m×1 and D = A " B = (〈 f+i , fi, f−i 〉)m×1, where

〈e+i , ei, e−i 〉 = 〈∨n
j=1(c

+
ij ∧ d+j ),∨n

j=1(cij ∧ dj),∧n
j=1(c

−
ij ∨ d−j )〉,

〈 f+i , fi, f−i 〉 = 〈∧n
j=1(c

−
ij ∨ d+j ),∧n

j=1[(1− cij) ∨ dj],∨n
j=1(c

+
ij ∧ d−j )〉.

(9)

According to Proposition 6 and Definition 10, the set representations of C̃(A) and C
∼
(A)

(for any A ∈ SVN(U)) can be converted to matrix representations.

Theorem 3. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,
for any A ∈ SVN(U),

C̃(A) = (Mβ

Ĉ
∗MT

Ĉ
) ◦ A,

C
∼
(A) = (Mβ

Ĉ
∗MT

Ĉ
) " A,

(10)

where A = (ai)n×1 with ai = 〈TA(xi), IA(xi), FA(xi)〉 is the vector representation of the SVNS A. C̃(A) and
C
∼
(A) are also vector representations.

Proof. According to Proposition 6 and Definitions 6 and 10, for any xi (i = 1, 2, · · · , n),

((Mβ

Ĉ
∗MT

Ĉ
) ◦ A)(xi) = 〈∨n

j=1(TÑβ
xi
(xj) ∧ TA(xj)),∨n

j=1(I
Ñ

β
xi
(xj) ∧ IA(xj)),∧n

j=1(F
Ñ

β
xi
(xj) ∨ FA(xj))〉

= (C̃(A))(xi),

and

((Mβ

Ĉ
∗MT

Ĉ
) " A)(xi) = 〈∧n

j=1(F
Ñ

β
xi
(xj) ∨ TA(xj)),∧n

j=1[(1− I
Ñ

β
xi
(xj)) ∨ IA(xj)],∨n

j=1(TÑβ
xi
(xj) ∧ FA(xj))〉

= (C
∼
(A))(xi).

Hence, C̃(A) = (Mβ

Ĉ
∗MT

Ĉ
) ◦ A,C

∼
(A) = (Mβ

Ĉ
∗MT

Ĉ
) " A.
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Example 7 (Continued from Example 3). Let β = 〈0.5, 0.3, 0.8〉, A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+
(0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then,

C̃(A)

= (Mβ

Ĉ
∗MT

Ĉ
) ◦ A

=

⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

⎞⎟⎟⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.3, 0.5〉
〈0.4, 0.3, 0.6〉
〈0.6, 0.5, 0.5〉
〈0.5, 0.3, 0.6〉
〈0.6, 0.5, 0.5〉

⎞⎟⎟⎟⎟⎟⎠ ,

and

C
∼
(A)

= (Mβ

Ĉ
∗MT

Ĉ
) " A

=

⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

⎞⎟⎟⎟⎟⎟⎠ "
⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
〈0.6, 0.5, 0.5〉
〈0.6, 0.5, 0.4〉
〈0.4, 0.4, 0.5〉
〈0.4, 0.5, 0.6〉
〈0.6, 0.4, 0.3〉

⎞⎟⎟⎟⎟⎟⎠ .

Two operations of matrices are defined in [28]. We can use them to study the matrix
representations of C(X) and C(X) of every crisp subset X ∈ P(U).

Definition 11 ([28]). Let A = (aik)n×m and B = (bkj)m×l be two matrices. We define C = A · B = (cij)n×l
and D = A# B = (dij)n×l as follows:

cij = ∨m
k=1(aik ∧ bkj),

dij = ∧m
k=1[(1− aik) ∨ bkj], for any i = 1, 2, · · · , n, and j = 1, 2, · · · , l.

(11)

Let U = {x1, · · · , xn} and X ∈ P(U). Then, the characteristic function of the crisp subset X is
defined as χX , where

χX(xi) =

{
1, xi ∈ X;
0, otherwise.

Proposition 7. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,

Mβ

Ĉ
# (Mβ

Ĉ
)T = (χ

N
β
xi

(xj))1≤i≤n,1≤j≤n, (12)

156



Symmetry 2018, 10, 710

Proof. Suppose Mβ

Ĉ
= (sik)n×m and Mβ

Ĉ
# (Mβ

Ĉ
)T = (tij)n×n. Since Ĉ is a SVN β-covering of U,

for each i (1 ≤ i ≤ n) there exists k (1 ≤ k ≤ m) such that sik = 1. If tij = 1, then ∧m
k=1[(1− sik)∨ sjk] = 1.

It implies that if sik = 1, then sjk = 1. Hence, Ck(xi) ≥ β implies Ck(xj) ≥ β. Therefore, xj ∈ N
β
xi

,
i.e., χ

N
β
xi

(xj) = 1 = tij.

If tij = 0, then ∧m
k=1[(1− sik)∨ sjk] = 0. This implies that if sik = 1, then sjk = 0. Hence, Ck(xi) ≥ β

implies Ck(xj) < β. Thus, we have xj /∈ N
β
xi

, i.e., χ
N

β
xi

(xj) = 1 = tij.

Example 8 (Continued from Example 2). According to Mβ

Ĉ
in Example 5, we have the following result.

Mβ

Ĉ
# (Mβ

Ĉ
)T =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ = (χ
N

β
xi

(xj))1≤i≤5,1≤j≤5.

For any X ∈ P(U), we also denote χX = (ai)n×1 with ai = 1 iff xi ∈ X; otherwise, ai = 0.
Then, the set representations of C(X) and C(X) (for any X ∈ P(U)) can be converted to matrix

representations.

Theorem 4. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,
for any X ∈ P(U),

χC(X) = (Mβ

Ĉ
# (Mβ

Ĉ
)T) · χX ,

χC(X) = (Mβ

Ĉ
# (Mβ

Ĉ
)T)# χX .

(13)

Proof. Suppose (Mβ

Ĉ
# (Mβ

Ĉ
)T) · χX = (ai)n×1 and (Mβ

Ĉ
# (Mβ

Ĉ
)T)# χX = (bi)n×1. For any xi ∈ U

(i = 1, 2, · · · , n),

xi ∈ C(X) ⇔ χC(X)(xi) = 1

⇔ ai = 1

⇔ ∨n
k=1[χN

β
xi

(xk) ∧ χX(xk)] = 1

⇔ ∃k ∈ {1, 2, · · · , n}, s.t., χ
N

β
xi

(xk) = χX(xk) = 1

⇔ ∃k ∈ {1, 2, · · · , n}, s.t., xk ∈ N
β
xi
∩ X

⇔ N
β
xi
∩ X 	= ∅,

and
xi ∈ C(X) ⇔ χC(X)(xi) = 1

⇔ bi = 1

⇔ ∧n
k=1[(1− χ

N
β
xi

(xk)) ∨ χX(xk)] = 1

⇔ χ
N

β
xi

(xk) = 1→ χX(xk) = 1, k = 1, 2, · · · , n

⇔ xk ∈ N
β
xi
→ xk ∈ X, k = 1, 2, · · · , n

⇔ N
β
xi
⊆ X.
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Example 9 (Continued from Example 4). Let X = {x1, x2}. By Mβ

Ĉ
# (Mβ

Ĉ
)T in Example 8, we have

(Mβ

Ĉ
# (Mβ

Ĉ
)T) · χX =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝

1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
1
0
1
0

⎞⎟⎟⎟⎟⎟⎠ = χC(X),

(Mβ

Ĉ
# (Mβ

Ĉ
)T)# χX =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠#
⎛⎜⎜⎜⎜⎜⎝

1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ = χC(X).

6. An Application to Decision Making Problems

In this section, we present a novel approach to DM problems based on the SVN covering rough
set model. Then, a comparative study with other methods is shown.

6.1. The Problem of Decision Making

Let U = {xk : k = 1, 2, · · · , l} be the set of patients and V = {yi|i = 1, 2, · · · , m} be the m main
symptoms (for example, cough, fever, and so on) for a Disease B. Assume that Doctor R evaluates
every Patient xk (k = 1, 2, · · · , l).

Assume that Doctor R believes each Patient xk ∈ U (k = 1, 2, · · · , l) has a symptom value Ci
(i = 1, 2, · · · , m), denoted by Ci(xk) = 〈TCi (xk), ICi (xk, FCi (xk)〉, where TCi (xk) ∈ [0, 1] is the degree
that Doctor R confirms Patient xk has symptom yi, ICi (xk) ∈ [0, 1] is the degree that Doctor R is not
sure Patient xk has symptom yi, FCi (xk) ∈ [0, 1] is the degree that Doctor R confirms Patient xk does not
have symptom yi, and TCi (xk) + ICi (xk) + FCi (xk) ≤ 3.

Let β = 〈a, b, c〉 be the critical value. If any Patient xk ∈ U, there is at least one symptom yi ∈ V
such that the symptom value Ci for Patient xk is not less than β, respectively, then Ĉ = {C1, C2, · · · , Cm}
is a SVN β-covering of U for some SVN number β.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of Disease B of
every Patient xk ∈ U that is diagnosed by Doctor R, denoted by A(xk) = 〈d, e, f 〉, then the decision
maker (Doctor R) for the decision making problem needs to know how to evaluate whether Patients
xk ∈ U have Disease B.

6.2. The Decision Making Algorithm

In this subsection, we give an approach for the problem of DM with the above characterizations
by means of the first type of SVN covering rough set model. According to the characterizations of
the DM problem in Section 6.1, we construct the SVN decision information system and present the
Algorithm 1 of DM under the framework of the first type of SVN covering rough set model.
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Algorithm 1 The decision making algorithm based on the SVN covering rough set model.

Input: SVN decision information system (U, Ĉ, β, A).
Output: The score ordering for all alternatives.

1: Compute the SVN β-neighborhood Ñ
β
x of x induced by Ĉ, for all x ∈ U according to Definition 4;

2: Compute the SVN covering upper approximation C̃(A) and lower approximation C
∼
(A) of A,

according to Definition 6;
3: Compute R̃A = C̃(A)⊕C

∼
(A) according to (6) in the basic operations on SVN(U);

4: Compute

s(x) =
TR̃A

(x)√
(TR̃A

(x))2+(IR̃A
(x))2+(FR̃A

(x))2
;

5: Rank all the alternatives s(x) by using the principle of numerical size and select the most
possible patient.

According to the above process, we can get the decision making according to the ranking. In Step 4,
S(x) is the cosine similarity measure between R̃A(x) and the ideal solution (1, 0, 0), which was
proposed by Ye [44].

6.3. An Applied Example

Example 10. Assume that U = {x1, x2, x3, x4, x5} is a set of patients. According to the patients’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (cough, fever, sore and headache) for Disease B.
Assume that Doctor R evaluates every Patient xk (k = 1, 2, · · · , 5) as shown in Table 1.

Let β = 〈0.5, 0.3, 0.8〉 be the critical value. Then, Ĉ = {C1, C2, C3, C4} is a SVN β-coverings of U.
Ñ

β
xk (k = 1, 2, 3, 4, 5) are shown in Table 2.

Assume that Doctor R diagnoses the value A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+ (0.3,0.2,0.6)
x3

+ (0.5,0.3,0.4)
x4

+ (0.7,0.2,0.3)
x5

of
Disease B of every patient. Then,

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Then,

R̃A

= C̃(A)⊕C
∼
(A)

= {〈x1, 0.84, 0.15, 0.25〉, 〈x2, 0.76, 0.15, 0.24〉, 〈x3, 0.76, 0.2, 0.25〉, 〈x4, 0.7, 0.15, 0.24〉, 〈x5, 0.84, 0.2, 0.15〉}.

Hence, we can obtain s(xk) (k = 1, 2, · · · , 5) in Table 3.

Table 3. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.945 0.937 0.922 0.909 0.958

According to the principle of numerical size, we have:

s(x4) < s(x3) < s(x2) < s(x1) < s(x5).

Therefore, Doctor R diagnoses Patient x5 as more likely to be sick with Disease B.
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6.4. A Comparison Analysis

To validate the feasibility of the proposed decision making method, a comparative study was
conducted with other methods. These methods, which were introduced by Liu [43], Yang et al. [32]
and Ye [44], are compared with the proposed approach using SVN information system.

6.4.1. The Results of Liu’s Method

Liu’s method is shown in Algorithm 2.

Algorithm 2 The decision making algorithm [43].
Input: A SVN decision matrix D, a weight vector w and γ.
Output: The score ordering for all alternatives.

1: Compute
nk = 〈Tnk , Ink , Fnk 〉

= HSVNNWA(nk1, nk2, · · · , nkm)

= 〈
m
∏

i=1
(1+(γ−1)Tki)

wi−
m
∏

i=1
(1−Tki)

wi

m
∏

i=1
(1+(γ−1)Tki)

wi+(γ−1)
m
∏

i=1
(1−Tki)

wi
,

γ
m
∏

i=1
I

wi
ki

m
∏

i=1
(1+(γ−1)(1−Iki))

wi+(γ−1)
m
∏

i=1
I

wi
ki

,

γ
m
∏

i=1
F

wi
ki

m
∏

i=1
(1+(γ−1)(1−Fki))

wi+(γ−1)
m
∏

i=1
F

wi
ki

〉 (k = 1, 2, · · · , l);

2: Calculate s(nk) =
Tnk√

T2
nk
+I2

nk
+F2

nk

;

3: Obtain the ranking for all s(nk) by using the principle of numerical size and select the most
possible patient.

Then, Algorithm 2 can be used for Example 10. Let nki = 〈Tki, Iki, Fki〉 be the evaluation
information of xk on Ci in Table 1. That is to say, Table 1 is the SVN decision matrix D. We suppose the
weight vector of the criteria is w = (0.35, 0, 25, 0.3, 0.1) and γ = 1.

Step 1: Based on HSVNNWA operator, we get

n1 = 〈0.557, 0.178, 0.482〉, n2 = 〈0.484, 0.283, 0.395〉,
n3 = 〈0.414, 0.318, 0.347〉, n4 = 〈0.465, 0.286, 0.558〉,
n5 = 〈0.578, 0.233, 0.486〉.

Step 2: We get

s(n1) = 0.735, s(n2) = 0.706, s(n3) = 0.660, s(n4) = 0.596, s(n5) = 0.734.

Step 3: According to the cosine similarity degrees s(nk) (k = 1, 2, · · · , 5), we obtain x4 < x3 <

x2 < x5 < x1.
Therefore, Patient x1 is more likely to be sick with Disease B.

6.4.2. The Results of Yang’s Method

Yang’s method is shown in Algorithm 3.
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Algorithm 3 The decision making algorithm [32].

Input: A generalized SVN approximation space (U, V, R̃), B ∈ SVN(V).
Output: The score ordering for all alternatives.

1: Calculate the lower and upper approximations R̃(B) and R̃(B);

2: Compute nxk = (R̃(B)
⊕

R̃(B))(xk) (k = 1, 2, · · · , l);
3: Compute

s(nxk , n∗) =
Tnxk
·Tn∗+Inxk

·In∗+Fnxk
·Fn∗√

T2
nxk

+I2
nxk

+F2
nxk
·
√

(Tn∗ )2+(In∗ )2+(Fn∗ )2
(k = 1, 2, · · · , l),

where n∗ = 〈Tn∗ , In∗ , Fn∗ 〉 = 〈1, 0, 0〉;
4: Obtain the ranking for all s(nxk , n∗) by using the principle of numerical size and select the most

possible patient.

For Example 10, we suppose Disease B ∈ SVN(V) and B = (0.3,0.6,0.5)
y1

+ (0.7,0.2,0.1)
y2

+ (0.6,0.4,0.3)
y3

+ (0.8,0.4,0.5)
y4

.

According to Table 1, the generalized SVN approximation space (U, V, R̃) can be obtained in Table 4,
where U = {x1, x2, x3, x4, x5} and V = {y1, y2, y3, y4}.

Table 4. The generalized SVN approximation space (U, V, R̃).

R̃ x1 x2 x3 x4 x5

y1 〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
y2 〈0.6, 0.2, 0.4〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉
y3 〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
y4 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉

Step 1: We get

R̃(B) = {〈x1, 0.6, 0.2, 0.4〉, 〈x2, 0.6, 0.2, 0.4〉, 〈x3, 0.6, 0.3, 0.4〉, 〈x4, 0.5, 0.4, 0.5〉, 〈x5, 0.8, 0.3, 0.5〉},
R̃(B) = {〈x1, 0.5, 0.6, 0.5〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.3, 0.5, 0.5〉, 〈x4, 0.6, 0.6, 0.5〉, 〈x5, 0.6, 0.6, 0.5〉}.

Step 2:

R̃(B)
⊕

R̃(B) = {〈x1, 0.80, 0.12, 0.20〉, 〈x2, 0.72, 0.12, 0.20〉, 〈x3, 0.72, 0.15, 0.20〉, 〈x4, 0.80, 0.24, 0.25〉,
〈x5, 0.92, 0.18, 0.25〉}.

Step 3: Let n∗ = 〈1, 0, 0〉. Then,

s(nx1 , n∗) = 0.960, s(nx2 , n∗) = 0.951, s(nx3 , n∗) = 0.945, s(nx4 , n∗) = 0.918, s(nx5 , n∗) = 0.948.

Step 4:

s(nx4 , n∗) < s(nx3 , n∗) < s(nx5 , n∗) < s(nx2 , n∗) < s(nx1 , n∗).

Therefore, Patient x1 is more likely to be sick with Disease B.

6.4.3. The Results of Ye’s Methods

Ye presented two methods [44]. Thus, Algorithms 4 and 5 are presented for Example 10.
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Algorithm 4 The decision making algorithm [44].
Input: A SVN decision matrix D and a weight vector w.
Output: The score ordering for all alternatives.

1: Compute

Wk(xk, A∗) = ∑m
i=1 wi [aki ·a∗i +bki ·b∗i +cki ·c∗i ]√

∑m
i=1 wi [a2

ki+b2
ki+c2

ki ]·
√

∑m
i=1 wi [(a∗i )

2+(b∗i )
2+(c∗i )

2]
(k = 1, 2, · · · , l),

where α∗i = 〈a∗i , b∗i , c∗i 〉 = 〈1, 0, 0〉 (i = 1, 2, · · · , m);
2: Obtain the ranking for all Wk(xk, A∗) by using the principle of numerical size and select the most

possible patient.

For Example 10, Table 1 is the SVN decision matrix D. We suppose the weight vector of the
criteria is w = (0.35, 0, 25, 0.3, 0.1).

Step 1:

W1(x1, A∗) = 0.677, W2(x2, A∗) = 0.608, W3(x3, A∗) = 0.580, W4(x4, A∗) = 0.511, W5(x5, A∗) = 0.666.

Step 2: The ranking order of {x1, x2, · · · , x5} is x4 < x3 < x2 < x5 < x1. Therefore, Patient x1 is
more likely to be sick with Disease B.

Algorithm 5 The other decision making algorithm [44].
Input: A SVN decision matrix D and a weight vector w.
Output: The score ordering for all alternatives.

1: Compute

Mk(xk, A∗) = ∑m
i=1 wi

aki ·a∗i +bki ·b∗i +cki ·c∗i√
a2

ki+b2
ki+c2

ki ·
√

(a∗i )
2+(b∗i )

2+(c∗i )
2
(k = 1, 2, · · · , l),

where α∗i = 〈a∗i , b∗i , c∗i 〉 = 〈1, 0, 0〉 (i = 1, 2, · · · , m);
2: Obtain the ranking for all Mk(xk, A∗) by using the principle of numerical size and select the most

possible patient.

By Algorithms 5, we have:
Step 1:

M1(x1, A∗) = 0.676, M2(x2, A∗) = 0.637, M3(x3, A∗) = 0.581,
M4(x4, A∗) = 0.521, M5(x5, A∗) = 0.654.

Step 2: The ranking order of {x1, x2, · · · , x5} is x4 < x3 < x2 < x5 < x1. Therefore, Patient x1 is
more likely to be sick with Disease B.

All results are shown in Table 5, Figures 1 and 2.

Table 5. The results utilizing the different methods of Example 10.

Methods The Final Ranking The Patient Is Most Sick With the Disease B

Algorithm 2 in Liu [43] x4, x3, x2, x5, x1 x1
Algorithm 3 in Yang et al. [32] x4, x3, x5, x2, x1 x1
Algorithm 4 in Ye [44] x4, x3, x2, x5, x1 x1
Algorithm 5 in Ye [44] x4, x3, x2, x5, x1 x1
Algorithm 1 in this paper x4, x3, x2, x1, x5 x5
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Figure 1. The first chat of different values of patient in utilizing different methods in Example 10.

Figure 2. The second chat of different values of patient in utilizing different methods in Example 10.

Liu [43] and Ye [44] presented the methods by SVN theory. In their methods, the ranking order
would be changed by different w and γ. We as well as Yang et al. [32] used different rough set models to
make the decision. Yang et al. present a SVN rough set model based on SVN relations, while we
present a new SVN rough set model based on coverings. The results are different by Yang’s and our
methods, although the methods are both based on an operator presented by Ye [44].

In any method, if there are more than one most possible patient, then each patient will be the
optimal decision. In this case, we need other methods to make a further decision. By means of different
methods, the obtained results may be different. To achieve the most accurate results, further diagnosis
is necessary in combination with other hybrid methods.

7. Conclusions

This paper is a bridge, linking SVNSs and covering-based rough sets. By introducing some
definitions and properties in SVN β-covering approximation spaces, we present two types of SVN
covering rough set models. Then, their characterizations and matrix representations are investigated.
Moreover, an application to the problem of DM is proposed. The main conclusions in this paper and
the further work to do are listed as follows.

1. Two types of SVN covering rough set models are first presented, which combine SVNSs with
covering-based rough sets. Some definitions and properties in covering-based rough set model,
such as coverings and neighborhoods, are generalized to SVN covering rough set models.
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Neutrosophic sets and related algebraic structures [47–49] will be connected with the research
content of this paper in further research.

2. It would be tedious and complicated to use set representations to calculate SVN covering
approximation operators. Therefore, the matrix representations of these SVN covering
approximation operators make it possible to calculate them through the new matrices and
matrix operations. By these matrix representations, calculations will become algorithmic and
can be easily implemented by computers.

3. We propose a method to DM problems under one of the SVN covering rough set models. It is
a novel method based on approximation operators specific to SVN covering rough sets firstly.
The comparison analysis is very interesting to show the difference between the proposed method
and other methods.
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Abstract: For many multi-attribute decision-making (MADM) problems, linguistic variables are more
convenient for people to express the attribute values. In this paper, a novel shadowed set-based
method is proposed to deal with linguistic terms, where the linguistic term sets are symmetrical both
in meaning and form. Firstly, to effectively express the linguistic variables, we develop a data-driven
method to construct the shadowed set model for the linguistic terms. Secondly, the Pythagorean
shadowed set is defined, and some theorems are subsequently explored. Thirdly, we propose the
score function of the Pythagorean shadowed number and develop a new MADM method on the
basis of the Pythagorean shadowed set. Finally, a case study of the supplier selection problem is
provided to illustrate the effectiveness of the proposed method, and the superiority of our method is
demonstrated by comparison analysis.

Keywords: Pythagorean fuzzy linguistic set; shadowed set; Pythagorean shadowed set;
multi-attribute decision-making

1. Introduction

Multi-attribute decision-making (MADM) aims to select the best alternative solution(s) from
multiple alternatives and has been widely used in various fields [1–3]. In MADM problems,
linguistic terms are a convenient and natural way to describe evaluation information. For example,
the decision-makers (DMs) can use linguistic terms such as ‘Extremely low’, ‘Very low’, ‘Low’, ‘Fair’,
‘High’, ‘Very high’, and ‘Extremely high’ to estimate service quality, product performance, and so
forth. Therefore, MADM problems based on linguistic terms have received increasing attention.
In [4], Aggarwal proposed a new aggregation operator for linguistic terms, and the effectiveness of
the operator was illustrated by a case study on the supplier selection problem. Jin [5] developed
two group decision-making methods to handle MADM problems under linguistic set environment,
and comparative analysis with other methods was performed to demonstrate the validity and merits
of the two methods. Yu [6] proposed an extended TODIM method with unbalanced hesitant fuzzy
linguistic term sets for MADM problems. For linguistic decision-making problems, Pei [7] developed
a new decision-making method by integrating the fuzzy linguistic multiset and TOPSIS methods,
and two practical examples were utilized to verify the feasibility of the proposed approach. For the
venture capital problem under a linguistic environment, Cheng [8] proposed an interaction approach.
However, the methods mentioned above directly replace the linguistic variables with linguistic
subscript in the decision-making process, which may cause distortion of information. To better
express linguistic variables, the linguistic 2-tuple [9,10] and linguistic scale function [11,12] were
introduced to deal with linguistic sets. Nevertheless, the linguistic 2-tuple and linguistic scale function
methods still use linguistic subscript to express language variables in nature. Besides, it is difficult

Symmetry 2018, 10, 688; doi:10.3390/sym10120688 www.mdpi.com/journal/symmetry167
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to explain the rationality in theory by simply replacing linguistic word with its linguistic subscript.
Furthermore, people may have diverse opinions on identical words, but linguistic subscript can only
depict a single meaning for one person, which may lead to information distortion.

As distinct from the linguistic 2-tuple and scale function, shadowed sets [13,14] can effectively
construct linguistic terms using a data-driven method, and have recently been attracting more and
more attention [15,16]. The membership value of the shadowed set is not a precise number, and its
distribution is composed of three different zones: the core zone, shadowed zone, and exclusion zone.
The core zone and the exclusion zone take the values of 1 and 0, which means all the elements of
both zones are fully compatible with or completely excluded from the linguistic word described by
a shadowed set. The shadowed zone is an entire unit interval perceived as a zone of uncertainty,
which means we are not sure whether the shadowed zone elements represent the linguistic word
described by a shadowed set.

In addition, in many situations, experts may hesitate as to what attribute values should be given by
them, due to the increasing complexity. Consequently, Atanassov [17] proposed the intuitionistic fuzzy
set (IFS) to express uncertainty, which involves not only membership degree but also non-membership
degree. However, the limitation of IFS is that the sum of membership degree and non-membership
degree must be no more than 1, which makes it difficult to sufficiently express the ideas of the
DMs. Therefore, Yager [18] defined the Pythagorean fuzzy set (PFS), which can effectively express
the certainty and uncertainty of experts. Recently, PFS has been introduced to deal with MADM
problems [19–22]. Zhang and Xu [19] proposed the operation rules of PFS, and extended the TOPSIS
method to PFS. By combining PFS with the hesitant fuzzy set (HFS), a new fuzzy set was defined
by Liang and Xu [20], named the hesitant Pythagorean fuzzy set (HPFS), an extended TOPSIS
method with HPFS was subsequently proposed. Zhang [21] extended PFS to the interval-valued case,
and explored the basic operation rules of the Pythagorean fuzzy set (IVPFS). In addition, a Pythagorean
fuzzy QUALIFLEX method was developed by integrating closeness index, and its effectiveness was
demonstrated through a hierarchical MADM problem. Combining PFSs with linguistic variables,
the definition of Pythagorean fuzzy linguistic set (PFLS) was proposed by Peng and Yang [22] and the
operation rules of PFLS was defined, subsequently.

Inspired by the idea of the shadowed set and PFS, we propose a new approach to solve MADM
problems under linguistic set environment. Firstly, we define Pythagorean shadowed set and explore
some theorems of the shadowed set. Secondly, a score function of the Pythagorean shadowed number
is defined and the detailed decision-making procedures-based upon the score function is proposed.
Finally, a case study of supplier selection is adopted to verify the feasibility of the proposed approach.

The organization of this paper is as follows. Section 2 presents the preliminaries of the Pythagorean
fuzzy set and shadowed set. In Section 3, the shadowed set model of seven-level language term is
obtained by a data-driven method. A new score function of Pythagorean shadowed number is
introduced in Section 4. Section 5 mainly addresses a new MADM method based on Pythagorean
shadowed set. The effectiveness of the proposed approach is demonstrated through a supplier selection
problem in Section 6, and comparative analysis is made with the other existing methods. Finally,
some conclusions are drawn in Section 7.

2. Preliminaries

2.1. Pythagorean Fuzzy Set (PFS)

Definition 1 ([18,23]). Suppose X is a fixed set. A PFS takes the form of:

P = {〈 x, P(uP(x), vP(x))〉|x ∈ X}
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where vp(x): X → [0, 1] and up(x): X → [0, 1] represent the non-membership function and membership

function of x ∈ X, respectively, u2
p(x) + v2

p(x) ≤ 1. In addition, πp(x) =
√

1− u2
p(x)− ν2

p(x) denotes the
hesitation degree of x ∈ X.

For the sake of simplicity, Zhang and Xu [19] named P(uP(x), vP(x)) the Pythagorean fuzzy

number (PFN), expressed by β = P
(
uβ, vβ

)
, where up(x), vp(x) ∈ [0, 1], πp(x) =

√
1− u2

p(x)− ν2
p(x)

and u2
p(x) + v2

p(x) ≤ 1.

Definition 2 ([9]). Assume S = {si|i = 0, · · · , t, t ∈ R} is a linguistic term set, si is the linguistic evaluation
value, t is the granularity of S. Take the seven-level linguistic term as an example: S = {s0 = Extremely low,
s1 = Very low, s2 = Low, s3 = Fair, s4 = High, s5 = Very high, s6 = Extremely high}.

S must satisfy the following two properties:

(1) There is a negation operator: neg(si) = st−i;
(2) If i < j then Si < Sj;

Definition 3 ([22]). Based on the definition of linguistic term set and PFS, the Pythagorean fuzzy linguistic set
(PFLS) takes the form of D =

{〈
sτ(x), up(x), vp(x)

〉∣∣∣x ∈ X
}

, and the Pythagorean fuzzy linguistic number

(PFLN) is denoted as
〈

sτ(x), up(x), vp(x)
〉

, where sτ(x) is the linguistic evaluation value.

When the attribute values are represented in the form of linguistic terms in MADM problems,
the linguistic variable cannot be directly calculated. Therefore, Xu used the subscript of the linguistic
term [24] for computation, Wang put forward a linguistic scale function [11] to convert linguistic terms
into crisp numbers, and Herrera converted linguistic terms into fuzzy numbers [25]. However, all those
methods still use linguistic subscript to express language variables in nature. To express the fuzziness
and uncertainty of linguistic terms, we introduce shadowed set method to cope with linguistic term,
and further put forward a new Pythagorean shadowed set.

2.2. Shadowed Set

Definition 4 ([13,14]). A shadowed set S is a set-valued mapping as follows:

S : U → {0, [0, 1], 1}

where U is a given universe of discourse.

The core of the shadowed set S is the area where the mapping values of the elements are equal to 1.

core(S) = {x ∈ U|S(x) = 1}

The elements of U whose mapping values are unit intervals in S compose the shadowed zone of
the shadowed set and are expressed as follows,

CU(S) = {x ∈ U|S(x) = [0, 1]}

The elements of U whose mapping values are equal to 0 will be excluded from the shadowed
set S.
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Definition 5. A = [a, b, c, d] is called a shadowed number (SN), where a, b are the lower and upper bound of
the left-shoulder shadowed part, and c, d are the lower and upper bound of the right-shoulder shadowed part.
Figure 1 shows an illustration of shadowed number.

Figure 1. Shadowed number.

2.3. Pythagorean Shadowed Set (PSS)

In this section, we will define the Pythagorean shadowed set and give some properties for it.

Definition 6. Suppose X is a fixed set, a Pythagorean shadowed set T over X takes the form of

T = {〈 A, P(uP(x), vP(x))〉|x ∈ X}

where A = [a, b, c, d], a, b are the lower and upper bound of the left-shoulder shadowed part, respectively,
and c, d are the lower and upper bound of the right-shoulder shadowed part, respectively. Function up(x):
X → [0, 1] and vp(x): X → [0, 1] denote the membership function and non-membership function, respectively.

u2
p(x) + v2

p(x) ≤ 1, and πp(x) =
√

1− u2
p(x)− ν2

p(x) denotes the hesitate degree of x ∈ X.

Definition 7. A Pythagorean shadowed number (PSN) takes the form of:

V = 〈 A, P(uP(x), vP(x))〉

where a, b are the lower and upper bound of the left-shoulder shadowed part, c, d are the lower and upper bound
of the right-shoulder shadowed part, and up(x): X → [0, 1] and vp(x): X → [0, 1] represent membership
function and non-membership function, respectively.

Let V1 = 〈 A1, P(uP(x1), vP(x1))〉 and V2 = 〈 A2, P(uP(x2), vP(x2))〉 be two PSNs,
where A1 = [a1, b1, c1, d1] and A2 = [a2, b2, c2, d2], then the operation rules are as follows:

(1) V1 + V2 =

〈
[a1 + a2, b1 + b2, c1 + c2, d1 + d2], P

(√(
up(x1)

)2
+
(
up(x2)

)2 −
(
up(x1)

)2(up(x2)
)2, vp(x1)vp(x2)

)〉
(2) V1 ×V2 =

〈
[a1 × a2, b1 × b2, c1 × c2, d1 × d2], P

(
up(x1)up(x2),

√(
νp(x1)

)2
+
(
νp(x2)

)2 −
(
νp(x1)

)2(
νp(x2)

)2
)〉

(3) λV1 =

〈
[λa1, λb1, λc1, λd1], P

(√
1−
(

1−
(
up(x1)

)2
)λ

,
(
νp(x1)

)λ

)〉
, λ ≥ 0

(4) V1
λ =

〈 [
aλ

1 , bλ
1 , cλ

1 , dλ
1
]
, P

⎛⎝(up(x1)
)λ,

√
1−
(

1−
(

νp(x1)
)2
)λ
⎞⎠〉, λ ≥ 0

Theorem 1. For any two PSNs V1 = 〈 A1, P(uP(x1), vP(x1))〉 and V2 = 〈 A2, P(uP(x2), vP(x2))〉,
whereA1 = [a1, b1, c1, d1] and A2 = [a2, b2, c2, d2], the calculation rules satisfy the following properties:

(1) V1 + V2 = V2 + V1

(2) V1 ×V2 = V2 ×V1
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(3) λ(V1 + V2) = λV1 + λV2, λ ≥ 0

(4) Vλ1+λ2
1 = Vλ1

1 + Vλ2
2 , λ1, λ2 ≥ 0

(5) λ1V1 + λ2V1 = (λ1 + λ2)V1, λ1, λ2 ≥ 0

(6) Vλ
1 ×Vλ

2 = (V1 ×V2)
λ, λ ≥ 0

3. Shadowed Set Model of Linguistic Terms

We collect the interval data for each language word in the form of the seven-level linguistic
term listed in Definition 2 and use the collected interval data to construct the shadowed set models
for the seven-level linguistic term. The interval data are obtained by means of questionnaire survey.
The main framework of our questionnaire is designed to get a proper interval value for each word
of the seven-level linguistic term from those respondents according to their experience, habits and
common sense. It is necessary for the filled numbers to be accurate to the first decimal place.

We handed out our questionnaires via leaflets, emails and online survey websites to people in
different fields, especially to those with a bachelor degree or above. In the end, we got 1205 valid
questionnaires, and the questionnaire data were processed by the following interval data preprocessing
method to obtain the shadowed number of the seven-level linguistic term.

3.1. Interval Data Preprocessing

Wu and Liu [26,27] proposed an efficient method to preprocess interval data, and we preprocessed
the n interval endpoint data [ak, bk](k = 1, 2, . . . , n) based on this method, as follows:

Step 1: Bad data processing. This aims to remove unreasonable results from the surveyed people,
whose answers were beyond the range of the universe of discourse U. If the interval endpoints satisfy
the following conditions, the interval data are acceptable. Otherwise, they will be rejected.⎧⎪⎨⎪⎩

0 ≤ ak ≤ 10
0 ≤ bk ≤ 10
bk ≥ ak

, k = 1, 2, . . . , n

By this step, some data will be abandoned, and n∗ < n interval data will be preserved.
Step 2: Outlier Processing. By using the Box and Whisker test [28], the data that are extremely

large or small, i.e., outliers, can be eliminated. Outlier tests can be applied to process the endpoints
of interval data and the lengths of interval data Lk = bk − ak, respectively. Consequently, only the
interval endpoints and lengths satisfying the following conditions are kept:⎧⎪⎨⎪⎩

ak ∈ [Qa(0.25)− 1.5IQRa, Qa(0.75) + 1.5IQRa]

bk ∈ [Qb(0.25)− 1.5IQRb, Qb(0.75) + 1.5IQRb]

Lk ∈ [QL(0.25)− 1.5IQRL, QL(0.75) + 1.5IQRL]

, k = 1, 2, . . . , n∗

where Qa and IQRa are respectively the quartile and interquartile ranges of the left endpoints, Qb and
IQRb are respectively the quartile and interquartile ranges of the right endpoints, QL and IQRL are
respectively the quartile and interquartile ranges of the interval data’s length. Q(0.25) and Q(0.75)
are the first and third quartiles, which include 25% and 75% of the data, respectively. In addition,
the interquartile range IQR is the difference between Q(0.25) and Q(0.75); that is to say, IQR contains
50% of the data between Q(0.25) and Q(0.75). The points that are more than 1.5IQR below the first
quartile or more than 1.5IQR above the third quartile are regarded as outliers.

After this step, m∗ < n∗ interval data will remain.
Then, the following statistics of the m∗ interval data are calculated: ml and σl are mean values

and standard deviations of the m∗ left endpoints, respectively. Similarly, mr and σr represent the mean
values and standard deviations of the m∗ right endpoints. mL and σL denote the mean values and
standard deviations of the lengths of the m∗ interval data.
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Step 3: Tolerance limit processing. If the remaining intervals satisfy the following conditions,
then they will be accepted; otherwise, they will be rejected.⎧⎪⎨⎪⎩

ak ∈ [ml − ησl , ml + ησl ]

bk ∈ [mr − ησr, mr + ησr]

Lk ∈ [mL − ησL, mL + ησL]

, k = 1, 2, . . . , m∗

where η is the tolerance factor, which represents that we can assure the given limits at least include
the proportion 1− α of the measurements with 100 · (1−γ)% confidence level. The value of tolerance
factor can be obtained from Table 1 [29].

Table 1. Tolerance factor η for several collected data.

m*

1−γ = 0.95 1−γ = 0.99

1−α 1−α

0.90 0.95 0.90 0.95

10 2.839 3.379 3.582 4.265
15 2.480 2.954 2.945 3.507
20 2.310 2.752 2.659 3.168
30 2.140 2.549 2.358 2.841
50 1.996 2.379 2.162 2.576

100 1.874 2.233 1.977 2.355
1000 1.709 2.036 1.736 2.718

∞ 1.645 1.960 1.645 1.960

After the processing of Step 3, m∗∗ < m∗(1 ≤ m∗∗ ≤ n) interval data will be left, and the following
statistical characteristics of the m∗∗ data will be computed: ml , σl , mr, σr, mL and σL of the left (right)
endpoints the m∗∗ interval data.

Step 4: Reasonable-interval processing. If the intervals satisfy the following conditions, they will
be kept; otherwise, they will be rejected.

2ml − φ∗ ≤ ak < φ∗ < bk ≤ 2mr − φ∗

where

φ∗ =

(
mrσ2

l −mlσ
2
r
)
± σlσr

[
(ml −mr)

2 + 2
(
σ2

l − σ2
r
)

ln(σl/σr)
]1/2

σ2
l − σ2

r

After this step, there will be m interval data.
In a word, there will be m interval data after the four processing steps above, which is not greater

than the n interval data at the beginning, as shown in Figure 2.

n n m m m
Figure 2. The process of data preprocessing.
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3.2. Shadowed Set Model of Seven-Level Language Terms

After data preprocessing, the distribution of the remaining interval data is obtained as shown
in Figure 3. The intervals of the left-end points and right-end points can reflect the linguistic word’s
uncertainties from different surveyed persons. Therefore, it is necessary to determine the representative
intervals for the left-end points and right-end points to express the uncertainties. As shown in Figure 3,
the core area can be determined even if the surveyed people cannot give accurate representative
intervals. As a result, the core of the shadowed set is the core area and the uncertain bound of the
shadowed set is the representative intervals.

[ ] [ ]

Figure 3. Distribution of the remaining interval data.

Next, we will estimate the representative intervals by the tolerance limit method via the
following steps.

Step 1: Calculate the mean ml and standard deviation σl of the remaining left-end points

ml =

m
∑

k=1
l̂k

m
(1)

σl =

√√√√√ m
∑

k=1

(
l̂k −ml

)2

m
(2)

where l̂k denotes the left-end point of each remaining interval, m is the number of remaining intervals.
Step 2: Determine the representative interval. Let [Ll , Lr] and [Rl , Rr] be the representative

intervals of the left-end points and right-end points, respectively.

Ll = ml − η ∗ σl (3)

Lr = ml + η ∗ σl (4)

where η is the tolerance factor in Table 1.
Then, the representative interval for the right-end points is calculated in the same way.
The parameters γ and α are set to 0.05 and 0.1 in this paper, respectively, and we can obtain a

tolerance factor η of 1.709 from Table 1. Take the seven-level language terms as an example: based on
the results above, the shadowed set models for seven-level language terms can be constructed as
shown in Figure 4.
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Figure 4. The shadowed set models for seven-level language terms.

4. The Score Function of Pythagorean Shadowed Number

Based on the concepts of shadowed number and Pythagorean shadowed number in Section 2,
we will further present the score functions of shadowed number and Pythagorean shadowed number,
respectively. Numerical examples will also be given to illustrate the specific calculation process of the
two score functions.

According to the central limit theorem, the attribute value rij given by the decision-maker is stable
and tends to be the most likely attribute value at a certain point, so it is believed that rij obeys the
normal distribution within the fuzzy interval. From the tolerance limit method in Section 3.2, we can
obtain the distribution of attribute value in the shadowed set S = {Ai|U}, Ai = [ai, bi, ci, di], as shown
in Figure 5.

ib ic idia

Figure 5. Normal distribution of attribute value.
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Definition 8. The score function of shadowed number A is defined as follows:

score(A) = a +
∫ b

a
f (x) dx + c− b +

∫ d

c
f (x) dx + d (5)

where f (x) = 1√
2πσ
· e−(x−u)2/(2·σ2).

According to the 3σ principle of normal distribution:

p(r ∈ [u− 3σ, u + 3σ]) = 0.9974, p(r ∈ [a, d]) = 0.9974

Then u = a+d
2 , σ = d−a

6 .

Example 1. The score function value of shadowed set A0 for ‘High’ in Figure 3 can be calculated as follows:

u = a + d = 5.77 + 7.96 = 13.73, σ =
d− a

6
=

7.96− 5.77
6

= 0.37

f (x) = 1.08e−(x−6.87)2/0.27

Then, we can gain the figure of shadowed number ‘High’ as shown in Figure 6.

score(A0) = 5.77 +
∫ 6.48

5.77
f (x) dx + 7.21− 6.48 +

∫ 7.96

7.21
f (x) dx + 7.96 = 17.9

Figure 6. The shadowed number of ‘High’ and its normal distribution.

In the same way, we can get the score function of shadowed sets for the other six language terms
in Figure 3.

Definition 9. The score function of a Pythagorean shadowed number V is denoted as:

score(V) =

(
a +

∫ b

a
f (x) dx + c− b +

∫ d

c
f (x) dx + d

)
· (u/v) (6)

Example 2. For a Pythagorean shadowed number V1 = {[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)}, the score function
value is:

score(V1) =

(
5.77 +

∫ 6.48

5.77
f (x)dx + 7.21− 6.48 +

∫ 7.96

7.21
f (x)dx + 7.96

)
· (0.7/0.4) = 31.33

where f (x) = 1.08e−(x−6.87)2/0.27.
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5. MADM Method Based on the Pythagorean Shadowed Set

With the concept of PSS in mind, we can put forward a novel MADM approach under Pythagorean
fuzzy linguistic term circumstances. The diagram of the proposed method is shown in Figure 7. Firstly,
present a description of the MADM problem under the Pythagorean linguistic fuzzy circumstances.
Secondly, transform the PFLS into PSS through a data-driven method. Thirdly, determine the ranking
order of all alternatives so as to obtain the best choice(s) by means of the score function of PSNs and
OWA operator. The whole decision-making process is carried out in the following steps.

{ }
{ }
{ }

m

n

n

C c c c

A a a a

w w w w

=

=

Figure 7. Diagram of the proposed method.

Step 1: Standardized decision matrix. For PFLVs Pij =
〈

sτij , P
(
up
(

xij
)
, vp
(

xij
))〉

For beneficial attributes, Pij = Pij =
〈

sτij , P
(
up
(
xij
)
, vp
(
xij
))〉

For cost attributes, Pij =
(

Pij
)−1

=

〈
s
(τij)

−1 , P
(
vp
(
xij
)
, up
(

xij
))〉

where
(
τij
)−1

= l + 1− τij and

l is the number of language term.
Step 2: Collect the data by questionnaire and get the shadowed set of language terms by

processing the data. Transform Pythagorean fuzzy linguistic numbers into PSNs using Figure 4.
Step 3: Transform the PFSN decision matrix into score function matrix based on Equation (6).
Step 4: By OWA operator, the attribute values rij of each alternative ai are aggregated to obtain

the comprehensive attribute values zi.

zi = OWAw(ri1, ri2, . . . , rim) =
m

∑
j=1

wirij, i = 1, 2, . . . , n
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where w = (w1, w2, . . . , wm) is the criterion weight vector, n is the number of alternatives, m is the
number of attribute.

Step 5: Determine the order of all the alternatives in the light of the comprehensive attribute
values zi.

6. Numerical Study

The proposed algorithm will be demonstrated by solving the problem of how to select the most
suitable supplier for a company under various evaluation factors. At the same time, comparisons with
the linguistic term subscript method and the linguistic scale function method are performed to show
the advantages of our approach.

6.1. Supplier Selection Problem

A car company needs to choose appropriate supplier of spare parts. A total of five alternative
suppliers are denoted as a1, a2, a3, a4, a5. After synthetical consideration, four main factors are taken
into account: c1 Supply capacity, c2 Delivery timeliness, c3 Service quality, c4 Scientific research ability.
The criterion weight vector is w = (0.3, 0.2, 0.4, 0.1). Language evaluation of the four attributes adopts
the form of seven-level linguistic term, S = {s0, s1, s2, s3, s4, s5, s6} = {Extremely low, Very low, Low,
Fair, High, Very high, and Extremely high}. The decision matrix given by experts is shown in Table 2:

Table 2. Decision matrix.

Alternatives
Attributes

c1 c2 c3 c4

a1 〈s4, P(0.7, 0.4)〉 〈s5, P(0.5, 0.6)〉 〈s2, P(0.7, 0.3)〉 〈s3, P(0.8, 0.4)〉
a2 〈s5, P(0.6, 0.4)〉 〈s3, P(0.7, 0.4)〉 〈s3, P(0.6, 0.4)〉 〈s4, P(0.7, 0.5)〉
a3 〈s6, P(0.6, 0.5)〉 〈s3, P(0.8, 0.3)〉 〈s5, P(0.6, 0.5)〉 〈s2, P(0.6, 0.4)〉
a4 〈s3, P(0.7, 0.3)〉 〈s4, P(0.6, 0.5)〉 〈s3, P(0.7, 0.4)〉 〈s6, P(0.7, 0.6)〉
a5 〈s4, P(0.7, 0.4)〉 〈s5, P(0.6, 0.5)〉 〈s4, P(0.7, 0.4)〉 〈s3, P(0.8, 0.4)〉

Step 1: c1, c2, c3, c4 are beneficial attributes. Therefore, the standardized decision matrix is the
same with Table 2.

Step 2: Transform PFLNs into Pythagorean shadowed numbers using Figure 4, and the result is
shown in Table 3.

Table 3. Decision matrix with PFSN.

Alternatives
Attributes

c1 c2

a1 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[7.51, 7.61, 8.60, 8.97], P(0.5, 0.6)〉
a2 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.4)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.4)〉
a3 〈[8.61, 9.22, 9.62, 9.89], P(0.6, 0.5)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.3)〉
a4 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.3)〉 〈[5.77, 6.48, 7.21, 7.96], P(0.6, 0.5)〉
a5 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.5)〉

Alternatives
Attributes

c3 c4

a1 〈[2.38, 3.28, 3.83, 4.90], P(0.7, 0.3)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.4)〉
a2 〈[3.83, 4.84, 5.52, 6.46], P(0.6, 0.4)〉 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.5)〉
a3 〈[7.51, 7.61, 8.60, 8.97], P(0.6, 0.5)〉 〈[2.38, 3.28, 3.83, 4.90], P(0.6, 0.4)〉
a4 〈[3.83, 4.84, 5.52, 6.46], P(0.7, 0.4)〉 〈[8.61, 9.22, 9.62, 9.89], P(0.7, 0.6)〉
a5 〈[5.77, 6.48, 7.21, 7.96], P(0.7, 0.4)〉 〈[3.83, 4.84, 5.52, 6.46], P(0.8, 0.4)〉
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Step 3: Transform the PFSNs decision matrix into score function matrix (shown in Table 4) based
on Equation (6).

Table 4. Score function matrix.

Alternatives
Attributes

c1 c2 c3 c4

a1 31.33 18.39 25.29 26.76
a2 33.11 23.42 20.07 25.06
a3 40.97 35.68 26.49 16.26
a4 31.22 21.48 23.42 39.83
a5 31.33 26.49 31.33 26.76

Step 4: By OWA operator, the attribute values rij of each alternative ai are aggregated to obtain
the comprehensive attribute values zi.

z1 = 25.87, z2 = 25.15, z3 = 31.65, z4 = 27.01, z5 = 29.91Step 5: Rank the alternatives and obtain
the best alternative(s) according to the comprehensive attribute values zi in the Step 4.

z3 > z5 > z4 > z1 > z2, that means, a3 � a5 � a4 � a1 � a2.
And the alternative a3 is the best choice of the supplier option problem.

6.2. Comparison Analysis

To verify the superiority of our method, comparations will be made between our approach and the
other two approaches, i.e., the linguistic term subscript method [22] and the linguistic scale function
method [11,19].

In [22], the score function of p =
〈

sτ(x), uA(x), vA(x)
〉

is:

score(p) =
τ(x)
t + 1

∗
(

μ2
β − ν2

β

)
(7)

where τ(x) is the subscript of the linguistic term, and t is the number of linguistic terms.
We can obtain the comprehensive attribute values zi based on Equation (7) and the OWA operator.
z1 = 0.094, z2 = 0.104, z3 = 0.098, z4 = 0.115, z5 = 0.147, and z5 > z4 > z2 > z3 > z1.
Therefore, the alternative a5 is the best choice.
In [19], the score function of PFN β = P

(
uβ, vβ

)
is:

score(β) = μ2
β − ν2

β (8)

In [11], the improved linguistic scale function is calculated as follows:

f (si) = θi =

⎧⎨⎩
mα−(m−i)α

2mα (i = 0, 1, 2, . . . , m)
mβ+(i−m)β

2mβ (i = m + 1, m + 2m . . . , t)
(9)

where α, β ∈ (0, 1], m = t
2 , and t is the number of linguistic terms.

According to the improved linguistic scale Function (8) and score Function (9), we can obtain the
score function of p =

〈
sτ(x), uA(x), vA(x)

〉
as:

score(p) = f (si) ∗
(

μ2
β − ν2

β

)
(10)

Let α = β = 0.5. We can obtain the comprehensive attribute values zi based on Equation (10) and
the OWA operator.

z1 = 0.07, z2 = 0.15, z3 = 0.2, z4 = 0.14, z5 = 0.16, and z3 > z5 > z2 > z4 > z1.
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Therefore, the alternative a3 is the best choice.
From Table 5, it can be observed that the ranking result obtained via our algorithm is different

from the other two methods. By using the linguistic term subscript method, the ranking order is
a5 � a4 � a2 � a3 � a1, which is totally different form the results of our method and the language
scale function method. The reason is that replacing linguistic words simply with linguistic subscript
leads to distortion of information. In fact, the linguistic subscript cannot effectively reflect original
decision information. Compared with the linguistic term subscript approach, the linguistic scale
function method seems more reasonable for describing the linguistic term information with a so-called
language scale function. However, the language scale function still replaces linguistic words with
numbers in nature, and information loss or information distortion is still inevitable. On the other hand,
different people may have different viewpoints on the same word, but the linguistic subscript and
linguistic scale function can only express a single meaning for a word. Compared with the other two
methods, we utilize a data-driven method to construct the shadowed set models for the linguistic
terms, which cannot only maintain the original decision information as far as possible, but also take
different views into account for a single word.

Table 5. Comparison analysis results.

Method Order of Alternatives

Our method a3 � a5 � a4 � a1 � a2
Linguistic term subscript method [22] a5 � a4 � a2 � a3 � a1

Language scale function method [11,19] a3 � a5 � a2 � a4 � a1

7. Conclusions

A novel method for MADM problems under a linguistic term environment was proposed,
combining shadowed sets and Pythagorean fuzzy sets. We defined Pythagorean shadowed numbers
and subsequently described their operation rules and basic properties. Based on the operation rules,
the score function of Pythagorean shadowed numbers was deduced, and a numerical example was
provided to illustrate the computing process. Bearing the above results in mind, we proposed a
new MADM approach to deal with linguistic terms. A supplier selection example was used to
demonstrate the feasibility of our method. Compared with the linguistic term subscript method and
the linguistic scale function method, a data-driven method was adopted to construct the shadowed
set models for linguistic terms, which can avoid information loss or information distortion to a great
extent. The comparative analysis shows that our method can provide more reasonable and accurate
decision-making results by depicting linguistic terms in a more precise manner.

In future research, the proposed method can be extended to other types of shadowed sets,
for example, left-shoulder, right-shoulder, non-cored, etc. Additionally, applications in other fields are
also worth exploring with our approach.
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Abstract: The objective of this manuscript is to present some new, improved aggregation operators for
the T-spherical fuzzy sets, which is an extension of the several existing sets, such as intuitionistic fuzzy
sets, picture fuzzy sets, neutrosophic sets, and Pythagorean fuzzy sets. In it, some new, improved
operational laws and their corresponding properties are studied. Further, based on these laws, we
propose some geometric aggregation operators and study their various relationships. Desirable
properties, as well as some special cases of the proposed operators, are studied. Then, based
on these proposed operators, we present a decision-making approach to solve the multi-attribute
decision-making problems. The reliability of the presented decision-making method is explored
with the help of a numerical example and the proposed results are compared with several prevailing
studies’ results. Finally, the superiority of the proposed approach is explained with a counter example
to show the advantages of the proposed work.

Keywords: multi-attribute decision making; aggregation operators; spherical fuzzy sets; interactive
geometric operators

1. Introduction

The term fuzzy set (FS) was developed by Zadeh [1] based on a characteristic function that
described the degree of membership of an element. Atanassov [2] established the theory of intuitionistic
fuzzy set (IFS) as a generalization of FS with the help of two characteristic functions, known as
membership and non-membership functions, describing the positive and negative aspects of an
element or object. In the framework of IFSs, there was a constraint on two characteristic functions,
in that their sum must not exceed the unit interval, which restricted the selection of membership
and non-membership grades. Accordingly, Atanassov and Gargov [3] extended the IFS to the
interval-valued intuitionistic fuzzy sets (IVIFSs), which contain the degrees of agreeing and disagreeing
as interval values instead of single digits. Keeping in mind the constraint on IFSs, Yager [4,5] introduced
a new generalization of IFSs, known as Pythagorean fuzzy set (PyFS), with a condition that the sum of
squares of membership and non-membership grades must not exceed the unit interval.

The frameworks of IFSs and PyFSs have importance in situations where the structure of FSs
fails to be applied. But these structures have their own limitations, as in the circumstances of voting
where opinion cannot be restricted to “yes” or “no” but some refusal degree and abstinence is also
involved. Therefore, Cuong [6,7] developed a novel concept of picture fuzzy sets (PFSs), which
is based on four characteristic functions known as membership, non-membership, abstinence, and
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refusal grades. Cuong’s structure of PFSs is diverse in nature but, similar to IFSs, there is also a
restriction in PFSs that the sum of all three membership grades must not exceed the unit interval. In the
above-stated environments, various researchers have constructed their methodologies for solving the
multi-attribute decision-making (MADM) problems, focusing on information measures, aggregation
operators, etc. For instance, Xu [8] presented some weighted averaging aggregation operators (AOs)
for intuitionistic fuzzy numbers (IFNs). Garg [9,10] presented some improved interactive AOs for IFNs.
Wang and Liu [11] gave interval-valued intuitionistic fuzzy hybrid weighted AOs based on Einstein
operations. Wang and Liu [12] presented some hybrid weighted AOs using Einstein norm operations
for IFNs. Wang et al. [13] presented some AOs to aggregate various interval-valued intuitionistic fuzzy
(IVIF) numbers (IVIFNs). Garg [14,15] presented generalized AOs using Einstein norm operations for
Pythagorean fuzzy sets. Xu and Xia [16] proposed induced generalized aggregation tools and applied
them in MADM. Garg and Kumar [17] presented some new similarity measures for IVIFNs based on
the connection number of the set pair analysis theory. However, apart from these, a comprehensive
overview of the different approaches under the IFSs, IVIFSs, PyFSs, etc., to solve MCDM problems are
summarized in [18–33].

Apart from the above theories, the concept of the spherical fuzzy sets (SFSs) has been introduced
by Mahmood et al. [34], which consists of three membership degrees with a condition that the sum of
squares of all degrees must not exceeds one. Further, the concepts of SFSs are extended to T-spherical
fuzzy sets T-SFSs, where there are no restrictions on their constants and, hence, T-SFSs can handle all
the situations where the frameworks of FSs, IFSs, PyFSs, PFSs, and SFSs failed. For this environment,
Mahmood et al. [34] presented some aggregation operators for T-SFSs. Later on, Ullah et al. [35]
presented the concept of the symmetry measures for handling the uncertainties under the T-SFSs
environment, and applied it to solve the decision-making problems. However, from the existing work,
it is noticeable that the existing AOs under the IFSs, PFSs, etc., have failed to handle the situations
under some certain cases. For instance, under the IFS environment, if we consider the two IFNs,
A = (0, nA) and B = (mB, nB) where mB, nA, nB represented degrees of membership grades that lies
between zero and one, by applying the geometric AOs, as defined in [36], to such numbers we then
get the aggregated numbers as (0, nA + nB − nAnB). Thus, the final aggregated value of membership
degree is zero, irrespective of value of mB. Similarly, for T-SFSs, if we assume A = (mA, 0, nA) and
B = (mB, iB, nB) then, using the geometric aggregation operators of PFSs [37,38] and T-SFSs [34], we
obtain the result of type (some value, 0, some value). This shows that the abstinence value of B is not
accounted for in aggregation. Further, by taking A = (0, 0, nA) and B = (mB, iB, nB), then using the
operators defined in [34,37,38], we get (some value, 0, some value). This shows that the membership
and abstinence value is not accounted for in aggregation. These examples clearly point out the
shortcomings that exist in the aggregation operators of PFSs and T-SFSs.

In order to overcome such shortcomings, and by utilizing the advantages of the T-SFSs over
the several other existing theories, in this manuscript we have presented some new, improved
geometric interactive aggregation operators. For it, firstly, we define some new operational
laws by adding the degree of the hesitation into the operations. To do this, the concept of
probability membership, non-membership, and heterogeneous are introduced and then some of
their desirable properties are studied. Then, based on these proposed operational laws, some weighted,
ordered weighted, and hybrid geometric aggregation operators, namely, T-spherical fuzzy weighted
geometric interaction averaging (T-SFWGIA), T-spherical fuzzy ordered weighted geometric interaction
averaging (T-SFOWGIA), and T-spherical fuzzy hybrid geometric interaction averaging (T-SFHGIA)
operators are introduced in the paper. The desirable properties of such operators are investigated in
detail. Then, based on such operators, we developed an algorithm for solving the decision-making
problem under the T-SFS environment. The practical utility of the proposed approach is demonstrated
through a numerical example, and comparative studies investigate the superiority of the approach.
Finally, a counter example is provided to show the supremacy of the proposed operators with respect
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to the existing operators. Therefore, motivated from it, the objectives of the paper are summarized
as follows:

(1) To propose some new operational laws based on the probability membership, non-membership,
and heterogeneous laws.

(2) To define some new, improved weighted geometric aggregation operators under the
T-SFSs environment.

(3) To develop an algorithm for solving the multi-attribute decision-making problems based on the
proposed operators.

(4) To check numerical applicability of the approach to a real-life case, and to compare the outcomes
with prevailing approaches.

To do so, the organization of this manuscript is summarized as follows: Section 2 gives a basic
overview of the basic concepts of IFSs, PFSs, SFSs, and T-SFSs; Section 3 deals with some new
multiplication operations laws and their corresponding weighed geometric AOs; inn Section 4, we
present a MADM approach for solving the decision-making problem by using the proposed AOs (here
the preferences related to each alternative are summarized in the form of T-SFS information); Section 5
presents a numerical example to illustrate the proposed approach and the comparative analysis; and
finally, Section 6 concludes the paper with some concluding remarks.

2. Preliminaries

In this section, we present some basic concepts related to IFS, PyFS, PFS, SFS, and T-SFS over the
universal set X.

Definition 1. [2] An IFS on X consists of membership and non-membership functions defined as

P = {〈 x, m(x), n(x)〉 | x ∈ X}

such that m, n : X → [0, 1] with a condition 0 ≤ m(x) + n(x) ≤ 1 ∀ x ∈ X Further, the degree of refusal of x
in P is r(x) = 1− (m(x) + n(x)) and the pair (m, n) is regarded as an IFN.

Definition 2. [4] A Pythagorean fuzzy set (PyFS) on X consists of membership and non-membership functions
defined as

P = {〈 x, m(x), n(x)〉 | x ∈ X}

such that m, n : X → [0, 1] with a condition that 0 ≤ m2(x) + n2(x) ≤ 1 ∀ x ∈ X. Further, the degree of
refusal of x in P is r(x) =

√
1− (m2(x) + n2(x)) and the pair (m, n) is regarded as a Pythagorean fuzzy

number (PyFN).

Definition 3. [6] A picture fuzzy set (PFS) on X consists of membership, abstinence, and non-membership
functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ m(x) + i(x) + n(x) ≤ 1 ∀ x ∈ X Further, the
degree of refusal of x in P is r(x) = 1− (m(x) + i(x) + n(x)) and (m, i, n) is regarded as a picture fuzzy
number (PFN).

Definition 4. [34] A spherical fuzzy set (SFS) on X consists of membership, abstinence, and non-membership
functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ m2(x) + i2(x) + n2(x) ≤ 1 ∀ x ∈ X Further, the
degree of refusal of x in P is r(x) =

√
1− (m2(x) + i2(x) + n2(x)) and (m, i, n) is regarded as a spherical

fuzzy number (SFN).
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Definition 5. [34] A T-SFS on X consists of membership, abstinence, and non-membership functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ mt(x) + it(x) + nt(x) ≤ 1 ∀ x ∈ X t = 1, 2, . . . k.
Further, the degree of refusal of x in P is r(x) = t

√
1− (mt(x) + it(x) + nt(x)) and (m, i, n) is regarded as a

T-spherical fuzzy number (T-SFN).

Definition 6. [34] Let P = (m, i, n) be a T-SFS. Then the score value of P is defined as

SC(P) = mt − nt

and accuracy function is defined as
AC(P) = mt + it + nt

The one which has a greater score is the superior value. If the score of two T-SFNs is equal, then we rank them
using the accuracy value, and a number is called superior if it has greater accuracy. If again accuracy values of
two T-SFNs become equal, then both numbers are considered as similar.

Definition 7. [39] Let P = (mP, nP) and P′ = (mP′ , nP′) be two IFNs. Then the existing operational laws
between them are defined as

(1) P⊗ P′ = ((1− nP)(1− nP′)− (1−mP − nP)(1−mP′ − nP′)), 1− (1− nP)(1− nP′))

(2) Pλ = ((1− nP)
λ − (1−mP − nP)

λ, 1− (1− nP)
λ).

Definition 8. For any collection of T-SFNs Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), [34] defined the T-spherical

fuzzy weighted geometric aggregation operator (T-SFWGA) as

T− SFWGAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎜⎝
t

√
k
∏
j=1

(mt
j + itj )

wj −
k
∏
j=1

(itj )
wj ,

k
∏
j=1

(ij)
wj ,

t

√
1−

k
∏
j=1

(1− nt
j )

wj

⎞⎟⎟⎟⎟⎠ (1)

where w = (w1, w2, . . . . . . wk)
T be the weighting vector of T-SFNs Pj with wj ∈ (0, 1] and ∑k

j=1 wj = 1 and
t = 1, 2, . . . . . . k.

3. Proposed Operational Laws and Aggregation Operators

This section is divided into two subsections. One presents the improved operations laws for the
T-SFSs, while other presents some improved geometric AOs under the T-SFS environment.

3.1. Improved Operational Laws

In this section, we present some new, improved operations laws by incorporating the features of
the degree of refusal into the analysis.

Definition 9. Let P1 =
(
mP1 , iP1 , nP1

)
and P2 =

(
mP2 , iP2 , nP2

)
be two T-SFNs. Then, the proposed operational

laws are defined as

(1) P1 ⊗ P2 =

⎛⎝ t
√
(1− nP

t
1)(1− nP

t
2)− (1−mt

P1
− iP

t
1 − nP

t
1)(1−mt

P2
− iP

t
2 − nP

t
2)− iP

t
1iP

t
2,

t
√

1− (1− iP
t
1)(1− iP

t
2),

t
√

1− (1− nP
t
1)(1− nP

t
2)

⎞⎠
(2) Pλ =

(
t
√(

1− nt
P
)λ −

(
1−mt

P − it
P − nt

P
)λ − itλ

P , t
√

1−
(
1− it

P
)λ, t
√

1−
(
1− nt

P
)λ
)
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For two T-SFNs, P1 =
(
mP1 , iP1 , nP1

)
and P2 =

(
mP2 , iP2 , nP2

)
, new operations of multiplication

can be construed from four aspects, such as between:

(1) Two non-membership functions of different T-SFNs.
(2) Two membership functions of different T-SFNs.
(3) Membership and non-membership functions of different T-SFNs.
(4) Two neutral functions of different T-SFNs.

These multiplication rules are of the form:

1. E
(
nP1 , nP2

)
= nP1 .nP2 . Therefore, nP1⊗P2 = t

√(
nP

t
1 + nP

t
2 − nP

t
1nP

t
2
)

is considered as a probability
non-membership (PN) function operator, that is,

PN
(
nP1 , nP2

)
= t
√

nP
t
1 + nP

t
2 − nP

t
1nP

t
2

2. E
(
mP1,mP2

)
=
(
mP1 + iP1

)
.
(
mP1 + iP1

)
. Therefore, mP1⊗P2 =

t

√
1−
(

1−
(

mt
P1
+ itP1

))(
1−
(

mt
P2
+ itP2

))
is considered as a probability membership (PM) function operator, that is,

PM
(
mP1 , mP2

)
= t
√

1−
(
1−mP

t
1 − iP

t
1
)(

1−mP
t
1 − iP

t
1
)

3. I
(
nP1 , mP2

)
= t
√(

mP
t
2 + iP

t
2
)
nP

t
1.I
(
nP1 , mP2

)
is considered as a probability heterogeneous (PH)

function operator, that is,

PH
(
nP1 , mP2

)
= t
√

mP
t
2nP

t
1 + iP

t
2nP

t
1

4. I
(
iP1 , iP2

)
= iP1 .iP2 . Therefore, iP1⊗P2 = t

√(
iP

t
1 + iP

t
2 − iP

t
1iP

t
2
)
.iP1⊗P2 is considered as a probability

neutral (PNe) function operator, that is,

PNe
(
iP1 , iP2

)
= t
√

iP
t
1 + iP

t
2 − iP

t
1iP

t
2

From the proposed laws, it is observed that the several existing laws can be considered as a special
case of it. For instance,

(i) For t = 2, above operations become valid for SFNs.
(ii) For t = 1, above operations become valid for PFNs.
(iii) For t = 2 and i = 0, above operations become valid for PyFNs.
(iv) For t = 1 and i = 0, above operations become valid for IFNs.

Further, it is observed that for the above defined PN, PH satisfies the following properties:

Theorem 1. Let P = 〈mP, iP, nP〉, Q =
〈
mQ, iQ, nQ

〉
, R = 〈mR, iR, nR〉 and D = 〈mD, iD, nD〉 be four

T-SFNs. Then, we have:

(1) Boundedness: PN(1, 1) = 1, PN(0, 0) = 0, 0 ≤ PN
(
nP, nQ

)
≤ 1.

(2) Monotonicity: If nP ≤ nR and nQ ≤ nD. Then PN
(
nP, nQ

)
≤ PN(nR, nD).

(3) Commutativity: PN
(
nP, nQ

)
= PN

(
nQ, nP

)
.

Proof.

(1) For two T-SFNs, P and Q, and by definition of PN, we have PN
(
nP, nQ

)
= t
√

nt
P + nt

Q − nt
pnt

Q.

Thus, we have PN(1,1) = 1 and PN(0,0) = 0. Further, since nP, nQ ∈ [0, 1] and t ∈ Z, which implies that
nt

P + nt
Q − nt

Pnt
Q = 1− (1− nt

P)(1− nt
Q) ≤ 1. Also, PN(nP, nQ) ≥ 0. Therefore, 0 ≤ PN(nP, nQ) ≤ 1.
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(2) Since nP ≤ nR and nQ ≤ nD. Thus, for any t ∈ Z, we get 1− nt
P ≥ 1− nt

R and 1− nt
Q ≥ 1− nt

D,
and hence 1− (1− nt

P)(1− nt
Q) ≤ 1− (1− nt

R)(1− nt
D). Thus, PN

(
nP, nQ

)
≤ PN(nR, nD) holds.

(3) Holds trivial. �

Theorem 2. Let P = 〈mP, iP, nP〉, Q =
〈
mQ, iQ, nQ

〉
, R = 〈mR, iR, nR〉 and S = 〈mS, iS, nS〉 be four T-SFN.

Then:

(1) Boundedness: PH(1, 0, 1) = 1, PH(0, 0, 0) = 0, 0 ≤ PH(mP, iP, nP) ≤ 1.
(2) Monotonicity: If mP ≤ mR, iP ≤ iR and nQ ≤ nS. Then PH

(
mP, iP, nQ

)
≤ PH(mR, iR, nS) and if

nP ≤ nR, iQ ≤ iS and mQ ≤ mS. Then PH
(
nP, iQ, nQ

)
≤ PH(nR, iS, mS)

(3) Commutativity: PH(mP, iP, nP) = PH(nP, iP, mP).

Proof. Similar to Theorem 1, so we omit here.

Theorem 3. If P and Q are two T-SFNs and λ > 0 is a real number, then P⊗Q and Pλ are also T-SFNs.

Proof. Follows from the definition easily, so we omit here.

Theorem 4. Let P1 = 〈m, i, n〉, P2 = 〈m′, i′, n′〉 be a T-SFNs, λ, λ1, λ2 > 0 be real numbers. Then we have

(1) P1 ⊗ P2 = P2 ⊗ P1

(2) (P1 ⊗ P2)
λ = Pλ

1 ⊗ Pλ
2

(3) Pλ1
1 ⊗ Pλ2

1 = Pλ1+λ2
1 .

Proof. Follows from the definition easily, so we omit here.

3.2. Aggregation Operators

In this section, based on the above proposed operational laws, we have proposed some series of
geometric interactive improved AOs, namely, T-SFWGIA, T-SFOWGIA, and T-SFHGIA, under the
T-SFS environment.

Definition 10. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If the mapping

T − SFWGIAw(P1, P2, . . . . . . , Pk) = ⊗k
j=1P

wj
j (2)

then T − SFWGIAw is called a T-Spherical fuzzy weighted geometric interactive averaging (T-SFWGIA)
operator, where w = (w1, w2, . . . . . . wk)

T is the weighting vector of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1.

Theorem 5. For any collection of T-SFNs, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), the aggregated values

obtained by using Definition 10 is still T-SFNs and is given by:

T − SFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1−mt
j − itj − nt

j)
wj −

k
∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(1− it
j)

wj , t

√
1−

k
∏
j=1

(1− nt
j)

wj

⎞⎟⎟⎟⎟⎠

Proof. For any collection of T-SFNs, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), we shall proof the result by

induction on k.

188



Symmetry 2018, 10, 670

For k = 1, we have:

T − SFWGIAw(P1) = Pw1
1 = (m1, i1, n1)

=

(
t
√
(1− nt

1)
1 − (1− (mt

1 + it
1 + nt

1))
1 − (it

1)
1, t
√

1− 1 + (it
1)

1, t
√

1− 1 + (nt
1)

1
)

Thus, hold for k = 1. Now, the result holds for n = m:

T − SFWGIAw

(
P1, P2, . . . . . . , Pm

)
=

⎛⎜⎜⎜⎜⎝
t

√
m
∏
j=1

(
1− nt

j

)wj −
m
∏
j=1

(
1−mt

j − itj − nt
j

)wj −
m
∏
j=1

(it
j)

wj ,

t

√
1−

m
∏
j=1

(
1− it

j

)wj
, t

√
1−

m
∏
j=1

(
1− nt

j

)wj

⎞⎟⎟⎟⎟⎠
Then for k = m + 1, we have:

T − SFWGIAw(P1, P2, . . . . . . . . . , Pm+1) = ⊗m+1
j=1 P

wj
j

= T − SFWGIAw(P1, P2, . . . . . . . . . , Pm)⊗ Pwm+1
m+1

=

⎛⎝ t
√

∏m
j=1 (1− nt

j)
wj −∏m

j=1 (1−mt
j − itj − nt

j)
wj −∏m

j=1 (i
t
j)

wj ,

t
√

1−∏m
j=1 (1− it

j)
wj , t
√

1−∏m
j=1 (1− nt

j)
wj

⎞⎠
⊗

⎛⎝ t
√
(1− nt

j)
wj − (1−mt

j − itj − nt
j)

wj − (it
j)

wj ,

t
√

1− (1− it
j)

wj , t
√

1− (1− nt
j)

wj

⎞⎠

=

⎛⎜⎜⎜⎜⎝
t

√
m+1
∏
j=1

(1− nt
j)

wj −
m+1
∏
j=1

(1−mt
j − itj − nt

j)
wj −

m+1
∏
j=1

(it
j)

wj ,

t

√
1−

m+1
∏
j=1

(1− it
j)

wj , t

√
1−

m+1
∏
j=1

(1− nt
j)

wj

⎞⎟⎟⎟⎟⎠
So, the result holds for k = m + 1. Therefore, by the principle of mathematical induction, the

result holds for all k ∈ Z+. �

Theorem 6. If Pj =
(
mj, ij, nj

)
, j = 1, . . . , k are T-SFNs. Then the aggregated value using the T-SFWGIA

operator is also T-SFN.

Proof. Since Pj =
(
mj, ij, nj

)
is a T-SFN, j = 1, . . . , k, we have 0 ≤ mj, ij, nj ≤ 1. So 0 ≤ mt

j, it
j , nt

j ≤ 1
and 0 ≤ mt

j + it
j + nt

j ≤ 1. Then:

≤
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1−mt
j − itj − nt

j)
wj −

k
∏
j=1

(it
j)

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(1− it
j)

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(1− nt
j)

wj ≤ 1

Now:

t

√√√√√√√√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj+

1−
k

∏
j=1

(1− it
j)

wj + 1−
k

∏
j=1

(1− nt
j)

wj

= t

√
2−

k
∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj −
k

∏
j=1

(1− it
j)

wj ∈ [0, 1]
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Thus, T − SFWGIAw(P1, . . . . . . . . . , Pk) is T-SFN.
Further, it is observed that the proposed operator satisfies certain properties, which are listed as

follows: �

Theorem 7. If all T-SFNs, Pj(j = 1, 2, . . . , k), are equal to P0, where P0 is another T-SFN, then

T − SFWGIAw(P1, . . . . . . . . . , Pk) = P0

Proof. Assume that Pj = P0 = (m0, i0, n0) is a T-SFN ∀j. Then, by definition of T-SFWGIA operator,
we have:

T − SFWGIAw(P1, P2, . . . , Pk) =

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(1− it
j)

wj , t

√
1−

k
∏
j=1

(1− nt
j)

wj

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
t

√
(1− nt

j)
∑k

j=1 wj − (1− (mt
j + itj + nt

j))
∑k

j=1 wj − (it
j)

∑k
j=1 wj ,

t

√
1− (1− it

j)
∑k

j=1 wj , t

√
1− (1− nt

j)
∑k

j=1 wj

⎞⎟⎟⎠
= (m0, i0, n0)

= P0

Theorem 8. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min
(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj, max ij, min nj

)
. Then, we have

PL ≤ T − SFWGIAw(P1, . . . . . . , Pk) ≤ PU

Proof is straightforward.

Theorem 9. For a collection of two different T-SFNs, Aj = (mAj , iAj , nAj), (j = 1, 2, . . . , k) and Bj =

(mBj , iBj , nBj), (j = 1, 2, . . . , k), which satisfy the following inequalities if nAj ≥ nBj , iAj ≥ iBj and mt
Aj

+

it
Aj

+ nt
Aj
≤ mt

Bj
+ it

Bj
+ nt

Bj
∀j, then we have

T − SFWGIAw (A1, A2, . . . ,Ak) ≤ T − SFWGIAw (B1, B2, . . . ,Bk)

Proof. Since nAj ≥ nBj , we have:

t

√√√√1−
k

∏
j=1

(
1− nt

Aj

)wj ≥ t

√√√√1−
k

∏
j=1

(
1− nt

Bj

)wj

and iAj ≥ iBj

t

√√√√1−
k

∏
j=1

(
1− it

Aj

)wj ≥ t

√√√√1−
k

∏
j=1

(
1− it

Bj

)wj
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As, nAj ≥ nBj , mt
Aj

+ it
Aj

+ nt
Aj
≤ mt

Bj
+ it

Bj
+ nt

Bj
∀j we have:

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

Aj

)wj −
k

∏
j=1

(
1−
(

mt
Aj
+ itAj

+ nt
Aj

))wj −
k

∏
j=1

(it
Aj
)

wj ,

t

√
1−

k
∏
j=1

(
1− it

Aj

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Aj

)wj

⎞⎟⎟⎟⎟⎠

≤

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

Bj

)wj −
k

∏
j=1

(
1−
(

mt
Bj
+ itBj

+ nt
Bj

))wj −
k

∏
j=1

(it
Bj
)

wj ,

t

√
1−

k
∏
j=1

(
1− it

Bj

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Bj

)wj

⎞⎟⎟⎟⎟⎠
Therefore, we have:

T − SFWGIAw(A1, A2, . . . , Ak) ≤ T − SFWGIAw(B1, B2, . . . , Bk)

Definition 11. [34] For any collection, Pj =
(
mj, ij, nj

)
(j = 1, 2, . . . , k) of T-SFNs. The

T − SFOWGAw : Ωn → Ω is a mapping defined as

T − SFOWGAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
mt

σ(j) + itσ(j)

)wj −
k

∏
j=1

(
it
σ(j)

)wj
,

k
∏
j=1

(
iσ(j)

)wj
,

t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj

⎞⎟⎟⎟⎟⎠ (3)

where Ω is the collection of all T-SFNs, then T − SFOWGAw is called a T-SFOWGA operator with weighting
vector w = (w1, w2, . . . . . . wk)

T of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1.

Definition 12. For any collection, Pj =
(
mj, ij, nj

)
, (j = 1, 2, . . . , k) of T-SFNs. The

T − SFOWGIAw : Ωn → Ω is a mapping defined as:

T − SFOWGIAw(P1, P2, . . . . . . , Pk) = ⊗k
j=1P

wj
σ(j) (4)

then T − SFOWGIAw is called T-SFOWGIA operator, where w = (w1, w2, . . . . . . . . . wk)
T is the weighting

vector of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1 and σ is the permutation of {1, 2, . . . , k}, such that σ(j − 1) ≥ σ(j).

Theorem 10. For any collection Pj =
(
mj, ij, nj

)
, (j = 1, 2, . . . , k) of T-SFNs. Then

T − SFOWGIAw(P1, P2, . . . , Pk) =

⎛⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−
(

mt
σ(j) + it

σ(j) + nt
σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ,

t

√
1−

k
∏
j=1

(
1− it

σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj

⎞⎟⎟⎠
Proof is similar to Theorem 5.

Theorem 11. If Pj =
(
mj, ij, nj

)
is a T-SFN, j = 1, . . . , k. Then the aggregated value using the T-SFOWGIA

operator is also T-SFN.
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Proof. Since Pσ(j) =
(

mσ(j), iσ(j), nσ(j)

)
is a T-SFN, j = 1, . . . , k, we have 0 ≤ mσ(j), iσ(j), nσ(j) ≤ 1. So

0 ≤ mt
σ(j), it

σ(j), nt
σ(j) ≤ 1 and 0 ≤ mt

σ(j) + it
σ(j) + nt

σ(j) ≤ 1. Then:

0 ≤
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−
(

mt
σ(j) + itσ(j) + nt

σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(
1− it

σ(j)

)wj ≤ 1

0 ≤ 1−
k

∏
j=1

(
1− nt

σ(j)

)wj ≤ 1

Now:

t

√√√√√√√√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−
(

mt
σ(j) + itσ(j) + nt

σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj + 1−
k

∏
j=1

(
1− it

σ(j)

)wj

+1−
k

∏
j=1

(
1− nt

σ(j)

)wj

= t

√
2−

k
∏
j=1

(
1−
(

mt
σ(j) + itσ(j) + nt

σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj −
k

∏
j=1

(
1− it

σ(j)

)wj ∈ [0, 1]

Thus, T − SFOWGIAw(P1, . . . . . . . . . , Pk) is T-SFN. �

Theorem 12. T − SFOWGIAw(P1, . . . . . . . . . , Pk) = P0 if Pj = P0 =
(
mj, ij, nj

)
is a T-SFN ∀j.

Proof. We have:

T − SFOWGIAw(P1, . . . . . . . . . Pk) =⎛⎜⎜⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−
(

mt
σ(j) + itσ(j) + nt

σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ,

t

√
1−

k
∏
j=1

(
1− it

σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
t

√(
1− nt

σ(j)

)∑k
j=1 wj −

(
1−
(

mt
σ(j) + itσ(j) + nt

σ(j)

))∑k
j=1 wj − (it

σ(j))
∑k

j=1 wj ,

t

√
1−
(

1− it
σ(j)

)∑k
j=1 wj

,
t

√
1−
(

1− nt
σ(j)

)∑k
j=1 wj

⎞⎟⎟⎟⎟⎠
=
(

mσ(0), iσ(0), nσ(0)

)
= P0

�

Theorem 13. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min
(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj

)}
, max ij, min nj). Then

PL ≤ T − SFOWGIA(P1, . . . . . . , Pk) ≤ PU

Proof is straightforward.

Theorem 14. T − SFOWGIAw(B1B2, . . . . . . , Bk) = T − SFOWGIAw(A1, . . . . . . , Ak) if Bj =(
mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
where j = 1, . . . . . . , k.
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Proof.

T − SFOWGIAw(B1, B2 . . . . . . Bk) =⎛⎜⎜⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

Bσ(j)

)wj −
k

∏
j=1

(
1−
(

mt
Bσ(j)

+ itBσ(j)
+ nt

Bσ(j)

))wj −
k

∏
j=1

(it
Bσ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

Bσ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Bσ(j)

)wj

⎞⎟⎟⎟⎟⎟⎟⎠
T − SFOWGIAw(A1, A2 . . . . . . Ak) =⎛⎜⎜⎜⎜⎜⎜⎝

t

√
k

∏
j=1

(
1− nt

Aσ(j)

)wj −
k

∏
j=1

(
1−
(

mt
Aσ(j)

+ itAσ(j)
+ nt

Aσ(j)

))wj −
k

∏
j=1

(it
Aσ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

Aσ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Aσ(j)

)wj

⎞⎟⎟⎟⎟⎟⎟⎠
If Bj =

(
mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
then we have Bσ(j) = Aσ(j).

Thus, T − SFOWGIAw(B1, . . . . . . , Bk) = T − SFOWGIAw
(

A1, . . . . . . , Ak
)
. �

Definition 13. For any collection, Pj =
〈
mj, ij, nj

〉
of T-SFNs (j = 1, 2, 3, . . . . . . , k). If the mapping

T − SFHGAω,w(P1, P2, . . . . . . , Pk) = ⊗k
j=1(P̃σ(j))

wi (5)

then T − SFHGAω,w is called a T-SFHGA operator, where P̃j =
(

Pj
)nωj and ω = (ω1, . . . . . . ωk)

T is the
weighting vector of Pj with ωj ∈ (0, 1] and ∑k

j=1 ωj = 1.

Theorem 15. [34] For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If

T − SFHGAω,w(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
mt

P̃σ(j)
+ it

P̃σ(j)

)wj

−
k

∏
j=1

(
it
P̃σ(j)

)wj

,

k
∏
j=1

(
iP̃σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

P̃σ(j)

)wj

⎞⎟⎟⎟⎟⎠
then T − SFHGAω,w is called a T-SFHGA operator with weighting vector ω = (ω1, ω2, . . . . . . ωk)

T of Pj

with ωj ∈ (0, 1] and ∑k
j=1 ωj = 1.

Definition 14. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If the mapping

T − SFHGIAω, w(P1, P2, . . . . . . , Pk) = ⊗k
j=1P̃

wj
σ(j) (6)

then T− SFHGIAω,w is called a T-SFHGIA operator, where ω = (ω1, ω2, . . . . . . ωk)
T is the weighting vector

of Pj with ωj ∈ [0, 1] and ∑k
j=1 wj = 1.

Theorem 16. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. Then

T − SFHGIAω, w(P1, P2, . . . . . . , Pk)

=

⎛⎜⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

P̃σ(j)

)wj

−
k

∏
j=1

(
1−
(

mt
P̃σ(j)

+ it
P̃σ(j)

+ nt
P̃σ(j)

))wj

−
k

∏
j=1

(it
P̃σ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

P̃σ(j)

)wj

, t

√
1−

k
∏
j=1

(
1− nt

P̃σ(j)

)wj

⎞⎟⎟⎟⎟⎠
193



Symmetry 2018, 10, 670

The following example demonstrates these aggregation operators:

Example 1. Let P1 = (0.3, 0.8, 0.1), P2 = (0.4, 0.3, 0.6), P3 = (0.7, 0.1, 0.5), P4 = (0.9, 0.4, 0.1) and
P5 = (0.2, 0.6, 0.7) are T-SFN. The weight vector for Pi (i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T.
With loss of generality, we use t = 2 for all calculations.

Firstly, we utilized T-SFHGIA operators on this data to aggregate it.

P1 =

⎛⎝ √
(1− 0.12)

5×0.18 − (1− (0.32 + 0.82 + 0.12))
5×0.18 − (0.82)

5×0.18,√
1− (1− 0.82)

5×0.18,
√

1− (1− 0.12)
5×0.18

⎞⎠
= (0.1559, 0.7754, 0.0949)

P2 =

⎛⎝ √
(1− 0.62)

5×0.22 − (1− (0.42 + 0.32 + 0.62))
5×0.22 − (0.32)

5×0.22,√
1− (1− 0.32)

5×0.22,
√

1− (1− 0.62)
5×0.22

⎞⎠
= (0.4317, 0.3139, 0.6228)

P3 =

⎛⎝ √
(1− 0.52)

5×0.16 − (1− (0.72 + 0.12 + 0.52))
5×0.16 − (0.12)

5×0.16,√
1− (1− 0.12)

5×0.16,
√

1− (1− 0.52)
5×0.16

⎞⎠
= (0.6629, 0.0895, 0.4534)

P4 =

⎛⎝ √
(1− 0.12)

5×0.21 − (1− (0.92 + 0.42 + 0.12))
5×0.21 − (0.42)

5×0.21,√
1− (1− 0.42)

5×0.21,
√

1− (1− 0.12)
5×0.21

⎞⎠
= (0.9094, 0.4090, 0.1024)

P5 =

⎛⎝ √
(1− 0.72)

5×0.23 − (1− (0.22 + 0.62 + 0.72))
5×0.23 − (0.62)

5×0.23,√
1− (1− 0.62)

5×0.23,
√

1− (1− 0.72)
5×0.23

⎞⎠
= (0.2705, 0.6336, 0.7342)

The score values corresponding to these aggregated numbers were obtained as SC(P1) =

0.0153, SC(P2) = −0.2016, SC(P3) = 0.2338, SC(P4) = 0.8166, SC(P5) = −0.4658. Based on
the score values, we had the following arrangement of data:

Pσ(1) = (0.9094, 0.4090, 0.1024), Pσ(2) = (0.6629, 0.0895, 0.4534), Pσ(3) = (0.1559, 0.7754, 0.0949),
Pσ(4) = (0.4317, 0.3139, 0.6228), Pσ(5) = (0.2705, 0.6336, 0.7342)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036, 0.2365, 0.1117)T

and by the definition of T-SFHGIA operator we had

T − SFHGIAω,w(P1, P2, P3, P4, P5) = (0.4688, 0.5643, 0.4792)

Theorem 17. If Pj =
(
mj, ij, nj

)
is a T-SFN , j = 1, . . . , k, then the aggregated value using the T-SFHGIA

operator is also T-SFN.

Proof is similar as in Theorem 11.

Theorem 18. T − SFHGIAω, w(P1, P2, . . . . . . , Pk) = P0 if Pj = P0 =
(
mj, ij, nj

)
is a T-SFN ∀j.

Proof is similar as in Theorem 12.

Theorem 19. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min
(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj, max ij, min nj

)
. Then

PL ≤ T − SFHGIAω,w(P1, . . . . . . , Pk) ≤ PU
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Proof is straightforward.

Theorem 20. T− SFHGIAω,w(B1, . . . . . . , Bk) = T− SFHGIAω,w(A1, . . . . . . , Ak) if Bj =
(

mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
where j = 1, . . . . . . , k.

Proof is similar as Theorem 14.

Whenever membership and neutral number of one T-SFN become zero then the membership
and abstinence value is not accounted for in the aggregation [34]. However, the geometric interaction
averaging operators that are developed in our manuscript overcome this problem. The example below
will describe this more clearly.

Example 2. Let P1 = (0.7, 0.5, 0.6), P2 = (0.9, 0.5, 0.4), P3 = (0, 0, 0.1), P4 = (0.5, 0.3, 0.4) and P5 =

(0.6, 0.4, 0.5) are T-SFN. The weight vector for Pi (i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T.

For the solution, first we will find the T-SFHGA operator.
As, 0.7+ 0.5+ 0.6 = 1.8 /∈ [0, 1], 0.72 + 0.52 + 0.62 = 1.1 /∈ [0, 1] but 0.73 + 0.53 + 0.63 = 0.684 ∈ [0, 1]
Similarly, P2 and P4 satisfy the condition for t = 3.

P̃1 =

(
3
√
(0.73 + 0.53)

5×0.18 − (0.53)
5×0.18, 0.55×0.18, 3

√
1− (1− 0.63)

5×0.18
)

= (0.7054, 0.5359, 0.5816)

P̃2 =

(
3
√
(0.93 + 0.53)

5×0.22 − (0.53)
5×0.22, 0.55×0.22, 3

√
1− (1− 0.43)

5×0.22
)

= (0.9041, 0.4665, 0.4125)

P̃3 =

(
3
√
(03 + 03)

5×0.16 − (03)
5×0.16, 05×0.16, 3

√
1− (1− 0.13)

5×0.16
)

= (0, 0, 0.0928)

P̃4 =

(
3
√
(0.53 + 0.33)

5×0.21 − (0.33)
5×0.21, 0.35×0.21, 3

√
1− (1− 0.43)

5×0.21
)

= (0.4874, 0.2885, 0.4063)

P̃5 =

(
3
√
(0.63 + 0.43)

5×0.23 − (0.43)
5×0.23, 0.45×0.23, 3

√
1− (1− 0.53)

5×0.23
)

= (0.5738, 0.3486, 0.5221)

Scores values for these aggregated numbers were obtained as SC(P̃1) = 0.1543, SC(P̃2) =

0.6689, SC(P̃3) = −0.0008, SC(P̃4) = 0.0487, SC(P̃5) = 0.0466, and, based on these score values,
we had

P̃σ(1) = (0.9041, 0.4665, 0.4125), P̃σ(2) = (0.7054, 0.5359, 0.5816), P̃σ(3) = (0.4874, 0.2885, 0.4063),
P̃σ(4) = (0.5738, 0.3486, 0.5221), P̃σ(5) = (0, 0, 0.0928)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036, 0.2365,
0.1117)T , and, by the definition of T-SFHGA operator, we found

T− SFHGAω,w(P1, P2, P3, P4, P5) = (0, 0, 0.4803) (7)

This type of aggregated value seems meaningless, as whenever the membership and abstinence
value is zero in any one of the T-SFN it will make the value of the membership and non-membership as
zero in the whole aggregated value. This shows that the geometric aggregation operator of T-SFSs [34]
does not possess the ability to aggregate such types of information effectively.

On the other hand, the proposed new geometric interactive aggregation operators can process
any type of information effectively. Now, the Example 2 was solved using the proposed new
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aggregation operators in order to justify its effectiveness. For it, we aggregated the data using the
T-SFHGIA operator:

P1 =

⎛⎝ 3
√
(1− 0.63)

5×0.18 − (1− (0.73 + 0.53 + 0.63))
5×0.18 − (0.53)

5×0.18,
3
√

1− (1− 0.53)
5×0.18, 3

√
1− (1− 0.63)

5×0.18

⎞⎠
= (0.6656, 0.5359, 0.5816)

P2 =

⎛⎝ 3
√
(1− 0.43)

5×0.22 − (1− (0.93 + 0.53 + 0.43))
5×0.22 − (0.53)

5×0.22,
3
√

1− (1− 0.53)
5×0.22, 3

√
1− (1− 0.43)

5×0.22

⎞⎠
= (0.9144, 0.4665, 0.4125)

P3 =

⎛⎝ 3
√
(1− 0.13)

5×0.16 − (1− (03 + 03 + 0.13))
5×0.16 − (03)

5×0.16,
3
√

1− (1− 03)
5×0.16, 3

√
1− (1− 0.13)

5×0.16

⎞⎠
= (0, 0, 0.0928)

P4 =

⎛⎝ 3
√
(1− 0.43)

5×0.21 − (1− (0.53 + 0.33 + 0.43))
5×0.21 − (0.33)

5×0.21,
3
√

1− (1− 0.33)
5×0.21, 3

√
1− (1− 0.43)

5×0.21

⎞⎠
= (0.5141, 0.2885, 0.4063)

P5 =

⎛⎝ 3
√
(1− 0.53)

5×0.23 − (1− (0.63 + 0.43 + 0.53))
5×0.23 − (0.43)

5×0.23,
3
√

1− (1− 0.43)
5×0.23, 3

√
1− (1− 0.53)

5×0.23

⎞⎠
(0.6422, 0.3486, 0.5221)

The score values of these numbers were obtained as SC(P1) = 0.0981, SC(P2) = 0.6943, SC(P3) =

−0.0008, SC(P4) = 0.0688, SC(P5) = 0.1225, and, based on score values, we had the following
arrangement:

Pσ(1) = (0.9144, 0.4665, 0.4125),
Pσ(2) = (0.6422, 0.3486, 0.5221), Pσ(3) = (0.6656, 0.5359, 0.5816),

Pσ(4) = (0.5141, 0.2885, 0.4063), Pσ(5) = (0, 0, 0.0928)

Now, by using the definition of the T-SFHGIA operator, we found

T− SFHGIAω,w(P1, P2, P3, P4, P5) = (0.8375, 0.4223, 0.4928) (8)

Clearly, the aggregated value obtained in Equation (8) was an improvement of the one obtained
in Equation (7), as it incorporated the zero values occurring in the membership and abstinence
of T-SFNs efficiently. The analysis of Equations (7) and (8) proved the significance of proposed
aggregation operators.

4. MADM Approach Based on Proposed Operators

Consider a decision-making problem which consists of a set of alternatives (Y =

{y1, y2, . . . . . . , yl}) and set of attributes (Z =
{

z1, z2, . . . . . . , zq
}
) associated with weighted vector

(w =
(
w1, w2, . . . . . . , wq

)T
), where wk ∈ (0, 1] and Σq

k=1wk = 1. Suppose every alternative (yj) is

represented by T-SFNs (Pjk =
〈

mjk, ijk, njk

〉
), which show by which degree alternatives satisfy, neutral,

and not satisfy the given attribute. Then, the following steps of the MADM approach, based on the
proposed operators, are summarized as follows:

Step 1 Find the value of t for which the information of the decision matrix lies in the T-spherical
fuzzy environment.
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Step 2 Assume the weighting vector ω =
(
ω1, . . . . . . , ωq

)T of Pj1, Pj2, . . . . . . , Pjq. where ωk ∈ (0, 1]

and Σq
k=1ωk = 1 we get Pjk = Plωk

jk .

Step 3 By calculating the scores of each attribute of all alternatives, we find:

Pσ(j1), Pσ(j2), . . . . . . , Pσ(jk)

Step 4 By using the normal-distribution based method we find w and then aggregate the data using
the T-SFHGIA operator.

Step 5 Find the scores of all alternatives.
Step 6 With the help of score values, we find the best option.

5. Numerical Example

The above-mentioned approach has been illustrated with a real-life decision-making problem
under the T-SFS environment, and obtained results have been compared with the other existing results.

5.1. Case Study

Jharkhand is the eastern state of India, which has 40 percent of the mineral resources of the
country, and is the second leading state in terms of mineral wealth, after Chhattisgarh state. It is
also known for its vast forest resources. Jamshedpur, Bokaro, and Dhanbad, cities in Jharkhand, are
famous for industries from all over the world. After that, it is known as being the state in India that
has widespread poverty state, because it is primarily a rural state, as 76 percent of the population lives
in villages that depend on agriculture and wages from agriculture. Only 30 percent of the villages are
connected by roads, and only 55 percent of the villages have access to electricity and other facilities.
But in the today’s life, many are looking for ways to make changes in order to better their lives, and,
accordingly, many move to the urban cities for better jobs. To stop this emigration, the Jharkhand
government wants to set up agricultural-based industries in the rural areas. For this, the government
organized the “Momentum Jharkhand” global investor summit 2017, in Ranchi, to invite companies to
invest in the rural areas. The government announced the various facilities that were available to be
set up as five food processing plants in the rural areas, and the five attributes required for selection
of the companies to set them up, namely, project cost (Q1), technical capability (Q2), financial status
(Q3), company background (Q4), and other factors (Q5). The three companies that were interested in
this projects, Surya Food and Agro Pvt. Ltd. (s1), Mother Dairy Fruit and Vegetable Pvt. Ltd. (s2),
and Parle Products Ltd. (s3), were taken as in the form of the alternatives. Then, the main object of
the government was to choose the best company among them for the task. In order to fulfill this, a
decision maker evaluated these and gave their preferences in the term of T-SFS, and their preference
values were summarized in the form of a decision-matrix, shown in Table 1 as follows.

Table 1. Input information related to each alternative.

Q1 Q2 Q3 Q4 Q5

s1 (0.7, 0.5, 0.6) (0.9, 0.5, 0.4) (0.4, 0.2, 0.1) (0.5, 0.3, 0.4) (0.6, 0.4, 0.5)
s2 (0.5, 0.4, 0.6) (0.7, 0.2, 0.3) (0.5, 0.3, 0.6) (0.4, 0.1, 0.6) (0.5, 0.2, 0.4)
s3 (0.4, 0.1, 0.2) (0.5, 0.4, 0.1) (0, 0, 0.5) (0.6, 0.2, 0.2) (0.6, 0.1, 0.5)

The given problem was solved using two approaches. First it was solved using new interactive
operators showing their applicability. Then it was solved using geometric aggregation operators
proposed in [34], showing their failure.

Solution using proposed operators:

Step 1 With some calculations, it was found that all the values in Table 1 were T-SFNs for t = 3.
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Step 2 By taking ω = (0.18, 0.22, 0.16, 0.21, 0.23)T we found Pjk and their values were summarized
as below.

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

⎛⎜⎝ 0.6656,
0.5359,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.9144,

0.4665,
0.4125

⎞⎟⎠
⎛⎜⎝ 0.3333,

0.2759,
0.0928

⎞⎟⎠
⎛⎜⎝ 0.5141,

0.2825,
0.4063

⎞⎟⎠
⎛⎜⎝ 0.6422,

0.3486,
0.5221

⎞⎟⎠
j = 2

⎛⎜⎝ 0.4520,
0.4384,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.7194,

0.1703,
0.3095

⎞⎟⎠
⎛⎜⎝ 0.4212,

0.3817,
0.5614

⎞⎟⎠
⎛⎜⎝ 0.4053,

0.0891,
0.6086

⎞⎟⎠
⎛⎜⎝ 0.5264,

0.1571,
0.4184

⎞⎟⎠
j = 3

⎛⎜⎝ 0.3843,
0.1259,
0.1931

⎞⎟⎠
⎛⎜⎝ 0.5397,

0.3650,
0.1032

⎞⎟⎠
⎛⎜⎝ 0,

0,
0.4662

⎞⎟⎠
⎛⎜⎝ 0.6104,

0.1845,
0.2033

⎞⎟⎠
⎛⎜⎝ 0.6209,

0.0708,
0.5221

⎞⎟⎠
Step 3 Now we had to find the score of each attribute of all alternatives, and their computed values

were given as below
k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 0.0981 0.6943 0.0362 0.0688 0.1225
j = 2 −0.1043 0.3426 −0.1021 −0.1589 0.0726
j = 3 0.0495 0.1561 −0.1013 0.2190 0.0970

By comparing the score values, we had

SC(P12) > SC(P15) > SC(P11) > SC(P14) > SC(P13)

SC(P22) > SC(P25) > SC(P23) > SC(P21) > SC(P24)

SC(P34) > SC(P32) > SC(P35) > SC(P31) > SC(P33)

Based on above score analysis, we found Pσ(jk) and summarized them as

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

⎛⎜⎝ 0.9144,
0.5150,
0.4125

⎞⎟⎠
⎛⎜⎝ 0.6422,

0.9857,
0.5221

⎞⎟⎠
⎛⎜⎝ 0.6656,

0.4838,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.5141,

0.3048,
0.4063

⎞⎟⎠
⎛⎜⎝ 0.3333,

0.1857,
0.0928

⎞⎟⎠
j = 2

⎛⎜⎝ 0.7194,
0.2064,
0.3095

⎞⎟⎠
⎛⎜⎝ 0.5264,

0.9987,
0.4184

⎞⎟⎠
⎛⎜⎝ 0.4212,

0.2787,
0.5614

⎞⎟⎠
⎛⎜⎝ 0.4520,

0.9804,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.4053,

0.1016,
0.6086

⎞⎟⎠
j = 3

⎛⎜⎝ 0.6104,
0.2033,
0.2033

⎞⎟⎠
⎛⎜⎝ 0.5397,

0.4125,
0.1032

⎞⎟⎠
⎛⎜⎝ 0.6209,

0.9999,
0.5221

⎞⎟⎠
⎛⎜⎝ 0.3843,

0.0966,
0.1931

⎞⎟⎠
⎛⎜⎝ 0,

0,
0.4662

⎞⎟⎠
Step 4 By using the normal distribution-based method, we got w = (0.1117, 0.2365, 0.3036, 0.2365,

0.1117)T , and by using the defined aggregation operators, we had

P1 = T − SFHGIAω,w(P11, P12, P13, P14, P15)

=

⎛⎜⎜⎜⎜⎝
3

√
5

∏
j=1

(
1− n3

P̃σ(1k)

)wj

−
5

∏
j=1

(
1−
(

m3
P̃σ(1k)

+ i3
P̃σ(1k)

+ n3
P̃σ(1k)

))wj

−
5

∏
j=1

(i3
P̃σ(1k)

)
wj ,

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(1k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(1k)

)wj

⎞⎟⎟⎟⎟⎠
= (0.9380, 0.4264, 0.4928)

P2 = T − SFHGIAω,w(P21, P22, P23, P24, P25)

=

⎛⎜⎜⎜⎜⎝
3

√
5

∏
j=1

(
1− n3

P̃σ(2k)

)wj

−
5

∏
j=1

(
1−
(

m3
P̃σ(2k)

+ i3
P̃σ(2k)

+ n3
P̃σ(2k)

))wj

−
5

∏
j=1

(i3
P̃σ(2k)

)
wj ,

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(2k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(2k)

)wj

⎞⎟⎟⎟⎟⎠
= (0.9420, 0.3390, 0.5296)
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P3 = T − SFHGIAω,w(P31, P32, P33, P34, P35)

=

⎛⎜⎜⎜⎜⎝
3

√
5

∏
j=1

(
1− n3

P̃σ(3k)

)wj

−
5

∏
j=1

(
1−
(

m3
P̃σ(3k)

+ i3
P̃σ(3k)

+ n3
P̃σ(3k)

))wj

−
5

∏
j=1

(i3
P̃σ(3k)

)
wj

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(3k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(3k)

)wj

,

⎞⎟⎟⎟⎟⎠
= (0.9779, 0.9713, 0.3906)

Step 5 The score values of three alternatives based on their aggregated values were computed as
SC(P1) = 0.7056, SC

(
P2) = 0.6874, and SC(P3) = 0.8813.

Step 6 By comparing score values, we got

SC(P3) > SC(P1) > SC(P2)

The comparison of score values indicated that P3 had a greater score value. So, the third company
was the best option. Thus, by using the new geometric interaction averaging operators a MADM
problem was successfully solved.

Solution using aggregation operators proposed in [34]:

Step 1 The input preferences related to each alternative was summarized in Table 1 for t = 3.

Step 2 By using weight vector ω = (0.18, 0.22, 0.16, 0.21, 0.23)T we found P′jk as follows

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

⎛⎜⎝ 0.7054,
0.5359,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.9041,

0.4665,
0.4125

⎞⎟⎠
⎛⎜⎝ 0.4655,

0.2759,
0.0928

⎞⎟⎠
⎛⎜⎝ 0.4874,

0.2825
0.4063

⎞⎟⎠
⎛⎜⎝ 0.5738,

0.3486,
0.5221

⎞⎟⎠
j = 2

⎛⎜⎝ 0.5180,
0.4384,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.6776,

0.1703,
0.3095

⎞⎟⎠
⎛⎜⎝ 0.7330,

0.3817,
0.5614

⎞⎟⎠
⎛⎜⎝ 0.3826,

0.0891,
0.6086

⎞⎟⎠
⎛⎜⎝ 0.4553,

0.1517,
0.4184

⎞⎟⎠
j = 3

⎛⎜⎝ 0.4370,
0.1259,
0.1931

⎞⎟⎠
⎛⎜⎝ 0.4811,

0.3650,
0.1032

⎞⎟⎠
⎛⎜⎝ 0,

0,
0.4662

⎞⎟⎠
⎛⎜⎝ 0.5863,

0.1845,
0.2033

⎞⎟⎠
⎛⎜⎝ 0.5563,

0.0708,
0.5221

⎞⎟⎠
Step 3 Now, we had to find the score of each attribute of all alternatives.

k = 1 k = 2 k = 3 k = 4 k = 5
j = 1 0.1543 0.6689 0.1000 0.0487 0.0466
j = 2 −0.0577 0.2815 0.2169 −0.1695 0.0212
j = 3 0.0762 0.1103 −0.1013 0.1932 0.0298

By comparing the score values, we had

SC
(

P′12
)
> SC

(
P′11
)
> SC

(
P′13
)
> SC

(
P′14
)
> SC

(
P′15
)

SC(P′22) > SC(P′23) > SC(P′25) > SC
(

P′21
)
> SC

(
P′24
)

SC
(

P′34
)
> SC(P′32) > SC

(
P′31
)
> SC(P′35) > SC(P′33)

Based on above score analysis, we found P′
σ(jk)
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k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

⎛⎜⎝ 0.9041,
0.4665,
0.4125

⎞⎟⎠
⎛⎜⎝ 0.7054,

0.5359,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.4655,

0.2759,
0.0928

⎞⎟⎠
⎛⎜⎝ 0.4874,

0.2825,
0.4063

⎞⎟⎠
⎛⎜⎝ 0.5738,

0.3486,
0.5221

⎞⎟⎠
j = 2

⎛⎜⎝ 0.6776,
0.1703,
0.3095

⎞⎟⎠
⎛⎜⎝ 0.7330,

0.3817,
0.5614

⎞⎟⎠
⎛⎜⎝ 0.4553,

0.1571,
0.4184

⎞⎟⎠
⎛⎜⎝ 0.5180,

0.4384,
0.5816

⎞⎟⎠
⎛⎜⎝ 0.3826,

0.0891,
0.6086

⎞⎟⎠
j = 3

⎛⎜⎝ 0.5863,
0.1845,
0.2033

⎞⎟⎠
⎛⎜⎝ 0.4811,

0.3650,
0.1032

⎞⎟⎠
⎛⎜⎝ 0.4370,

0.1259,
0.1931

⎞⎟⎠
⎛⎜⎝ 0.5563,

0.0708,
0.5221

⎞⎟⎠
⎛⎜⎝ 0,

0,
0.4662

⎞⎟⎠
Step 4 By using the normal distribution-based method, we got w = (0.1117, 0.2365, 0.3036, 0.2365,

0.1117)T , and by using the defined aggregation operators, we had

P′1 = T − SFHGIAω,w
(

P′11, P′12, P′13, P′14, P′15
)

=

⎛⎜⎝ 3

√
5

∏
j=1

(
m3

P̃σ(1k)
+ i3

P̃σ(1k)

)wj

−
5

∏
j=1

(i3
P̃σ(1k)

)
wj ,

5
∏
j=1

(
iP̃σ(1k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(1k)

)wj
⎞⎟⎠

= (0.5750, 0.3533, 0.4473)
P′2 = T − SFHGIAω,w

(
P′21, P′22, P′23, P′24, P′25

)
=

⎛⎜⎝ 3

√
5

∏
j=1

(
m3

P̃σ(2k)
+ i3

P̃σ(2k)

)wj

−
5

∏
j=1

(i3
P̃σ(2k)

)
wj ,

5
∏
j=1

(
iP̃σ(2k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(2k)

)wj
⎞⎟⎠

= (0.5384, 0.1970, 0.5721)
P′3 = T − SFHGIAω,w

(
P′31, P′32, P′33, P′34, P′35

)
=

⎛⎜⎝ 3

√
5

∏
j=1

(
m3

P̃σ(3k)
+ i3

P̃σ(3k)

)wj

−
5

∏
j=1

(i3
P̃σ(3k)

)
wj ,

5
∏
j=1

(
iP̃σ(3k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(3k)

)wj
⎞⎟⎠

= (0, 0, 0.3692)

This seems meaningless because membership and abstinence of only one T-SFN is zero, but
existing operators make a whole aggregated value zero.

Step 5 This step involved the computation of score values:

SC(P1) = 0.1006
SC(P2) = −0.0312
SC(P3) = −0.0503

Step 6 By comparing score values, we got

SC(P1) > SC(P2) > SC(P3)

From the above example, the applicability of the proposed operators could easily be checked
by comparing the results obtained using new and existing geometric aggregation operators. It was
noticed that whenever membership and abstinence of one TSFN became zero, then the aggregated
value using existing aggregation operators seemed impractical. However, the aggregated value using
new geometric interactive aggregation operators seemed significant and consistent.

5.2. Advantages of the Proposed Work

In this section, we prove the generalization of proposed work over the existing literature. Here
we observed that under some certain conditions the proposed aggregation operators became the
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existing aggregation operators under different environment, which shows the superiority of our
proposed work.

Consider the T-SFWGIA operator defined as

T − SFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎝
t

√
k

∏
j=1

(
1− nt

j

)wj −
k

∏
j=1

(
1−
(

mt
j + itj + nt

j

))wj −
k

∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(
1− it

j

)wj
, t

√
1−

k
∏
j=1

(
1− nt

j

)wj

⎞⎟⎟⎟⎠ (9)

(1) If we take t = 2, the Equation (9) becomes spherical fuzzy weighted geometric interaction
averaging operator (SFWGIA operator) and we have

SFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎝
√

k
∏
j=1

(
1− n2

j

)wj −
k

∏
j=1

(
1−
(

m2
j + i2j + n2

j

))wj −
k

∏
j=1

(i2j )
wj ,√

1−
k

∏
j=1

(
1− i2j

)wj
,

√
1−

k
∏
j=1

(
1− n2

j

)wj

⎞⎟⎟⎟⎠
(2) If we take t = 1, the Equation (9) becomes picture fuzzy weighted geometric interaction averaging

operator (PFWGIA operator) and we have

PFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎝
k

∏
j=1

(
1− nj

)wj −
k

∏
j=1

(
1−
(
mj + ij + nj

))wj −
k

∏
j=1

(
ij
)wj ,

1−
k

∏
j=1

(
1− ij

)wj , 1−
k

∏
j=1

(
1− nj

)wj

⎞⎟⎟⎟⎠
(3) If we take t = 2 and i = 0, the Equation (9) becomes Pythagorean fuzzy weighted geometric

interaction averaging operator (PyFWGIA operator) and we have

PyFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎜⎝
√

k
∏
j=1

(
1− n2

j

)wj −
k

∏
j=1

(
1−
(

m2
j + n2

j

))wj
,√

1−
k

∏
j=1

(
1− n2

j

)wj

⎞⎟⎟⎟⎟⎠
(4) If we take t = 1 and i = 0, the Equation (9) becomes intuitionistic fuzzy weighted geometric

interaction averaging operator (IFWGIA operator) and we have

IFWGIAw(P1, P2, . . . . . . , Pk) =

⎛⎜⎜⎜⎝
k

∏
j=1

(
1− nj

)wj −
k

∏
j=1

(
1−
(
mj + nj

))wj ,

1−
k

∏
j=1

(
1− nj

)wj

⎞⎟⎟⎟⎠
Similarly, T-SFOWGIA and T-SFHGIA operators can be converted to the existing operators. All

of this clearly indicated that our proposed work could be used in the problems described in existing
literature, but the operators of existing literature are unable to deal with problems of T-spherical fuzzy
information. For example, if we look at Example 2, it can be seen that none of the existing operators
can be applied to such problems where information is in the form of T-SFNs.

5.3. Comparative Analysis

The significance of the proposed new geometric operators lies in the fact that the result obtained
by using these operations were more justifiable than those developed earlier (i.e., [34,37,38]). Such
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operators could not deal with situations where if membership and abstinence value of any number
becomes zero then the membership and abstinence value of their aggregated value is also zero. Hence
the existing operators of PFSs and T-SFSs did possess the capability of dealing with any kinds of
information. But, on the other hand, the new geometric operators of T-SFSs can deal with any type of
data justifiably. This point is demonstrated in the case study described in Section 5.1.

The second main advantage of our proposed work is that it has the ability to aggregate the
data available in the form of IFSs, PyFSs, PFSs, and SFSs. But, conversely, the existing operators
could not handle the data provided in the T-spherical fuzzy environment. For example, if we look at
Example 2, its data is purely in the form of T-SFNs based on four grades, being membership, abstinence,
non-membership, and refusal degree with t = 3, which shows that the aggregation operators of IFSs,
PyFSs, PFSs, and SFSs could not aggregate this data. But if we look at Example 3, its data is in the form
of IFNs, and our proposed operators easily aggregated this type of data with t = 1 and i = 0.

Hence, by all means, the proposed work had superiority over the existing work.

Example 3. Let P1 = (0, 0.5), P2 = (0.5, 0.4), P3 = (0.4, 0.2), P4 = (0.3, 0.3) and P5 = (0.7, 0.1) ∈ IFN.
The weight vector for Pi(i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T.

P1 =
(
(1− 0.5)5×0.18 − (1− (0 + 0.5))5×0.18, 1− (1− 0.5)5×0.18

)
= (0, 0.5796)

P2 =
(
(1− 0.4)5×0.22 − (1− (0.5 + 0.4))5×0.22, 1− (1− 0.4)5×0.22

)
= (0.5039, 0.3183)

P3 =
(
(1− 0.2)5×0.16 − (1− (0.4 + 0.2))5×0.16, 1− (1− 0.2)5×0.16

)
= (0.4000, 0.2000)

P4 =
(
(1− 0.3)5×0.21 − (1− (0.3 + 0.3))5×0.21, 1− (1− 0.3)5×0.21

)
= (0.2870, 0.2746)

P5 =
(
(1− 0.1)5×0.23 − (1− (0.7 + 0.1))5×0.23, 1− (1− 0.1)5×0.23

)
= (0.7203, 0.1094)

Scores values were

SC(P1) = −0.5796, SC(P2) = 0.1856, SC(P3) = 0.2000, SC(P4) = 0.0125, SC(P5) = 0.6109.

Thus, SC(P5) > SC(P3) > SC(P2) > SC(P4) > SC(P1) and we had

Pσ(1) = (0.7203, 0.1094)
Pσ(2) = (0.4000, 0.2000)
Pσ(3) = (0.5039, 0.3183)
Pσ(4) = (0.2870, 0.2746)

Pσ(5) = (0, 0.5796)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036,
0.2365, 0.1117)T .

Now, by using the definition of the T-SFHGIA operator, we found

T − SFHGIAω,w(P1, P2, P3, P4, P5) = (0.4093, 0.2919)

Here we got the same result as in [9,10,39]. Thus, the proposed new operators had the capability
to solve the problems that lie in the existing structures.

202



Symmetry 2018, 10, 670

6. Conclusions

In this manuscript, we utilized the concept of T-SFS to handle the uncertainty in the data, so as to
capture the information with some more degree of freedom. For it, we defined some new, improved
interactive aggregation operations by adding the degree of refusal into the analysis. Then, we studied
some basic properties of them. Based on these operational laws, we defined some new weighted
geometric aggregation operators and studied their desirable properties. Some of the counter examples
were also provided, which showed that the proposed operators worked well in all cases where the
existing ones failed to classify the objects. In addition to this, in a comprehensive scrutiny of T-SFSs and
the decision-maker preferences, a MADM approach was presented, based on the proposed operator, to
select the best alternatives among the feasible ones. Finally, the presented decision-making approach
was explained with the help of a numerical example, and an extensive comparative analysis was
conducted in relation to the existing decision-making theories. Additionally, the advantages as well
as the superiority of the approach was tested with some examples. The advantages of the proposed
operators were that a decision maker could choose the required operator in order to optimize their
desired goals with more confidence level as compared the existing operators. Furthermore, it was
concluded that the several existing operators could be deduced from the proposed one and, hence, the
presented operators and algorithm were more generalized. In the future, there is the scope to extend
the proposed method to some different environments, and to extend its application in various fields
related to decision-theory [40–47].
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Abstract: This paper proposes the author’s model based on the Fuzzy Analytic Hierarchy Process
(FAHP) to improve the efficiency of contractor bidding decisions. The essence of the AHP method
is to make pairwise comparisons of available options against all evaluation criteria. The results of
these comparisons are recorded in a square matrix in which symmetrical elements are reciprocal.
In the expert opinion, a 9-step, bipolar verbal scale was used so that the symmetry of the response
was maintained. For contractors from countries where the tendering system is commonly used, the
choice of the right tender in which to participate influences their image, financial condition, and
their aspiration to succeed. The bid/no bid decision depends on numerous factors associated with
the company itself, the environment, and the project concerning the tender. When facing tough
competition, contractors search for a solution which increases their chances of winning the tender.
The proposed model was based on factors selected by Polish contractors. The original element of
the model involves 4 original criteria and 15 sub-criteria for the assessment of investment decision
projects to the selection of the most advantageous contract, i.e., the contractor’s participation in
the bid. For verbal evaluations describing the criteria, symmetric triangular fuzzy numbers were
assigned. The authors performed an extended analysis method combined with FAHP in the model.
Fuzzy evaluations underwent elaborate analysis, the aim of which was to specify the synthetic
priority weights for each criterion. As a result of the application of the method, to prove that the
model works, an example from the Polish construction market was presented in which a bid/no bid
decision about four possible tenders was to be taken. Despite the considered example applying to
Polish conditions, the proposed model can be used also in other countries. The authors’ rationale is
to produce new and more flexible methodologies in order to realistically model a variety of concrete
decision problems.

Keywords: bidding decision; Fuzzy Analytic Hierarchy Process (FAHP); contractors; construction
industry; decision making

1. Introduction

Efforts to gain a construction project include making two vital decisions by the contractor. The first
involves deciding whether to bid or not; the second concerns estimating the offer price as accurately as
possible, especially the mark-up value that needs to be specified in the bid. An appropriate selection of
tenders in which the company wishes to participate plays an important part in establishing its position
in the market, and contributes to the contractor’s success. Participation in tenders involving projects
that do not fit the company’s abilities may cause losses. On the other hand, the cancellation of a bid
means losing the opportunity to profit, to establish relationships with new customers, and to expand
the company’s business. Yet, bidding and losing the bid causes financial loss and damages reputations.
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The result of the tender (a win or loss) depends on the value of the bid, especially on the mark-up
it includes.

Both of the decisions are complex, dynamic, and involve many factors [1]. A bidding decision,
despite its being vital for the contractor, often needs to be made quickly and within a limited timeframe.
The contractor typically relies on experience, intuition, and subjective information. To facilitate the
contractor’s reasoning, increase the efficiency of decision making, and limit mistakes and randomness,
decision support models are frequently applied.

The article presents the authors’ own proposition of a model supporting bidding decisions.
The model is based on the Fuzzy Analytic Hierarchy Process (FAHP), facilitating the selection of the
most appropriate projects on which to bid. Unlike the classic Analytic Hierarchy Process (AHP), FAHP
uses fuzzy logic, which allows a more accurate evaluation of linguistic criteria. A verbal assessment
model is presented in the form of a triangular membership function. The model is constructed on the
basis of factors influencing a bidding decision identified in Poland. Limit values for the triangular
membership function were adopted in such a way that the adopted values corresponded to the values
in accordance with a scale from 1–9, as proposed by Saaty, defining the decision-maker’s preferences
by means of relative assessments of the validity of sub-criteria and variants. The authors of the
article distinguished four main evaluation criteria: Company capabilities, Investment characteristics,
Financial conditions, and Tender characteristics; these were divided into sub-criteria. In total, 15 project
evaluation sub-criteria were obtained. The main aim of this article is to create a decision support model
to join the bidding and selection of the best tender from the point of view of the contractor. In order to
explain the procedure in the model, a simple calculation example is also shown.

2. Decision Making Processes in Construction Management

Decisions taken during the planning and preparation of a development project have a crucial
impact on its profitability [2]. The models proposed so far proved to be helpful for the participants
of the construction process, i.e., the investors [3,4] and contractors [5–7]. Decisions concerning such
problems in most cases belong to multi-criteria issues; therefore, solutions to these issues typically
involve various multi-criteria decision making methods. Table 1 summarizes the multi-criteria methods
previously used to support decisions concerning the management of a construction project at the
pre-investment stage.

Table 1. A summary of example methods used to support decision-making in construction management.

Method Name Aim of Analysis Number of Criterion Used Source

Analytic Hierarchy Process (AHP) +
PROMETHEE

subcontractor selection for
main contractor 13 [8]

Data Envelopment Analysis (DEA) subcontractor selection at
short-listing stage

5–6 selected depending on
the specific tender [9]

Fuzzy AHP; The method of entropy;
Method of criterion impact loss

(CILOS); Integrated Determination of
Objective CRIteria Weights (IDOCRIW)
method; The SAW method; The TOPSIS

method; The COPRAS method

comparing quality
assurance in different
contractor contracts

7 [10]

The EDAS method
comparing quality

assurance in different
contractor contracts

7 [11]

hybrid MCDM model of discrete
zero-sum two-person matrix games

with grey numbers

delays in
Design-Bid-Build projects 8 [12]
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Table 1. Cont.

Method Name Aim of Analysis Number of Criterion Used Source

Integration of intuitionistic fuzzy sets
I(FS) theory, ELECTRE and VIKOR

along with Grey Relational
Analysis (GRA)

contractor selection
problem 20 [13]

Weighted Aggregated Sum Product
Assessment with Grey
Values (WASPAS-G)

evaluating and
selecting contractors 6 [14]

Table 1 reveals that the use of multi-criteria methods in the decision-making processes of business
management most frequently concerns the issue of the comparison of quality assurance in various
contractor contracts. They include the following methods: fuzzy AHP, entropy, criterion impact loss,
SAW, and TOPSIS. Frequently, a multi-criteria analysis is used to support the process of selecting
contractors or subcontractors for construction works. The methods used for this purpose encompass
AHP, PROMETHEE, Data Envelopment Analysis, ELECTRE, VIKOR, Grey Relational Analysis, and
Weighted Aggregated Sum Product Assessment with Grey Values. The study in [15] proposes a hybrid
method based on the Weighted Sum Model (WSM) and the Weighted Product Model (WPM). Most of
the methods mentioned here are well-known; moreover, as shown by researchers, they may be applied,
rendering very good results. Their advantage is that the criteria applied are easy to assess and are
understandable for the potential decision maker. What is more, if complex calculations are necessary,
their automation is possible. It is worth paying attention to the number of criteria, ranging from 5 to
20 (Table 1), used in analyses. The models mentioned are also applied to bid/no bid decision making
processes. There were several early endeavors to develop a model facilitating bidding decisions, one
of which was performed by Ahmad [16], who employed the weight model. In the following years, a
number of models based on various mathematical devices were created.

One of the more recent models is found in the study by El-Mashaleh [17] presenting a data
envelopment analysis (DEA), namely, an efficient non-parametric linear programming method which
is applied to benchmarking procedures and selection decision making. DEA uses the contractor’s
database containing information about previous bidding decisions to create a “best-practice frontier”
determined by favorable bidding opportunities. Consequently, the frontier allows us to evaluate new
bidding options more efficiently, and to reach a more advantageous bid/no bid decision.

On the other hand, [18] presents an ANFIS model based on a MATLAB software program for
processing a set of input data in the way that the human reasoning operates, namely, through neural
network learning and fuzzy logic. The results of the analysis proved to be statistically significant.

The study in [19] describes improvements on the existing bid decision-making methods by means
of the application of support vector machines and backward elimination regression. In particular,
the method helps to attain a parsimonious support vector machine classifier facilitating bid/no bid
decision making in offshore oil and gas platform fabrication projects. Then, the output of the support
vector machine classifier is compared with other classifiers: the worth evaluation model, linear
regression, and neural networks. What the study reveals is the significantly more efficient performance
of the support vector machine classifier in comparison with the other methods, thus proving its great
explanatory predictive power for bid/no bid decision making. What is more, once the insignificant
input variables are removed, the generalization performance of the support vector machines increases.
Other attempts to develop an efficient model of bid/no bid decision making include, for example, the
fuzzy set theory [20,21], analytic hierarchy process [22,23], game theory [24], multi-criteria analysis
methods [25], and artificial neural network [26,27].

In many models, the selection and evaluation of factors influencing the bid/no bid decision occurs
prior to the decision making itself, as presented in numerous studies performed in various countries
and on a number of markets. Early research concerned the American market in 1988 [28], in which
31 factors were specified. While some of them were found to be very important at the mark-up decision
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stage but not at the bid/no bid decision stage, other factors proved to be significant at both stages.
Another study conducted in Saudi Arabia [29] enumerates 37 factors influencing bid/no bid decisions,
as identified by the contractors operating in this market. Research conducted in Great Britain [1]
helped to establish 55 potential factors influencing contractors’ bidding decisions. Considerably fewer
were found by Wanous et al. [27], whose formal questionnaire revealed 38 factors that affect the bid/no
bid decision, ranked in accordance of their importance to Syrian contractors. On the other hand,
the study performed in Saudi Arabia [30] established as many as 87 potential factors, ranked on the
basis of 91 responses to the questionnaire. Similar studies, closely resembling those presented in the
aforementioned articles, were performed in Palestine [31] and Australia [32]. One of the most recent
studies was completed in Poland [33]. The authors proposed 15 factors, being a selection of the factors
proposed in literature, and asked 61 contractors to evaluate them. In this way, a ranking list of these
factors in order of their importance and frequency of their appearance in the Polish market was created.

Bageis and Fortune [30] found considerable correlations among a number of studies, since the top
positions in various rankings were occupied by similar factors. They were not identical, though, as
the specifics of the construction markets differ from country to country, so certain factors appeared to
be significant in some regions but not in others. The implication is, therefore, that factors influencing
bid/no bid decisions are conditioned by the particulars of the environment and the market in which
the contractor works.

The authors proposed the Fuzzy AHP method to solve the problem of supporting contractors’
bidding decisions. Although (as shown above) the classical AHP method, like other multicriteria
methods, has already been used by other researchers and presented in the literature, it is difficult to find
examples of using Fuzzy AHP to solve the problem of bidding decisions. The authors of the present
paper introduced 15 criteria identified by Polish contractors, the number of which does not substantially
exceed the size of the set of criteria proposed in multicriteria methods (Table 1). The proposed Fuzzy
AHP method provides the expert with the possibility of independently performing evaluations of the
opinions of other experts. It allows him/her to freely shape opinions without setting any sharp values.
In the decision-making process, objective or subjective opinions or information, both quantitative
and qualitative, play a very important role, and with the help of AHP, they can be easily assessed.
Any amount of information characterizing the main purpose can be mentioned or even structured in
this method. The use of the Fuzzy AHP method improves the way experts deliver opinions, without
limiting them to one specific wording or parameter. It therefore increases the possibilities of the
application of this method and the flexibility of the solutions obtained thereby.

3. Bidding Decision Support Systems Based on Fuzzy AHP—Methodology

The Analytic Hierarchy Process (AHP), developed by Saaty [34], is a method supporting the
decision making process. Its aim is to quantify the relative priorities for a particular set of alternatives
on a ratio scale on the basis of the decision maker’s judgement. The model emphasizes the importance
of the decision maker’s intuitive judgements, and the consistency with which alternatives are compared
in the decision making process [34]. The AHP is combined with other methods or techniques, such as
mathematical programming, data envelopment analysis, fuzzy theory, and meta-heuristics [35].

According to bid decisions, most decision makers tend to rely on their knowledge and personal
experience, which lead to highly unstructured and uncertain decisions. Although the aim of the AHP
is to capture the decision maker’s knowledge, the traditional AHP cannot fully reflect the human way
of thinking. In the literature, the fuzzy AHP approach is widely used to deal with this inconvenience.
The Fuzzy AHP (namely, FAHP) model is based on fuzzy sets theory, in which the membership of
the given element is determined by the membership function. Fuzzy decision variable values are
described by a membership function which is between zero and one. The membership function
defines the degree of truth, that is, the fuzzy decision variable may range between completely true and
completely false. This approach is more appropriate when the linguistic variables used are common
in the decision process, such as expert judgment. Membership functions may assume various forms:
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trapezoid, Gaussian, or triangular. The method described below involves triangular membership
functions, as described in Chang’s study [36].

Due to the mentioned characteristics of AHP and fuzzy AHP, these methods are widely used in
issues related to decision making regarding various aspects of construction management. AHP and
fuzzy AHP were applied, for example, to the ranking and selection of alternatives in construction
project management [37], construction projects selection and risk assessment [38], performance
evaluation of territorial units [39], and the development of an integrated discounting strategy based
on vendors’ expectations [40].

In the FAHP method, objects (that is, criteria and alternatives) are evaluated by triangular fuzzy
values (TFN). The values of the TFN membership function are μM(x) : R→ [0, 1] , so they generalize
the classic Boolean logic. Each triangular fuzzy set is defined unambiguously by three parameters,
namely, by triangular fuzzy values (l, m, u) which denote the beginning, middle, and end of the fuzzy
triangle, respectively. The value of the membership function μM of triangular fuzzy values M in the
set R can be specified by the following dependency:

μM =

⎧⎪⎨⎪⎩
x

m−l − l
m−l , x ε [l, m]

x
m−u − u

m−u , x ε [m, u]
0, in other cases

(1)

The function is depicted in Figure 1.

Figure 1. Triangular membership function and intersection between M1 and M2.

If l = m = u, then it is a conventional crisp value, as in the classic AHP.
Table 2 presents example TFN values. In the following part of the article, this scheme was applied

to case study calculations.

Table 2. A fuzzy scheme of preference evaluation [41].

Qualitative Evaluation Fuzzy Evaluation AHP Equivalent

Extreme preference (2; 5/2; 3) 9
Very strong preference (3/2; 2; 5/2) 7

Strong preference (1; 3/2; 2) 5
Moderate preference (1; 1; 3/2) 3

Equal preference (1; 1; 1) 1
Moderate inferiority (2/3; 1; 1) 1/3

Strong inferiority (1/2; 2/3; 1) 1/5
Very strong inferiority (2/5; 1

2 ; 2/3) 1/7
Extreme inferiority (1/3; 2/5; 1/2) 1/9

As in the classic AHP method, the analysis should begin by designating a criteria priority matrix
and alternatives preference matrix for each criterion. In the fuzzy AHP, this step involves TFN.
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Fuzzy evaluations undergo an extent analysis, the aim of which is to specify the synthetic priority
weights. The analysis consists of the following four steps.

Let X = {x1, x2, . . . , xn} be a set of objects and U = {u1, u2, . . . , um} a set of aims. According to
this method, each objects has to undergo an extent analysis for each aim of the problem. As a result of
such extent analysis, m values for each object will be obtained, which will be represented as follows:

M1
gi

, M2
gi

, . . . ., Mm
gi

, i = 1, 2, . . . , n (2)

where all Mj
gi for j = 1, 2, . . . , m are triangular fuzzy values.

Step 1: Computation of synthetic fuzzy values for each object of the analysis.

If M1
gi

, M2
gi

, . . . ., Mm
gi

are the extent analysis values of the i-th object for an m-th aim, then the
synthetic fuzzy value can be defined as:

Si =
m

∑
j=1

Mj
gi #

[
n

∑
i=1

m

∑
j=1

Mj
gi

]−1

(3)

Since the FAHP uses three values for the evaluation of a particular criterion, it is necessary to
define the arithmetic operations involving these values.

If one assumes two TFNs, M1 = (l1, m1, u1) and M2 = (l2, m2, u2), then the operations are as follows:

(l1, m1, u1)⊕ (l2, m2, u2) = (l1 + l2, m1 + m2, u1 + u2) (4)

(l1, m1, u1)# (l2, m2, u2) = (l1l2, m1m2, u1u2) (5)

(λ, λ, λ)# (l2, m2, u2) = (λl2, λm2, λu2), for λ > 0, λε(l1, m1, u1)
−1 =

(
1
u1

,
1

m1
,

1
l1

)
(6)

Step 2: Comparison of the degree of possibility that M2 ≥ M1.

Another step in the FAHP analysis following the specification of synthetic fuzzy values involves
computing the priority vector. To do so, each fuzzy set represented by a synthetic fuzzy value has to
be compared with each other. The comparison of two TFNs, M1 = (l1, m1, u1) and M2 = (l2, m2, u2),
allows to compute the degree of possibility that M1 ≥ M2 and the degree of possibility that M2 ≥ M1.
The degree of possibility V(M2 ≥ M1) is expressed by:

V(M2 ≥ M1) = μ(d) =

⎧⎪⎨⎪⎩
1, if m2 ≥ m1

0, if l1 ≥ u2
l1−u2

(m2−u2)−(m1−l1)
, otherwise

(7)

where d is the ordinate of the highest intersection point D between two convex membership functions
μM1 and μM2 .

Step 3: Computation of the smallest degree of possibility M2 ≥ M1 .

To compare all the possible fuzzy values Mi = (1, 2, . . . , k), one needs to specify the minimum:

V(M ≥ M1, M2, . . . , Mk) = minV(M ≥ Mi), i = 1, 2, . . . , k (8)

Step four involves calculating the priority weight vector for variants. Let us assume that:

d′(Ai) = minV(Si ≥ Sk) for k = 1, 2, . . . , n, i k 	= I (9)

212



Symmetry 2018, 10, 642

The weight vector for variants is represented as:

W ′ =
(

d′(A1), d′(A2), . . . , d′(An)
)T

To calculate the priority weight vector for individual variants, one needs to normalize vector W′,
which gives vector W:

W = ( d(A1), d(A2), . . . , d(An))
T (10)

where W is a vector of crisp numbers.
This procedure of computing normalized priority weights should be applied to the evaluation

of particular alternatives of each criterion (alternatives preference matrices). The particular steps
of the FAHP and the steps of the procedure of calculating weight vectors are presented in Figure 2
(based on [37]). The final ranking can be obtained by a sum of products of particular criteria weights
and weights of particular alternatives, as in the AHP method.

Figure 2. Fuzzy analytic hierarchy process flow chart.

An essential step in both the AHP and FAHP methodologies is checking the consistency ratio of
the pairwise comparison matrix. In the classical approach, the consistency ratio (CR) is estimated on
a consistency index (CI) of the comparison matrix and a random-like matrix (RI), which simulates
highly inconsistent judgments in the comparison stage. Saaty [34] has shown that a CR of 0.10 or less
is acceptable to continue the AHP analysis. In FAHP, the consistency ratio procedure is preceded by
defuzzifying the pairwise comparison matrix. In the presented approach, the graded mean integration
approach is utilized. It is assumed that TFN M = (l, m, u) is transformed into a crisp number by formula:

P(M) =
l + 4m + u

6
(11)

After the defuzzification of each pairwise comparison matrix, the Saaty’s consistency is applied.
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4. Project Selection for Bidding—Model Application

The FAHP method presented above was applied to the selection of the most advantageous
contract, which indicates the contractor’s participation in the bid. As previous research have observed,
the evaluation of any complex object by human beings grows in complexity as they try to describe the
object precisely, to the point where the evaluation becomes imprecise. Moreover, in [42], the authors
revealed that a one-stage decision problem structure with multiple criteria may lead to the elimination
of less significant criteria when the FAHP is used. Therefore, the decision problem was constructed as
a two-stage one; criteria were classified into main criteria with sets of sub-criteria assigned to them.
Due to such division, the evaluation of particular ventures was easier for the experts.

The FAHP model was proposed only for contractors because they decide about participating in
the tender and performing actions aimed at the preparation of the offer without being sure of winning.
The authors do not consider the result of the tender in the model, nor the way it is organized, but only
participation in it. The model serves to support solely the contractor’s decisions about choosing the
most suitable tender to join from a number of various projects. Opinions of other participants do not
affect the decision.

The example considered concerns Polish conditions, where the tender procedure is the most
popular system for awarding construction works contracts. In 2014–2017, the tender was used in
over 80% of all contracts awarded for construction work in the Polish public sector [43]. The interest
of contractors in tenders for construction works is considerable, which is proven by the fact that,
according to the Public Procurement Bulletin [43], for 45% of tenders announced in 2017, three or more
offers were submitted. Polish contractors are often faced with the choice of which tender to participate
and engage resources in before preparing the offer. Therefore, research was undertaken among Polish
contractors regarding the factors influencing the decision to participate in the tender, which were
presented in [44].

Polish contractors (61 out of 160) responded to the questionnaire, which made up 38%. Among the
respondents, 38% of companies signed more than 75% of contracts resulting from bidding, while 19%
of respondents signed no more than 25%. They were asked to specify the degree of importance of
the 15 proposed factors, marking them on a 1–7 scale, where 1 was the factor with no influence on
the decision and 7 was the one with the greatest significance in decision making. For each factor, an
average score was established. On the basis of these data, 15 factors were selected which were then
grouped into four main criteria, i.e., C1 (Company’s capabilities), C2 (Investment characteristics), C3
(Financial conditions), and C4 (Tender characteristics) influencing the bidding decision. Subsequently,
sets with sub-criteria were assigned to the main ones. Table 3 presents factor groups (criteria) deciding
about the selection of a project and their average evaluations.

The contractor is considering a participation in one of the four potential tenders. Each of them
concerns a different project: P1, P2, P3 and P4. Figure 3 presents the hierarchical structure of the
model in which “Project selection for bidding” serves as the target hierarchy at the highest level, the
influence factors function as criteria hierarchy at the intermediate levels, and alternatives constitute an
alternatives hierarchy at the lowest level.

The projects P1, P2, P3 and P4 were evaluated by two experts—employees of one of the Polish
construction companies invited to participate in these studies. The experts were the manager and
the deputy head of the tender preparation department, whose professional experience amounted to
more than 15 years. They were obliged by the company to make a decision about participating in
one of 4 tenders (respectively for project: P1, P2, P3 and P4). The evaluation of the projects was made
during the meeting of experts and the co-authors of the paper. The evaluation of the four projects in
accordance with the sub-criteria adopted (on a 1–7 scale) is presented in Table 4.
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Table 3. Average evaluation of the criteria involved in the decision process of selecting a project.

Criterion/Sub-Criterion Name of the Criterion/Factor
Average Evaluation of

Criterion/Factor *

C1 Company’s capabilities 5.14

C1_1 Need of work 5.21
C1_2 Past experience with similar projects 5.95
C1_3 Location of the project 4.25

C2 Investment characteristics 4.48

C2_1 Size of the project (e.g., cubic measure) 4.95
C2_2 Time of project duration 4.49
C2_3 Type of works 5.98
C2_4 Degree of works complexity 3.25
C2_5 Necessity for specialized equipment 3.51
C2_6 Possible subcontractors 3.87
C2_7 Owner’s reputation 5.31

C3 Financial conditions 5.35

C3_1 Value of the project 5.30
C3_2 Contract conditions 5.89
C3_3 Profits from similar past projects 4.87

C4 Tender characteristics 4.14

C4_1 Time for the preparation of the bid 3.89
C4_2 Criteria of bid selection 4.38

* According to research by [21].

Figure 3. The hierarchy of the AHP model for tender selection.
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Table 4. Evaluation of the four ventures under discussion.

Sub-Criterion/Factor
Project

P1 P2 P3 P4

C1_1 7 5 7 5
C1_2 4 7 7 7
C1_3 4 5 6 6
C2_1 3 3 5 2
C2_2 3 4 6 5
C2_3 5 7 7 6
C2_4 4 6 7 7
C2_5 4 6 6 6
C2_6 6 6 6 3
C2_7 6 4 7 4
C3_1 4 3 4 2
C3_2 5 4 6 4
C3_3 4 4 5 4
C4_1 6 5 7 6
C4_2 4 5 4 4

Since the judgment scale in the FAHP involves nine relative ranks, each evaluation presented
in the research was transformed into the respective FAHP ranks. For this purpose, a simple method
was utilized. To determine the relative rank of i-th and j-th objects, the difference between the
obtained evaluation was counted. Afterward, a new threshold is computed, based on the range
between absolute judgment obtained in the research and on a number of FAHP ranks. In the next
step, in comparing object i-th and object j-th, the absolute value of the difference is used to directly
search for the appropriate Saaty rank (the absolute value of the difference is compared with the
newly-evaluated threshold).

While computing all the steps of the FAHP, one can obtain synthetic values of fuzzy triangles for
the evaluation of the decision problem objects. Figure 4 illustrates an example of such an evaluation
with synthetic TFN values for the main criteria (the consistency ratio for given example equals
CR = 0.0043, which proves the consistency of comparison judgments).

Figure 4. Synthetic TFN values for main criteria.

The characteristic feature of the FAHP analysis is the capability to obtain sets of fuzzy values of
individual objects which are then analysed by TFN. This feature is similar to human reasoning.

Criterion C3: Financial condition received the experts’ highest rating (5,35), so the synthetic TFN
are the highest. The triangle in Figure 4 is the widest and the most right-oriented. This result is
highly reliable. In addition, it shares a part with TFN for criterion C1 (company’s capabilities) and C2
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(Investment characteristics), which indicates a degree of superiority of one criterion over the other.
A greater common set indicates a greater criteria equivalence. The lack of a set in common means
large dominance of one over the other, as in the case of criterion C3 (financial conditions) and C4
(tender characteristics).

Table 5 presents the results obtained by the FAHP method—normalized priority weight vectors
for each individual project.

Table 5. Normalized priority weight vectors for projects.

Names
Priority Weight Vector for Each Individual Project

Criteria Sub-Criteria P1 P2 P3 P4

C1_1
0.4045

0.3381 0.5000 0.0000 0.5000 0.0000
C1_2 0.6619 0.0000 0.3333 0.3333 0.3333
C1_3 0.0000 0.0309 0.2253 0.3719 0.3719

C2_1

0.1026

0.1990 0.0264 0.0264 0.9472 0.0000
C2_2 0.1287 0.0000 0.1086 0.5586 0.3329
C2_3 0.3544 0.0309 0.3719 0.3719 0.2253
C2_4 0.0000 0.0000 0.1870 0.4065 0.4065
C2_5 0.0028 0.0000 0.3333 0.3333 0.3333
C2_6 0.0547 0.3333 0.3333 0.3333 0.0000
C2_7 0.2603 0.3119 0.0000 0.6881 0.0000

C3_1
0.4928

0.2692 0.3719 0.2253 0.3719 0.0309
C3_2 0.7308 0.3694 0.0333 0.5640 0.0333
C3_3 0.0000 0.1688 0.1688 0.4937 0.1688

C4_1
0.0000

0.0000 0.2474 0.0809 0.4244 0.2474
C4_2 1.0000 0.1688 0.4937 0.1688 0.1688

Solution 0.2627 0.1486 0.4707 0.1180

The most advantageous venture, as the method proved, is P3, which received the highest priority
weight, i.e., 0.4707. Interestingly enough, the fourth criterion C4 (tender characteristics), which
involved such factors as bid preparation time and the client’s selection criteria, was not considered to
be important by the decision makers. It is likely that the contractor’s experience makes it possible to
prepare a bid on time, as required by the client, or the preparation time is sufficient in practice.

The basic tool in the selection of the most advantageous offer for construction work in Poland is
the accepted criteria for the evaluation of offers. Usually, the procuring entities do not apply more
than 3 criteria, of which the most important weight is always assigned to the price criterion when
evaluating the best offer [43]. Therefore, the type of the criteria used are not as vital from the point of
view of the contractor. Additionally, FAHP eliminated some sub-criteria, namely: C1_3: location of the
project, C2_4: degree of works complexity, C3_3: profits from similar past projects and C4_1: time for
the preparation of the bid. The normalized priority weights for these sub-criteria equal zero. Each of
the eliminated sub-criteria belongs to a different main criteria group. The location of the project (C1_3)
and the degree of work’s complexity (C2_4) are vital for the calculation of the investment costs, yet,
they are irrelevant for the analysed bid/no bid decision case. Profits from similar past projects (C3_3)
is the factor which, in surveys mentioned above [14], was placed 9th out of 15. Thus, it was not rated
as particularly vital, and in the case under consideration, as rather immaterial too, which proves how
individual and unique in character each construction project is.

5. Conclusions

Tendering is an obligatory and basic process (though not the only one) on the construction market
in the Polish public sector. In 2017, the majority of construction orders resulted from bids, (according to
the Public Procurement Bulletin [42], 86% of orders). This way of acquiring contractors is also used
by clients representing the private sector, who themselves decide on the form of awarding contracts.
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A tender has many advantages, as it is the most competitive process, while its procedure is not
complicated. Polish contractors identified 15 factors influencing their bidding decisions. These factors
were grouped into main criteria, with each group consisting of sets with sub-criteria. On this basis,
a model was proposed, the aim of which was to facilitate the choice of a tender appropriate for the
company. To construct the model, the Fuzzy AHP method was used. To prove that the model works,
an example was presented in which a bid/no bid decision about four possible tenders was to be taken.
As a result of the application of the method, the P3 project was shown to be the one with the highest
priority weight (0.4707). It is noteworthy that, according to experts, the modelling performance proved
that the most significant element of evaluation was the criterion concerning the financial conditions of
the project under tender, while the least vital one was the specifications of the tender itself, namely,
the time of bid preparation and the criteria of bid selection. The model proposed here is assumed
to be universal, and may be applied to facilitate contractor bidding decisions not only on the Polish
market. However, the type and influence of the factors on bidding decisions should be related to the
environment in which the contractor works. In further studies, the authors plan to focus on further
objectivization of the selected criteria for assessing the problem under investigation, as well as their
validity. Attempts will also be made to analyze the flexibility of the final decision, by using sensitivity
analyses, and measuring the consistency of assessments made by the decision-maker.

Author Contributions: The individual contribution and responsibilities of the authors were as follows: A.L. and
E.P. made a review of the literature concerning models supporting bidding decisions and distinguished in the
study factors influencing bid/no bid decisions. A.L designed the research main idea and collected the data. D.K.
and K.Z. together analyzed the data and the obtained results. S.B. provided extensive advice throughout the study
results and methodology. All the authors have read and approved the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shash, A.A. Factors considered in tendering decisions by top UK contractors. Constr. Manag. Econ. 1993, 11,
111–118. [CrossRef]

2. Gajzler, M.; Zima, K. Evaluation of Planned Construction Projects Using Fuzzy Logic. Int. J. Civ. Eng. 2017,
15, 641–652. [CrossRef]

3. Plebankiewicz, E. Modelling decision-making processes in bidding procedures with the use of the fuzzy sets
theory. Int. J. Strateg. Prop. Manag. 2014, 18, 307–316. [CrossRef]

4. Zima, K. The concept of investment decision support model using fuzzy set theory. In Proceedings of
the 11th International Conference of Numerical Analysis and Applied Mathematics 2013 (ICNAAM 2013),
Rhodes, Greece, 21–27 September 2013; pp. 1307–1311.
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Abstract: Aggregation operators are important tools for solving multi-attribute group decision-making
(MAGDM) problems. The main challenging issue for aggregating data in a MAGDM problem
is how to develop a symmetric aggregation operator expressing the decision makers’ behavior.
In the literature, there are some methods dealing with this difficulty; however, they lack an
effective approach for multi-polar inputs. In this study, a new aggregation operator for m-polar
fuzzy soft sets (M-pFSMWM) reflecting different agreement scenarios within a group is presented
to proceed MAGDM problems in which both attributes and experts have different weights.
Moreover, some desirable properties of M-pFSMWM operator, such as idempotency, monotonicity,
and commutativity (symmetric), that means being invariant under any permutation of the input
arguments, are studied. Further, m-polar fuzzy soft induced ordered weighted average (M-pFSIOWA)
operator and m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG) operator,
which are extensions of IOWA and IOWG operators, respectively, are developed. Two algorithms
are also designed based on the proposed operators to find the final solution in MAGDM problems
with weighted multi-polar fuzzy soft information. Finally, the efficiency of the proposed methods is
illustrated by some numerical examples. The characteristic comparison of the proposed aggregation
operators shows the M-pFSMWM operator is more adaptable for solving MAGDM problems in
which different cases of agreement affect the final outcome.

Keywords: m-polar fuzzy soft set; m-polar fuzzy soft preference relationship; aggregation operator;
multi-attribute group decision-making

1. Introduction

A group decision-making process, which is also called multi-person decision-making, is the
problem of finding the best option accepted by the majority of decision makers among a list of possible
alternatives. The basic act in the group decision-making is the process of consensus between different
decision makers. Although a unanimous consensus is the ideal case, in real situations, full agreement
rarely happens. Decision makers usually share and discuss their opinions about the alternatives
to obtain a consensus or partial agreement for making the final decision. However, sometimes,
they provide their priorities about the alternatives individually and then try to reach a consensus on
them. Regardless which approach is applied, using aggregation operators is one of the most often
used techniques to reach the process of consensus in group decision-making problems.

The aim of an aggregation operator of dimension K is to aggregate the K-tuple of objects into
a single object by a bounded non-decreasing function A :

⋃
K∈N[0, 1]K → [0, 1]. The mean value,

the median, the minimum, the maximum, the t-norms, and the t-conorms are commonly used to
reach the process of consensus in group decision-making problems. To aggregate a sequence of inputs
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with different importance degrees, the concept of weighting vector in aggregation operators has
been studied, such as the weighted minimum and the weighted maximum [1–3]; ordered weighted
average (OWA) [4], which is calculated based on the arithmetic mean; and ordered weighted geometric
(OWG) [5], which is formulated based on the geometric mean. The main disadvantage of OWA
and OWG operators, i.e., ignoring the importance of given arguments x1, · · · , xK for calculating the
aggregated value, leads to definition of their extensions into the induced OWA (IOWA) operator [6],
and induced OWG (IOWG) operator [7], respectively. However, these extensions have the inherent
limitations from OWA operator and OWG operator, concerning the determination of associated
weighting vector w for IOWA and IOWG operators. In practice, there is no unique strategy to find
the associated weighting vector w. Usually, a quantifier function Q : [0, 1]→ [0, 1] whose definition
may change from one case to another one is applied to compute the associated weighting vector
w = (w1, · · · , wK)

T based on the formulation wi = Q( i
K )−Q( i−1

K ) for all i [4,5,8,9].
Soft set theory (SS) [10], characterized by a set-valued function f : P → 2U , is defined by

a parameterization family of the universe U. Thus, in comparison with fuzzy set theory [11], it allows
us to have a more comprehensive description of U based on any type and number of parameters p ∈ P.
The concepts of fuzzy soft set (FSS) [12] and intuitionistic fuzzy soft set (IFSS) [13] were also studied to
handle more complicated problems. Although soft set theory was originally developed to cope with
the lack of parameterization tool in fuzzy sets, its flexibility to deal with set-valued functions makes it
a powerful tool for providing a new methodology in decision-making problems. The first adaptivity
of soft sets in decision-making was conducted by Maji et al. [14]. However, they did not discuss
the aggregation methods. Roy and Maji [15] gave an algorithm to solve a group decision-making
problem based on fuzzy soft sets. The FS minimum operator was applied for finding the consensus
of multi-source parameter sets. Later, Alcantud [16] overcame the disadvantages of Roy and Maji’s
algorithm by applying FS product operator rather than FS minimum operator. Cagman et al. [17,18]
applied FS minimum operator, FS maximum operator, and FS product operator to produce different
fuzzy soft aggregation operators in a MAGDM problem. Guan et al. [19] applied the FS intersection
operator for aggregating data. Then, a new ranking system of objects, in which the rate of objects
is computed based on the full unanimity of experts with respect to all parameters rather than the
number of parameters that are owned by each object, was constructed to rank alternatives in a group
decision problem. Zhang et al. [20] used the IFS maximum operator to check the process of consensus
in MAGDM problem. Mao et al. [21] extended IFSOWA and IFSOWG operators for intuitionistic
fuzzy soft sets under three different cases of experts’ weights called completely known, partly known,
and completely unknown. Das and Kar [22] used the IFS product and the IFS sum operators of
intuitionistic fuzzy soft matrices to obtain a collective opinion among different decision makers. Zhang
and Zhang [23] utilized the FS union operation to reach the process of consensus in MAGDM problems
based on trapezoidal interval type-2 fuzzy soft sets (TIT2FSSs). The TOPSIS approach was then applied
to select the best option. However, recently, Pandey and Kumar [24] modified this procedure so that
the complement operation that is used by Zhang and Zhang can only be applied for TIT2FSSs in which
left and right heights are equal. Tao et al. [25] proposed four aggregation functions, including the
soft maximum operator, soft minimum operator, soft average operator, and soft weighted average
operator, to aggregate data in MAGDM problems. Two selection tools based on the SAW method and
comparison matrix were also developed to obtain the optimal decision. Zhu and Zhan [26] developed
the new concept fuzzy parameterized fuzzy soft sets (FPFSS), where the parameters are considered
as fuzzy sets and then the consensus stage proceeds by using the t-norm and t-conorm products of
FPFSSs. A new choice value function is also introduced to handle the process of selection. On the
other hand, some researchers attempted to develop novel aggregation methods for FSS and IFSS.
For example, Zahedi et al. [27,28] extended the concept of fuzzy soft topology to reach the consensus
based on a collective preorder relation.

Conventionally, soft-set-based aggregating tools have been developed for unipolar input data
where the truth value belongs to [0, 1]. Some situations require multi-polar arguments to be aggregated.
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To handle the problem of multi-polarity in consensus process, some studies extended the aggregation
operators from unipolar scale into the bipolar scale (i.e., the interval [−1, 1]) [29] and multi-polar scale
(i.e., the space K × [0, 1] where K is a set of m different categories) [30,31]. These extensions allow
dealing with inputs from different categories where the output is presented by a pair (k, x) that k
shows the category of aggregated value x. However, in many decision-making problems, the attribute
set contains multi-feature or multi-polar decision parameters where the final decision should reflect the
best option based on all multi-polar attributes beyond their category. For example, in the hotel booking
problem, “Location” is one of the most important parameters for finding a good hotel to stay, which is
a multi-feature parameter depending on how close it is to the main road, city center, tourist attractions,
etc. A hotel is selected if it has the best location in terms of all features from different categories not
only one. In fact, there is no ideal category k in final solution. This issue becomes more complex when
a group of people want to choose a hotel. In this case, different cases of agreement within a group
including unanimous consensus and partial agreement, e.g., “almost all”, “most”, and “more than
50%”, are considered to obtain the collective view based on individuals’ opinions. Thus, an alternative
aggregation operator is required to deal with multi-polar fuzzy attributes in group decision-making.

In a group decision process with multi-polar inputs, the performance of alternatives are judged by
each decision maker with respect to each criterion. The main problem is to compare these judgements
and reach a consensus among them. The existing aggregation methods usually consider weighted or
unweighted cases under a unanimous agreement [15–23]. However, besides the importance degrees
of experts, the consensus degree for a fuzzy majority of the experts and different choices of experts’
judgments at a consensus level should be taken into account in the proposed alternative aggregation
operator to reach more reliable methodology. Moreover, due to the extreme applicability of FSSs
in MAGDM problems with multi-polar fuzzy soft input information, adaptability of the proposed
aggregation operator for m-polar fuzzy soft sets should be studied. To do this, an extension of fuzzy
soft sets into the m-polar fuzzy soft sets, where the values of membership functions fp are extended
from the unit interval [0, 1] into the cubic [0, 1]m, needs to be developed.

Until now, weighted aggregation operators for multi-polar fuzzy soft arguments have not been
considered. Thus, this study was carried out to develop some weighted m-polar aggregation operators
which cover different scenarios at the consensus degree for a fuzzy majority expressed by linguistic
variables, such as “most”, “much more than 70%”, and “more than half”. The main goal is to
design FS-set-based algorithms for finding the best solution in group decision-making with weighted
multi-polar input information according to the proposed aggregation methods. To achieve this goal,
the following problems are addressed in this study: (i) how to express the multi-polarity of input
data under fuzzy soft environment; (ii) how to generate an aggregation method based on the fuzzy
majority concept for weighted multi-polar inputs; (iii) how to apply the proposed aggregation method
for finding the solution in group decision-making problems; and (iv) how to analyze the final result
obtained by the proposed algorithm. Accordingly, there are four main contributions of this research as
follows: (i) to define a new concept m-polar fuzzy soft set; (ii) to introduce m-polar fuzzy soft weighted
aggregation operators based on the fuzzy majority concept; (iii) to design m-polar FS-based algorithms
for finding the solution in group decision-making; and (iv) to give some illustrative examples for
validating and comparing the results.

The rest of this paper is organized as the following. Section 2 represents some basic definitions
and concepts from the related works. Section 3 gives a new aggregation operator, called M-pFSMWM,
for weighted m-polar fuzzy soft data. This new procedure aggregates the experts’ judgments based on
their importance degrees, a linguistic or numerical consensus level between the experts, and different
choices of experts’ judgments at the consensus level. Some of its desirable properties as well as special
families of M-pFSMWM operator according to different values of consensus degree α and weighting
vector ω are studied. In Section 4, a new score value function is developed to design an algorithm for
ranking alternatives in MAGDM problems based on the M-pFSMWM operator and a new m-polar
fuzzy soft preference relation. To compare the proposed M-pFSMWM operator with some existing
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aggregation methodologies, in Section 5, the m-polar fuzzy soft induced ordered weighted average
(M-pFSIOWA) operator and the m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG)
operator, which are the extensions of IOWA and IOWG operators, respectively, are developed and
their properties are considered. We also present an algorithm to solve MAGDM problems based on
M-pFSIOWA and M-pFSIOWG operators. Section 6 focuses on the efficiency of proposed techniques
by some numerical examples. Finally, in Section 7, we discuss the advantages and limitations of
our approach.

2. Preliminaries

This section recalls some definitions about the weighted aggregation operators, m-polar fuzzy
sets, and fuzzy soft sets to achieve our main aim, proposing new algorithms for solving group
decision-making based on alternative m-polar fuzzy soft aggregation operators, in the next sections.

2.1. Weighted Aggregation Operator

The weighted minimum and the weighted maximum are two important aggregation operators
dealing with objects having non-negative weights ω1, · · · , ωK such that ∑K

i=1 ωi = 1. However, there is
no unique solution to formulate them. For instance, Fagin and Wimmers [2] introduced the below
formula to obtain the weighted minimum and the weighted maximum, respectively.

min⊗ω1,··· ,ωK
(x1, · · · , xK) =

K

∑
i=1

[
i · (ωσ(i) −ωσ(i+1)) ·min(xσ(1), · · · , xσ(i))

]
(1)

max⊗ω1,··· ,ωK
(x1, · · · , xK) =

K

∑
i=1

[
i · (ωσ(i) −ωσ(i+1)) ·max(xσ(1), · · · , xσ(i))

]
(2)

where σ is a permutation that orders the weights as follows: ωσ(1) ≥ ωσ(2) ≥ · · · ≥ ωσ(K) and
ωσ(k+1) = 0.

The IOWA operator, introduced by Yager and Filev [6], and the IOWG operator, given by Xu and
Da [7], are also some commonly used tools for aggregating weighted objects. The IOWA operator is
defined by

IOWA(〈ω1, x1〉, · · · , 〈ωK, xK〉) =
K

∑
j=1

wj · yj (3)

where yj is the value of xi that has the jth largest ωi and ωi in 〈ωi, xi〉 is referred to as the order inducing
variable and xi as the argument variable. The weights w1, · · · , wK such that ∑K

i=1 ωi = 1 are the
associated weights to the IOWA operator that can be defined by a quantifier function Q : [0, 1]→ [0, 1].
Here, the re-ordering step of xis is carried out by the variable ωi rather than the value of xi, that is
used to handle the re-ordering step in OWA operator, i.e., the collection x1, · · · , xK is re-ordered as
〈max{ωi}, y1〉 ≥ · · · ≥ 〈min{ωi}, yK〉.

An IOWG operator is defined by

IOWG(〈ω1, x1〉, · · · , 〈ωK, xK〉) =
K

∏
j=1

yj
wj (4)

where yj is the value of xi that has the jth largest ωi and ωi in 〈ωi, xi〉 is referred to as the order
inducing variable and xi as the argument variable. Note that here also the re-ordering step is based on
the inducing variable ωi and weights w1, · · · , wK such that ∑K

i=1 ωi = 1 are the associated weights to
the IOWG operator.
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2.2. Fuzzy Sets

Today, fuzzy sets are known as an effective tool for modeling vague data [32–35]. If U is
a non-empty set of elements, then a fuzzy subset X of U is a set of ordered pairs (u, μX(u)) such
that u ∈ U and μX : U → [0, 1] is a membership function where μX(u) shows the membership
degree of element u in X. Any fuzzy set R in U ×U is called a fuzzy relation on U. If R represents
a fuzzy preference relation on U, then, for each pair (u, v) ∈ U × U, the value μR(u, v) shows
the preference degree of u over v. Here, μR(u, v) = 0.5 indicates indifference between u and v
(u ∼ v), while μR(u, v) ∈ (0.5, 1] shows u is preferred to v (u � v). Moreover, generally, we have
μR(u, v) + μR(v, u) = 1.

Theorem 1 (Multiplicative transitivity). [36] If u(.) is a utility function on the set X = {x1, · · · , xn} such
that the value u(xi) = ui shows the utility of alternative xi ∈ X, then the fuzzy preference relation R defined by
μR(xi, xj) = rij =

ui
ui+uj

, which is a fuzzy preference relation satisfying multiplicative transitivity condition,

i.e.,
rji
rij

rkj
rjk

= rki
rik

for all i, j, k ∈ {1, · · · , n}.

To extend the traditional fuzzy sets dealing with unipolar data into the multi-polar information,
the concept of m-polar fuzzy set is defined as below.

Definition 1 (m-polar fuzzy set). [37] An m-polar fuzzy set (M-pFS) X on U is a mapping μ : U →
[0, 1]m, where [0, 1]m refers to as the multiplication of [0, 1] × · · · × [0, 1] m-times, such that μ(u) =(
(μ1(u), · · · , μm(u)

)
, 0 = (0, 0, · · · , 0) and 1 = (1, 1, · · · , 1) are the least and greatest elements, respectively,

and μc(u) = (1− μ1(u), · · · , 1− μm(u)) shows its complement. The set of all m-polar fuzzy sets over U is
represented by m(U).

If {μk}k is a family of M-pFSs over the universe U, then for any u ∈ U:

1. If μs
i (u) ≤ μs

j (u) for all s = 1, · · · , m, then μi ≤ μj.
2. (

∨
kμk)(u) = supk{μk(u)} = (supk{μ1

k(u)}, · · · , supk{μm
k (u)}).

3. (
∧

kμk)(u) = infk{μk(u)} = (infk{μ1
k(u)}, · · · , infk{μm

k (u)}).

2.3. Fuzzy Soft Sets

Theory of soft sets is presented based on the approximate descriptions of the set U. A soft set is
characterized by a set-valued mapping f : P→ 2U where P is a set of parameters and 2U shows the
power set of U. By combining the definitions of fuzzy sets and soft sets a new concept called fuzzy
soft set is proposed.

Definition 2 (Fuzzy soft set). [12] A fuzzy soft set (FSS), denoted by fP or ( f , P), is a mapping f : P →
[0, 1]U where for every p ∈ P, f (p) is a fuzzy subset of U with membership function fp : U → [0, 1] where
0̃ and 1̃, defined by 0̃(p)(u) = 0 and 1̃(p)(u) = 1 ∀u ∈ U and p ∈ P, is called the null fuzzy soft set and
the absolute fuzzy soft set, respectively. Moreover, the complement of ( f , P), denoted by ( f c, P), is defined by
f c : P→ [0, 1]U where ∀p ∈ P, f c

p(u) = 1− fp(u) for all u ∈ U.

If {( fk, Pk)}k is a family of FSSs over the universe U, then, for any u ∈ U:

1. If Pi ⊂ Pj and fi(p)(u) ≤ f j(p)(u) for all p ∈ Pi, then ( fi, Pi)≤̃( f j, Pj).
2. (

∨̃
k fk)(p)(u) = supk{ fk(p)(u)} for all p ∈ ∪kPk.

3. (
∧̃

k fk)(p)(u) = infk{ fk(p)(u)} for all p ∈ ∩kPi.

3. A New Weighted Aggregation Operator for M-pFSSs

In this section, we introduce a new weighted aggregation operator, called M-pFSMWM operator,
to improve the aggregating tools for multi-polar inputs with non-negative weights under fuzzy soft
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environment. The advantages of this new operator is also demonstrated by some theorems and
properties. To this end, we first develop the new concept of m-polar fuzzy soft sets (M-pFSS) and then
introduce the M-pFSMWM operator in the domain of m-polar fuzzy soft sets.

3.1. m-Polar Fuzzy Soft Sets

Motivated by m-polar fuzzy sets given in Definition 1, the notion of m-polar fuzzy soft set is
developed to model data dealing with multi-polar or multi-feature attributes. Basic operations of
m-polar fuzzy soft sets are also discussed in this section.

Definition 3 (m-polar fuzzy soft set). Let U and P be two non-empty sets of alternatives and parameters,
respectively. The pair ( f , P) where f is the mapping f : P → m(U) such that for any p ∈ P the f (p) is an
m-polar fuzzy subset of U can be defined as an m-polar fuzzy soft set (M-pFSS) over U. It means, for each
p ∈ P and any u ∈ U, f (p)(u) is an m-tuple fp(u) = ( f 1

p(u), f 2
p(u), · · · , f m

p (u)) such that the f s
p(u),

for s = 1, 2, · · · , m, represents the relation between object u ∈ U and feature s of parameter p.

The set of all m-polar fuzzy soft sets is shown by m f s(U). Furthermore, an m-polar fuzzy soft
set ( f , P) is called a null M-pFSS, shown by 0̃, or an absolute M-pFSS, shown by 1̃, if for any p ∈ P,
f s(p)(u) = 0 and f s(p)(u) = 1, respectively, for all u ∈ U and 1 ≤ s ≤ m. The complement of M-pFSS
( f , P) is also an M-pFSS, shown by ( f c, P), where for any p ∈ P and u ∈ U: f sc(p)(u) = 1− f s(p)(u)
for all s = 1, 2, · · · , m.

Example 1. Let us suppose a person wants to rate four restaurants {x1, x2, x3, x4} according to the parameters
{p1 = Location, p2 = Meal, p3 = Services}. Let he/she considers the different aspects of these parameters as
follows: The location of the restaurants includes close to the main road, in green surroundings, and in shopping
mall. The meal of the restaurants includes main course, appetizer (starter), and dessert. The services of the
restaurants include parking lot, live music, and free Wi-Fi connectivity.

Assume that the person uses the linguistic variables “No” (0), “Yes” (1), “Very Poor” (0), “Poor” (0.1),
“Medium Poor” (0.3), “Medium” (0.5), “Medium Good”(0.7), “Good” (0.9), “Very Good” (1) “Very Far” (0),
“Far” (0.1), “Medium Far” (0.3), “Medium Close”(0.7), “Close” (0.9), and “Very Close” (1) shown in Table 1 for
describing the performance of each alternative with respect to these parameters.

Table 1. Linguistic variables for describing each alternative with respect to the parameters.

U x1 x2 x3 x4

p1:
p1

1 Close Far Very Far Very Close
p2

1 No No Yes Yes
p3

1 Yes Yes No No

p2:
p1

2 Very Good Medium Medium Poor Good
p2

2 Very Poor Good Medium Good
p3

2 Medium Very Good Poor Medium

p3:
p1

3 Yes Yes Yes No
p2

3 No Yes Yes Yes
p3

3 Medium Good Medium Poor Good

Thus, a three-polar fuzzy soft set (that is shown in Table 2) can help he/she to explain his/her opinion about
these four restaurants.
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Table 2. Tabular representation of M-pFSS ( f , P).

U p1 p2 p3

x1 (0.9,0,1) (1,0,0.5) (1,0,0.7)
x2 (0.1,0,1) (0.5,0.9,1) (1,1,0.5)
x3 (0,1,0) (0.3,0.5,0.1) (1,1,0.1)
x4 (1,1,0) (0.9,0.9,0.5) (0,1,0.9)

For example, if the person considers the meal of the restaurant x1, then the 3-tuple (1,0,0.5) means
that the main course of the restaurant x1 is very good while the starter and the dessert are very poor and
medium, respectively.

Definition 4. Let {( fk, Pk)}k be a family of M-pFSSs over the common universe U and parameter sets Pk.
Then, for any u ∈ U:

1. ( fi, Pj)≤̃( f j, Pj) if Pi ⊆ Pj and f s
i (a)(u) ≤ f s

j (a)(u) for all a ∈ Pi and s = 1, 2, · · · , m.
2. (

∨̃
k fk)(a)(u) = supk{ fk(a)(u)} = (supk{ f 1

k (a)(u)}, · · · , supk{ f m
k (a)(u)}), for all a ∈ ⋃k∈KPk.

3. (
∧̃

k fk)(a)(u) = infk{ fk(a)(u)} = (infk{ f 1
k (a)(u)}, · · · , infk{ f m

k (a)(u)}), for all a ∈ ⋂k∈KPk.

Proposition 1. Let U and F be the universal sets of objects and parameters, respectively, and P, Q, and E
are some subsets of F. Assume that ( f , P), (g, Q), and (h, E) are some m-polar fuzzy soft sets over U where
fp, gq, he ∈ m(U) for all p ∈ P, q ∈ Q, and e ∈ E. Then:

1. ( f , P)∨̃0̃ = ( f , P), ( f , P)∧̃0̃ = 0̃ and ( f , P)∨̃1̃ = 1̃ and ( f , P)∧̃1̃ = ( f , P).
2. (Idempotent) ( f , P)∨̃( f , P) = ( f , P) and ( f , P)∧̃( f , P) = ( f , P).
3. (Commutative) ( f , P)∨̃(g, Q) = (g, Q)∨̃( f , P) and ( f , P)∧̃(g, Q) = (g, Q)∧̃( f , P).
4. (Associative) ( f , P)∨̃

[
(g, Q)∨̃(h, E)

]
=
[
( f , P)∨̃(g, Q)

]
∨̃(h, E) and

( f , P)∧̃
[
(g, Q)∧̃(h, E)

]
=
[
( f , P)∧̃(g, Q)

]
∧̃(h, E).

5. (Distributive) ( f , P)∨̃
[
(g, Q)∧̃(h, E)

]
=
[
( f , P)∨̃(g, Q)

]
∧̃
[
( f , P)∨̃(h, E)

]
and

( f , P)∧̃
[
(g, Q)∨̃(h, E)

]
=
[
( f , P)∧̃(g, Q)

]
∨̃
[
( f , P)∧̃(h, E)

]
.

Proof. Trivial by Definitions 3 and 4.

Proposition 2 (De Morgan Law). Let U and F be the universal sets of objects and parameters, respectively.
Assume that ( f , P) and (g, Q) are two m-polar fuzzy soft sets over U where P and Q are the subsets of F and
fp, gq ∈ m(U) for all p ∈ P and q ∈ Q. Then:

1.
[
( f , P)∨̃(g, Q)

]c
= ( f c, P)∧̃(gc, Q).

2.
[
( f , P)∧̃(g, Q)

]c
= ( f c, P)∨̃(gc, Q).

Proof. It is proved easily by Definitions 3 and 4.

3.2. The M-pFSMWM Operator

In this subsection, we develop the M-pFSMWM operator in the domain of M-pFSSs. This new
aggregation operator is used to reach the process of consensus in group decision-making problems
with weighted m-polar fuzzy soft inputs. Additionally, we show the M-pFSMWM is a well-defined
operator having the behavioral properties.

Let DK = {( fk, P)| fk : P→ m(u), fk ∈ m f s(U), k = 1, 2, · · · , K} be a collection of m-polar fuzzy
soft sets over U and P, such that for all k: fk(p)(u) = ( f 1

k (p)(u), · · · , f m
k (p)(u)) ∈ [0, 1]m for p ∈ P and

u ∈ U where [0, 1]m refers to as the multiplication of [0, 1]× · · · × [0, 1] m-times, with non-negative
weights ω1, · · · , ωK ∈ [0, 1] where ∑K

k=1 ωk = 1. In the following, we develop a new weighted
aggregation operator for m-polar fuzzy soft sets (M-pFSMWM operator) based on the weighted
minimum operator given in Equation (1) and M-pFS maximum defined in Definition 4.
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Definition 5 (M-pFSMWM Operator). Let DK = {( fk, P) ∈ m f s(U)|k = 1, 2, · · · , K} be a collection of
m-polar fuzzy soft sets over U and P with non-negative weights ω1, · · · , ωK ∈ [0, 1] such that ∑K

k=1 ωk = 1.
Let value α where α ∈ {1, 2, · · · , K} be the required consensus degree. An M-pFSMWM operator of dimension
K and at consensus degree α is a mapping M − pFSMWM(K,α,m) :

⋃
K∈N(m f s(U))K → m f s(U) that is

defined by

M− pFSMWM(K,α,m)
〈

f1, · · · , fK
〉
(p)(u) =

〈
CK,α
max
l=1

{ α

∑
k=1

k · (ωσ(δk(l)) −ωσ(δk+1(l)))·

min{ f 1
σ(δ1(l))

(p)(u), · · · , f 1
σ(δk(l))

(p)(u)}
}

δk(l)∈ΔK,α(l)
, · · · ,

CK,α
max
l=1

{ α

∑
k=1

k · (ωσ(δk(l)) −ωσ(δk+1(l)))·

min{ f m
σ(δ1(l))

(p)(u), · · · , f m
σ(δk(l))

(p)(u)}
}

δk(l)∈ΔK,α(l)

〉
(5)

for u ∈ U and p ∈ P where the sum ∑α
k=1[...] refers to as the weighted minimum over different choices α of

K, σ is the permutation operator, CK,α = K!
α!(K−α)! is the binomial coefficient, and ΔK,α(l) is an indexing set,

where card(ΔK,α(l)) = α, including lth α-combination from a set of K elements. Thus, {δ1(l) · · · , δα(l)}CK,α
l=1

traverses all the α-combinations of the set {1, 2, · · · , K} and f s
δk(l)

(p)(u) represents the δkth element in lth
α-combination of K for feature s; s = 1, 2, · · · , m.

In the following, the various properties of M-pFSMWM operator including idempotency,
boundedness, monotonicity, and commutativity (symmetry) are discussed.

Theorem 2. Let {( fk, P)}K
k=1 and {(gk, P)}K

k=1, for k = 1, 2, · · · , K, be two collections of some m-polar fuzzy
soft sets over U and P with non-negative weights ωk that for all k: ωk ∈ [0, 1] and ∑K

k=1 ωk = 1. Let the
required consensus degree α is given. Then, the M-pFSMWM operator has the following properties.

1. (Idempotency) If ( fk, P) = ( f , P) for all k, then

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

2. (Boundary Conditions)
M− pFSMWM(K,α,m)〈0̃, · · · , 0̃〉 = 0̃

and
M− pFSMWM(K,α,m)〈1̃, · · · , 1̃〉 = 1̃

3. (Monotonicity) If ( fk, P)≤̃(gk, P) for all k, then

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSMWM(K,α,m)〈(g1, P), · · · , (gK, P)〉

4. (Boundedness)

min
k
{( fk, P)}K

k=1≤̃M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉≤̃max
k
{( fk, P)}K

k=1

5. (Commutativity or Symmetry)

M− pFSMWM(K,α,m)〈( f1, P), · · · , ( fK, P)〉 = M− pFSMWM(K,α,m)〈( fσ(1), P), · · · , ( fσ(K), P)〉
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where σ is any permutation of {1, 2, · · · , k};

Proof. 1. Let for all k: ( fk, P) = ( f , P). Thus, it is clear that the distinct α-combinations of K
objects is reduced to the trivial case K-combination of K with CK,K = 1 and ωk = 1

K for all k,
i.e., the unweighted case. Thus,

M− pFSMWM(K,α,m)
〈

f1, · · · , fK
〉
(p)(u) = M− pFSMWM(K,K,m)

〈
f , · · · , f

〉
(p)(u)

= ( f 1(p)(u), · · · , f m(p)(u)) = f (p)(u)

since ∑K
k=1 k.(ωk − ωk+1). min{ f 1(p)(u), · · · , f 1(p)(u)} = ∑K−1

k=1 k.( 1
K − 1

K ). f 1(p)(u) +

K. 1
K . f 1(p)(u).

2. First, assume for all k: ( fk, P) = 0̃. Then, by Property 1 of Theorem 2, we have M −
pFSMWM(K,α,m)〈0̃, · · · , 0̃〉 = 0̃. The property M − pFSMWM(K,α,m)〈1̃, · · · , 1̃〉 = 1̃ follows
the similar way for ( fk, P) = 1̃, ∀k.

3. Let ( fk, P)≤̃(gk, P) for all k. Then, for each s = 1, 2, · · · , m: f s
k (p)(u) ≤ gs

k(p)(u).
Thus, the condition is hold since min{ f s

σ(δ1(l))
(p)(u), · · · , f s

σ(δk(l))
(p)(u)}δk(l)∈ΔK,α(l) ≤

min{gs
σ(δ1(l))

(p)(u), · · · , gs
σ(δk(l))

(p(u))}δk(l)∈ΔK,α(l): s = 1, 2, · · · , m, for any l of the CK,α possible
choices of K.

4. Let for p ∈ P and u ∈ U: mink f s
k (p)(u) = B∗s and maxk f s

k (p)(u) = B∗s for each s = 1, 2, · · · , m.
Then, for all k: B∗ ≤ fk(p)(u) ≤ B∗ where B∗ = (B1

∗, · · · , Bm
∗ ) and B∗ = (B∗1, · · · , B∗m). Hence,

by Properties 1 and 3 of Theorem 2, the inequality holds.
5. It is trivial from Definition 5.

Theorem 3. Let ( f1, P), · · · , ( fK, P), where K ≥ 2, be some m-polar fuzzy soft sets over U and P
such that for all k: fk(p)(u) = ( f 1

k (p)(u), · · · , f m
k (p)(u)) ∈ [0, 1]m for p ∈ P and u ∈ U,

with non-negative weights ω1, · · · , ωK ∈ [0, 1] where ∑K
k=1 ωk = 1. Then, the aggregated value

M− pFSMWM(K,α,m)
〈
( f1, P), · · · , ( fK, P)

〉
is still an m-polar fuzzy soft set over U.

Proof. Let DK = {( fk, P)| fk(p)(u) = ( f 1
k (p)(u), · · · , f m

k (p)(u)) ∈ [0, 1]m; k = 1, 2, · · · , K, p ∈ P}
be a set of m-polar fuzzy soft arguments. Since, for each k, 0 ≤ fk(p)(u) ≤ 1, then clearly
by Theorem 2 we have 0 ≤ M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) ≤ 1. This means that
M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) ∈ [0, 1]m. Now, define the function F : P→ m(U) such that
for any p ∈ P and u ∈ U, F(p)(u) = M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u), given by Equation (5),
which is an m-tuple of real numbers in the unit interval [0, 1]. This shows the M− pFSMWM operator
of m-polar fuzzy soft sets is still an m-polar fuzzy soft set.

Remark 1. According to Definition 5 and Theorem 3, weights in M-pFSMWM operator first re-order the
position of arguments, means in the re-ordered list the first object has the biggest weight. Then, the aggregated
value is computed based on the weighting vector ω = (ω1, · · · , ωK)

T related to the m-polar fuzzy soft sets
( f1, P), · · · , ( fK, P). Thus, the weights reflect positions and importance degrees of input arguments in the
aggregated value in comparison with IOWA and IOWG operators where weights only show the position of
arguments. Moreover, if α shows the consensus degree, then the α-combinations of set {1, 2, · · · , K} express
different scenarios of agreement among K decision makers where the decision of first, second, ... , and last α

individuals are checked one by one. Further, by choosing l = 1, 2, · · · , CK,α, all possible choices of agreement
between K experts at consensus degree α are considered. Thus, the concept of fuzzy majority, expressed by
linguistic variables such as “half plus one”, “more than 75%”, “most”, and “almost all” can be taken into
account by choosing K

2 + 1 ≤ α ≤ K if K is an even number and K+1
2 ≤ α ≤ K if K is an odd number.

From Theorems 2 and 3, the M− pFSMWM operator degenerates to some special aggregation
operators as follows.
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Theorem 4. Let {( fk, P)}K
k=1 be a set of m-polar fuzzy soft sets over U with non-negative weights ωk that,

for all k, ωk ∈ [0, 1] and ∑K
k=1 ωk = 1. Then, the M − pFSMWM operator degenerates to some special

aggregation operators as follows.

1. If ω = (0, · · · , 1︸︷︷︸
j−th

, · · · , 0)T i.e., ωj = 1 for k = j and ωk = 0 for k 	= j, then

M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = f j(p)(u)

2. When K = α, we have

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈
⊗

min
ω1,··· ,ωK

{ f 1
k (p)(u)}K

k=1, · · · ,
⊗

min
ω1,··· ,ωK

{ f m
k (p)(u)}K

k=1〉

which is called the M-pFS weighted minimum operator.
3. When K = α: if ω = ( 1

K , 1
K , · · · , 1

K )
T, then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈min
k
{ f 1

k (p)(u)}K
k=1, · · · , min

k
{ f m

k (p)(u)}K
k=1〉

which is the M-pFS minimum operator.
4. When K = α: if fσ(1)≥̃ · · · ≥̃ fσ(K); and ωσ(1) = 1 and ωσ(k) = 0 for all k 	= 1, then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈max
k
{ f 1

k (p)(u)}K
k=1, · · · , max

k
{ f m

k (p)(u)}K
k=1〉

which is the M-pFS maximum operator.
5. When K = α: If fσ(1)≥̃ · · · ≥̃ fσ(K); and ωσ(K) = 1 and ωσ(k) = 0 for all k 	= K, then

M− pFSMWM(K,α,m)〈 f1 · · · , fK〉(p)(u) = 〈min
k
{ f 1

k (p)(u)}K
k=1, · · · , min

k
{ f m

k (p)(u)}K
k=1〉

Proof. 1. Let ω = (ω1, · · · , 1, · · · , ωK)
T , then in any lth α-combination of K objects involving

jth element, the value of f j(p)(u) for p ∈ P and u ∈ U is interpreted as the first object, i.e.,
fσ(δ1(l))(p)(u), where ωσ(δ1(l)) = ωj = 1 and for rest ωk = 0. Thus, by using Equation (5):
M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = ( f 1

j (p)(u), · · · , f m
j (p)(u)) = f j(p)(u).

2. Let K = α. Then, we have CK,K = 1 (only one trivial combination) and thus ΔK,K(1) = {1, · · · , K}.
Hence, by Equation (5):

M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = M− pFSMWM(K,K,m)〈 f1, · · · , fK〉(p)(u)

=
〈 ⊗

min
ω1,··· ,ωK

{ f 1
1 (p)(u), · · · , f 1

K(p)(u)}, · · · ,

⊗
min

ω1,··· ,ωK
{ f m

1 (p)(u), · · · , f m
K (p)(u)}

〉
3. When ω = ( 1

K , 1
K , · · · , 1

K ), then the resultant weighted minimum in Part 2 of Theorem 4 acts as
the standard (unweighted) minimum operator. Thus, the M− pFMWM operator is derived by
the minimum operator, easily.

4. When ωσ(1) = 1 and ωσ(k) = 0 for all k 	= 1, then by Part 1 of Theorem 4 we have
M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = fσ(1)(p)(u) that is the largest argument since
fσ(1)≥̃ · · · ≥̃ fσ(K), i.e., the M− pFMWM operator is derived by the maximum operator.

5. When ωσ(K) = 1 and ωσ(k) = 0 for all k 	= K, then by Part 1 of Theorem 4 we have
M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(p)(u) = fσ(K)(p)(u) that is the lowest argument since
fσ(1)≥̃ · · · ≥̃ fσ(K), i.e., the M− pFMWM operator is derived by the minimum operator.
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4. Application of M-pFSMWM Operator in Group Decision-Making

In this section, the M-pFSMWM operator is applied to handle group decision-making problems
with weighted m-polar fuzzy soft inputs.

In a group decision-making problem with m-polar fuzzy soft information, let U =

{u1, u2, · · · , uN} and P = {p1, p2, · · · , pM} be the finite sets of alternatives and parameters,
respectively, where λ = (λp1 , λp2 , · · · , λpM )T is the weighting vector for the parameter set P such that
∀y: λpy ∈ [0, 1] and ∑M

y=1 λpy = 1. Additionally, let each py be a multi-polar parameter with m different
aspects or features such that λpy = (λ1

py , λ2
py , · · · , λm

py)
T is the weighting vector for the parameter

py ∈ P where ∀s: λs
py ∈ [0, 1] and ∑m

s=1 λs
py = 1. Suppose that DK = { f1, f2, · · · , fK} is the set of

decision makers and ω = (ω1, ω2, · · · , ωK)
T is the weighting vector of fk where, for all k: ωk ∈ [0, 1]

and ∑K
k=1 ωk = 1. Assume that each decision maker fk applies an m-polar fuzzy soft set to present the

linguistic evaluation about alternatives such that fk(py)(ui) = ( f 1
k (py)(ui), · · · , f m

k (py)(ui)) ∈ [0, 1]m

and each f s
k (py)(ui) shows the satisfaction degree of alternative ui about feature s of attribute py.

Moreover, let the required consensus degree α mean an alternative may be selected if it is acceptable
for at least α individuals.

After each expert prepares a linguistic or numerical judgment of alternatives based on the
parameters py, the first stage is to reach consensus among a fuzzy majority or a partial agreement
of them. This step is handled through the proposed aggregation operator M-pFSMWM by Equation
(5) of the previous Section 3. The second stage of a MAGDM problem aims to find the best option
with respect to the collective view. Thus, a ranking procedure is needed to derive the optimum choice.
In the following subsections, we first define a fuzzy soft preference relationship over the universe U
based on the collective view obtained by M-pFSMWM operator and then, propose a new score value
function for ranking the preference order of objects.

4.1. A Fuzzy Soft Preference Relationship

The aim of this section is to define an square matrix N × N based on a fuzzy soft preference
relationship over the set of alternatives U.

Let the m-tuple M − pFSMWM(K,α,m)〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) present the
performance of alternative ui ∈ U based on parameter py ∈ P and collective view obtained
by M-pFSMWM operator. We define a fuzzy soft preference relationship on U by the mapping
R̃ : P → [0, 1]U×U where for each py ∈ P, R̃(py) is a fuzzy preference relationship on U which is
characterized by the membership function R̃(py) : U ×U → [0, 1]. For any (ui, uj) ∈ U ×U we define
R̃(py)(ui, uj) = r̃ij(py) such that

r̃ij(py) =
∑m

s=1 λs
py us

iy

∑m
s=1 λs

py us
iy + ∑m

s=1 λs
py us

jy
(6)

Definition 6. Suppose that U = {u1, u2, · · · , uN} is the set of alternatives and py ∈ P = {p1, p2, · · · , pM}
is a parameter including m different aspects {p1

y, p2
y, · · · , pm

y }. Let λpy = (λ1
py , · · · , λm

py)
T ∈ [0, 1]m show the

weighting vector for parameter py ∈ P where ∑m
s=1 λs

py = 1. If R̃(py) is the fuzzy preference relationship on U
defined by (6), then the N × N matrix R̃(py) = [r̃ij(py)]N×N defined by

R̃(py) = [r̃ij(py)]N×N =

⎡⎢⎢⎢⎢⎣
r̃11(py) r̃12(py) · · · r̃1N(py)

r̃21(py) r̃22(py) · · · r̃2N(py)
...

...
...

r̃N1(py) r̃N2(py) · · · r̃NN(py)

⎤⎥⎥⎥⎥⎦ (7)

where r̃ij(py) ∈ [0, 1] interprets the degree of preference of the alternative ui over the alternative uj with respect
to the parameter py ∈ P. Moreover, r̃ii(py) = 0.5 for all 1 ≤ i ≤ N.
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In Definition 6, r̃ij(py) = 0.5 shows indifference between ui and uj based on the parameter py ∈ P,
which is represented by ui∼py uj, while r̃ij(py) ∈ (0.5, 1] shows ui is preferred to uj based on the
parameter py ∈ P at degree r̃ij(py), i.e., ui�py uj. Moreover, the fuzzy soft preference relationship
R̃ : P→ [0, 1]U×U can be represented by matrix R̃ = [r̃ijy]N×N where each entry r̃ijy = [r̃ij(py)]N×N is
in fact the N × N matrix R̃(py). Hence, we have

R̃ = [r̃ij]N×N =
[
[r̃ij(p1)]N×N [r̃ij(p2)]N×N · · · [r̃ij(pM)]N×N

]
Proposition 3. The fuzzy preference relationship R̃(py) clearly satisfies the following statements:

1. r̃ij(py) + r̃ji(py) = 1

2. (
r̃ji(py)

r̃ij(py)
)(

r̃kj(py)

r̃jk(py)
) =

r̃ki(py)

r̃ik(py)

3. If r̃ij(py) ≥ 0.5 and r̃jk(py) ≥ 0.5, then r̃ik(py) ≥ max{r̃ij(py), r̃jk(py)}.

for all i, j, k = 1, 2, · · · , N and y = 1, 2, · · · , M.

Proof. Item 1 is easily checked by Equation (6). Parts 2 and 3 are obtained by using r̃ij(py) =
∑m

s=1 λs
py us

iy

∑m
s=1 λs

py us
iy+∑m

s=1 λs
py us

jy
= 1

1+
∑m

s=1 λs
py us

jy
∑m

s=1 λs
py us

iy

and
r̃ji(py)

r̃ij(py)
= 1

r̃ij(py)
− 1 ( see also Theorem 1).

Proposition 3 says that the fuzzy preference relationship R̃(py) satisfies the reciprocity and the
restricted max-max transitivity. This means that, if ui�py uj and uj�py uk, then ui�py uk.

Definition 7. Let R̃(py) = [r̃ij(py)]N×N be the N × N matrix defined in Definition 6. Then, the N × N
matrix Ã = [ãij]N×N defined by

Ã = [ãij]N×N =

⎡⎢⎢⎢⎢⎣
ã11 ã12 · · · ã1N
ã21 ã22 · · · ã2N

...
...

...
ãN1 ãN2 · · · ãNN

⎤⎥⎥⎥⎥⎦ (8)

where is an M-polar fuzzy preference relationship on U characterized by the membership function Ã : U×U →
[0, 1]M and, for 1 ≤ i, j ≤ N, ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1]M shows the degrees of preference of the

alternative ui over the alternative uj with respect to the parameter set P. For each y: ãy
ij = 1 if r̃ij(py) > 0.5,

ãy
ij = 0.5 if r̃ij(py) = 0.5, and ãy

ij = 0 if r̃ij(py) < 0.5. Clearly, for all i, each entry ãii = (0.5, 0.5, · · · , 0.5)︸ ︷︷ ︸
M−times

.

For all i, j: Ã(ui, uj) = ãij = (0.5, 0.5, · · · , 0.5)︸ ︷︷ ︸
M−times

shows indifference between ui and uj based on

parameter set P, which is represented by ui∼uj, while Ã(ui, uj) = ãij = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

shows ui is

preferred to uj (ui�uj) for all parameters.

Proposition 4. The following statements hold for M-polar fuzzy preference relation Ã.

1. ãij + ãji = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

.

2. If ãij · ãjk = (ã1
ij, ã2

ij, · · · , ãM
ij ) · (ã1

jk, ã2
jk, · · · , ãM

jk ) = (ã1
ij · ã1

jk, ã2
ij · ã2

jk, · · · , ãM
ij · ãM

jk ), then ãij · ãjk = ãik.

3. If ãij = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

and ãjk = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

, then ãik = (1, 1, · · · , 1)︸ ︷︷ ︸
M−times

.
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for all i, j, k ∈ {1, 2, · · · , N}.

Proof. It is obtained easily by Proposition 3.

4.2. An Approach to Group Decision-Making Based on M-pFSMWM Operator

The second stage of a group decision-making is to reach the process of selection based on an overall
performance of alternatives in terms of the crisp or partial agreement among the experts. In this section,
we introduce a new procedure for solving group decision-making problems based on the M-pFSMWM
operator and the pairwise comparisons of alternatives that are obtained by the N×N matrix Ã defined
in Equation (8).

By using Definitions 6 and 7, a new overall score value function S : U → R over the universe U is
defined as below.

Definition 8. The mapping S : U → R defined by

Si =
N

∑
j=1,j 	=i

M

∑
y=1

λpy · ã
y
ij (9)

for i = 1, · · · , N is called the score value function over U where λpy shows the importance degree of parameter
py ∈ P and ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1] is the entry in ith row and jth column of matrix Ã.

In the following, we apply the M-pFSMWM operator for solving MAGDM problems based on
m-polar fuzzy soft information (Algorithm 1).The proposed procedure uses Equation (9) for ranking
the preference order of objects. We also clarify the idea of the proposed method in Algorithm 1 by the
given flowchart in Figure 1.

Figure 1. Flowchart of the proposed Algorithm 1.
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Algorithm 1. Finding the optimum solution in MAGDM problems based on M-pFSMWM operator for M-pFSSs.

Input : K different m-polar fuzzy soft sets ( f1, P), · · · , ( fK , P) over the set U such that |U| = N and
|P| = M where m is the number of different aspects of each parameter and K shows the number
of decision makers. Weighting vectors ω = (ω1, ω2, · · · , ωK)

T , λ = (λp1 , λp2 , · · · , λpM )
T , and

λpy = (λ1
py

, λ2
py

, · · · , λm
py
)T for y = 1, · · · , M. Consensus degree α where α ≤ K.

Output : Optimum solution.
begin

Step 1. Calculate L = CK,α = K!
α!(K−α)! .

Step 2. for l = 1, 2, . . . , L do
Find the lth α-combination of the set {1, 2, · · · , K} presented by ΔK,α(l) where |ΔK,α(l)| = α.

end
Step 3. for i = 1, 2, . . . , N do

for y = 1, 2, . . . , M do
for s = 1, 2, . . . , m do

Compute the m-tuple M− pFSMWM(K,α,m)〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) by

using Equation (5) to derive matrix C̄ = [c̄iy]N×M such that c̄iy = (u1
iy, u2

iy, · · · , um
iy).

end

end

end
Step 4. for y = 1, 2, . . . , M do

for i = 1, 2, . . . , N do
for j = 1, 2, . . . , N do

Utilize Equations (6) and (7) to compute matrix R̃(py) = [r̃ij(py)]N×N .
end

end

end

Step 5. Regarding fuzzy relation matrices R̃(py) and by Equation (8), construct the collective overall
preference matrix Ã = [ãij]N×N .

if Ã is a diagonal matrix then
There is no optimal option over U;

else
Go to the Step 6.

end
Step 6. for i = 1, 2, . . . , N do

Using Equation (9) to calculate the overall score value Si.
end
Step 7. Rank the alternatives ui based on Si and then select the best one(s).

end

Remark 2 (Analysing Algorithm 1). Let K decision makers evaluate N number of alternatives based on M
number of parameters where the m-polar fuzzy soft sets are applied to present their linguistic evaluations of the
alternatives. According to Algorithm 1, we first utilize the M-pFSMWM operator to obtain a collective view
of decision makers. The M-pFSMWM operator allows us to have not only partial agreement within a group,
such as “almost all”, “most”, “more than half” etc., but also different choices for a partial agreement at the
consensus degree α.

To this end, Algorithm 1 starts with finding the subsets ΔK,α(l) ⊆ {1, 2, · · · , K} where l = 1, 2, · · · , CK,α.
This helps us to check all possible cases of agreement between K decision makers at consensus level α. In fact,
the value of α shows the number of possible iterations of Algorithm 1 (1 ≤ α ≤ K). By repeating Steps 1 and 2
for different value α until α ≤ K, the aggregated value moves from the minimum value to the maximum value.
This guaranties Algorithm 1 is convergent (please also see Theorems 2 and 4). Then, at Step 3, matrix C̄ is driven.
Each entry of C̄ shows the performance of alternative ui based on parameter py and the collective view of experts
at degree α. In Step 4, the fuzzy preference relations R̃(py) (for py ∈ P) give a comparison of objects based on the
collective view of decision makers and each parameter py. The information of matrices R̃(py) are then converted
to the M-polar fuzzy soft preference relation Ã = [ãij]N×N, in Step 5, for providing comparison results where
ãij = (ã1

ij, ã2
ij, · · · , ãM

ij ) ∈ [0, 1]M defined by ãy
ij = 0.5 if r̃ij(py) = 0.5, ãy

ij = 1 if r̃ij(py) > 0.5, otherwise

ãy
ij = 0. Moreover, if Ã is an upper triangle matrix such that ãij = (0.5, 0.5, · · · , 0.5); ãij = (1, 1, · · · , 1) for

i < j; and ãij = (0, 0, · · · , 0) for i > j, then we have the following descending chain u1 � u2 � · · · � uN
on U. If Ã is a lower triangle matrix such that ãij = (0.5, 0.5, · · · , 0.5); ãij = (1, 1, · · · , 1) for i > j;
and ãij = (0, 0, · · · , 0) for i < j, then we have the ascending chain uN � uN−1 � · · · � u1 on U. However, if
Ã is a diagonal matrix, then there is no optimal option on U. In the last step of Algorithm 1, the best option is
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selected based on its rank in the resultant preference order. For MAGDM problems with benefit criteria, means
more is better, the alternative with the highest score can be selected as the best option. However, for the problems
dealing with cost criteria the counter condition should be considered.

5. The M-pFSIOWA and M-pFSIOWG Operators

To compare different m-polar fuzzy soft weighted aggregation operators with the proposed
operator in Section 3.2, in this section, we develop the m-polar fuzzy soft induced ordered weighted
average (M-pFSIOWA) operator and m-polar fuzzy soft induced ordered weighted geometric
(M-pFSIOWG) operator, which are the extensions of IOWA and IOWG operators, respectively.
The re-ordering step of M-pFSIOWA and M-pFSIOWG operators are defined based on the weights of
arguments ω = (ω1, · · ·ωK)

T . Since the M-pFSIOWA and M-pFSIOWG operators are defined in the
domain of M-pFSSs, these new families of IOWA and IOWG operators give more general methods for
aggregating data than traditional IOWA and IOWG operators.

Motivated by development of OWA operator and OWG operator for FSs [38,39] and IFSSs [21],
the extensions of these two aggregation operators for M-pFSSs are defined as below.

Definition 9. 1. The M-pFSIOWA operator of dimension k is the mapping M − pFSIOWA :⋃
K∈N(m f s(U))K → m f s(U) such that for an associated weighting vector w = (w1, w2, · · · , wK)

T,
where wj ∈ [0, 1] and ∑K

j=1 wj = 1, is defined as below:

M− pFSIOWA
〈

f1, · · · , fK
〉
(py)(ui) =

〈
K

∑
j=1

wj · F1
jyi, · · · ,

K

∑
j=1

wj · Fm
jyi

〉
(10)

2. The M-pFSIOWG operator of dimension k is the mapping M − pFSIOWG :
⋃

K∈N(m f s(U))K →
m f s(U) such that for an associated weighting vector w = (w1, w2, · · · , wK)

T, where wj ∈ [0, 1] and
∑K

j=1 wj = 1, can be defined by

M− pFSIOWG
〈

f1, · · · , fK
〉
(py)(ui) =

〈
K

∏
j=1

(F1
jyi)

wj , · · · ,
K

∏
j=1

(Fm
jyi)

wj

〉
(11)

where Fs
jyi is the kth value f s

k (py)(ui) having the jth largest ωj of the weighting vector ω =

(ω1, ω2, · · · , ωK)
T for M-pFSSs ( f1, P), · · · , ( fK, P).

The main steps of these operations are the re-ordering step according to the weighting vector
ω = (ω1, ω2, · · · , ωK)

T and then determining the associated weighting vector w = (w1, w2, · · · , wK)
T

to the aggregation operators M-pFSIOWA and M-pFSIOWG. Here, for each 1 ≤ s ≤ m, 1 ≤ y ≤ M,
and 1 ≤ i ≤ N, the collection: f s

1(py)(ui), · · · , f s
K(py)(ui) is re-ordered as 〈max{ωk}, Fs

1yi〉 ≥ · · · ≥
〈min{ωk}, Fs

Kyi〉 where the weighting vector ω = (ω1, ω2, · · · , ωK)
T shows the weights of different

decision makers.

Theorem 5. Let ( f1, P), · · · , ( fK, P), where K ≥ 2, is some m-polar fuzzy soft set over U and P such
that for all 1 ≤ k ≤ K: fk(py)(ui) = ( f 1

k (py)(ui), · · · , f m
k (py)(ui)) ∈ [0, 1]m for py ∈ P and ui ∈ U,

with non-negative weights ω1, · · · , ωK ∈ [0, 1] where ∑K
k=1 ωk = 1. Then, the aggregated value M −

pFSIOWA
〈
( f1, P), · · · , ( fK, P)

〉
and M− pFSIOWG

〈
( f1, P), · · · , ( fK, P)

〉
are still an m-polar fuzzy soft

set over U.

Proof. Define the function F : P → m(U) such that for any py ∈ P and ui ∈ U, F(py)(ui) =

M − pFSIOWA〈 f1, · · · , fK〉(py)(ui) or F(py)(ui) = M − pFSIOWG〈 f1, · · · , fK〉(py)(ui). Then,
the assertion is trivial from f s

k (py)(ui) ∈ [0, 1], wk ∈ [0, 1], ∑K
k=1 wk = 1, and convexity of [0, 1].
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The following properties are inherited to M-pFSIOWA and M-pFSIOWG operators from IOWA
operator and IOWG operator, respectively.

Theorem 6. Let ( f1, P), · · · , ( fK, P) be some m-polar fuzzy soft sets over U and P with non-negative weights
ω1, · · · , ωK ∈ [0, 1] where ∑K

k=1 ωk = 1. Let w = (w1, · · · , wK)
T be the associated weighting vector to the

M-pFSIOWA and M-pFSIOWG operators. Then,

1. (Idempotency) If ( fk, P) = ( f , P) ∀k, then

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

and
M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉 = ( f , P)

2. (Monotonicity) If ( fk, P)≤̃(gk, P) ∀k, then

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSIOWA〈(g1, P), · · · , (gK, P)〉

and
M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉≤̃M− pFSIOWG〈(g1, P), · · · , (gK, P)〉

3. (Boundedness)

min
k
{( fk, P)}≤̃M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉≤̃max

k
{( fk, P)}

and
min

k
{( fk, P)}≤̃M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉≤̃max

k
{( fk, P)}

4. (Commutativity or Symmetry)

M− pFSIOWA〈( f1, P), · · · , ( fK, P)〉 = M− pFSIOWA〈( fσ(1), P), · · · , ( fσ(K), P)〉

and

M− pFSIOWG〈( f1, P), · · · , ( fK, P)〉 = M− pFSIOWG〈( fσ(1), P), · · · , ( fσ(K), P)〉

where σ is any permutation of {1, 2, · · · , k}.

We can also obtain some spacial cases of M-pFSIOWA and M-pFSIOWG operators by using
different choices for w.

Theorem 7. Let ( f1, P), · · · , ( fK, P) be some m-polar fuzzy soft sets over U and P with non-negative weights
ω1, · · · , ωK ∈ [0, 1] where ∑K

k=1 ωk = 1. Let w = (w1, · · · , wK)
T be the associated weighting vector to

the M-pFSIOWA and M-pFSIOWG operators. Then, the M-pFSIOWA operator and M-pFSIOWG operator
degenerate to some special aggregation operators as follows.

1. If w = ( 1
K , · · · , 1

K )
T, then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈
1
K

K

∑
j=1

F1
jyi, · · · ,

1
K

K

∑
j=1

Fm
jyi〉

which we call the m-polar fuzzy soft arithmetic average operator, and

M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈
K

∏
j=1

(F1
jyi)

1
K , · · · ,

K

∏
j=1

(Fm
jyi)

1
K 〉
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which we call the m-polar fuzzy soft geometric average operator.
2. If w = (1, 0, · · · , 0)T, then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈max
j
{F1

jyi}K
j=1, · · · , max

j
{Fm

jyi}K
j=1〉

and
M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈max

j
{F1

jyi}K
j=1, · · · , max

j
{Fm

jyi}K
j=1〉

3. If w = (0, · · · , 0, 1)T, then

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = 〈min
j
{F1

jyi}K
j=1, · · · , min

j
{Fm

jyi}K
j=1〉

and
M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = 〈min

j
{F1

jyi}K
j=1, · · · , min

j
{Fm

jyi}K
j=1〉

Application of M-pFSIOWA and M-pFSIOWG Operators in Group Decision-Making

In this section, similar to Algorithm 1, we apply the M-pFSIOWA operator and M-pFSIOWG
operator to propose a procedure for solving MAGDM problems with M-pFS inputs as the following
Algorithm 2.

Algorithm 2. Finding the optimum solution in MAGDM problems based on M-pFSIOWA or M-pFSIOWG operators for M-pFSSs.

Input :K different m-polar fuzzy soft sets ( f1, P), · · · , ( fK , P) over the set U such that |U| = N and
|P| = M where m is the number of different aspects of each parameter and K shows the number
of decision makers. Weighting vectors ω = (ω1, · · · , ωK)

T related to the m-polar fuzzy soft sets
( f1, P), · · · , ( fK , P). Weighting vectors w = (w1, · · · , wK)

T related to the M-pFSIOWA or
M-pFSIOWG operators. λ = (λp1 , λp2 , · · · , λpM )

T , and λpy = (λ1
py

, λ2
py

, · · · , λm
py
)T for

y = 1, · · · , M.
Output : Optimum solution.
begin

Step 1. for i = 1, 2, . . . , N do
for y = 1, 2, . . . , M do

for s = 1, 2, . . . , m do

Using the associated eighting vectors w = (w1, · · · , wK)
T to compute the m-tuple

M− pFSIOWA〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) or

M− pFSIOWG〈 f1, · · · , fK〉(py)(ui) = (u1
iy, · · · , um

iy) by Equation (10) or Equation (11)

and derive matrix C̄ = [c̄iy]N×M such that c̄iy = (u1
iy, u2

iy, · · · , um
iy).

end

end

end
Step 2. for y = 1, 2, . . . , M do

for i = 1, 2, . . . , N do
for j = 1, 2, . . . , N do

Utilize Equation (6) and Equation (7) to compute matrix R̃(py) = [r̃ij(py)]N×N based on
the matrix C̄ = [c̄iy]N×M obtained in Step 1.

end

end

end

Step 3. Using Equation (8) to construct the collective overall preference matrix Ã = [ãij]N×N
according to the matrices R̃(py) = [r̃ij(py)]N×N computed in Step 2.

if Ã is a diagonal matrix then
There is no optimal option over U;

else
Go to the Step 4.

end
Step 4. for i = 1, 2, . . . , N do

Calculate the overall score value Si based on the resultant matrix Ã from Step 3 and Equation (9).
end
Step 5. Rank the alternatives ui based on Si and then select the best one(s).

end
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Remark 3. Note that Algorithm 2 starts with computing matrix C̄ based on M-pFSIOWA or M-pFSIOWG
operators rather than the M-pFSMWM operator used in Algorithm 1. In Steps 2 and 3, the entries of the
resultant matrix C̄ are used to compute the matrices R̃(py) and Ã. Then, Algorithm 2 is followed similarly with
Algorithm 1.

Here, by repeating Step 1 for different iteration value α until α ≤ K, the aggregated value computed by
M-pFSIOWA operator or M-pFSIOWG operator moves between the minimum value and the maximum value
(please see Theorems 6 and 7). This guarantees Algorithm 2 is also convergent.

6. Illustrative Example

The general method for solving the MAGDM problems involves two main phases: (i) aggregation
or consensus stage; and (ii) selection stage. The proposed methods in Equations (5), (10), and (11) can
help us to aggregate different decision makers’ judgments about the alternatives to obtain a collective
decision matrix C̄. Further, Equations (8) and (9) provide an overall preference matrix Ã and the
overall score values Si for the alternatives, respectively, to cover the selection phase. In the following,
we compare the proposed procedures in Algorithms 1 and 2 for MAGDM problems with m-polar
fuzzy soft information by some numerical examples.

Hotel Booking Problem

In any trip, the problem of accommodation is one of the most important issues. The best option is
always selected after comparing different residences based on some parameters, such as facilities and
location of hotels and the budget. In this section, we discuss the problem of hotel booking, which is
about selecting the best hotel to stay regarding a list of criteria, to provide a real-life example which
shows the application of our method in decision-making problems. The input data are obtained from
the “www.agoda.com” website, an online hotel booking service. This website provides some online
questioners that passengers (guests) can fill them up to share their experiences about the hotel that
they have staid. Guests are classified into the five main groups: families with young children, families
with elder children, couples, solo travelers, and group of friends. Each hotel is characterized based on
several criteria including “Comfort”, “Services”, “Location”, and “Food” according to the guests’ idea
by numbers between zero and ten. Note that, here, all collected data are divided to ten to be in the unit
interval [0, 1].

Example 2. Let us to suppose that a travel agency in Iran wants to offer a luxury group tour for Kuala
Lumpur, Malaysia, to their customers. The list of ten four-star hotels in Kuala Lumpur H = {h1, · · · , h10},
which are compared with each other based on the following four parameters P = {p1=Comfort, p2=Services,
p3=Location, p4=Food}, is chosen by this agency from the “www.agoda.com” website. The comments of
five passengers, who filled on-line questionnaires, for five different categories “Families with Young Children”,
“Families with Elder Children”, “Couples”, “Solo Travelers”, and “Group of Friends”, whose weighting vector
is ω = (0.25, 0.25, 0.2, 0.15, 0.15)T, are selected by the travel agency as an input data of five experts. A hotel
may be selected as the best accommodation place if at least three individuals of five people are satisfied with
it. Since, in general, the importance degree of all criteria for different decision makers are not the same, this
company defined the weighting vector λ = (0.3, 0.2, 0.35, 0.15)T for the parameters based on the frequency of
these parameters in the comments of the passengers. Let this travel agency also consider two different aspects for
each parameters as follows: The parameter “Comfort” includes “Cleanliness” and “Staff Performance” with
the weighting vector λp1 = (0.7, 0.3)T. The parameter “Services” includes “Facilities” and “Free Wi-Fi
connectivity” with the weighting vector λp2 = (0.8, 0.2)T. The parameter “Location” includes “Close to Tourist
Attractions” and “In the Green Surroundings” with the weighting vector λp3 = (0.7, 0.3)T. The parameter
“Food” includes “Breakfast” and “Lunch and Dinner” with the weighting vector λp4 = (0.5, 0.5)T. Tables 3–7
show the evaluation of the hotels based on these five passengers’ comments by using m-polar fuzzy soft sets.
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Table 3. Tabular representation of MFSS ( f1, P).

H p1 p2 p3 p4

h1 (0.87,0.86) (0.7,0.86) (0.86,0.67) (0.58,0.81)
h2 (0.7,0.7) (0.55,0.7) (0.74,0.73) (0.71,0.7)
h3 (0.82,0.86) (0.6,0.86) (0.79,0.58) (0.6,0.8)
h4 (0.83,0.81) (0.88,0.81) (0.84,0.78) (0.55,0.81)
h5 (0.89,0.81) (0.64,0.81) (0.82,0.71) (0.69,0.84)
h6 (0.68,0.69) (0.66,0.69) (0.82,0.77) (0.67,0.74)
h7 (0.82,0.78) (0.73,0.78) (0.77,0.83) (0.66,0.8)
h8 (0.78,0.8) (0.73,0.8) (0.74,0.8) (0.68,0.79)
h9 (0.82,0.71) (0.8,0.71) (0.69,0.84) (0.64,0.76)
h10 (0.88,0.89) (0.86,0.89) (0.7,0.8) (0.83,0.85)

Table 4. Tabular representation of MFSS ( f2, P).

H p1 p2 p3 p4

h1 (0.89,0.79) (0.72,0.84) (0.84,0.7) (0.59,0.8)
h2 (0.74,0.76) (0.6,0.76) (0.77,0.75) (0.69,0.71)
h3 (0.77,0.68) (0.73,0.77) (0.71,0.6) (0.57,0.69)
h4 (0.78,0.72) (0.87,0.79) (0.85,0.65) (0.54,0.78)
h5 (0.91,0.83) (0.8,0.91) (0.81,0.71) (0.66,0.88)
h6 (0.69,0.7) (0.68,0.71) (0.82,0.75) (0.69,0.75)
h7 (0.86,0.78) (0.8,0.86) (0.74,0.8) (0.66,0.8)
h8 (0.78,0.78) (0.75,0.8) (0.74,0.77) (0.64,0.8)
h9 (0.71,0.75) (0.85,0.69) (0.8,0.84) (0.49,0.72)
h10 (0.89,0.94) (0.86,0.89) (0.82,0.86) (0.85,0.92)

Table 5. Tabular representation of MFSS ( f3, P).

H p1 p2 p3 p4

h1 (0.85,0.79) (0.74,0.85) (0.84,0.8) (0.64,0.81)
h2 (0.71,0.69) (0.7,0.71) (0.74,0.66) (0.66,0.69)
h3 (0.77,0.78) (0.73,0.8) (0.73,0.6) (0.57,0.73)
h4 (0.83,0.76) (0.73,0.84) (0.82,0.7) (0.61,0.8)
h5 (0.83,0.75) (0.69,0.82) (0.7,0.69) (0.65,0.79)
h6 (0.69,0.7) (0.65,0.7) (0.8,0.76) (0.69,0.73)
h7 (0.81,0.74) (0.8,0.82) (0.75,0.59) (0.65,0.78)
h8 (0.76,0.73) (0.8,0.76) (0.71,0.6) (0.67,0.75)
h9 (0.78,0.67) (0.75,0.8) (0.77,0.56) (0.57,0.73)
h10 (0.88,0.88) (0.8,0.86) (0.68,0.77) (0.77,0.84)

Table 6. Tabular representation of MFSS ( f4, P).

H p1 p2 p3 p4

h1 (0.83,0.82) (0.6,0.83) (0.75,0.7) (0.68,0.83)
h2 (0.72,0.72) (0.4,0.71) (0.69,0.71) (0.64,0.7)
h3 (0.74,0.76) (0.8,0.76) (0.75,0.59) (0.62,0.68)
h4 (0.88,0.84) (0.74,0.89) (0.83,0.77) (0.69,0.84)
h5 (0.79,0.79) (0.64,0.83) (0.75,0.76) (0.61,0.82)
h6 (0.69,0.69) (0.76,0.68) (0.79,0.81) (0.66,0.72)
h7 (0.81,0.76) (0.53,0.81) (0.73,0.84) (0.66,0.78)
h8 (0.73,0.72) (0.7,0.73) (0.68,0.79) (0.64,0.72)
h9 (0.82,0.81) (0.6,0.89) (0.79,0.87) (0.71,0.79)
h10 (0.87,0.87) (1,0.87) (0.7,0.76) (0.75,0.83)
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Table 7. Tabular representation of MFSS ( f5, P).

H p1 p2 p3 p4

h1 (0.87,0.6) (0.84,0.87) (0.93,0.84) (0.6,0.9)
h2 (0.74,0.8) (0.74,0.74) (0.8,0.74) (0.64,0.74)
h3 (0.85,0.8) (0.8,0.8) (0.81,0.8) (0.62,0.8)
h4 (0.81,0.84) (0.77,0.76) (0.77,0.76) (0.59,0.77)
h5 (0.8,0.8) (0.76,0.77) (0.84,0.77) (0.61,0.76)
h6 (0.67,0.8) (0.72,0.78) (0.67,0.78) (0.66,0.72)
h7 (0.78,0.69) (0.76,0.74) (0.78,0.74) (0.64,0.76)
h8 (0.77,0.72) (0.76,0.72) (0.79,0.72) (0.67,0.76)
h9 (0.65,0.6) (0.69,0.76) (0.78,0.76) (0.44,0.69)
h10 (0.88,0.86) (0.82,0.66) (0.88,0.66) (0.77,0.82)

Since the required consensus degree is α = 3, then L = 5!
3!(5−3)! = 10. All 10 different combinations

of three of five objects can be listed as follows: Δ5,3(1) = {1, 2, 3}, Δ5,3(2) = {1, 2, 4}, Δ5,3(3) = {1, 2, 5},
Δ5,3(4) = {1, 3, 4}, Δ5,3(5) = {1, 3, 5}, Δ5,3(6) = {1, 4, 5}, Δ5,3(7) = {2, 3, 4}, Δ5,3(8) = {2, 3, 5},
Δ5,3(9) = {2, 4, 5}, and Δ5,3(10) = {3, 4, 5}. (Steps 1,2).

Step 3. Utilize data given in Tables 3–7 with the weighting vector ω = (0.25, 0.25, 0.2, 0.15, 0.15)T and
M-pFSMWM operator proposed in Theorem 3 to get the collective matrix C̄ = [c̄iy]10×4 as below:

C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.597, 0.553) (0.49, 0.588) (0.588, 0.469) (0.406, 0.56)
(0.49, 0.484) (0.385, 0.49) (0.518, 0.4745) (0.465, 0.484)
(0.539, 0.476) (0.438, 0.539) (0.497, 0.406) (0.399, 0.483)
(0.546, 0.504) (0.525, 0.553) (0.576, 0.455) (0.378, 0.546)
(0.587, 0.531) (0.448, 0.567) (0.537, 0.485) (0.456, 0.558)
(0.476, 0.483) (0.456, 0.483) (0.562, 0.525) (0.469, 0.512)
(0.568, 0.522) (0.511, 0.546) (0.518, 0.52) (0.456, 0.548)
(0.534, 0.516) (0.511, 0.536) (0.5, 0.5005) (0.448, 0.529)
(0.497, 0.473) (0.53, 0.483) (0.483, 0.546) (0.3455, 0.504)
(0.616, 0.617) (0.566, 0.605) (0.478, 0.542) (0.545, 0.589)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 4. Utilize Equation (6) to compute matrices R̃(py) = [r̃ij(py)]10×10, where y = 1, 2, 3, 4, as follows:

R̃(p1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.54 0.53 0.52 0.506 0.55 0.51 0.52 0.54 0.49
0.45 0.5 0.48 0.48 0.46 0.505 0.47 0.48 0.49 0.44
0.47 0.51 0.5 0.49 0.47 0.52 0.48 0.49 0.51 0.45
0.47 0.52 0.506 0.5 0.48 0.52 0.49 0.502 0.52 0.46
0.49 0.53 0.52 0.51 0.5 0.54 0.507 0.51 0.53 0.48
0.45 0.49 0.47 0.47 0.45 0.5 0.46 0.47 0.49 0.43
0.48 0.53 0.51 0.509 0.49 0.53 0.5 0.51 0.53 0.47
0.47 0.51 0.504 0.49 0.48 0.52 0.48 0.5 0.51 0.46
0.45 0.5008 0.48 0.47 0.46 0.506 0.46 0.48 0.5 0.44
0.51 0.55 0.54 0.53 0.51 0.56 0.52 0.53 0.55 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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R̃(p2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.55 0.52 0.48 0.51 0.52 0.49 0.49 0.49 0.47
0.44 0.5 0.46 0.43 0.46 0.46 0.43 0.44 0.43 0.41
0.47 0.53 0.5 0.46 0.49 0.49 0.46 0.47 0.46 0.44
0.51 0.56 0.53 0.5 0.52 0.53 0.506 0.506 0.504 0.48
0.48 0.53 0.507 0.47 0.5 0.505 0.47 0.47 0.47 0.45
0.47 0.53 0.501 0.46 0.49 0.5 0.47 0.47 0.46 0.44

0.504 0.56 0.53 0.49 0.52 0.52 0.5 0.501 0.49 0.47
0.503 0.56 0.52 0.49 0.52 0.52 0.49 0.5 0.49 0.47
0.505 0.56 0.53 0.49 0.52 0.53 0.501 0.502 0.5 0.47
0.53 0.58 0.55 0.51 0.54 0.55 0.52 0.52 0.52 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R̃(p3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.52 0.54 0.505 0.51 0.5006 0.51 0.52 0.52 0.52
0.47 0.5 0.51 0.48 0.49 0.47 0.49 0.502 0.501 0.503
0.45 0.48 0.5 0.46 0.47 0.46 0.47 0.48 0.48 0.48
0.49 0.51 0.53 0.5 0.508 0.49 0.509 0.51 0.51 0.52
0.48 0.508 0.52 0.49 0.5 0.48 0.501 0.51 0.509 0.51
0.49 0.52 0.53 0.505 0.51 0.5 0.51 0.52 0.52 0.52
0.48 0.506 0.52 0.49 0.49 0.48 0.5 0.509 0.508 0.51
0.47 0.49 0.51 0.48 0.48 0.47 0.49 0.5 0.49 0.501
0.47 0.49 0.51 0.48 0.49 0.47 0.49 0.5008 0.5 0.502
0.47 0.49 0.51 0.47 0.48 0.47 0.48 0.49 0.49 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R̃(p4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.504 0.52 0.51 0.48 0.49 0.49 0.49 0.53 0.46
0.49 0.5 0.51 0.506 0.48 0.49 0.48 0.49 0.52 0.45
0.47 0.48 0.5 0.48 0.46 0.47 0.46 0.47 0.509 0.43
0.48 0.49 0.51 0.5 0.47 0.48 0.47 0.48 0.52 0.44
0.51 0.51 0.53 0.52 0.5 0.508 0.502 0.509 0.54 0.47

0.503 0.508 0.52 0.51 0.49 0.5 0.49 0.501 0.53 0.46
0.509 0.51 0.53 0.52 0.49 0.505 0.5 0.506 0.54 0.46
0.502 0.507 0.52 0.51 0.49 0.49 0.49 0.5 0.53 0.46
0.46 0.47 0.49 0.47 0.45 0.46 0.45 0.46 0.5 0.42
0.54 0.54 0.56 0.55 0.52 0.53 0.53 0.53 0.57 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 5. Now, the matrix Ã = [ãij]10×10 is computed, using information given in matrices

R̃(py) (y = 1, 2, 3, 4), to obtain a collective four-polar fuzzy soft preference matrix as the following:
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Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.5 0.5 0.5 0.5)
(0 0 0 0)
(0 0 0 0)
(0 1 0 0)
(0 0 0 1)
(0 0 0 1)
(0 1 0 1)
(0 1 0 1)
(0 1 0 0)
(1 1 0 1)

(1 1 1 1)
(0.5 0.5 0.5 0.5)

(1 1 0 0)
(1 1 1 0)
(1 1 1 1)
(0 1 1 1)
(1 1 1 1)
(1 1 0 1)
(1 1 0 0)
(1 1 0 1)

(1 1 1 1)
(0 0 1 1)

(0.5 0.5 0.5 0.5)
(1 1 1 1)
(1 1 1 1)
(0 1 1 1)
(1 1 1 1)
(1 1 1 1)
(0 1 1 0)
(1 1 1 1)

(1 0 1 1)
(0 0 0 1)
(0 0 0 0)

(0.5 0.5 0.5 0.5)
(1 0 0 1)
(0 0 1 1)
(1 0 0 1)
(0 0 0 1)
(0 0 0 0)
(1 1 0 1)

(1 1 1 0)
(0 0 0 0)
(0 0 0 0)
(0 1 1 0)

(0.5 0.5 0.5 0.5)
(0 0 1 0)
(0 1 0 0)
(0 1 0 0)
(0 1 0 0)
(1 1 0 1)

(1 1 1 0)
(1 0 0 0)
(1 0 0 0)
(1 1 0 0)
(1 1 0 1)

(0.5 0.5 0.5 0.5)
(1 1 0 1)
(1 1 0 0)
(1 1 0 0)
(1 1 0 1)

(1 0 1 0)
(0 0 0 0)
(0 0 0 0)
(0 1 1 0)
(1 0 1 1)
(0 0 1 0)

(0.5 0.5 0.5 0.5)
(0 0 0 0)
(0 1 0 0)
(1 1 0 1)

(1 0 1 0)
(0 0 1 0)
(0 0 0 0)
(1 1 1 0)
(1 0 1 1)
(0 0 1 1)
(1 1 1 1)

(0.5 0.5 0.5 0.5)
(0 1 1 0)
(1 1 0 1)

(1 0 1 1)
(0 0 1 1)
(1 0 0 1)
(1 1 1 1)
(1 0 1 1)
(0 0 1 1)
(1 0 1 1)
(1 0 0 1)

(0.5 0.5 0.5 0.5)
(1 1 0 1)

(0 0 1 0)
(0 0 1 0)
(0 0 0 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)
(0 0 1 0)

(0.5 0.5 0.5 0.5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 6. Calculate the score value of each alternatives according to the collective 4-polar fuzzy soft preference

matrix Ã and Equation (9) as the following: S1 = 6.95, S2 = 2.15, S3 = 1.25, S4 = 5.85, S5 = 6, S6 = 4.1,
S7 = 5.8, S8 = 3.65, S9 = 3.05, and S10 = 6.2.

Step 7. Thus, we have: h1�h10�h5�h4�h7�h6�h8�h9�h2�h3. Thus, the first hotel, called h1, is the
best option to stay while h3 should not be selected for accommodation.

In Example 2, the desirable alternative is accepted by most of the decision makers where “most” is
interpreted as acceptable by 60% of decision makers , i.e., at least three individuals of total five decision
makers are satisfied. To check the impact of consensus degree on the final solution, we compare the
obtained results in Example 2 with the result of full agreement, given by the following example in
which α = 5 is used as the consensus degree.

Example 3. (Example 2 continued) Let us reconsider the “Hotel Booking Problem” involving M-pFSSs
( f1, P), ( f2, P), ( f3, P), ( f4, P), and ( f5, P) which is discussed earlier in Example 2 where H = {h1, · · · , h10}
is the set of alternatives and P = {p1, p2, p3, p4} is the set of parameters.

Here, the proposed Algorithm 1 is applied for case α = 5, where L = C5,5 = 1 and Δ5,5(1) = {1, 2, 3, 4, 5},
to get the most desirable alternative based on a unanimous consensus. After applying Algorithm 1, the scores
of alternatives are computed as follows: S1 = 6.65, S2 = 2.45, S3 = 2.15, S4 = 6.55, S5 = 7.1, S6 = 4.1,
S7 = 4.95, S8 = 3.55, S9 = 0.6, and S10 = 6.9. Therefore, we get: h5 � h10 � h1 � h4 � h7 � h6 � h8 �
h2 � h3 � h9 which shows h5 is the alternative accepted by all decision makers. Hotel h1, which is the best
option for accommodation according to the most decision makers’ views, is the third most desirable alternative.
Figure 2 shows the effect of different consensus degrees α = 3 and α = 5 on scores of alternatives.
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Figure 2. The effect of consensus degree on scores of alternatives based on the M-pFSMWM
aggregation method.

Now, we reconsider Examples 2 and 3 according to Algorithm 2 which is based on M-pFSIOWA
operator and M-pFSIOWG operator.

Example 4. (Examples 2 and 3 continued) To apply Algorithm 2 for solving MAGDM problem given in
Examples 2 and 3, we first need to re-order the M-pFSSs ( f1, P), · · · , ( f5, P) based on weighting vector
ω = (0.25, 0.25, 0.2, 0.15, 0.15)T for the decision makers f1, · · · , f5. Subsequently, we get: Fs

1yi = f s
1(py)(ui),

Fs
2yi = f s

2(py)(ui), Fs
3yi = f s

3(py)(ui), Fs
4yi = f s

4(py)(ui), and Fs
5yi = f s

5(py)(ui) for s = 1, 2;
i = 1, 2, · · · , 10; and y = 1, 2, 3, 4. The associated weighting vector w = (w1, w2, · · · , w5) is then generated
by wk = Q( k

5 )−Q( k−1
5 ) for k = 1, · · · , 5 where Q(.) is a quantifier function Q : [0, 1]→ [0, 1].

First, for case “most of the decision makers” (i.e., α = 3), where “most” is interpreted as 60% or 3
5 of all

data, the quantifier function may be defined by

Qmost(z) =

⎧⎪⎨⎪⎩
0 if z ≤ 1

5
z−1/5

2/5
if 1

5 < z < 3
5

1 if z ≥ 3
5

(12)

Therefore, we get w1 = w4 = w5 = 0, w2 = w3 = 0.5 and subsequently w = (0, 0.5, 0.5, 0, 0)T. Thus,
by using Equations (10) and (11), we have:

[M− pFSIOWA〈 f1, f2, f3, f4, f5〉]s(py)(ui) =
Fs

2yi + Fs
3yi

2

and
[M− pFSIOWG〈 f1, f2, f3, f4, f5〉]s(py)(ui) =

√
Fs

2yi · Fs
3yi

for s = 1, 2; i = 1, 2, · · · , 10; and y = 1, 2, 3, 4.
For the unanimous consensus (i.e., α = 5), the quantifier function may be defined by

Qall(z) =

{
0 if z < 1
1 if z = 5

5 = 1
(13)

Thus, the weighting vector is w = (0, 0, 0, 0, 1)T. Subsequently, by using Equations (10) and (11), we have

[M− pFSIOWA〈 f1, f2, f3, f4, f5〉]s(py)(ui) = Fs
5yi
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and
[M− pFSIOWG〈 f1, f2, f3, f4, f5〉]s(py)(ui) = Fs

5yi

for s = 1, 2; i = 1, 2, · · · , 10; and y = 1, 2, 3, 4.
Thus, based on the M-pFSIOWA operator and M-pFSIOWG operator the resultant collective m-polar

fuzzy soft matrix C̄ = [�̄ciy]10×4 where

c̄iy =
( f 1

2 (py)(ui) + f 1
3 (py)(ui)

2
,

f 2
2 (py)(ui) + f 2

3 (py)(ui)

2
)
;

c̄iy =
(√

f 1
2 (py)(ui). f 1

3 (py)(ui),
√

f 2
2 (py)(ui). f 2

3 (py)(ui)
)
;

and
c̄iy =

(
f 1
5 (py)(ui), f 2

5 (py)(ui)
)

is derived for different cases α = 3 and α = 5, respectively. Then, Steps 4–7 of Algorithm 1 are used to compare
the scores of alternatives for both cases α = 3 and α = 5.

The obtained results from M-pFSMWM, M-pFSIOWA, and M-pFSIOWG operators are reported
in Table 8.

Table 8. Comparison results of Examples 2–4 for different M-pFS-based aggregation methods.

Aggregation
α

Number of Scores of Alternatives (Si)

Methods Computational Steps h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

M-pFSMWM α = 3 18 6.95 2.15 1.25 5.85 6 4.1 5.8 3.65 3.05 6.2

M-pFSMWM α = 5 9 6.65 2.45 2.15 6.55 7.1 4.1 4.95 3.55 0.6 6.9

M-pFSIOWA α = 3 9 6.6 1.8 1.45 5.65 5.825 3.825 5.15 3.375 3.375 7.95

M-pFSIOWA α = 5 9 7.65 3.875 7 3.8 5.9 1.025 2.85 3.6 1.4 7.9

M-pFSIOWG α = 3 9 6.75 1.8 1.45 5.65 5.85 3.9 5.15 3.3 3.2 7.95

M-pFSIOWG α = 5 9 7.65 3.875 7 3.8 5.9 1.025 2.85 3.6 1.4 7.9

α refers to consensus degree.

It can be seen that, for case α = 5, h10 is the best option selected by all methods. For α = 3,
the M-pFSMWM method selects h1, however the tenth hotel, h10, is chosen by the two other methods.
Accordingly, the scores of alternatives for different consensus degrees α = 3 and α = 5 are compared
in Figure 3a–c.
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(a) M-pFSMWM Method (b) M-pFSIOWA Method

(c) M-pFSIOWG Method
Figure 3. The effect of consensus degree on scores of alternatives based on different M-pFS-based
aggregation methods.

7. Discussion

To date, various soft set-based techniques have been applied to solve decision-making problems.
Some of them have proposed novel methodology to find the solution [18,22,27,28], while some authors
have made effort to adapt the well-known decision-making methods, such as SAW, TOPSIS, entropy,
OWA, and OWG to the soft set theory [15,16,21,40,41]. However, a technique to solve decision-making
problems based on m-polar fuzzy soft information has not been studied yet. Thus, new methodologies
are proposed to handle the consensus stage and selection stage of MAGDM problem with M-pFS inputs.

For aggregating input data which take their values from [0, 1]m, some new m-polar aggregating
methods, called M-pFSMWM operator, M-pFSIOWA operator, and M-pFSIOWG operator, are
developed in Sections 3 and 5. The properties comparison of these operators are summarized in
Table 9. It can be seen that the most interesting property of M-pFSMWM operator is it is sensitive
for different scenarios of a partial agreement at the consensus degree α. This characteristic makes
the M-pFSIOWA operator more adaptable for MAGDM problem in which not only the number of
individuals satisfying an alternative is important but also the weight of decision makers who agree
with this decision affect the final output. Moreover, by changing the value of consensus degree α

different cases of agreement are obtained. In particular, when α→ K, the partial agreement becomes
a full agreement.

245



Symmetry 2018, 10, 636

Table 9. Properties comparison of different aggregation operators.

Operators Idempotency Boundedness Monotonicity Symmetry
Flexible by
Consensus
Degree α

Flexible for
Different

Choices of K

M-pFSMWM Yes Yes Yes Yes Yes Yes
M-pFSIOWA Yes Yes Yes Yes No No
M-pFSIOWG Yes Yes Yes Yes No No

To reach the process of selection, we propose two procedures in Section 4.2, Algorithm 1 where
the consensus stage is reached based on the new M-pFSMWM operator, and Section 5, Algorithm 2
in which the consensus stage is obtained by M-pFSIOWA or M-pFSIOWG operators are extended
based on IOWA and IOWG, respectively. To reach the selection stage a new score value function,
described by Equation (9), is applied. The main advantage of the proposed formulation is to rank and
compare objects based on a collective m-polar fuzzy soft preference relationship. This allows us to
have a ranking system of alternatives, from the most preferred element to the least preferred element,
which may include some incomparable objects because of preference relationships nature.

Illustrative examples, given in Examples 2 and 3, show the application of Algorithm 1 to analyze
MAGDM problems with multi-polar fuzzy soft information. The obtained results are then compared
with the m-polar fuzzy soft extensions of two well-known aggregation operators IOWA and IOWG,
i.e., M-pFSIOWA and M-pFSIOWG, in Example 4. Table 10 makes a comparison of the preference orders
of the alternatives for methods using different aggregation operators including the new proposed
M-pFSMWM method, the m-polar fuzzy soft induced ordered weighted average (M-pFSIOWA)
method, and the m-polar fuzzy soft induced ordered weighted geometric (M-pFSIOWG) method.
As can be seen, Hotel h10 is the best option for staying based on the all discussed methods except the
M-pFSMWM-based method, where h10 is considered as the best second option for accommodation.
According to final preference order obtained based on the M-pFSMWM operator, Hotel h1, which
has the second place based on the other methods, is the best option accepted by the majority,
i.e., 60%, of decision makers. Hotel h5 is the best place to stay in terms of all decision makers.
The analysis derived in Table 10 shows a good agreement among thees methods, however the number
of computational steps in M-pFSMWM-based algorithm is CK,α + 1 in comparison with K + 2 stages in
Algorithm 2. On the other hand, the main disadvantage of M-pFSIOWA and M-pFSIOWG methods
is that there is no unique approach to determine the associated weighting vector w related to the
aggregation operators M-pFSIOWA and M-pFSIOWG. Finally, in Figure 4a, the overall scores of
alternatives based on the different methods for case α = 3 are shown. Figure 4b shows the scores
of alternatives obtained by using different methods for case α = 5. Note that, using some relative
preference matrices to find the scores of alternatives in all methods, leads to record a similar trend in
Figure 4b.

Table 10. Comparison of the alternatives’ preference orders for different methods.

Methods Consensus Degree α Preference Order

M-pFSMWM 3 h1�h10�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSMWM 5 h5�h10�h1�h4�h7�h6�h8�h2�h3�h9
M-pFSIOWA 3 h10�h1�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSIOWA 5 h10�h1�h3�h5�h2�h4�h8�h7�h9�h6
M-pFSIOWG 3 h10�h1�h5�h4�h7�h6�h8�h9�h2�h3
M-pFSIOWG 5 h10�h1�h3�h5�h2�h4�h8�h7�h9�h6
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(a) The overall scores of alternatives for different
methods when α = 3

(b) The overall scores of alternatives for different
methods when α = 5

Figure 4. The effect of different methods on scores of alternatives for different consensus degrees.

8. Conclusions

Traditional aggregation operators, which usually deal with uni-polar information, fail to aggregate
m-polar fuzzy soft information taking their values from [0, 1]m. This study proposes a new aggregation
method for processing the MAGDM problems with m-polar fuzzy soft information in which both
attributes and experts have different weights. For this purpose, firstly the concept of m-polar fuzzy
soft sets is introduced. Then, the new aggregation operator M-pFSMWM in the domain of m-polar
fuzzy soft sets is defined. The advantage of proposed M-pFSMWM operator is to be sensitive for
different partial agreement scenarios at a consensus degree α. Further, the m-polar fuzzy soft induced
ordered weighted average (M-pFSIOWA) operator and the m-polar fuzzy soft induced ordered
weighted geometric (M-pFSIOWG) operator, which are the extensions of IOWA and IOWG operators,
respectively, are developed. Some desirable properties of M-pFSMWM, M-pFSIOWA, and M-pFSIOWG
operators, such as idempotency, monotonicity, and commutativity are also studied. The characteristics
of the proposed M-pFSMWM operator shows it is more adaptable for a wider range of MAGDM
problems in comparison with M-pFSIOWA and M-pFSIOWG operators. In addition, a procedure for
ranking m-polar fuzzy soft data based on a new score value function is proposed. Then, two algorithms
are designed to MAGDM problems based on M-pFSMWM, M-pFSIOWA, and M-pFSIOWG operators.
Finally, to show the efficiency of proposed methods, some numerical examples are discussed.
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Abstract: The subject of this study is to explore the role of cardinality of hesitant fuzzy element (HFE)
in distance measures on hesitant fuzzy sets (HFSs). Firstly, three parameters, i.e., credibility factor,
conservative factor, and a risk factor are introduced, thereafter, a series of novel distance measures on
HFSs are proposed using these three parameters. These newly proposed distance measures handle
the relationship between the cardinal number and the element values of hesitant fuzzy set well,
and are suitable to combine subjective and objective decision-making information. When using these
functions, decision makers with different risk preferences are allowed to give different values for
these three parameters. In particular, this study transfers the hesitance degree index to a credibility of
the values in HFEs, which is consistent with people’s intuition. Finally, the practicability of the newly
proposed distance measures is verified by two examples.

Keywords: hesitant fuzzy sets; hesitant degree; credibility; distance measure; similarity measure

1. Introduction

To handle the uncertainty in real life problems effectively, Zadeh proposed the concept “fuzzy
set” [1]. Thereafter, some extensions of fuzzy sets were proposed, for example, interval-valued fuzzy
sets proposed by Zadeh [2–4], intuitionistic fuzzy sets proposed by Atanassov [5], and interval-valued
intuitionistic fuzzy sets proposed by Atanassov and Gargov [6]. Most recently, Torra and Narukawa
introduced hesitant fuzzy sets (HFSs) to deal with hesitant situations, which were not well managed
by the previous tools [7,8]. In HFSs, the membership is a union of several memberships of fuzzy
sets. Practices show that HFS is a useful mathematical tool for dealing with this kind of uncertainty.
Nowadays, lots of branches of HFSs have been studied, such as intuitionistic hesitant fuzzy sets
(see reference [9]), dual hesitant fuzzy sets (see reference [10]), etc.

Distance and similarity measures are two important research objects in fuzzy set theory and
they have attracted the attention of many scholars. Zwick, Carlstein and Budescu [11], Pappis and
Karacapilidis [12] proposed a comparative analysis on similarity measures on fuzzy sets, respectively.
Wang introduced two influential similarity measures on fuzzy sets [13]. As for HFSs, Xu and Xia
proposed a series of classical distance measures on HFSs [14,15]. Thereafter, Peng et al. proposed a
novel hesitant fuzzy weighted distance measure [16]. Then, Rodríguez et al. gave a clear perspective
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of HFSs [17]. Li et al. pointed out that the existing distance and similarity measures fail to consider
the cardinal numbers of HFEs [18]. Thereafter, Li et al. proposed a concept of hesitance degree of HFEs
and HFSs to introduce a decision maker’s hesitance situation. They also proposed a series of distance
and similarity measures on HFSs, which take both the values and the cardinal numbers of HFEs into
consideration. In addition, Tang et al. introduced some continuous hesitant fuzzy distance measures
which also consider the element number of HFEs [19]. It is noteworthy that the distance measures on
HFSs are important in decision-making. As for this application, Alcantud et al. summarized the latest
related studies in their work [20].

The distance measures proposed by Li et al. are innovative [18]. In particular, they introduced
the concept of hesitance degree on HFSs. This is a new beginning, where the proposed distance and
similarity measures should be explored further with consideration of hesitant degree. The aims of this
study are to proceed towards the direction where the distance and similarity measures should develop
according to reference [18]. Specifically, this study proposes a series of novel distance measures on
HFSs. The main characteristic of the proposed distance measures is that they contain three parameters,
i.e., credibility factor, conservative factor, and a risk factor. These newly proposed distance measures
handle the relationship between the cardinal number and the element values of hesitant fuzzy set
well. When using these functions, decision makers with different risk preferences are allowed to give
different values for the three parameters.

The remaining part of this study is arranged as follows: Section 1 reviewed some basic notions on
HFSs and introduced some classical distance measures. Section 2 proposes a series of novel distance
measures on HFSs. Section 3 provides two examples to show the validity of the novel distance
measures. Finally, innovations of this study are concluded in Section 4.

2. Preliminaries

This section introduces some basic notions on HFSs. Throughout this paper, X = {x1, x2, · · · , xn}
is denoted as discourse set. In addition, denote h as HFS, denote h(x) as HFE, and denote H as the set
of all HFSs on X.

Definition 1. [8,21] Let X be a fixed set, a HFS on X is a function such that for any element in X, there is a
subset of [0, 1] corresponding to it. Symbolically, the function is represented as E = {〈x, hE(x)〉 | x ∈ X},
where hE(x) is a value set in [0, 1], representing the possible membership degrees of x ∈ X to the set E.
For convenience’s sake, hE(x) is called an HFE.

Definition 2. [14] Let h1 and h2 be two HFSs on X = {x1, x2, · · · , xn}; then, the distance measure between
h1 and h2 is defined as d(h1, h2), which satisfies: (i) 0 ≤ d(h1, h2) ≤ 1; (ii) d(h1, h2) = 0, if and only if
h1 = h2; (iii) d(h1, h2) = d(h2, h1). The similarity measure between h1 and h2 is defined as s(h1, h2),
which satisfies the following properties: (i) 0 ≤ s(h1, h2) ≤ 1; (ii) s(h1, h2) = 1, i f and only i f h1 = h2;
(iii) s(h1, h2) = s(h2, h1).

To introduce HFSs clearly, Xu and Xia proposed two properties on HFSs as follows [14].

Property 1. Assume that d is a distance measure between HFSs h1 and h2, then, s(h1, h2) = 1− d(h1, h2)

is a similarity measure between HFSs h1 and h2. If s is a similarity measure between HFSs h1 and h2, then,
d(h1, h2) = 1− s(h1, h2) is a distance measure between HFSs h1 and h2.

Thereafter, Xu and Xia introduced the classical hesitant normalized Hamming distance, classical
Euclidean distance and classical generalized hesitant normalized distance [14]. Limited to the layout,
they are not introduced in this study. Reference [18] noticed that the divergence of HFSs h1 and h2

includes two parts, i.e., the difference of their cardinal numbers and the difference of their values.
Following this idea, reference [18] officially introduced the concept of hesitance degree of HFEs
as follows.
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Definition 3. [18] Let h be a HFS on X = {x1, x2, · · · , xn}. For any xi ∈ X, denote l(h(xi)) as the cardinal

number of h(xi). Then, denote u(h(xi)) = 1− 1
l(h(xi))

, and denote u(h) =
1
n

n
∑

i=1
u(h(xi)). Understandably,

u(h(xi)) represents the hesitant degree of h(xi), and u(h) represents the hesitant degree of h.

Based on Definition 3, reference [18] proposed a series of novel distance and similarity measures
on HFSs as follows.

Definition 4. [18] Let h1 and h2 be two HFSs on X = {x1, x2, · · · , xn}; then, a normalized Hamming distance
including hesitance degree between h1(xi) and h2(xi) is defined as

dhh(h1, h2) =
1

2n
·

n

∑
i=1

⎡⎣|u(h1(xi))− u(h2(xi))|+
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|

⎤⎦ . (1)

A normalized Euclidean distance is defined as

dhe(h1, h2) =

⎡⎣ 1
2n
·

n

∑
i=1

⎛⎝|u(h1(xi))− u(h2(xi))|2 +
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|2

⎞⎠⎤⎦
1
2

. (2)

A normalized generalized distance is defined as

dhg(h1, h2) =

⎡⎣ 1
2n
·

n

∑
i=1

⎛⎝|u(h1(xi))− u(h2(xi))|λ +
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|λ

⎞⎠⎤⎦
1
λ

, (3)

where λ > 0, hj
1(xi) and hj

2(xi) denote the jth ordinal values in h1(xi) and h2(xi) respectively.
When the different preference between the hesitance degrees and the membership values is considered, the

distance measures with preference are proposed as

dphh(h1, h2) =
1
n
·

n

∑
i=1

⎡⎣α|u(h1(xi))− u(h2(xi))|+
β

lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|

⎤⎦ , (4)

dphe(h1, h2) =

⎡⎣ 1
n
·

n

∑
i=1

⎛⎝α|u(h1(xi))− u(h2(xi))|2 +
β

lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|2

⎞⎠⎤⎦
1
2

, (5)

and

dphg(h1, h2) =

⎡⎣ 1
n
·

n

∑
i=1

⎛⎝α|u(h1(xi))− u(h2(xi))|λ +
β

lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|λ

⎞⎠⎤⎦
1
λ

, (6)

where λ > 0, 0 ≤ α, β ≤ 1, and α + β = 1.
When α = 0, it means that the influence of the hesitant degree of HFE is ignored; then, dphh, dphe, and dphg

are degenerated into the distance measure dh, de, and dg proposed in reference [14], respectively. When the
weight of the element x ∈ X is considered, the following weighted distance measures are proposed. Denote the
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weight of xi ∈ X is wi(i = {1, 2, · · · , n}, where 0 ≤ wi ≤ 1 and
n
∑

i=1
wi = 1; then, reference [18] proposed

the following weighted distance:

dwhh(h1, h2) =
1
2
·

n

∑
i=1

wi

⎡⎣|u(h1(xi))− u(h2(xi))|+
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|

⎤⎦ , (7)

dwhe(h1, h2) =

⎡⎣1
2
·

n

∑
i=1

wi

⎛⎝|u(h1(xi))− u(h2(xi))|2 +
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|2

⎞⎠⎤⎦
1
2

, (8)

dwhg(h1, h2) =

⎡⎣1
2
·

n

∑
i=1

wi

⎛⎝|u(h1(xi))− u(h2(xi))|λ +
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)|λ

⎞⎠⎤⎦
1
λ

, (9)

where λ > 0.
When the weight of each element x ∈ X, and the different preference between the influence of hesitance

degrees and membership values are all taken into account, a series of weighted distance measures with preference
can also be proposed. For details, please refer to reference [18].

3. Main Results

3.1. Analysis on Hesitance Degree

Reference [18] noticed that the cardinality of HFEs is very important in proposing distance and
similarity measures on HFSs, and then reference[18] proposed the concept of hesitant degree. We think
this work is a pioneer contribution to the theory of HFSs. Further analysis shows that the index
hesitant degree only reflects the hesitance degree when decision makers consider the membership for
an HFE, and it has no direct relationship with the distance between HFEs. To explain this issue further,
considering that Equation (1) is the basis of the series of distance measures proposed by reference [18],
one counter-intuitive case of Equation (1) is provided here.

Assume that there is a set X = {x}, and assume that there are two patterns which are described
in HFSs setting, i.e., h1 = {0.97, 0.95, 0.88, 0.86, 0.82} and h2 = {0.45}. Assume that there is a sample
that is described by an HFE h = {0.43, 0.44, 0.45, 0.46, 0.47} . Then, which pattern does h belong to?
To answer this question, a principle is considered when d(hi0, h) = min {d(h1, h), d(h2, h)}, one can
get that the sample h belongs to pattern hi0.

First, this study extends h2 as h2 = {0.45, 0.45, 0.45, 0.45, 0.45}. Then, it finds that the difference of
the membership values between h and h1 are much larger than that of the membership values between
h and h2. Though the hesitant degrees of h and h1 are the same, it is very obvious that h belongs to
the pattern h2. Meanwhile, by Equation (1), it gets that dhh(h, h1) = 0.2230, dhh(h, h1) = 0.406. Thus,
h belongs to the pattern h1, which is counter-intuitive.

The introduced case illustrates that it is necessary to further consider the distance measures
on HFSs. By borrowing concepts from statistics, the hesitant degree of the HFE can be transferred
as credibility factor of the membership values of the HFE, where the bigger the hesitant degree,
the lower the credibility of the membership values of the HFE. From this viewpoint, some novel
distance measures are proposed in the coming subsection.

3.2. Novel Distance Measures with Three Factors

Before introducing the novel distance measures, a basic concept is introduced as follows.
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Definition 5. Denote h as a HFS on X = {x1, x2, · · · , xn} and for any xi ∈ X, denote l(h(xi)) as the cardinal
number of h(xi), denote c(h(xi)) = l(h(xi))

−1 as the credibility factor of h(xi).

Thereafter, a series of novel distance measures are proposed as follows.

Definition 6. Denote h1 and h2 as two HFSs on X = {x1, x2, · · · , xn}. Then, the normalized Hamming
distance between h1(xi) and h2(xi) is defined as

dh(h1(xi), h2(xi)) =
1
lxi

lxi

∑
j=1
|hj

1(xi)− hj
2(xi)| (10)

with a credibility factor c(h1(xi), h2(xi)) = [c(h1(xi))c(h2(xi))]

1
2 . Denote

c∗(h1(xi), h2(xi)) =
[c(h1(xi))c(h2(xi))]

1
2

n
∑

i=1
[c(h1(xi))c(h2(xi))]

1
2

(11)

as the normalized credibility factor. Then, a series of novel Hamming, Euclidean, and generalized distances
between h1 and h2 are proposed as

dchh(h1, h2) =
n

∑
i=1

c∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi)), (12)

dche(h1, h2) =

[
n

∑
i=1

[c∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi))]
2

]1
2

, (13)

dchg(h1, h2) =

[
n

∑
i=1

[c∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi))]
λ

] 1
λ

, (14)

where λ > 0, hj
1(xi) and hj

2(xi) are the jth ordinal values in h1(xi) and h2(xi), respectively.
In the situation that the weight of the element x ∈ X is considered, some weighted distance measures for

HFSs are obtained. Denote the weight of xi ∈ X as wi(i = {1, 2, · · · , n}, where 0 ≤ wi ≤ 1 and
n
∑

i=1
wi = 1;

then, a series of weighted distance measures are structured as

dwchh(h1, h2) = c ·
n

∑
i=1

wic∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi)), (15)

dwche(h1, h2) =

[
n

∑
i=1

wi · [c∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi))]
2

]1
2

, (16)

dwchg(h1, h2) =

[
n

∑
i=1

wi · [c∗(h1(xi), h2(xi)) · dh(h1(xi), h2(xi))]
λ

] 1
λ

, (17)

where λ > 0, hj
1(xi) and hj

2(xi) are the jth ordinal values in h1(xi) and h2(xi), respectively.
In order to deeply understand the relationship between the cardinalities and the values of HFEs, a

conservative factor α and a risk factor β are considered, and a series of novel distance measures are proposed as
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dwchh(h1, h2) =
n

∑
i=1

wic∗(h1(xi), h2(xi))
α · dh(h1(xi), h2(xi))

β, (18)

dwche(h1, h2) =

[
n

∑
i=1

wi ·
[
c∗(h1(xi), h2(xi))

α · dh(h1(xi), h2(xi))
β
]2
]1

2
, (19)

dwchg(h1, h2) =

[
n

∑
i=1

wi ·
[
c∗(h1(xi), h2(xi))

α · dh(h1(xi), h2(xi))
β
]λ
] 1

λ
, (20)

where α, β ∈ [0, 1].

In the following section, the usefulness of the proposed distance measures is illustrated by two
numerical examples.

4. Numerical Examples

Example 1. [18] Let Y be the set of all equilateral triangles, where Y = {(α, β, γ)|α = β = γ = 60◦} . Then,
every triangle could be considered as a fuzzy set in Y. For instance, for a triangle A with three angles as (60◦, 85◦,
35◦), some people may be thought as an equilateral triangle, and take 0.7 as the membership value of fuzzy set;
however, some other people may not think that it can be dealt with as an equilateral triangle, and take 0.3 as the
membership value of fuzzy set. This means that triangle A can be dealt with by using an HFS concept. Suppose
that there are two kinds of triangles which are denoted using HFEs as A1 = {0.7, 0.35} and A2 = {0.4}, and a
triangle A0 = {0.6} to be recognized.

By using Equation (1), it gets that dhh(A1, A0) = 0.3375, dhh(A2, A0) = 0.1. By Equation (2),
it gets that dhe(A1, A0) = 0.3783, dhe(A2, A0) = 0.1414. By comparing the two distances, it gets that A0

belongs to A2. Meanwhile, by using Equation (10), it gets that dh(A1, A0) = 0.175 with a credibility
factor dc(A1, A0) = 0.707, and it gets that dh(A2, A0) = 0.2 with a credibility factor dc(A2, A0) = 1.
Therefore, for decision makers who are willing to take risks, it is obtained that A0 belongs to the class
of A1; for decision makers who are conservative, it is obtained that A0 belongs to the class of A2.
The essence of the difference is that the element numbers of the HFEs are dealt with in different ways.
This also illustrates the importance of the three parameters.

Example 2. [14,18] Energy plays a very important role in socio-economic development in different countries.
Suppose that there are five energy projects to be invested, which are defined as Ai (i = 1, 2, · · · , 5). Meanwhile,
suppose that there are four attributes to be considered, which are technological (P1); environmental (P2);
socio-political (P3); and economic (P4). The attribute weight is obtained as W = (0.15, 0.3, 0.2, 0.35) . Thereafter,
a group of experts are invited to evaluate the performance of the five alternatives with respect to the four attributes
on the concept “excellence”. By using HFSs, the evaluation results are obtained as Table 1.

Table 1. Hesitant fuzzy decision matrix.

Alternative P1 P2 P3 P4

A1 {0.5, 0.4, 0.3} {0.9, 0.8, 0.7, 0.1} {0.5, 0.4, 0.2} {0.9, 0.6, 0.5, 0.3}
A2 {0.5, 0.3} {0.9, 0.7, 0.6, 0.5, 0.2} {0.8, 0.6, 0.5, 0.1} {0.7, 0.4, 0.3}
A3 {0.7, 0.6} {0.9, 0.6} {0.7, 0.5, 0.3} {0.6, 0.4}
A4 {0.8, 0.7, 0.4, 0.3} {0.7, 0.4, 0.2} {0.8, 0.1} {0.9, 0.8, 0.6}
A5 {0.9, 0.7, 0.6, 0.3, 0.1} {0.8, 0.7, 0.6, 0.4} {0.9, 0.8, 0.7} {0.9, 0.7, 0.6, 0.3}

Denote the “ideal alternative” as A∗ = {1}. By using the technique for order preference by
similarity to an ideal solution (see references [22,23]), and the newly proposed distance measures, the
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five energy projects (alternatives) are ranked, and the optimal one is obtained. Firstly, we extend
the HFEs provided in Table 1, so that all the HFEs have the same cardinal number. Secondly,
by using Equations (15)–(17), and taking α = 1, β = 1, and λ = 1, 2, 6, 10, respectively,
the deviations between each alternative and the ideal alternative are obtained, which are shown in
Figure 1. Obviously, it gets that A5 � A3 � A4 � A1 � A2, and the optimal alternative is A5.
This ranking results and the optimal alternative are consistent with the results proposed by
reference [14].

Figure 1. Results obtained by novel methods.

Thereafter, take (α, β) as (0.9, 0.1), (0.7, 0.3), (0.5, 0.5), (0.3, 0.7), (0.1, 0.9), and take λ = 1, 2, 6, 10,
respectively. By using Equation (20), the corresponding comprehensive deviations between each
alternative and the ideal alternative are obtained, which are shown as Tables 2–6.

Table 2. Deviations between each alternative and the ideal alternative where (α, β) = (0.9, 0.1).

λ A1 A2 A3 A4 A5 Ranking

λ = 1 0.2612926 0.2612927 0.2631 0.2628 0.2582 A5 � A1 � A2 � A4 � A3
λ = 2 0.2622 0.2645 0.2636 0.2646 0.2585 A5 � A1 � A2 � A3 � A4
λ = 6 0.2661 0.2774 0.2656 0.2723 0.2593 A5 � A3 � A1 � A4 � A2
λ = 10 0.2699 0.2891 0.2672 0.2801 0.2602 A5 � A3 � A1 � A4 � A2

Table 3. Deviations between each alternative and the ideal alternative where (α, β) = (0.7, 0.3).

λ A1 A2 A3 A4 A5 Ranking

λ = 1 0.2983 0.3021 0.2869 0.2904 0.2751 A5 � A3 � A4 � A1 � A2
λ = 2 0.3003 0.3054 0.2880 0.2940 0.2752 A5 � A3 � A4 � A1 � A2
λ = 6 0.3083 0.3186 0.2921 0.3073 0.2758 A5 � A3 � A4 � A1 � A2
λ = 10 0.3156 0.3304 0.2960 0.3178 0.2763 A5 � A3 � A1 � A4 � A2

Table 4. Deviations between each alternative and the ideal alternative where (α, β) = (0.5, 0.5).

λ A1 A2 A3 A4 A5 Ranking

λ = 1 0.3409 0.3494 0.3143 0.3227 0.2944 A5 � A3 � A4 � A1 � A2
λ = 2 0.3445 0.3528 0.3173 0.3298 0.2958 A5 � A3 � A4 � A1 � A2
λ = 6 0.3588 0.3662 0.3274 0.3515 0.3002 A5 � A3 � A4 � A1 � A2
λ = 10 0.3707 0.3780 0.3347 0.3641 0.3032 A5 � A3 � A4 � A1 � A2
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Table 5. Deviations between each alternative and the ideal alternative where (α, β) = (0.3, 0.7).

λ A1 A2 A3 A4 A5 Ranking

λ = 1 0.3900 0.4041 0.3459 0.3604 0.3166 A5 � A3 � A4 � A1 � A2
λ = 2 0.3959 0.4076 0.3524 0.3729 0.3205 A5 � A3 � A4 � A1 � A2
λ = 6 0.4192 0.4211 0.3715 0.4051 0.3316 A5 � A3 � A4 � A1 � A2
λ = 10 0.4368 0.4329 0.3822 0.4197 0.3385 A5 � A3 � A4 � A2 � A1

Table 6. Deviations between each alternative and the ideal alternative where (α, β) = (0.1, 0.9).

λ A1 A2 A3 A4 A5 Ranking

λ = 1 0.4465 0.4674 0.3823 0.4044 0.3418 A5 � A3 � A4 � A1 � A2
λ = 2 0.4559 0.4711 0.3941 0.4247 0.3497 A5 � A3 � A4 � A1 � A2
λ = 6 0.4914 0.4848 0.4250 0.4694 0.3702 A5 � A3 � A4 � A2 � A1
λ = 10 0.5157 0.4963 0.4390 0.4864 0.3833 A5 � A3 � A4 � A2 � A1

Tables 2–6 show that the alternative ranking order varies when the parameters are
valued differently. Therefore, decision makers with different subjective preferences can choose
specific parameters according to their experiences and attitudes. It means that the proposed
parameterized distance measures are beneficial for the combination of subjective and objective
decision-making information.

Moreover, the above results are not consistent with reference [18]. By using distance measures
proposed in reference [18], the distances between each alternative and optimal alternative are obtained
as Figure 2. In particular, the alternative ranking results are obtained as: (1) when λ = 1, it gets
A3 � A4 � A5 � A1 � A2; (2) when λ = 2, it gets A3 � A4 � A5 � A2 � A1; (3) when λ = 6, it gets
A3 � A4 � A5 � A2 � A1; and (4) when λ = 10, it gets A3 � A4 � A5 � A2 � A1.

Figure 2. Results obtained by classical methods.

Contrastive analysis shows that the distance from alternative A5 and the ideal alternative
varies greatly. By investigation, the reasons for this results are concluded as follows: (i) The
element numbers of HFE A5 is bigger than those of the other four HFEs. When distance
measures proposed in reference [18] are used, the element numbers of HFEs are viewed
as a part of the distance between them; therefore, the distance between A5 and the ideal
alternative is larger. (ii) In the newly proposed distance measures, the cardinality of HFE
is transferred to credibility factor; therefore, the corresponding distance between A5 and the
ideal alternative is smaller. (iii) The distance measures proposed in reference [14] is suitable
to weight the values in HFEs. When calculating the distance between A5 and the optimal
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alternative, unduly large or small deviations on the aggregation results are assigned low weights.
Therefore, the calculation results obtained by reference [14] and this study are consistent with
each other.

In essence, the characteristic of the distance measures proposed in this study is that they can
combine the subjective and objective information well. They are good complements to decision-making
theory. This case also illustrates that the decision-making process is not a pure mathematical calculation,
and decision makers should choose the most suitable distance measure according to the specific
decision-making environment. This is also the reason why decision-making is fascinating.

5. Conclusions

In this study, the role of cardinality of HFE in distance measures on HFSs is analysed. Moreover,
a series of parameterized distance measures on HFSs are proposed. The main innovation points of this
study are as follows:

1. In classical distance measures, the hesitance degree index of HFE is often calculated in addition to
operations with the values of HFEs in classical distance measures. In contrast, the distance
measures proposed in this study transfer the hesitance degree index to a credibility factor.
Specifically, the credibility factor of HFE is calculated in multiplication operations with the
values of HFEs in newly proposed distance measures, which handles the relationship between
the cardinal number and the element values of hesitant fuzzy set well.

2. In the newly proposed distance measures, there are three parameters. These parameters can be
adjusted by decision makers according to the specific decision-making environment, which is
beneficial for combining subjective and objective decision-making information, making the
decision-making results more objective.

However, every method does have its limitations, and it is hoped that these novel distance
measures could become perfect step-by-step in practice.
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Abstract: In this paper, the model of imprecise quantity information is an ordered fuzzy number.
The purpose of our study is to propose some methods of approximating any ordered fuzzy number
using a trapezoidal ordered fuzzy number. The information ambiguity is evaluated by means
of an energy measure. The information indistinctness is evaluated by Kosko’s entropy measure.
We discuss the problem of approximation of an arbitrary ordered fuzzy number by the nearest
trapezoidal ordered fuzzy number. This way, we can simplify arithmetical operations on the
linear space of ordered fuzzy numbers. The set of feasible trapezoidal ordered numbers is limited
by the combination of the following conditions: invariance of energy measure, invariance of
entropy measure, and invariance of information support. Evaluating the influence of individual
limits combinations on the utility of given approximations, two combinations of those restraints,
recommended for use, were chosen. It was also indicated that one of the recommended approximation
problems can be used only for ordered fuzzy numbers characterized by a low level of entropy.
The obtained results are currently used in such multi-criterial decision making models as financial
portfolio management, evaluation of negotiations offers, the fuzzy TOPSIS model, and the fuzzy
SAW model.

Keywords: ordered fuzzy numbers; energy measure; entropy measure; information ambiguity;
information indistinctness

1. Introduction

Ordered fuzzy numbers (OFN) are defined in the perfect intuitive way by Kosiński et al. [1–4]
as an extension of the concept of fuzzy number (FN). In this way, they were going to introduce a FN
supplemented by a negative or positive orientation. The negative orientation means the order from
bigger numbers to smaller ones. The positive orientation means the order from smaller numbers to
bigger ones. The FN orientation is interpreted as a prediction of future FN changes. The Kosiński’
theory has significant drawbacks. Kosiński [4] has shown that there exist improper OFNs that cannot
be represented b. This means that we cannot apply any knowledge of fuzzy sets to solve practical
problems described by improper OFN. Therefore, considerations that use improper OFN may not
be fruitful. Kosiński [1–3] has determined OFNs’ arithmetic as an extension of results obtained by
Goetschel and Voxman [5] for FNs. Moreover, Kosiński [4] has shown that there exist such proper
OFNs that their Kosiński’s sum is equal to improper OFN. This means that the family of all proper
OFNs is not closed under the Kosiński’s addition. On the other hand, most mathematical applications
require that the considered objects’ family be closed under used arithmetic operations. Then again,
the intuitive Kosiński’s approach to the notion of OFN is very useful. For this reason, the original
Kosiński’s theory was revised in [6]. This paper is fully based on the revised OFNs’ theory.

Symmetry 2018, 10, 526; doi:10.3390/sym10100526 www.mdpi.com/journal/symmetry261
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OFNs have already begun to find their use in operations research applied in decision making,
economics, and finance [7–31]. All discussed applications are associated with the linear space of
OFNs. However, a big inconvenience appears when using that space. The addition of an arbitrary
OFN is a very complicated operation of significant formal complexity. An example of this addition is
presented in Section 2. On the other hand, the addition of trapezoidal OFNs (TrOFN) is reduced to
a simple addition of four-dimensional vectors of real numbers. Moreover, TrOFN are already applied
for finance [20–22,25] and decision making [14,26,29,30]. These are the main premises to propose
a substitution of OFNs by TrOFNs. It is obvious that any arbitrary OFN should be substituted by
the nearest TrOFN. Therefore, we will apply the approximation task as a tool of substitution of OFN
by TrOFN. When processing imprecise values, we use OFN only to follow the influence of the initial
values’ imprecision on the resulting information imprecision. Due to our approximation problem,
we can impose the requirements of approximating by such a value that retains the estimates of the
imprecision of an approximated value. The approximation problem of OFNs by TrOFNs has not, so far,
been discussed in the literature [32].

The main aim of this paper is to propose the approximation methods of any OFN by trapezoidal
OFNs. As a result, authors intend to indicate the recommended approximation methods. The paper is
organised as follows. Section 2 presents the concept of OFNs and the linear space of OFNs. Section 3
briefly discusses the idea of imprecision [33]. The same chapter describes energy measure [34] as
a measure tool of information ambiguity and entropy measure [35,36], as well as a measure tool of
information indistinctness. In Section 4, the authors propose six approximation methods of any OFN
by a TrOFN. Section 5 recommends chosen approximation methods and shows the possibility of
implementing obtained results in a case of existing models of real objects. Finally, Section 6 concludes
the article, summarizes the main findings of this research, and proposes some future research directions.

2. Ordered Fuzzy Numbers—Basic Facts

By F (R), we denote the family of all fuzzy subsets of a real line R. An imprecise number is
a family of values in which each considered value belongs to it in a varying degree. A commonly
accepted model of an imprecise number is the fuzzy number (FN), defined as a fuzzy subset of the real
line R. The most general definition of FN was given by Dubois and Prade [37]. Thanks to the results
obtained in [5], a concept of a fuzzy number can be equivalently denoted as follows:

Theorem 1. For any FN L there exists such a nondecreasing sequence (a, b, c, d) ⊂ R that L ∈ F (R) is
represented by its membership function μL(·|a, b, c, d, LL, RL) ∈ [0; 1]R given by the identity

μL(x|a, b, c, d, LL, RL) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [a, d],
LL(x), x ∈ [a, b],
1, x ∈ [b, c],
RL(x), x ∈ [c, d],

(1)

in which the left reference function LL ∈ [0; 1][a,b] and the right reference function RL ∈ [0; 1][c,d] are upper
semi-continuous monotonic functions satisfying the following conditions:

LL(b) = RL(c) = 1, (2)

∀x∈]a,d[ : μL(x|a, b, c, d, LL, RL) > 0. (3)

The family of all FN is denoted as F. Moreover, Dubois and Prade [38] have introduced such arithmetic
operations on FN that are coherent with the Zadeh Extension Principle. �

The concept of ordered fuzzy numbers (OFN) was intuitively introduced by Kosiński and his
co-writers in the series of papers [1–4] as an extension of the concept of FN. A significant drawback of
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Kosiński’s theory is that there exist such OFNs that, in fact, are not FN [4]. What is more, the intuitive
Kosiński’s approach to the notion of OFN is very useful. The OFNs’ usefulness results from the
fact that an OFN is defined as FN supplemented by a negative or positive orientation. The negative
orientation means the order from bigger numbers to smaller ones. The positive orientation means the
order from smaller numbers to bigger ones. The FN orientation is interpreted as prediction of future
FN changes. For this reason, the Kosiński’s theory was revised in [6], in which OFNs are generally
defined in a following way:

Definition 1. Let any monotonic sequence (a, b, c, d) ⊂ R of ordered fuzzy number (OFN)
↔
L(a, b, c, d, SL, EL)

be defined as the pair of fuzzy number L ∈ F and orientation a � d = (a, d) . The fuzzy number L ∈ F is
determined by its membership function μL(·|a, b, c, d, SL, EL) ∈ [0; 1]R given by the identity

μL(x|a, b, c, d, SL, EL) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [a, d] = [d, a],
SL(x), x ∈ [a, b] = [b, a],
1, x ∈ [b, c] = [c, b],
EL(x), x ∈ [c, d] = [d, c]

(4)

in which the starting-function SL ∈ [0; 1][a,b] and the ending-function EL ∈ [0; 1][c,d] are upper semi-continuous
monotonic functions satisfying the conditions

SL(b) = EL(c) = 1. (5)

∀x∈]a,d[ μL(x|a, b, c, d, SL, EL) > 0. � (6)

Remark: Let us note that Equation (4) identity describes additionally extended notation of numerical intervals,
which is used in this work.

The space of all OFN is denoted by the symbol K. The condition a < d fulfilment determines

the positive orientation a � d of OFN
↔
L(a, b, c, d, SL, EL). In this case, the starting-function SL

is non-decreasing and the ending-function EL is non-increasing. Any positively oriented OFN is
interpreted as imprecise number, which may increase. The space of all positively oriented OFN is
denoted by the symbol K+. The condition a > d fulfilment determines the negative orientation of OFN
↔
L(a, b, c, d, SL, EL). In this case, the starting-function SL is non-increasing and the ending-function
EL is non-decreasing. Negatively oriented OFN is interpreted as an imprecise number, which may
decrease. The space of all negatively oriented OFN is denoted by the symbol K−. For the case a = d,

OFN
↔
L(a, a, a, a, SL, EL) represents a crisp number a ∈ R, which is not oriented. In summary, we

can write
K = K+ ∪R∪K−. (7)

For the case a ≥ d, any FN L(a, b, c, d, SL, EL) is equal to OFN
↔
L(a, b, c, d, SL, EL). On the other

hand, for this case any OFN
↔
L(a, b, c, d, SL, EL) is equal to FN L(a, b, c, d, SL, EL). These facts imply

that we have
F = K+ ∪R, (8)

K = F∪K−. (9)

Also, the arithmetic proposed by Kosiński has a significant disadvantage. The space of ordered
fuzzy numbers is not closed under Kosiński’s addition. Therefore, Kosinski’s theory is modified in
this way so that the space of ordered fuzzy numbers is closed under revised arithmetic operations.
The necessary arithmetic operators will generally be defined for OFNs using the following concepts.
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Definition 2. Cut-function L� ∈ [u, v][0;1] of any upper semi-continuous nondecreasing function L ∈ [0; 1][u;v]

is given by the identity
L�(α) = min{x ∈ [u, v] : L(x) ≥ α}. � (10)

Definition 3. Cut-function R� ∈ [u, v][0;1] of any upper semi-continuous nonincreasing function R ∈ [0; 1][u;v]

is given by the identity
R�(α) = max{x ∈ [u, v] : R(x) ≥ α}. � (11)

Definition 4. Pseudo inverse function l� ∈ [0; 1][l(0),l(1)] of any bounded continuous and nondecreasing
function l ∈ [l(0), l(1)][0;1] is given by the identity

l�(x) = max{α ∈ [0; 1] : l(α) = x}. � (12)

Definition 5. Pseudo inverse function r� ∈ [0; 1][r(1),r(0)] of any bounded continuous and nonincreasing
function r ∈ [r(0), r(1)][0;1] is given by the identity

r�(x) = min{α ∈ [0; 1] : r(α) = x}. � (13)

The vast majority of practical implementations of OFNs is associated with the linear space
〈K, + ,  〉, in which

• the symbol + denotes such addition operator on K, which is an extension of the addition
operator “ + ” on R;

• the symbol  denotes such dot product operator on K, which is an extension of the dot product
operator “·” on R.

Therefore, the following considerations will be limited to the case of linear space 〈K, + ,  〉.
Let us consider any pair of OFNs

↔
K,
↔
M ∈ K described as follows

↔
K =

↔
L(aK, bK, cK, dK, SK, EK),

↔
M =

↔
L(aM, bM, cM, dM, SM, EM). (14)

and the convention 0
0 = 1 is used. For any β ∈ R, the dot product operation on K is defined by

the identity

β  
↔
M =

↔
J =

↔
L(β·aM, β·bM, β·cM, β·dM, SJ , EJ), (15)

in which we have
SJ(x) = SM(x/β), (16)

EJ(x) = SM(x/β). (17)

Example 1. Let us take into account the OFN
↔
U =

↔
L(2, 4, 8, 10, SU , EU), in which

μU(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [2, 10],

SU(x), x ∈ [2, 4],
1, x ∈ [4, 8],

EU(x), x ∈ [8, 10],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x /∈ [2, 10],
2x−4

x , x ∈ [2, 4],

1, x ∈ [4, 8],
3x−30
x−14 , x ∈ [8, 10].

(18)
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Then, for example, we have

↔
W = 3  

↔
U =

↔
L(3·2, 3·4, 3·8, 3·10, SW , EW) =

↔
L(6, 12, 24, 30, SW , EW), (19)

in which the conditions (16) and (17) imply

μW(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [6, 30],

SW(x), x ∈ [6, 12],
1, x ∈ [12, 24],

EW(x), x ∈ [24, 30],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [6, 30],

SU(
x
3 ), x ∈ [6, 12],

1, x ∈ [12, 24],
EU(

x
3 ), x ∈ [24, 30],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [6, 30],

2·x−12
x , x ∈ [6, 12],
1, x ∈ [12, 24],

3·x−90
x−42 , x ∈ [24, 30].

�

(20)

The addition operation on K is defined by the identity [6]

↔
K +

↔
M =

↔
J =

↔
L(aJ , bJ , cJ , dJ , SJ , EJ), (21)

in which we have
ǎJ = aK + aM, (22)

bJ = bK + bM, (23)

cJ = cK + cM, (24)

ďJ = dK + dM, (25)

aJ =

{
min
{

ǎJ , bJ
}

, (bJ < cJ) ∨ (bJ = cJ ∧ ǎJ ≤ ďJ),
max

{
ǎJ , bJ

}
, (bJ > cJ) ∨ (bJ = cJ ∧ ǎJ > ďJ),

(26)

dJ =

⎧⎨⎩ max
{

ďJ , cJ

}
, (bJ < cJ) ∨ (bJ = cJ ∧ ǎJ ≤ ďJ),

min
{

ďJ , cJ

}
, (bJ > cJ) ∨ (bJ = cJ ∧ ǎJ > ďJ),

(27)

∀α∈[0;1] sJ(α) =

{
S�

K(α) + S�
M(α), aJ 	= bJ ,

bJ , aJ = bJ ,
(28)

∀α∈[0;1] eJ(α) =

{
E�

K(α) + E�
M(α), cJ 	= dJ ,

cJ , cJ = dJ ,
(29)

∀x∈[aJ ,bJ ]
SJ(x) = s�J (x), (30)

∀x∈[cJ ,dJ ]
EJ(x) = e�J (x) (31)

The above described procedure of OFN’s addition is widely justified in [6].

Example 2. Let us take into account the OFNs
↔
U given by (18) and

↔
V =

↔
L(15, 11, 6, 5, SV , EV), in which

μV(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [15, 5],

SV(x), x ∈ [15, 11],
1, x ∈ [11, 6],

EV(x), x ∈ [6, 5],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x /∈ [15, 5],
3x−45
x−23 , x ∈ [15, 11],

1, x ∈ [11, 6],
3x−15

x−3 , x ∈ [6, 5].

(32)
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We determine the sum ↔
Z =

↔
U +

↔
V =

↔
L(aZ, bZ, cZ, dZ, SZ, EZ). (33)

From relations (22)–(25) we obtain

ǎZ = aU + aV = 2 + 15 = 17, bZ = bU + bV = 4 + 11 = 15,
cZ = cU + cV = 8 + 6 = 14, ďZ = dU + dV = 10 + 5 = 15.

(34)

Because we have 15 = bZ > cz = 14, from (26) we get aZ = 17, and from (27) we get dZ = 14.
Consequently, we get

↔
Z =

↔
U +

↔
V =

↔
L(17, 15, 14, 14, SZ, EZ). (35)

In the next step, we determine the variability of the ending-function EZ ∈ [0; 1][14,14]. Due to satisfaction
of the condition cZ = 14 = dZ, the Equation (29) implies

∀α∈[0;1] eZ(α) = cZ = 14. (36)

Then, from the relations (13) and (31), we obtain

∀x∈[14,14] EZ(x) = EZ(14) = e�M(14) = max{α ∈ [0; 1] : eZ(α) = 14} = 1. (37)

Next, we establish the variability of the starting-function SZ ∈ [0; 1][17,15]. Here, we have aZ = 17 	=
15 = bZ. Starting-function SU ∈ [0; 1][2,4] is a non-decreasing one. It is very easy to check that this function is
increasing. Therefore, from (10) for any α ∈ [0; 1] we have

S�
U(α) = min{x ∈ [2, 4] : SU(x) ≥ α} = S−1

U (α) =
4

2− α
. (38)

Starting-function SV ∈ [0; 1][15,11] is a non-increasing function. It is very easy to check that this function
is decreasing. Therefore, from (10) for any α ∈ [0; 1] we have

S�
V(α) = max{x ∈ [15, 11] : SV(x) ≥ α} = S−1

V (α) =
23α− 45

α− 3
. (39)

Next, from (28) we obtain

sZ(α) = S�
U(α) + S�

V(α) =
4

2− α
+

23α− 45
α− 3

=
23α2 − 95α + 102

α2 − 5α + 6
. (40)

It is very easy to check whether the function sZ ∈ [17, 15][0,1] is decreasing. Therefore, from the identities
(13) and (30), we obtain

SZ(x) = s�Z (x) = min{α ∈ [0; 1] : sZ(α) = x} = min
{

α ∈ [0; 1] : 23α2−95α+102
α2−5α+6 = x

}
= min

{
5(x−19)−

√
x2+10x−359

2(x−23) , 5(x−19)+
√

x2+10x−359
2(x−23)

}
= 5(x−19)+

√
x2+10x−359

2(x−23) .
(41)

Eventually, what we obtain is that the sum
↔
K +

↔
M =

↔
Z =

↔
L(17, 15, 14, 14, SZ, EZ) is unambiguously

determined by its membership function

μZ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [17, 14],

SZ(x), x ∈ [17, 15],
1, x ∈ [15, 14],

EZ(x), x ∈ [14, 14],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x /∈ [17, 4],

5(x−19)+
√

x2+10x−359
2(x−23) , x ∈ [17, 15],

1, x ∈ [15, 14],
1, x ∈ [14, 14].

� (42)
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The above example sufficiently shows a high level of formal complexity upon the addition of
any OFN. Therefore, in many practical applications researchers limit the use of OFN only to a form
presented below.

Definition 2. [6] For any monotonic sequence (a, b, c, d) ⊂ R the trapezoidal ordered fuzzy number (TrOFN)
↔
Tr(a, b, c, d) is defined as the pair of FN T ∇(a, b, c, d) ∈ F and the orientation a � d . The fuzzy number
T ∇(a, b, c, d) ∈ F is determined by its membership function μ↔

Tr
(·|a, b, c, d) ∈ [0; 1]R given by the identity

μ↔
Tr
(x|a, b, c, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [a, d] = [d, a],

x−a
b−a , x ∈ [a, b[=]b, a],
1, x ∈ [b, c] = [c, b],

x−d
c−d x ∈] c, d] = [d, c[,

. � (43)

The space of all TrOFN is denoted by the symbol KTr. The following numbers are a particular
case of TrOFN.

Definition 3. For any monotonic sequence (a, b, c) ⊂ R, the triangle ordered fuzzy number (TOFN)
↔
T(a, b, c)

is defined by the identity
↔
T(a, b, c) =

↔
Tr(a, b, b, c). � (44)

For the case of any real number β ∈ R and any TrOFN
↔
Tr(a, b, c, d), their dot product can be

calculated as follows:
β  ↔Tr(a, b, c, d) =

↔
Tr(β·a, β·b, β·c, β·d). (45)

Example 3. For example, we have

↔
W = 3  ↔Tr(2, 4, 8, 10) =

↔
Tr(3·2, 3·4, 3·8, 3·10) =

↔
Tr(6, 12, 24, 30). � (46)

In agreement with arithmetic introduced in [6], for the case of any TrOFNs
↔
Tr(a, b, c, d) and

↔
Tr(p− a, q− b, r− c, s− d), their sum is determined as follows:

↔
Tr(a, b, c, d)�

↔
Tr(p− a, q− b, r− c, s− d)

=

⎧⎨⎩
↔
Tr(min{p, q}, q, r, max{r, s}), (q < r) ∨ (q = r ∧ p ≤ s),
↔
Tr(max{p, q}, q, r, min{r, s}), (q > r) ∨ (q = r ∧ p > s).

(47)

Example 4. We determine the sum

↔
W =

↔
Tr(2, 4, 8, 10) +

↔
Tr(15, 11, 6, 5 ). (48)

We have p = 2 + 15 = 17, q = 4 + 11 = 15 > 14 = 8 + 6 = r, and s = 10 + 5 = 15. Then, from (47)
we get

↔
W =

↔
Tr(17, 15, 14, 14). � (49)

Comparing examples 1, 2, 3, and 4 we can easily notice the benefits resulting from using TrOFN
when implementing OFN in real object models. The postulate of being constrained to TrOFN use
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when constructing models of real objects is not always possible to satisfy. A behavioural present
value [17,18,39,40], described by such OFN that cannot be TrOFN, is an example. The attempts to use
this concept in portfolio analysis produce many problems.

All these reservations lead to a postulate to approximate all OFNs by TrOFNs while modelling all
real objects. Such an approximation task will be formulated in Section 4 of the paper.

3. Evaluation of Imprecision

After [33], we understand imprecision as a superposition of ambiguity and indistinctness of
information. Ambiguity can be interpreted as a lack of a clear recommendation between one alternative
and various others. Indistinctness is understood as a lack of explicit distinction between recommended
and unrecommended alternatives.

Fuzzy subsets [41] are widely used as a model of imprecision information [42,43]. Any OFN is
a particular kind of imprecision information. For this reason, in this chapter—if necessary—any OFN
↔
L(a, b, c, d, SL, EL) will be considered as an ordered pair (L, (a, d)) ∈ F (R)×R2 in which the fuzzy
subset L is determined by its membership function μL ∈ [0, 1]R given by the identity (4).

An increase in information imprecision reduces the suitability of this information. Therefore, it is
logical to consider the problem of imprecision assessment. A basic tool used in this chapter to measure
the imprecision of fuzzy sets is Khalili’s measure [44] determined by the identity

m(A) =
∫ +∞

−∞
μA(x)dx, (50)

in which the fuzzy subset A ∈ F (R) has bounded support, i.e., its membership function μL ∈ [0, 1]R

fulfils the condition
∃(p,q)∈R2{x ∈ R : μA(x) > 0} ⊂ [p, q]. (51)

The increase in the ambiguity of an OFN suggests a higher number of alternative
recommendations to choose from. This leads to an increase in the risk of choosing an incorrect
assessment from recommended alternative ones. This may result in making a decision, which will be
ex post associated with a loss of chance. Therefore, an increase in the ambiguity of OFN implies the
decrease in the utility of information described by OFN. The proper tool for measuring the ambiguity

of FN is an energy measure d ∈
[
R+

0
]F (R) proposed by de Luca and Termini [35]. In this article,

for an arbitrary OFN
↔
L(a, b, c, d, SL, EL) ∈ K represented by L ∈ F (R) we have

d(
↔
L(a, b, c, d, SL, EL)) = m(L). (52)

A new tool for OFN ambiguity evaluation is introduced in [19]. There, it is proposed that the

oriented energy index a ∈ RK, which assesses the ambiguity of any OFN
↔
L(a, b, c, d, SL, EL) by integral,

was as follows

a(
↔
L(a, b, c, d, SL, EL)) =

∫ d

a
μL(x)dx, (53)

in which μL ∈ [0, 1]R is the membership function of the fuzzy subset L ∈ F (R) representing evaluated
OFN. Quite a new fact for evaluation is that for any negatively oriented OFN, its oriented energy index
is negative and for any positively oriented OFN, its oriented energy index is positive. Moreover, it is
obvious that for any OFN we have

d(
↔
L(a, b, c, d, SL, EL)) = |a(

↔
L(a, b, c, d, SL, EL))|. (54)

This means that oriented energy index stores the information on energy index and the orientation
of assessed OFN. This gives new perspectives for imprecision management.
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Example 5. Let us calculate oriented energy index: for OFNs
↔
U determined by (18), for

↔
V determined by (32),

and for
↔
Z =

↔
U +

↔
V determined by (42). Implementing (53), we get the following:

a(
↔
U ) =

∫ 4

2

2x− 4
x

dx +
∫ 8

4
dx +

∫ 10

8

3x− 30
x− 14

dx ≈ 6.3614, (55)

a(
↔
V ) =

∫ 11

15

3x− 45
x− 23

dx +
∫ 6

11
dx +

∫ 5

6

3x− 15
x− 3

dx ≈ 7.8362, (56)

a(
↔
Z) =

∫ 15

17

5(x− 19) +
√

x2 + 10x− 359
2(x− 23)

dx +
∫ 14

15
dx ≈ −2.0414. � (57)

An increase in the indistinctness of an OFN suggests that the differences between recommended
and unrecommended decision alternatives are harder to differentiate. This leads to an increase in a risk
of choosing a not recommended option. Therefore, increase in the indistinctness of OFN implies the
decrease in the utility of information described by OFN. The right tool for measuring the indistinctness
is the entropy measure, proposed also by de Luca and Termini [35] and modified by Piasecki [36].
In this article, the entropy measure e ∈ [0; 1]F (R) will be described like in Kosko [45]. For an arbitrary

OFN
↔
L(a, b, c, d, SL, EL) /∈ R, we have

e(
↔
L(a, b, c, d, SL, EL)) =

m(L ∩ LC)

m((L ∪ LC) ∩ [a, d])
, (58)

in which the symbol LC denotes the complement of the fuzzy subset L ∈ F (R) describing evaluated
OFN. Due to a good synthetic substantiation and universalism of the above-mentioned formula,
the entropy measure proposed by Kosko [45] is now widely used.

Example 6. Let us calculate entropy measure: for OFNs
↔
U determined by (18), for

↔
V determined by (32), and

for
↔
Z =

↔
U +

↔
V determined by (42). Using (58), we get the following:

m(U ∩ UC) =
∫ 10

2 min
{

μ↔
U
(x), 1− μ↔

U
(x)
}

dx

=

8
3∫

2

2x−4
x dx +

4∫
8
3

(1− 2x−4
x )dx +

∫ 8
4 0dx +

46
5∫

8
(1− 3x−30

x−14 )dx +
10∫
46
5

3x−30
x−14 dx ≈ 0.9609,

(59)

m(U ∪ UC) =
10∫
2

max
{

μ↔
U
(x), 1− μ↔

U
(x)
}

dx

=
∫ 8

3
2 (1− 2x−4

x )dx +
∫ 4

8
3

2x−4
x dx +

∫ 8
4 dx +

∫ 46
5

8
3x−30
x−14 dx +

∫ 10
46
5
(1− 3x−30

x−14 )dx ≈ 7.0391,
(60)

e(
↔
U ) = m(U ∩ UC)

m(U ∪ UC)
≈ 0.1365. (61)

In analogous way we obtain

e(
↔
V ) ≈ 0.1396, e(

↔
Z) ≈ 0.2041. � (62)

The values of oriented energy index entropy measure obtained in Examples 5 and 6 will be
used in approximation tasks presented in a following chapter. As it can be easily proved, in case of
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TrOFN
↔
Tr(a, b, c, d), /∈ R-oriented energy index and entropy measure are determined basing on the

following relation

a(
↔
Tr(a, b, c, d)) =

1
2
(d + c− b− a), (63)

e(
↔
Tr(a, b, c, d)) =

d− c + b− a
3·d + c− b− 3·a (64)

Hence, for TOFN
↔
Tr(a, b, c) /∈ R, we have

a(
↔
T(a, b, c)) =

1
2
(d− c), (65)

e(
↔
T(a, b, c)) =

1
3

. (66)

From the point of view of real objects modelling, steadiness of indistinctness is a drawback of
TOFN. This disadvantage is the result of a lack of any possibility to track the influence of occurring
changes on the imprecision element. It is yet another premise to prefer TrOFN as a tool to describe
imprecise numbers.

Finally, let’s notice the following, simple characteristics of TrOFN.

Lemma 1. For an arbitrary TrOFN
↔
Tr(a, b, c, d) /∈ R, we have:

e(
↔
Tr(a, b, c, d)) ≤ 1

3
, (67)

e(
↔
Tr(a, b, c, d)) =

1
3
⇔
↔
Tr(a, b, c, d) =

↔
T(a, b, d) =

↔
T(a, c, d). � (68)

Proof. For positively oriented TrOFN
↔
Tr(a, b, c, d), we have c ≥ b, which implies

e(
↔
Tr(a, b, c, d)) = d−c+b−a

3·d+c−b−3·a = −d+c−b+a
−3·d−c+b+3·a = (a−d)+(c−b)

3·(a−d)−(c−b) ≤
(a−d)

3·(a−d) =
1
3 . (69)

For negatively oriented TrOFN
↔
Tr(a, b, c, d), we have b ≥ c, which implies

e(
↔
Tr(a, b, c, d)) =

d− c + b− a
3·d + c− b− 3·a =

(d− a) + (b− c)
3·(d− a)− (b− c)

≤ (d− a)
3·(d− a)

=
1
3

(70)

The condition (58) follows immediately from the identities (64) and (66). �

This conclusion will be used in the next chapter when examining the characteristics of a suggested
approximation model of any OFN utilizing TrOFN.

4. Approximation Problem

After reference [33], we understand imprecision as a superposition of ambiguity and indistinctness
of information. Ambiguity can be interpreted as a lack of a clear recommendation between one
alternative among various others. Indistinctness is understood as a lack of explicit distinction between
recommended and unrecommended alternatives.

To estimate the distance between any pair of OFNs, we introduce a pseudo-metrics δ : K2 → R+
0

determined by a following identity:

δ(
↔
L(a1, b1, c1, d1, S(1)

L , E(1)
L ),

↔
L(a2, b2, c2, d2, S(2)

L , E(2)
L ))

=
√
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2 + (d1 − d2)
2.

(71)

270



Symmetry 2018, 10, 526

In this section, we will consider the approximation problem of an arbitrary OFN
↔
L(a, b, c, d, SL, EL)

by the nearest TrOFN
↔
Tr(p, q, r, s). Hence, the main criterion of approximation is to determine such

TrOFN
↔
Tr(p0, q0, r0, s0), which will satisfy the following condition:

δ(
↔
Tr(p0, q0, r0, s0),

↔
L(a, b, c, d, SL, EL))

= min
{

δ(
↔
Tr(p, q, r, s),

↔
L(a, b, c, d, SL, EL)) :

↔
Tr(p, q, r, s) ∈ KTr

}
.

(72)

Function δ : (KTr)
2 → R+

0 is a metric in KTr. It implies that if any
↔
L(a, b, c, d, SL, EL) ∈ KTr then

it is the unique solution of the minimization problem (72). Moreover, any crisp number a ∈ R is

represented by TrOFN
↔
Tr(a, a, a, a). Therefore, we must consider a case of

↔
L(a, b, c, d, SL, EL) /∈ KTr ⊃ R. (73)

The condition (72) will be equivalent to a problem

Φ(p0, q0, r0, s0|a, b, c, d) = min
{

Φ(p, q, r, s|a, b, c, d) : (p, q, r, s) ∈ R4
}

(74)

of minimization of the objective function Φ(·|a, b, c, d) : R4 → R+
0 given by an identity

Φ(p, q, r, s|a, b, c, d) = (p− a)2 + (q− b)2 + (r− c)2 + (s− d)2. (75)

When processing imprecise values, we use FN or OFN only to follow the influence of initial
values imprecision on the imprecision of obtained information. Due to our approximation problem,
we can impose the requirements of approximating by such value that retains the measures of the
imprecision of an approximated value. Using (53) and (58) in an uncomplicated way, we can determine
the estimates of ambiguity and indistinctness of the approximated value

A = a(
↔
L(a, b, c, d, SL, EL)), (76)

E = e(
↔
L(a, b, c, d, SL, EL)). (77)

In this case, the conditions of imprecision we denote as

a(
↔
Tr(p, q, r, s)) = A, (78)

e(
↔
Tr(p, q, r, s)) = E. (79)

Let us also notice that due to the condition (78), OFNs
↔
L(a, b, c, d, SL, EL) i

↔
Tr(p, q, r, s) are

identically oriented. Juxtaposing the identity (63) and the condition (78) implies a linear equation
describing invariance of ambiguity

s + r− q− p = 2·A. (80)

Pairing the identity (50) and the condition (79) implies a linear equation describing invariance
of indistinctness

(1− 3·E)·s− (1 + E)·r + (1 + E)·q− (1− 3·E)·p = 0. (81)

According to Lemma 1, the condition (81) can be used only in case of OFN
↔
L(a, b, c, d, SL, EL)

satisfying the condition

e(
↔
L(a, b, c, d, SL, EL)) = E ≤ 1

3
(82)
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For any OFN
↔
L(a, b, c, d, SL, EL) represented, inter alia, by its membership function μL ∈ [0, 1]R,

we determine its support closure [
↔
L(a, b, c, d, SL, EL)]0+ in the following way

[
↔
L(a, b, c, d, SL, EL)]0+ = lim

α→0+
{x ∈ R : μL(x) ≥ α} = [a, d]. (83)

The support closure [
↔
L(a, b, c, d, SL, EL)]0+ is interpreted as the smallest closed subset containing

all possible values represented by OFN
↔
L(a, b, c, d, SL, EL). Hence, Invariant Criterion

[a, d] = [
↔
L(a, b, c, d, SL, EL)]0+ = [

↔
Tr(p, q, r, s)]0+ = [p, s] (84)

can be treated as yet another constraint imposed on approximation method. This Criterion is
represented by the equation system: {

p = a,
s = d.

(85)

Each TrOFN feasible in the approximation task will be called a feasible TrOFN. Conditions (80),
(81), and (85) are restrictions that limit a set of feasible TrOFN. The solution of OFN approximation

is the nearest feasible TrOFN, denoted by the symbol
↔
Tr0. In following subsections, we will analyse

chosen problems of approximation OFN by TrOFN. Each of those problems will be distinguished by
a chosen combination of restrictions limiting the set of feasible TrOFN. Each of approximation problems
is called XYZ-approximation, in which the prefix XYZ is an acronym identifying the approximation

problem. The solution of XYZ-approximation of any OFN
↔
L(a, b, c, d, SL, EL) is denoted by a symbol

↔
TrXYZ(

↔
L(a, b, c, d, SL, EL)).

4.1. Unconditional Approximation (UC-Approximation)

Initially, we will consider the approximation problem with no constraints imposed on the set
of feasible TrOFN. This approximation problem is called UC-approximation. UC-approximation
is determined just by the objective function (74). In the face of a lack of any restricting equations,

the solution of UC-approximation problem of OFN
↔
L(a, b, c, d, SL, EL) is TrOFN

↔
Tr(a, b, c, d) =

↔
TrUC(

↔
L(a, b, c, d, SL, EL)). (86)

It is obvious that a UC-approximation problem always has a solution.

Example 7. For OFNs
↔
U =

↔
L(2, 4, 8, 10, SU , EU) determined by (18),

↔
V =

↔
L(15, 11, 6, 5, SV , EV)

determined by (32), and
↔
Z =

↔
U +

↔
V =

↔
L(17, 15, 14, 14, SZ, EZ) determined by (42), we have

↔
Tr(2, 4, 8, 10) =

↔
TrUC(

↔
U ),

↔
Tr(15, 11, 6, 5) =

↔
TrUC(

↔
V ),

↔
Tr(17, 15, 14, 14) =

↔
TrUC(

↔
Z). (87)

Then, we evaluate an example influence that UC-approximation had on the imprecision measure. For OFNs
↔
U ,
↔
V , and

↔
Z , the results gathered in Examples 5 and 6 were used. In case of TrOFNs

↔
TrUC(

↔
U ),

↔
TrUC(

↔
V ),

and
↔
TrUC(

↔
Z), the imprecision characteristics were determined by formulas (63) and (64). All those values are

presented in Table 1.
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Table 1. UC-approximation impact on imprecision evaluation.

↔
L a(

↔
L) a(

↔
TrUC(

↔
L)) e(

↔
L) e(

↔
TrUC(

↔
L))

↔
U 6.3614 6.0000 0.1365 0.1429
↔
V −7.8362 −7.500 0.1396 0.1429
↔
Z −2.0414 −2.000 0.2041 0.2000

Source: Own elaboration. �

The results presented in this example show that UC-approximation to a certain extent distorts
the imprecision evaluations. However, these evaluations are only the values representing the points
on conventional scale. Therefore, the observed deviations of less than 5% of relative error can be
considered insignificant.

On the other hand, the comparison of identities (15) and (45) lets us conclude that for any pair

(β,
↔
M) ∈ R×K we have

β  ↔TrUC(
↔
M) =

↔
TrUC(β  

↔
M). (88)

Moreover, from the comparison of identities (21)–(27) and (47), it follows that for any pair

(
↔
K,
↔
M) ∈ K2 we have

↔
TrUC(

↔
K) +

↔
TrUC(

↔
M) =

↔
TrUC(

↔
K +

↔
M). (89)

It means that the function
↔
TrUC ∈ (KTr)

K is a linear operator on K. Due to this property, the errors
of the estimations of oriented energy index and entropy measure did not succumb to propagation.
This is a vital advantage of UC-approximation method.

4.2. Approximation under Criterion of Constant Ambiguity (CA-Approximation)

Let us consider the approximation problem in which each feasible TrOFN satisfies the condition
(78). Such an approximation task we call CA-approximation problem. Then, the coordinates of all the

feasible TrOFN
↔
Tr(p, q, r, s) can be presented as a general solution of the Equation (80). This solution is

given as follows ⎧⎪⎪⎪⎨⎪⎪⎪⎩
p = x,
q = y,
r = z,

s = 2·A + x + y− z,

x, y, z ∈ R, (90)

in which the sequence (x, y, z) is a monotonic sequence. Then—to solve the OFN
↔
L(a, b, c, d, SL, EL)

CA-approximation problem—the first step is to find the minimum of a function

ϕ(x, y, z) = Φ(x, y, z, 2·A + x + y− z|a, b, c, d). (91)

The minimum is reached in a point (x0, y0, z0) of following coordinates⎧⎪⎨⎪⎩
x0 = 3·a−b+c+d−2·A

4 ,
y0 = −a+3·b+c+d−2·A

4 ,
z0 = a+b+3·c−d+2·A

4 .
(92)

When inserting those coordinates to (90), we conclude that the solution of OFN
↔
L(a, b, c, d, SL, EL)

CA-approximation problem is TrOFN

↔
Tr( 3·a−b+c+d−2·A

4 , −a+3·b+c+d−2·A
4 , a+b+3·c−d+2·A

4 , a+b−c+3·d+2·A
4 ) =

↔
TrCA(

↔
L(a, b, c, d, SL, EL)). (93)
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Example 8. For OFNs
↔
U =

↔
L(2, 4, 8, 10, SU , EU) determined by (18),

↔
V =

↔
L(15, 11, 6, 5, SV , EV)

determined by (32), and
↔
Z =

↔
U +

↔
V =

↔
L(17, 15, 14, 14, SZ, EZ) determined by (42), we have

↔
Tr(1.8193, 3.8193, 8.1807, 10.1807) =

↔
TrCA(

↔
U ), (94)

↔
Tr(15.1681, 11.1681, 5.8319, 4.8319) =

↔
TrCA(

↔
V ), (95)

↔
Tr(17.0207, 15.0207, 13.9793, 13.9793) =

↔
TrCA(

↔
Z). (96)

Next, we assess an example influence that CA-approximation had on indistinctness evaluation. For OFNs
↔
U ,
↔
V ,
↔
Z ,
↔
TrUC(

↔
U ),

↔
TrUC(

↔
V ), and

↔
TrUC(

↔
Z), the results from Example 7 were used. In case of TrOFNs

↔
TrCA(

↔
U ),

↔
TrCA(

↔
V ), and

↔
TrCA(

↔
Z), their entropy measure was determined by the formula (64). All these values

are presented in Table 2.

Table 2. CA-approximation impact on indistinctness evaluation.

↔
L e(

↔
L) e(

↔
TrCA(

↔
L)) e(

↔
TrUC(

↔
L))

↔
U 0.1365 0.1358 0.1429
↔
V 0.1396 0.1375 0.1429
↔
Z 0.2041 0.1967 0.2000

Source: Own elaboration.

Moreover, we have here

↔
TrCA(

↔
U ) +

↔
TrCA(

↔
V ) =

↔
Tr(1.8193, 3.8193, 8.1807, 10.1807) +

↔
Tr(15.1681, 11.1681, 5.8319, 4.8319)

=
↔
Tr(16.9874, 14.9874, 14.0126, 14.0126) 	=

↔
Tr(17.0207, 15.0207, 13.9793, 13.9793) =

↔
TrCA(

↔
Z).

(97)

Hence, the function
↔
TrAC ∈ (KTr)

K is not an additive operator on K. Furthermore, the two equations
below show the existing effect of estimation errors propagation of oriented energy index and entropy measure.

a(
↔
TrCA(

↔
U ) +

↔
TrCA(

↔
V )) = −1.9784 	= −2.0414 = a(

↔
TrCA(

↔
Z)), (98)

e(
↔
TrCA(

↔
U ) +

↔
TrCA(

↔
V )) = 0.2020 	= 0.1967 = e(

↔
TrCA(

↔
Z)). � (99)

The above example shows that the influence of CA-approximation on the entropy measure
evaluation is moderate, and when it comes to its scale it is similar to the influence of UC-approximation

method. This example proves that the function
↔
TrCA ∈ (KTr)

K is not a linear operator on K.
Calculations run in this example indicate the possibility of the occurrence of the error estimation
propagation of oriented energy index and entropy measure. An extremely interesting phenomenon is
revealed by Equation (98). IT appears that during the addition of OFNs approximations with precisely
imitated ambiguity index, the error propagation of index estimation occurs. This phenomenon will be
further called a zero-error propagation phenomenon.

4.3. Approximation under Criterion of Constant Imprecision (CI-Approximation)

Let us consider an approximation problem in which each feasible TrOFN satisfies conditions
(78) and (79). Such a task will be called CI-approximation. Then, coordinates of all feasible TrOFN
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↔
Tr(p, q, r, s) can be presented as a general solution of equation system (80) and (81). This solution is
given as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

p = x,
q = y,

r = y + 1−3·E
1−E ·A,

s = x + 1+E
1−E ·A,

x, y ∈ R. (100)

Then, to solve the OFN
↔
L(a, b, c, d, SL, EL) CI-approximation problem, the first step is to find the

minimum of a function

ϕ(x, y) = Φ(x, y, y +
1− 3·E
1− E

·A, x +
1 + E
1− E

·A|a, b, c, d) (101)

This minimum is reached in a point (x0, y0) of following coordinates{
x0 = a+d

2 − 1+E
2·(1−E) ·A,

y0 = b+c
2 − 1−3·E

2·(1−E) ·A.
(102)

After inserting these coordinates to (98), we can conclude that the solution of CI-approximation

problem of OFN
↔
L(a, b, c, d, SL, EL) fulfilling condition (82) is TrOFN

↔
Tr( a+d

2 − 1+E
2·(1−E) ·A, b+c

2 − 1−3·E
2·(1−E) ·A, b+c

2 + 1−3·E
2·(1−E) ·A, a+d

2 + 1+E
2·(1−E) ·A) =

↔
TrCI(

↔
L(a, b, c, d, SL, EL)). (103)

Example 9. For OFNs
↔
U =

↔
L(2, 4, 8, 10, SU , EU) determined by (18),

↔
V =

↔
L(15, 11, 6, 5, SV , EV)

determined by (32), and
↔
Z =

↔
U +

↔
V =

↔
L(17, 15, 14, 14, SZ, EZ) determined by (42), we have

↔
Tr(1.8137, 3.8248, 8.1751, 10.1863) =

↔
TrCI(

↔
U ), (104)

↔
Tr(15.1610, 11.1752, 5.8248, 4.8390) =

↔
TrCI(

↔
V ), (105)

↔
Tr(17.0442, 14.9972, 14.0038, 13.9558) =

↔
TrCI(

↔
Z). (106)

Furthermore, we have here

↔
TrCI(

↔
U ) +

↔
TrCI(

↔
V ) =

↔
Tr(1.8137, 3.8248, 8.1751, 10.1863) +

↔
Tr(15.1610, 11.1752, 5.8248, 4.8390)

=
↔
Tr(16.9747, 15.0000, 13.9999, 13.9999) 	=

↔
Tr(17.0442, 14.9972, 14.0038, 13.9558) =

↔
TrCI(

↔
Z).

(107)

Therefore, the function
↔
TrCI ∈ (KTr)

K is not an additive operator on K. Moreover, the two equations
presented below are examples of an occurrence of zero-error propagation phenomenon.

a(
↔
TrCI(

↔
U ) +

↔
TrCI(

↔
V )) = −1.9875 	= −2.0414 = a(

↔
TrCI(

↔
Z)), (108)

e(
↔
TrCI(

↔
U ) +

↔
TrCI(

↔
V )) = 0.1990 	= 0.2041 = e(

↔
TrCI(

↔
Z)). � (109)

The above example proves that the function
↔
TrCI ∈ (KTr)

K is not a linear operator on K.
The calculations in this example confirm that there is a possibility of an occurrence of zero-error
propagation phenomenon of oriented energy index and entropy measure estimations.
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4.4. Approximation under Invariant Criterion (IC-Approximation)

Let us consider an approximation problem in which each feasible TrOFN satisfies conditions (84).
Such an approximation task will be called IC-approximation. Then, coordinates of all feasible TrOFN
↔
Tr(p, q, r, s) can be presented as a general solution of the Equation (85). This solution is given as⎧⎪⎪⎪⎨⎪⎪⎪⎩

p = a,
q = x,
r = y,
s = d,

x, y ∈ R. (110)

Then, to solve the OFN
↔
L(a, b, c, d, SL, EL) IC-approximation problem, the first step is to find the

minimum of a function
ϕ(x, y) = Φ(a, x, y, d|a, b, c, d). (111)

This minimum is reached in a point (x0, y0) of following coordinates{
x0 = b,
y0 = c.

(112)

In this instance, we can conclude that the solution of IC-approximation problem of OFN
↔
L(a, b, c, d, SL, EL) is TrOFN

↔
Tr(a, b, c, d) =

↔
TrIC(

↔
L(a, b, c, d, SL, EL)) =

↔
TrUC(

↔
L(a, b, c, d, SL, EL)). (113)

This means that UC-approximation and IC-approximation problems always have an identical
solution. Therefore, there is no need to consider IC-approximation problem.

4.5. Approximation under Invariant Criterion with Constant Ambiguity (ICCA-Approximation)

Let us consider an approximation problem in which each feasible TrOFN satisfies conditions (78)
and (84). Such an approximation task will be called ICCA-approximation problem. Then, coordinates

of all feasible TrOFN
↔
Tr(p, q, r, s) can be presented as a general solution of equation system (80) and

(85). This solution is given as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
p = a,
q = x,

r = x + 2·A + a− d,
s = d,

x ∈ R. (114)

Then, to solve the OFN
↔
L(a, b, c, d, SL, EL) ICCA-approximation problem, the first step is to find

the minimum of a function

ϕ(x) = Φ(a, x, x + 2·A + a− d, d|a, b, c, d). (115)

This minimum is reached in a point

x0 =
−a + b + c + d

2
− A. (116)
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After inserting that value to (114), we can conclude that the solution of ICCA-approximation

problem of OFN
↔
L(a, b, c, d, SL, EL) is TrOFN

↔
Tr(a,

−a + b + c + d
2

− A,
a + b + c− d

2
+ A, d) =

↔
TrICCA(

↔
L(a, b, c, d, SL, EL)). (117)

Example 10. For OFNs
↔
U =

↔
L(2, 4, 8, 10, SU , EU) determined by (18),

↔
V =

↔
L(15, 11, 6, 5, SV , EV)

determined by (32), and
↔
Z =

↔
U +

↔
V =

↔
L(17, 15, 14, 14, SZ, EZ) determined by (42), we have

↔
Tr(2, 3.6386, 8.3614, 10) =

↔
TrICCA(

↔
U ), (118)

↔
Tr(15, 11.3362, 5.6638, 5) =

↔
TrICCA(

↔
V ), (119)

↔
Tr(17, 15.0414, 13.9586, 14) =

↔
TrICCA(

↔
Z).(!) (120)

Let us notice that the sequence (17, 15.0414, 13.9586, 14) is not monotonic. Therefore, the object
↔
Tr(17, 15.0414, 13.9586, 14) is not an OFN. It is described by its membership relation μ↔

Tr
(·|a, b, c, d) ∈

R× [0, 1] given by the identity (43). This object is an example of an improper OFN described in [6]. Summing

up, the solution of an ICCA-approximation problem OFN
↔
Z does not exist. In addition, this fact also results in

conclusion that for the triple (
↔
U ,
↔
V ,
↔
Z ), the function

↔
TrICCI ∈ (KTr)

K does not fulfil the condition (89).
Next, we evaluate an example influence that ICCA-approximation had on indistinctness evaluation.

For OFNs
↔
U ,
↔
V ,
↔
Z ,
↔
TrCA(

↔
U ),

↔
TrCA(

↔
V ),

↔
TrCA(

↔
Z),

↔
TrUC(

↔
U ),

↔
TrUC(

↔
V ), and

↔
TrUC(

↔
Z), the results from

Example 8 were used. In case of TrOFNs
↔
TrICCA(

↔
U ) and

↔
TrICCA(

↔
V ), their entropy measures were determined

based on formula (64). All these values are given in Table 3.

Table 3. ICCA-approximation impact on indistinctness evaluation.

↔
L e(

↔
L) e(

↔
TrICCA(

↔
L)) e(

↔
TrCA(

↔
L)) e(

↔
TrUC(

↔
L))

↔
U 0.1365 0.1141 0.1358 0.1429
↔
V 0.1396 0.1213 0.1375 0.1429
↔
Z 0.2041 - 0.1967 0.2000

Source: Own elaboration. �

The above example proves that the function
↔
TrICCA ∈ (KTr)

K is not a linear operator on K.
The lack of linearity of that function lets us also expect that the zero-error propagation phenomenon
will occur. The calculations in this example also prove the thesis that for chosen OFNs, the solution
of ICCA-approximation problem might not exist. Similar conclusion can be drawn in case of
CA-approximation and CI-approximation.

4.6. Approximation under Invariant Criterion with Constant Imprecision (ICCI-Approximation)

Let us consider an approximation problem in which each feasible TrOFN satisfies conditions (78),
(79), and (84). Such an approximation task will be called ICCI-approximation problem. Using the
substitutions (85), the equation system (80), (81), and (85) can be transformed into the following
equivalent equation system:{

r− q = 2·A− d + a,
(1 + E)·r− (1 + E)·q = (1− 3·E)·(−d + a).

(121)
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According to Cramer’s Rule [46], system of Equation (121) is consistent if it satisfies the following
condition:

(2·A− d + a)·(1 + E) = (1− 3·E)·(−d + a), (122)

From the condition (122), we have

E =
d− a

2·A− (d− a)
(123)

because the condition (73) implies a 	= d. Therefore, there is no need to consider ICCI-approximation

problem. On the other hand, we can say that if OFN
↔
L(a, b, c, d, SL, EL) satisfies the conditions (82) and

(123) then the ICCA-approximation problem solution
↔
TrICCA(

↔
L(a, b, c, d, SL, EL)) additionally satisfies

the condition (84).

5. Recommendations

OFNs are a form of a record of imprecise information. The purpose of approximation of OFNs
by TrOFNs was justified in the paper. Following that premise, six OFN approximation problems by
the nearest TrOFN were proposed and discussed in the paper. It appeared that the two remaining
approximation problems UC-approximation ad IC-approximation always deliver identical solutions.
Additionally, the ICCI-approximation and ICCA-approximation problem always have identical
solutions. Therefore, they should not be differentiated. Each of remaining four approximation
methods has its advantages and disadvantages.

The main advantage of UC-approximation method is the fact that it is the only discussed
method that delivers a solution of any OFN. IT is also the only one of the discussed approximation
methods free of the occurrence of error propagation phenomenon of imprecision characteristics, that
is, ambiguity index and entropy measure. Thanks to using the UC-approximation for processing
complex sets of information, it is always safe. The drawbacks of UC-approximation method are the
discrepancies between the characteristics of imprecision of approximated OFN and approximating
TrOFN. This distorts the usefulness evaluation of processed information. From the point of view of
algebra, UC-approximation is a linear operator of all OFN space.

All other approximation methods might lack the solution of incidental OFN. Such cases can
be easily recognised utilising the fact that every TrOFN is characterised by a monotonic sequence
of parameters. If, during implementation of a chosen approximation method of a given OFN we
will obtain a non-monotonic sequence of parameters, then such an approximation problem has no
solution. Attempts should be made to approximate a given OFN using another approximation method.
There always exists at least one approximation method with a solution for a given OFN.

CA-approximation method approximates a given OFN by such TrOFN that its oriented
energy index is equal to oriented energy index of OFN. This lets us monitor the usefulness of
processed information more credibly. A more precise approximation method is ICCS-approximation,
which approximates a given OFN by TrOFN of the identical support closure and equally oriented
energy index. It allows one to monitor the usefulness of processed information more credibly. This
means that CA-approximation should be used only in cases in which ICCA-approximation method
does not deliver the solution. For both these approximation methods, there are no universal conditions
restraining the set of approximated OFNs.

On the contrary, in case of CI-approximation method, the approximated OFNs must be
characterised by a low level of entropy that satisfies condition (82). The CA-approximation method
approximated a given OFN by TrOFN with an equally oriented energy index and entropy measure.
It lets us monitor the usefulness of processed information more credibly than in case of the
approximation obtained by the CA-approximation method.

A significant, common disadvantage of CA-, CI-, and ICCA-approximation methods is the
occurrence of zero-error propagation phenomenon, described in Section 4. This usually leads to the
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conclusion that using such methods of approximation in cases of big, complex sets of information
creates a threat for the credible monitoring of processed data usefulness.

In this case, the procedure of approximation method choice depends on individual preferences of
the researcher who wants to approximate OFNs by TrOFNs. Nevertheless, it can be clarified by the
following procedure:

• If the researcher accepts the phenomenon of zero-error propagation, then one should choose CI-
or ICCA-approximation method if applicable. Otherwise, one should choose UC-approximation.

• If, in a considered case, the approximation method provides no solution, then the researcher
chooses the second of CI- or ICCA-approximation method,

• If, in the considered case, CI- and ICCA-approximation methods do not have solutions, then the
researcher should choose the CA-approximation method,

• If, in the considered case, the CA-approximation method does not have a solution, then the
researcher should choose UC-approximation.

The above-described procedure of the approximation method choice can be used separately
for any number. It is acceptable to use different methods for different numbers in the same
empirical implementation.

The results obtained in the paper let us, for instance, use the Oriented Behavioural Present
Value [17,18] in portfolio models described in [19,21,22,24].

6. Conclusions

The results obtained in this article will facilitate the use of OFN in real object modelling.
In the face of conditions (7) and (8), the above-described approximation methods can be used for

approximate FN by trapezoidal FN. The oriented energy index is then reduced to the energy measure.
Among other things, FN are applied in social choice and political sciences. In reference [47],

FN describe imprecise linguistic evaluation labels used by voters. Each assessment can be irrationally
undervalued or overvalued. Then, we can use OFN to describe the irrational deviations of the
assessment. In [48], FN describe voters’ opinion profiles. This is a static description of the population
of voters. On the other side, voters’ opinions are very dynamic. Replacement of FN by OFN would
allow one to describe mentioned dynamics. The problems discussed in this paper can be a starting
point for an attempt to create such approximation methods of OFN by TrOFN that such a constraint
that a “vector of solution parameters is a monotonic sequence” will be included. Moreover, further
research on the considered above approximation method should be devoted to the following problems:

• the impact of approximation on the ordering of OFNs,
• the impact of the approximation on a solution to equations determined by OFNs,
• the impact of approximation on formal modelling of real objects.

Solutions obtained to the last three problems will allow estimation of the approximation error.
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6. Piasecki, K. Revision of the Kosiński’s Theory of Ordered Fuzzy Numbers. Axioms 2018, 7, 16. [CrossRef]
7. Apiecionek, Ł. Fuzzy Observation of DDoS Attack. In Theory and Applications of Ordered Fuzzy Number;

Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany,
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Control. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D.,
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20. Łyczkowska-Hanćkowiak, A.; Piasecki, K. On representation of Japanese candlesticks by ordered fuzzy
numbers. In Methods and Models of Regional Development, Proceedings of the 9th International Scientific
Conference Analysis of International Relations 2018 (Winter Edition Conference), Katowice, Poland, 12 January 2018;
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Czech Republic, 12–14 September 2018; pp. 444–449.

26. Piasecki, K.; Roszkowska, E. On application of ordered fuzzy numbers in ranking linguistically evaluated
negotiation offers. Adv. Fuzzy Syst. 2018, in press.

27. Prokopowicz, P.; Mikołajewska, E.; Mikołajewski, D.; Kotlarz, P. Analysis of Temporospatial Gait Parameters.
In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D.,
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Abstract: This paper discusses an automatic parking control method based on the combination of
the sliding mode variable structure control (SMVSC) and fuzzy logical control. SMVSC is applied to
drive the vehicle from a random initial position and pose, to the designated parking position and
pose. Then, the vehicle is driven from the designated parking position to the target parking slot
using the method of fuzzy logical control, whose rules are limited to the range of the effective initial
position. To combine SMVSC with the fuzzy logical control, the experimental results demonstrate
that effective parking can be guaranteed, even if the initial position is out of the effective parking
area of the fuzzy logical control.

Keywords: automatic parking; sliding mode variable structure control (SMVSC); fuzzy logical control

1. Introduction

As a key part of autonomous driving technologies, automatic parking technology can release
the human driver from complicated parking procedures and can park more efficiently. Accordingly,
automatic parking technology has gained a lot of attention, and the correlative research is increasing [1].

According to the procedures of parking, the research of automatic parking technology has been
divided into two major aspects, which include parking slots detection, and parking path planning and
tracking. In the aspect of parking slots detection, Huang, C.C. and Wang, S.J. proposed a three-layer
Bayesian hierarchical detection framework to detect parking slots [2]. Suhr, J.K. proposed a method
based on estimating parallel line pairs so as to detect a parking slot [3], and used a hierarchical tree
structure method to recognize various parking slot markings [4]. Yu Cheng proposed an approach for
parking slots detection based on video images [5]. Jung, H.G. and Yun, H.L. proposed a method based
on target position-designation to mark the parking slot [6]. In another aspect, research on parking path
planning and tracking have been developed, for example, Vorobieva, H. proposed a path-planning
method based on corresponding geometry and tracking the path with a controller, based on traveled
distance [7]. Li, B. and Wang, K. used a simultaneous dynamic optimization method to optimize the
maneuver planning [8]. Xu, J. proposed an automatic parking method based on computer vision [9].
Sugeno, M. and Murakami, K. designed fuzzy logical controller rules, based on the experience of
human drivers, to park the vehicle [10]. On this foundation, Zhan, Y.N. and Collins, E.G. optimized the
membership functions of the fuzzy logical controller by using a genetic algorithm to park the vehicle
more efficiently [11]. Yin, Y.A. also improved the fuzzy controller based on images using a genetic
algorithm [12].

The fuzzy logical control applied in automatic parking has gained a lot of attention, since Kong,
S.G. applied an adaptive fuzzy logical control algorithm to back up a truck-and-trailer in 1992 [13].
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Liang, Z. designed an automatic parking path tracking controller based on self-organizing fuzzy
control [14]. Xiong, Z.B. proposed an automatic parking algorithm based on the preview fuzzy
control [15]. Grzegorzewski, P. proposed an efficient algorithm for checking separability, which can
be easily applied in practice [16]. The fuzzy logical control applied in automatic parking becomes
the mainstream method, with the advantage of improving robustness against uncertainties and of
simulating the nonlinear control of the human driver [17].

However, fuzzy logical control in automatic parking still has some limitations. In reality, the
uncertainty of a vehicle’s initial position results in the fuzzy logical controller not being able to park the
vehicle successfully, for example, if the initial parking position is outside of the range of the effective
parking position where the fuzzy logical controller can park the vehicle successfully. The effective
parking position depends on the rules of the fuzzy logical controller. In other words, if the fuzzy
logical controller is confirmed, the range of the effective parking position will be confirmed. Hence,
the confirmed fuzzy logical controller cannot park successfully if the vehicle is outside the range of the
effective position.

Our objective is solving this problem (the confirmed fuzzy logical controller cannot park
successfully if the vehicle is outside of the range of the effective position) by sliding the mode variable
structure control (SMVSC). The SMVSC is insensitive to the disturbance and responds quickly [18], so it
is often used to track trajectory [19]. Recently, Yue, M. proposed a method based on a model predictive
control (MPC) and SMVSC in order to track the coordinated trajectory of vehicles [20]. The solution
can be divided into two steps, with the first step using the SMVSC method drive the vehicle from an
initial position to the range of an effective parking position, and the second step parking the vehicle
from the effective parking position to the target slot.

In this paper, a method based on the sliding mode variable structure control (SMVSC) and fuzzy
logical control is proposed in order to park a car, from an initial position where it is outside the range
of an effective position. The procedures can be divided as follows. SMVSC drives the vehicle to the
range of the effective position to prepare for parking. Afterwards, the fuzzy logical controller parks the
vehicle into the target slot. The results, based on MATLAB, show that the control method combining
the SMVSC with fuzzy logical control can realize parking from a random initial position, where it is
outside the range of an effective parking position.

In this paper, Section 2 presents an algorithm of SMVSC, to drive the vehicle from a random initial
position to the effective position. Section 3 discusses the fuzzy logical controller that is used to park
the vehicle from the designated position. Section 4 describes the results of the experiment, based on
MATLAB Simulink. The conclusion remarks are presented in Section 5.

2. Algorithm of the Sliding Mode Variable Structure Control

The vehicle’s position and pose in the 2D plane can be defined as (x, y, θ). As shown in Figure 1,
(x, y) are the coordinates of the center point of a vehicle’s rear axle, θ is the course of the vehicle, ϕ is
the front-wheel corner, L is the wheelbase, and V is the speed of the vehicle. The dynamical equations
of the vehicle can be expressed in Equation (1), as follows:⎧⎪⎨⎪⎩

.
x = v cos θ cos ϕ
.
y = v sin θ cos ϕ

.
θ = v

L sin ϕ

, (1)
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Figure 1. Mode of vehicle.

If ϕ is small enough, then cos ϕ ≈ 1 and sin ϕ ≈ tan ϕ; thus, the dynamical equations of the
vehicle are shown as follows: ⎧⎪⎨⎪⎩

.
x = v cos θ
.
y = v sin θ

.
θ = v

L tan ϕ = ω

, (2)

where ω is the yaw rate.
The dynamical equations in matrix form are governed by the following equations:

.
P =

⎡⎢⎣
.
x
.
y
.
θ

⎤⎥⎦ =

⎡⎢⎣ cos θ 0
sin θ 0

0 1

⎤⎥⎦[ v
ω

]
= Jq, (3)

where J =

⎡⎢⎣ cos θ 0
sin θ 0

0 1

⎤⎥⎦ and q =

[
v
ω

]
.

As shown in Figure 2, (xc, yc, θc) is the vehicle’s initial position and pose, and (xr, yr, θr) is the
vehicle’s ideal position and pose. According to the geometric relationship between (xc, yc, θc) and
(xr, yr, θr), the error (xe, ye, θe) can be defined as Equation (4), as follows:

Pe =

⎡⎢⎣ xe

ye

θe

⎤⎥⎦ =

⎡⎢⎣ cos θc sin θc 0
− sin θc cos θc 0

0 0 1

⎤⎥⎦[Pr − Pc] (4)

where Pr and Pc are

⎡⎢⎣ xr

yr

θr

⎤⎥⎦ and

⎡⎢⎣ xc

yc

θc

⎤⎥⎦, respectively.

According to the derivative of error, Equation (4), and the dynamical equation, Equation (2), the
differential equation of error is proposed as Equation (5), as follows:

.
Pe =

⎡⎢⎣
.
xe
.
ye.
θe

⎤⎥⎦ =

⎡⎢⎣ yeωc − vc + vr cos θe

−xeωc + vr sin θe

ωr −ωc

⎤⎥⎦ (5)

where vr and ωr are the ideal speed and ideal yaw rate, respectively. vc and ωc are the current speed
and current yaw rate, respectively.
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Figure 2. Diagram of the error between (xc, yc, θc) and (xr, yr, θr).

It can be pointed out from the above analysis that, according to the numerical values of Pe, vr,
and ωr, SMVSC aims to output vc and ωc to make Pe converge to zero.

Lemma 1. [21] If any x ∈ R and |x| < ∞, then ϕ(x) = xsin
(
tan−1x

)
≥ 0, if and only if for x = 0, then the

equality holds.

If xe = 0, then the Lyapunov function can be described using Equation (6), as follows:

Vy =
1
2

y2
e (6)

with the hypothesis of θe = − tan−1(vrye),
.

Vy = ye
.
ye = ye(−xeωc + vr sin θe) = −yexeωc −

vrye sin
(
tan−1(vrye)

)
, according to the Lemma 1, vrye sin

(
tan−1(vrye)

)
≥ 0 (if and only if vrye = 0,

then the equality holds), hence
.

Vy ≤ 0.
It can be seen that if xe converges to zero and θe converges to − tan−1(vrye), then ye converges to

zero, thus the switching function is designed using Equation (7), as follows:

s =

[
s1

s2

]
=

[
xe

θe + tan−1(vrye)

]
(7)

We designed a sliding mode controller to let s1 and s2 converge to zero, which means that xe

converges to zero and θe converges to − tan−1(vrye) to make ye and θe converge to zero.
The constant rate reaching law can be expressed as follows:

.
s = −ksgn(s) (8)

It is unavoidable for the sliding mode control to generate chattering effect, but the chattering
effect can be decreased by replacing Equation (8) with Equation (9), as follows:

.
s = −k

s
|s|+ δ

(9)

where δ is a positive number.
Thus, the constant rate reaching law for Equation (7) can be described using Equation (10),

as follows:
.
s =

[ .
s1
.
s2

]
=

[
−k1

s1
|s1|+δ1

−k2
s2

|s2|+δ2

]
(10)
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Using Equation (5), as well as the derivative of Equations (7) and (10), Equation (11) is obtained,
as follows:

.
s =

[ .
s1
.
s2

]
=

[
−k1

s1
|s1|+δ1

−k2
s2

|s2|+δ2

]
=

[
yeωc − vc + vr cos θe

ωr −ωc +
∂α
∂vr

.
vr +

∂α
∂ye

(−xeωc + vr sin θe)

]
(11)

where α = tan−1(vrye), ∂α
∂vr

= ye

1+(vrye)
2 , ∂α

∂ye
= vr

1+(vrye)
2 .

Changing the form of Equation (11), the control law is designed and shown, as follows:

qc =

[
vc

ωc

]
=

⎡⎢⎣ yeωc + vr cos θe + k1
s1

|s1|+δ1
ωr+

∂α
∂vr

.
vr+

∂α
∂ye

(vr sin θe)+k2
s2

|s2|+δ2
1+ ∂α

∂ye
xe

⎤⎥⎦ (12)

The function relationship between ϕ and qc is given by Equation (2), and we changed the form of
Equation (2), resulting in Equation (13), as follows:

ϕc = sin x−1
(

wcL
vc

)
(13)

In this section, the purpose of SMVSC is for driving a vehicle from a random initial position
and pose, to the ideal position and pose [22,23]. As shown in Figure 3, (xr, yr, θr) represents the
ideal position and pose. ωr and vr are the ideal yaw rate and ideal speed of the vehicle, respectively.
According to Equation (4), by combining the ideal position and pose (xr, yr, θr) with the current
position and pose (xc, yc, θc), we defined the error of position and pose (xe, ye, θe), as shown in Figure 2,
which is the input of SMVSC. The output of SMVSC, ωc and vc, which depend on (xe, ye, θe) and ωr,
vr, decide the corner of front wheel, ϕc. Lastly, according to vc and ϕc, SMVSC controls the vehicle.

Figure 3. Relationship among variables of the sliding mode variable structure control (SMVSC).

3. Fuzzy Logical Controller

As shown in Figure 4, w is the weight of the parking slot and h is the height of the parking slot.
(x, y) are the coordinates of the center point of the vehicle’s rear axle, and θ is the course of the vehicle.
In order to adapt to the different sizes of the parking slot, we replaced (x, y) with (xa, ya) [24], which
is defined by Equation (14), as follows: {

xa =
x
w

ya =
y
h

(14)
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Figure 4. Coordinate system and target parking slot.

There are three inputs for the fuzzy logical controller, xa, ya, and θ. The output is the front-wheel
corner, ϕ. The parking speed is the constant. The diagram of the fuzzy logical controller is shown in
Figure 5, as follows:

Figure 5. Diagram of the fuzzy logical controller.

The algorithm of the fuzzy logical controller is the Mamdani algorithm [25], and the membership
functions are shown in Figures 6–9, the abbreviations in Figures 6–9 are the name of membership
function, and the parameters of the membership functions are shown in Table 1.

Figure 6. Generated membership function for xa.
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Figure 7. Generated membership function for ya.

Figure 8. Generated membership function for θ.

Figure 9. Generated membership function for ϕ.

Table 1. Parameter of the membership function.

Input Output

xa ya θ ϕ

Fuzzy
Subset

S
Triangular

S
Triangular

N
Trapezoidal

NB
Triangular

[−0.23,0.20,0.57] [−0.30,0.40,1.21] [−44.6,−27.6,−17.6,−2.30] [−35,−32.14,−29.15]

B
Triangular

B
Triangular

Z
Triangular

NM
Triangular

[0.40,0.70,1.00] [0.94,1.65,2.24] [−4.46,0,2.03] [−29.77,−20.43,−11.09]

P
Triangular

PM
Triangular

P
Trapezoidal

N
Triangular

[0.93,1.47,1.92] [2.18,2.52,2.75] [0.11,7.37,56.3,91] [−20.43,−11.71,−2.87]

PB
Trapezoidal

PB
Trapezoidal

PM
Triangular

Z
Triangular

[1.74,2.14,2.37,2.50] [2.75,3.23,4.40,5.40] [88,90,93.2] [−3.85,0,4.12]

PB
Trapezoidal

P
Triangular

[92.45,97,120,120] [2.87,11.71,20.43]

PM
Triangular

[4.98,14.95,24.91]

PB
Trapezoidal

[23.67,26.16,37.37,37.37]
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The parking strategy is described in Figure 10. Leave 2 m between the vehicle and the parking
slot. Keep the vehicle in reverse, with the speed of v (m/s), until the distance between the extended
line of the parking slot line and the tail of the vehicle reach 1 m. Then, let the front-wheel corner, ϕ,
turn 35◦. When the course of the vehicle, θ, reaches 90◦, it returns to ϕ.

Figure 10. Diagram of the parking strategy.

According to the parking strategy, the fuzzy rules are designed and are shown in Tables 2–5.

Table 2. Fuzzy rules when xa is S.

θ
ya S B PM PB

N – – – –
Z – – – –
P NB NB – –

PM Z – – –
PB – – – –

Table 3. Fuzzy rules when xa is B.

θ
ya S B PM PB

N – – – –
Z – – – –
P – NB – –

PM – – – –
PB – – – –
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Table 4. Fuzzy rules when xa is P.

θ
ya S B PM PB

N – – – –
Z – NB – –
P – NB – –

PM – – – –
PB – – – –

Table 5. Fuzzy rules when xa is P.

θ
ya S B PM PB

N – NB – –
Z – Z – –
P – PB – –

PM – – – –
PB – – – –

There are nine rules in the fuzzy rule base.
Finally, the center average is used in the defuzzifier to calculate ϕ.

4. Results

In this section, we show the effect of SMVSC and the fuzzy logical controller, respectively.
The simulating parameters of SMVSC are shown as follows: (xr, yr, θr) = (0, 0, 0), ωr = 0, vr = 0,
(xc, yc, θc) = (2, 2, 0), ωc = 0, and vc = 0. The results are shown in Figures 11–15.

Figure 11. Abscissa X time response diagram.

Figure 12. Ordinate Y time response diagram.
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Figure 13. Course θ time response diagram.

Figure 14. Speed V time response diagram.

Figure 15. ϕ time response diagram.

As we can see from Figures 11–13, the ideal position and pose (xr, yr, θr) and the initial position
and pose (xc, yc, θc) are changed from the initial error of (−2,−2, 0) to (0, 0, 0), by the control laws
vc and ϕc, which are shown in Figures 14 and 15. In other words, according to control laws vc and
ϕc, the vehicle is driven from the initial position (xc, yc, θc) and pose to the ideal position and pose
(xr, yr, θr). It is noteworthy that the convergence time of (xe, ye, θe) in ten seconds. In Figures 14 and 15,
the curvilinear trend is smooth, so that it can be implemented in reality [26].

The result of the fuzzy logical controller is given in Figure 16, which is the trajectory of the
vehicle’s center point of the rear axle.
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Figure 16. The trajectory of the fuzzy control parking to a different initial position.

As shown in Figure 16, the simulating parameters are shown as follows: w = 2.5, h = 5.3, speed
v = −1 m/s, the initial position and pose of magenta trajectory is (x, y, θ) = (7, 12, 0), the initial
position and pose of green trajectory is (x, y, θ) = (7, 6.5, 0), and both of the trajectories are outside the
area of the effective parking position, so they park unsuccessfully. The initial position and pose of the
red trajectory is (x, y, θ) = (7, 9, 0), which is inside the red box, which allows for parking successfully.
According to the experiments, if the initial position is within the area of the red box, shown in Figure 16,
the fuzzy logical controller described in Section 3 can park the vehicle successfully.

As discussed in the Section 1 (Introduction), this paper aims to park the vehicle from an initial
position, which is out of the black box, by combining SMVSC with the fuzzy logical control. Figure 17
shows the effect of this method.

Figure 17. Trajectory of two different control methods.

The magenta trajectory is controlled by the hybrid method. The red trajectory is controlled by
the fuzzy logical controller, which is the same as the hybrid method. The simulating parameters of
Figure 17 are shown as follows: the ideal position and pose (xr, yr, θr) are the same as that of Figure 16
(x, y, θ) = (7, 9, 0). The initial position and pose are (xc, yc, θc) = (20, 12, 0), which is out of black
box. The result of the simulating shows that the hybrid method can park the vehicle into the target
slot successfully, but the fuzzy logical control cannot park successfully (the left side of the vehicle
is not in the slot). The result shows that the hybrid method can expand the range of the effective
parking position.

5. Conclusions

A control parking method, which combines SMVSC with the fuzzy logical control, is proposed in
this paper. This method aims to expand the range of the effective parking position, which is confirmed
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by the fuzzy logical controller. The disadvantage of the fuzzy logical control is that the range of the
effective initial position and pose are limited to its rules. In other words, the fuzzy logical controller
cannot park the vehicle when the initial position is out of the effective initial position. The aim of
this paper to solve this problem, of driving the vehicle from a random initial position to the effective
parking position using the mothed of SMVSC, and parking the vehicle from the effective parking
position using the method of fuzzy logical control.

SMVSC can control a vehicle from a random initial position to an effective parking position in
limited amount of time; furthermore, the curve of the control laws is smooth enough to implement in
reality, and the chattering effect is decreased. The results also show that the fuzzy logical controller has
nine rules, which is according to the strategy of parking, and can park the vehicle from the effective
parking position (area of red box). By comparing the fuzzy logical control and the hybrid control
method, the experimental results verified that the fuzzy logical control cannot park from an initial
position outside the range of an effective parking position, but the hybrid method can. In short,
parking from a random initial position to parking outside of the effective parking position is realized
by the hybrid method of combining the SMVSC and fuzzy logical control.
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Abstract: Because of the continuous burst of emergency events (EEs) recently, emergency decision
making (EDM) has become an active research topic due to its crucial role in relieving and reducing
various losses and damages (property, lives, environment, etc.) caused by EEs. Current EDM studies
based on prospect theory (PT) have considered decision maker’s (DM’s) psychological behavior,
which is very important in the EDM process because it affects DM’s decision behavior directly,
particularly under the uncertainty decision environment. However, those studies neglected an
important fact that different emergency situations should be handled by different measures to show
the pertinence and effectiveness of the emergency response in the real world, which has been taken
into consideration in EDM studies based on game theory (GT). Different behavior experiments
show that DMs usually have limited rationality when involved in risk and an uncertain decision
environment, in which their psychological behavior has distinct impacts on their decision choice and
behavior. Nevertheless, the existing studies of EDM based on GT build on an assumption that DMs
are totally rational; however, it is obvious that such an assumption is unreasonable and far from the
real-world situation. Motivated by these limitations pointed out previously, this study proposes a
novel EDM method combining GT and PT that considers not only the DM’s psychological behavior,
but also takes different situations’ handling for EEs into account, which is closer to the EDM problems
in reality. An example and comparison with other methods are provided to demonstrate the validity
and rationality of the proposed method for coping with real-world EDM problems.

Keywords: emergency response; prospect theory; game theory; situation-response

1. Introduction

The definition of emergency event (EE) is [1] “events which suddenly take place causing or having
the possibility to cause intense death and injury, property loss, ecological damage and social hazards”,
such as landslides, earthquakes, terrorist attacks, etc. In the World Disaster Report 2016, there were
6090 disasters that took place between 2006 and 2015 in the world. In these disasters, 771,911 people
had been killed, 1,917,557 thousands people had been affected and the economic damage had reached
1,424,814 million dollars [2]. From such ghastly statistics, it is necessary to take some strategies to
reduce such kinds of losses and impacts on mankind’s daily life and socio-economic development.
Fortunately, emergency decision making (EDM) is one such kind of strategy, which is defined as a
process in which a decision maker (DM) selects the optimal alternative to respond to or control the EE
in order that life and property protection and political and social stability can be achieved [3]. Because
of the important role in reducing the losses and impacts caused by EEs, EDM has become an active
research field in recent years [4–8].
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The EDM problem is usually complex and dynamic because the EDM environment is full of
risk and uncertainty [9]. Different behavior studies prove that DMs have limited rationality under
an environment with risk and uncertainty, and the psychological behavior of DM is an important
factor in the EDM process due to its direct influence on decision behavior and outcomes. Hence,
some researchers pay close attention to DM’s psychological behavior by means of prospect theory
(PT), proposed by Kahneman and Tversky in 1979 [10], in the EDM process because of its greatest
influence among different behavior theories (such as regret theory [11], disappointment theory [12],
third-generation PT [13], etc.) and having achieved fruitful results [1,14–18].

All the research with and without PT has made important contributions to EDM; however, both of
them have limitations that they do not take into consideration about the different emergency situations,
which are caused by the dynamic evolution and uncertainty of EEs, nor do they consider DM’s
psychological behavior. Each emergency situation should be considered and be handled by proper
measures because of the limited resources in the real world and the importance of DM’s psychological
behavior in the decision process.

Game theory (GT) is a useful tool for providing a mathematical process to select the optimal
strategy for one player with respect to all possible strategies of the other ones throughout the game [19].
Thus, theoretically speaking, GT can help DM select proper measures to deal with different situations
that may occur in real-world EEs. The EDM problem is a typical noncooperation game if we regard
the EE and DM as the game players [20], in which the emergency situations and the measures are
regarded as the strategies of EE and DM, respectively. Therefore, the EDM problems can be solved
from the perspective of game theory.

In recent years, some EDM methods based on GT have been studied, which have taken into account
different emergency situations dealt with by different measures [20–24]. However, it is necessary to point
out that existing EDM methods based on GT build on an assumption that the player (decision maker)
has total rationality [24,25]. Nevertheless, different studies [19,26,27] have shown that DMs have limited
rationality under an environment with risk and uncertainty, and the DM’s psychological behavior is very
important to the decision process in EDM problems and must be considered.

To manage the limitations mentioned above, this study proposes a novel EDM method based
on GT and PT that takes into account DM’s psychological behavior by means of PT and different
situations handled by using different measures based on GT.

The outline of this paper is as follows: Section 2 provides a brief introduction of PT and GT
that will be utilized in our proposal together with a brief review of related works highlighting the
importance of this study. A novel EDM method will be presented in Section 3 that considers both DM’s
psychological behavior and coping with different emergency situations. Section 4 offers a case study
on a typhoon emergency and a comparison with existing studies. Section 5 provides the conclusions
and future works of this paper.

2. Preliminaries

In this section, GT and PT will be briefly reviewed so that unfamiliar readers can understand our
proposed method easily. In addition, some related works to illustrate the importance and necessity of
this research are reviewed.

2.1. Game Theory in Emergency Decision Making

GT is a useful tool to solve decision making problems in which the situations either have conflict
or cooperation and sometimes both [23]. These situations may happen when there are two or more
players (DMs) involved in a same system and they attempt to achieve their own objectives using the
same resources [28]. As a branch of mathematical analysis, GT provides a scientific process to choose
the best strategies for each possible situation throughout the game [19]. Such a characterization of GT
is suitable for EDM problems, in which the DM usually needs to have a corresponding response with
respect to different emergency situations.
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Generally, if a game has n players, it will be denoted as G = {(Si; Pi), i = 1, 2, . . . , n}, where Si
and Pi denote the strategies and payoffs of the i-th player, respectively. In the game process of EDM
problems, there are usually two players, i.e., the EE and DM, in which the EE is a special player because
it is unconscious about the benefits or costs. Thus, the game between EE and DM can be denoted as
G = {(Si; Pi)}, where i = 1, 2.

The game can be classified according to the relationship among the players [29]: if the relationship
among the players is competitive, the game is a noncooperation game; otherwise, if the players are
cooperative, it is a cooperation game. Obviously, the relationship between EE and DM in the game is
noncooperation, so the game in EDM problems can be assumed as a typical noncooperation game, the
zero-sum game, i.e., P1 + P2 = 0, which means if the DM gains(i, the EE loses(i, otherwise, the EE
gains(i, while the DM loses(i.

Three basic notions of GT for the EDM problem are briefly introduced as follows:

1. Players: Players are always denoted by i = 1, 2, . . . , n and at least i ≥ 2; this means that there
are at least two players in one game. In EDM, there are two players, who are the decision maker
(DM) and the EE. Thus, in the emergency game G = {(Si, Pi)}, i = 1, 2, where 1 denotes the DM
and 2 refers to EE.

2. Strategies: Let Si = {Siki
} be the set of action strategies of the i-th player who has ki strategies.

In EDM, S1 = {S1δ} refers to the set of different alternatives of DM, in which S1δ denotes the δ-th
alternatives, δ = 1, 2, · · · k1. S2 = {S2θ} refers to the set of different situations of EE, where S2θ

denotes the θ-th possible situation of EE, θ = 1, 2, · · · k2.
3. Payoffs: Let Pi(Si) be the payoffs of the i-th player, where P1(S1) + P2(S2) = 0.

The game can also be classified according to the action sequence among players [29]: if the players
take the action simultaneously or the players do not know the exact information of the other player’s
action, the game is a static game; if not, the game is a dynamic one. The dynamic one is also called
the extensive from game (EFG) [29]. Obviously, in the EDM problems, the player EE always takes
the action firstly, so the game between DM and EE is an EFG problem. However, in the real world,
because of the imprecise and incomplete information of the EE, which strategy the EE will take the
DM does not know. Thus, when this situation occurs, the EFG problem can be regarded as the static
one, and its game tree is shown in Figure 1.
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Figure 1. The game tree between an emergency event (EE) and decision maker (DM).

Based on the presentation mentioned above, since the EDM problem is a static game, therefore
the payoff matrix of EE and DM can be simplified into Table 1 according to Figure 1.

299



Symmetry 2018, 10, 476

Table 1. The payoff matrix of emergency event (EE) and decision maker (DM).

EE

DM

S21 . . . S2θ . . . S2k2

S11 (P1(S21, S11), P2(S21, S11)) . . . (P1(S2θ , S11), P2(S2θ , S11)) . . . (P1(S2k2 , S11), P2(S2k2 , S11))

...
... . . .

... . . .
...

S1δ (P1(S21, S1δ), P2(S21, S1δ)) . . . (P1(S2θ , S1δ), P2(S2θ , S1δ)) . . . (P1(S2k2 , S1δ), P2(S2k2 , S1δ))

...
... . . .

... . . .
...

S1k1 (P1(S21, S1k1 ), P2(S21, S1k1 )) . . . . . . (P1(S2θ , S1k1 ), P2(S2θ , S1k1 )) . . . . . . (P1(S2k2 , S1k1 ), P2(S2k2 , S1k1 ))

Based on Figure 1 and Table 1, the game process between EE and DM can be described as shown
in Figure 2. In our proposal, we assume that the EE chooses its strategy randomly.
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Figure 2. The game process between EE and DM.

The assumption presented in current EDM studies based on GT [20–24] in which the DM is
completely rational is not fully reasonable. Due to the importance of the psychological behavior of
DM, it will be taken into account in the phase of determining payoffs and will be introduced in detail
in the third section of this proposal.

2.2. Prospect Theory in Emergency Decision Making

As was mentioned in the Introduction, DM’s psychological behavior is a key and important
factor in the EDM process especially, when DM is under pressure. However, such an important issue
is neglected in the current EDM approaches based on GT; thus, it will be taken into account in this
proposal by using PT.

PT is a useful tool to consider human being’s psychological behavior issues, which was firstly
presented in Kahneman and Tversky’s study in 1979 [10] and was developed by them in 1992 [30]
as an economic behavior theory. In the proposal of Kahneman and Tversky, they provided a simple
and clear computation process to describe the psychological behavior using reference points (RPs),
losses, gains and overall prospect values, which are important concepts in PT. Since PT has a simple
calculation process and a clear logic, it has been widely applied in the field of decision making to solve
the problems considering human being’s psychological behavior [13,15,30–32]. Therefore, the PT will
be utilized to address the DM’s psychological behavior in our proposal.

Generally, in the process of decision making, PT was distinguished as three phases [30]:

1. An editing phase, in which the gains and losses can be calculated according to the RPs provided
by DM.

2. An evaluation phase: in this phase, the prospect values can be obtained by a value function,
then the overall prospect values will be calculated on the foundation of prospect values and the
weighting vector.
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3. A selection phase, in which the alternative with the highest overall prospect value will be selected
as the best one to deal with the given decision problem.

According to PT, human beings are usually more sensitive to losses than the same gains, and their
psychological behavior shows risk-seeking for losses and risk-aversion for gains [26]. Thus, PT can be
depicted by means of an S-shaped value function that shows a concave shape in the loss domain and a
convex shape in the gain domain, respectively (see Figure 3). The value function of PT is related to RPs
and expressed by a power law presented as below [10]:

v(x) =

{
xα, x ≥ 0
−λ(−x)β, x < 0

(1)

where α is the parameter with respect to gains, while β is the parameter associated with losses, 0 ≤ α,
β ≤ 1. x means gains with x ≥ 0, and losses with x < 0. λ denote the parameter of risk aversion,
λ > 1. The values of parameters α, β and λ are determined through experiments [26,33–35].

x0x
0x GainsLosses

Value

0( )v x

( )v x

0( )v x

0

Figure 3. S-shaped value function of prospect theory (PT).

2.3. Related Works

In order to demonstrate the importance and necessity of this study, several important studies in
the literature are briefly reviewed that are close to our research.

The DM’s psychological behavior has been addressed in existing EDM studies by different
researchers. For example, Fan et al. [14] proposed a risk decision analysis method for emergency
response that addressed DM’s psychological behavior in the decision process by employing PT.
Wang et al. [16] developed an EDM method that considered not only DM’s psychological behavior in
the decision process by using PT, but also the dynamic evolution feature of EE. Due to the uncertainty
information about EEs in real-world situations, it is usually a big challenge for DM to estimate possible
losses by using crisp values that are employed in existing EDM studies [14,16,36]. Wang et al. [18]
presented an EDM method based on PT considering DM’s psychological behavior with interval
values, which not only extended the scope of PT for dealing with interval values, but also made
the EDM method close to the real world. With the increasing complexity of EEs in the real world,
one DM alone [14,16,18,36] cannot make comprehensive judgments and proper decisions; therefore,
Wang et al. [17] proposed a group EDM method for emergency situations by using group wisdom to
support DM making a decision that takes into account experts’ psychological behavior in the decision
process by using PT. Due to the fact that there are various types of information about EEs in the real
world, such as crisp values [14,16,36], interval values [18], linguistic information [37], and so on, none
of the proposals considers various types of information at the same time; to do that, Wang et al. [38]
proposed a group EDM method for not only considering various types of information at the same time,
but also together with experts’ psychological behavior and hesitation in qualitative contexts. Motivated
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by [38], Zhang et al. [39] presented an EDM method based on PT and hesitant fuzzy sets considering
not only experts’ psychological behavior, but also experts’ hesitation in quantitative contexts.

Despite existing EDM studies based on PT having achieved fruitful results [14,16–18,36–40], they
neglect an important fact that different emergency situations should be handled by using different
measures because of the limited resources and dynamic evolution of EEs.

Nevertheless, to address such an important issue in the real world, GT has been employed
in existing EDM studies. For example, Yang and Xu [20] proposed an engineering model based
on sequential games considering different situations coping with a flood eruption EDM problem.
Chen et al. [41] provided a game theory-based approach for evaluating possible terrorist attacks and
corresponding deployment of emergency responses. Gupta et al. [23] proposed a game-theoretic
EDM method for considering the optimal allocation solutions of resources to different situations of
the EEs, particularly when the available resources are limited. Cheng and Zheng [42] proposed a
game-theoretical analysis method considering possible solutions of emergency evacuation for different
emergency cases. Rezazadeh et al. [43] presented a security risk assessment method based on game
theory for considering the possible terrorist attacks on oil and gas pipelines. Gao et al. [44] proposed
an approach for considering different scenarios coping with corporate environment risk based on
game theory. Wu [45] presented two game theoretic models for search-and-rescue resource allocation
and selection of an acceptable plan for different districts after devastating tsunamis.

Although the existing EDM studies based on GT have obtained remarkable results regarding
the different situations coping with the problems of EEs, they build on an assumption that DM is
totally rational in the decision process. However, different behavior studies [19,26,27] have proven
that DM has limited rationality and his/her psychological behavior can affect the decision behavior
directly, especially under a risk and uncertainty environment, and must be considered because of its
importance in the decision process.

To overcome the limitations pointed out above and highlight the significance and importance of
our research, this study combines the merits of PT and GT to propose a novel EDM method based on
GT and PT that considers not only the different situations of coping with problems, but also DM’s
psychological behavior in the EDM process, which is introduced in detail in Section 3.

3. Emergency Decision Making Method Based on Game Theory and Prospect Theory

As previously mentioned, the proposed EDM method based on GT and PT is introduced in this
section. The general framework of our proposal is illustrated in Figure 4, and it consists of three
main phases:

1. Definition framework: this part introduces the basic notations and related terminology that are
employed in this proposal.

2. Computation of overall prospect values: in this part, the value function will be used to compute
the overall prospect values according to gains and losses.

3. Selecting the optimal alternative based on payoffs: the payoffs of DM including his/her
psychological behavior and the payoffs of EE will be determined. Based on the payoffs, the
optimal alternative will be selected to respond to corresponding emergency situation.
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Figure 4. The general framework of the proposed method.

3.1. Definition Framework

Due to the information about EE usually being inadequate or incomplete, especially in the early
stage in a real-world situation, and related emergency situations become more and more complicated
with the dynamic evolution of EE across time, it is hard for DM to describe the EE using just one
type of information; thus, for convenience, different types of information will be used to describe
the situation of EE and emergency response alternatives [15,16]. Thus, in our proposal, both interval
and numerical values are employed, in which the interval values are used to estimate the damages or
losses caused by EE and numerical values are used to describe the cost of alternatives.

The following notations that will be used in our proposal are defined below:

• S1 = {S1δ}: refers to the set of different alternatives, in which S1δ denotes the δ-th alternative,
δ = 1, 2, . . . , k1.

• S2 = {S2θ}: refers to the set of different situations, in which S2θ denotes the θ-th situations,
θ = 1, 2, . . . , k2.

• X = {Xm}: refers to the set of criteria, in which Xm represents the m-th criterion, m = 1, 2, . . . , M.
• WXm = (wX1 , . . . , wXM ): refers to the weighting vector, in which wXm represents the weight of

the m-th criterion. The weighting vector is usually provided by the DM satisfying
M
∑

m=1
wXm = 1,

wXm ∈ [0, 1], m = 1, 2, . . . , M.
• Cδ: refers to the cost of the δ-th available emergency alternative, δ = 1, 2, . . . , k1.
• Rθm = [RL

θm, RH
θm], RH

θm > RL
θm: refers to the values of RPs, in which RL

θm and RH
θm represent

the lower and upper limits of RP provided by DM for the m-th criterion in the θ-th situation,
respectively, m = 1, 2, . . . , M, θ = 1, 2, . . . , k2.

• Eδm = [EL
δm, EH

δm], EH
δm > EL

δm: refers to the value of the pre-defined effective control scope [18], in
which EL

δm and EH
δm represent the lower and upper limits of losses’ protection scope from EE with

respect to the δ-th alternative concerning the m-th criteria, respectively. Eδm is usually determined
by the local government, δ = 1, 2, . . . , k1, m = 1, 2, . . . , M.

3.2. Calculation of Gains and Losses

When an EE occurs, it may have different possible emergency situations. The DM needs to collect
related information about possible situations and losses to make a decision. According to the collected
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information, DM forms the corresponding RP, Rθm, of the m-th criterion Xm in the θ-th situation S2θ .
Gains and losses can be determined on the basis of the RPs Rθm and the pre-defined effective control
scope Eδm of different alternatives.

Because both the RPs and the pre-defined effective control scopes are expressed in the form
of interval values, the relationship between the interval values Rθm and Eδm should be analyzed
before determining the gains and losses. To simplify, the relationship between Rθm and Eδm and the
computation formulas for obtaining gains and losses taken from Wang et al. [17] will be utilized in
our proposal.

The positional relationship between Rθm and Eδm is summarized in Table 2. Tables 3 and 4 provide
the computation formulas of gains and losses for all possible relationships between Rθm and Eδm,
in which Tables 3 and 4 are for cost criteria and benefit criteria, respectively.

Based on the computation formulas of gain and loss provided in Tables 3 and 4, the gain matrix
GMθ and the loss matrix LMθ can then be formed. Afterwards, the overall prospect values can be
calculated by the value function on the basis of the gain and loss matrix GMθ , LMθ .

Table 2. Positional relationship between interval values Rθm and Eδm [17].

Cases Positional Relationship

Case 1 EH
δm < RL

θm

 
L
mE

H
mE

mE

L
mR

H
mR

mR

Case 2 RH
θm < EL

δm

 

L
mE

H
mE

L
mR

H
mR

mEmR

Case 3 EL
δm < RL

θm < EH
δm < RH

θm
L
mE H

mE

mE

L
mR

H
mR

mR

Case 4 RL
θm < EL

δm < RH
θm < EH

δm
H
mE

mE

L
mR

H
mRL

mE

 mR

Case 5 EL
δm < RL

θm < RH
θm < EH

δm
L
mE

H
mE

L
mR H

mR

mE
mR

Case 6 RL
θm < EL

δm < EH
δm < RH

θm

 
L
mE

H
mE

mE
L
mR

H
mR

mR

Table 3. Computation formulas of gain and loss for cost criteria [17].

Cases Gain Gδm Loss Lδm

Case 1 EH
δm < RL

θm RL
θm − 0.5(EL

δm + EH
δm) 0

Case 2 RH
θm < EL

δm 0 RH
θm − 0.5(EL

δm + EH
δm)

Case 3 EL
δm < RL

θm < EH
δm < RH

θm 0.5(RL
θm − EL

δm) 0

Case 4 RL
θm < EL

δm < RH
θm < EH

δm 0 0.5(RH
θm − EH

δm)

Case 5 EL
δm < RL

θm < RH
θm < EH

δm 0.5(RL
θm − EL

δm) 0.5(RH
θm − EH

δm)

Case 6 RL
θm < EL

δm < EH
δm < RH

θm 0 0
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Table 4. Computation formulas of gain and loss for benefit criteria [17].

Cases Gain Gδm Loss Lδm

Case 1 EH
δm < RL

θm 0 0.5(EL
δm + EH

δm)− RL
θm

Case 2 RH
θm < EL

δm 0.5(EL
δm + EH

δm)− RH
θm 0

Case 3 EL
δm < RL

θm < EH
δm < RH

θm 0 0.5(EL
δm − RL

θm)

Case 4 RL
θm < EL

δm < RH
θm < EH

δm 0.5(EH
δm − RH

θm) 0

Case 5 EL
δm < RL

θm < RH
θm < EH

δm 0.5(EH
δm − RH

θm) 0.5(EL
δm − RL

θm)

Case 6 RL
θm < EL

δm < EH
δm < RH

θm 0 0

3.3. Computation of Overall Prospect Values

Assume that the gain matrix of the θ-th situation is denoted by GMθ = (Gθδm)δ×m, and similarly,
the loss matrix and value matrix of the θ-th situation are denoted by LMθ = (Lθδm)δ×m and VMθ =

(vθδm)δ×m, respectively.

vθδm = Gθδm
α + [−λ(−Lθδm)

β], δ = 1, 2, . . . , k1; θ = 1, 2, . . . , k2; m = 1, 2, . . . , M (2)

where vθδm means the value with respect to the alternative S1δ, concerning criterion Xm, in the situation
S2θ . According to [30], the parameters α, β and λ can employ different values. In this proposal, the
following ones will be employed, i.e., α = β = 0.88, λ = 2.25. According to PT, Equation (2) is usually
utilized to measure the degree of gains and losses, in which different feelings of DM towards gains and
losses are reflected by using prospect values; the greater vθδm, the more DM satisfies, which denotes
that the DM satisfies his/her decisions; otherwise, he/she regrets or feels depressed about his/her
decisions. In this way, the DM’s psychological behavior can be described clearly and comprehensively.

Due to vθδm not usually having the same units, a normalization process for removing the effect of
units is needed. The normalized value matrix VMθ = (vθδm)δ×m can be obtained by using:

vθδm =
vθδm
v∗θδ

, δ = 1, 2, . . . , k1; θ = 1, 2, . . . , k2; m = 1, 2, . . . , M (3)

where vθδ
∗ = max

m∈M
|vθδm|.

On the basis of the normalized value matrix VMθ and the weighting vector WXm provided by
DM, the overall prospect values of alternative S1δ can be calculated by using the following equation,

Oθδ =
M

∑
m=1

vθδmwXm , δ = 1, 2, . . . , k1; θ = 1, 2, . . . , k2; m = 1, 2, . . . , M (4)

3.4. Selecting Optimal Alternative Based on Payoffs

In this section, the payoffs of EE and DM will be determined on the basis of the overall prospect
values, Oθδ, obtained above. Then, according to the payoffs of EE and DM, the optimal alternative can
be selected as the proper response regarding different emergency situations.

3.4.1. Determining the Payoffs of the Players

Due to the fact that the game between EE and DM is a zero-sum game and EE is unconscious of
the benefits or costs that it will get or lose, just determining the payoffs of the DM is adequate for the
emergency response.

Because Oθδ is a comprehensive value that reflects the DM’s psychological behavior, it is regarded
as the part of the payoffs of DM. Since each alternative has its own cost, it is more reasonable to
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consider the prospect values of per unit cost rather than the overall prospect values. The payoffs of
DM are determined as follows:

P1(S1) = f (Oθδ, Cδ) =
Oθδ

Cδ
, δ = 1, 2, · · · k1; θ = 1, 2, · · · k2 (5)

Then, the payoffs of EE can be obtained as:

P2(S2) = −P1(S1) (6)

From Equations (5) and (6), the selection process of the optimal alternative can be determined in
the coming subsection.

3.4.2. Selection of the Optimal Alternative with Respect to Each Emergency Situation

As mentioned previously, the game between EE and DM is a zero-sum game, and EE is a special
player, which has no consciousness about the real world, so it is adequate to determine the optimal
strategy of the DM.

The equation for selecting the optimal strategy of DM with respect to each possible emergency
situation goes as follows:

P1(S2θ , S∗1δ) = max
δ∈k1

P1(S2θ , S1δ), θ = 1, 2, · · · k2 (7)

The vector strategy (S2θ , S∗1δ) means if the EE has taken S2θ as its strategy, the best response for
the DM is the strategy S∗1δ. In other words, the strategy S∗1δ will be the optimal strategy of DM to deal
with the emergency situation S2θ .

For a clear understanding, the procedures of the new proposed method are summarized as the
following steps:

1. Based on the information of Rθm and Eδm, gains and losses can be calculated by using the
equations provided in Tables 3 and 4, respectively.

2. The gain and loss matrix GMθ , LMθ can be formed on the basis of the obtained gains and losses,
respectively. Then, the value matrix VMθ and its normalized form VMθ can be obtained by using
Equations (2) and (3), respectively. Afterwards, the overall prospect value Oθδ can be calculated
by Equation (4).

3. Based on the overall prospect value Oθδ and the cost of each alternative, the payoffs of DM and
EE can be determined by Equations (5) and (6), respectively.

4. Based on the obtained payoffs of DM and EE, the DM can select the optimal strategies for dealing
with all possible emergency situations according to Equation (7).

4. Case Study and Comparison

4.1. Case Study

This part will provide a case study on a typhoon emergency event to demonstrate the validity
and rationality of the proposed method.

In summer, it is quite common for coastal cities to suffer from different kinds of losses (lives,
property, environment, etc.) caused by typhoons. In order to take effective measures to reduce the
losses caused by typhoon as much as possible in the real world, this section takes typhoon landfall as
an application background to demonstrate the validity and rationality of our proposal. Suppose that a
typhoon is approaching and will possibly make landfall at one city located on the southeast coast of
China. When it makes landfall, it might cause various losses, such as lives, properties, environment
damages, etc. Thus, the following criteria are concerned in this case study:

c1: The number of casualties.
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c2: Property losses (in 1000$).
c3: The negative effects on the environment on a scale of 0–100 (0: no negative effect; 100: serious

negative effect).
The emergency alternatives are described as follows:
Regarding the coming typhoon, the following alternatives can be carried out:
S11: Broadcast and send short messages to remind citizens regarding the coming typhoon and

suggest that citizens prepare food, water, medicine and other daily necessities in advance; furthermore,
local government organizes related departments to check the evacuation solutions and paths to ensure
the citizens’ safety as much as possible;

S12: Based on S11, inform schools and plants to check the safety issues; classes and work can
be stopped if necessary. Meanwhile, employees in ocean transport, fishermen and mariculture are
required to come back to or go closer to harbors to take shelter from the typhoon. In addition, check
the stability of high-altitude facilities and dangerous buildings.

S13: Based on S12, telecom operators and power supply departments strengthen their checking and
maintenance to ensure all different lines of communication and power supply are open. Meanwhile,
check the urban drainage pipelines to avoid urban waterlogging.

S14: Based on S13, vindicate public security in preventing criminal issues from occurring;
meanwhile, hospitals prepare enough ambulances and staff to ensure that injured citizens can be
rescued and treated immediately. Furthermore, the reservoirs and hydropower stations near the city
should make reasonable schedules to avoid floods.

Cδ is the cost of the δ-th alternative (in 1000$). The criteria weights of each criterion are provided
by DM in this case study. The pre-defined effective control scope Eδm, the cost Cδ and related weights
wXm are given in Table 5.

Table 5. The Eδm, Cδ and wXm of the typhoon emergency.

Alternatives

Criteria

c1(0.5) c2(0.25) c3(0.25) Cδ

Eδ1 Eδ2 Eδ3 Cδ

S11 [3,5] [200,400] [40,50] 10
S12 [6,14] [800,1200] [50,60] 30
S13 [14,20] [1200,1500] [60,70] 70
S14 [18,25] [1500,1800] [70,80] 130

Analyzing by the weather forecast and historical data, there are four possible situations of a
typhoon in the coming 72 h, as follows:

S21: The typhoon will not make landfall at the city, and it just brings light rain and wind;
S22: The typhoon will make landfall at part of the area of the city and bring moderate rain

and gales;
S23: The typhoon will make landfall over the entire city and bring rainstorms and strong wind;
S24: The typhoon will have a front landfall over the entire city and bring downpours and

blustery weather;
The reference points Rθm regarding the four possible emergency situations provided by DM are

shown in Table 6.
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Table 6. Reference points (RPs) regarding the four emergency situations.

Situations

Criteria

c1 c2 c3

Rθ1 Rθ2 Rθ3

S21 [5,8] [100,300] [20,35]
S22 [5,12] [300,500] [35,45]
S23 [12,18] [600,800] [45,55]
S24 [18,20] [800,100] [55,65]

According to the information shown in Tables 5 and 6, the positional relationship between Rθm
and Eδm in Table 2 and the equations provided in Tables 3 and 4, the gain and loss matrix GMθ , LMθ

can be obtained as follows,

GM1 =

[ 0 0 10
3 700 20
9 1050 30
13.5 1350 40

]
, GM2 =

[ 0 0 2.5
1 500 10
5 850 20
9.5 1150 30

]
,

GM3 =

[ 0 0 0
0 200 2.5
1 550 10
3.5 850 20

]
, GM4 =

[ 0 0 0
0 100 0
0 350 2.5
0 650 10

]
;

LM1 =

[ − 1 − 50 0
0 0 0
0 0 0
0 0 0

]
, LM2 =

[ − 1 − 100 0
0 0 0
0 0 0
0 0 0

]
,

LM3 =

[ − 8 − 300 − 2.5
− 3 0 0
0 0 0
0 0 0

]
, LM4 =

[ − 14 − 500 − 10
− 8 0 − 2.5
− 2 0 0
0 0 0

]
.

Based on GMθ and LMθ , the value matrix VMθ and its normalized form VMθ can be obtained
according to Equations (2) and (3), respectively, i.e.,

VM1 =

[ − 2.25 − 70.35 7.59
2.63 318.92 13.96
6.91 455.67 19.95
9.88 568.45 25.69

]
, VM2 =

[ − 2.25 − 129.47 2.24
1 237.19 7.59
4.12 378.35 13.96
7.25 493.64 19.95

]
,

VM3 =

[ − 14.02 − 340.45 − 5.04
− 5.92 105.90 2.24
1 257.94 7.59
3.01 378.35 13.96

]
, VM4 =

[ − 22.95 − 533.67 −17.07
− 14.02 57.54 − 5.04
− 4.14 173.29 2.24
0 298.79 7.59

]
; and

VM1 =

[ − 0.2278 − 0.1238 0.2952
0.2662 0.5610 0.5434
0.6999 0.8160 0.7763
1 1 1

]
, VM2 =

[ − 0.3103 − 0.2623 0.1123
0.1379 0.4805 0.3803
0.5685 0.7664 0.6999
1 1 1

]
,

VM3 =

[ − 1 − 0.8998 − 0.3610
− 0.4218 0.2799 0.1604
0.0713 0.6818 0.5434
0.2147 1 1

]
, VM4 =

[ − 1 − 1 − 1
− 0.6111 0.1078 − 0.2952
−0.1804 0.3247 0.1312
0 0.5599 0.4444

]
.

According to Equation (4), the overall prospect values Oθδ of the θ-th alternatives in δ-th
emergency situation are calculated and shown in Table 7.

Table 7. The overall prospect values Oθδ of the θ-th alternatives in the δ-th emergency situation.

Oθδ
Situations

S21 S22 S23 S24

Alternative

S11 −0.0710 −0.1927 −0.8152 −1.000
S12 0.4092 0.2841 −0.1008 −0.3524
S13 0.7444 0.6508 0.3419 0.0238
S14 1.000 1.000 0.6074 0.2511

Based on Equations (5) and (6) and the results of Oθδ shown in Table 7, the payoff matrix of EE
and DM is provided in Table 8.
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Table 8. The payoff matrix of EE and DM.

EE

DM

S21 S22 S23 S24

S11 (−0.0071, 0.0071) (−0.0193, 0.0193) (−0.0815, 0.0815) (−0.0100, 0.0100)

S12 (0.0136,−0.0136) (0.0095,−0.0095) (−0.0034, 0.0034) (−0.0117, 0.0117)

S13 (0.0106,−0.0106) (0.0093,−0.0093) (0.0049,−0.0049) (0.0003,−0.0003)

S14 (0.0077,−0.0077) (0.0077,−0.0077) (0.0047,−0.0047) (0.0019,−0.0019)

Then, based on Table 8 and Equation (7), the best strategy of DM for different possible situations
can be obtained as follows:

If the EE has selected the strategy S21, the best strategy of DM is the one with the biggest payoff
value, which can be obtained by using Equation (7):

P1(S21, S∗1δ) = max
δ∈k1

P1(S21, S1δ)

= max
{

P1(S21, S11), P1(S21, S12), P1(S21, S13), P1(S21, S14)
}

= max {−0.0071, 0.0136, 0.0106, 0.0077}
= 0.0136

That is P1(S21, S∗1δ) = P1(S21, S12), which means if the EE has selected the strategy S21, the best
strategy for DM is S12.

Similarly, the best strategies of DM regarding different possible situations are the ones with the
biggest payoffs, which are underlined and bolded in Table 9.

Table 9. Best strategies of DM.

EE

DM

S21 S22 S23 S24

S11 (−0.0071, 0.0071) (−0.0193, 0.0193) (−0.0815, 0.0815) (−0.0100, 0.0100)

S12 (0.0136,−0.0136) (0.0095,−0.0095) (−0.0034, 0.0034) (−0.0117, 0.0117)

S13 (0.0106,−0.0106) (0.0093,−0.0093) (0.0049,−0.0049) (0.0003,−0.0003)

S14 (0.0077,−0.0077) (0.0077,−0.0077) (0.0047,−0.0047) (0.0019,−0.0019)

The four optimal solutions with respect to each emergency situation are (S21, S12), (S22, S12),
(S23, S13) and (S24, S14), which means if the EE has selected S21, the best strategy of DM is to select S12;
if the EE has selected S22, the best strategy of DM is to select S12; if the EE has selected S23, the best
strategy of DM is to select S13; the EE has selected S24, the best strategy of DM is to select S14.

4.2. Comparison with Other Methods

In order to demonstrate the superiority and novelty of our proposal, a comparison with other
methods will be conducted. Because there are no existing approaches that are based on PT and
GT simultaneously, thus, some characteristics have been studied to highlight the superiority of our
proposal; see Table 10.

Table 10. Comparison with other emergency decision making (EDM) methods.

Literature Considering DM’s Psychological Behaviors Considering Different Emergency Situations

[4–8,40,46] No No
[1,15–18] Yes No
[20–24] No Yes

Our proposal Yes Yes
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According to Table 10, it can be seen clearly that our proposal considers not only the DM’s
psychological behavior, but also the coping with the different emergency situations. The proposed
EDM method is closer to the real-world situations than other EDM methods.

5. Conclusions and Future Works

A new EDM method based on GT and PT is proposed in this paper aiming at overcoming the
limitations in previous EDM approaches. Due to the inadequate and incomplete information about
EEs, interval values are employed in our proposal to estimate the possible losses caused by different
situations. DM’s psychological behavior and coping with different emergency situations have been
considered simultaneously, which is the significant difference between our proposal and the existing
EDM approaches. An example about a typhoon and related comparison with existing EDM approaches
have been conducted to demonstrate the novelty and rationality of our proposal. It is hoped that our
proposed method can be applied to solve real-word problems in the near future.

The research in the near future should consider the different types of information in the game
process, such as linguistic information, hesitant fuzzy linguistic information, and so on, which are
common information types in the real world when DM hesitates in his/her assessments.
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Abstract: The q-rung orthopair fuzzy sets (q-ROFSs), originated by Yager, are good tools to describe
fuzziness in human cognitive processes. The basic elements of q-ROFSs are q-rung orthopair
fuzzy numbers (q-ROFNs), which are constructed by membership and nonmembership degrees.
As realistic decision-making is very complicated, decision makers (DMs) may be hesitant among
several values when determining membership and nonmembership degrees. By incorporating dual
hesitant fuzzy sets (DHFSs) into q-ROFSs, we propose a new technique to deal with uncertainty,
called q-rung dual hesitant fuzzy sets (q-RDHFSs). Subsequently, we propose a family of q-rung dual
hesitant fuzzy Heronian mean operators for q-RDHFSs. Further, the newly developed aggregation
operators are utilized in multiple attribute group decision-making (MAGDM). We used the proposed
method to solve a most suitable supplier selection problem to demonstrate its effectiveness and
usefulness. The merits and advantages of the proposed method are highlighted via comparison with
existing MAGDM methods. The main contribution of this paper is that a new method for MAGDM
is proposed.

Keywords: q-rung orthopair fuzzy set; q-rung dual hesitant fuzzy; q-rung dual hesitant fuzzy
Heronian mean; multiple attribute group decision-making

1. Introduction

With the rapid economic and technological development, competition among enterprises has
become increasingly fierce. For manufacturing companies, choosing an appropriate supplier is of
high importance. Generally speaking, companies need to collect relevant information for all suppliers
and use some technologies to determine the most suitable one. In essence, supplier selection is a
multiple attribute decision-making problem. Due to the complexity of modern decision-making
problems, it is impossible for a single decision maker (DM) to grasp all the information of all decision
objectives. Thus, many real decision-making problems often require group decision-making, i.e.,
multiple attribute group decision-making (MAGDM). Decision-making problems are constrained by a
variety of internal and external factors. For example, as decision-making problems become increasingly
complex, it is almost impossible to describe attribute values using crisp values. Decision-making
problems often have enormous complexity and uncertainty. So, many scholars focus on how to
deal with and describe uncertain phenomena. In 1986, Atanassov [1] proposed the concept of an
intuitionistic fuzzy set (IFS) for coping with fuzziness and uncertainty. IFS is more powerful and useful
than Zadeh’s fuzzy set (FS) [2], as FS only has a membership degree, which makes it impossible to
comprehensively describe imprecision. Since the appearance of IFS, it has been widely applied to
medical diagnoses [3,4], pattern recognition [5,6], cluster analysis [7,8], and especially, MAGDM [9–12].
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However, there are quite a few circumstances with which IFSs cannot cope. For instance, in some cases,
the sum of the membership and nonmembership degrees provided by DMs is greater than that of
their square sum being less than or equal to one. To effectively address these cases, the concept of the
Pythagorean fuzzy set (PFS) was introduced by Yager [13]. Obviously, the PFS is a generalized form of
an IFS and can describe a wider information range. Owing to the effectiveness and powerfulness of
PFSs, MAGDM with Pythagorean fuzzy information have become a research topic of great interest.
Studies on PFSs can be roughly divided into three categories. The first category includes extensions
of classical decision-making methods to MAGDM with Pythagorean fuzzy information, the most
representative of which are the Pythagorean fuzzy decision-making methods proposed by Zhang
and Xu [14] and Khan et al. [15] based on TOPSIS (Technique for Order Preference by Similarity to
an Ideal Solution), and the one developed by Ren et al. [16] on the basis on TODIM (an acronym in
Portuguese for Interactive Multi-Criteria Decision Making). The second category contains MAGDM
methods with Pythagorean fuzzy information based on aggregation operators. Aggregation operators
play a significantly important role in MAGDM. Solving MAGDM in different scenarios requires
different aggregation operators. For example, to fairly treat membership and nonmembership degrees
of PFSs, Ma et al. [17] raised symmetry operations of PFSs and proposed a battery of Pythagorean
fuzzy symmetric aggregation operators. Xing et al. [18] put forward Pythagorean fuzzy Choquet
integral aggregation operators based on Frank t-norm and t-conorm. To capture the interrelationship
between aggregated Pythagorean fuzzy numbers (PFNs), Wei and Lu [19] put forward Pythagorean
fuzzy Maclaurin symmetric mean operators. To fully absorb the advantages of Bonferroni mean and
generalized Bonferroni mean in capturing the relationship among variables, Liang et al. [20] and
Zhang et al. [21] introduced the Pythagorean fuzzy Bonferroni mean and generalized Pythagorean
fuzzy Bonferroni mean operators, respectively. Due to the complexity of decision-making issues and
the lack of sufficient experience, DMs often make unreasonable assessments. These unreasonable
evaluation values have a serious negative impact on the final decision results. Thus, Li et al. [22]
proposed the Pythagorean fuzzy power Muirhead mean operators to eliminate such bad impacts.
Analogously, to fully utilize the advantages of Pythagorean fuzzy interaction operational rules in
dealing with the interaction between membership and nonmembership degrees, Xu et al. [23] proposed
the Pythagorean fuzzy interaction Muirhead mean operators. The third category is the investigation
of combining PFSs with linguistic term sets. In actual MAGDM problems, the evaluations made by
DMs need to be expressed from both qualitative and quantitative perspectives. Thus, Teng et al. [24],
Du et al. [25], and Xian et al. [26] investigated MAGDM with Pythagorean fuzzy linguistic sets
and interval-valued Pythagorean fuzzy linguistic sets, respectively. Considering uncertain linguistic
terms provides DMs with a more convenient method to express their assessments. Geng et al. [27],
Liu et al. [28], and Liu et al. [29] proposed the concept of Pythagorean fuzzy uncertain linguistic sets
and studied their applications in MAGDM. In addition, some scientists also investigated MAGDM
issues with Pythagorean 2-tuple linguistic information [30–32].

Although in the majority of cases IFSs and PFSs can successfully describe the attribute values in
MAGDM, there are quite a few situations in which IFSs and PFSs are insufficient. According to the
constraints of IFSs and PFSs, when the square sum of membership and nonmembership degrees exceed
one, then the attribute value cannot be represented by both IFSs and PFSs. To deal with such a case,
more recently, Yager [33] introduced the concept of the q-rung orthopair fuzzy set (q-ROFS), which can
be viewed as an extension of IFS and PFS. From the definition of q-ROFSs, it is not difficult to see that
q-ROFSs give DMs great freedom and a wider space within which to evaluate alternatives. Therefore,
the decision-making opinions of DMs are greatly preserved, resulting in less information distortion.
Analogous to PFSs, quite a few aggregation operators for q-ROFSs have been proposed [34–37]. To deal
with both DMs’ quantitative and qualitative evaluations in MAGDM, Li et al. [38] proposed q-rung
orthopair linguistic sets as well as their aggregation operators. Moreover, Li et al. [39] introduced
q-rung picture fuzzy linguistic sets by taking DMs’ neutrality degree into consideration.
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Due to the extreme complexity of realistic decision-making problems, the abovementioned
decision-making methods with q-ROFSs are still insufficient. In reality, it is very common to encounter
the following issues: (1) The complexity of decision-making problems causes DMs to be highly hesitant.
In quite a few real-life decision-making scenarios, DMs may feel hesitant among a group of values
when determining the attribute values in q-ROFSs. By taking such hesitancy into consideration,
Torra [40] originated the concept of the hesitant fuzzy set (HFS), in which the membership degree
is denoted by several discrete values instead of a single value. Afterwards, Zhu et al. [41] pointed
out the drawback of HFS is that it only contains membership degrees. Subsequently, they proposed
the concept of the dual hesitant fuzzy set (DHFS), which has both membership and nonmembership
degrees. Recently, Wei and Lu [42] extended DHFS to PFS and proposed the concept of dual hesitant
Pythagorean fuzzy set (DHPFS) (It is noted that Khan et al. [43] and Liang and Xu [44] also proposed the
so-called hesitant Pythagorean fuzzy set, however, their definitions are the same as Wei and Lu’s [42]
DHPFS). Analogously, DMs may feel that it is difficult to determine membership and nonmembership
degrees by single values, as they prefer to use several values to represent them in q-ROFSs. Therefore,
this paper proposes the concept of the q-rung dual hesitant fuzzy set (q-RDHFS), which is constructed
by a set of q-rung membership degrees and q-rung nonmembership degrees. Compared with DHFS and
DHPFS, the proposed q-RDHFS allows the sum and square sum of membership and nonmembership
degrees to be greater than one, providing decision makers more freedom to express their assessments.
Compared with q-ROFS, the proposed q-RDHFS can effectively deal with DMs’ hesitancy when
determining membership and nonmembership degrees, consequently resulting in less information loss.
Thus, the q-RDHFS exhibits more usefulness, power, and flexibility over DHFS, DHPFS, and q-ROFS.
In Section 2, we introduce the concept of q-RDHFS in detail. (2) In most MAGDM, there is a strong
correlation between attributes. Thus, in the process of information integration, it is not only necessary
to aggregate the attribute values themselves but also to collect the correlation between them. Heronian
mean (HM) [45] is the most common information aggregation method that can reflect the correlation
between variables. Thus, we extended HM to q-RDHFSs to integrate q-rung dual hesitant fuzzy
information. Then, we applied the proposed operators to solve MAGDM problems.

The main significance of this paper is that it expands the theory of q-ROFSs and DHFSs and
proposes a new, powerful tool for describing uncertain phenomena, called q-RDHFSs. Compared
with many existing fuzzy set theories, the newly proposed q-RDHFSs show great flexibility and
effectiveness and can very effectively express the decision-making opinions of DMs in a very hesitant
state. We also investigated their applications in MAGDM. The remainder of the paper is organized as
follows. Section 2 briefly recalls some basic concepts. Section 3 presents some q-rung dual hesitant
fuzzy Heronian mean operators. Section 4 introduces a novel approach to MAGDM. Section 5 provides
a numerical example to demonstrate the validity and superiority of the proposed method. Finally,
Section 6 summarizes the paper.

2. Basic Concepts

2.1. q-Rung Orthopair Fuzzy Set

Definition 1 [33]. Let X be an ordinary fixed set. A q-ROFS A defined on X is given by

A = {〈x, uA(x), vA(x)〉 |x ∈ X } (1)

where uA(x) and vA(x) represent the membership and nonmembership degrees, respectively, satisfying uA(x) ∈
[0, 1], vA(x) ∈ [0, 1] and 0 ≤ uA(x)q + vA(x)q ≤ 1, (q ≥ 1). The indeterminacy degree is defined as
πA(x) =

(
uA(x)q + vA(x)q − uA(x)qvA(x)q)1/q. For convenience, (uA(x), vA(x)) is called a q-rung

orthopair fuzzy number (q-ROFN) by Liu and Wang [34], which can be denoted by A = (uA, vA).
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From Definition 1, it is not difficult to find out that q-ROFS can describe a wider information
range than IFSs and PFSs. To illustrate the difference among intuitionistic fuzzy numbers (IFNs), PFNs,
and q-ROFNs, we present their space of acceptable membership degrees in Figure 1.

1u v+ ≤

2 2 1u v+ ≤

1q qu v+ ≤

(IFNs)

(PFNs)

(q-ROFNs)

Figure 1. Comparison of grades of IFNs, PFNs, and q-ROFNs.

Figure 1 clearly shows that as the index of u and v increases, the range of information that the
fuzzy numbers can describe also grows. Therefore, the q-ROFNs can expand the information that the
attributes can describe and widen the space for experts to evaluate alternatives.

Definition 2 [34]. Let ã1 = (u1, v1), ã2 = (u2, v2) be two q-ROFNs and λ be a positive real number. Then,

1. ã1 ⊕ ã2 =

((
uq

1 + uq
2 − uq

1uq
2

)1/q
, v1v2

)
.

2. ã1 ⊗ ã2 =

(
u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)

.

3. λã1 =

((
1−
(

1− uq
1

)λ
)1/q

, vλ
1

)
.

4. ãλ
1 =

(
uλ

1 ,
(

1−
(

1− vq
1

)λ
)1/q

)
.

Definition 3 [34]. Let ã = (ua, va) be a q-ROFN. Then, the score of ã is defined as S(ã) = uq
a − vq

a and the
accuracy of ã is defined as H(ã) = uq

a + vq
a. For any two q-ROFNs, ã1 = (u1, v1) and ã2 = (u2, v2). Then,

1. If S(ã1) > S(ã2), then ã1 > ã2;
2. If S(ã1) = S(ã2), then

if H(ã1) > H(ã2), then ã1 > ã2;
if H(ã1) = H(ã2), then ã1 = ã2.

2.2. q-Rung Dual Hesitant Fuzzy Set

In this subsection, we introduce q-RDHFS, which is a new extension of q-ROFS and DHFS.
Clearly, the proposed q-RDHFS is constructed of a set of membership degrees and several
nonmembership degrees.

Definition 4. Let X be an ordinary fixed set. A q-RDHFS A defined on X is given by

A = {〈x, hA(x), gA(x)〉|x ∈ X}, (2)
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in which hA(x) and gA(x) are two sets of values in [0, 1] denoting the possible membership and nonmembership
degrees of the element x ∈ X to the set A, respectively, with the conditions

γq + ηq ≤ 1 (q ≥ 1),

where γ ∈ hA(x), η ∈ gA(x) for all x ∈ X. For convenience, the pair d(x) = (hA(x), gA(x)) is called a
q-RDHFE denoted by d = (h, g) with the conditions γ ∈ h, η ∈ g, 0 ≤ γ, η ≤ 1, 0 ≤ γq + ηq ≤ 1. Evidently,
when q = 2, then q-RDHFS is reduced to Wei and Lu’s [42] DHPFS, and when q = 1, then q-RDHFS is reduced
to Zhu et al.’s [41] DHFS.

To compare any two q-RDHFEs, in the following, we propose a comparison law for q-RDHFEs.

Definition 5. Let d = (h, g) be a q-RDHFE, S(d) =

(
1

#h ∑
γ∈h

γ

)q

−
(

1
#g ∑

η∈g
η

)q

be the score function of d,

and H(d) =

(
1

#h ∑
γ∈h

γ

)q

+

(
1

#g ∑
η∈g

ηq

)q

the accuracy function of d, where #h and #g are the numbers of the

elements in h and g, respectively. Then, let di = (hi, gi)(i = 1, 2) be any two q-RDHFEs. Thus, we have the
following comparison laws:

1. If S(d1) > S(d2), then d1 is superior to d2, denoted by d1 > d2;
2. If S(d1) > S(d2), then

if H(d1) = H(d2), then d1 is equivalent to d2, denoted by d1 = d2;
if H(d1) > H(d2), then d1 is superior to d2, denoted by d1 > d2.
In the following, we define some operations of the q-RDHFEs.

Definition 6. Let d = (h, g), d1 = (h1, g1), and d2 = (h2, g2) be any three of q-RDHFEs and λ be a positive
real number. Then,

1. d1 ⊕ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{(
γ

q
1 + γ

q
2 − γ

q
1γ

q
2

) 1
q
}

, {η1η2}
}

;

2. d1 ⊗ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2},

{(
η

q
1 + η

q
2 − η

q
1η

q
2

) 1
q
}}

;

3. λd = ∪γ∈h,η∈g

{{(
1− (1− γq)λ

) 1
q
}

,
{

ηλ
}}

, λ > 0;

4. dλ = ∪γ∈h,η∈g

{{
γλ
}

,
{(

1− (1− ηq)λ
) 1

q
}}

, λ > 0.

2.3. Heronian Mean

The HM was first proposed by Sykora [45] for crisp numbers. It can process the interrelationship
between arguments.

Definition 7 [45]. Let xi(i = 1, 2, ..., n) be a group of real numbers, and s, t > 0. Then, the HM is defined as

HMs,t(x1, x2, ..., xn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

xs
i xt

j

) 1
s+t

. (3)

Recently, Yu [46] introduced the concept of geometric Heronian mean (GHM).

Definition 8 [46]. Let xi(i = 1, 2, ..., n) be a group of numbers, and s, t > 0. Then, the GHM is defined as

GHMp,q(x1, x2, ..., xn) =
1

p + q

(
n

∏
i=1

n

∏
j=i

(
pxi + qxj

) 2
n(n+1)

)
. (4)
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3. The q-Rung Dual Hesitant Fuzzy Heronian Mean Operators

In this subsection, we extend the HM and GHM to q-RDHFSs and propose some new q-rung dual
hesitant fuzzy Heronian mean aggregation operators.

3.1. The q-Rung Dual Hesitant Fuzzy Heronian Mean Operator

Definition 9. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. If

q− RDHFHMs,t(d1, d2, ..., dn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j

) 1
s+t

, (5)

then q− RDHFHMs,t is called the q-rung dual hesitant fuzzy Heronian mean (q-RDHFHM) operator.
Based on the operational laws of the q-RDHFEs shown in Definition 6, we can get Theorem 1.

Theorem 1. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. Then, the aggregated value by the

q-RDHFHM is also a q-RDHFE, and

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

γs
i γt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭,⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

(6)

Proof. From Definition 6, we have

ds
i = ∪γi∈hi ,ηi∈gi

{
{γs

i },
{(

1−
(

1− η
q
i

)s) 1
q

}}
, dt

j = ∪γj∈hj ,ηj∈gj

{{
γt

j

}
,

{(
1−
(

1− η
q
j

)t
) 1

q
}}

.

Therefore,

ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{
γs

i γt
j

}
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1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 1

q
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,
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ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj
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⎧⎨⎩
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1−
n
∏
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(
1−
(

γs
i γt

j
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(
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q
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1− η

q
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q
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and

n
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i=1
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∑
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ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj
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Thus,

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

γs
i γt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n

∏
i=1

n

∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭.

The q-RDHFHM operator has the following properties. �

Theorem 2. (Monotonicity) Let dj and d′ j be two collections of q-RDHFEs. If dj ≥ d′ j for all j = 1, 2, . . . , n,
then

q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d′1, d′2, ..., d′n
)

(7)

Proof. Since di ≥ d′ i and dj ≥ d′ j for i = 1, 2, ..., n and j = i, i + 1, ..., n, we have

ds
i dt

j ≥ d′si d′tj.

Then,
n

∑
i=1

n

∑
j=i

ds
i dt

j ≥
n

∑
i=1

n

∑
j=i

d′si d′tj,

and
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j ≥
2

n(n + 1)

n

∑
i=1

n

∑
j=i

d′si d′tj.

So, (
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j

) 1
s+t

≥
(

2
n(n + 1)

n

∑
i=1

n

∑
j=i

d′si d′tj

) 1
s+t

.

i.e.,
q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d′1, d′2, ..., d′n

)
.

�

Theorem 3. (Idempotency) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If all the q-RDHFEs

are equal, i.e., dj = d = (h, g), then

q− RDHFHMs,t(d1, d2, ..., dn) = d. (8)

Proof. Since dj = d for all i, we have

q− RDHFHMs,t(d1, d2, ..., dn) =

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

=

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds+t

) 1
s+t

=
(
ds+t) 1

s+t = d.

�

Theorem 4. (Boundedness) Let dj =
(
hj, gj

)
, j = 1, 2, . . . , n be a collection of q-RDHFEs. If d+ = max

j
dj

and d− = min
j

dj, then

d+ ≥ q− RDHFHMs,t(d1, d2, ..., dn) ≥ d−. (9)
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Proof. According to the Theorems 2 and 3, we can get

q− RDHFHMs,t(d1, d2, ..., dn) ≤ q− RDHFHMs,t(d+, d+, ..., d+
)
,

and
q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d+, d+, ..., d+

)
.

Thus, we can get
d+ ≥ q− RDHFHMs,t(d1, d2, ..., dn) ≥ d−.

The advantages of q-RDHFHM are that it not only reflects the hesitation of DMs in the
decision-making process and captures the correlation between attribute values, but it also shows
great generality and flexibility. In the following, we can discuss some special cases of the q-RDHFHM
operator. �

1. If t→ 0 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy generalized linear
descending weighted mean operator, and we can obtain

q− RDHFHMs,0(d1, d2, ..., dn) = lim
t→0

⎧⎨⎩∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
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∏
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∏
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⎫⎬⎭,⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−
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∏
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n
∏
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(
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1− η
q
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1− η

q
j

)t
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n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

= ∪γi∈hi ,ηi∈gi

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎨⎪⎩
(

1−
(

n
∏
i=1

(
1−
(
γs

i
)q
)n+1−i

) 2
n(n+1)

) 1
qs

⎫⎪⎬⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−
(

n
∏
i=1

(
1−
(

1− η
q
i

)s)n+1−i
) 2

n(n+1)
) 1

s

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

(10)

Evidently, it is equivalent to weight the information (d1, d2, ..., dn) with the weight values
(n, n− 1, ..., 1).

2. If s→ 0 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy generalized liner ascending
weighted mean operator, and we can obtain

q− RDHFHM0,t(d1, d2, ..., dn) = lim
s→0

⎧⎨⎩∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

γs
i γt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭,⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

= ∪γj∈hj ,ηj∈gj

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎪⎨⎪⎩
(

1−
(

n
∏
i=1

(
1−
(

γt
j

)q)i
) 2

n(n+1)
) 1

qt

⎫⎪⎬⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝1−

⎛⎝1−
(

n
∏
i=1

(
1−
(

1− η
q
j

)t
)i
) 2

n(n+1)
⎞⎠

1
t

⎞⎟⎟⎠
1
q
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(11)

Obviously, it is equivalent to weight the information (d1, d2, ..., dn) with weight values
(1, 2, . . . , n).

3. If s = t = 1
2 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy basic Heronian mean

operator, and we can obtain

q− RDHFHM
1
2 , 1

2 (d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(√

γiγj

)q) 2
n(n+1)

) 1
q
⎫⎬⎭,

⎧⎨⎩ n
∏
i=1

n
∏
j=i

(
1−
√(

1− η
q
i

)(
1− η

q
j

)) 2
nq(n+1)

⎫⎬⎭
⎫⎬⎭ (12)
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4. If s = t = 1, then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy line Heronian mean
operator. It follows that

q− RDHFHM1,1(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(
γiγj

)q
) 2

n(n+1)

) 1
2q
⎫⎬⎭,⎧⎪⎪⎨⎪⎪⎩

⎛⎝1−
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)(
1− η

q
j

)) 2
n(n+1)

) 1
2
⎞⎠

1
q

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

(13)

5. If q = 2, then the q-RDHFHM reduces to a dual hesitant Pythagorean fuzzy Heronian mean
operator. So, we can obtain

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

γs
i γt

j

)2
) 2

n(n+1)
) 1

2(s+t)

⎫⎪⎬⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(
1− η2

i
)s
(

1− η2
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
2
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

(14)

6. If q = 1, then the q-RDHFHM reduces to the dual hesitant fuzzy Heronian mean operator
proposed by Yu et al. [47]. It follows that

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

γs
i γt

j

)) 2
n(n+1)

) 1
s+t
⎫⎬⎭,⎧⎨⎩

⎛⎝1−
(

1−
n
∏
i=1

n
∏
j=i

(
1− (1− ηi)

s(1− ηj
)t
) 2

n(n+1)

) 1
s+t
⎞⎠⎫⎬⎭

⎫⎬⎭
(15)

3.2. The q-Rung Dual Hesitant Fuzzy Weighted Heronian Mean (q-RDHFWHM) Operator

Definition 10. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection q-RDHFEs. The q-RDHFWHM

operator is defined as

q− RDHFWHMs,t(d1, d2, ..., dn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

(nwidi)
s(nwjdj

)t
) 1

s+t

, (16)

where w = (w1, w2, ..., wn)
T is the weight vector of (d1, d2, ..., dn), satisfying wj ∈ [0, 1],

n
∑

j=1
wj = 1.

According to the operations for q-RDHFEs, the following theorem can be obtained.

Theorem 5. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection q-RDHFEs. The aggregated value

by the q-RDHFWHM is also a q-RDHFE and

q− RDHFWHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎝1−

n
∏
i=1

n
∏
j=i

(
1−
((

1−
(

1− γ
q
i

)nwi
) 1

s

)((
1−
(

1− γ
q
j

)nwj
) 1

t

)) 2
n(n+1)

⎞⎠
1

q(s+t)

⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− η
qnwi
i

)s(
1− η

qnwj
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

(17)

The proof of Theorem 5 is similar to that of Theorem 1.
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Theorem 6. Suppose w = (1/n, 1/n, ..., 1/n)T. Then,

q− RDHFWHMs,t(d1, d2, ..., dn) = q− RDHFHMs,t(d1, d2, ..., dn). (18)

Proof. Since w = (1/n, 1/n, ..., 1/n)T , then according to Equation (20),

q− RDHFWHMs,t(d1, d2, ..., dn) =

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

(nwidi)
s(nwjdj

)t
) 1

s+t

=

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

(
n 1

n di

)s(
n 1

n dj

)t
) 1

s+t

=

(
2

n(n+2)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

= q− RDHFWHMs,t(d1, d2, ..., dn)

Moreover, it is easy to prove that the q-RDHFWHM operator has the properties of monotonicity
and boundedness. �

3.3. The q-Rung Dual Hesitant Fuzzy Geometric Heronian Mean Operator

In this subsection, we shall extend the GHM to aggregate q-rung dual hesitant fuzzy information.

Definition 11. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. Then, the q-RDHFGHM

operator is defined as

q− RDHFGHMs,t(d1, d2, ..., dn) =
1

s + t

(
n

∏
i=1

n

∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
. (19)

Based on the operational laws of q-RDHFEs, the following theorem can be obtained.

Theorem 7. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. The aggregated value by the

q-RDHFGHM is also q-RDHFE and

q− RDHFGHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭,

⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭
⎫⎬⎭

(20)

Proof. According to Definition 6, we can get

sdi = ∪γi∈hi ,ηi∈gi

{{(
1−
(

1− γ
q
i

)s) 1
q

}
,
{

ηs
i
}}

and

tdj = ∪γj∈hj ,ηj∈gj

{{(
1−
(

1− γ
q
j

)t
) 1

q
}

,
{

ηt
j

}}
.
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Then,

sdi + tdj = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 1

q
}

,
{

ηs
i ηt

j

}}
,

and

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
{(

1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,

⎧⎨⎩
(

1−
(

1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q
⎫⎬⎭
⎫⎬⎭.

Thus,

n
∏
j=i

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
{

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,

⎧⎨⎩
(

1−
n
∏
j=i

(
1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q
⎫⎬⎭
⎫⎬⎭,

and

n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{
n
∏
i=1

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q
⎫⎬⎭
⎫⎬⎭

Therefore,

1
s+t

(
n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭,

⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭
⎫⎬⎭.

In the following, we present some desirable properties of the q-RDHFGHM operator. �

Theorem 8. (Monotonicity) Let dj = (d1, d2, ..., dn) and d′ j = (d′1, d′2, ..., d′n) be two collections of
q-RDHFEs. If dj ≥ d′ j for all j = 1, 2, ..., n, then

q− RDHFGHMs,t(d1, d2, ..., dn) ≥ q− RDHFGHMs,t(d′1, d′2, ..., d′n
)
. (21)

The proof of the Theorem 8 is similar to that of Theorem 2, which is omitted here.

Theorem 9. (Idempotency) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If all the q-RDHFEs

are equal, i.e., dj = d = (h, g), then

q− RDHFGHMs,t(d1, d2, ..., dn) = d. (22)

Proof. Since dj = d for all i, we have

q− RDHFGHMs,t(d1, d2, ..., dn) = 1
s+t

(
n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
= 1

s+t

(
n
∏
i=1

n
∏
j=i

(sd + td)
2

n(n+1)

)

= 1
s+t

(
n
∏
i=1

n
∏
j=i

((s + t)d)
2

n(n+1)

)
= 1

s+t ((s + t)d) = d

�
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Theorem 10. (Boundedness) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If d+ = max

j
dj and

d− = min
j

dj, then

d+ ≥ q− RDHFGHMs,t(d1, d2, ..., dn) ≥ d−. (23)

Analogous to the q-RDHFHM operator, the proposed q-RDHFGHM operator also exhibits high generality
and flexibility. In the following, we shall discuss some special cases of the q-RDHFGHM operator.

1. If t→ 0 , then the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy generalized geometric
linear descending weighted mean operator, and we can obtain

q− RDHFGHMs,0(d1, d2, ..., dn)

= lim
t→0

⎧⎪⎪⎨⎪⎪⎩∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− rq

j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭,

⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

μs
i ηt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭
⎫⎬⎭

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−
(

n
∏
i=1

(
1−
(

1− γ
q
i

)s)n+1−i
) 2

n(n+1)
) 1

s

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎨⎪⎩
(

1−
(

n
∏
i=1

(
1−
(
ηs

i
)q
)n+1−i

) 2
n(n+1)

) 1
qs

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

(24)

2. If s→ 0 , the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy generalized geometric liner
ascending weighted mean operator, and we can obtain

q− RDHFGHM0,t(d1, d2, ..., dn)

= lim
s→0

⎧⎪⎪⎨⎪⎪⎩∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1
q
⎫⎪⎪⎬⎪⎪⎭,

⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q(s+t)

⎫⎬⎭
⎫⎬⎭

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝1−

⎛⎝1−
(

n
∏
i=1

(
1−
(

1− γ
q
j

)t
)i
) 2

n(n+1)
⎞⎠

1
t

⎞⎟⎟⎠
1
q
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎨⎪⎩
(

1−
(

n
∏
i=1

(
1−
(

ηt
j

)q)i
) 2

n(n+1)
) 1

qt

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

(25)

3. If s = t = 1
2 , the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy basic geometric Heronian

mean operator, and we can obtain

q− RDHFGHM
1
2 , 1

2 (d1, d2, ..., dn)

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

⎧⎨⎩
⎧⎨⎩ n

∏
i=1

n
∏
j=i

(
1−
√(

1− γ
q
i

)(
1− γ

q
j

)) 2
nq(n+1)

⎫⎬⎭,

⎧⎨⎩
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(√

ηiηj

)q) 2
n(n+1)

) 1
q
⎫⎬⎭
⎫⎬⎭ (26)
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4. If s = t = 1, the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy line Heronian mean
operator, and it follows that

q− RDHFGHM1,1(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj⎧⎪⎪⎨⎪⎪⎩
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(27)

5. If q = 2, then the q-RDHFGHM reduces to the dual hesitant Pythagorean fuzzy Heronian mean
operator, and can we can obtain

q− RDHFGHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj
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(28)

6. If q = 1, then the q-RDHFGHM reduces to the dual hesitant fuzzy Heronian mean operator
proposed by Yu et al. [47], and it follows that

q− RDHFHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj
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Similarly, the q-RDHFGHM does not consider the importance of the input arguments,
which means the weights of the aggregated q-RDHFGHM are not taken into consideration. However,
in real decision-making problems, the weight vector of the aggregated values plays an important role
in the final ranking orders. Therefore, we propose the q-rung dual hesitant fuzzy weighted geometric
Heronian mean (q-RDHFWGHM) operator, which can take the weights of the aggregated q-RDHFEs
into account.

3.4. The q-Rung Dual Hesitant Fuzzy Weighted Geometric Heronian Mean Operator

Definition 12. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection of q-RDHFEs:

q− RDHFWGHMs,t(d1, d2, ..., dn) =
1

s + t

(
n

∏
i=1

n

∏
j=i

(
s(di)

nwi + t
(
dj
)nwj

) 2
n(n+1)

)
, (30)

where w = (w1, w2, ..., wn)
T is the weight vector of (d1, d2, ..., dn), satisfying wj ∈ [0, 1],

n
∑

j=1
wj = 1.

Based on the operational laws of q-RDHFEs, the following theorem can be obtained.
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Theorem 11. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection of q-RDHFEs. The aggregated

value by the q-RDHFWGHM is also a q-RDHFE and
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(31)

The proof of Theorem 11 is similar to Theorem 5, which is omitted here.

Theorem 12. Suppose w = (1/n, 1/n, ..., 1/n)T. Then,

q− RDHFWGHMs,t(d1, d2, ..., dn) = q− RDHFGHMs,t(d1, d2, ..., dn). (32)

The proof of Theorem 12 is similar to Theorem 6, which is omitted here.

Similarly, it is easy to prove that the q-RDHFWGHM has the properties of monotonicity
and boundedness.

4. A Novel Approach to MAGDM with q-Rung Dual Hesitant Fuzzy Information

4.1. Description of a Typical MAGDM Problem with q-Rung Dual Hesitant Fuzzy Information

A typical MAGDM problem with q-rung dual hesitant fuzzy information can be described as
follows: Let A = {A1, A2, ..., Am} and the set of attributes and G = {G1, G2, ..., Gn} be a set of attributes.

Let w = (w1, w2, ..., wn)
T be the weight vector of attributes, where wj ≥ 0, j = 1, 2, ..., n and

n
∑

j=1
wj = 1.

Suppose that D =
(
dij
)

m×n =
(
hij, gij

)
m×n is the q-rung dual hesitant fuzzy decision matrix, where hij

and gij indicate, respectively, the positive and negative degrees assessed by the decision maker that
the alternative Ai satisfies the attribute Gj.

4.2. An Algorithm for q-Rung Dual Hesitant Fuzzy MAGDM Problems

In the following subsection, we present a novel algorithm for MAGDM based on the
proposed operators.

Step 1. Standardize the original decision matrix according the following equation:

dij =

{ (
hij, gij

)(
gij, hij

) Gj ∈ I1

Gj ∈ I2
, (33)

where I1 represents benefit attributes and I2 represents cost attributes.
Step 2. For alternative Ai(i = 1, 2, ..., m), utilize the q-RDHFWHM operator

di = q− RDHFWHMs,t(di1, di2, · · · , din), (34)

or the q-RDHFWGHM operator

di = q− RDHFWGHMs,t(di1, di2, · · · , din), (35)

to aggregate all the attributes values.
Step 3. Compute the score functions of all the alternatives and rank them.
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Step 4. Rank the corresponding alternatives according to the rank of overall values and select the
best alternative.

5. Numerical Example

In this section, to demonstrate the validity of the proposed method, we provide a numerical
example adopted from [48]. A company wants to select a supplier, and after primary evaluation,
four possible suppliers (A1, A2, A3, and A4) remain on the candidates list. To select the best supplier,
a set of experts are invited to assess the four suppliers regarding four attributes: (1) relationship
closeness (G1); (2) product quality (G2); (3) price competitiveness (G3); and (4) delivery performance
(G4). The weight vector of the attributes is w = (0.17, 0.32, 0.38, 0.13)T . The DMs are required to utilize
DHFEs to express their preference information. The dual hesitant fuzzy decision matrix is shown
in Table 1.

Table 1. The dual hesitant fuzzy decision matrix.

G1 G2 G3 G4

A1 {{0.3, 0.4}, {0.6}} {{0.7, 0.9}, {0.1}} {{0.4}, {0.2,0.3}} {{0.5, 0.6}, {0.2}}
A2 {{0.2, 0.3}, {0.5}} {{0.6, 0.7}, {0.2}} {{0.7, 0.8}, {0.2}} {{0.6}, {0.1, 0.2, 0.3}}
A3 {{0.4}, {0.2,0.3}} {{0.2,0.3,0.4}, {0.6}} {{0.7,0.8}, {0.1}} {{0.7}, {0.2,0.3}}
A4 {{0.6,0.7}, {0.3}} {{0.5}, {0.4}} {{0.3,0.4}, {0.5}} {{0.4, 0.6}, {0.1,0.2}}

5.1. The Decision-Making Process

Step 1. As all the attributes are of the benefit type, the original decision matrix does not need to
be normalized.

Step 2. Utilize the q-RDHFWHM operator to aggregate attributes values, so that the overall
assessments are obtained (assume s = t = 1 and q = 3). Due to the relatively large numbers, the overall
assessments are omitted.

Step 3. Calculate the scores of the overall assessments of alternatives to obtain s(d1) = 0.2235,
s(d2) = 0.2631, s(d3) = 0.2097, and s(d4) = 0.0780.

Step 4. Rank the overall assessments so that we can obtain A2 � A1 � A3 � A4. Therefore,
the best alternative is A2.

In Step 2, if we utilize the q-RDHFWGHM operator to aggregate decision makers’ assessments,
we can obtain s(d1) = 0.1187, s(d2) = 0.1819, s(d3) = 0.0862, and s(d4) = 0.0566. Therefore,
the ranking order is A2 � A1 � A3 � A4 and the best alternative is also A2.

5.2. The Influence of the Parameters on the Results

Evidently, it is noted that the parameters s, t, and q play very important roles in the results. In the
following subsection, we investigate the effect of parameters on the score functions and ranking results.
To better illustrate the effect of the parameters s and t on the ranking results, we investigate the effects
from the following three aspects: (1) We assign several fixed values to s and t and calculate the scores
of the overall assessments. Further, we derive the ranking results of the alternatives. (2) Let s ∈ (0, 10]
and t ∈ (0, 10], we investigate the influence of s and t on the ranking results. (3) Let s or t be a fixed
value and investigate the influence of another parameter on the ranking results. Details can be found
in Tables 1 and 2 and Figures 2–13.
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Table 2. Scores and ranking results by using the q-rung dual hesitant fuzzy weighted Heronian mean
(q-RDHFWHM) operator (q = 3).

Parameters Score Function s(di)(i = 1, 2, 3, 4) Ranking Results

s = t = 1/2 s(d1) = 0.1617 s(d2) = 0.2086 s(d3) = 0.1532 s(d4) = 0.0685 A2 � A1 � A3 � A4
s = t = 1 s(d1) = 0.2235 s(d2) = 0.2631 s(d3) = 0.2093 s(d4) = 0.0780 A2 � A1 � A3 � A4
s = t = 2 s(d1) = 0.3235 s(d2) = 0.3375 s(d3) = 0.2989 s(d4) = 0.0942 A2 � A1 � A3 � A4
s = t = 5 s(d1) = 0.4494 s(d2) = 0.4363 s(d3) = 0.4174 s(d4) = 0.1198 A1 � A2 � A3 � A4

s = 1, t = 2 s(d1) = 0.2769 s(d2) = 0.3124 s(d3) = 0.2626 s(d4) = 0.0836 A2 � A1 � A3 � A4
s = 2, t = 1 s(d1) = 0.3001 s(d2) = 0.3079 s(d3) = 0.2677 s(d4) = 0.0930 A2 � A1 � A3 � A4
s = 1, t = 5 s(d1) = 0.4024 s(d2) = 0.4118 s(d3) = 0.3719 s(d4) = 0.1042 A2 � A1 � A3 � A4
s = 5, t = 1 s(d1) = 0.4463 s(d2) = 0.3952 s(d3) = 0.3825 s(d4) = 0.1214 A1 � A2 � A3 � A4

Figure 2. Scores of alternative A1 when s, t ∈ (0, 10) based on the q-RDHFWHM operator (q = 3).

 

Figure 3. Scores of alternative A2 when s, t ∈ (0, 10) based on the q-RDHFWHM operator (q = 3).
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Figure 4. Scores of alternative A3 when s, t ∈ (0, 10) based on the q-RDHFWHM operator (q = 3).

 
Figure 5. Scores of alternative A4 when s, t ∈ (0, 10) based on the q-RDHFWHM operator (q = 3).

Figure 6. Scores of alternatives Ai(i = 1, 2, 3, 4) when t = 1 and s ∈ (1, 10) based on the q-RDHFWHM
operator (q = 3).
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Figure 7. Scores of alternative Ai(i = 1, 2, 3, 4) when s = 1 and t ∈ (1, 10) based on the q-RDHFWHM
operator (q = 3).

 
Figure 8. Scores of alternative A1 when s, t ∈ (0, 10) based on the q-rung dual hesitant fuzzy weighted
geometric Heronian mean (q-RDHFWGHM) operator (q = 3).

 
Figure 9. Scores of alternative A2 when s, t ∈ (0, 10) based on the q-RDHFWGHM operator (q = 3).
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Figure 10. Scores of alternative A3 when s, t ∈ (0, 10) based on the q-RDHFWGHM operator (q = 3).

 

Figure 11. Scores of alternative A4 when s, t ∈ (0, 10) based on the q-RDHFWGHM operator (q = 3).

 
Figure 12. Scores of alternative Ai(i = 1, 2, 3, 4) when t = 1 and s ∈ (1, 10) based on the
q-RDHFWGHM operator (q = 3).
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Figure 13. Scores of alternative Ai(i = 1, 2, 3, 4) when s = 1 and t ∈ (1, 10) based on the
q-RDHFWGHM operator (q = 3).

From Table 2 and Figures 2–5, we can know that the scores and ranking results may be different
for the different parameters s and t based on the q-RDHFWHM operator. However, the best alternative
is A2 or A1. In addition, from Figures 6 and 7, we find that if we let t or s be a fixed value, then when s
or t increases, the scores based on the q-RDHFWHM operator become greater and greater. Similarly,
from Table 3 and Figures 8–11, we can obtain different scores and ranking results when s and t
represent different values based on the q-RDHFWGHM operator. No matter what the values of
s and t are, the best alternative is always A2. However, what is opposite to the q-RDHFWHM
operator is that if we let s or t be a fixed value, then when s or t increases, the scores based on the
q-RDHFWGHM operator become smaller and smaller. The results shown in Tables 2 and 3 and
Figures 2–13 demonstrate the flexibility of the aggregation processes by utilizing the q-RDHFWHM
and q-RDHFWGHM operators. In real decision-making problems, DMs should choose the appropriate
s and t according to their preference.

Table 3. Scores and ranking results by using the q-RDHFWGHM operator (q = 3).

Parameters Score Function s(di)(i = 1, 2, 3, 4) Ranking Results

s = t = 1/2 s(d1) = 0.1516 s(d2) = 0.1972 s(d3) = 0.1387 s(d4) = 0.0861 A2 � A1 � A3 � A4
s = t = 1 s(d1) = 0.1187 s(d2) = 0.1819 s(d3) = 0.0851 s(d4) = 0.0566 A2 � A1 � A3 � A4
s = t = 2 s(d1) = 0.0683 s(d2) = 0.1544 s(d3) = 0.0055 s(d4) = 0.0132 A2 � A1 � A4 � A3
s = t = 5 s(d1) = −0.0029 s(d2) = 0.1054 s(d3) = −0.0949 s(d4) = −0.0521 A2 � A1 � A4 � A3

s = 1, t = 2 s(d1) = 0.0884 s(d2) = 0.1833 s(d3) = 0.0423 s(d4) = 0.0210 A2 � A1 � A3 � A4
s = 2, t = 1 s(d1) = 0.0841 s(d2) = 0.1456 s(d3) = 0.0279 s(d4) = 0.0358 A2 � A1 � A4 � A3
s = 1, t = 5 s(d1) = 0.0204 s(d2) = 0.1540 s(d3) = −0.0507 s(d4) = −0.0418 A2 � A1 � A4 � A3
s = 5, t = 1 s(d1) = 0.0215 s(d2) = 0.0917 s(d3) = −0.0653 s(d4) = −0.0206 A2 � A1 � A4 � A3

In the following, we discuss the effects of the parameter q on the score function and ranking
results based on q-RDHFWHM and q-RDHFWGHM operators. Details can be found in Figures 14
and 15.
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Figure 14. Scores of alternative Ai(i = 1, 2, 3, 4) when s = t = 1 and q ∈ (1, 10) based on the
q-RDHFWHM operator.

 
Figure 15. Scores of alternative Ai(i = 1, 2, 3, 4) when s = t = 1 and q ∈ (1, 10) based on the
q-RDHFWGHM operator.

As seen in Figures 14 and 15, the scores and ranking results can be different for the different
parameter q based on the q-RDHFWHM and q-RDHFWGHM operators. However, the best alternative
is always A2 or A4 based on the q-RDHFWHM, whereas the best alternative is always A2 based
on the q-RDHFWGHM operators. In addition, when q increases, both the scores obtained by the
q-RDHFWHM and q-RDHFWGHM operators have the tendency to decrease.

5.3. Compared with Exiting MAGDM Methods

To demonstrate the advantages and superiorities of the proposed method, we compared our
method with that proposed by Wang et al. [48], which was based on the dual hesitant fuzzy weighted
averaging (DHFWA) operator proposed by Yu et al. [47], which was based on the dual hesitant fuzzy
weighted Heronian mean (DHFWHM) operator proposed by Tu et al. [49], which was based on the
dual hesitant fuzzy weighted Bonferroni mean (DHFWBM) operator that proposed by Wei and Lu [42],
which was based on the dual hesitant Pythagorean fuzzy Hamacher weighted averaging (DHPFHWA)
operator. We utilized these methods to solve the above example, and the score functions and ranking
methods can be found in Table 4.
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Table 4. Score functions and ranking results by using different methods.

Methods
Score Function

s(di)(i = 1, 2, 3, 4)
Ranking Results

Wang et al.’ [48] method based on
the DHFWA operator

s(d1) = 0.3915 s(d2) = 0.4147
s(d3) = 0.3573 s(d4) = 0.1198 A2 � A1 � A3 � A4

Yu et al.’ s [47] method based on the
DHFWHM operator (s = t = 2)

s(d1) = −0.3813 s(d2) = −0.3916
s(d3) = −0.3960 s(d4) = −0.6147 A1 � A2 � A3 � A4

Tu et al.’s [49] method based on the
DHFWBM operator

s(d1) = 0.3152 s(d2) = 0.3004
s(d3) = 0.2978 s(d4) = 0.0258 A1 � A2 � A3 � A4

Wei and Lu’s [42] method based on
the DHPFHWA operator

s(d1) = 0.2369 s(d2) = 0.2196
s(d3) = 0.1284 s(d4) = 0.0026 A1 � A2 � A3 � A4

The proposed method in this paper s(d1) = 0.2235 s(d2) = 0.2631
s(d3) = 0.2097 s(d4) = 0.0780 A2 � A1 � A3 � A4

First of all, Wang et al.’s [48], Yu et al.’s [47], and Tu et al.’s [49] methods are based on DHFSs.
Wei and Lu’s 429] method is based on DHPFSs. As mentioned above, DHFS and DHPFS are two
special cases of q-RDHFS. When q = 1, then q-RDHFS is reduced to DHFS, and when q = 2, q-RDHFS
is reduced to DHPFS. Evidently, q-RDHFS is more general and can describe a greater information range
and process more information in the process of MAGDM. For instance, if an attribute value provided
by DMs is {{0.1, 0.2, 0.5, 0.8}, {0.1, 0.2, 0.7}}, then obviously, the pair {{0.1, 0.2, 0.5, 0.8}, {0.1, 0.2, 0.7}} is
not valid for DHFSs and DHPFSs. Thus, our method is more general, powerful, and can process more
information in MAGDM.

Wang et al.’s [48] and Wei and Lu’s [42] methods are based on the simple weighted averaging
operator. The drawback of the two methods is that they do not consider the interrelationship between
arguments. In other words, they assume all attributes are independent, which is not correct to some
extent. In the abovementioned example, when choosing the most appropriate supplier, we need
to consider not only the attribute values of each supplier but also the correlation between these
attributes. Thus, Wang et al.’s [48] and Wei and Lu’s [42] methods are not suitable for dealing with this
problem. As our method has the ability to capture variable correlations, it is more reasonable than
Wang et al.’s [48] and Wei and Lu’s [42] methods for addressing this problem.

Tu et al.’s [49] method is based on Bonferroni mean (BM), and Yu et al.’s [47] and our methods
are based on HM. The prominent characteristic of BM and HM is that both can consider the
interrelationship between arguments. Therefore, all the three can process the interrelationship among
attribute values. However, Yu et al.’s [47] method and ours are better than Tu et al.’s [49] method.
In addition, as Yu et al.’s [47] is a special case of our method (when q = 1), our method is more general,
scientific, and applicable than Yu et al.’s [47] method.

In real decision-making problems, we may encounter situations in which DMs are hesitant
between several possible values when determining the membership and nonmembership degrees.
Additionally, the sum and square sum of membership and nonmembership degrees may be more
than one. Moreover, as attributes are related, the interrelationship between attribute values should
be considered. In this paper, we present a novel approach to MAGDM problems based on q-RDHFS,
which is a powerful tool for expressing and denoting DMs’ assessments. It can deal with DMs’ hesitancy
and its lax constraints give DMs more freedom to express their preference information. In addition,
our method is based on HM so that the interrelationship between attributes can be processed. Therefore,
our method has some advantages and superiorities compared with existing methods.

6. Conclusions

Supplier selection is very important for manufacturing companies. Choosing a suitable supplier
can greatly enhance the competitiveness and vitality of the company. In modern society, the selection
of an appropriate supplier often requires a comprehensive assessment of all suppliers from multiple
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perspectives. Thus, supplier selection is one of the most common types of MAGDM problems in
daily life. The main contributions of this paper are threefold. Firstly, we proposed the concept of
q-RDHFS by combining DHFS with q-ROFS. The q-RDHFS can not only deal with DMs’ hesitancy
when determining the membership and nonmembership degrees but also gives DMs’ more freedom
to express their assessments. Secondly, we proposed the q-RDHFHM, q-RDHFWHM, q-RDHFGHM,
and q-RDHFWGHM operators to effectively aggregate q-RDHFEs. Thirdly, we developed a novel
method for MAGDM with q-rung dual hesitant fuzzy information. Considering the supplier selection
problem is essentially a MAGDM issue, we also applied the proposed method to a real MAGDM
problem to show its performance. Additionally, through comparative analysis the superiorities
and advantages of the newly proposed method over existing methods are illustrated. Compared
with the existing methods, the proposed method is more general and powerful. In addition, it has
three parameters—q, s, and t—making the process of information aggregation more flexible. In real
decision-making problems, DMs can choose the appropriate values of the parameters according to their
preference. It is worth pointing out that as the newly proposed method is based on the HM operator,
it mainly focuses on the interrelationship between any two q-RDHFEs. In future works, we should
investigate more aggregation operators for fusing q-RDHFEs, such as the q-rung dual hesitant fuzzy
Maclaurin symmetric mean, the q-rung dual hesitant fuzzy Hamy mean, and the q-rung dual hesitant
fuzzy Muirhead mean operators, which have the ability of capturing the interrelationship among
multiple q-RDHFEs.
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Abstract: Cut sets, decomposition theorem and representation theorem have a great influence on the
realization of the transformation of fuzzy sets and classical sets, and the single-valued neutrosophic
multisets (SVNMSs) as the generalization of fuzzy sets, which cut sets, decomposition theorem
and representation theorem have the similar effects, so they need to be studied in depth. In this
paper, the decomposition theorem, representation theorem and the application of a new similarity
measures of SVNMSs are studied by using theoretical analysis and calculations. The following are
the main results: (1) The notions, operation and operational properties of the cut sets and strong cut
sets of SVNMSs are introduced and discussed; (2) The decomposition theorem and representation
theorem of SVNMSs are established and rigorously proved. The decomposition theorem and the
representation theorem of SVNMSs are the theoretical basis for the development of SVNMSs. The
decomposition theorem provides a new idea for solving the problem of SVNMSs, and points out the
direction for the principle of expansion of SVNMSs. (3) Based on the decomposition theorem and
representation theorem of SVNMSs, a new notion of similarity measure of SVNMSs is proposed by
applying triple integral. And this new similarity is applied to the practical problem of multicriteria
decision-making, which explains the efficacy and practicability of this decision-making method. The
new similarity is not only a way to solve the problem of multi-attribute decision-making, but also
contains an important mathematical idea, that is, the idea of transformation.

Keywords: single-valued neutrosophic multiset (SVNMS); cut set; decomposition theorem;
representation theorem; similarity measure; triple integral; multicriteria decision-making

1. Introduction

It is essential for medical experts to address incomplete and uncertain information included
in actual medical diagnostic questions. In order to effectively use various uncertain diagnostic
information, Smarandache [1] proposed neutrosophic set (NS), which is a generalization of fuzzy
set (FS) and intuitionistic fuzzy set (IFS) [2]. NS is more flexible and applicable than FS and IFS.
Nevertheless, it is hard to apply the NS to practical problems for the values of the functions with
respect to truth, indeterminacy and falsity lie in ]0−,1+ [. Thus, Smarandache and Wang [3] introduced
the notion of the single-valued neutrosophic set (SVNS), whose values belong to [0,1]. In the actual
decision-making problems, scholars have obtained many inspiring research results according to the
SVNS theories [4–9]. However, in the multicriteria decision-making problem, the application of SVNS
has certain limitations. Fortunately, Yager [10] firstly discussed fuzzy multisets (FMSs), in which every
element may appear more than once and may have the same or different membership values. Indeed,
fuzzy multisets theories cannot cope with all types of uncertain and incomplete information. So, Ye [11]

Symmetry 2018, 10, 466; doi:10.3390/sym10100466 www.mdpi.com/journal/symmetry339



Symmetry 2018, 10, 466

introduced the notion of the single-valued neutrosophic multisets (SVNMSs) by capitalizing on fuzzy
multisets (FMs) [12,13]. So far, a large number of scholars have studied the similarity measures of
SVNMSs from different angles and discuss its application in decision-making problems in [11,14–18],
which is crucial for further in-depth analysis and research on SVNMSs in the future.

As we all know, the decomposition theorem, representation theorem and expansion theorem are
three theoretical pillars of fuzzy mathematics. Decomposition theorem and representation theorem are
the bond between fuzzy set theory and classical set theory, that is, any fuzzy set problem can be turned
into a problem of classical set by taking a cut set and constructing a geometric set. The notion of λ-cut
sets of FS, some basic properties of λ-cut sets, the decomposition theorem, the representation theorem
of FSs had been proposed [1,19]. What is more, the definitions of cut sets, some basic properties of
cut sets, the decomposition theorem and the representation theorem of IFS, interval intuitionistic
fuzzy set (IIFS), interval value fuzzy set (IVFS) which as generations of FSs had been proposed [20–28].
After that D. Singh, A. J. Alkali and A. I. Isah introduced the definition of α-cuts for FMS, which is a
generalization of λ-cut sets of FS, and proposed some properties of α-cuts, decomposition theorem
for FMS [29]. However, the cut sets and its operational properties, decomposition theorem and
representation theorem of the SVNMSs have not been studied yet. Thus, it is necessary to discuss
the cut sets, decomposition theorem and representation theorem of SVNMSs. We have already been
researching SVNMSs and proposed some new results in [30–32]. Moreover, this paper proposes a new
similarity from the perspective of decomposition theorem which is different from [11–16]. This new
method uses the decomposition theorem as the theoretical basis and the integral as the mathematical
tool. The idea is simple, the calculation is convenient, and it contains important mathematical ideas,
which is more practical [33–36].

The organization of this paper is as follows: In Section 2, some basic conceptions of FMS, IFM and
SVNMS are reviewed. Section 3 discusses some new properties of SVNMS. Section 4 proposes the (α,
β, γ)-cut sets for SVNMS, and investigates the decomposition theorem and the representation theorem
of SVNMS. In Section 5, based on the established cut sets, a new method is proposed to calculate
the similarity measure between SVNMSs. In Section 6, a practicable example is offered for medical
diagnosis to illustrate the approach proposed in this paper. Section 7 presents final conclusions and
further research.

2. Preliminaries

2.1. Some Basic Concepts of IFS, FMS

Definition 1 ([2]). Let X be a nonempty set. An IFS M in X is given by

M = { 〈x, μM(x), νM(x)〉|x ∈ X} (1)

where μM : X → [0, 1] and νM : X → [0, 1] with the condition 0 ≤ μM + νM ≤ 1 for all x ∈ X.

Here μM(x), νM(x) ∈ [0, 1] denote the membership and the non-membership functions of the
fuzzy set M.

Definition 2 ([10]). A fuzzy multiset M is a generation set of multisets over the universe X, which is denoted
by pairs, where the first part of each pair is the element of X, and the second part is the membership of the element
relative to M. Note that an element of X may occur more than once in the same or different membership values.
For each x ∈ X, a membership sequence is defined to be the decreasing ordered sequence of the elements, that is,(

μ1
M(x), μ2

M(x), · · · , μ
q
M(x)

)
,
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where μ1
M(x) ≥ μ2

M(x) ≥ · · · ≥ μ
q
M(x). Hence, the FMS M is given by

M =
{(

μ1
M(x), μ2

M(x), · · · , μ
q
M(x)

)∣∣∣x}, for all x ∈ X. (2)

2.2. Some Concepts of SVNMS

Definition 3 ([11]). Let X be a nonempty set with a generic element in X denoted by x. A SVNMS M in X is
characterized by three functions: count truth-membership of CTM, count indeterminacy-membership of CIM,
and count falsity-membership of CFM, such that CTM(x) : X → R , CIM(x) : X → R , CFM(x) : X → R ,
for every x ∈ X, where R is the set of all real number multisets in the real unit interval [0, 1]. Then, a SVNMS
M is given by

M =
{〈

x,
(

T1
M(x), T2

M(x), · · · , Tk
M(x)

)
,
(

I1
M(x), I2

M(x), · · · , Ik
M(x)

)
,
(

F1
M(x), F2

M(x), · · · , Fk
M(x)

)〉∣∣∣x ∈ X
}

,

where the truth-membership sequence
(

T1
M(x), T2

M(x), · · · , Tk
M(x)

)
, the indeterminacy-membership sequence(

I1
M(x), I2

M(x), · · · , Ik
M(x)

)
, and the falsity-membership sequence

(
F1

M(x), F2
M(x), · · · , Fk

M(x)
)

may be in

decreasing order or not. Additionally, the Tj
M(x), I j

M(x), Fj
M(x) also satisfies the following condition

0 ≤ Tj
M(x) + I j

M(x) + Fj
M(x) ≤ 3, for allx ∈ X, j = 1, 2, · · · , k.

In order to express more concisely, a SVNMS M over X can be given by

M =
{〈

x, Tj
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , k
}

(3)

Furthermore, we represent the set of all SVNMSs on X as SVNMS(X).

Definition 4 ([11]). Let M ∈ SVNMS(X), for every element x included in M, the length of x is
defined as the cardinal number of CTM(x) or CIM(x), or CFM(x), and is expressed as l(x : M). That is,
l(x : M) = |CTM(x)| = |CIM(x)| = |CFM(x)|. Suppose M, N ∈ SVNMS(X), then, l(x : M, N) =

max{l(x : M), l(x : N)}.

Definition 5 ([11]). An absolute SVNMS M̃ is a SVNMS, whose Tj
M̃
(x) = 1, I j

M̃
(x) = 0 and Fj

M̃
(x) = 0,

for all x ∈ X and j = 1, 2, · · · , l(x : M̃).

Definition 6 ([11]).A null SVNMS Φ̃ is a SVNMS, whose Tj
Φ̃
(x) = 0, I j

Φ̃
(x) = 1 and Fj

Φ̃
(x) = 1, for all

x ∈ X and j = 1, 2, · · · , l(x : Φ̃).

Let M, N ∈ SVNMS(X). In order to further study the operations between M and N, we must
verify that l(x : M) = l(x : N) is true for every x ∈ X, if not, we use a sufficient number of zeroes to
fill the truth-membership values and a sufficient number of ones to fill the indeterminacy-membership
values and falsity-membership values of the smaller-length sequences, respectively, so that the lengths
of sequences are equal to facilitate computing.

Definition 7 ([11]). Let M =
{〈

x, Tj
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

and N ={〈
x, Tj

N(x), I j
N(x), Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : N)

}
be two SVNMSs in X. Then, we have

(1) Inclusion: M ⊆ N if and only if Tj
M(x) ≤ Tj

N(x), I j
M(x) ≥ I j

N(x), Fj
M(x) ≥ Fj

N(x) for
j = 1, 2, · · · ,l(x : M, N);
(2) Equality: M = N if and only if M ⊆ N and N ⊆ M;
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(3) Complement: Mc̃ =
{〈

x, Fj
M(x), 1− I j

M(x), Tj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

;

(4) Union: M ∪ N =
{〈

x, Tj
M(x) ∨ Tj

N(x), I j
M(x) ∧ I j

N(x), Fj
M(x) ∧ Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(5) Intersection: M ∩ N =
{〈

x, Tj
M(x) ∧ Tj

N(x), I j
M(x) ∨ I j

N(x), Fj
M(x) ∨ Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(6) Addition: M⊕ N =
{〈

x, Tj
M(x) + Tj

N(x)− Tj
M(x)Tj

N(x), I j
M(x)I j

N(x), Fj
M(x)Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(7) Multiplication: M⊗ N =
{〈

x, Tj
M(x)Tj

N(x), I j
M(x) + I j

N(x)− I j
M(x)I j

N(x), Fj
M(x) + Fj

N(x)− Fj
M(x)Fj

N(x)
〉∣∣∣

x ∈ X, j = 1, 2, · · · , l(M, N)}.

Definition 8 ([14]). Let M =
{〈

xi, Tj
M(xi), I j

M(xi), Fj
M(xi)

〉∣∣∣xi ∈ X; i = 1, 2, · · · , n; j = 1, 2, · · · , l(x : M)
}

and N =
{〈

xi, Tj
N(xi), I j

N(xi), Fj
N(xi)

〉∣∣∣xi ∈ X; i = 1, 2, · · · , n; j = 1, 2, · · · , l(x : N)
}

be two SVNMSs
in X = {x1, x2, · · · , xn}. Now, we propose the generalized distance measure between M and N as follows:

DP(M, N) =

[
1
n

n
∑

i=1

1
3li

li
∑

j=1

(∣∣∣Tj
M(xi)− Tj

N(xi)
∣∣∣P +

∣∣∣I j
M(xi)− I j

N(xi)
∣∣∣P +

∣∣∣Fj
M(xi)− Fj

N(xi)
∣∣∣P)] 1

P

, (4)

where li = l(xi : M, N) = max{l(xi : M), l(xi : N)} for i = 1, 2, · · · , n.

If P = 1, 2, it reduces to the Hamming distance and the Euclidean distance, which are usually
applied to real science and engineering areas.

Based on the relationship between the distance measure and the similarity measure, we can
introduce two distance-based similarity measures between M and N:

S1(M, N) = 1− DP(M, N), (5)

S2(M, N) =
1− DP(M, N)

1 + DP(M, N)
. (6)

3. Some New Properties of SVNMS

The operation of SVNMS is discussed in depth and certain theoretical results are obtained. On this
basis, this section generalizes the union and intersection operations of two SVNMSs to the general case,
that is, for any indicator set. In addition, this section presents the arithmetic properties of SVNMSs.

Remark 1. The union and intersection operations of the two SVNMSs can be extended to general case, that is,
for any index set T, if Mt ∈ SVNMS(X), ∀t ∈ T, we can define

∪t∈T Mt =
{〈

x,∨t∈TTj
Mt

(x),∧t∈T Ij
Mt

(x),∧t∈T Fj
Mt

(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , lx

}
,

and
∩t∈T Mt =

{〈
x,∧t∈TTj

Mt
(x),∨t∈T Ij

Mt
(x),∨t∈T Fj

Mt
(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , lx

}
,

where lx = max{ l(x : Mt)|t ∈ T}.

Proposition 1. Let M, N and Q be three SVNMSs in X. We have the following operational properties:

(1) Commutation: M ∪ N = N ∪M, M ∩ N = N ∩M;
(2) Association: M ∪ (N ∪Q) = (M ∪ N) ∪Q, M ∩ (N ∩Q) = (M ∩ N) ∩Q;
(3) Idempotent: M ∪M = M, M ∩M = M;
(4) Absorption: M ∪ (M ∩ N) = M, M ∩ (M ∪ N) = M;
(5) Identity: M ∪ M̃ = M̃; M ∩ M̃ = M, M ∪ Φ̃ = M, M ∩ Φ̃ = Φ̃;
(6) Distribution: M ∪ (N ∩Q) = (M ∪ N) ∩ (M ∪Q), M ∩ (N ∪Q) = (M ∩ N) ∪ (M ∩Q);
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(7) Involution:
(

Mc̃
)c̃

= M,
(

M̃
)c̃

= Φ̃,
(

Φ̃
)c̃

= M̃;

(8) De Morgan: (M ∩ N)c̃ = Mc̃ ∪ Nc̃, (M ∪ N)c̃ = Mc̃ ∩ Nc̃.

Remark 2. As we know, the complementation can be established in classical set, however, it is not true in
SVNMS. For example, let X = {x1, x2, x3}, M ∈ SVNMS(X) as follows:

M = {〈x1, (0.5, 0.3), (0.1, 0.1), (0.7, 0.8)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.3), (0.2, 0.3, 0.4), (0.4, 0.5, 0.7)〉}.

Obviously,

M ∪Mc̃ = {〈x1, (0.7, 0.8), (0.1, 0.1), (0.5, 0.3)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.7), (0.2, 0.3, 0.4), (0.4, 0.5, 0.3)〉} 	= M̃;

M ∩Mc̃ = {〈x1, (0.5, 0.3), (0.9, 0.9), (0.7, 0.8)〉 , 〈x2, (0.34, 0.28, 0.49), (0.7, 0.55, 0.5), (0.7, 0.68, 0.62)〉,
〈x3, (0.4, 0.5, 0.3), (0.8, 0.7, 0.6), (0.67, 0.5, 0.7)〉} 	= Φ̃.

4. Decomposition Theorem and Representation Theorem of SVNMS

In this section, the notions of cut sets, strong cut sets of SVNMS are defined. Some properties
of cut sets are proposed. We also investigate decomposition theorem and representation theorem of
SVNMS based on cut sets.

4.1. Decomposition Theorem

Definition 9. Let X = {x1, x2, · · · , xn}, A ∈ SVNMS(X) and α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.
The α-cut set of truth value function generated by A is defined as follows:

Aα =
{

xi ∈ X
∣∣∣Tj

A(xi) ≥ α; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (7)

The strong α-cut set of truth value function generated by A is defined as follows:

Aα+ =
{

xi ∈ X
∣∣∣Tj

A(xi) > α; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (8)

The β-cut set of indeterminacy value function generated by A is defined as follows:

Aβ =
{

xi ∈ X
∣∣∣I j

A(xi) ≤ β; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (9)

The strong β-cut set of indeterminacy value function generated by A is defined as follows:

Aβ+ =
{

xi ∈ X
∣∣∣I j

A(xi) < β; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (10)

The γ-cut set of falsity value function generated by A is defined as follows:

Aγ =
{

xi ∈ X
∣∣∣Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (11)

The strong γ-cut set of falsity value function generated by A is defined as follows:

Aγ+ =
{

xi ∈ X
∣∣∣Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

. (12)
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Next, we can define the (α, β, γ)-cut sets as follows:

A(α, β, γ) =
{

xi ∈ X
∣∣∣Tj

A(xi) ≥ α, I j
A(xi) ≤ β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (13)

A(α+, β, γ) =
{

xi ∈ X
∣∣∣Tj

A(xi) > α, I j
A(xi) ≤ β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (14)

A(α, β+, γ) =
{

xi ∈ X
∣∣∣Tj

A(xi) ≥ α, I j
A(xi) < β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (15)

A(α, β, γ+) =
{

xi ∈ X
∣∣∣Tj

A(xi) ≥ α, I j
A(xi) ≤ β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (16)

A(α+, β+, γ) =
{

xi ∈ X
∣∣∣Tj

A(xi) > α, I j
A(xi) < β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (17)

A(α+, β, γ+) =
{

xi ∈ X
∣∣∣Tj

A(xi) > α, I j
A(xi) ≤ β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (18)

A(α, β+, γ+) =
{

xi ∈ X
∣∣∣Tj

A(xi) ≥ α, I j
A(xi) < β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (19)

A(α+, β+, γ+) =
{

xi ∈ X
∣∣∣Tj

A(xi) > α, I j
A(xi) < β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

. (20)

The α-cut sets, β-cut sets, γ-cut sets of SVNMS satisfy the following properties:

Theorem 1. Let A, B ∈ SVNMS(X), α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3. Then,

(1) A ⊆ B⇒ Aα ⊆ Bα , Aβ ⊆ Bβ, Aγ ⊆ Bγ;

(2) (A ∩ B)α = Aα ∩ Bα, (A ∩ B)β = Aβ ∩ Bβ, (A ∩ B)γ = Aγ ∩ Bγ;

(3) (A ∪ B)α = Aα ∪ Bα, (A ∪ B)β = Aβ ∪ Bβ, (A ∪ B)γ = Aγ ∪ Bγ;

(4)
(
∩

t∈T
At

)α

= ∩
t∈T

(At)
α,
(
∩

t∈T
At

)
β = ∩

t∈T
(At)β,

(
∩

t∈T
At

)
γ

= ∩
t∈T

(At)γ;

(5)
(
∪

t∈T
At

)α

= ∪
t∈T

(At)
α,
(
∪

t∈T
At

)
β = ∪

t∈T
(At)β,

(
∪

t∈T
At

)
γ

= ∪
t∈T

(At)γ;

(6) α1 ≥ α2, β1 ≤ β2, γ1 ≤ γ2⇒Aα1 ⊆ Aα2 , Aβ1 ⊆ Aβ2, Aγ1 ⊆ Aγ2 .

Proof.

(1) Since x ∈ Aα, we have Tj
A(x) ≥ α. From A ⊆ B, it follows that Tj

A(x) ≤ Tj
B(x). Thus, Tj

B(x) ≥ α.

Thus, x ∈ Bα. Therefore, Aα ⊆ Bα for j = 1, 2, · · · , l(x : A, B). Since x ∈ Aβ, we have I j
A(x) ≤ β.

From A ⊆ B, it follows that I j
A(x) ≥ I j

B(x). Thus, I j
B(x) ≤ β. Thus, x ∈ Bβ. Hence, Aβ ⊆ Bβ for

j = 1, 2, · · · , l(x : A, B).

(2) From x ∈ (A ∩ B)α, we can obtain Tj
A∩B(x) ≥ α. Then, min

{
Tj

A(x), Tj
B(x)

}
≥ α, that is, Tj

A(x)≥
α,Tj

B(x) ≥ α. Thus, x ∈ Aα, x ∈ Bα. Hence, x ∈ Aα ∩ Bα. On the other hand, since x ∈ Aα ∩ Bα,

we have x ∈ Aα, x ∈ Bα, that is, Tj
A(x) ≥ α, Tj

B(x) ≥ α. Then, min
{

Tj
A(x), Tj

B(x)
}
≥ α. Thus,

Tj
A∩B(x) ≥ α. Hence, x ∈ (A ∩ B)α. Based on the above facts, we can check that (A ∩ B)α = Aα ∩ Bα

for j = 1, 2, · · · ,l(x : A, B).
Since x ∈ (A ∩ B)β, we have I j

A∩B(x) ≤ β. Then, max
{

I j
A(x), I j

B(x)
}
≤ β, that is, I j

A(x) ≤ β,I j
B(x) ≤ β.

Then, x ∈ Aβ, x ∈ Bβ. Hence, x ∈ Aβ ∩ Bβ. On the other hand, from x ∈ Aβ ∩ Bβ, we have
x ∈ Aβ,x ∈ Bβ. Thus, I j

A(x) ≤ β, I j
B(x) ≤ β, that is, max

{
I j
A(x), I j

B(x)
}
≤ β. Thus, I j

A∩B(x) ≤ β.
Thus, x ∈(A ∩ B)β. Therefore, we can check that (A ∩ B)β = Aβ ∩ Bβ for j = 1, 2, · · · , l(x : A, B).

(3) From x ∈ (A ∪ B)α, we have Tj
A∪B(x) ≥ α. Thus, max

{
Tj

A(x), Tj
B(x)

}
≥ α, that is, Tj

A(x) ≥ α or

Tj
B(x) ≥ α. Thus, x ∈ Aα or x ∈ Bα. Hence, x ∈ Aα ∪ Bα. On the other hand, since x ∈ Aα ∪ Bα,

we have x ∈ Aα or x ∈ Bα. Thus, Tj
A(x) ≥ α or Tj

B(x) ≥ α, that is, max
{

Tj
A(x), Tj

B(x)
}
≥ α. Thus,
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Tj
A∪B(x) ≥ α. Hence, x ∈ (A ∪ B)α. Using the above facts, we can check that (A ∪ B)α = Aα ∪ Bα for

j = 1, 2, · · · , l(x : A, B).
Since x ∈ (A ∪ B)γ, we have Fj

A∪B(x) ≤ γ, that is, min
{

Fj
A(x), Fj

B(x)
}
≤ γ. Thus, Fj

A(x) ≤ γ or

Fj
B(x) ≤ γ. Thus, x ∈ Aγ or x ∈ Bγ. Hence, x ∈ Aγ ∪ Bγ. On the other hand, from x ∈ Aγ ∪ Bγ,

we have x ∈ Aγ or x ∈ Bγ. Thus, Fj
A(x) ≤ γ or Fj

B(x) ≤ γ, that is, min
{

Fj
A(x), Fj

B(x)
}
≤ γ.

Thus, Fj
A∪B(x) ≤ γ. Hence, x ∈ (A ∪ B)γ. Therefore, we can check that (A ∪ B)γ = Aγ ∪ Bγ for

j = 1, 2, · · · ,l(x : A, B).

(4) From x ∈
(
∩

t∈T
At

)α

, we have Tj
∩

t∈T
At
(x) ≥ α, that is, inf

t∈T

{
Tj

At
(x)
}
≥ α. Thus, Tj

At
(x) ≥ α for all

t ∈ T, that is, x ∈ (At)
α for all t ∈ T. Hence, x ∈ ∩

t∈T
(At)

α. On the other hand, from x ∈ ∩
t∈T

(At)
α, it

follows that x ∈ (At)
α for all t ∈ T. Then, Tj

At
(x) ≥ α for all t ∈ T, that is, inf

t∈T

{
Tj

At
(x)
}
≥ α. Then,

Tj
∩

t∈T
At
(x) ≥ α. Thus, x ∈

(
∩

t∈T
At

)α

. Based on the above facts, we can check that
(
∩

t∈T
At

)α

= ∩
t∈T

(At)
α

for j = 1, 2, · · · ,l(l = max{ l(x : At)|t ∈ T}).

Since x ∈
(
∩

t∈T
At

)
β, we have I j

∩
t∈T

At
(x) ≤ β, that is, sup

t∈T

{
I j
At
(x)
}
≤ β. Thus, I j

At
(x) ≤ β for all

t ∈ T, that is, x ∈ (At)β for all t ∈ T. Thus, x ∈ ∩
t∈T

(At)β. On the other hand, from x ∈ ∩
t∈T

(At)β,

we have x ∈ (At)β for all t ∈ T. Thus, I j
At
(x) ≤ β for all t ∈ T, that is, sup

t∈T

{
I j
At
(x)
}
≤ β. Thus,

I j
∩

t∈T
At
(x) ≤ β. Hence, x ∈

(
∩

t∈T
At

)
β. Therefore, we can check that

(
∩

t∈T
At

)
β = ∩

t∈T
(At)β for

j = 1, 2, · · · , l(l = max{l (x : At)|t ∈ T}).
(5) The proof of (5) is similar to Theorem 1 (4).

(6) The proof of (6) is obvious from Definition 9.

The (α, β, γ)-cut sets of SVNMS satisfy the following properties. �

Theorem 2. Let A, B ∈ SVNMS(X), α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3. Then,

(1) A(α+,β+,γ+) ⊆ A(α+,β+,γ) ⊆ A(α+,β,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β+,γ) ⊆ A(α,β+,γ) ⊆
A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β,γ+) ⊆ A(α+,β,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β,γ+) ⊆
A(α,β,γ+) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α,β+,γ+) ⊆ A(α,β+,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆
A(α,β+,γ+) ⊆ A(α,β,γ+) ⊆ A(α,β,γ);

(2) A ⊆ B⇒ A(α,β,γ) ⊆ B(α,β,γ) , A(α+,β,γ) ⊆ B(α+,β,γ), A(α,β+,γ) ⊆ B(α,β+,γ), A(α,β,γ+) ⊆ B(α,β,γ+),
A(α+,β+,γ) ⊆ B(α+,β+,γ), A(α+,β,γ+) ⊆ B(α+,β,γ+), A(α,β+,γ+) ⊆ B(α,β+,γ+), A(α+,β+,γ+) ⊆
B(α+,β+,γ+);

(3) α1 ≤ α2, β1 ≥ β2, γ1 ≥ γ2 ⇒ A(α1,β1,γ1) ⊇ A(α1+,β1+,γ1+) ⊇ A(α2,β2,γ2) ⊇ A(α2+,β2+,γ2+) ;

(4) A(α,β,γ) = Aα ∩ Aβ ∩ Aγ;

(5) (A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ), (A ∩ B)(α+,β,γ) = A(α+,β,γ) ∩ B(α+,β,γ), (A ∩ B)(α,β+,γ) =

A(α,β+,γ) ∩ B(α,β+,γ), (A ∩ B)(α,β,γ+) = A(α,β,γ+) ∩ B(α,β,γ+), (A ∩ B)(α+,β+,γ) = A(α+,β+,γ) ∩
B(α+,β+,γ), (A ∩ B)(α+,β,γ+) = A(α+,β,γ+) ∩ B(α+,β,γ+), (A ∩ B)(α,β+,γ+) = A(α,β+,γ+) ∩
B(α,β+,γ+), (A ∩ B)(α+,β+,γ+) = A(α+,β+,γ+) ∩ B(α+,β+,γ+);

(6) (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ), (A ∪ B)(α+,β,γ) ⊇ A(α+,β,γ) ∪ B(α+,β,γ), (A ∪ B)(α,β+,γ) ⊇
A(α,β+,γ) ∪ B(α,β+,γ), (A ∪ B)(α,β,γ+) ⊇ A(α,β,γ+) ∪ B(α,β,γ+), (A ∪ B)(α+,β+,γ) ⊇ A(α+,β+,γ) ∪
B(α+,β+,γ), (A ∪ B)(α+,β,γ+) ⊇ A(α+,β,γ+) ∪ B(α+,β,γ+), (A ∪ B)(α,β+,γ+) ⊇ A(α,β+,γ+) ∪
B(α,β+,γ+), (A ∪ B)(α+,β+,γ+) ⊇ A(α+,β+,γ+) ∪ B(α+,β+,γ+);
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(7)
(
∩

t∈T
At

)(α,β,γ)
= ∩

t∈T
(At)

(α,β,γ),
(
∩

t∈T
At

)(α+,β,γ)
= ∩

t∈T
(At)

(α+,β,γ),
(
∩

t∈T
At

)(α,β+,γ)
= ∩

t∈T
(At)

(α,β+,γ),(
∩

t∈T
At

)(α,β,γ+)

= ∩
t∈T

(At)
(α,β,γ+),

(
∩

t∈T
At

)(α+,β+,γ)
= ∩

t∈T
(At)

(α+,β+,γ),
(
∩

t∈T
At

)(α+,β,γ+)

=

∩
t∈T

(At)
(α+,β,γ+),

(
∩

t∈T
At

)(α,β+,γ+)

= ∩
t∈T

(At)
(α,β+,γ+),

(
∩

t∈T
At

)(α+,β+,γ+)

= ∩
t∈T

(At)
(α+,β+,γ+);

(8)
(
∪

t∈T
At

)(α,β,γ)
⊇ ∪

t∈T
(At)

(α,β,γ),
(
∪

t∈T
At

)(α+,β,γ)
⊇ ∪

t∈T
(At)

(α+,β,γ),
(
∪

t∈T
At

)(α,β+,γ)
⊇

∪
t∈T

(At)
(α,β+,γ),

(
∪

t∈T
At

)(α,β,γ+)

⊇ ∪
t∈T

(At)
(α,β,γ+),

(
∪

t∈T
At

)(α+,β+,γ)
⊇ ∪

t∈T
(At)

(α+,β+,γ),(
∪

t∈T
At

)(α+,β,γ+)

⊇ ∪
t∈T

(At)
(α+,β,γ+),

(
∪

t∈T
At

)(α,β+,γ+)

⊇ ∪
t∈T

(At)
(α,β+,γ+),(

∪
t∈T

At

)(α+,β+,γ+)

⊇ ∪
t∈T

(At)
(α+,β+,γ+);

(9) ∩
t∈T

A(αt ,βt ,γt) = A(α,β,γ), ∩
t∈T

A(αt+,βt ,γt) = A(α+,β,γ), ∩
t∈T

A(αt ,βt+,γt) = A(α,β+,γ), ∩
t∈T

A(αt ,βt ,γt+) =

A(α,β,γ+), ∩
t∈T

A(αt+,βt+,γt) = A(α+,β+,γ), ∩
t∈T

A(αt+,βt ,γt+) = A(α+,β,γ+), ∩
t∈T

A(αt ,βt+,γt+) =

A(α,β+,γ+), ∩
t∈T

A(αt+,βt+,γt+) = A(α+,β+,γ+),

where e α = ∨t∈Tαt, β = ∧t∈T βt, γ = ∧t∈Tγt.

Proof. The proofs of (1)~(4) are obtained directly from Definition 9. We denote,

A ∪ B =
{〈

x, max
{

Tj
A(x), Tj

B(x)
}

, min
{

I j
A(x), I j

B(x)
}

, min
{

Fj
A(x), Fj

B(x)
}〉}

,

A ∩ B =
{〈

x, min
{

Tj
A(x), Tj

B(x)
}

, max
{

I j
A(x), I j

B(x)
}

, max
{

Fj
A(x), Fj

B(x)
}〉}

,

where j = 1, 2, · · · , l(x : A, B).

∪t∈T At =

{〈
x, sup

t∈T

{
Tj

At
(x)
}

, inf
t∈T

{
I j
At
(x)
}

, inf
t∈T

{
Fj

At
(x)
}〉}

,

∩t∈T At =

{〈
x, inf

t∈T

{
Tj

At
(x)
}

, sup
t∈T

{
I j
At
(x)
}

, sup
t∈T

{
Fj

At
(x)
}〉}

,

j = 1, 2, · · · , l where l = max{ l(x : At)|t ∈ T}.
(5) From x ∈ (A ∩ B)(α,β,γ), we have min

{
Tj

A(x), Tj
B(x)

}
≥ α, max

{
I j
A(x), I j

B(x)
}
≤ β,

max
{

Fj
A(x), Fj

B (x)} ≤ γ, that is, Tj
A(x) ≥ α and Tj

B(x) ≥ α,I j
A(x) ≤ β and I j

B(x) ≤ β,Fj
A(x) ≤ γ

and Fj
B(x) ≤ γ. Thus, Tj

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ and Tj
B(x) ≥ α, I j

B(x) ≤ β, Fj
B(x) ≤ γ, that is,

x ∈A(α,β,γ), x ∈ B(α,β,γ). Hence, x ∈ A(α,β,γ) ∩ B(α,β,γ). On the other hand, since x ∈ A(α,β,γ) ∩ B(α,β,γ),
we have x ∈ A(α,β,γ), x ∈ B(α,β,γ), that is, Tj

A(x) ≥ α, I j
A(x)≤ β, Fj

A(x) ≤ γ and Tj
B(x) ≥ α,

I j
B(x) ≤ β, Fj

B(x) ≤ γ. Thus, Tj
A(x) ≥ α and Tj

B(x) ≥ α, I j
A(x) ≤ β and I j

B(x) ≤ β, Fj
A(x) ≤ γ

and Fj
B(x) ≤ γ. Hence, min

{
Tj

A(x), Tj
B(x)

}
≥ α,max

{
I j
A(x), I j

B(x)
}
≤ β, max

{
Fj

A(x), Fj
B(x)

}
≤ γ.

So, x ∈ (A ∩ B)(α,β,γ). Therefore, (A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ) for j = 1, 2, · · · , l(x : A, B).

(6) Since x ∈ A(α,β,γ) ∪ B(α,β,γ), we have x ∈ A(α,β,γ) or x ∈ B(α,β,γ), that is, Tj
A(x) ≥ α, I j

A(x) ≤
β, Fj

A(x) ≤ γ or Tj
B(x) ≥ α, I j

B(x) ≤ β, Fj
B(x) ≤ γ. Thus, Tj

A(x) ≥ α or Tj
B(x) ≥ α, I j

A(x) ≤ β

or I j
B(x) ≤ β, Fj

A(x) ≤ γ or Fj
B(x) ≤ γ, that is, max

{
Tj

A(x), Tj
B(x)

}
≥ α, min

{
I j
A(x), I j

B(x)
}
≤

346



Symmetry 2018, 10, 466

β,min
{

Fj
A(x), Fj

B(x)
}
≤ γ. Thus, x ∈ (A ∪ B)(α,β,γ). Therefore, A(α,β,γ) ∪ B(α,β,γ) ⊆ (A ∪ B)(α,β,γ) for

j = 1, 2, · · · , l(x : A, B).

(7) From x ∈
(
∩

t∈T
At

)(α,β,γ)
, we have inf

t∈T

{
Tj

At
(x)
}
≥ α, sup

t∈T

{
I j
At
(x)
}
≤ β, sup

t∈T

{
Fj

At
(x)
}
≤ γ, that

is, Tj
At
(x)≥ α, I j

At
(x) ≤ β, Fj

At
(x) ≤ γ for all t ∈ T. Thus, x ∈ (At)

(α,β,γ) for all t ∈ T. Hence,

x ∈ ∩
t∈T

(At)
(α,β,γ). On the other hand, for any x ∈ ∩

t∈T
(At)

(α,β,γ), we have x ∈ (At)
(α,β,γ) for all t ∈ T,

that is, Tj
At
(x) ≥ α, I j

At
(x) ≤ β, Fj

At
(x) ≤ γ for all t ∈ T. Thus,

inf
t∈T

{
Fj

At
(x)
}
≥ α, sup

t∈T

{
I j
At
(x)
}
≤ β, sup

t∈T

{
Fj

At
(x)
}
≤ γ.

Hence, x ∈
(
∩

t∈T
At

)(α,β,γ)
. Therefore,

(
∩

t∈T
At

)(α,β,γ)
= ∩

t∈T
(At)

(α,β,γ) for j = 1, 2, · · · , l(x : A, B).

(8) The proof of (8) is similar to that of (6).

(9) Since x ∈ ∩
t∈T

A(αt ,βt ,γt), we have x ∈ A(αt ,βt ,γt) for all t ∈ T, that is,

Tj
A(x) ≥ αt, I j

A(x) ≤ βt, Fj
A(x) ≤ γt for all t ∈ T.

Thus, Tj
A(x) ≥ ∨

t∈T
αt, I j

A(x) ≤ ∧
t∈T

βt, Fj
A(x) ≤ ∧

t∈T
γt, that is, Tj

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ. Thus,

x ∈A(α,β,γ). On the other hand, from x ∈ A(α,β,γ), we have Tj
A(x) ≥ α, I j

A(x) ≤ β, Fj
A(x) ≤ γ, that is,

Tj
A(x) ≥ ∨

t∈T
αt, I j

A(x) ≤ ∧
t∈T

βt, Fj
A(x) ≤ ∧

t∈T
γt for all t ∈ T. Thus, Tj

A(x) ≥ αt, I j
A(x) ≤ βt, Fj

A(x) ≤ γt for

all t ∈ T. Thus,x ∈ A(αt ,βt ,γt) for all t ∈ T. Hence, x ∈ ∩
t∈T

A(αt ,βt ,γt). Therefore, ∩
t∈T

A(αt ,βt ,γt) = A(α,β,γ)

for j = 1, 2, · · · ,j = 1, 2, · · · , l(l = max{ l(x : At)|t ∈ T}). �

Remark 3. In property (6) (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ), “⊇” cannot be strengthened as “=”. For
example, let X = {x1, x2, x3}, A, B ∈ SVNMS(X) as follows:

A = {〈x1, (0.5, 0.3), (0.1, 0.1), (0.7, 0.8)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.3), (0.2, 0.3, 0.4), (0.4, 0.5, 0.7)〉}

B = {〈x1, 0.75, 0.2, 0.15〉 , 〈x2, (0.43, 0.37, 0.28), (0.5, 0.2, 0.3), (0.7, 0.8, 0.9)〉,
〈x3, (1.0, 0.86, 0.79), (0.01, 0.1, 0.2), (0.0, 0.3, 0.2)〉}.

If we choose α = 0.4, β = 0.3, γ = 0.5, then,

A(α,β,γ) = {〈x1 , (1, 0), (1, 1), (0, 0)〉, 〈x2, (1, 1, 1), (1, 0, 0), (1, 1, 1)〉, 〈x3, (1, 1, 0), (1, 1, 0), (1, 1, 0)〉},

B(α,β,γ) = {〈x1 , 1, 1, 1〉, 〈x2, (1, 0, 0), (0, 1, 1), (0, 0, 0)〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉},

(A ∪ B)(α,β,γ) = {〈x1 , (1, 0), (1, 1), (1, 0)〉, 〈x2, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉},

A(α,β,γ) ∪ B(α,β,γ) = {〈x1, (1, 0), (1, 1), (0, 0)〉, 〈x2, (1, 1, 1), (0, 0, 0), (0, 0, 0)〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 1, 0)〉}

Obviously, (A ∪ B)(α,β,γ) 	= A(α,β,γ) ∪ B(α,β,γ).

In order to get the decomposition theorem of SVNMS, we also need to introduce the following
important concepts.
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Definition 10. Let L = {(α, β, γ)|α, β, γ ∈ [0, 1] , 0 ≤ α + β + γ ≤ 3},
(α1, β1, γ1) ≤ (α2, β2, γ2)⇔ α1 ≤ α2, β1 ≥ β2 , γ1 ≥ γ2 So, L is a complete lattice, and (1, 0, 0) is
the biggest element, (0, 1, 1) is the smallest element.

Definition 11. Let (α, β, γ) ∈ L, B ∈ 2X, A = (α, β, γ)B. And for any x ∈ X,

Tj
A(x) =

{
α, x ∈ B
0, x /∈ B

, I j
A(x) =

{
β, x ∈ B
1, x /∈ B

, Fj
A(x) =

{
γ, x ∈ B
1, x /∈ B

. (21)

Then, A =
{〈

x, Tj
A(x), I j

A(x), Fj
A(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : A)
}

is a SVNMS on the universe
X, so we have the definition as follows:

Definition 12. Suppose A ∈ SVNMS(X), (α, β, γ) ∈ L, the dot product (truncated product) of (α, β, γ) and
A is defined as

((α, β, γ)A)(x) =
{〈

x, α ∨ Tj
A(x), β ∧ I j

A(x), , γ ∧ Fj
A(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : A)
}

. (22)

That is (α, β, γ)A ∈ SVNMS(X).

Now, we can discuss the decomposition theorem of SVNMS based on the definitions and
operational properties above.

Theorem 3. Let A be a SVNMS. Then for any (α, β, γ) ∈ L, we have

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β+,γ)

= ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ+) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β,γ+)

= ∪
(α,β,γ)∈L

(α, β, γ)A(α,β+,γ+) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ+) (23)

Proof. With regard to A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ), we just need to prove A(x) =(
∪

(α,β,γ)∈L
(α, β, γ) A(α,β,γ)

)
(x) for all x ∈ X. That is, A(x) = ∨(α,β,γ)∈L

(
(α, β, γ)A(α,β,γ)

)
(x)=(

∨α∈[0,1]

(
α ∨ (Aα)j(x)

)
, ∧β∈[0,1]

(
β ∧ (Aβ)j(x)

)
,∧γ∈[0,1]

(
γ ∧ (Aγ)j(x)

))
for x ∈ X. Since Tj

A(x) ∈

[0, 1], we have ∨α∈[0,1](α∨ (Aα)j (x)) =

[
∨

α∈[0,Tj
A(x)]

(
α ∨ (Aα)j(x)

)]
∨
[
∨

α∈[Tj
A(x),1]

(
α ∨ (Aα)j(x)

)]
.

Indeed, taking α ≤ Tj
A(x), we have (Aα)j(x) = 1, otherwise, (Aα)j(x) = 0.

Thus, ∨α∈[0,1]

(
α ∨ (Aα)j(x)

)
= ∨

α∈[0,Tj
A(x)]

(
α ∨ (Aα)j(x)

)
=∨

α∈[0,Tj
A(x)]

α = Tj
A(x).

Similarly,∧β∈[0,1]

(
β ∧ (Aβ)j(x)

)
= ∧

β∈[I j
A(x),1]

(
β ∧ (Aβ)j(x)

)
= ∧

β∈[I j
A(x),1]

β = I j
A(x) and

∧γ∈[0,1]

(
γ ∧ (Aγ)j(x)

)
=∧

γ∈[Fj
A(x),1]

(
γ ∧ (Aγ)j(x)

)
= ∧

γ∈[Fj
A(x),1]

γ = Fj
A(x).

Therefore, ∨(α,β,γ)∈L

(
(α, β, γ)A(α,β,γ)

)
(x) =

(
Tj

A(x), I j
A(x), Fj

A(x)
)

= A(x) for j =

1, 2, · · · l(x : A). �

Next, we use an example to illustrate the idea of the decomposition theorem of SVNMS.
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Example 1. Let X = {x1, x2, x3}, A ∈ SVNMS(X) as follows:

A = {〈x1, (0.6, 0.4), (0.5, 0.3), (0.2, 0.3)〉, 〈x2, 0.2, 0.4, 0.7〉, 〈x3, (0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4)〉}.

We show how A can be represented by180 special SVNMSs using (α, β, γ)-cut sets. According to Definition 9,
11 and 12, we have:

A(α,β,γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 0, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.2, 0.2), (1, 1), (1, 1)〉, 〈x2, 0.2, 1, 1〉, 〈x3, (0.2, 0.2, 0.2), (0.2, 0.2, 1), (0.1, 1, 1)〉},

where 0 ≤ α ≤ 0.2, 0 ≤ β ≤ 0.2, 0 ≤ γ ≤ 0.1;

A(α,β,γ) = {〈x1, (1, 1), (0, 1), (1, 0)〉, 〈x2, 0, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 0, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.4, 0.4), (1, 0.3), (0.2, 1)〉, 〈x2, 1, 1, 1〉, 〈x3, (0.4, 0.4, 0.4), (0.3, 0.3, 0.3), (0.2, 1, 1)〉},

where 0.2 < α ≤ 0.4, 0.2 < β ≤ 0.3, 0.1 < γ ≤ 0.2;

A(α,β,γ) = {〈x1, (1, 0), (0, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.5, 0), (1, 0.4), (0.3, 0.3)〉, 〈x2, 0, 0.4, 1〉, 〈x3, (0.5, 0.5, 0.5), (0.4, 0.4, 0.4), (0.3, 0.3, 1)〉},

where 0.4 < α ≤ 0.5, 0.3 < β ≤ 0.4, 0.2 < γ ≤ 0.3;

A(α,β,γ) = {〈x1, (1, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.6, 0), (0.5, 0.5), (0.4, 0.4)〉, 〈x2, 0, 0.5, 1〉, 〈x3, (0.6, 0.6, 0), (0.5, 0.5, 0.5), (0.4, 0.4, 0.4)〉},

where 0.5 < α ≤ 0.6, 0.4 < β ≤ 0.5, 0.3 < γ ≤ 0.4;

A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (1, 0, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0, 0), (1, 1), (0.7, 0.7)〉, 〈x2, 0, 1, 0.7〉, 〈x3, (0.8, 0, 0), (1, 1, 1), (0.7, 0.7, 0.7)〉},

where 0.6 < α ≤ 0.8, 0.5 < β ≤ 1, 0.4 < γ ≤ 0.7;

A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.8 < α ≤ 1, 0.5 < β ≤ 1, 0.7 < γ ≤ 1.
Similarly, we can get the rest of the results with special SVNMSs. It is obvious to see,

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ).

Definition 13. Suppose H : L→ 2X , (λ, μ, ω) )→ H(λ, μ, ω) is a mapping, a neutrosophic nested set H can
be defined in X if it satisfies the following conditions:

(1) (λ1, μ1, ω1) ≤ (λ2, μ2, ω2)⇒ H(λ1, μ1, ω1) ⊇ H(λ2, μ2, ω2) ;
(2) ∩t∈T H(λt, μt, ωt) ⊆ {H(λ, μ, ω)|λ < ∨t∈Tλt , μ > ∧t∈Tμt, ω > ∧t∈Tωt}.

Remark 4. Let SVNL be a set which composed of all neutrosophic nested sets, A ∈ SVNMS(X), then, all
(α, β, γ)-cut sets of A are neutrosophic nested sets.

Theorem 4. Let A ∈ SVNMS(X), H : L→ 2X , (α, β, γ) )→ H(α, β, γ) , for any (α, β, γ) ∈ L satisfy
A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ), then
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(1) A = ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ);

(2) α1 < α2, β1 > β2, γ1 > γ2 ⇒ H(α1, β1, γ1) ⊇ H(α2, β2, γ2) , where α1, α2, β1, β2, γ1, γ2 ∈ [0, 1],
0 ≤ α1 + β1+γ1 ≤ 3, 0 ≤ α2 + β2 + γ2 ≤ 3;

(3) (I) A(α,β,γ) = ∩{H(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3}, (II) A(α+,β+,γ+) =

∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3};
(4) ∩

t∈T
H(αt, βt, γt) ⊆ ∩{H(α, β, γ)|α < ∨t∈Tαt, β > ∧t∈T βt, γ > ∧t∈Tγt }.

Proof.

(1) Since A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ) for all (α, β, γ) ∈ L, we have

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ+) ⊆ ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ) ⊆ ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ) = A.

Thus, A = ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ).

(2) From α1 < α2, β1 > β2, γ1 > γ2, we can obtain

H(α1, β1, γ1) ⊇ A(α1+,β1+,γ1+) ⊇ A(α2,β2,γ2) ⊇ H(α2, β2, γ2).

(3) (I) Suppose ∑ = {(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3}, then,

∨(λ,μ,ω)∈∑ (λ, μ, ω) = (α, β, γ).

So, ∩{H(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3} ⊆ ∩
{

A(λ,μ,ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3
}
=

A(α,β,γ). On the other hand, since x ∈ A(α,β,γ), we have Tj
A(x) ≥ α, I j

A(x) ≤ β, Fj
A(x) ≤

γ. Thus, Tj
A(x)≥ α > λ, I j

A(x) ≤ β < μ, Fj
A(x) ≤ γ < ω. That is, Tj

A(x) >

λ, I j
A(x) < μ, Fj

A(x) < ω. Thus, x ∈ A(λ+,μ+,ω+). Thus, x ∈ H(λ, μ, ω). Therefore, x ∈
∩{H(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3}. Based on the above facts, we can obtain
A(α,β,γ) = ∩{H(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3}.
(II) Since A(α+,β+,γ+) ⊇ A(λ, ,μ,γ) ⊇ H(λ, μ, γ) for any λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3,
we have

A(α+,β+,γ+) ⊇ ∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3}. On the other hand,
from x ∈ A(α+,β+,γ+) we have Tj

A(x) > α, I j
A(x) < β, Fj

A(x) < γ. It follows that there exists

λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3, such that Tj
A(x) > λ > α, I j

A(x) < μ < β,

Fj
A(x) < ω < γ, that is, x ∈ A(λ+,μ+,ω+). Indeed, A(λ+,μ+,ω+) ⊆ H(λ, μ, ω), then, x ∈ H(λ, μ, ω).

Thus, x ∈ ∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3}. Thus,
A(α+,β+,γ+) ⊆ ∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3}. Therefore, we can obtain

A(α+,β+,γ+) = ∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3}.

(4) From A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ), we have ∩
t∈T

H(αt, βt, γt) ⊆ ∩
t∈T

A(αt ,βt ,γt) ⊆ A(α′ ,β′ ,γ′)

for α′ = ∨t∈Tαt,β′ = ∧t∈T βt,γ′ = ∧t∈Tγt. Applying (3) (I), we get

A(α′ ,β′ ,γ′) = ∩{H(α, β, γ)|α < α′, β > β′, γ > γ′, 0 ≤ α + β+γ ≤ 3}+γ ≤ 3}.

Therefore,

∩
t∈T

H(αt, βt, γt) ⊆ ∩
{

H(α, β, γ)
∣∣α < α′, β > β′, γ > γ′, 0 ≤ α + β + γ ≤ 3

}
�

Remark 5. (1) The significance of Theorem 3 (Decomposition Theorem): A SVNMS can be composed of
neutrosophic nested sets which consist of self-decomposed cut sets or strong cut sets. (2) The significance of
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Theorem 4 (Generalized Decomposition Theorem): A collection of family sandwiched between cut or strong cut
sets of a SVNMS must be neutrosophic nested sets, and such nested sets can also compose the original SVNMS.

4.2. Representation Theorem of SVNMS

According to the relationship between the decomposition theorem and the representation theorem,
we can obtain that each neutrosophic nested set can be combined into a single-valued neutrosophic
multiset. Furthermore, its cut sets or strong cut sets can be constructed with the original neutrosophic
nested set. In other words, it is theoretically explained: a family of special single-valued neutrosophic
multisets can be used to completely depict and represent a single-valued neutrosophic multiset).

In this section, the representation theorem of SVNMS based on the decomposition theorem is
proposed in this section.

Theorem 5. Let H ∈ SVNL(X), A ∈ SVNMS(X), and ∀(α, β, γ) ∈ L. We have

(I) A(α,β,γ) = ∩{H(λ, μ, ω)|λ < α, μ > β, ω > γ, 0 ≤ λ + μ + ω ≤ 3};
(II) A(α+,β+,γ+) = ∪{H(λ, μ, ω)|λ > α, μ < β, ω < γ, 0 ≤ λ + μ + ω ≤ 3}.

Proof. Since H(α, β, γ) ∈ 2X for all (α, β, γ) ∈ L, and (α, β, γ)H(α, β, γ) ∈ SVNMS(X), we have
∪(α,β,γ)∈L(α, β, γ)H(α, β, γ) ∈ SVNMS(X), denoted by A. Applying Theorem 4, we only need
to prove,

H : L→ 2X satisfies A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ).

Since x ∈ A(α+,β+,γ+), we have Tj
A(x) > α, Ij

A(x) < β, Fj
A(x) < γ. Thus, ∨(λ,μ,ω)∈L

[
λ∧ (H(λ))j(x)

]
> α,

∧(λ,μ,ω)∈L

[
μ ∨ (H(μ))j(x)

]
< β,∧(λ,μ,ω)∈L

[
ω ∨ (H(ω))j(x)

]
< γ. It follows that there exists

(λ0, μ0, ω0) ∈L, such that λ0 ∨ (H(λ0))j(x) > α, μ0 ∨ (H(μ0))j(x) < β, ω0 ∨ (H(ω0))j(x) < γ, that is,
λ0 > α, μ0 < β,ω0 < γ. Taking (H(λ0, μ0, ω0))j(x) = (1, 1, 1), we have (λ0, μ0, ω0) > (α, β, γ). Thus,
x ∈ H(λ0, μ0, ω0) ⊆H(α, β, γ). On the other hand, from x ∈ H(α, β, γ), we have (H(λ, μ, ω))j(x) =

(1, 1, 1). Thus, ∨(λ,μ,ω)∈L

[
λ ∨ (H(λ))j(x)

]
≥ α ∧ (H(α))j(x) = α, ∨(λ,μ,ω)∈L

[
μ ∨ (H(μ))j(x)

]
≤ β ∧

(H(β))j(x) = β and

∨(λ,μ,ω)∈L

[
ω ∨ (H(ω))j(x)

]
≤ γ ∧ (H(γ))j(x) = γ, that is, Tj

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ.

Thus, x ∈A(α,β,γ). Therefore, A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ) for j = 1, 2, · · · l(x : A, B). �

Theorem 5 (Representation Theorem) provides an effective method for constructing a SVNMS:
Let H ∈ SVNL(X), we can construct a SVNMS with the following membership function:

A : X → L , A(x) = ∨{(α, β, γ) ∈ L|x ∈ H(α, β, γ)}, ∀x ∈ X

Example 2. Suppose X = {x1, x2, x3}. The neutrosophic nested sets on the given X is as follows:

H(α, β, γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (0, 0, 0), (0, 0, 0)〉},

where α = β = γ = 0;

H(α, β, γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 0, 0)〉},

where 0 < α ≤ 0.2, 0 < β ≤ 0.2, 0 < γ ≤ 0.1;

H(α, β, γ) = {〈x1, (1, 1), (0, 1), (1, 0)〉, 〈x2, 0, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 0, 0)〉},
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where 0.2 < α ≤ 0.4, 0.2 < β ≤ 0.3, 0.1 < γ ≤ 0.2;

H(α, β, γ) = {〈x1, (1, 0), (0, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 0)〉},

where 0.4 < α ≤ 0.5, 0.3 < β ≤ 0.4, 0.2 < γ ≤ 0.3;

H(α, β, γ) = {〈x1, (1, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.5 < α ≤ 0.6, 0.4 < β ≤ 0.5, 0.3 < γ ≤ 0.4;

H(α, β, γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (1, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.6 < α ≤ 0.8, 0.5 < β ≤ 1, 0.4 < γ ≤ 0.7;

H(α, β, γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.8 < α ≤ 1, 0.5 < β ≤ 1, 0.7 < γ ≤ 1.
Similarly, we can give the remaining neutrosophic nested sets.
Then, the SVNMS A determined by H has the following membership function:((

T1
A(x1), T2

A(x1)
)
,
(

I1
A(x1), I2

A(x1)
)
,
(

F1
A(x1), F2

A(x1)
))

= (∨{α ∈ [0, 1]|x1 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x1 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x1 ∈ H(α, β, γ)})
= ((0.6, 0.4), (0.5, 0.3), (0.2, 0.3))(
T1

A(x2), I1
A(x2), F1

A(x2)
)

= (∨{α ∈ [0, 1]|x2 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x2 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x2 ∈ H(α, β, γ)})
= (0.2, 0.4, 0.7)((

T1
A(x3), T2

A(x3), T3
A(x3)

)
,
(

I1
A(x3), I2

A(x3), I3
A(x3)

)
,
(

F1
A(x3), F2

A(x3), F3
A(x3)

))
= (∨{α ∈ [0, 1]|x3 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x3 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x3 ∈ H(α, β, γ)})
= ((0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4))

Therefore,

A = {〈x1, (0.6, 0.4), (0.5, 0.3), (0.2, 0.3)〉, 〈x2, 0.2, 0.4, 0.7〉, 〈x3, (0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4)〉}.

5. New Similarity Measure between SVNMSs

On the basis of the decomposition theorem of SVNMS, this section presents a new similarity
measure between SVNMSs. Then, we discuss the properties of this new similarity measure and give a
concrete algorithm by example.

Definition 14. Let M =
{〈

x, Tj
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

and N ={〈
x, Tj

N(x), I j
N(x), Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : N)

}
be two SVNMSs in X. Suppose V = [0, 1]×

[0, 1]× [0, 1]. Then, we define a new distance measure between M and N as follows:

DC(M, N) =
�

V

f (α, β, γ)dV

where f (α, β, γ) = DP

(
(α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ)

)
, α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1].

Proposition 2. Let M, N be two SVNMSs in X. Then, the following properties hold (DC1-DC4):

(DC1) 0 ≤ DC(M, N) ≤ 1;
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(DC2) DC(M, N) = 0 if and only if M = N;
(DC3) DC(M, N) = DC(M, N);
(DC4) If Q is a SVNMS in X and M ⊆ N ⊆ Q, then, DC(M, Q) ≤ DC(M, N) + DC(N, Q) for P > 0.

According to the relationship between distance measure and similarity measures, we can introduce
two distance-based similarity measures between M and N:

SC1(M, N) = 1− DC(M, N) (25)

SC2(M, N) =
1− DC(M, N)

1 + DC(M, N)
(26)

Proposition 3. Let M, N ∈ SVNMS(X). The distance-based similarity measures SC f (M, N), ( f = 1, 2)
hold the following properties (SC1-SC4):

(SC1) 0 ≤ SC f (M, N) ≤ 1;

(SC2) SC f (M, N) = 1 if and only if M = N;

(SC3) SC f (M, N) = SC f (N, M);

(SC4) If Q is a SVNMS in X and M ⊆ N ⊆ Q, then SC f (M, Q) ≤ SC f (M, N) + SC f (N, Q).

Proof. The proofs of proposition 2 and 3 are straightforward. �

This method is based on the cut sets, and uses the idea of the decomposition theorem to convert the
similarity measure between the two SVNMSs into the similarity measure between the corresponding
special SVNMSs. Now, let us use a concrete example to illustrate the specific algorithm.

Example 3. Let X = {x1, x2, x3}, M, N ∈ SVNMS(X). That is,
M = {〈x1, (0.7, 0.8), (0.1, 0.2), (0.2, 0.3)〉, 〈x2, (0.5, 0.6), (0.2, 0.3), (0.4, 0.5)〉}, N =

{〈x1, (0.5, 0.6), (0.1, 0.2), (0.4, 0.5)〉, 〈x2, (0.6, 0.7), (0.1, 0.2), (0.7, 0.8)〉}.
According to the values of Tj

M(xi), Tj
N(xi)(i = 1, 2; j = 1, 2), we divide the interval [0, 1] of α into 5

subintervals: [0, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 1]. Similarly, we can obtain 4 subintervals of β:
[0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 1], and 7 subintervals of γ: [0, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.7],
(0.7, 0.8], (0.8, 1]. Thus, we have 140 interval combinations of α, β, and γ, take 0 ≤ α ≤ 0.5, 0.2 < β ≤ 0.3,
0.7 < γ ≤ 0.8 for example. In this way, for each combination of interval, we can get the corresponding
M(α,β,γ), N(α,β,γ) and (α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ). Based on the above results, the process is
as follows:

Step1, calculate f (α, β, γ) = DP

(
(α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ)

)
in every interval combination.

Step2, use Equation (24) to perform the integral operation on f (α, β, γ) over V = [0, 1]× [0, 1]× [0, 1],
and get DC(M, N) = 0.2206.

Step3, using Equation (25) and (26), we can get SC1(M, N) = 0.7794 and SC2(M, N) = 0.6385.

6. Application of New Similarity Measures in Multicriteria Decision-Making Problems

In this section, the new similarity measure is applied to a medical diagnosis problem. Next, we
use the typical examples in [14] to verify the feasibility and effectiveness of the new similarity measure
proposed in Section 5. Furthermore, we analyze the uniqueness of the new similarity measure by
comparing the results with other similarity measures.

Assume that I = {I1, I2, I3, I4} represents 4 patients, set R = {R1, R2, R3, R4} = {viral fever,
tuberculosis, typhoid, throat disease} indicates 4 diseases, and set S = {S1, S2, S3, S4} = {temperature,
cough, sore throat, headache, body pain} indicates 5 symptoms. In medical diagnosis, in order to
obtain a more accurate diagnosis, the doctor collects symptom information for the same patient at
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different times of the day. Therefore, we use the following SVNMSs to indicate the affiliation between
the patient and the symptom:

I1 = {〈S1, (0.8, 0.6, 05), (0.3, 0.2, 0.1), (0.4, 0.2, 0.1)〉, 〈S2, (0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.4)〉
〈S3, (0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)〉, 〈S4, (0.7, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.3, 0.2)〉

〈S5, (0.4, 0.3, 0.2), (0.6, 0.5, 0.5), (0.6, 0.4, 0.4)〉;
I2 = {〈S1, (0.5, 0.4, 0.3), (0.3, 0.3, 0.2), (0.5, 0.4, 0.4)〉, 〈S2, (0.9, 0.8, 0.7), (0.2, 0.1, 0.1), (0.2, 0.1, 0.0)〉
〈S3, (0.6, 0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.3, 0.3)〉, 〈S4, (0.6, 0.4, 0.3), (0.3, 0.1, 0.1), (0.7, 0.7, 0.3)〉

〈S5, (0.8, 0.7, 0.5), (0.4, 0.3, 0.1), (0.3, 0.2, 0.1)〉;
I3 = {〈S1, (0.2, 0.1, 0.1), (0.3, 0.2, 0.2), (0.8, 0.7, 0.6)〉, 〈S2, (0.3, 0.2, 0.2), (0.4, 0.2, 0.2), (0.7, 0.6, 0.5)〉
〈S3, (0.8, 0.8, 0.7), (0.2, 0.2, 0.2), (0.1, 0.1, 0.0)〉, 〈S4, (0.3, 0.2, 0.2), (0.3, 0.3, 0.3), (0.7, 0.6, 0.6)〉

〈S5, (0.4, 0.4, 0.3), (0.4, 0.3, 0.2), (0.7, 0.7, 0.5)〉;
I4 = {〈S1, (0.5, 0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.4, 0.3)〉, 〈S2, (0.4, 0.3, 0.1), (0.4, 0.3, 0.2), (0.7, 0.5, 0.3)〉
〈S3, (0.7, 0.1, 0.0), (0.4, 0.3, 0.3), (0.7, 0.7, 0.6)〉, 〈S4, (0.6, 0.5, 0.3), (0.6, 0.2, 0.1), (0.6, 0.4, 0.3)〉

〈S5, (0.5, 0.1, 0.1), (0.3, 0.3, 0.2), (0.6, 0.5, 0.4)〉.

Then, the affiliation between the symptoms and the disease is represented by the
following SVNMSs:

R1 = {〈S1, 0.8, 0.1, 0.1〉, 〈S2, 0.2, 0.7, 0.1〉, 〈S3, 0.3, 0.5, 0.2〉, 〈S4, 0.5, 0.3, 0.2〉, 〈S5, 0.5, 0.4, 0.1〉};
R2 = {〈S1, 0.2, 0.7, 0.1〉, 〈S2, 0.9, 0.0, 0.1〉, 〈S3, 0.7, 0.2, 0.1〉, 〈S4, 0.6, 0.3, 0.1〉, 〈S4, 0.7, 0.2, 0.1〉};
R3 = {〈S1, 0.5, 0.3, 0.2〉, 〈S2, 0.3, 0.5, 0.2〉, 〈S3, 0.2, 0.7, 0.1〉, 〈S4, 0.2, 0.6, 0.2〉, 〈S5, 0.4, 0.4, 0.2〉};
R4 = {〈S1, 0.1, 0.7, 0.2〉, 〈S2, 0.3, 0.6, 0.1〉, 〈S3, 0.8, 0.1, 0.1〉, 〈S4, 0.1, 0.8, 0.1〉, 〈S5, 0.1, 0.8, 0.1〉}.

Then, by Definition 14, we use Equations (24) and (25) to get the similarity SC1
(

Ii, Rj
)

between
each patient Ii(i = 1, 2, 3, 4) and disease Rj(j = 1, 2, 3, 4), which are shown in Table 1. Similarly, we use
Equations (24) and (26) to get the similarity SC2

(
Ii, Rj

)
between each patient Ii(i = 1, 2, 3, 4) and disease

Rj(j = 1, 2, 3, 4), which are shown in Table 2.

Table 1. Similarity values of SC1

(
Ii, Rj

)
.

R1

(Viral fever)
R2

(Tuberculosis)
R3

(Typhoid)
R4

(Troat Disease)

I1 0.6927 0.6616 0.6934 0.6694
I2 0.6417 0.6632 0.6458 0.6414
I3 0.6896 0.6820 0.6881 0.7011
I4 0.6966 0.6850 0.7156 0.6923

Table 2. Similarity values of SC2

(
Ii, Rj

)
.

R1

(Viral fever)
R2

(Tuberculosis)
R3

(Typhoid)
R4

(Troat Disease)

I1 0.5299 0.4943 0.5307 0.5031
I2 0.4724 0.4961 0.4769 0.4721
I3 0.5263 0.5175 0.5245 0.5398
I4 0.5344 0.5209 0.5571 0.5294

It is well known that the closeness of the relationship between two SVNMSs can be described by
the similarity between the two, that is, the greater the similarity, the closer the relationship is. As can
be seen from Tables 1 and 2, for these four diseases, by comparison, we can determine the most similar
disease to each patient and get the get the most realistic diagnosis: patient I1 suffers from typhoid,
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patient I2 suffers from tuberculosis, patient I3 suffers from throat disease, and patient I4 also suffers
from typhoid.

The dice similarity measures proposed in [11] are applied to the decision-making example, and
the diagnosis is that patient I1 suffers from typhoid, patient I2 suffers from viral fever, patient I3

suffers from typhoid, and patient I4 suffers from tuberculosis. The distance-based similarity measures
proposed in [14] also are applied in this decision-making example, and the diagnosis is that patient
I1 suffers from viral fever, patient I2 suffers from tuberculosis, patient I3 suffers from typhoid, and
patient I4 suffers from typhoid.

By analyzing and comparing the diagnostic results obtained by the three methods, we found that
when using the new similarity to calculate, the diagnosis of disease in patient I1 is consistent with [11]
and the diagnosis of patients I2 and I4 was consistent with [14], indicating that this method is more
effective, because the results are closer to the actual situation.

According to the above comparative analysis, the method proposed in this paper has the following
advantages: (1) The new similarity measure under the SVNMSs environment can deal with the
indeterminacy and inconsistent information which exists in decision-making problems, that is, it can
be effectively used in many practical applications. (2) The new similarity measure is based on the
cut sets, with the decomposition theorem and the representation theorem as the main ideas, and the
integral as the main mathematical tool. Therefore, it has a solid mathematical theoretical basis. (3) This
method can make full use of all the information of SVNMSs, and use the idea of splitting and summing
to simplify complex problem, provide a simple and effective method for solving practical problems.

7. Conclusions

This paper first systematically discussed 8 properties of the union, intersection and complement
of the single-valued neutrosophic multisets (SVNMSs), and showed that the complementation is no
longer true in SVNMS by the counterexample. Secondly, this paper proposed the notions of cut sets
and strong cut sets of SVNMSs and presented the related properties. On the basis of cut set sand strong
cut sets, the decomposition theorem and representation theorem of SVNMSs were established and
proved. The decomposition theorem realizes the transformation of SVNMSs and special SVNMSs.
Thirdly, based on the decomposition theorem, we transformed the similarity between SVNMSs into the
similarity between special SVNMSs. Therefore, we used the integral to give a new method to calculate
the similarity between SVNMSs. The conceptions of new similarity measures were introduced, and its
feasibility and effectiveness in multi-attribute decision making were verified accordinng to a typical
example. Further, the uniqueness of the new similarity measure was analyzed by comparing the results
with other similarity measures. The results obtained have a significant meaning for further theoretical
research of SVNMSs. As the next research topic, we will explore the fuzzy measure and fuzzy integral
of SVNMSs. In the future, we will discuss the integration of the related topics, such as neutrosophic
set (multiset), fuzzy set (multiset), rough set, soft set and algebra systems (see [30–32,37–39]).
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Abstract: Intuitionistic fuzzy rough sets are constructed by combining intuitionistic fuzzy sets
with rough sets. Recently, Huang et al. proposed the definition of an intuitionistic fuzzy (IF)
β-covering and an IF covering rough set model. In this paper, some properties of IF β-covering
approximation spaces and the IF covering rough set model are investigated further. Moreover,
we present a novel methodology to the problem of multiple criteria group decision making. Firstly,
some new notions and properties of IF β-covering approximation spaces are proposed. Secondly,
we study the characterizations of Huang et al.’s IF covering rough set model and present a new IF
covering rough set model for crisp sets in an IF environment. The relationships between these two
IF covering rough set models and some other rough set models are investigated. Finally, based on
the IF covering rough set model, Huang et al. also defined an optimistic multi-granulation IF rough
set model. We present a novel method to multiple criteria group decision making problems under
the optimistic multi-granulation IF rough set model.

Keywords: intuitionistic fuzzy; covering; neighborhood system; decision making

1. Introduction

Rough set theory was proposed by Pawlak [1,2] in 1982 as a tool to conceptualize, organize
and analyze various types of data in data mining. There are other generalizations of his original
concepts, for example by general binary relations [3], multi-granulations [4] and coverings [5]. Aiming
at covering-based rough sets [6,7], they have been applied to decision rule synthesis [8,9], knowledge
reduction [10,11] and other fields [12,13]. In theory, covering-based rough set theory has been
connected with other theories. For example, it has been connected with lattice theory [14,15], matroid
theory [16,17] and fuzzy set theory [18–23].

Zadeh’s fuzzy set theory [24] addresses the problem of how to understand and manipulate
imperfect knowledge. Recent investigations have shown that rough set and fuzzy set theories can be
combined into various models, which are used for incomplete information in information systems.
Dübois and Prade [25] first presented a fuzzy rough set model. Based on their work, some extended
models and corresponding applications have been investigated in [26,27]. As far as fuzzy covering
rough sets, D’eer et al. [28] discussed some fuzzy covering-based rough set models. Ma [18] proposed
two new types of fuzzy covering rough set models. Inspired by Ma’s work, Yang and Hu [29]
investigated some types of fuzzy covering-based rough sets. Then, Yang and Hu studied other
problems in fuzzy covering-based rough sets [30].

Intuitionistic fuzzy set (IFS) theory, as a straightforward extension of fuzzy set theory, was
proposed by Atanassov [31]. The combination of IFS and rough set theories has attracted more

Symmetry 2018, 10, 462; doi:10.3390/sym10100462 www.mdpi.com/journal/symmetry359
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interesting studies. For example, Zhang et al. [32] studied a general frame of IF rough sets.
Huang et al. [33] presented an IF rough set model by combining β-neighborhoods induced by an IF
β-covering. There are also other new notions and properties in Huang et al.’s IF rough set model, so it
is necessary to investigate the IF rough set model further in this paper.

Recently, many researchers have studied decision making problems by rough set models [19,34],
especially multiple criteria group decision making [20,23]. Multiple criteria group decision making
(MCGDM) involves ranking from all feasible alternatives in conflicting and interactive criteria. After
presenting the IF covering rough set model, Huang et al. also defined an optimistic multi-granulation
IF rough set model. By investigation, multi-granulation IF rough set models have not been used
for MCGDM problems. According to the characterizations of MCGDM problems, we construct the
multi-granulation IF decision information systems and present a novel approach to MCGDM problems
based on the optimistic multi-granulation IF rough set model in this paper.

The rest of this paper is organized as follows. Section 2 recalls some notions about covering-based
rough sets and intuitionistic fuzzy sets. In Section 3, some properties of IF β-covering approximation
space are investigated further. In Section 4, we investigate two IF covering rough set models. Among
these two models, one is presented by Huang et al. [33], which concerns the IF sets; and the other is
proposed by us, which concerns the crisp sets in an IF environment. In Section 5, we present a novel
approach to MCGDM problems based on Huang et al.’s optimistic multi-granulation IF rough set
model. This paper is concluded and further work is indicated in Section 6.

2. Basic Definitions

This section reviews some fundamental notions related to covering-based rough sets and
intuitionistic fuzzy sets. Suppose U is a nonempty and finite set called a universe.

Definition 1. (Covering [35,36]) Let U be a universe and C a family of subsets of U. If none of the subsets in
C are empty and

⋃
C = U, then C is called a covering of U.

Definition 2. (Neighborhood [35]) Let C be a covering of U. For any x ∈ U,

NC(x) =
⋂{K ∈ C : x ∈ K}

is called the neighborhood of x with respect to C. When the covering is clear, we omit the lowercase C in the
neighborhood.

Definition 3. (Approximation operators [37]) Let C be a covering of U. For any X ⊆ U,

SHC(X) = {x ∈ U : N(x) ∩ X 	= ∅},
SLC(X) = {x ∈ U : N(x) ⊆ X}.

SHC(X) and SLC(X) are called the upper and lower approximation operators with respect to C.

Definition 4. (Intuitionistic fuzzy set [31]) Let U be a fixed set. An intuitionistic fuzzy set (IFS) A in U is
defined as:

A = {〈x, μA(x), νA(x)〉 : x ∈ U},

where μA : U → [0, 1] is called the degree of membership of the element x ∈ U to A and νA : U → [0, 1]
is called the degree of non-membership. They satisfy μA(x) + νA(x) ≤ 1 for all x ∈ U. The family of all
intuitionistic fuzzy sets in U is denoted by IF(U).

We call 〈a, b〉 with 0 ≤ a, b ≤ 1 and a + b ≤ 1 an IF value. As is well known, for two IF values
α = 〈a, b〉 and β = 〈c, d〉, α ≤ β⇔ a ≤ c and b ≥ d.
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For any family γi ∈ [0, 1], i ∈ I, I ⊆ N+ (N+ is the set of all positive integers), we write ∨i∈Iγi for
the supremum of {γi : i ∈ I} and ∧i∈Iγi for the infimum of {γi : i ∈ I}. Some basic operations on
IF(U) are shown as follows [31]: for any A, B ∈ IF(U),

1. A ⊆ B iff μA(x) ≤ μB(x) and νB(x) ≤ νA(x) for all x ∈ U;
2. A = B iff A ⊆ B and B ⊆ A;
3. A ∪ B = {〈x, μA(x) ∨ μB(x), νA(x) ∧ νB(x)〉 : x ∈ U};
4. A ∩ B = {〈x, μA(x) ∧ μB(x), νA(x) ∨ νB(x)〉 : x ∈ U};
5. A′ = {〈x, νA(x), μA(x)〉 : x ∈ U}.

3. Some Properties of IF β-Covering Approximation Space

In this section, we introduce the notions of intuitionistic fuzzy (IF) β-covering approximation
space. There are two concepts presented by Huang et al. in [33], which are IF β-covering and IF
β-neighborhood in this approximation space. We mainly investigate some of their properties, and
some new notions are presented.

3.1. IF β-Neighborhood and IF β-Neighborhood System

Definition 5. ([33]) Let U be a universe and β = 〈a, b〉 be an IF value. Then, we call Ĉ = {C1, C2, ..., Cm},
with Ci ∈ IF(U)(i = 1, 2, ..., m), an IF β-covering of U, if for any x ∈ U, there exists Ci ∈ Ĉ, such that
Ci(x) ≥ β. We also call (U, Ĉ) an IF β-covering approximation space.

Let Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. If any Ĉi (i = 1, 2, ..., n) is an IF β-covering of U, then we call (U, Γβ)

a n-IF β-covering approximation space.

Definition 6. ([33]) Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U, the IF
β-neighborhood Ñβ

x of x induced by Ĉ can be defined as:

Ñβ
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}.

Note that Ci(x) is an IF value 〈μCi (x), νCi (x)〉 in Definitions 5 and 6. Hence, Ci(x) ≥ β means
μCi (x) ≥ a and νCi (x) ≤ b where IF value β = 〈a, b〉.

Remark 1. Let Ĉ be an IF β-covering of U, β = 〈a, b〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U:

Ñβ
x = ∩{Ci ∈ Ĉ : μCi (x) ≥ a, νCi (x) ≤ b}.

Example 1. Let U = {x1, x2, x3, x4, x5} and Ĉ = {C1, C2, C3, C4}, where:

C1 = (0.7,0.2)
x1

+ (0.5,0.3)
x2

+ (0.4,0.5)
x3

+ (0.6,0.1)
x4

+ (0.3,0.2)
x5

,

C2 = (0.6,0.2)
x1

+ (0.3,0.2)
x2

+ (0.2,0.3)
x3

+ (0.4,0.5)
x4

+ (0.7,0.3)
x5

,

C3 = (0.4,0.1)
x1

+ (0.4,0.5)
x2

+ (0.5,0.2)
x3

+ (0.3,0.6)
x4

+ (0.6,0.3)
x5

,

C4 = (0.1,0.5)
x1

+ (0.6,0.1)
x2

+ (0.6,0.3)
x3

+ (0.5,0.3)
x4

+ (0.8,0.1)
x5

.
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According to Definition 5, we know Ĉ is an IF β-covering of U (β = 〈a, b〉 with 0 ≤ a ≤ 0.6, 0.3 ≤ b ≤ 1).
Let β = 〈0.5, 0.3〉. Then, the IF β-neighborhoods are shown as follows:

Ñβ
x1 = C1 ∩ C2 = (0.6,0.2)

x1
+ (0.3,0.3)

x2
+ (0.2,0.5)

x3
+ (0.4,0.5)

x4
+ (0.3,0.3)

x5
,

Ñβ
x2 = C1 ∩ C4 = (0.1,0.5)

x1
+ (0.5,0.3)

x2
+ (0.4,0.5)

x3
+ (0.5,0.3)

x4
+ (0.3,0.2)

x5
,

Ñβ
x3 = C3 ∩ C4 = (0.1,0.5)

x1
+ (0.4,0.5)

x2
+ (0.5,0.3)

x3
+ (0.3,0.6)

x4
+ (0.6,0.3)

x5
,

Ñβ
x4 = C1 ∩ C4 = (0.1,0.5)

x1
+ (0.5,0.3)

x2
+ (0.4,0.5)

x3
+ (0.5,0.3)

x4
+ (0.3,0.2)

x5
,

Ñβ
x5 = C2 ∩ C3 ∩ C4 = (0.1,0.5)

x1
+ (0.3,0.5)

x2
+ (0.2,0.3)

x3
+ (0.3,0.6)

x4
+ (0.6,0.3)

x5
.

Theorem 1. ([33]) Let Ĉ be an intuitionistic fuzzy β-covering of U and Ĉ = {C1, C2, . . . , Cm}.
Then, the following statements hold:

1. Ñβ
x (x) ≥ β for any x ∈ U;

2. For x, y, z ∈ U, if Ñβ
x (y) ≥ β, Ñβ

y (z) ≥ β, then Ñβ
x (z) ≥ β;

3. For two IF values β1, β2, if β1 ≤ β2 ≤ β, then Ñβ1
x ⊆ Ñβ2

x for all x ∈ U.

For two different IF β-neighborhoods, a relationship between them is presented.

Proposition 1. Let Ĉ be an IF β-covering of U. For any x, y ∈ U, Ñβ
x (y) ≥ β if and only if Ñβ

y ⊆ Ñβ
x .

Proof. Suppose the IF value β = 〈a, b〉.
(⇒): Since Ñβ

x (y) ≥ β, so

μ
Ñβ

x
(y) = μ ⋂

μCi
(x)≥a

νCi
(x)≤b

Ci (y) =
∧

μCi
(x)≥a

νCi
(x)≤b

μCi (y) ≥ a, ν
Ñβ

x
(y) = ν ⋂

μCi
(x)≥a

νCi
(x)≤b

Ci (y) =
∨

μCi
(x)≥a

νCi
(x)≤b

νCi (y) ≤ b.

Hence,

{Ci ∈ Ĉ : μCi (x) ≥ a, νCi (x) ≤ b} ⊆ {Ci ∈ Ĉ : μCi (y) ≥ a, νCi (y) ≤ b}.

Therefore, for each z ∈ U,

μ
Ñβ

x
(z) =

∧
μCi

(x)≥a

νCi
(x)≤b

μCi (z) ≥
∧

μCi
(y)≥a

νCi
(y)≤b

μCi (z) = μ
Ñβ

y
(z),

ν
Ñβ

x
(z) =

∨
μCi

(x)≥a

νCi
(x)≤b

νCi (z) ≤
∨

μCi
(y)≥a

νCi
(y)≤b

νCi (z) = ν
Ñβ

y
(z).

Hence, Ñβ
y ⊆ Ñβ

x .

(⇐): For any x, y ∈ U, since Ñβ
y ⊆ Ñβ

x , so μ
Ñβ

x
(y) ≥ μ

Ñβ
y
(y) ≥ a, ν

Ñβ
x
(y) ≤ ν

Ñβ
y
(y) ≤ b.

Therefore Ñβ
x (y) ≥ β.

By the notion of IF β-neighborhood, we propose the following definition of the IF β-neighborhood
system of x ∈ U.

Definition 7. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U, the IF
β-neighborhood system Ñ β

Ĉ
(x) of x induced by Ĉ is defined as:

Ñ β

Ĉ
(x) = {Ci ∈ Ĉ : Ci(x) ≥ β}.
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According to Definition 6, we know Ñβ
x = ∩Ñ β

Ĉ
(x) for each x ∈ U. Let Ĉ1, Ĉ2 be two IF

β-coverings of U. The statement does not hold: if Ñ β

Ĉ1
(x) = Ñ β

Ĉ2
(x) for each x ∈ U, then Ĉ1 = Ĉ2.

The following example can illustrate it.

Example 2. (Continued from Example 1) Let β = 〈0.5, 0.3〉, Ĉ1 = Ĉ∪ {C5}, where C5 = (0.2,0.5)
x1

+ (0.5,0.4)
x2

+
(0.4,0.6)

x3
+ (0.3,0.4)

x4
+ (0.3,0.5)

x5
. Then, Ñ β

Ĉ
(xi) and Ñ β

Ĉ1
(xi) (i = 1, 2, 3, 4, 5) are listed in Table 1.

Table 1. Ñ β

Ĉ
(xi) and Ñ β

Ĉ1
(xi) (i = 1, 2, 3, 4, 5).

U x1 x2 x3 x4 x5

Ñ β

Ĉ
{C1, C2} {C1, C4} {C3, C4} {C1, C4} {C2, C3, C4}

Ñ β

Ĉ1
{C1, C2} {C1, C4} {C3, C4} {C1, C4} {C2, C3, C4}

Hence, Ñ β

Ĉ
(xi) = Ñ

β

Ĉ1
(xi) for any i = 1, 2, 3, 4, 5, but Ĉ 	= Ĉ1.

Inspired by this statement, we consider in which conditions two IF β-coverings generate the same
β-neighborhood system for any element of the universe. In order to find the conditions, we introduce
two new concepts in IF β-covering approximation space firstly.

Definition 8. Let Ĉ be an IF β-covering of U and C ∈ Ĉ. If there exists x ∈ U such that C(x) ≥ β, then C is
called an IF β-dependent element of Ĉ; otherwise, C is called an IF β-independent element of Ĉ. If every element
in Ĉ is an IF β-dependent element, then Ĉ is IF β-dependent; otherwise, Ĉ is IF β-independent.

Example 3. (Continued from Example 2) Let β = 〈0.5, 0.3〉. Then, C5 is an IF β-independent element of
Ĉ1 and Ci (i = 1, 2, 3, 4) are IF β-dependent elements of Ĉ1. Hence, Ĉ1 is IF β-independent and Ĉ is IF
β-dependent.

Proposition 2. Let Ĉ be an IF β-covering of U and C ∈ Ĉ. If C is an IF β-independent element of Ĉ,
then Ĉ− {C} is still an IF β-covering of U.

Proof. According to Definitions 5 and 8, it is straightforward.

Proposition 3. Let Ĉ be an IF β-covering of U, C be an IF β-independent element of Ĉ and C1 ∈ Ĉ− {C}.
Then, C1 is an IF β-independent element of Ĉ iff C1 is an IF β-independent element of Ĉ− {C}.

Proof. According to Definitions 5 and 8, it is straightforward.

According to Propositions 2 and 3, it is still an IF β-covering after deleting all IF β-independent
elements of an IF β-covering.

Definition 9. Let Ĉ be an IF β-covering of U and B̂ ⊆ Ĉ. If B̂ is the set of all IF β-dependent elements of Ĉ,
then B̂ is called the IF β-base of Ĉ and is denoted as Δβ(Ĉ).

Proposition 4. Let Ĉ be an IF β-covering of U. For any x ∈ U,

Ñ β

Ĉ
(x) = Ñ β

Δβ(Ĉ)
(x).

Proof. According to Definitions 8, 9 and Proposition 2, it is straightforward.

Theorem 2. Let Ĉ1, Ĉ2 be two IF β-coverings of U. For any x ∈ U,
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Ñ β

Ĉ1
(x) = Ñ β

Ĉ2
(x) iff Δβ(Ĉ1) = Δβ(Ĉ2).

Proof. By Proposition 4 and Definition 7, it is straightforward.

Corollary 1. Let Ĉ1, Ĉ2 be two IF β-coverings of U. For any x ∈ U, if Δβ(Ĉ1) = Δβ(Ĉ2), then Ñβ
x = Ñ′

β

x ,

where Ñβ
x and Ñ′

β

x are the β-neighborhoods induced by Ĉ1 and Ĉ2, respectively.

Proof. According to Theorem 2, Δβ(Ĉ1) = Δβ(Ĉ2)⇒ Ñ β

Ĉ1
(x) = Ñ β

Ĉ2
(x)⇒ ∩Ñ β

Ĉ1
(x) = ∩Ñ β

Ĉ2
(x)⇒

Ñβ
x = Ñ′

β

x .

3.2. β-Neighborhood

In this subsection, the definition of β-neighborhood is presented by the IF β-neighborhood.

Definition 10. Let (U, Ĉ) be an IF β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}. For each
x ∈ U, we define the β-neighborhood Nβ

x of x as:

Nβ
x = {y ∈ U : Ñβ

x (y) ≥ β}.

Note that Ñβ
x (y) is an IF value 〈μ

Ñβ
x
(y), ν

Ñβ
x
(y)〉 in Definition 10. Based on this,

the β-neighborhood can be represented by the following remark.

Remark 2. Let Ĉ be an IF β-covering of U, β = 〈a, b〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

Nβ
x = {y ∈ U : μ

Ñβ
x
(y) ≥ a, ν

Ñβ
x
(y) ≤ b}.

Example 4. (Continued from Example 1) Let β = 〈0.5, 0.3〉, then we have:

Nβ
x1

= {x1}, Nβ
x2

= {x2, x4}, Nβ
x3

= {x3, x5},

Nβ
x4

= {x2, x4}, Nβ
x5

= {x5}.

The following theorem shows the basic properties of β-neighborhoods.

Theorem 3. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then:

1. x ∈ Nβ
x for any x ∈ U;

2. For any x, y, z ∈ U, if x ∈ Nβ
y , y ∈ Nβ

z , then x ∈ Nβ
z .

Proof. (1) According to the first statement in Theorem 1, we know Ñβ
x (x) ≥ β for each x ∈ U.

Hence, x ∈ {y ∈ U : Ñβ
x (y) ≥ β} = Nβ

x for each x ∈ U.
(2) For any x, y, z ∈ U, x ∈ Nβ

y ⇔ Ñβ
y (x) ≥ β ⇔ Ñβ

x ⊆ Ñβ
y , and y ∈ Nβ

z ⇔ Ñβ
z (y) ≥ β ⇔ Ñβ

y ⊆ Ñβ
z .

Hence, Ñβ
x ⊆ Ñβ

z . By Proposition 1, we have Ñβ
z (x) ≥ β, i.e., x ∈ Nβ

z .

The following proposition shows a relationship between Nβ
x and Nβ

y .

Proposition 5. Let Ĉ be an IF β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, for any x ∈ U, x ∈ Nβ
y iff

Nβ
x ⊆ Nβ

y .
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Proof. (⇒): For any z ∈ Nβ
x , we know Ñβ

x (z) ≥ β. Since x ∈ Nβ
y , so Ñβ

y (x) ≥ β. According to (2) in

Theorem 1, we have Ñβ
y (z) ≥ β. Hence, z ∈ Nβ

y . Therefore, Nβ
x ⊆ Nβ

y .

(⇐): According to (1) in Theorem 3, x ∈ Nβ
x for all x ∈ U. Since Nβ

x ⊆ Nβ
y , so x ∈ Nβ

y .

A relationship between IF β-neighborhoods and β-neighborhoods is proposed in the
following proposition.

Proposition 6. Let Ĉ be an IF β-covering of U. For any x, y ∈ U, Ñβ
x ⊆ Ñβ

y iff Nβ
x ⊆ Nβ

y .

Proof. For any x, y ∈ U, Ñβ
x ⊆ Ñβ

y ⇔ Ñβ
y (x) ≥ β⇔ x ∈ Nβ

y ⇔ Nβ
x ⊆ Nβ

y .

4. Two Intuitionistic Fuzzy Covering Rough Set Models

In this section, we investigate two IF covering rough set models on the basis of the IF
β-neighborhoods and the β-neighborhoods, respectively. Firstly, one model is presented by Huang
et al., and we study the properties of the IF lower and upper approximations of each IF set further.
Secondly, we propose another new model, which concerns crisp sets in an IF environment. Moreover,
some properties of the approximations are investigated. Finally, the relationships between these two
IF covering rough set models with other rough set models are revealed.

4.1. Characterizations of Huang et al.’s Intuitionistic Fuzzy Covering Rough Set Model

Huang et al. [33] presented an IF covering rough set model.

Definition 11. ([33]) Let (U, Ĉ) be an IF β-covering approximation space. For each A ∈ IF(U) where
A = {〈x, μA(x), νA(x)〉 : x ∈ U}, we define the intuitionistic fuzzy (IF) covering upper approximation C̃(A)

and lower approximation C
∼
(A) of A as:

C̃(A) = {〈x,∨y∈U [μÑβ
x
(y) ∧ μA(y)],∧y∈U [νÑβ

x
(y) ∨ νA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [νÑβ

x
(y) ∨ μA(y)],∨y∈U [μÑβ

x
(y) ∧ νA(y)]〉 : x ∈ U}.

If C̃(A) 	= C
∼
(A), then A is called the first type of IF covering rough set.

Example 5. (Continued from Example 1) Let β = 〈0.5, 0.3〉, A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+
(0.7,0.2)

x5
.

C̃(A) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},
C
∼
(A) = {〈x1, 0.4, 0.3〉, 〈x2, 0.4, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.4, 0.5〉, 〈x5, 0.3, 0.3〉}.

Some characterizations of Huang et al.’s IF covering rough set model are shown in the
following proposition.

Proposition 7. ([33]) Let (U, Ĉ) be an IF β-covering approximation space. Then, for all A, B ∈ IF(U),

1. C
∼
(U) = U, C̃(∅) = ∅;

2. C̃(A′) = (C
∼
(A))′, C

∼
(A′) = (C̃(A))′;

3. If A ⊆ B, then C
∼
(A) ⊆ C

∼
(B), C̃(A) ⊆ C̃(B);

4. C
∼
(A
⋂

B) = C
∼
(A)

⋂
C
∼
(B), C̃(A

⋃
B) = C̃(A)

⋃
C̃(B);
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5. C
∼
(A
⋃

B) ⊇ C
∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

Besides these characterizations shown in Proposition 7, there are other characterizations that
should be investigated.

Example 6. (Continued from Example 1) Let β = 〈0.5, 0.3〉.

C̃(U) = {〈x1, 0.6, 0.2〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},
C
∼
(∅) = {〈x1, 0.2, 0.6〉, 〈x2, 0.2, 0.5〉, 〈x3, 0.3, 0.6〉, 〈x4, 0.2, 0.5〉, 〈x5, 0.3, 0.6〉}.

According to Example 6, we know C̃(U) 	= U and C
∼
(∅) 	= ∅ in an IF β-covering approximation

space. However, there are C̃(U) = U and C
∼
(∅) = ∅ based on some conditions.

Proposition 8. Let (U, Ĉ) be an IF β-covering approximation space with β = 〈a, b〉 and
Ĉ = {C1, C2, . . . , Cm}. C

∼
(∅) = ∅ iff ∨y∈Uμ

Ñβ
x
(y) = 1,∧y∈Uν

Ñβ
x
(y) = 0 for any x ∈ U.

Proof.

C
∼
(∅) = ∅ ⇔ C̃(U) = U

⇔ ∨y∈U [μÑβ
x
(y) ∧ μU(y)] = 1,∧y∈U [νÑβ

x
(y) ∨ νU(y)] = 0, (∀x ∈ U)

⇔ ∨y∈Uμ
Ñβ

x
(y) = 1,∧y∈Uν

Ñβ
x
(y) = 0, (∀x ∈ U).

Remark 3. Let (U, Ĉ) be an IF β-covering approximation space. The IF covering approximation operators
C
∼

and C̃ in Definition 11 do not satisfy the following statements: for all A, B ∈ IF(U),

1. C
∼
(C
∼
(A)) = C

∼
(A), C̃(C̃(A)) = C̃(A);

2. C
∼
((C

∼
(A))′) = (C

∼
(A))′, C̃((C̃(A))′) = (C̃(A))′;

3. For any C ∈ Ĉ, C
∼
(C) = C and C̃(C) = C;

In order to illustrate this remark, the following example is introduced.

Example 7. (Continued from Example 1) Let β = 〈0.5, 0.3〉, and:

A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+ (0.7,0.2)
x5

,

C1 = (0.7,0.2)
x1

+ (0.5,0.3)
x2

+ (0.4,0.5)
x3

+ (0.6,0.1)
x4

+ (0.3,0.2)
x5

,
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then:

C̃(A) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.6, 0.3〉},
C
∼
(A) = {〈x1, 0.4, 0.3〉, 〈x2, 0.4, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.4, 0.5〉, 〈x5, 0.3, 0.3〉},

C̃(C̃(A)) = {〈x1, 0.6, 0.3〉, 〈x2, 0.5, 0.3〉, 〈x3, 0.6, 0.3〉, 〈x4, 0.5, 0.3〉, 〈x5, 0.6, 0.3〉},
C
∼
(C
∼
(A)) = {〈x1, 0.3, 0.4〉, 〈x2, 0.3, 0.5〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.3, 0.5〉, 〈x5, 0.3, 0.3〉},

C̃(C1) = {〈x1, 0.6, 0.2〉, 〈x2, 0.5, 0.2〉, 〈x3, 0.4, 0.3〉, 〈x4, 0.5, 0.2〉, 〈x5, 0.3, 0.3〉},
C
∼
(C1) = {〈x1, 0.3, 0.3〉, 〈x2, 0.3, 0.4〉, 〈x3, 0.3, 0.5〉, 〈x4, 0.3, 0.4〉, 〈x5, 0.3, 0.3〉},

(C̃(A))′ = {〈x1, 0.3, 0.6〉, 〈x2, 0.2, 0.5〉, 〈x3, 0.3, 0.6〉, 〈x4, 0.2, 0.5〉, 〈x5, 0.3, 0.6〉},
(C
∼
(A))′ = {〈x1, 0.3, 0.4〉, 〈x2, 0.5, 0.4〉, 〈x3, 0.4, 0.3〉, 〈x4, 0.5, 0.4〉, 〈x5, 0.3, 0.3〉},

C̃((C̃(A))′) = {〈x1, 0.3, 0.5〉, 〈x2, 0.3, 0.5〉, 〈x3, 0.3, 0.5〉, 〈x4, 0.3, 0.5〉, 〈x5, 0.3, 0.5〉},
C
∼
((C

∼
(A))′) = {〈x1, 0.3, 0.4〉, 〈x2, 0.3, 0.4〉, 〈x3, 0.3, 0.4〉, 〈x4, 0.3, 0.4〉, 〈x5, 0.3, 0.3〉}.

Hence, C
∼
(C
∼
(A)) 	= C

∼
(A), C̃(C̃(A)) 	= C̃(A), C

∼
((C

∼
(A))′) 	= (C

∼
(A))′, C̃((C̃(A))′) 	= (C̃(A))′,

C
∼
(C1) 	= C1 and C̃(C1) 	= C1.

A condition for C
∼
(A) ⊆ A ⊆ C̃(A) is proposed in the following proposition.

Proposition 9. Let (U, Ĉ) be an IF β-covering approximation space with β = 〈a, b〉 and Ĉ =

{C1, C2, . . . , Cm}. Then, the following statements are equivalent:

1. μCi (x) ≥ a, νCi (x) ≤ b⇒ μCi (x) = 1, νCi (x) = 0 for any x ∈ U, i ∈ {1, 2, . . . , m};
2. C

∼
(A) ⊆ A for any A ∈ IF(U);

3. A ⊆ C̃(A) for any A ∈ IF(U).

Proof. (1) ⇒ (2): According to (1), we know μ
Ñβ

x
(x) = 1 and ν

Ñβ
x
(x) = 0 for each x ∈ U. For each

A ∈ IF(U),
μC

∼
(A)(x) = ∧y∈U [νÑβ

x
(y) ∨ μA(y)]

= (∧y∈U−{x}[νÑβ
x
(y) ∨ μA(y)]) ∧ [ν

Ñβ
x
(x) ∨ μA(x)]

≤ ν
Ñβ

x
(x) ∨ μA(x)

= μA(x).

νC
∼
(A)(x) = ∨y∈U [μÑβ

x
(y) ∧ νA(y)]

= (∨y∈U−{x}[μÑβ
x
(y) ∧ νA(y)]) ∨ [μ

Ñβ
x
(x) ∧ νA(x)]

≥ μ
Ñβ

x
(x) ∧ νA(x)

= νA(x).

Hence, C
∼
(A) ⊆ A.

(2)⇒ (3): According to (2) and the duality, it is immediate.

(3) ⇒ (1): For any x ∈ U, let μ1x (x) = 1, ν1x (x) = 0, elsewhere μ1x (y) = 0, ν1x (y) = 1 for all
y ∈ U − {x}. Hence, 1x ∈ IF(U). Since A ⊆ C̃(A) for any A ∈ IF(U), so:

μ
Ñβ

x
(x) = μ

C̃(1x)
(x) ≥ μ1x (x) = 1, ν

Ñβ
x
(x) = ν

C̃(1x)
(x) ≤ ν1x (x) = 0.

Therefore, μCi (x) ≥ a, νCi (x) ≤ b⇒ μCi (x) = 1, νCi (x) = 0 for each x ∈ U, i ∈ {1, 2, . . . , m}.
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4.2. An Intuitionistic Fuzzy Covering Rough Set Model for Crisp Subsets

In [18], Ma presented a fuzzy covering rough set model for crisp subsets. Inspired by his work,
we propose an IF covering rough set model for crisp subsets.

Definition 12. Let (U, Ĉ) be an IF β-covering approximation space. For each crisp subset X ∈ P(U) (P(U)

is the power set of U), the IF covering upper approximation C(X) and lower approximation C(X) of X are
defined as:

C(X) = {x ∈ U : Nβ
x ∩ X 	= ∅},

C(X) = {x ∈ U : Nβ
x ⊆ X}.

If C(X) 	= C(X), then X is called the second type of IF covering rough set.

Example 8. (Continued from Example 4) Let β = 〈0.5, 0.3〉, X = {x1, x2}, Y = {x2, x4, x5}. Then:

C(X) = {x1, x2, x4}, C(X) = {x1},
C(Y) = {x2, x3, x4, x5}, C(Y) = {x2, x4, x5},
C(U) = U, C(U) = U, C(∅) = ∅, C(∅) = ∅.

The basic characterizations of the IF covering rough set model for crisp subsets are investigated
in the following proposition.

Proposition 10. Let (U, Ĉ) be an IF β-covering approximation space. Then, for all X, Y ∈ P(U),

1. C(U) = U, C(∅) = ∅;
2. C(∅) = ∅, C(U) = U;
3. C(X′) = (C(X))′, C(X′) = (C(X))′;
4. If X ⊆ Y, then C(X) ⊆ C(Y), C(X) ⊆ C(Y);
5. C(X

⋂
Y) = C(X)

⋂
C(Y), C(X

⋃
Y) = C(X)

⋃
C(Y);

6. C(X
⋃

Y) ⊇ C(X)
⋃

C(Y), C(X
⋂

Y) ⊆ C(X)
⋂

C(Y);
7. C(X) ⊆ X ⊆ C(X);
8. C(C(X)) ⊆ C(X), C(C(X)) ⊇ C(X);
9. X ⊆ Y or Y ⊆ X ⇔ C(X ∩Y) = C(X) ∩ C(Y), C(X ∪Y) = C(X) ∪ C(Y).

Proof. According to Definitions 10 and 12, it is immediate.

4.3. Relationships between These Two Models and Some Other Rough Set Models

These two types of IF covering rough set models introduced above can be viewed as a bridge
linking intuitionistic fuzzy sets and covering-based rough sets. In these models, C̃, C

∼
are IF

approximation operators, and C, C are crisp approximation operators in the IF environment. Firstly,
we present the relationship between the IF covering rough set model defined in Section 4.1 and the
generalized IF rough set model proposed by Zhou et al. in [38].

Definition 13. ([38]) Let U be a universe of discourse and R ∈ IFR(U ×U). For any A ∈ IF(U), the upper
approximation R̃(A) and lower approximation R

∼
(A) of A are defined as:

R̃(A) = {〈x,∨y∈U [μR(x, y) ∧ μA(y)],∧y∈U [νR(x, y) ∨ νA(y)]〉 : x ∈ U},

R
∼
(A) = {〈x,∧y∈U [νR(x, y) ∨ μA(y)],∨y∈U [μR(x, y) ∧ νA(y)]〉 : x ∈ U}.
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For an IF β-covering Ĉ of U, one can define an IF relation R on the universe U as:

μR(x, y) = μ
Ñβ

x (y)
, νR(x, y) = ν

Ñβ
x (y)

for any x, y ∈ U.

The induced IF relation R is related to all C ∈ Ĉ. Hence, the IF covering rough set model defined
in Section 4.1 can be viewed as a generalized IF rough set model presented by Zhou and Wu in
Definition 13: for each A ∈ IF(U),

C̃(A) = {〈x,∨y∈U [μR(x, y) ∧ μA(y)],∧y∈U [νR(x, y) ∨ νA(y)]〉 : x ∈ U} = R̃(A),

C
∼
(A) = {〈x,∧y∈U [νR(x, y) ∨ μA(y)],∨y∈U [μR(x, y) ∧ νA(y)]〉 : x ∈ U} = R

∼
(A).

Then, we present the relationship between the IF covering rough set model defined in Section 4.2
and a covering-based rough set model in Definition 3 proposed by Samanta and Chakraborty in [37].

Proposition 11. Let (U, Ĉ) be an IF β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}.

1. If Ki = {x ∈ U : Ci(x) ≥ β} (i = 1, 2, . . . , m), then C = {K1, K2, . . . , Km} is a covering of U;

2. If (1) holds, then NC(x) = Nβ
x .

Proof. (1) Since Ĉ = {C1, C2, . . . , Cm} is an IF β-covering on U, so for any x ∈ U, there exists Ci ∈ Ĉ

such that Ci(x) ≥ β. Thus, x ∈ Ki. Hence, C = {K1, K2, . . . , Km} is a covering of U.

(2) Since C = {K1, K2, . . . , Km} is a covering of U with Ki = {x ∈ U : Ci(x) ≥ β}, so:

Nβ
x = {y ∈ U : Ñβ

x (y) ≥ β}
= {y ∈ U : (

⋂
Ci(x)≥β

Ci)(y) ≥ β}

= {y ∈ U : (
⋂

x∈Ki

Ci)(y) ≥ β}

= {y ∈ U : x ∈ Ki ⇒ y ∈ Ki, i = 1, 2, . . . , m}
= ∩{Ki ∈ C : x ∈ Ki}
= NC(x).

According to Proposition 11, for any fixed β = 〈a, b〉 (0 ≤ a, b ≤ 1 and a + b ≤ 1), an IF β-covering
Ĉ of U induces a covering C of U. Then, the second type of intuitionistic fuzzy covering rough set
model defined in Subsection 4.2 can be viewed as a covering-based rough set model in Definition 3:
for each X ∈ P(U),

C(X) = {x ∈ U : Nβ
x ∩ X 	= ∅} = {x ∈ U : NC(x) ∩ X 	= ∅} = SHC(X),

C(X) = {x ∈ U : Nβ
x ⊆ X} = {x ∈ U : NC(x) ⊆ X} = SLC(X).

5. An Application to Multiple Criteria Group Decision Making

In [33], Huang et al. also defined an optimistic multi-granulation IF rough set model. In this
section, we present a novel approach to MCGDM based on the optimistic multi-granulation IF rough
set model. We investigate the basic description of an MCGDM problem under the framework of
multi-granulation spaces. Then, we put forth a general decision making methodology for MCGDM
problems by means of the optimistic multi-granulation IF rough set model in the case of patient ranking.
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5.1. An Optimistic Multi-Granulation IF Rough Set Model

Let Ĉ be an IF β-covering of U. For each x ∈ U,

Ñβ
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}.

Ñβ

Ĉ
= {Ñβ

x : x ∈ U}, where μ
Ñβ

Ĉ

(x, y) = μ
Ñβ

x
(y) and ν

Ñβ

Ĉ

(x, y) = ν
Ñβ

x
(y) for any y ∈ U.

Definition 14. ([33]) Let U = {x1, x2, · · · , xm} be a universe, (U, Γβ) be a n-IF β-coverings approximation
space with Γβ = {Ĉ1, Ĉ2, · · · , Ĉn} and (U,NΓβ

) be the IF β-neighborhood (graded neighborhood)
approximation space induced by the n-IF β-covering approximation space (U, Γβ). For each A ∈ IF(U)

where A = {〈xj, μA(xj), νA(xj)〉 : 1 ≤ j ≤ m}, the optimistic upper approximation NΓβ

(o)
(A) and lower

approximation NΓβ
(o)(A) of A are defined as:

NΓβ

(o)
(A) = {〈xi, μ

NΓβ

(o)
(A)

(xi), ν
NΓβ

(o)
(A)

(xi)〉 : 1 ≤ i ≤ m},

NΓβ
(o)(A) = {〈xi, μ

NΓβ
(o)(A)

(xi), ν
NΓβ

(o)(A)
(xi)〉 : 1 ≤ i ≤ m},

where:
μ
NΓβ

(o)
(A)

(xi) =
n∧

k=1

m∨
j=1

[μ
Ñβ

Ĉk

(xi, xj) ∧ μA(xj)](1 ≤ i ≤ m),

ν
NΓβ

(o)
(A)

(xi) =
n∨

k=1

m∧
j=1

[ν
Ñβ

Ĉk

(xi, xj) ∨ νA(xj)](1 ≤ i ≤ m),

μ
NΓβ

(o)(A)
(xi) =

n∨
k=1

m∧
j=1

[ν
Ñβ

Ĉk

(xi, xj) ∨ μA(xj)](1 ≤ i ≤ m),

ν
NΓβ

(o)(A)
(xi) =

n∧
k=1

m∨
j=1

[μ
Ñβ

Ĉk

(xi, xj) ∧ νA(xj)](1 ≤ i ≤ m).

5.2. The Problem of Multiple Criteria Group Decision Making

Let U = {xk : k = 1, 2, · · · , l} be the set of patients and V = {yj|j = 1, 2, · · · , m} be the m main
symptoms (for example, fever, cough, and so on) for a disease B. Assume that the duty doctor X
invites n experts Ri (i = 1, 2, · · · , n) to evaluate every patient xk (k = 1, 2, · · · , l).

Assume that every expert Ri (i = 1, 2, · · · , n) believes each patient xk ∈ U (k = 1, 2, · · · , l) has a
symptom value Cij (j = 1, 2, · · · , m), denoted by Cij(xk) = 〈μCij(xk), νCij(xk)〉, where μCij(xk) ∈ [0, 1] is
the degree that expert Ri confirms patient xk has symptom yj, νCij(xk) ∈ [0, 1] is the degree that expert
Ri confirms patient xk does not have symptom yj and μCij(xk) + νCij(xk) ≤ 1.

Let β = 〈a, b〉 be the critical value. If any patient xk ∈ U, there is at least one symptom yj ∈ V
such that the symptom value Cij for the patient xk, which is diagnosed by the expert Ri, is not less than
β, respectively, then Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}, where Ĉi = {Ci1, Ci2, · · · , Cim}, for all 1 ≤ i ≤ n, is a n-IF
β-coverings of U for some IF value β.

The IF β-neighborhood Ñβ
x of x induced by Ĉi (1 ≤ i ≤ n) is an IFS:

Ñβ
x = ∩{Cij ∈ Ĉi : Cij(x) ≥ β, j = 1, 2, · · · , m}.

Ñβ

Ĉi
= {Ñβ

x : x ∈ U}, where μ
Ñβ

Ĉi

(x, xt) = μ
Ñβ

x
(xt) and ν

Ñβ

Ĉi

(x, xt) = ν
Ñβ

x
(xt) for any t = 1, 2, · · · , l.

μ
Ñβ

Ĉi

(x, xt) denotes the minimum value among the degree of sickness of every patient

xt (t = 1, 2, · · · , l) according to the diagnoses of the expert Ri (i = 1, 2, · · · , n), respectively. ν
Ñβ

Ĉi

(x, xt)

denotes the maximum value among the degree of non-sickness of every patient xt (t = 1, 2, · · · , l)
according to the diagnoses of the expert Ri (i = 1, 2, · · · , n), respectively.

If c is a possible degree and d is an impossible degree of the disease B of every patient xk ∈ U
that is diagnosed by the duty doctor X, denoted by A(xk) = 〈c, d〉, then the decision maker (the duty
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doctor X) for the MCGDM problem needs to know how to evaluate whether or not the patients xk ∈ U
have the disease B.

5.3. Decision Making Methodology and Process

In this subsection, we give an approach to decision making for the problem of MCGDM with the
above characterizations by means of the optimistic multi-granulation IF rough set model. According
to the characterizations of the MCGDM problem in Subsection 5.2, we construct the multi-granulation
intuitionistic fuzzy decision information systems and present the process of decision making under
the framework of optimistic multi-granulation IF rough set model.

• Input: Multi-granulation fuzzy decision information systems (U, β, Γβ, A).
• Output: The score ordering for all alternatives.

• Step 1: Computing the IF β-neighborhood Ñβ
x of x induced by Ĉi ∈ Γβ, for all x ∈ U and

i = 1, 2, · · · , n.
• Step 2: Computing the optimistic upper approximation NΓβ

(o)
(A) and the optimistic lower

approximation NΓβ
(o)(A).

• Step 3: Giving the right weight value of ζ, where ζ ∈ [0, 1].
• Step 4: Computing:

n
∑

i=1
R̃i(A) = ζNΓβ

(o)(A) + (1− ζ)NΓβ

(o)
(A).

• Step 5: Computing:

s(x) = μ n
∑

i=1
R̃i(A)

(x)− ν n
∑

i=1
R̃i(A)

(x) for any x ∈ U.

• Step 6: Obtain the ranking for all s(x) by using the principle of numerical size.

According to the above process, we can get the decision making according to the ranking.
In Step 3, ζ reflects the preference of the decision maker for the risk of decision making problems.

The decision maker can adjust ζ according to the goal in the real world. In Step 4,
n
∑

i=1
R̃i(A) can

be regarded as the compromise rule with the right weight ζ from the view of risk decision making

with uncertainty. We define
n
∑

i=1
R̃i(A) = {〈xk, ζμ

NΓβ
(o)(A)

(xk)+ (1− ζ)μ
NΓβ

(o)
(A)

(xk), ζν
NΓβ

(o)(A)
(xk)+

(1− ζ)ν
NΓβ

(o)
(A)

(xk)〉 : 1 ≤ k ≤ l}.

5.4. An Applied Example

Assume that U = {x1, x2, x3, x4, x5} is a set of patients. According to the patients’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (fever, cough, sore and headache) for a
disease B. Assume that the duty doctor X invites two experts Ri (i = 1, 2) to evaluate every patient xk
(k = 1, 2, · · · , 5) as in Tables 2 and 3.

Table 2. Symptom values of expert R1 for every patient xk (k = 1, 2, · · · , 5).

U C11 C12 C13 C14

x1 〈0.7, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.1〉 〈0.1, 0.5〉
x2 〈0.5, 0.3〉 〈0.3, 0.2〉 〈0.4, 0.5〉 〈0.6, 0.1〉
x3 〈0.4, 0.5〉 〈0.2, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.3〉
x4 〈0.6, 0.1〉 〈0.4, 0.5〉 〈0.3, 0.6〉 〈0.5, 0.3〉
x5 〈0.3, 0.2〉 〈0.7, 0.3〉 〈0.6, 0.3〉 〈0.8, 0.1〉
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Table 3. Symptom values of expert R2 for every patient xk (k = 1, 2, · · · , 5).

U C21 C22 C23 C24

x1 〈0.6, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.2〉 〈0.2, 0.6〉
x2 〈0.4, 0.2〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.3〉
x3 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.5, 0.2〉 〈0.7, 0.2〉
x4 〈0.6, 0.1〉 〈0.4, 0.5〉 〈0.4, 0.6〉 〈0.5, 0.4〉
x5 〈0.4, 0.2〉 〈0.6, 0.3〉 〈0.5, 0.3〉 〈0.7, 0.2〉

Let β = 〈0.5, 0.3〉 be the critical value. Then, Γβ = {Ĉ1, Ĉ2}, where Ĉi = {Ci1, Ci2, Ci3, Ci4}, for all

i = 1, 2, is a 2-IF β-coverings of U. Ñβ

Ĉi
(i = 1, 2) are shown in Tables 4 and 5, respectively.

Table 4. Ñβ

Ĉ1
.

Ñβ

Ĉ1
x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2〉 〈0.3, 0.3〉 〈0.2, 0.5〉 〈0.4, 0.5〉 〈0.3, 0.3〉

Ñβ
x2 〈0.1, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.2〉

Ñβ
x3 〈0.1, 0.5〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.6〉 〈0.6, 0.3〉

Ñβ
x4 〈0.1, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.2〉

Ñβ
x5 〈0.1, 0.5〉 〈0.3, 0.5〉 〈0.2, 0.3〉 〈0.3, 0.6〉 〈0.6, 0.3〉

Table 5. Ñβ

Ĉ2
.

Ñβ

Ĉ2
x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2〉 〈0.4, 0.3〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.4, 0.3〉

Ñβ
x2 〈0.2, 0.6〉 〈0.5, 0.3〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.6, 0.3〉

Ñβ
x3 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.5, 0.2〉 〈0.4, 0.6〉 〈0.5, 0.3〉

Ñβ
x4 〈0.6, 0.2〉 〈0.4, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.1〉 〈0.4, 0.2〉

Ñβ
x5 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.4, 0.6〉 〈0.5, 0.3〉

Assume that the duty doctor X diagnosed the value A = (0.6,0.3)
x1

+ (0.4,0.5)
x2

+ (0.3,0.2)
x3

+ (0.5,0.3)
x4

+
(0.7,0.2)

x5
of the disease B of every patient. Then:

NΓβ

(o)
(A) = (0.6,0.3)

x1
+ (0.5,0.3)

x2
+ (0.5,0.3)

x3
+ (0.5,0.2)

x4
+ (0.5,0.3)

x5
,

NΓβ
(o)(A) = (0.4,0.3)

x1
+ (0.4,0.5)

x2
+ (0.3,0.4)

x3
+ (0.4,0.4)

x4
+ (0.4,0.3)

x5
.

Let ζ = 0.7. Then:

2
∑

i=1
R̃i(A) = 0.7NΓβ

(o)(A) + (1− 0.7)NΓβ

(o)
(A)

= (0.46,0.3)
x1

+ (0.43,0.44)
x2

+ (0.36,0.37)
x3

+ (0.43,0.34)
x4

+ (0.43,0.3)
x5

.

Hence, we can obtain s(xk) (k = 1, 2, · · · , 5) in Table 6.

Table 6. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.16 −0.01 −0.01 0.09 0.13
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According to the principle of numerical size, we have:

s(x2) = s(x3) < s(x4) < s(x5) < s(x1).

Therefore, the doctor X diagnoses the patient x1 as more likely to be sick with the disease B.

6. Conclusions

Covering rough set models are important research topics, which investigate data mining in a more
general manner. Huang et al. [33] presented an IF rough set model and an optimistic multi-granulation
IF rough set model. By investigation, we have found that no one has applied multi-granulation IF
rough set models to MCGDM problems. In this paper, by showing some new notions and properties
of IF β-covering approximation spaces, we mainly study Huang et al.’s models and propose a novel
approach to MCGDM problems. The main conclusions in this paper and the further work are listed
as follows.

1. Some new notions and properties of IF β-covering approximation spaces are proposed. Aiming
at the new notion of β-neighborhood systems, we present a necessary and sufficient condition for
two IF β-coverings to induce the same IF β-neighborhood systems.

2. By introducing Huang et al.’s IF rough set model, some new characterizations of it are investigated.
We present a new IF covering rough set model for crisp subsets, and the relationships between
these two IF covering rough set models and some other rough set models are investigated.
Neutrosophic sets and related algebraic structures [39–43] will be connected with the research
content of this paper in further research.

3. We construct the multi-granulation intuitionistic fuzzy decision information systems and present
a novel approach to MCGDM problems based on the optimistic multi-granulation IF rough set
model. There are many MCGDM technologies by rough set models [20,23]. However, among
these models, the multi-granulation IF rough set models are not used. We first use the optimistic
multi-granulation IF rough set model to solve MCGDM problems.
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Abstract: In this paper, a novel similarity measure for interval-valued intuitionistic fuzzy sets is
introduced, which is based on the transformed interval-valued intuitionistic triangle fuzzy numbers.
Its superiority is shown by comparing the proposed similarity measure with some existing similarity
measures by some numerical examples. Furthermore, the proposed similarity measure is applied to
deal with pattern recognition and medical diagnosis problems.
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1. Introduction

As a generalization concept of fuzzy set (FS) introduced by Zadeh [1], the definition of intuitionistic
fuzzy set (IFS) was initiated by Atanassov [2] for dealing with vague and uncertain information,
which elaborately describe uncertain information by membership degree, non-membership degree and
hesitancy degree. In [3], Gau and Buehrer presented the definition of vague set. In [4], Bustince and
Burillo have showed that the notion of IFSs and vague sets coincide with each other. In order to deal
with indeterminate and inconsistent information, Smarandache [5] proposed a neutrosophic set (NS).
In the NS, indeterminacy-membership IA(x) is independent, thus making the NS more flexible and
the most suitable for solving some decision-making problems related to the use of incomplete and
imprecise information, uncertainties, predictions and so on. Zhang [6,7] studied algebraic and lattice
structure for neutrosophic sets.

The conception of similarity measure for IFSs is one of the most important subjects for degree of
similarity between objects in IFS theory. Chen [8] proposed the similarity measure based on a vague set
for the first time. Hong [9] introduced a new similarity measure based on vague set and overcame some
drawbacks of Chen’s similarity measure. Szmidt and Kacprzyk [10] extend Hamming distance and
Euclidean distance to construct intuitionistic fuzzy similarity measure. However, Wang and Xin [11]
implied that Szmidt and Kacprzyk’s distance measure [10] were ineffective in some situations.
Grzegorzewski [12] extended some novel similarity measures for IFSs based on Hausdorff distance.
Chen [13] pointed out some defects of Grzegorzewski’s similarity measure and show some counter
examples. On the other hand, some studies defined new similarity measures for IFSs, rather than
extending the well-known distance measures. Li and Cheng [14] presented a new similarity measure
between IFSs and applied it to pattern recognition. Mitchell [15] indicated that similarity measure of
Li and Cheng [14] had some counter-intuitive cases and modified that similarity measure based
on a statistical perspective. Furthermore, Liang and Shi [16] presented some counter instances
to indicate that the similarity measure of Li and Cheng [14] was not suitable for some situations,
and proposed several new similarity measures for IFS. Ye [17] conducted a similarity comparative
study of existing similarity measures for IFSs and proposed a cosine similarity measure and weighted
cosine similarity measure. Xu [18] acquainted a sequence of similarity measures for IFSs and applied
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to solve multiple attribute decision-making problems. Boran et al. [19] proposed a new general
type of similarity measures for IFSs with two parameters, expressing Lp-norm and give its relation
with existing similarity measures. Zhang and Yu [20] presented a new distance measure based on
interval comparison, where the IFSs were respectively transformed into the symmetric triangular fuzzy
numbers. Comparison with the widely used methods indicated that the proposed method contained
more information, with much less loss of information. Luo and Zhao [21] proposed a new distance
measure for IFSs, which is based on a matrix norm and a strictly increasing (or decreasing) binary
function, and applied it to solve pattern recognition problems.

As the development of IFSs, Atanassov introduced interval-valued intuitionistic fuzzy set
(IVIFS) [22], which the membership degree, non-membership degree and hesitancy degree are
represented by subinterval of [0, 1]. It therefore can represent the dynamic character of features
accurately. Due to the advantages of IVIFSs in practical application, various similarity measures based
on IVIFSs were studied extensively by many researchers from different angles and applied to many
areas such as medical diagnosis, pattern recognition problem and so on. Liu [23] proposed a set of
axiomatic definitions for entropy measures between IVIFSs, which extends Szmidt and Kacprzyk’s
axioms formulated for entropy between IFSs. Xu [24] generalized some formulas of similarity measures
of IFSs to IVIFSs. Wei [25] proposed an new similarity measure for IVIFSs, and also applied to
solve problems on pattern recognitions, multi-criteria fuzzy decision-making and medical diagnosis.
Singh [26] introduced a new cosine similarity measure for IVIFSs and applied to pattern recognition.
Khalaf [27] advanced a new approach for medical diagnosis by IVIFSs, which is generalized by the
application of IFS theory. Dhivya [28] presented a new similarity measure for IVIFSs based on the mid
points of transformed triangular fuzzy numbers.

However, there are some drawbacks in some existing similarity measures for IVIFSs, most of
which get counterintuitive results in some situations and they cannot get correct classification
results for dealing with the pattern recognition problems and medical diagnosis problems.
For example, letting A =< [0.20, 0.30], [0.40, 0.60] >, B1 =< [0.30, 0.40], [0.40, 0.60] > and B2 =<

[0.30, 0.40], [0.30, 0.50] > be IVIFSs, we can compute the similarity measures between A and Bi
(i = 1, 2) by Formulas (1), (2) and (4) (see Section 3). Obviously, we have the result B1 	=B2 because the
membership degree of B1 is identical to that of B2, and the non-membership degree of B1 is not identical
to that of B2. Therefore, we should obtain Si(A, B1) 	= Si(A, B2)(i = 1, 2). However, we can obtain that
S1(A, B1) = S1(A, B2) = S2(A, B1) = S2(A, B2) = 0.9 by the Formulas (1) and (2) (for p = 1), which is
not reasonable. Meanwhile, we can get SD(A, B1) = 1 by Formula (4), which does not satisfy the
second axiom of the definition for similarity measure. Therefore, we need to develop a new similarity
measure to overcome these drawbacks.

The rest of the paper is organized as follows: Section 2 reviews some necessary definitions related
to IVIFS. In Section 3, some existing similarity measures are reviewed. In Section 4, a novel similarity
measure is introduced. The geometric interpretation of the new similarity measure and the explanation
of parameters are briefly given in Section 5. Applications in pattern recognition and medical diagnosis
are presented in Section 6. The conclusions for this paper are given in the last section.

2. Preliminary

In this section, we review the basic concepts related to IVIFSs that will be used in this paper.

Definition 1 ([1]). A fuzzy set A in the unverse of discourse X = {x1, x2, . . . , xn} is defined as follows:

A = {< x, μA(x) > |x ∈ X},

where μA(x) : X → [0, 1] is the membership degree.
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Definition 2 ([2]). An intuitionistic fuzzy set A in a universe of discourse X = {x1, x2, . . . , xn} is defined
as follows:

A = {< x, μA(x), νA(x) > |x ∈ X},

where μA(x) : X → [0, 1] and νA(x) : X → [0, 1] are membership and non-membership degree, respectively,
such that: 0 ≤ μA(x) + νA(x) ≤ 1.

The third parameter of intuitionistic fuzzy set A is: πA(x) = 1− μA(x)− νA(x), which is known as the
intuitionistic fuzzy index or the hesitation degree of whether x belongs to A or not. It is obviously seen that
0 ≤ πA(x) ≤ 1. If πA(x) is small; then, knowledge about x is more certain; if πA(x) is great, then knowledge
about x is more uncertain.

Definition 3 ([22]). An interval-valued intuitionistic fuzzy set A in a universe of discourse X =

{x1, x2, . . . , xn} is defined as follows:

A = {< x, μA(x), νA(x) > |x ∈ X} = {< x, [μ−A(x), μ+
A(x)], [ν−A (x), ν+A (x)] > |x ∈ X},

where μA(x) ⊆ [0, 1], νA(x) ⊆ [0, 1], which satisfies 0 ≤ μ+
A(x) + ν+A (x) ≤ 1.

The intervals μA(x) and νA(x) denote the membership degree and non-membership degree, respectively.
Furthermore, for each x ∈ X, we can compute the hesitance degree πA(x) = [π−A (xi), π+

A (xi)] = [1 −
μ+

A(x)− ν+A (x), 1− μ−A(x)− ν−A (x)].

Definition 4 ([29]). For every two IVIFSs A and B in the universe of discourse X, we have the following
relations:

(1): A ⊆ B iff (∀x ∈ X)μ−A(x) ≤ μ−B (x) and μ+
A(x) ≤ μ+

B (x) and ν−A (x) ≥ ν−B (x) and ν+A (x) ≥ ν+B (x).
(2): A∪ B =

〈
x, [max(μ−A(x), μ−B (x)), max(μ+

A(x), μ+
B (x))], [min(ν−A (x), ν−B (x)), min(ν+A (x), ν+B (x))]

〉
.

(3): A∩ B =
〈

x, [min(μ−A(x), μ−B (x)), min(μ+
A(x), μ+

B (x))], [max(ν−A (x), ν−B (x)), max(ν+A (x), ν+B (x))]
〉

.
(4): A = B iff (∀x ∈ X)μ−A(x) = μ−B (x) and μ+

A(x) = μ+
B (x) and ν−A (x) = ν−B (x) and ν+A (x) = ν+B (x).

(5): Ac =
〈

x, [ν−A (x), ν+A (x)], [μ−A(x), μ+
A(x)]

〉
Definition 5 ([18]). Let A and B be interval-valued intuitionistic fuzzy sets in the unverse of discourse
X = {x1, x2, . . . , xn}, a mapping S : IVIFS(X)× IVIFS(X) → [0, 1], S(A, B) is called to be a similarity
measure between A and B, if S(A, B) satisfies the following properties:

(S1): 0 ≤ S(A, B) ≤ 1,
(S2): S(A, B) = 1 if and only if A = B,
(S3): S(A, B) = S(B, A),
(S4): If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), and S(A, C) ≤ S(B, C).

3. Some Existing Similarity Measures

In this section, we review some existing similarity measures.
Let A = {< xi, [μ−A(xi), μ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [μ−B (xi), μ+
B (xi)], [ν−B (xi),

ν+B (xi)] > |xi ∈ X} be IVIFSs defined on a universe of discourse X = {x1, x2, . . . , xn}. The following
Formulas (1)–(4) are similarity measures based on IVIFSs:

Xu’s similarity measure([24]):

S1(A, B) = 1− p

√
1

4n

n

∑
i=1

(
∣∣μ−A(xi)− μ−B (xi)

∣∣p + ∣∣μ+
A(xi)− μ+

B (xi)
∣∣p + ∣∣ν−A (xi)− ν−B (xi)

∣∣p + ∣∣ν+A (xi)− ν+B (xi)
∣∣p), (1)

S2(A, B) = 1− p

√
1
n

n

∑
i=1

max(
∣∣μ−A(xi)− μ−B (xi)

∣∣p ,
∣∣μ+

A(xi)− μ+
B (xi)

∣∣p ,
∣∣ν−A (xi)− ν−B (xi)

∣∣p ,
∣∣ν+A (xi)− ν+B (xi)

∣∣p). (2)
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Wei’s similarity measure ([25]):

SW(A, B) =
1
n

n

∑
i=1

2−min(μ−i , ν−i )−min(μ+
i , ν+i )

2 + max(μ−i , ν−i ) + max(μ+
i , ν+i )

, (3)

where

μ−i =
∣∣μ−A(xi)− μ−B (xi)

∣∣ , μ+
i =

∣∣μ+
A(xi)− μ+

B (xi)
∣∣ ,

ν−i =
∣∣ν−A (xi)− ν−B (xi)

∣∣ , ν+i =
∣∣ν+A (xi)− ν+B (xi)

∣∣ .
Dhivya’s similarity measure ([28]):

SD(A, B) = 1− 1
n ∑n

i=1(
1
2 (|ψ−A (xi)− ψ−B (xi)|+ |ψ+

A (xi)− ψ+
B (xi)|) · (1− σA(xi)+σB(xi)

2 )+

|σA(xi)− σB(xi)| · ( σA(xi)+σB(xi)
2 )),

(4)

where

ψ−A =
μ−A(xi) + 1− ν−A (xi)

2
, ψ+

A =
μ+

A(xi) + 1− ν+A (xi)

2
,

ψ−B =
μ−B (xi) + 1− ν−B (xi)

2
, ψ+

B =
μ+

B v + 1− ν+B (xi)

2
,

σA(xi) = 1− 1
2
(μ−A(xi) + μ+

A(xi) + ν−A (xi) + ν+A (xi)),

σB(xi) = 1− 1
2
(μ−B (xi) + μ+

B (xi) + ν−B (xi) + ν+B (xi)).

4. A New Similarity Measure between Interval-Valued Intuitionistic Fuzzy Sets

Definition 6. Let A, B be IVIFSs defined in universe of discourse X = {x1, x2, . . . , xn}, and A = {<
xi, [μ−A(xi), μ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [μ−B (xi), μ+
B (xi)], [ν−B (xi), ν+B (xi)] > |xi ∈ X}.

We call

Sp(A, B) = 1−

⎧⎪⎪⎨⎪⎪⎩
1

2n

n
∑

i=1

∣∣∣∣ t1[(μ
−
A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(μ−A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭

1
p

(5)

a similarity measure between A and B. t1, t2, p ∈ [1,+∞). Here, three parameters: p is the Lp-norm and t1, t2

identifies the level of uncertainty.

Theorem 1. Sp(A, B) is a similarity measure between IVIFSs A and B.

Proof. Let A, B, C be IVIFSs defined on a universe of discourse X = {x1, x2, . . . , xn}, and A = {<
xi, [μ−A(xi), μ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [μ−B (xi), μ+
B (xi)], [ν−B (xi), ν+B (xi)] > |xi ∈ X},

and C = {< xi, [μ−C (xi), μ+
C (xi)], [ν−C (xi), ν+C (xi)] > |xi ∈ X}.

(1) Firstly, we know that, for arbitrary xi ∈ X:

t1[(μ
−
A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

= [t1(μ
−
A(xi)− μ−B (xi))− (ν−A (xi)− ν−B (xi))] + [t1(μ

+
A(xi)− μ+

B (xi))− (ν+A (xi)− ν+B (xi))].
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For μ−A(xi), μ−B (xi), ν−A (xi), ν−B (xi) ∈ [0, 1], then we have −t1 ≤ t1(μ
−
A(xi) − μ−B (xi)) ≤ t1,

−1 ≤ ν−A (xi)− ν−B (xi) ≤ 1. Thus, we obtain that

−(t1 + 1) ≤ t1(μ
−
A(xi)− μ−B (xi))− (ν−A (xi)− ν−B (xi)) ≤ t1 + 1.

Similarly,
−(t1 + 1) ≤ t1(μ

+
A(xi)− μ+

B (xi))− (ν+A (xi)− ν+B (xi)) ≤ t1 + 1.

Thus,

0 ≤
∣∣∣∣∣ t1[(μ

−
A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

2(t1 + 1)

∣∣∣∣∣
p

≤ 1.

By the same way, we have

0 ≤
∣∣∣∣∣ t2[(ν

−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(μ−A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]

2(t2 + 1)

∣∣∣∣∣
p

≤ 1.

Therefore,

0 ≤

⎧⎪⎪⎨⎪⎪⎩
1

2n

n
∑

i=1

∣∣∣∣ t1[(μ
−
A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(μ−A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭ ≤ 1.

That is, 0 ≤ Sp(A, B) ≤ 1.
(2) A = B, if and only if for arbitrary xi ∈ X, we have μ−A(xi) = μ−B (xi), μ+

A(xi) = μ+
B (xi),

ν−A (xi) = ν−B (xi), ν+A (xi) = ν+B (xi). It is obvious that Sp(A, B) = 1.
(3) For Sp(A, B), we have∣∣t1[(μ

−
A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

∣∣p
=

∣∣−t1[(μ
−
A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))] + [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B v)]

∣∣p
=

∣∣t1[(μ
−
B (xi)− μ−A(xi)) + (μ+

B (xi)− μ+
A(xi))]− [(ν−B (xi)− ν−A (xi))− (ν+B (xi)− ν+A (xi))]

∣∣p .

Similarly,∣∣t2[(ν
−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(μ−A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]

∣∣p
=

∣∣−t2[(ν
−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))] + [(μ−A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]

∣∣p
=

∣∣t2[(ν
−
B (xi)− ν−A (xi))− (ν+B (xi)− ν+A (xi))]− [(μ−B (xi)− μ−A(xi))− (μ+

B (xi)− μ+
A(xi))]

∣∣p .

Thus, Sp(A, B) = Sp(B, A).
(4) For A, B, C be IVIFSs, the similarity measure A and B, and A and C are the following:

Sp(A, B) = 1−

⎧⎪⎪⎨⎪⎪⎩
1

2n

n
∑

i=1

∣∣∣∣ t1[(μ
−
A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(μ−A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭

1
p

,

Sp(A, C) = 1−

⎧⎪⎪⎨⎪⎪⎩
1

2n

n
∑

i=1

∣∣∣∣ t1[(μ
−
A(xi)−μ−C (xi))+(μ+

A(xi)−μ+
C (xi))]−[(ν−A (xi)−ν−C (xi))+(ν+A (xi)−ν+C (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−C (xi))+(ν+A (xi)−ν+C (xi))]−[(μ−A(xi)−μ−C (xi))+(μ+

A(xi)−μ+
C (xi))]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭

1
p

.
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If A ⊆ B ⊆ C, then μ−A(xi) ≤ μ−B (xi) ≤ μ−C (xi), μ+
A(xi) ≤ μ+

B (xi) ≤ μ+
C (xi), ν−C (xi) ≤ ν−B (xi) ≤

ν−A (xi), and ν+C (xi) ≤ ν+B (xi) ≤ ν+A (xi). Then, we have∣∣t1[(μ
−
A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

∣∣
= t1[(μ

−
B (xi)− μ−A(xi)) + (μ+

B (xi)− μ+
A(xi))] + [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

≤ t1[(μ
−
C (xi)− μ−A(xi)) + (μ+

C (xi)− μ+
A(xi))] + [(ν−A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]

=
∣∣t1[(μ

−
A(xi)− μ−C (xi)) + (μ+

A(xi)− μ+
C (xi))]− [(ν−A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]

∣∣ .
By the same reason, we have∣∣t2[(ν

−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(μ−A(xi)− μ−B (xi)) + (μ+

A(xi)− μ+
B (xi))]

∣∣
≤

∣∣t2[(ν
−
A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]− [(μ−A(xi)− μ−C (xi)) + (μ+

A(xi)− μ+
C (xi))]

∣∣ .
Therefore, Sp(A, B) ≥ Sp(A, C), and Sp(B, C) ≥ Sp(A, C).
In conclusion, Sp(A, B) is a similarity measure between IVIFSs A and B.

Remark 1. If interval-valued intuitionistic fuzzy sets A and B degenerates to intuitionistic fuzzy set, i.e.,
μ−A = μ+

A, ν−A = ν+A , and μ−B = μ+
B , ν−B = ν+B , then

Sp(A, B) = 1−
{

1
n

n

∑
i=1

∣∣∣∣ t1(μA − μB)− (νA − νB)

2(t1 + 1)

∣∣∣∣p + ∣∣∣∣ t2(νA − νB)− (μA − μB)

2(t2 + 1)

∣∣∣∣p
} 1

p

(6)

is a new similarity measure between intuitionistic fuzzy sets A and B.

Remark 2. In the environment of IFSs, and when t1 = t2 = t, the proposed similarity measure

Sp(A, B) = 1−
{

1
2n(t + 1)p

n

∑
i=1

(|t(μA − μB)− (νA − νB)|p + |t(νA − νB)− (μA − μB)|p)
} 1

p

(7)

is the similarity measure between intuitionistic fuzzy sets A and B in the literature ([19]).

Example 1. Supposing that Ai and Bi are two IVIFSs, we can compute the similarity measures between Ai
and Bi by different similarity measures listed in Table 1.

Table 1. Comparison of similarity measures in the environment of IVIFSs (interval-valued intuitionistic
fuzzy set) (counter-intuitive cases are in bold type; p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp).

1 2 3 4

Ai < [0.20, 0.30], [0.40, 0.60] > < [0.20, 0.30], [0.40, 0.60] > < [0.20, 0.30], [0.30, 0.50] > < [0.20, 0.30], [0.30, 0.50] >
Bi < [0.30, 0.40], [0.40, 0.60] > < [0.30, 0.40], [0.30, 0.50] > < [0.30, 0.40], [0.40, 0.60] > < [0.30, 0.40], [0.30, 0.50] >

S1 [24] 0.90 0.90 0.90 0.95
S2 [24] 0.90 0.90 0.90 0.90
SD [28] 1.00 0.98 0.95 0.94
Sp 0.95 0.90 0.80 0.94

In Table 1, by comparing the first column and the second column, we can find that Si(A1, B1) =

Si(A2, B2)(i = 1, 2) when A1 = A2, B1 	=B2. Similarly, by comparing the third column and the fourth
column, we can find S2(A3, B3) = S2(A4, B4) when A3 = A4, B3 	=B4. Therefore, we can determine that the
similarity measure S1 and S2 is not reasonable. Meanwhile, we find that SD(A1, B1) = 1 when A1 	=B1, which
is not satisfy the second axiom of the definition for similarity measure. Most importantly, we can observe that
the proposed similarity measure Sp can overcome these drawbacks. Therefore, our novel similarity measure for
IVIFSs is more reasonable than others.
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5. Geometric Interpretation of the Novel Similarity Measure

In this section, we briefly interpret the proposed similarity measure and explain the functionality
of parameters t1, t2 and p defined in the proposed similarity measure.

Let A =< [μ−A , μ+
A ], [ν

−
A , ν+A ] >, B =< [μ−B , μ+

B ], [ν
−
B , ν+B ] > be interval-valued intuitionistic

fuzzy numbers. We can split A into two intuitionistic fuzzy numbers, i.e., A− =< μ−A , ν−A > and
A+ =< μ+

A , ν+A >. For intuitionistic fuzzy set A−, μ−A can be equal to any value in [μ−A , μ−A + π+
A ] and

ν−A can be equal to any value in [ν−A , ν−A + π+
A ], where π+

A = 1− μ−A − ν−A . Similarly, μ+
A can be equal to

any value in [μ+
A , μ+

A + π−A ] and ν+A can be equal to any value in [ν+A , ν+A + π−A ] for intuitionistic fuzzy
set A+, where π−A = 1− μ+

A − ν+A . Then, the possible values for A− and A+ illustrated in Figure 1 as
the two triangles. As the center of gravity, D− and D+ are the most informative points in the triangle
A− and A+, respectively.

However, < μ−A +
π+

A
t1+1 , ν−A +

π+
A

t2+1 > (t1, t2∈[1,+∞)) can represent any point in the triangle A−.

Especially when t1 = t2 = t, < μ−A +
π+

A
t+1 , ν−A +

π+
A

t+1 > can denote the point of middle line of the

triangle bevel. In the same way, < μ+
A +

π−A
t1+1 , ν+A +

π−A
t2+1 > (t1, t2∈[1,+∞)) represents any point in the

triangle A+.
The following is the calculation process:

Firstly, A
′− =

〈
μ−A +

π+
A

t1+1 , ν−A +
π+

A
t2+1

〉
denotes possible points of triangle A−. By the same token,

A
′+ =

〈
μ+

A +
π−A

t1+1 , ν+A +
π−A

t2+1

〉
denotes possible points of triangle A+. Similarly, we can obtain that

B
′− =

〈
μ−B +

π+
B

t1+1 , ν−B +
π+

B
t1+1

〉
and B

′+ =

〈
μ+

B +
π−B

t1+1 , ν+B +
π−B

t1+1

〉
denote any points in triangles B−

and B+, respectively.
Secondly, the average of A

′− and A
′+ can be computed as follows:

A
′′
=< μ

′′
A, ν

′′
A >=

〈
2 + t1(μ

−
A + μ+

A)− (ν−A + ν+A )

2(t1 + 1)
,

2 + t2(μ
−
A + μ+

A)− (ν−A + ν+A )

2(t2 + 1)

〉
.

We can also get the mean value of B
′− and B

′+:

B
′′
=< μ

′′
B, ν

′′
B >=

〈
2 + t1(μ

−
B + μ+

B )− (ν−B + ν+B )

2(t1 + 1)
,

2 + t2(μ
−
B + μ+

B )− (ν−B + ν+B )

2(t2 + 1)

〉
.

The absolute difference between A
′′

and B
′′

is calculated as follows:∣∣∣μ′′A − μ
′′
B

∣∣∣ = ∣∣∣∣∣ t1[(μ
−
A − μ−B ) + (μ+

A − μ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

2(t1 + 1)

∣∣∣∣∣ ,
∣∣∣ν′′A − ν

′′
B

∣∣∣ = ∣∣∣∣∣ t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(μ−A − μ−B ) + (μ+

A − μ+
B )]

2(t2 + 1)

∣∣∣∣∣ .∣∣∣μ′′A − μ
′′
B

∣∣∣ and
∣∣∣ν′′A − ν

′′
B

∣∣∣ to the power of p is equal to the following:

∣∣∣μ′′A − μ
′′
B

∣∣∣p =

∣∣t1[(μ
−
A − μ−B ) + (μ+

A − μ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

∣∣p
2p(t1 + 1)p ,

∣∣∣ν′′A − ν
′′
B

∣∣∣p =

∣∣t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(μ−A − μ−B ) + (μ+

A − μ+
B )]
∣∣p

2p(t2 + 1)p .
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The average value of
∣∣∣μ′′A − μ

′′
B

∣∣∣p and
∣∣∣ν′′A − ν

′′
A

∣∣∣p is calculated as follows:

1
2

(∣∣∣μ′′A − μ
′′
B

∣∣∣p + ∣∣∣ν′′A − ν
′′
A

∣∣∣p)
=

1
2

∣∣∣∣∣ t1[(μ
−
A − μ−B ) + (μ+

A − μ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

2(t1 + 1)

∣∣∣∣∣
p

+
1
2

∣∣∣∣∣ t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(μ−A − μ−B ) + (μ+

A − μ+
B )]

2(t2 + 1)

∣∣∣∣∣
p

.

Figure 1. Possible value for A− and A+.

The p root of the average value of
∣∣∣μ′′A − μ

′′
B

∣∣∣p and
∣∣∣ν′′A − ν

′′
A

∣∣∣p is calculated as:

{
1
2

(∣∣∣μ′′A − μ
′′
B

∣∣∣p + ∣∣∣ν′′A − ν
′′
B

∣∣∣p)} 1
p
=

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣ t1[(μ

−
A−μ−C )+(μ+

A−μ+
C )]−[(ν−A−ν−C )+(ν+A−ν+C )]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A−ν−C )+(ν+A−ν+C )]−[(μ−A−μ−C )+(μ+

A−μ+
C )]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭

1
p

.

For an interval-valued intuitionistic fuzzy set instead of interval-valued intuitionistic fuzzy
number, i.e., there is more than one feature in the discourse of universe, such as X = {x1, x2, . . . , xn}:

Sp(A, B) = 1−

⎧⎪⎪⎨⎪⎪⎩
1

2n

n
∑

i=1

∣∣∣∣ t1[(μ
−
A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(μ−A(xi)−μ−B (xi))+(μ+

A(xi)−μ+
B (xi))]

2(t2+1)

∣∣∣∣p
⎫⎪⎪⎬⎪⎪⎭

1
p

.

In particular, A
′− = D− =

〈
μ−A +

1−μ−A−ν−A
3 , ν−A +

1−μ−A−ν−A
3

〉
and A

′+ = D+ =〈
μ+

A +
1−μ+

A−ν+A
3 , ν+A +

1−μ+
A−ν+A
3

〉
when t1 = t2 = 2. Without a doubt, D− and D+ are the most

concentrated points of information in triangle A− and A+, respectively; therefore, they are also the
most significant points in all possible meaningful points.

384



Symmetry 2018, 10, 441

6. Applications

In this section, the proposed similarity measure is used to solve the real life problems under the
IVIFSs environment and obtained results have been compared with some existing similarity measures.

6.1. Pattern Recognition

6.1.1. Algorithms for Pattern Recognition

Letting X = {x1, x2, . . . , xn} be a finite universe of discourse, there exists m patterns
which are denoted by IVIFSs Aj = {< x1, [μ−Aj

(x1), μ+
Aj
(x1)], [ν−Aj

(x1), ν+Aj
(x1)] >, . . . ,<

x1, [μ−Aj
(xn), μ+

Aj
(xn)], [ν−Aj

(xn), ν+Aj
(xn)] > |x1, . . . , xn ∈ X} (j = 1, 2, . . . , m) and there is a test sample

to be classified which is denoted by an IVIFS B = {< x1, [μ−B (x1), μ+
B (x1)], [ν−B (x1), ν+B (x1)] >, . . . ,<

x1, [μ−B (xn), μ+
B (xn)], [ν−B (xn), ν+B (xn)] > |x1, . . . , xn ∈ X}. The recognition process is as follows:

Step 1. Calculate the similarity measure S(B, Aj) between B and Aj(j = 1, . . . , m).
Step 2. Choose the maximum one S(B, Aj0) from S(B, Aj) (j = 1, 2, . . . , m), i.e., S(B, Aj0) =

max
1≤j≤m

S(B, Aj). Then, the test sample B is classified the pattern Aj0 .

6.1.2. Applications for Pattern Recognition

Example 2. Assume that there are four classes of ores Ai(i = 1, 2, 3, 4) in the area developed by
a coal mine company, for which the related feature information are expressed by IVIFSs, and Ai =

{< x1,
[
μ−Ai

(x1), μ+
Ai
(x1)

]
,
[
ν−Ai

(x1), ν+Ai
(x1)

]
>, . . . ,< x4,

[
μ−Ai

(x4), μ+
Ai
(x4)

]
,
[
ν−Ai

(x4), ν+Ai
(x4)

]
>

|x1, x2, x3, x4 ∈ X}, which are presented in Table 2. Now, there is an unknown ore B and our aim is to
classify B into the four kinds of ores above.

Table 2. Feature matrix of A1, A2, A3, A4 and B.

Feature1 Feature2 Feature3 Feature4

A1 < [0.10, 0.50], [0.20, 0.30] > < [0.10, 0.30], [0.00, 0.20] > < [0.30, 0.50], [0.20, 0.40] > < [0.20, 0.50], [0.10, 0.30] >
A2 < [0.20, 0.40], [0.15, 0.35] > < [0.20, 0.20], [0.05, 0.15] > < [0.20, 0.60], [0.30, 0.30] > < [0.30, 0.40], [0.15, 0.25] >
A3 < [0.15, 0.30], [0.30, 0.40] > < [0.20, 0.40], [0.50, 0.60] > < [0.50, 0.60], [0.15, 0.35] > < [0.25, 0.45], [0.30, 0.40] >
A4 < [0.20, 0.35], [0.10, 0.65] > < [0.35, 0.60], [0.05, 0.30] > < [0.15, 0.30], [0.40, 0.55] > < [0.15, 0.25], [0.45, 0.55] >
B < [0.30, 0.40], [0.10, 0.50] > < [0.10, 0.40], [0.25, 0.40] > < [0.20, 0.30], [0.10, 0.35] > < [0.15, 0.40], [0.20, 0.50] >

Compute the similarity measures S(Ai, B) between B and Ai. By analyzing the computed results in Table 3,
we can easily see that, if S1 is used for pattern recognition, we can obtain that S1(A1, B) = S1(A2, B) =

S1(A4, B) > S1(A3, B). In this way, we can not classify the sample B into a certain pattern accurately. If SW is
used for pattern recognition, we can obtain that SW(A2, B) = SW(A4, B) > SW(A1, B) = SW(A3, B). In this
way, we can not make sure if the sample B belongs to one of A2 and A4. If we use SD for pattern recognition, we
can get S(A3, B) = S(A4, B) > S(A2, B) > S(A1, B). In this way, we can not classify the sample B into one
of A3 and A4. If we use Sp for pattern recognition, we can get S(A1, B) > S(A2, B) > S(A3, B) > S(A4, B).
According to the principle of recognition, S2 and Sp can get the same recognition result, i.e., the sample B can be
classified into the pattern A3. However, we can not distinguish which one is bigger between A2 and A4 when
using S2 to calculate the similarity measure. Therefore, we can assign the sample B to the pattern A3.
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Table 3. Pattern recognition result under different similarity measures (counter-intuitive cases are in
bold type; p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp; N.A. means method is not applicable).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Classification Results

S1 [24] 0.87 0.87 0.86 0.87 N.A.
S2 [24] 0.75 0.76 0.79 0.76 A3
SW [25] 0.78 0.79 0.78 0.79 N.A.
SD [28] 0.82 0.86 0.88 0.88 N.A.
Sp 0.82 0.81 0.88 0.75 A3

Example 3 ([30]). In this example, a pattern recognition example about classification of building materials
is used to illustrate the proposed similarity measure. Suppose that there are four classes of building
material, which are denoted by the IVIFSs Aj = {< x1, [μ−Aj

(x1), μ+
Aj
(x1)], [ν−Aj

(x1), ν+Aj
(x1)] >, . . . ,<

x12, [μ−Aj
(x12), μ+

Aj
(x12)], [ν−Aj

(x12), ν+Aj
(x12)] > |x1, . . . , x12 ∈ X} (j = 1, . . . , 4) in the feature space

X = {x1, x2, . . . , x12}, and there is an unknown pattern B:

A1 = {< x1, [0.1, 0.2], [0.5, 0.6] >,< x2, [0.1, 0.2], [0.7, 0.8] >,< x3, [0.5, 0.6], [0.3, 0.4] >,

< x4, [0.8, 0.9], [0.0, 0.1] >,< x5, [0.4, 0.5], [0.3, 0.4] >,< x6, [0.0, 0.1], [0.8, 0.9] >,

< x7, [0.3, 0.4], [0.5, 0.6] >,< x8, [1.0, 1.0], [0.0, 0.0] >,< x9, [0.2, 0.3], [0.6, 0.7] >,

< x10, [0.4, 0.5], [0.4, 0.5] >,< x11, [0.7, 0.8], [0.1, 0.2] >,< x12, [0.4, 0.5], [0.4, 0.5] >},

A2 = {< x1, [0.5, 0.6], [0.3, 0.4] >,< x2, [0.6, 0.7], [0.1, 0.2] >,< x3, [1.0, 1.0], [0.0, 0.0] >,

< x4, [0.1, 0.2], [0.6, 0.7] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.7, 0.8], [0.1, 0.2] >,

< x7, [0.5, 0.6], [0.3, 0.4] >,< x8, [0.6, 0.7], [0.2, 0.3] >,< x9, [1.0, 1.0], [0.0, 0.0] >,

< x10, [0.1, 0.2], [0.7, 0.8] >,< x11, [0.0, 0.1], [0.8, 0.9] >,< x12, [0.7, 0.8], [0.1, 0.2] >},

A3 = {< x1, [0.4, 0.5], [0.3, 0.4] >,< x2, [0.6, 0.7], [0.2, 0.3] >,< x3, [0.9, 1.0], [0.0, 0.0] >,

< x4, [0.0, 0.1], [0.8, 0.9] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.6, 0.7], [0.2, 0.3] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.2, 0.3], [0.6, 0.7] >,< x9, [0.5, 0.6], [0.2, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.8, 0.9] >},

A4 = {< x1, [1.0, 1.0], [0.0, 0.0] >,< x2, [1.0, 1.0], [0.0, 0.0] >,< x3, [0.8, 0.9], [0.0, 0.1] >,

< x4, [0.7, 0.8], [0.1, 0.2] >,< x5, [0.0, 0.1], [0.7, 0.9] >,< x6, [0.0, 0.1], [0.8, 0.9] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.1, 0.2], [0.7, 0.8] >,< x9, [0.4, 0.5], [0.3, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.8, 0.9] >},

B = {< x1, [0.9, 1.0], [0.0, 0.0] >,< x2, [0.9, 1.0], [0.0, 0.0] >,< x3, [0.7, 0.8], [0.1, 0.2] >,

< x4, [0.6, 0.7], [0.1, 0.2] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.1, 0.2], [0.7, 0.8] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.1, 0.2], [0.7, 0.8] >,< x9, [0.4, 0.5], [0.3, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.7, 0.9] >}.

Calculate the similarity measure S(Aj, B) between IVIFSs Aj (j = 1, 2, 3, 4) and B by use of Formulas (1)–(5).
It is obvious that the similarity measure in the literature ([30]) is the special case of S1 and S2, and the computed
result is the same as ([30]). According to Table 4 and the recognition principle, the unknown pattern can be
classified properly in A4 by the computation of similarity measure. This conclusion coincides with that in [30].
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Table 4. Pattern recognition results under different similarity measures (counter-intuitive cases are in
bold type; p = 1 in S1 and S2, p = 1, t1 = 2, t2 = 3 in Sp).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Recognition Results

S1 [24] 0.59 0.58 0.81 0.97 A4
S2 [24] 0.53 0.53 0.79 0.94 A4
SW [25] 0.48 0.47 0.74 0.94 A4
SD [28] 0.64 0.56 0.83 0.98 A4
Sp 0.60 0.58 0.85 0.97 A4

6.2. Applications for Medical Diagnosis

Researchers proposed a lot of methods from different points of view to deal with problems of
medical diagnosis. Refs. [27,31–33] presented several ways to deal with the problems of medical
diagnosis. In this section, the methods of pattern recognition are used for solving medical diagnosis
problems, i.e., patients are unknown test samples, diseases are several patterns, and the symptom set
is the set universe of discourse. Our aim is to classify patients in one of the illnesses, respectively.

Example 4. Let A = {A1 (Viral fever), A2 (Typhoid), A3 (Pneumonia), A4 (Stomach problem)} be a set of
diagnoses and X = {x1 (Temperature), x2 (Cough), x3 (Headache), x4 (Stomach pain)} be a set of symptoms.
The disease–symptom matrix that is represented by IVIFSs is listed in Table 5.

Table 5. Disease–symptom matrix.

x1 (Temperature) x2 (Cough) x3 (Headache) x4 (Stomach Pain)

A1 (Viral fever) < [0.8, 0.9], [0.0, 0.1] > < [0.7, 0.8], [0.1, 0.2] > < [0.5, 0.6], [0.2, 0.3] > < [0.6, 0.8], [0.1, 0.2] >
A2 (Typhoid) < [0.5, 0.6], [0.1, 0.3] > < [0.8, 0.9], [0.0, 0.1] > < [0.6, 0.8], [0.1, 0.2] > < [0.4, 0.6], [0.1, 0.2] >
A3 (Pneumonia) < [0.7, 0.8], [0.1, 0.2] > < [0.7, 0.9], [0.0, 0.1] > < [0.4, 0.6], [0.2, 0.4] > < [0.3, 0.5], [0.2, 0.4] >
A4 (Stomach problem) < [0.8, 0.9], [0.0, 0.1] > < [0.7, 0.8], [0.1, 0.2] > < [0.7, 0.9], [0.0, 0.1] > < [0.8, 0.9], [0.0, 0.1] >

Suppose the patient B can be represented as:
B = {< x1, [0.4, 0.5], [0.1, 0.2] >,< x2, [0.7, 0.8], [0.1, 0.2] >,< x3, [0.9, 0.9], [0.0, 0.1] >,<

x4, [0.3, 0.5], [0.2, 0.4] >}.
Our aim is to classify the patient B in one of the illnesses A1, A2, A3 and A4. Then, we can have the

following results in the environment of IVIFSs, which are listed in Table 6.

Table 6. Computed results under different similarity measures (counter-intuitive cases are in bold type;
p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Recognition Result

S1 [24] 0.81 0.89 0.86 0.84 A2
S2 [24] 0.73 0.80 0.78 0.73 A2
SW [25] 0.82 0.80 0.79 0.77 A2
SD [28] 0.82 0.91 0.86 0.84 A2
Sp 0.83 0.89 0.87 0.85 A2

Considering the recognition principle of the maximum similarity degree for the IVIFSs, we can obtain the
consequence that the similarity measure between A2 and B is the largest one. However, the similarity measures
S2 could not distinguish which one is bigger between A1 and A4. Thus, we can classify the patient B to illness
A2 due to the recognition principle. Therefore, we can diagnose that the patient’s disease is typhoid.

7. Conclusions

In this paper, a novel similarity measure for IVIFSs is proposed, which is obtained by splitting an
IVIFS into two IFSs and computing the average value of the p power of any points in two triangles
composed of the two intuitionistic fuzzy sets. Its superiority is presented by comparing the developed
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similarity measure with some existing similarity measures. Thus, we can use the similarity measure to
deal with the problems with vagueness and uncertainty. For example, pattern recognition, medical
diagnosis, game theory and so on.

In fact, we can choose different values of the three parameters (t1, t2 and p in Formula (5)) when
facing different problems. However, there are some difficulties when choosing the value of parameters.
This is also a problem to be solved in the future.
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Abstract: Hypergraph theory is the most developed tool for demonstrating various practical problems
in different domains of science and technology. Sometimes, information in a network model is
uncertain and vague in nature. In this paper, our main focus is to apply the powerful methodology
of fuzziness to generalize the notion of competition hypergraphs and fuzzy competition graphs.
We introduce various new concepts, including fuzzy column hypergraphs, fuzzy row hypergraphs,
fuzzy competition hypergraphs, fuzzy k-competition hypergraphs and fuzzy neighbourhood
hypergraphs, strong hyperedges, kth strength of competition and symmetric properties. We design
certain algorithms for constructing different types of fuzzy competition hypergraphs. We also present
applications of fuzzy competition hypergraphs in decision support systems, including predator–prey
relations in ecological niche, social networks and business marketing.
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1. Introduction

In mathematical modeling, competition graphs are sufficient to specify well defined behaviors
of objects and specifically predator–prey relations. In 1968, while studying applications of graph
theory in ecology, Cohen introduced the notion of a competition graph. Competition graphs have
been applied to various fields of biological sciences and technology. After the strong motivation
of energy and food competition in food webs between species, competition graphs were a part of
active research in recent years. In 2004, Sonntag and Teichert [1] introduced the notion of competition
hypergraphs. These representations are crisp hypergraphs that do not describe all the competitions
of real-world problems. These models contain uncertainty and fuzzy in nature for problems that are
more relevant to everyday life, including critical writing style of a writer, predator–prey relationship,
trading relationship among different communities, honesty leadership quality of a politician and,
signal strength of wireless devices. Motivating from this idea, we have applied the notion of fuzzy sets
to competition hypergraphs to study the problems having nonlinear uncertainties.

In 1965, Zadeh [2] introduced the strong mathematical notion of fuzzy set in order to discuss the
phenomena of vagueness and uncertainty in various real-life problems. Using the concept of fuzzy
relations introduced by Zadeh [3], the idea of fuzzy graph was given by Kaufmann [4]. The fuzzy
relations in fuzzy sets were studied by Rosenfeld [5] and he introduced the structure of fuzzy graphs,
obtaining analysis of various graph theoretical concepts. Lee-kwang and Lee [6] redefined and
extended the notion of fuzzy hypergraphs whose idea was first discussed by Kaufmann [4]. Later,
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the idea of fuzzy hypergraph was studied by Goetschel in [7,8]. The concept of interval-valued fuzzy
hypergraphs was initiated by Chen [9] and Parvathi et al. [10] generalized the idea of hypergraphs to
intuitionistic fuzzy hypergraphs. Moreover, Akram and Dudek [11], Akram and Luqman [12–14], and
Akram and Shahzadi [15] have discussed certain extensions of fuzzy hypergraphs with applications.

Samanta and Pal [16] studied fuzzy k-competition graphs and p-competition graphs. Later,
Samanta et al. [17] introduced the concept of m-step fuzzy competition graphs. Applying the
idea of bipolar fuzzy sets to competition graphs, Alshehri and Akram [18] introduced the notion
of bipolar fuzzy competition graphs and applied this idea to economic systems. Furthermore, the
study of bipolar fuzzy competition graphs was discussed by Sarwar and Akram in [19]. Certain
competition graphs based on neutrosophic environment were described in [20,21]. In this research
paper, we introduce the concept of fuzzy competition hypergraphs as a generalized case of fuzzy
competition graphs. We study various new concepts, including fuzzy column hypergraphs, fuzzy
row hypergraphs, fuzzy competition hypergraphs, fuzzy k-competition hypergraphs and fuzzy
neighbourhood hypergraphs and investigate some of their interesting properties. We design certain
algorithms for the construction of different types of fuzzy competition hypergraphs. We also present
applications of fuzzy competition hypergraphs in decision support systems, including food webs,
social networks and business marketing.

We have used basic notions and terminologies in this research paper. For other terminologies,
notations and definitions not given in the paper, the readers are referred to [2,3,5,9,10,17,19,22–36].

Definition 1. A fuzzy hypergraph on a non-empty set X is a pair H = (μ, ρ) where μ = {μ1, μ2, . . . , μr},
μi : X → [0, 1] are fuzzy subsets on X such that

⋃
i supp(μi) = X, for all μi ∈ μ. ρ is a fuzzy relation on the

fuzzy subsets μi such that

ρ(Ei) ≤ min{μi(x1), μi(x2), . . . , μi(xs)}, Ei = {x1, x2, . . . , xs}, for all x1, x2, . . . , xs ∈ X.

2. Fuzzy Competition Hypergraphs

In this section, we discuss various types of fuzzy competition hypergraphs with certain properties
and algorithms.

Definition 2. Let A = [xij]n×n be the adjacency matrix of a fuzzy digraph
#»

G = (μ,
#»

λ ) on a non-empty set X.
The fuzzy row hypergraph of

#»

G, denoted byR ◦H(
#»

G) = (μ, λr), having the same set of vertices as
#»

G and the
set of hyperedges is defined as{

{x1, x2, . . . , xr}|A(xij) > 0, r ≥ 2, for each 1 ≤ i ≤ r, xi ∈ X, for some 1 ≤ j ≤ n
}

.

The degree of membership of hyperedges is defined as

λr({x1, x2, . . . , xr}) =
[
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)

]
×max

j
{ #»

λ (x1xj) ∧
#»

λ (x2xj) ∧ . . . ∧ #»

λ (xrxj)}.

Definition 3. The fuzzy column hypergraph of
#»

G, denoted by C ◦ H(
#»

G) = (μ, λcl), having the same set of
vertices as

#»

G and the set of hyperedges is defined as{
{x1, x2, . . . , xs}|A(xji) > 0, s ≥ 2, for each 1 ≤ i ≤ s, xi ∈ X, for some 1 ≤ j ≤ n

}
.

The degree of membership of hyperedges is defined as

λcl
(
{x1, x2, . . . , xs}

)
=
[
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×max

j
{ #»

λ (xjx1) ∧
#»

λ (xjx2) ∧ . . . ∧ #»

λ (xjxs)}.
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The methods for computing fuzzy row hypergraph and fuzzy column hypergraph are given in
Algorithms A1 and A2, respectively.

Example 1. Consider the universe X = {x1, x2, x3, x4, x5, x6}, μ a fuzzy set on X and
#»

λ a fuzzy relation in
X as defined in Tables 1 and 2, respectively. The fuzzy digraph

#»

G = (μ,
#»

λ ) is shown in Figure 1. The adjacency
matrix of

#»

G is given in Table 3.
Using Algorithm A1 and Table 3, there are three hyperedges E2 = {x1, x5, x6}, E3 = {x2, x5} and

E4 = {x3, x5}, corresponding to the columns x2, x3 and x4 of adjacency matrix, in fuzzy row hypergraph of
#»

G.
The membership degree of the hyperedges is calculated as

λr(E2) =
[
μ(x1) ∧ μ(x5) ∧ μ(x6)

]
×
[
x12 ∧ x52 ∧ x62

]
= 0.3× 0.3 = 0.09,

λr(E3) =
[
μ(x2) ∧ μ(x5)

]
×
[
x23 ∧ x53

]
= 0.4× 0.1 = 0.04,

λr(E4) =
[
μ(x3) ∧ μ(x5)

]
×
[
x34 ∧ x54

]
= 0.4× 0.4 = 0.16.

The fuzzy row hypergraph is shown in Figure 2. Using Algorithm A2 and Table 3, the hyperedges in fuzzy
column hypergraph of

#»

G are E1 = {x2, x6}, E5 = {x2, x3, x4} and E6 = {x2, x5}, corresponding to the rows
x2, x5 and x6 of the adjacency matrix. The membership degree of the hyperedges is calculated as

λcl(E5) =
[
μ(x2) ∧ μ(x3) ∧ μ(x4)

]
×
[
x52 ∧ x53 ∧ x54

]
= 0.4× 0.3 = 0.12,

λcl(E1) =
[
μ(x2) ∧ μ(x6)

]
×
[
x12 ∧ x16

]
= 0.3× 0.2 = 0.06,

λcl(E6) =
[
μ(x2) ∧ μ(x5)

]
×
[
x62 ∧ x65

]
= 0.4× 0.1 = 0.04.

The fuzzy column hypergraph is given in Figure 3.

Table 1. Fuzzy vertex set μ.

x μ(x) x μ(x)

x1 0.5 x2 0.4
x3 0.7 x4 0.6
x5 0.4 x6 0.3

Figure 1. Fuzzy digraph
#»

G .

Figure 2. R ◦H(
#»

G).
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Figure 3. C ◦ H(
#»

G).

Table 2. Fuzzy relation
#»

λ .

x
#»

λ(x) x
#»

λ(x)

x1x2 0.4 x6x5 0.1
x2x3 0.1 x1x6 0.2
x3x4 0.6 x6x2 0.3
x5x4 0.4 x5x2 0.4
x5x3 0.3

Table 3. Adjacency matrix.

A x1 x2 x3 x4 x5 x6

x1 0 0.4 0 0 0 0.2
x2 0 0 0.1 0 0 0
x3 0 0 0 0.6 0 0
x4 0 0 0 0 0 0
x5 0 0.4 0.3 0.4 0 0
x6 0 0.3 0 0 0.1 0

Definition 4. [25] A fuzzy digraph on a non-empty set X is a pair
#»

G = (μ,
#»

λ ) of functions μ : X → [0, 1]
and

#»

λ : X× X → [0, 1], such that for all x, y ∈ X,
#»

λ (xy) ≤ min{μ(x), μ(y)}.

Definition 5. [16] A fuzzy out neighbourhood of a vertex x of a fuzzy digraph
#»

G = (μ,
#»

λ ) is a fuzzy set
N+(x) = (X+

x , μ+
x ), where X+

x = {y| #»λ (xy) > 0} and μ+
x : X+

x → [0, 1] is defined by μ+
x (y) =

#»

λ (xy).

Definition 6. [16] The fuzzy in neighbourhood of vertex x of a fuzzy digraph is a fuzzy setN−(x) = (X−x , μ−x ),
where X−x = {y| #»λ (yx) > 0} and μ−x : X−x → [0, 1] is defined by μ−x (y) =

#»

λ (yx).

Definition 7. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph on a non-empty set X. The fuzzy competition hypergraph
CH(

#»

G) = (μ, λc) on X having the same vertex set as
#»

G and there is a hyperedge consisting of vertices
x1, x2, . . . , xs if N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xs) 	= ∅. The degree of membership of hyperedge E =

{x1, x2, . . . , xs} is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)),

where h(N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xs)) denotes the height of fuzzy set N+(x1) ∩ N+(x2) ∩ . . . ∩
N+(xs).

The method for constructing fuzzy competition hypergraph of a fuzzy digraph is given in
Algorithm A3.
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Lemma 1. The fuzzy competition hypergraph of a fuzzy digraph
#»

G is a fuzzy row hypergraph of
#»

G.

Proof. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph; then, for any hyperedge E = {x1, x2, . . . , xs} of CH(
#»

G),

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs))

= [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×max
j
{N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)}

= [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×max
j
{ #»

λ (x1xj) ∧
#»

λ (x2xj) ∧ . . . ∧ #»

λ (xnxj)} = λr(E).

It follows that E is a hyperedge of fuzzy row hypergraph.

Example 2. Consider the fuzzy digraph given in Figure 1. The fuzzy out neighbourhood and fuzzy in
neighbourhood of all the vertices are given in Table 4.

Using Algorithm A3, the relation f : X → X of
#»

G is given in Figure 4. The construction of fuzzy
competition hypergraph from

#»

G is given as follows:

1. Since f−1(x2) = E2 = {x1, x5, x6}, f−1(x3) = E3 = {x2, x5} and f−1(x4) = E4 = {x3, x5},
{x1, x5, x6}, {x2, x5} and {x3, x5} are hyperedges in CH(

#»

G).
2. For hyperedge E2: N+(x1)∩N+(x5)∩N+(x6) = {(x2, 0.3)}, λc(E2) = [μ(x1)∧ μ(x5)∧ μ(x6)]×

h (N+(x1) ∩N+(x5) ∩N+(x6)) = 0.3× 0.3 = 0.09.
3. Similarly, λc(E3) = [μ(x2) ∧ μ(x5)] × h (N+(x2) ∩N+(x5)) = 0.04 and λc(E4) = [μ(x3) ∧

μ(x5)]× h (N+(x3) ∩N+(x5)) = 0.16.

The fuzzy competition hypergraph is given in Figure 5. From Figures 2 and 5, it is clear that fuzzy
competition hypergraph is a fuzzy row hypergraph.

Table 4. Fuzzy out neighbourhood and fuzzy in neighbouhood of vertices in
#»

G.

x ∈ X N+(x) N−(x)

x1 {(x2, 0.4), (x6, 0.2)} ∅
x2 {(x3, 0.1)} {(x1, 0.4), (x5, 0.4), (x6, 0.3)}
x3 {(x4, 0.6)} {(x2, 0.1), (x5, 0.3)}
x4 ∅ {(x3, 0.6), (x5, 0.4)}
x5 {(x2, 0.4), (x3, 0.3), (x4, 0.4)} {(x6, 0.1)}
x6 {(x2, 0.3), (x5, 0.1)} {(x1, 0.2)}

Figure 4. Representation of fuzzy relation in
#»

G.
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Figure 5. Fuzzy competition hypergraph CH(
#»

G).

Definition 8. The fuzzy double competition hypergraph DCH(
#»

G) = (μ, λd) having same vertex set as
#»

G
and there is a hyperedge consisting of vertices x1, x2, . . . , xs if N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs) 	= ∅ and
N−(x1) ∩ N−(x2) ∩ . . . ∩ N−(xs) 	= ∅. The degree of membership of hyperedge E = {x1, x2, . . . , xs} is
defined as

λd(E) =[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×
[h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)) ∧ h(N−(x1) ∩N−(x2) ∩ . . . ∩N−(xs))].

The method for the construction of fuzzy double competition hypergraph is given in
Algorithm A4.

Lemma 2. The fuzzy double competition hypergraph is the intersection of fuzzy row hypergraph and fuzzy
column hypergraph.

Proof. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph; then, for any hyperedge E = {x1, x2, . . . , xs} of CH(
#»

G),

λd(E) =[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×
[h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)) ∧ h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs))].

=[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×
[max

j
{ #»

λ (x1xj) ∧
#»

λ (x2xj) ∧ . . . ∧ #»

λ (xnxj)} ∧max
k
{ #»

λ (xkx1) ∧
#»

λ (xkx2) ∧ . . . ∧ #»

λ (xkxn)}].

=[{μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)} ×max
j
{ #»

λ (x1xj) ∧
#»

λ (x2xj) ∧ . . . ∧ #»

λ (xnxj)}]×

[{μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)} ×max
k
{ #»

λ (xkx1) ∧
#»

λ (xkx2) ∧ . . . ∧ #»

λ (xkxn)}]

=λr(E) ∧ λcl(E).

It follows that the fuzzy double competition hypergraph is the intersection of a fuzzy row
hypergraph and fuzzy column hypergraph.

Example 3. Consider the example of fuzzy digraph shown in Figure 1. From Example 2, the fuzzy double
competition hypergraph of Figure 1 is given in Figure 6. In addition, Figures 2, 3 and 6 show that the fuzzy
double competition hypergraph is the intersection of fuzzy row hypergraph and fuzzy column hypergraph.
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Figure 6. DCH(
#»

G).

Definition 9. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph on a non-empty set X. The fuzzy niche hypergraph
NH(

#»

G) = (μ, λn) has the same vertex set as
#»

G and there is hyperedge consisting of vertices x1, x2, . . . , xs if
either N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs) 	= ∅ or N−(x1) ∩N−(x2) ∩ . . . ∩N−(xs) 	= ∅. The degree of
membership of hyperedge E = {x1, x2, . . . , xs} is defined as

λn(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]×[
h
(
N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)

)
∨ h
(
N−(x1) ∩N−(x2) ∩ . . . ∩N−(xs)

)]
.

Lemma 3. The fuzzy niche hypergraph is the union of fuzzy row hypergraph and fuzzy column hypergraph.

Example 4. The fuzzy niche hypergraph of Figure 1 is shown in Figure 7, which is the union of Figures 2 and 3.

Figure 7. NH(
#»

G).

Definition 10. Let H be a fuzzy hypergraph and t be the smallest non-negative number such that H ∪ It is a
fuzzy niche hypergraph of some fuzzy digraph

#»

G, where It is a fuzzy set on t isolated vertices Xt; then, t is called
fuzzy niche number of H denoted by n(H).

Lemma 4. Let H be a fuzzy hypergraph on a non-empty set X with n(H) = t < ∞ and H ∪ It is a fuzzy niche
hypergraph of an acyclic digraph

#»

G then for all, x ∈ X ∪ Xt,

N+(y) ∩ It 	= ∅⇒ ∃ z ∈ supp(It) such that supp(N+(y)) = z,

N−(y) ∩ It 	= ∅⇒ ∃ z ∈ supp(It) such that supp(N−(y)) = z.

Proof. On the contrary, assume that, for some y ∈ X, either supp(N+(y)) = {z} ∪ X
′

or
supp(N−(y)) = {z} ∪ X

′′
, where ∅ 	= X

′ ⊆ X ∪ Xt \ {z}. Then, by definition of a fuzzy niche
hypergraph, z is adjacent to all vertices X

′
in H ∪ It—a contradiction to the fact that z ∈ Xt.

Lemma 5. Let H be a fuzzy hypergraph with n(H) = t < ∞ and H ∪ It is a fuzzy niche hypergraph of an
acyclic fuzzy digraph

#»

G then for all z ∈ Xt, N+(z) = ∅ and N−(z) = ∅.
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Proof. On the contrary, assume that X+
z = {y1, y2, . . . , ys} and X−z = {y′1, y

′
2, . . . , y

′
r}. Clearly,N+(z)∩

N−(z) = ∅ because
#»

G is acyclic. According to Lemma 4, N+(yi) = N+(y′i).
Consider another fuzzy digraph

#»

G
′

such that X #»
G ′ = X #»

G \ {z} and E #»
G ′ = (E #»

G \ {E1}) ∪ E2, where

E1 = { #  »zyi : 1 ≤ i ≤ s} ∪ {
#  »

y′iz : 1 ≤ i ≤ r},
E2 = {

#     »

y′1yi : 1 ≤ i ≤ s} ∪ {
#     »

y′iy1 : 1 ≤ i ≤ r}.

Clearly, N+(z) = N+(y1) and N−(z) = N−(y′1). Thus, NH(
#»

G′) = H ∪ It−1 which contradicts
the fact that n(H) = t. Hence, for all z ∈ Xt, N+(z) = ∅ and N−(z) = ∅.

Definition 11. Let H = (μ, ρ) be a fuzzy hypegraph on a non-empty set X. A hyperedge Ei =

{x1, x2, . . . , xr} ⊆ X is called strong if ρ(Ei) ≥ 1
2

r∧
k=1

μi(xk).

Theorem 1. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph. If N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr) contains exactly
one vertex, then the hyperedge {x1, x2, . . . , xr} of C( #»

G) is strong if and only if |N+(x1) ∩N+(x2) ∩ . . . ∩
N+(xr)| > 1

2 .

Proof. Assume that N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr) = {(u, l)}, where l is degree of membership
of u. As |N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr)| = l = h(N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr)); therefore,
λc({x1, x2, . . . , xr}) = (μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)) × h(N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr)) = l ×
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)}). Thus, the hyperedge {x1, x2, . . . , xr} in C( #»

G) would be strong if l > 1
2

by Definition 11.

Definition 12. Let k be a non-negative real number number; then, the fuzzy k-competition hypergraph of a
fuzzy digraph

#»

G = (μ,
#»

λ ) is fuzzy hypergraph Ck(
#»

G) = (μ, λkc), which has the same fuzzy vertex set as in
#»

G and there is a hyperedge E = {x1, x2, . . . , xr} in Ck(
#»

G) if |N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)| > k. The
membership degree of the hyperedge E is defined as

λkc(E) =
l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr))× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)),

where |N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)| = l.

Example 5. The fuzzy 0.2−competition hypergraph of Figure 1 is given in Figure 8.

Figure 8. Fuzzy 0.2−competition hypergraph.

Remark 1. For k = 0, a fuzzy k-competition hypergraph is simply a fuzzy competition hypergraph.
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Theorem 2. Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph. If h(N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr)) = 1 and
|N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)| > 2k for some x1, x2, . . . , xr ∈ X, then the hyperedge {x1, x2, . . . , xr}
is strong in Ck(

#»

G).

Proof. Let Ck(
#»

G) = (μ, λkc) be a fuzzy k-competition hypergraph of fuzzy digraph
#»

G = (μ,
#»

λ ).
Suppose for E = {x1, x2, . . . , xr} ⊆ X, |N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)| = l. Now,

λkc(E) =
l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr))× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)),

λkc(E) =
l − k

l
(μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)), ∵ h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)) = 1,

=⇒ λkc(E)
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)

>
1
2

, ∵ l > 2k.

Thus, the hyperedge E is strong in Ck(
#»

G).

Fuzzy Neighbourhood Hypergraphs

The concepts of fuzzy open neighbourhood and fuzzy closed neighbourhood are given in
Definition 13.

Definition 13. [16] The fuzzy open neighbourhood of a vertex y in a fuzzy graph G = (μ, λ) is a fuzzy set
N (y) = (Xy, μy), where Xy = {w|λ(yw) > 0} and μy : Xy → [0, 1] a membership function defined by
μy(w) = λ(yw).

Definition 14. [16] The fuzzy closed neighbourhood N [y] of a vertex y in a fuzzy graph G = (μ, λ) is defined
as N [y] = N (y) ∪ {(y, μ(y))}.

Definition 15. The fuzzy open neighbourhood hypergraph of a fuzzy graph G = (μ, λ) is a fuzzy hypergraph
N (G) = (μ, λ

′
) whose fuzzy vertex set is the same as G and there is a hyperedge E = {x1, x2, . . . , xr} in

N (G) if N (x1) ∩N (x2) ∩ . . . ∩N (xr) 	= ∅. The membership function λ
′

: X× X → [0, 1] is defined as

λ
′
(E) =

(
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)

)
× h
(
N (x1) ∩N (x2) ∩ . . . ∩N (xr)

)
.

The fuzzy closed neighbourhood hypergraph is defined on the same lines in the following definition.

Definition 16. The fuzzy closed neighbourhood hypergraph of G = (μ, λ) is a fuzzy hypergraph N [G] =

(μ, λ∗) whose fuzzy set of vertices is same as G and there is a hyperedge E = {x1, x2, . . . , xr} in N [G] if
N [x1] ∩N [x2] ∩ X . . . ∩N [xr] 	= ∅. The membership function λ∗ : X× X → [0, 1] is defined as

λ∗(E) =
(
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)

)
× h
(
N [x1] ∩N [x2] ∩ . . . ∩N [xr]

)
.

Example 6. Consider the fuzzy graph G = (μ, λ) on set Y = {y1, y2, y3, y4} as shown in Figure 9. The fuzzy
open neighbourhoods are given in Table 5.

Define a relation f : X → X by f (yi) = yj if yj ∈ supp(N (yi)) as shown in Figure 10. If, for yi ∈ X,
| f−1(yi)| > 1, then f−1(yi) is a hyperedge of N [G]. Since, from Figure 10, f−1(y1) = {y2, y3, y4} = E1,
f−1(y2) = {y1, y4} = E2 and f−1(y4) = {y1, y2}3, therefore, E1, E2, E3 are hyperedges of N (G). The degree
of membership of each hyperedge can be computed using Definition 15 as follows.

For f−1(y1) = E1 = {y2, y3, y4}, λ′(E1) =
(
μ(y2) ∧μ(y3) ∧μ(y4)

)
× h

(
N (y2) ∩N (y3)∩

N (y4)
)
= 0.4× 0.4 = 0.16. Similarly, λ′({y1, y4}) = 0.4× 0.3 = 0.12 and λ′({y1, y2}) = 0.5× 0.3 =

0.15. The fuzzy open neighbourhood hypergraph constructed using Definition 13 from
#»

G is given in Figure 10.
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Table 5. Fuzzy open neighbourhood of vertices.

y N (y)

y1 {(y2, 0.4), (y3, 0.5), (y4, 0.5)}
y2 {(y1, 0.4), (y4, 0.3)}
y3 {(y1, 0.5)}
y4 {(y1, 0.4), (y2, 0.3)}

The fuzzy closed neighbourhoods of all the vertices in G are given in Table 6. Since N [y1] ∩
N [y2] ∩ N [y3] ∩ N [y4] = {(y1, 0.4)}, therefore, E = {y1, y2, y3, y4} is a hyperedge of N [G] and
λ∗(E) = 0.4× 0.4 = 0.16. The fuzzy closed neighbourhood hypergraph is given in Figure 11.

Figure 9. Fuzzy graph G.

Figure 10. Fuzzy open neighbourhood hypergraph of G.

Figure 11. Fuzzy closed neighbourhood hypergraph.

Table 6. Fuzzy closed neighbourhood of vertices.

y N [y]

y1 {(y1, 0.5), (y2, 0.4), (y3, 0.5), (y4, 0.5)}
y2 {(y2, 0.6), (y1, 0.4), (y4, 0.3)}
y3 {(y3, 0.7), (y1, 0.5)}
y4 {(y4, 0.4), (y1, 0.4), (y2, 0.3)}
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Using different types of fuzzy neighbourhood of the vertices, some other types of fuzzy
hypergraphs are defined here.

Definition 17. Let k be a non-negative real number; then, the fuzzy (k)-competition hypergraph of a fuzzy
graph G = (μ, λ) is a fuzzy hypergraph Nk(G) = (μ, λ

′
kc) having the same fuzzy set of vertices as G and there

is a hyperedge E = {x1, x2, . . . , xr} inNk(G) if |N (x1) ∩N (x2) ∩ . . . ∩N (xr)| > k. The membership value
of E is defined as

λ
′
kc(E) =

l − k
l
(
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)

)
× h
(
N (x1) ∩N (x2) ∩ . . . ∩N (xr)

)
,

where |N (x1) ∩N (x2) ∩ . . . ∩N (xr)| = l.

Definition 18. The fuzzy [k]-competition hypegraph of G is denoted by Nk[G] = (μ, λ∗kc) and there is a
hyperedge E in Nk[G] if |N [x1] ∩N [x2] ∩ . . . ∩N [xr]| > k. The membership value of E is defined as

λ∗kc(E) =
p− k

p
(
μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)

)
× h
(
N [x1] ∩N [x2] ∩ . . . ∩N [xr]

)
,

where |N [x1] ∩N [x2] ∩ . . . ∩N [xr]| = p.

Definition 19. [16] Let
#»

G = (μ,
#»

λ ) be a fuzzy digraph. The underlying fuzzy graph of
#»

G is a fuzzy graph
U ( #»

G) = (μ, λ) such that

λ(xw) =

⎧⎪⎨⎪⎩
#»

λ (xw), if #  »wx 	∈ #»

E ,
#»

λ (wx), if #  »xw 	∈ #»

E ,
#»

λ (xw) ∧ #»

λ (wx), if #  »wx, #  »xw ∈ #»

E ,

where
#»

E = supp(
#»

λ ). The relations between fuzzy neighbourhood hypergraphs and fuzzy competition
hypergraphs are given in the following theorems.

Theorem 3. Let
#»

G = (μ,
#»

λ ) be a symmetric fuzzy digraph without any loops; then, Ck(
#»

G) = Nk(U (
#»

G)),
where U ( #»

G) is the underlying fuzzy graph of
#»

G.

Proof. Let U ( #»

G) = (μ, λ) correspond to the fuzzy graph
#»

G = (μ,
#»

λ ). In addition, let Nk(U (
#»

G)) =

(μ, λ
′
kc) and Ck(

#»

G) = (μ, λkc). Clearly, the fuzzy k-competition hypergraph Ck(
#»

G) and the underlying
fuzzy graph have the same fuzzy set of vertices as

#»

G. Hence, Nk(U (
#»

G)) has the same vertex set as
#»

G.
It remains only to show that λkc(xw) = λ

′
kc(xw) for every x, w ∈ X. Thus, there are two cases.

Case 1: If, for each x1, x2, . . . , xr ∈ X, λkc({x1, x2, . . . , xr}) = 0 in Ck(
#»

G), then |N+(x1) ∩
N+(x2) ∩ . . .N+(xr)| ≤ k. Since

#»

G is symmetric, |N (x1) ∩ N (x2) ∩ . . .N (xr)| ≤ k in U ( #»

G).
Thus, λ

′
kc({x1, x2, . . . , xr}) = 0 and λkc(E) = λ

′
kc(E) for all x1, x2, . . . , xr ∈ X.

Case 2: If, for some x1, x2, . . . , xr ∈ X, λkc(E) > 0 in Ck(
#»

G), then |N+(x1) ∩ N+(x2) ∩
. . .N+(xr)| > k. Thus,

λkc(E) =
l − k

l
[μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)]h

(
N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)

)
,

where l = |N+(x1) ∩ N+(x2) ∩ . . . ∩ N+(xr)|. Since
#»

G is a symmetric fuzzy digraph, |N (x1) ∩
N (x2) ∩ . . .N (xr)| > k. Hence, λkc(E) = λ

′
kc(E). Since x1, x2, . . . , xr were taken to be arbitrary, the

result holds for all hyperedges E of Ck(
#»

G).

Theorem 4. Let
#»

G = (C,
#»

D) be a symmetric fuzzy digraph having loops at every vertex; then, Ck(
#»

G) =

Nk[U (
#»

G)], where U ( #»

G) is the underlying fuzzy graph of
#»

G.
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Proof. Let U ( #»

G) = (μ, λ) be an underlying fuzzy graph corresponding to fuzzy digraph
#»

G = (μ,
#»

λ ).
Let Nk[U (

#»

G)] = (μ, λ
′
kc) and Ck(

#»

G) = (μ, λkc). The fuzzy k-competition graph Ck(
#»

G) as well as the
underlying fuzzy graph have the same vertex set as

#»

G. It follows that Nk[U (
#»

G)] has the same fuzzy
vertex set as

#»

G. It remains only to show that λkc({x1, x2, . . . , xr}) = λ
′
kc({x1, x2, . . . , xr}) for every

x1, x2, . . . , xr ∈ X. As the fuzzy digraph has a loop at every vertex, the fuzzy out neighbourhood
contains the vertex itself. There are two cases.

Case 1: If, for all x1, x2, . . . , xr ∈ X, λkc(E) = 0 in Ck(
#»

G), then, |N+(x1)∩N+(x2)∩ . . .N+(xr)| ≤
k. As

#»

G is symmetric therefore, |N ([x1] ∩N [x2] ∩ . . .N [xr]| ≤ k in U ( #»

G). Hence, λ
′
kc(E) = 0 and so

λkc(E) = λ
′
kc(E) for all x1, x2, . . . , xr ∈ X.

Case 2: If for some x1, x2, . . . , xr ∈ X, λkc(E) > 0 in Ck(
#»

G), then |N+(x1) ∩ N+(x2) ∩
. . .N+(xr)| > k. As

#»

G is symmetric fuzzy digraph and has loops at every vertex; therefore,
|N ([x1] ∩ N [x2] ∩ . . .N [xr]| > k. Hence, λkc(xy) = λ

′
kc(xy). As x1, x2, . . . , xr were taken to be

arbitrary, the result holds for all hyperedges E = {x1, x2, . . . , xr} of Ck(
#»

G).

3. Applications of Fuzzy Competition Hypergraphs

In this section, we present several applications of fuzzy competition hypergraphs in food webs,
business marketing and social networks.

3.1. Identifying Predator–Prey Relations in Ecosystems

We now present application of fuzzy competition hypergraphs in order to describe the
interconnection of food chains between species, flow of energy and predator–prey relationship in
ecosystems. The strength of competition between species represents the competition for food and
common preys of species. We will discuss a method to give a description of species relationship,
danger to the population growth rate of certain species, powerful animals in ecological niches and lack
of food for weak animals.

Competition graphs arose in connection with an application in food webs. However, in some cases,
competition hypergraphs provide a detailed description of predator–prey relations than competition
graphs. In a competition hypergraph, it is assumed that vertices are defined clearly but in real-world
problems, vertices are not defined precisely. As an example, species may be of different type like
vegetarian, non-vegetarian, weak or strong.

Fuzzy food webs can be used to describe the combination of food chains that are interconnected
by a fuzzy network of food relationship. There are many interesting variations of the notion of fuzzy
competition hypergraph in ecological interpretation. For instance, two species may have a common
prey (fuzzy competition hypergraph), a common enemy (fuzzy common enemy hypergraph), both common
prey and common enemy (fuzzy competition common enemy hypergraph), and either a common prey or a
common enemy (fuzzy niche hypergraph). We now discuss a type of fuzzy competition hypergraph in
which species have common enemies known as fuzzy common enemy hypergraph.

Let
#»

G = (μ,
#»

λ) be a fuzzy food web. The fuzzy common enemy hypergraph CH( #»

G) = (μ, λc)

has the same vertex set as
#»

G and there is a hyperedge consisting of vertices x1, x2, . . . , xs if N+(x1) ∩
N+(x2)∩ . . .∩N+(xs) 	= ∅. The degree of membership of hyperedge E = {x1, x2, . . . , xs} is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xs)]× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xs)).

The strength of common enemies between species can be calculated using Algorithm A3. Consider
the example of a fuzzy food web of 13 species giraffe, lion, vulture, rhinoceros, African skunk, fiscal
shrike, grasshopper, baboon, leopard, snake, caracal, mouse and impala. The degree of membership
of each species represents the species’ ability of resource defence. The degree of membership of each
directed edge represents the strength to which the prey is harmful for the predator. The fuzzy food
web is shown in Figure 12. The directed edge between the giraffe and the lion shows that the giraffe is
eaten by the lion and similarly.
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The degree of membership of the lion is 0.9, which shows that the lion has 90% ability of resource
defence, i.e., it can defend itself against other animals as well as survive many days if the lion does
not find any food. The directed edge between giraffe and lion has degree of membership 0.25, which
represents that the giraffe is 25% harmful for the lion because a giraffe can kill a lion with its long legs.
This is an acyclic fuzzy digraph. The fuzzy out neighbourhoods are given in Table 7.

The fuzzy common-enemy hypergraph is shown in Figure 13. The hyperedges in Figure 13 show
that there are common enemies between giraffe and rhinoceros, rhinoceros, African skunk and leopard,
grasshopper and snake, mouse and impala, and baboon and impala. The membership value of each
hyperedge represents the degree of common enemies among the species.

The hyperedge {impala, baboon} has a maximum degree of membership, which shows that the
impala and the baboon have the largest number of common enemies, whereas the mouse and the
impala have the least number of common enemies.

Figure 12. Fuzzy food web.

Table 7. Fuzzy out neighbourhoods of vertices.

Species N+(u) : u is a specie

giraffe {(lion, 0.25)}
lion ∅
rhinoceros {(lion, 0.25), (vulture, 0.1)}
vulture ∅
African skunk {(vulture, 0.1)}
fiscal shrike {(African skunk, 0.1)}
grasshopper {(fiscal shrike, 0.01), (baboon, 0.09)}
baboon {(leopard, 0.3)}
leopard {(vulture, 0.5)}
snake {(baboon, 0.4)}
caracal {(snake, 0.1)}
mouse {(caracal, 0.1), (snake, 0.15)}
impala {(caracal, 0.2), (leopard, 0.09)}
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Figure 13. Fuzzy common enemy hypergraph.

3.2. Identifying Competitors in the Business Market

Fuzzy competition hypergraphs are a key approach to studying the competition, profit and loss,
market power and rivalry among buyers and sellers using fuzziness in hypergraphical structures. We
now discuss a method to study the business competition for power and profit, success and business
failure, and demanding products in market.

In the business market, there are competitive rivalries among companies that are endeavoring to
increase the demand and profit of their product. More than one company in the market sells identical
products. Since various companies regularly market identical products, every company wants to
attract a consumer’s attention to its product. There is always a competitive situation in the business
market. Hypergraph theory is a key approach to studying the competitive behavior of buyers and
sellers using structures of hypergraphs. In some cases, these structures do not study the level of
competition, profit and loss between the companies. As an example, companies may have different
reputations in the market according to market power and rivalry. These are fuzzy concepts and
motivates the necessity of fuzzy competition hypergraphs. The competition among companies can be
studied using a fuzzy competition hypergraph known as fuzzy enmity hypergraph.

We present a method for calculating the strength of competition of companies in the following
Algorithm 1.

Algorithm 1: Business competition hypegraph.

1. Input the adjacency matrix [xij]n×n of bipolar fuzzy digraph
#»

G = (C,
#»

D) of n companies
x1, x2, . . . , xn.

2. Construct the table of fuzzy out neighbourhoods of all the companies.
3. Construct fuzzy competition hypergraph using Algorithm A3.
4. do i from 1→ n
5. Calculate the degree of each vertex as, S(xi) = ∑

xi∈E
λc(E) where E is a

hyperedge in fuzzy enmity hypergraph.
6. end do

7. S(xi) denotes the strength of competition of each company xi, 1 ≤ i ≤ n.
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Consider the example of a marketing competition between seven companies DEL, CB, HW, AK,
LR, RP, SONY, RA, LR, three retailers, one retailer outlet and one multinational brand as shown in
Figure 14.

Figure 14. Fuzzy marketing digraph.

The vertices represent companies, retailers, outlets and brands. The degree of membership of
each vertex represents the strength of rivalry (aggression) of each company in the market. The degree
of membership of each directed edge # »xy represents the degree of rejectability of company’s x product
by company y. The strength of competition of each company can be discussed using fuzzy competition
hypergraph known as fuzzy enmity hypergraph. The fuzzy out neighbouhoods are calculated in Table 8.

Table 8. Fuzzy out neighbourhoods of companies.

Company N+(u) : u Is a Company

chemical and {(DEL, 0.4), (AK, 0.3), (Retailer1, 0.1),
plastic industries (CB, 0.3), (TS, 0.3)}
DEL {(LR, 0.3)}
AK {(Multinational Brand, 0.05)}
LR {(Multinational Brand, 0.1)}
Retailer1 {(SONY, 0.2), (RP, 0.1), (Retailer2, 0.5)}
CB {(Retailer2, 0.2)}
TS {(Retailer2, 0.2)}
Retailer2 {(RP, 0.1)}
SONY {(Retailer3, 0.2), (R. Outlet, 0.2), (M. Brand, 0.1)}
Retailer3 {(R.Outlet, 0.2)}
RP {(Retailer3, 0.2), (R. Outlet, 0.1)}
M. Brand ∅
R. Outlet ∅

The fuzzy enmity hypergraph of Figure 14 is shown in Figure 15. The degree of membership of
each hyperedge shows the strength of rivalry between the companies.
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Figure 15. Fuzzy competition hypergraph.

The strength of rivalry of each company is calculated in Table 9, which shows its enmity value within
the business market. Table 9 shows that SONY is the biggest rival company among other companies.

Table 9. Strength of rivalry between companies.

Company Strength of Rivalry

LR 0.03
AK 0.03

SONY 0.05
Retailer3 0.02

RP 0.02
Retailer2 0.01
Retailer1 0.03

CB 0.02
TS 0.02

3.3. Finding Influential Communities in a Social Network

Fuzzy competition hypergraphs have a wide range of applications in decision-making problems
and decision support systems based on social networking. To elaborate on the necessity of the idea
discussed in this paper, we apply the notion of fuzzy competition hypergraphs to study the influence,
centrality, socialism and proactiveness of human beings in any social network.

Social competition is a widespread mechanism to figure out a best-suited group economically,
politically or educationally. Social competition occurs when individual’s opinions, decisions and
behaviors are influenced by others. Graph theory is a conceptual framework to study and analyze
the units that are intensely or frequently connected in a network. Fuzzy hypergraphs can be used to
study the influence and competition between objects more precisely. The social influence and conflict
between different communities can be studied using a fuzzy competition hypergraph known as fuzzy
influence hypergraph.

The fuzzy influence hypergraph G = (μ, λc) has the same set of vertices as
#»

G and there is a
hyperedge consisting of vertices x1, x2, . . . , xr if N−(x1) ∩N−(x2) ∩ . . . ∩N−(xr) 	= ∅. The degree of
membership of hyperedge E = {x1, x2, . . . , xr} is defined as

λc(E) = [μ(x1) ∧ μ(x2) ∧ . . . ∧ μ(xr)]× h(N+(x1) ∩N+(x2) ∩ . . . ∩N+(xr)).

The strength of influence between different objects in a fuzzy influence hypergraph can be
calculated by the method presented in Algorithm 2. The complexity of algorithm is O(n2).
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Algorithm 2: Fuzzy influence hypergraph.

1. Input the adjacency matrix [xij]n×n of fuzzy digraph
#»

G = (C,
#»

D) of n families x1, x2, . . . , xn.
2. Using fuzzy in neighbourhoods, construct the fuzzy influence hypergraph following

Algorithm A3.
3. do i from 1→ n
4. If xi belongs to the hyperedge E in fuzzy influence hypergraph then calculate the degree

of each vertex xi as,
deg(xi) = ∑

xi∈E
λc(E) and Ai = ∑

xi∈E
(|E| − 1).

5. end do

6. do i from 1→ n
7. If Ai > 1 then calculate the degree of influence of each vertex xi as,

S(xi) =
deg(xi)

Ai
.

8. end do

Consider a fuzzy social digraph of Florientine trading families Peruzzi, Lambertes, Bischeri,
Strozzi, Guadagni, Tornabuon, Castellan, Ridolfi, Albizzi, Barbadori, Medici, Acciaiuol, Salviati, Ginori
and Pazzi. The vertices in a fuzzy network represent the name of trading families. The degree of
membership of each family represents the strength of centrality in that network. The directed edge
# »xy indicates that the family x is influenced by y. The degree of membership of each directed edge
indicates to what extent the opinions and suggestions of one family influence the other. The degree of
membership of Medici is 0.9, which shows that Medici has a 90% central position in a trading network.
The degree of membership between Redolfi and Medici is 0.6, which indicates that Redolfi follows 60%
of the suggestions of Medici. The fuzzy social digraph is shown in Figure 16.

Figure 16. Fuzzy social digraph.

To find the most influential family in this fuzzy network, we construct its fuzzy influence
hypergraph. The fuzzy in neighbourhoods are given in Table 10.
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Table 10. Fuzzy in neighbourhoods of all vertices in social networks.

Family N−(Family) Family N−(Family)

Acciaiuol {(Babadori, 0.5, )} Pazzi ∅
Ginori {(Albizzi, 0.5)} Salviati {(Pazzi, 0.4)}

Babadori {(Castellan, 0.5)} Castellan {(Strozzi, 0.4)}
Tornabuon {(Gaudagni, 0.5)} Perozzi {(Castellan, 0.5)}
Lambertes ∅ Strozzi {(Perozzi, 0.4)}

Medici {(Babadori, 0.6), (Acciaiuol, 0.5), (Salviati, 0.5), (Ridolfi, 0.6)}
Bischeri {(Perozzi, 0.4), (Strozzi, 0.4), (Redolfi, 0.4)}
Albizzi {(Medici, 0.6), (Gaudagni, 0.5)}
Redolfi {(Strozzi, 0.4), (Tornabuon, 0.6)}

Gaudgani {(Bischeri, 0.3), (Lambertes, 0.3)}

The fuzzy influence hypergraph is shown in Figure 17. The degree of membership of each
hyperedge shows the strength of social competition between families to influence the other trading
families. The strength of competition of vertices using Algorithm 2 is calculated in Table 11, where
S(x) represents the strength to which each trading family influences the other families. Table 11 shows
that Acciaiuol and Medici are most influential families in the network.

Figure 17. Fuzzy influence hypergraph.

Table 11. Degree of influence of vertices.

x deg(x) S(x) x deg(x) S(x)

Acciaiuol 0.25 0.25 Medici 0.25 0.25
Babadori 0.16 0.16 Perozzi 0.16 0.16
Castellan 0.16 0.08 Redolfii 0.16 0.08

Strozzi 0.16 0.16 Besceri 0.32 0.12

A View of Fuzzy Competition Hypergraphs in Comparison with Fuzzy Competition Graphs

The concept of fuzzy competition graphs presented in [16,17] can be utilized successfully
in different domains of applications. In the existing methods, we usually consider fuzziness in
pairwise competition and conflicts between objects. However, in these representations, we miss some
information about whether there is a conflict or a relation among three or more objects. For example,
Figure 15 shows the strong competition for profit among SONY, LR and AK. However, if we draw the
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fuzzy competition graph of Figure 14, we cannot discuss the group-wise conflict among companies.
Sometimes, we are not only interested in pair-wise relations but also in group-wise conflicts, influence
and relations. The novel notion of fuzzy competition hypergraphs are a mathematical tool to
overcome this difficulty. We have presented different methods for solving decision-making problems.
These methods not only generalize the existing ones but also give better results regarding uncertainty.

4. Conclusions

In this research paper, we have applied the powerful technique of fuzziness to generalize
the notion of competition hypergraphs and fuzzy competition graphs. Fuzzy models give more
precision, flexibility and compatibility to the system as compared to the crisp models. We have
mainly discussed the construction methods of various types of fuzzy hypergraphs using open and
closed neighbourhoods, strong hyperedges, kth strength of competition and symmetric properties.
We have also established strong relations among fuzzy k-competition hypergraphs and underlying
fuzzy graphs along with fuzzy digraphs having loops at vertices. We have applied fuzzy competition
hypergraphs to real-world problems for representation of fuzziness in different domains including
identification of predator–prey relations, competitions in the business market and social networks
which motivate the idea introduced in this research paper. We have designed certain algorithms to
solve these decision-making problems.

Author Contributions: M.S., M.A. and N.O.A. conceived and designed the experiments; M.S. and N.O.A. wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

Algorithm A1: Method for construction of fuzzy row hypergraph

1. Begin
2. Input the fuzzy set μ on set of vertices X = {x1, x2, . . . , xn}.
3. Input the adjacency matrix A = [xij]n×n of fuzzy digraph

#»

G = (μ,
#»

λ ) such that
#»

λ (xixj) = xij as shown in Table A1.
4. do j from 1→ n
5. Take a vertex xj from first jth column.
6. value1 = ∞, value2 = ∞, num = 0
7. do i from 1→ n
8. if (xij > 0) then

9. xi belongs to the hyperedge Ej.
10. num = num + 1
11. value1 = value1∧ μ(xi)
12. value2 = value2∧ xij
13. end if

14. end do

15. if (num > 1) then

16. λr(Ej) = value1× value2, where Ej is a hyperedge.
17. end if

18. end do

19. If for some j, supp(Ej) = supp(Ek), k ∈ {j + 1, j + 2, . . . , n} then,

λr(Ej) = max{λr(Ej), λr(Ek), . . .}.
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Table A1. Adjacency matrix.

A x1 x2 . . . xn
x1 x11 x12 . . . x1n
x2 x21 x22 . . . x2n
...

...
... . . .

...
xn xn1 xn2 . . . xnn

Algorithm A2: Method for construction of fuzzy column hypergraph

1. Begin
2. Follow steps 2 and 3 of Algorithm A1.
3. do i from 1→ n
4. Take a vertex xi from first ith row.
5. value1 = ∞, value2 = ∞, num = 0
6. do j from 1→ n
7. if (xij > 0) then

8. xj belongs to the hyperedge Ei.
9. num = num + 1

10. value1 = value1∧ μ(xj)
11. value2 = value2∧ xij
12. end if

13. end do

14. if (num > 1) then

15. λcl(Ei) = value1× value2, where Ei is a hyperedge.
16. end if

17. end do

18. If for some i, supp(Ei) = supp(Ek), k ∈ {j + 1, j + 2, . . . , n} then,

λcl(Ei) = max{λcl(Ej), λcl(Ek), . . .}.

Algorithm A3: Construction of fuzzy competition hypergraph

1. Begin
2. Input the adjacency matrix A = [xij]n×n of a fuzzy digraph

#»

G.
3. Define a relation f : X → X by f (xi) = xj, if xij > 0.
4. do i from 1→ n
5. do j from 1→ n
6. If xij > 0 then (xj, xij) belongs to the fuzzy out neighbourhood N+(xi).
7. end do

8. end do

9. Compute the family of sets S = {Ei = f−1(xi) : | f−1(xi)| ≥ 2, xi ∈ X} where
Ei = {xi1 , xi2 , . . . , xir} is a hyperedge of CH(

#»

G).
10. For each hyperedge Ei ∈ S , calculate the degree of membership of Ei as,

λc(Ei) = [μ(xi1) ∧ μ(xi2) ∧ . . . ∧ μ(xir )]× h
(
N+(xi1) ∩N+(xi2) ∩ . . . ∩N+(xir )

)
.
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Algorithm A4: Construction of fuzzy double competition hypergraph

1. Input the adjacency matrix A = [xij]n×n of a fuzzy digraph
#»

G.
2. Define a relation f : X → X by f (xi) = xj, if xij > 0.
3. Compute the family of sets S = {Ei = f−1(xi) : | f−1(xi)| ≥ 2, xi ∈ X}

where Ei = {xi1 , xi2 , . . . , xir}.
4. If N+(xi1) ∩N+(xi2) ∩ . . . ∩N+(xir ) and N−(xi1) ∩N−(xi2) ∩ . . . ∩N−(xir )

are non-empty then Ei = {xi1 , xi2 , . . . , xir} is a hyperedge of DCH(
#»

G).
5. For each hyperedge Ei ∈ S , calculate the degree of membership of hyperedge Ei,

λd(Ei) = [μ(xi1) ∧ μ(xi2) ∧ . . . ∧ μ(xir )]× h
(
N+(xi1) ∩N+(xi2) ∩ . . . ∩N+(xir )

)
∧

h
(
N−(xi1) ∩N−(xi2) ∩ . . . ∩N−(xir )

)
.
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Abstract: Type-2 intuitionistic fuzzy set (T2IFS) is a powerful and important extension of the classical
fuzzy set, intuitionistic fuzzy set to measure the vagueness and uncertainty. In a practical
decision-making process, there always occurs an inter-relationship among the multi-input arguments.
To deal with this point, the motivation of the present paper is to develop some new interval type-2 (IT2)
intuitionistic fuzzy aggregation operators which can consider the multi interaction between the input
argument. To achieve it, we define a symmetric triangular interval T2IFS (TIT2IFS), its operations,
Hamy mean (HM) operator to aggregate the preference of the symmetric TIT2IFS and then shows
its applicability through a multi-criteria decision making (MCDM). Several enviable properties and
particular cases together with following different parameter values of this operator are calculated
in detail. At last a numerical illustration is to given to exemplify the practicability of the proposed
technique and a comparative analysis is analyzed in detail.

Keywords: type-2 fuzzy set; multi criteria decision-making; triangular interval type-2 intuitionistic
fuzzy set; Hamy mean; aggregation operator

1. Introduction

Multiple criteria decision making (MCDM) is a hot research topic in the modern decision-making
process to find the most suitable alternative(s) from the available ones. In this process,
all the alternatives are to be evaluated under several attributes by both qualitatively and
quantitatively [1,2]. Traditionally, the researchers offer his/her preference information towards
the alternatives by using the crisp real numbers only. However, due to lack of knowledge,
a time pressure, and other unavoidable factors, it is very difficult if not impossible to express
the information precisely. Therefore, to handle the incomplete or incorrect information, the theory
of fuzzy set (FS) also called as a type-1 fuzzy set (T1FS) [3] and its extensions as an intuitionistic
FS (IFS) [4], type-2 FS (T2FS) [5] are widely used. Under these environments, authors have put
forth the different techniques to solve the MCDM problems. For instance, geometric aggregation
operators (AOs) for different intuitionistic fuzzy numbers (IFNs) are developed by Xu and Yager [6].
Garg [7,8] presented some Einstein norm based AOs for IFNs. Zhao et al. [9] presented
some generalized AOs. Kaur and Garg [10] presented some generalized AOs using t-norm
operations for cubic IFS information. However, apart from these, a comprehensive overview of
the different approaches for solving the decision making (DM) problems by using aggregation
operator (AOs) [11–21], information measures (IMs) [22–24] are summarized in these papers and
their references.

In these existing works, authors have investigated the problem by taking quantitative environment
to access the alternatives. However, not all the alternatives are accessed in terms of quantitative.

Symmetry 2018, 10, 401; doi:10.3390/sym10090401 www.mdpi.com/journal/symmetry413
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For this, there exists the concept of qualitative assessment in terms of linguistic variables/terms
(LVs/LTs) [25,26]. By taking the advantages of LTs, Zhang [27] presented the linguistic IF (LIF) AOs to
aggregate the LIF numbers. Chen et al. [28] presented an approach to solving the MCDM problem
under LIFS environment. Garg and Kumar [29] presented AOs for LIF numbers (LIFNs) by using set
pair analysis theory. Garg and Kumar [30] presented new possibility degree measure for LIFNs and an
AO to aggregate the different LIFNs to solve MCDM problems. In many practical problems, it is not
easy for any decision maker (DM) to discover an exact membership function of an FS corresponding to
its element. To overthrow this limitation, type-2 fuzzy set (T2FS), an extension of T1FS, is applied to
the model and is characterized by two functions: primary membership functions (PMF) and secondary
membership function (SMF). Unfortunately, T2FSs are highly complex, it is troublesome for the DMs to
implement it in the real situation; hence, their use is not yet widespread. To reduce the computational
complexity, Interval type-2 fuzzy (IT2F) sets (IT2FSs) [31] is the most widely used in T2FSs. In past
decades, many methods have been developed to extend the theory of MCDM under IT2FS environment.
Chen et al. [32] built up an expanded QUALIFLEX strategy for taking care of DM issues
in view of IT2FSs and gave a contextual analysis of medicinal basic leadership. Chen [33]
built up an ELECTRE-base outranking strategy for decision-making problems using IT2FSs.
Wu and Mendel [34] proposed a linguistic weighted average AOs to deal with analytical hierarchical
process (AHP) process under IT2F environment. Qin and Liu [35] investigated a family of type-2 fuzzy
AOs in light of Frank triangular norm and built up another way to deal with MCDM problems under
the IT2FSs setting. Gong et al. [36] extended the generalized Bonferroni mean (GBM) operator to
the trapezoidal IT2F environment. Apart from these, some other studies under T2FS environment are
conducted which are summarized in [35–48].

In all these above AOs, researchers have described the information by considering the independent
of argument assumptions during the aggregation. However, the interaction between the multi-input
parameters have commonly occurred and thus, it is necessary to add their features into the process.
In that direction, Bonferroni mean (BM) and generalized BM (GBM)-based operators are proposed by
the researchers [49,50]. But from them, it has been observed that they have considered only two or three
multi-parameter at a single time. However, they are unable to analyze the effect of the multi-input
argument into one analysis. Furthermore, in BM and GBM, there is a need for two and three
parameters from the irrational set during the process which increases the computational complexity.
An alternative to BM operators, Hamy mean (HM) [51] or Maclaurin symmetric mean (MSM) or
Muirhead mean (MM) operator has advantages of capturing the inter-relationship among the multiple
input arguments. Qin [46] make a correlation between the HM and the MSM and conclude that
the MSM is an instance of HM [16,17]. Garg and Nancy [52] develop MCDM method by prioritized
MM aggregation operators. Additionally, the HM operator involves the parameter, which can provide
more flexibility and robustness during the aggregation operator. The existing - arithmetic and geometric
mean- operators can be easily deduced from the HM by setting a particular value to its parameter.
Be that as it may, the HM just accomplished a couple of research results on the hypothesis and
application of inequality [53,54]. Therefore, it is a means to study the AOs using the HM operator.

It is noted from the above studies that T2FS or IT2FS are examined by considering only
the membership degree (MD) of an element. But in practical problems, it is sometimes not possible
for a DM to give their preferences in terms of MD only as there may be some amount of hesitation
also. For discussing this, a type-2 IFS (T2IFS) [39] has been introduced which simultaneously considers
the MDs, non-membership degrees (NMDs) and the footprint of uncertainties (FOU) between them.
Later on, due to the high complexity of T2IFS, Garg and Singh [55] introduced the concept of
triangular interval T2IFS (TIT2IFS) has introduced by considering the MDs and NMDs as a triangular
fuzzy number.

Based on the above analysis, we can know that the decision-making problems have become more
tedious these days. So in order to make a better decision in terms of selecting the best alternative(s) for
the MCDM problems, it is necessary to consider the various factors such as MDs, NMDs, FOU between
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the alternatives. By keeping the advantages of both the AOs and the TIT2IFS, it is necessary to
extend the Hamy mean AOs to process the TIT2IFNs by using linguistic features of MDs and NMDs
and hence to develop some MCDM methods. Until now, we have not seen any work based on
the AOs used to aggregate the TIT2IFS information. Thus, keeping in mind the advantages of T2IFS and
the multiple input interaction between the argument of HM operator, this paper has presented
the concept of the symmetric TIT2IFS and their desired properties. These considerations have led us to
consider the main objectives of this paper:

1. to propose the concept of the symmetric TIT2IFS (STIT2IFSs);
2. to propose some new AOs for STIT2IFSs under the linguistic intuitionistic features;
3. to develop an algorithm to solve the decision-making problems based on proposed operators;
4. to present some example to validate and compare the results.

To achieve the objective (1), we combine the T2IFSs and the symmetric triangular number to
build a concept of the STIT2IFSs and studied their desired properties. To complete the objective
(2), we presented the averaging AOs by using HM operations and named as symmetric triangular
IT2IF HM averaging (STIT2IFHM) and weighted symmetric triangular IT2IF Hamy mean averaging
(WSTIT2IFHM) operator for decision-making problems by keeping in mind the advantages of T2IFS
and the multiple input interaction between the argument of HM operator. Several enviable properties
and particular cases together with following different parameter values of this operator are calculated
in detail. To cover the objective (3), we establish an MCDM method based on these proposed
operators under the STIT2IFS environment where preferences related to each alternative is expressed
in terms of linguistic STIT2IFNs. A numerical illustration is to given to exemplify the practicability of
the proposed technique and a comparative analysis is analyzed in detail for fulfilling the Objective 4.
Finally, the advantages of the proposed method in the state of the art are highlighted and discussed
in detail.

The rest of the paper is organized as follows. In Section 2, some basic concepts on T2FS, IT2FS,
T2IFS, and HM are reviewed briefly. In Section 3, we present the concept of the symmetric TIT2IF set
and their desirable properties. Section 4 deals with new AOs based on HM operator to accommodate
the STIT2IFN information and its special cases. In Section 5, we present an approach based on
the WSTIT2IFHM operator to solve the MCDM problem. A practical example is discussed in Section 6
and some concluding remarks are summarized in Section 7.

2. Basic Concepts

In this section, we overview some basic definition of T2FSs, IT2FS and T2IFSs defined over
the universal set X.

Definition 1 ([42]). A type-2 fuzzy set (T2FS) A ⊆ X, defined as

A = {((x, uA), μA(x, uA)) | x ∈ X, uA ∈ jx ⊆ [0, 1]} (1)

where uA denotes the primary membership function (PMF) of A, μA ∈ [0, 1] is called as secondary membership
function (SMF) jx ⊆ [0, 1] is PMF of x.

Another equivalent expression for T2FS A is given as

A =
∫

x∈X

μA(x)
x

=
∫

x∈X

[∫
uA∈jx

( fx(uA))

uA

]
/x (2)

Definition 2 ([20]). The collection of all PMFs of T2FS is named as “footprint of uncertainty" (FOU),
i.e., FOU(A) =

⋃
x∈X

jx.
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However, because of high computational burden of T2FSs, researchers prefer using interval type-2
(IT2) fuzzy set (IT2FS) for real-world problems.

Definition 3 ([44]). A T2FS transform into interval type-2 FS when the grades of all SMFs is equal to 1.
Mathematically, an IT2FS A, with a membership function μA(x, uA), may be expressed either as Equation (3)
or as Equation (4) :

A = {(x, uA), μA(x, uA) = 1 | ∀x ∈ X, ∀uA ∈ jx ⊆ [0, 1]} (3)

A =
∫

x∈X

∫
uA∈jx

1/(x, uA), jx ⊆ [0, 1] (4)

Definition 4 ([44]). An IT2 FS is normally described by a zone called as FOU, which is limited by two
membership functions (MFs), known as lower MF (LMF) μ

A
(x, uA) and the upper MF (UMF) μA(x, uA).

That is FOU=[μ
A
(x, uA), μA(x, uA)]. Figure 1 shows the graphical representation of IT2 fuzzy number

(IT2 FN) with triangular MF shape.

Figure 1. LMF (dashed), UMF (solid), FOU (shaded) for IT2FS A.

Definition 5 ([38,39]). A T2IFS is a set of ordered pairs consisting of PMFs and SMFs of the element defined as

A =

{
〈(x, uA, vA), μA(x, uA), νA(x, vA)〉 | x ∈ X, uA ∈ j1x, vA ∈ j2x

}
(5)

where uA(vA) represents the primary membership (non-membership) of A denoted by PMF(PNMF), μA(νA) is
secondary membership (non-membership) function of A, denoted by SMF (SNMF) and j1x, j2x ⊆ [0, 1] are PMF
and PNMF of x, respectively. When the SMFs μA(x, uA) = 1, and SNMF νA(x, vA) = 0, a T2IFS translates
to an IT2 IFS.

Definition 6 ([55]). An IT2 IFS, A, is described by a bounding functions of lower and upper membership and
non-membership functions denoted by LMF, UMF, LNMF and UNMF defined as μA, μ

A
and νA, νA with

conditions: 0 ≤ μA + νA ≤ 1 and 0 ≤ μ
A
+ νA ≤ 1. The FOUs of an IT2IFS is illustrated in Figure 2 with

triangular shape and defined mathematically as

FOU(A) =
⋃

x∈X

[
μ

A
(x), μA(x), νA(x), νA(x)

]
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Figure 2. LMF (dashed), UMF (solid), LNMF (doted), UNMF (solid), FOU (shaded) for IT2IFS A.

Definition 7 ([51]). For non-negative real numbers xi(i = 1, 2, . . . , n), the Hamy mean (HM) is given as

HM(k)(x1, x2, · · · , xn) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

xij

) 1
k

(n
k)

(6)

where k is the parameter, (n
k) =

n!
k!(n−k)! and (i1, i2, . . . , ik) crosses all the k−tuple mix of (1, 2, . . . , n).

3. Proposed Symmetric Triangular Interval T2IFS

In this section, we present a symmetric triangular IT2IFS and characterize their fundamental
operational laws.

Definition 8. Let X be the universal set. A symmetric triangular interval T2 IFS (TIT2IFS) can be represented
as follows:

α = {(ζα(x), �α(x), ϕα(x), ϕ∗α(x), ϑα(x), ϑ∗α(x)) | x ∈ X} (7)

where ζα(x), �α(x), ϕα(x), ϕ∗α(x), ϑα(x), ϑ∗α(x) are the real numbers satisfying the inequalities, ζα(x) ≥ �α(x),
0 ≤ ϕα(x) ≤ ϕ∗α(x) ≤ 1, 0 ≤ ϑ∗α(x) ≤ ϑα(x) ≤ 1 such that ϕα(x) + ϑα(x) ≤ 1 and ϕ∗α(x) + ϑ∗α(x) ≤ 1.

For convenience, we represent this pair as α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) and called as symmetric
triangular IT2 intuitionistic fuzzy (IT2IF) number (STIT2IFN) where ζα ≥ �α, ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1
and ϕα ≤ ϕ∗α, ϑα ≥ ϑ∗α . The graphical representation of STIT2IFN is given in Figure 3.

Figure 3. Representation of STIT2IFN α.
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Definition 9. For a STIT2IFN α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α), the lower and upper membership and
non-membership functions denoted by LMF, UMF, LNMF and UNMF are defined as

UMFα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ∗α
�α

(x− ζα + �α), ζα − �α ≤ x < ζα

ϕ∗α, x = ζα

ϕ∗α
�α

(ζα + �α − x), ζα < x ≤ �α + ζα

; UNMFα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ϑ∗α − 1)(x− ζα + �α) + �α

�α
; ζα − �α ≤ x < ζα

ϑ∗α ; x = ζα

(1− ϑ∗α)(x− ζα) + ϑ∗α�α

�α
; ζα < x ≤ �α + ζα

(8)

LMFα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕα

�α
(x− ζα + �α); ζα − �α ≤ x < ζα

ϕα; x = ζα

ϕα

�α
(ζα + �α − x); ζα < x ≤ �α + ζα

; LNMFα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ϑα − 1)(x− ζα + �α) + �α

�α
; ζα − �α ≤ x < ζα

ϑα; x = ζα

(1− ϑα)(x− ζα) + ϑα�α

�α
; ζα < x ≤ �α + ζα

(9)

Definition 10. The score function of STIT2IFN α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) is defined as

s(α) = (sx(α), sy(α))

=

(
ζα

2ϕα ϕ∗α
ϕα + ϕ∗α

− ζα
2ϑαϑ∗α

ϑα + ϑ∗α
,

ϑα + ϕ∗α
2

− ϕα + ϑ∗α
2

)
(10)

Definition 11. For two STIT2IFNs α and β, an order relation “(>)” to compare them is defined as

1. If sx(α) > sx(β), then α > β;

2. If sx(α) = sx(β), then

{
sy(α) > sy(β) ⇒ α > β;

sy(α) = sy(β) ⇒ α = β;

Definition 12. For two STIT2IFNs α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) and β =
(

ζβ, �β, ϕβ, ϕ∗β, ϑβ, ϑ∗β
)

, λ > 0,
then the operational laws of it are shown as follows:

1. α⊕ β =
(

ζα + ζβ, �α + �β, ϕα ϕβ, ϕ∗α + ϕ∗β − ϕ∗α ϕ∗β, ϑα + ϑβ − ϑαϑβ, ϑ∗αϑ∗β
)

;

2. α⊗ β =
(

ζαζβ, �α�β, ϕα + ϕβ − ϕα ϕβ, ϕ∗α ϕ∗β, ϑαϑβ, ϑ∗α + ϑ∗β − ϑ∗α ϑ∗β
)

;

3. λα =
(

λζα, λ�α, (ϕα)
λ, 1− (1− ϕ∗α)

λ, 1− (1− ϑα)
λ, (ϑ∗α)

λ
)

;

4. αλ =
(

ζλ
α , �λ

α , 1− (1− ϕα)
λ, (ϕ∗α)

λ, (ϑα)
λ, 1− (1− ϑ∗α)

λ
)

Theorem 1. For STIT2IFNs α and β, the operations defined in Definition 12 are again STIT2IFNs.

Proof. Consider two STIT2IFNs α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) and β =
(

ζβ, �β, ϕβ, ϕ∗β, ϑβ, ϑ∗β
)

. So by
Definition 8, we have ζα ≥ �α, ϕα ≤ ϕ∗α, ϑα ≥ ϑ∗α , ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1, ζβ ≥ �β, ϕβ ≤ ϕ∗β, ϑβ ≥ ϑ∗β
ϕβ + ϑβ ≤ 1, ϕ∗β + ϑ∗β ≤ 1.

Let α⊕ β = γ =
(

ζγ, �γ, ϕγ, ϕ∗γ, ϑγ, ϑ∗γ
)

and thus by Definition 12, we get ζγ = ζα + ζβ, �γ =

�α + �β, ϕγ = ϕα ϕβ, ϕ∗γ = ϕ∗α +
∗
β −ϕ∗α ϕ∗β, ϑγ = ϑα + ϑβ − ϑαϑβ, ϑ∗γ = ϑ∗αϑ∗β. Now, to show α⊕ β is

again an STIT2IFN, we need to prove that ζγ ≥ �γ, ϕγ ≤ ϕ∗γ, ϑγ ≥ ϑ∗γ, ϕγ + ϑγ ≤ 1, ϕ∗γ + ϑ∗γ ≤ 1.
As ζα ≥ �α and ζβ ≥ �β which implies that ζγ ≥ �γ. Further ϕα ≤ ϕ∗α, ϕβ ≤ ϕ∗β, ϑα ≥ ϑ∗α , ϑβ ≥ ϑ∗β,

ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1 which gives that

ϕγ + ϑγ = ϕα ϕβ +
(
ϑα + ϑβ − ϑαϑβ

)
= ϕα ϕβ + 1− (1− ϑα)

(
1− ϑβ

)
≤ ϕα ϕβ + 1− ϕα ϕβ

≤ 1
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and

ϕ∗γ + ϑ∗γ = ϕ∗α ϕ∗β − ϕ∗α ϕ∗β + ϑ∗αϑ∗β

= 1− (1− ϕ∗α)
(

1− ϕ∗β
)
+ ϑ∗αϑ∗β

≤ 1− ϑ∗αϑ∗β + ϑ∗αϑ∗β
≤ 1

Finally, ϕγ = ϕα ϕβ ≤ ϕ∗α ϕ∗β = ϕ∗γ and ϑγ = ϑα + ϑβ − ϑαϑβ = 1− (1− ϑα)(1− ϑβ) ≥ 1− (1−
ϑ∗α)(1− ϑ∗β) = ϑ∗γ.

Therefore, we conclude that α⊕ β becomes STIT2IFN. Similarly, we can prove that α⊗ β, αλ and
λα are also STIT2IFNs.

4. TIT2IF Hamy Mean Aggregation Operators

Let Ω be the gathering of all non-empty STIT2IFNs αi =
(
ζi, �i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
, (i = 1(1)n). Here,

we present HM-based AOs for STIT2IFNs.

4.1. STIT2IFHM Operator

Definition 13. A STIT2IFHM is a mapping STIT2IFHM : Ωn → Ω defined as

STIT2IFHM(k)(α1, α2, . . . , αn) =

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

) 1
k

(n
k)

(11)

then STIT2IHM(k) is called the symmetric triangular IT2IF Hamy mean operator, where k = 1, 2, . . . , n is
the parameter and (n

k) =
n!

k!(n−k)! represent the binomial coefficient.

Theorem 2. The aggregated value for n STIT2IFNs αi =
(
ζi, �i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
by using Definition 13 is again

STIT2IFN which is given as

STIT2IFHM(k)(α1, α2, . . . , αn) (12)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�αij

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proof. The first part of the result can be easily obtained from Theorem 1. So, there is a need to prove
only that Equation (12) is kept.

According to the operational laws of STIT2IFNs, we get
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k⊗
j=1

αij =

(
k

∏
j=1

ζαij
,

k

∏
j=1

�αij
, 1−

k

∏
j=1

(1− ϕαij
),

k

∏
j=1

ϕ∗αij
,

k

∏
j=1

ϑαij
, 1−

k

∏
j=1

(1− ϑ∗αij
)

)

and

⎛⎝ n⊗
j=1

αij

⎞⎠
1
k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k

∏
j=1

ζαij

)1
k

,

(
k

∏
j=1

�αij

)1
k

, 1−
(

k

∏
j=1

(1− ϕαij
)

)1
k

,

(
k

∏
j=1

ϕ∗αij

)1
k

,

(
k

∏
j=1

ϑαij

)1
k

, 1−
(

k

∏
j=1

(1− ϑ∗αij
)

)1
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Therefore,

⊕
1≤i1<

...<ik≤n

⎛⎝ n⊗
j=1

αij

⎞⎠
1
k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

⎛⎝ k

∏
j=1

ζαij

⎞⎠ 1
k

, ∑
1≤i1<

...<ik≤n

⎛⎝ k

∏
j=1

�αij

⎞⎠ 1
k

, ∏
1≤i1<

...<ik≤n

⎛⎜⎝1−

⎛⎝ k

∏
j=1

(1− ϕαij
)

⎞⎠ 1
k
⎞⎟⎠ ,

1− ∏
1≤i1<

...<ik≤n

⎛⎜⎝1−

⎛⎝ k

∏
j=1

ϕ∗αij

⎞⎠ 1
k
⎞⎟⎠ , 1− ∏

1≤i1<
...<ik≤n

⎛⎜⎝1−

⎛⎝ k

∏
j=1

ϑαij

⎞⎠ 1
k
⎞⎟⎠ ,

∏
1≤i1<

...<ik≤n

⎛⎜⎝1−

⎛⎝ k

∏
j=1

(1− ϑ∗αij
)

⎞⎠ 1
k
⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Subsequently, we have

STIT2IFHM(k)(α1, α2, . . . , αn)

=

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

)1
k

(n
k)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�αij

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In what follows, we investigate the certain property of STIT2IFHM operator.
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Theorem 3. (Idempotency) If αi = α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) for all i, then

STIT2IFHM(k)(α1, α2, . . . , αn) = α.

Proof. Since αi = α = (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α) for all i then based on Theorem 2, we have

STIT2IFHM(k)(α, α, . . . , α)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζα

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�α

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕα)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗α

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑα

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗α)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
ζk

α

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
�k

α

)
(n

k)
,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(1− (1− ϕα))

⎞⎟⎠
1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(1− ϕ∗α)

⎞⎟⎠
1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(1− ϑα)

⎞⎟⎠
1
(n

k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(1− (1− ϑ∗α))

⎞⎟⎠
1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ (n
k)(ζ

k
α)

1
k

(n
k)

,
(n

k)(�
k
α)

1
k

(n
k)

, 1− (1− ϕα)

(n
k)

(n
k) , 1− (1− ϕ∗α)

(n
k)

(n
k) , 1− (1− ϑα)

(n
k)

(n
k) , (1− (1− ϑ∗α))

(n
k)

(n
k)

⎞⎠
= (ζα, �α, ϕα, ϕ∗α, ϑα, ϑ∗α)

= α

Theorem 4. (Commutativity) Let αi(i = 1, 2, . . . , n) be a collection of STIT2IFNs, and αi be any permutation
of αi. Then

STIT2IFHM(k)(α1, α2, . . . , αn) = STIT2IFHM(k)(α1, α2, . . . , αn)

Proof. Based on the Definition 13, we have

STIT2IFHM(k)(α1, α2, . . . , αn) =

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
α̃ij

) 1
k

(n
k)

=

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

) 1
k

(n
k)

= STIT2IFHM(k)(α1, α2, . . . , αn)
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Theorem 5. (Monotonicity) For two different STIT2IFNs αi =
(

ζαi , �αi , ϕαi , ϕ∗αi
, ϑαi , ϑ∗αi

)
, and βi =(

ζβi , �βi , ϕβi , ϕ∗βi
, ϑβi , ϑ∗βi

)
, (i = 1, 2, . . . , n). If ζαi ≤ ζβi , �αi ≥ �βi , ϕαi ≥ ϕβi , ϕ∗αi

≤ ϕ∗βi
, ϑαi ≤ ϑβi and

ϑ∗αi
≥ ϑ∗βi

for all i, then

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(β1, β2, . . . , βn). (13)

Proof. Let A = STIT2IFHM(k)(α1, α2, . . . , αn) and B = STIT2IFHM(k)(β1, β2, . . . , βn). Then according
to Theorem 2, we get

A = STIT2IFHM(k)(α1, α2, . . . , αn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�αij

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

B = STIT2IFHM(k)(β1, β2, . . . , βn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζβij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�βij

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕβij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗βij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑβij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗βij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since ζαi ≤ ζβi which implies that

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

≤

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζβij

) 1
k

(n
k)
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Also, ϕαi ≥ ϕβi implies that

k

∏
j=1

(1− ϕαij
) ≤

k

∏
j=1

(1− ϕβij
)

⇒
(

k

∏
j=1

(1− ϕαij
)

) 1
k

≤
(

k

∏
j=1

(1− ϕβij
)

) 1
k

⇒

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

≥

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϕβij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

Similarly for ϕ∗αi
≤ ϕ∗βi

, ϑαi ≤ ϑαi and ϑ∗αi
≥ ϑ∗βi

for all i, we have

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

≤ 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑβij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

;

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

≥

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(1− ϑ∗βij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

;

and

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

≤ 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗βij

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

.

Therefore, by using these inequalities and Definition 11, we get

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(β1, β2, . . . , βn)

Theorem 6. (Boundedness) For n STIT2IFNs αi, α− =

(
min

i
{ζi}, max

i
{�i}, min

i
{ϕi}, max

i
{ϕ∗i },

max
i
{ϑi}, min

i
{ϑ∗i }

)
, and α+ =

(
max

i
{ζi}, min

i
{�i}, max

i
{ϕi}, min

i
{ϕ∗i }, min

i
{ϑi}, max

i
{ϑ∗i }

)
, we have

α− ≤ STIT2IFHM(k)(α1, α2, . . . , αn) ≤ α+ (14)

Proof. Clearly, we get α− ≤ αi ≤ α+. Thus, based on Theorems 4 and 5, we have

STIT2IFHM(k)(α1, α2, . . . , αn) ≥ STIT2IFHM(k)(α−, α−, . . . , α−) = α−

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(α+, α+, . . . , α+) = α+
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Lemma 1 ([51]). For n non-negative real numbers xi, we have

HM(1)(x1, x2, . . . , xn) ≥ HM(2)(x1, x2, . . . , xn) ≥ . . . ≥ HM(n)(x1, x2, . . . , xn) (15)

with equality holding iff x1 = x2 = . . . = xn.

Lemma 2 ([54]). Let xi, yi > 0 and
n
∑

i=1
yi = 1. Then

n

∏
i=1

xyi
i ≤

n

∑
i=1

xiyi (16)

Theorem 7. For given STIT2IFNs αi, the operator STIT2IFHM is monotonically decreasing
with parameter k.

Proof. For STIT2IFNs αi and k = 1, 2, . . . , n, we denote

C(k) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

, Δ(k) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�αij

) 1
k

(n
k)

,

T(k) =

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k
∏
j=1

(1− ϕαij
)

) 1
k
⎞⎠
⎞⎟⎠

1
(n

k)

, S(k) = 1−

⎛⎝∏ 1≤i1<
...<ik≤n

⎛⎝1−
(

k
∏
j=1

ϕ∗αij

) 1
k
⎞⎠⎞⎠

1
(n

k)
,

T∗(k) = 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(
1−
(

∏k
j=1 ϑαij

) 1
k
)⎞⎟⎠

1
(n

k)

, S∗(k) =

(
∏ 1≤i1<

...<ik≤n

(
1−
(

∏k
j=1(1− ϑ∗αij

)

) 1
k
)) 1

(n
k)

Based on Theorem 2, we have

STIT2IFHM(k)(α1, α2, . . . , αn) = (C(k), Δ(k), T(k), S(k), T∗(k), S∗(k))

and STIT2IFHM(k+1)(α1, α2, . . . , αn) = (C(k + 1), Δ(k + 1), T(k + 1), S(k + 1), T∗(k + 1), S∗(k + 1))

Following Definition 10 and Lemma 1, we obtained

sx(STIT2IFHM(k)(α1, α2, . . . , αn)) ≥

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

≥

∑
1≤i1<

...<ik+1≤n

(
k+1
∏
j=1

ζαij

) 1
k+1

( n
k+1)

≥ sx(STIT2IFHM(k+1)(α1, α2, . . . , αn))

Then, two cases are arisen:

Case 1 If sx

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
> sx

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
, following

the Definition 11 we get

STIT2IFHM(k)(α1, α2, . . . , αn) > STIT2IFHM(k+1)(α1, α2, . . . , αn)
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Case 2 If sx

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
= sx

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
. Then, by

Lemmas 1 and 2, we get

S(k) = 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎜⎝1−

⎛⎝ k

∏
j=1

ϕ∗αij

⎞⎠ 1
k
⎞⎟⎠
⎞⎟⎠

1
(nk)

≥ 1−

∑
1≤i1<

...<ik≤n

⎛⎝1−
(

k
∏
j=1

ϕ∗αij

) 1
k
⎞⎠

(n
k)

= ∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ϕ∗αij

) 1
k

(n
k)

To check the monotonic behavior of S(k), we assume that it is increasing with k, i.e.,

S(n) > S(n− 1) > . . . > S(1) (17)

Also since

S(1) ≥ 1− ∑
1≤i1≤n

1
∏
j=1

(
1− ϕ∗αij

)
(n

1)
= 1−

n−
n
∑

i=1
(ϕ∗αi

)

n
=

n
∑

i=1
ϕ∗αi

n
(18)

which implies that

S(n) > S(1) =
∑n

i=1 ϕ∗αi

n

⇒
(

n

∏
i=1

ϕ∗αi

) 1
n

>
∑n

i=1 ϕ∗αi

n

which contradict the Lemma 2. Hence with parameter k, S(k) is monotonically decreasing. Similarly,
we can get T∗(k) is also monotonically decreasing with parameter k. Also, the functions T(k) and
S∗(k) are monotonically increasing with parameter k.

Therefore,

sy

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
=

S(k) + T∗(k)
2

− T(k) + S∗(k)
2

>
S(k + 1) + T∗(k + 1)

2
− T(k + 1) + S∗(k + 1)

2

= sy

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
Thus, by both the cases, we get STIT2IFHM(k)(α1, α2, . . . , αn) ≥

STIT2IFHM(k+1)(α1, α2, . . . , αn).

Furthermore, we will talk about a few special cases of the STIT2IFHM operator concerning
the parameter the k.
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1. When k = 1, Equation (12) reduces to the triangular IT2IF averaging operator.

STIT2IFHM(1)(α1, α2, · · · , αm)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1≤n

(
1
∏
j=1

ζαij

) 1
1

(n
1)

,

∑
1≤i1≤n

(
1
∏
j=1

�αij

) 1
1

(m
1 )

,

⎛⎜⎝ ∏
1≤i1≤n

⎛⎜⎝1−

⎛⎝ 1

∏
j=1

(
1− ϕαij

)⎞⎠ 1
1
⎞⎟⎠
⎞⎟⎠

1
(n1)

,

1−

⎛⎜⎝ ∏
1≤i1≤n

⎛⎜⎝1−

⎛⎝ 1

∏
j=1

ϕ∗αij

⎞⎠ 1
1
⎞⎟⎠
⎞⎟⎠

1
(n1)

, 1−

⎛⎜⎝ ∏
1≤i1≤n

⎛⎜⎝1−

⎛⎝ 1

∏
j=1

ϑαij

⎞⎠ 1
1
⎞⎟⎠
⎞⎟⎠

1
(n1)

,

⎛⎜⎝ ∏
1≤i1≤n

⎛⎜⎝1−

⎛⎝ 1

∏
j=1

(
1− ϑ∗αij

)⎞⎠ 1
1
⎞⎟⎠
⎞⎟⎠

1
(n1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n
∑

i=1
ζαi

n
,

n
∑

i=1
�αi

n
,

(
n

∏
i=1

(
1−
(

1− ϕαij

))) 1
n

, 1−
(

n

∏
i=1

(
1− ϕ∗αij

)) 1
n

,

1−
(

n

∏
i=1

(
1− ϑαij

)) 1
n

,

(
n

∏
i=1

(
1−
(

1− ϑ∗αij

))) 1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝
r
∑

i=1
ζαi

n
,

n
∑

i=1
�αi

n
,

(
n

∏
i=1

ϕαij

) 1
n

, 1−
(

n

∏
i=1

(
1− ϕ∗αij

)) 1
n

, 1−
(

n

∏
i=1

(
1− ϑαij

)) 1
n

,

(
n

∏
i=1

ϑ∗αij

) 1
n

⎞⎟⎠
2. When k = n, Equation (12) will reduce to triangular IT2IF geometric operator.

STIT2IFHM(m)(α1, α2, · · · , αn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
n

(n
n)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

�γij

) 1
n

(n
n)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕγij

)) 1
n
⎞⎠
⎞⎟⎠

1
(nn)

,

1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
n
⎞⎠
⎞⎟⎠

1
(nn)

, 1−

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
n
⎞⎠
⎞⎟⎠

1
(nn)

,

⎛⎜⎝ ∏
1≤i1<

...<ik≤n

(
1−
(

k

∏
j=1

(
1− ϑ∗αij

) 1
n
)) 1

(nn)

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
(

k

∏
j=1

ζαij

) 1
n

,

(
k

∏
j=1

�αij

) 1
n

,

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
n
⎞⎠ , 1−

⎛⎝1−
(

k

∏
j=1

ϕ∗γij

) 1
n
⎞⎠ ,

1−

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
n
⎞⎠ ,

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
n
⎞⎠

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k

∏
j=1

ζαij

) 1
n

,

(
k

∏
j=1

�αij

) 1
n

,

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
n
⎞⎠ ,

(
k

∏
j=1

ϕ∗αij

) 1
n

,

(
k

∏
j=1

ϑαij

) 1
n

,

(
1−
(

k

∏
j=1

(
1− ϑ∗αij

) 1
n
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4.2. WSTIT2IFHM Operator

Definition 14. For a collection of n STIT2IFNs, αi, w = (w1, w2, · · · , wn)T is weight vector of αi, where
wi > 0 and ∑n

i=1 wi = 1, we define WSTIT2IFHM operator as

WSTIT2IFHM(k)
w (α1, α2, · · · , αm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k⊗

j=1
αij

) 1
k

(n−1
k )

; 1 ≤ k < n

k⊗
j=1

α

1−wj
n−1

j ; k = n

(19)

then WSTIT2IFHM(k)
w is stated as weighted symmetric triangular IT2IF Hamy mean operator.

Theorem 8. For n STIT2IFNs αi =
(
ζi, �i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
(i = 1, 2, . . . , n), the value obtained through

Equation (19) is also STIT2IFN, and is given as

WSTIT2IFHM(k)
w (α1, α2, · · · , αm)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k

∏
j=1

ζαij

) 1
k

(n−1
k )

,

∑
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k

∏
j=1

�αij

) 1
k

(n−1
k )

,

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
n−1

k )

, 1−

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
n−1

k )

,

1−

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
n−1

k )

,

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
n−1

k )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; if 1 ≤ k < n

and

WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=

⎛⎜⎜⎜⎜⎜⎝
k

∏
j=1

ζ

1−wj
n−1

αj ,
k

∏
j=1

�

1−wj
n−1

αj , 1−
k

∏
j=1

(
1− ϕαj

) 1−wj
n−1 ,

k

∏
j=1

(
ϕ∗αj

) 1−wj
n−1 ,

k

∏
j=1

(
ϑαj

) 1−wj
n−1 , 1−

k

∏
j=1

(
1− ϑ∗αj

) 1−wj
n−1

⎞⎟⎟⎟⎟⎟⎠ ; if k = n

Proof. Similar to the proof of Theorem 2.

Theorem 9. The operator STIT2IFHM is a special case of the WSTIT2IFHM operator.

Proof. Assume that w =

(
1
n , 1

n , · · · , 1
n

)T

, then by Theorem 5, we have

1. if 1 ≤ k < n, we have
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WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<

...<ik≤n

(
1− k

n

)( k
∏
j=1

ζαij

) 1
k

(n−1
k )

,

∑
1≤i1<

...<ik≤n

(
1− k

m

)( k
∏
j=1

�αij

) 1
k

(n−1
k )

,

⎛⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
⎞⎠(1− k

m )
⎞⎟⎟⎠

1
(
n−1

k )

, 1−

⎛⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠(1− k

m )
⎞⎟⎟⎠

1
(
n−1

k )

,

1−

⎛⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠(1− k

m )
⎞⎟⎟⎠

1
(
n−1

k )

,

⎛⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
⎞⎠(1− k

m )
⎞⎟⎟⎠

1
(
n−1

k )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<
···<ik≤n

(
1− k

n

)( k
∏
j=1

ζαij

) 1
k

(n
k)

n−k
n

,

∑
1≤i1<
···<ik≤n

(
1− k

n

)( k
∏
j=1

�αij

) 1
k

(n
k)

n−k
n

,

⎛⎜⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
⎞⎠(1− k

n )
⎞⎟⎟⎠

1
(nk)

n−k
n

, 1−

⎛⎜⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠(1− k

n )
⎞⎟⎟⎠

1
(nk)

n−k
n

,

1−

⎛⎜⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠(1− k

n )
⎞⎟⎟⎠

1
(nk)

n−k
n

,

⎛⎜⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
⎞⎠1− k

n

⎞⎟⎟⎠
1

(nk)
n−k

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤i1<
···<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<
···<ik≤n

(
k

∏
j=1

�αij

) 1
k

(n
k)

,

⎛⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

1−

⎛⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

, 1−

⎛⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

ϑαij

) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

,

⎛⎜⎝ ∏
1≤i1<
···<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
⎞⎠
⎞⎟⎠

1
(nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= STIT2IFHM(k)(α1, α2, · · · , αn)

2. If k = n, we have

WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=

⎛⎜⎜⎜⎝
k

∏
j=1

ζ
1− 1

n
n−1

αj ,
k

∏
j=1

�
1− 1

n
n−1

αj , 1−
k

∏
j=1

(
1− ϕαj

) 1− 1
n

n−1 ,

k

∏
j=1

(
ϕ∗αj

) 1− 1
n

n−1 ,
k

∏
j=1

(
ϑαj

) 1− 1
n

n−1 , 1−
k

∏
j=1

(
1− ϑ∗αj

) 1− 1
n

n−1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

k

∏
j=1

ζ
1
n
αj ,

k

∏
j=1

�
1
n
αj , 1−

k

∏
j=1

(1− ϕαj)
1
n ,

k

∏
j=1

(ϕ∗αj
)

1
n ,

k

∏
j=1

(ϑαj)
1
n , 1−

k

∏
j=1

(1− ϑ∗αj
)

1
n

⎞⎟⎟⎟⎟⎟⎟⎠
= STIT2IFHM(k)(α1, α2, · · · , αn)
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5. An Approach to MCDM Based on the Proposed WSTIT2IFHM Operator

In this section, an MCDM approach is developed under the triangular IT2IF (TIT2IF) environment.
The description of the problem, as well as the procedure steps, are explained as below.

Assume an MCDM problem which consists of ‘n’ different alternatives A1, A2, . . . , An and a set
of ‘m’ attributes C1, C2, . . . , Cm whose weight vector is w = (w1, w2, · · · , wm)T , satisfying wj > 0 and
∑m

j=1 wj = 1. An expert has evaluated these given alternatives and rate them under TIT2IF environment
denoted by lpj(p = 1, 2, . . . , n; j = 1, 2, . . . , m) where lpj represent the linguistic information about
the alternatives. Furthermore, the importance of the attributes plays a dominant role during
the decision-making process. During handling the MCDM problems, if the sum of the relative
coefficient w.r.t. each criterion is small, it relates that such criteria demonstrate a major impact on
the overall values of the alternative. Similarly, if the relative coefficient sum is large then it shows such
criterion play a less significant role. Hence, the relative coefficient of the alternative under the certain
criteria is inversely proportional to the corresponding weights of criteria. Therefore, the weight of
the criteria is determined by using the Spearman method [56] which main steps are summarized
in Algorithm 1.

Algorithm 1 Weight determination using Spearman coefficient method.
1: Take two criteria Ck and Cj and then compute their relative coefficients as

Δkj = 1−
6 ∑n

p=1(lpk − lpj)
2

m(m− 1)
(20)

and hence construct the matrix Δm×m = (Δkj)m×m as

Δm×m =

⎛⎜⎜⎜⎝
Δ11 Δ12 · · · Δ1m
Δ21 Δ22 · · · Δ2m

. . . . . .
. . . . . .

Δm1 Δm2 · · · Δmm

⎞⎟⎟⎟⎠ (21)

2: Compute the relative coefficient sum of each criteria by using Equation (22).

Δj =
m

∑
k=1
k 	=j

Δjk (22)

3: Compute the weight of each criteria as

wj =
σj

∑m
j=1 σj

(23)

where σj =
1
Δj

represent the contribution index of the criteria.

By using this weight vector, we summarized the following steps based on the proposed AO to
rank the alternatives under TIT2IFS environment.

429



Symmetry 2018, 10, 401

Step 1: Arrange the information of each alternative in decision matrix L as

L =

C1 C2 . . . Cn⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

A1 l11 l12 . . . l1n
A2 l21 l22 . . . l2n
...

...
...

. . .
...

Am lm1 lm2 . . . lmn

(24)

where lpj =
(

ζ pj, �pj, ϕpj, ϕ∗pj, ϑpj, ϑ
∗
pj

)
be the STIT2IFNs provided by an expert.

Step 2: Compute the normalized decision matrix L from L by using the normalized formula

lpj =

⎧⎨⎩
(

ζ pj, �pj, ϕpj, ϕ∗pj, ϑpj, ϑ
∗
pj

)
; for the benefit type criteria(

ζ pj, �pj, ϑpj, ϑ
∗
pj, ϕpj, ϕ∗pj

)
; for the cost type criteria

(25)

Step 3: Compute the weight vector to each criteria by using Algorithm 1.
Step 4: Combine the different values of STIT2IFNs lpj(j = 1, 2, . . . , m) into the single one lp of each

alternative Ap(p = 1, 2, . . . , n) by using WSTIT2IFHM operator as follows:

lp = WSTIT2IFHM(k)
w (lp1, lp2, · · · , lpn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤p1<

...<pk≤n

(
1−

k
∑

j=1
wpj

)(
k

∏
j=1

ζpj

) 1
k

(n−1
k )

,

∑
1≤p1<

...<pk≤n

(
1−

k
∑

j=1
wpj

)(
k

∏
j=1

�pj

) 1
k

(n−1
k )

,

⎛⎜⎜⎜⎝ ∏
1≤p1<

...<pk≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕpj

)) 1
k
⎞⎠
(

1−
k
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1

(
n−1

k )

, 1−

⎛⎜⎜⎜⎝ ∏
1≤p1<

...<pk≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗pj

) 1
k
⎞⎠
(

1−
k
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1

(
n−1

k )

,

1−

⎛⎜⎜⎜⎝ ∏
1≤p1<

...<pk≤n

⎛⎝1−
(

k

∏
j=1

ϑpj

) 1
k
⎞⎠
(

1−
k
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1

(
n−1

k )

,

⎛⎜⎜⎜⎝ ∏
1≤p1<

...<pk≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϑ∗pj

)) 1
k
⎞⎠
(

1−
k
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1

(
n−1

k )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 5: Compute the score value of the lp by using Equation (10).
Step 6: Rank all the alternatives by using an order relation defined in Definition 11 and hence select

the most feasible alternative(s).

6. Illustrative Example

The above mentioned approach has been illustrate with a numerical example which is stated
as below.

6.1. A Case Study

Jharkhand is the eastern state of the India, which has the 40 percent mineral resources of
the country and second leading state of the mineral wealth after Chhattisgarh state. It is also known
for its vast forest resources. Jamshedpur, Bokaro and Dhanbad cities of the Jharkhand are famous for
industries in all over the world. After that, it is the widespread poverty state of the India because
it is the primarily a rural state as 76 percent of the population live in the villages which depend on
the agriculture and wages. Only 30 percent villages are connected by roads while only 55 percent
villages have accessed to electricity and other facilities. But in the today’s life, everyone is changing
fast to himself for a better life, therefore, everyone moves to the urban cities for a better job. To stop
this emigration, Jharkhand government wants to set up the industries based on the agriculture in
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the rural areas. For this, the government has been organized “MOMENTUM JHARKHAND” global
investor submit 2017 in Ranchi to invite the companies for investment in the rural areas. Government
announced the various facilities for setup the five food processing plants in the rural areas and
consider the six attributes required for company selection to setup them, namely, project cost (G1),
completion time (G2), technical capability (G3), financial status (G4), company background (G5),
reference from previous project (G6) and assign the weights of relative importance of each attributes.
The six companies taken as in the form of the alternatives, namely, Surya Food and Agro Pvt. Ltd. (A1),
Mother Dairy Fruit and Vegetable Pvt. Ltd. (A2), Parle Products Ltd. (A3), Heritage Food Ltd. (A4),
Verka Pvt. Ltd. (A5) and Reliance Pvt. Ltd. (A6) interested for these projects. Then the main object
of the government is to choose the best company among them for the task. In order to find the best
feasible alternative(s) for the required task, the authority called an expert to evaluate these alternatives
and rate their preferences in terms of linguistic terms (LTs). The standardized LTs such as “Very High”
(VH), “High”(H), “Medium”(M), “Medium Low”(ML), “Low”(L), “Very Low”(VL) are defined in
terms of STIT2IFNs given in Table 1. Furthermore, the complementary relation corresponding to LTs is
presented in Table 2.

Table 1. Linguistic grade and coressponding values.

LTs Triangular IT2IFNs

VL (0.20,0.10,0.60,0.65,0.35,0.30)
L (0.30,0.10,0.65,0.70,0.30,0.25)

ML (0.40,0.20,0.70,0.75,0.20,0.18)
M (0.50,0.20,0.75,0.80,0.16,0.15)

MH (0.60,0.30,0.80,0.85,0.13,0.12)
H (0.70,0.30,0.85,0.90,0.10,0.08)

VH (0.80,0.40,0.90,0.95,0.07,0.03)

Table 2. Linguistic grades and compliments.

LT VL L ML M MH H VH

Complemented LT VH H MH M ML L VL

The above mentioned steps are executed to locate the best alternative(s).

Step 1: An expert has evaluated each alternative and present their rating values in terms of LTs which
are summarized as

L =

C1 C2 C3 C4 C5 C6 C7⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

A1 VH H M MH H VH H
A2 M ML H VH H VH VH
A3 H VH VH M MH L VL
A4 MH VL MH H VL MH H
A5 VH H VL H M VL L
A6 ML VL VH M VL L H

(26)
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Step 2: As the criteria C1 and C2 are the cost type, so we normalize their rating values by using
Table 2 and Equation (25), we get

L =

C1 C2 C3 C4 C5 C6 C7⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

A1 VL L M MH H VH H
A2 M MH H VH H VH VH
A3 L VL VH M MH L VL
A4 ML VH MH H VL MH H
A5 VL L VL H M VL L
A6 MH VH VH M VL L H

(27)

Step 3: Apply the Algorithm 1 to compute the weight vector to each criteria. For it, we follows
the steps of the algorithm and summarized as below

(a) By using Equation (20), construct the relative coefficient matrix Δ for each criteria as

Δ =

C1 C2 C3 C4 C5 C6 C7⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C1 1 0.9666 0.9344 0.9094 0.9044 0.9174 0.9344
C2 0.9666 1 0.9344 0.9311 0.8444 0.9144 0.9694
C3 0.9344 0.9344 1 0.9344 0.9014 0.9144 0.9374
C4 0.9094 0.9314 0.9344 1 0.9414 0.9464 0.9574
C5 0.9044 0.8444 0.9014 0.9414 1 0.9504 0.9004
C6 0.9174 0.9144 0.9144 0.9464 0.9504 1 0.9714
C7 0.9344 0.9694 0.9374 0.9574 0.9004 0.9714 1

(b) The relative coefficient sum of each criteria is computed by using Equation (22) and get

Δ1 = 5.564, Δ2 = 5.558, Δ3 = 5.554, Δ4 = 5.618,

Δ5 = 5.440, Δ6 = 5.612, Δ7 = 5.668.

(c) By using Equation (23), the weight vector of each criteria is obtained as

w1 = 0.1431, w2 = 0.1432, w3 = 0.1433, w4 = 0.1417,

w5 = 0.1463, w6 = 0.1419, w7 = 0.1405.

Step 4: Aggregate all the values by using WSTIT2IFHM operator into a collective one lp(p =

1, 2, . . . , 6). Here, without loss of generality, we take k = 2 and the obtained results are

l1 = WSTIT2IFHM(2)
w (l11, l12, · · · , l17)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
1≤p1<p2≤7

(
1−

2
∑

j=1
w1j

)(
2

∏
j=1

ζ1j

) 1
2

(6
2)

,

∑
1≤p1<p2≤7

(
1−

2
∑

j=1
wpj

)(
2

∏
j=1

�pj

) 1
2

(6
2)

,

⎛⎜⎜⎜⎝ ∏
1≤p1<p2≤7

⎛⎝1−
(

2

∏
j=1

(
1− ϕpj

)) 1
2
⎞⎠
(

1−
2
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1
(62)

, 1−

⎛⎜⎜⎜⎝ ∏
1≤p1<p2≤7

⎛⎝1−
(

2

∏
j=1

ϕ∗pj

) 1
2
⎞⎠
(

1−
2
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1
(62)

,

1−

⎛⎜⎜⎜⎝ ∏
1≤p1<p2≤7

⎛⎝1−
(

2

∏
j=1

ϑpj

) 1
2
⎞⎠
(

1−
2
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1
(62)

,

⎛⎜⎜⎜⎝ ∏
1≤p1<p2≤7

⎛⎝1−
(

2

∏
j=1

(
1− ϑ∗pj

)) 1
2
⎞⎠
(

1−
2
∑

j=1
wpj

)⎞⎟⎟⎟⎠
1
(62)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (0.5154, 0.2276, 0.7820, 0.8314, 0.1596, 0.1339)
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Similarly, we have

l2 = (0.6950, 0.3239, 0.8546, 0.9053, 0.0974, 0.0687);

l3 = (0.3846, 0.1681, 0.7166, 0.7633, 0.2243, 0.1927);

l4 = (0.5481, 0.2612, 0.7952, 0.8449, 0.1436, 0.1210);

l5 = (0.3201, 0.1342, 0.6769, 0.7244, 0.2642, 0.2292);

l6 = (0.5272, 0.2390, 0.7914, 0.8414, 0.1536, 0.1232)

Step 5: The score values of lp(p = 1, 2, . . . , 6) are computed by Equation (10) and get

s(l1) = (0.3404, 0.0375); s(l2) = (0.5550, 0.0396); s(l3) = (0.2046, 0.0392)

s(l4) = (0.3770, 0.0362); s(l5) = (0.1455, 0.0412); s(l6) = (0.3579, 0.0402)

Step 6: Since sx(l2) > sx(l4) > sx(l6) > sx(l1) > sx(l3) > sx(l5) and thus by Definition 11, we get
the ranking order of the alternatives as A2 � A4 � A6 � A1 � A3 � A5. Here “�” means
“preferred to”. Therefore, A2 is the best alternative.

6.2. Influence of k on Alternatives

Keeping in mind the end goal to investigate the impact of the parameter k on to the final
positioning order of the alternatives, we use an alternate estimation of k in our test. Here n is 7
in our case, so we shift k from 1 to 7 and their outcomes relating to the proposed technique have
been outlined in Table 3. From this table, it is seen that with the expansion of the interaction
of the multi-input options, the general score estimations of it diminishes which recommend that
the proposed operator reflect the risk preferences to the decision makers. This examination will
propose the distinctive decisions to the analyst as indicated by his/her decision. For example, in
the event that he will cover the risk parameters during the aggregation then they will allocate a
little incentive to the parameter k with the goal that score esteems increments while, if the analyst
is pessimistic in nature towards the choice then the bigger estimation of k can be allocated during
the procedure.

Table 3. Effect of k on to ranking of alternatives.

Value of k Score Values (sx, sy) of the Alternatives
Ranking Order

A1 A2 A3 A4 A5 A6

1 (0.3615, 0.0762) (0.5627, 0.0523) (0.2268, 0.0872) (0.3953, 0.0677) (0.1577, 0.0702) (0.3836, 0.0856) A2 � A4 � A6 � A1 � A3 � A5
2 (0.3404, 0.0375) (0.5550, 0.0396) (0.2046, 0.0392) (0.3770, 0.0362) (0.1455, 0.0412) (0.3579, 0.0402) A2 � A4 � A6 � A1 � A3 � A5
3 (0.3324, 0.0241) (0.5526, 0.0840) (0.1997, 0.0250) (0.3702, 0.0268) (0.1427, 0.0321) (0.3484, 0.0240) A2 � A4 � A6 � A1 � A3 � A5
4 (0.3285, 0.0177) (0.5507, 0.0329) (0.1976, 0.0181) (0.3656, 0.0203) (0.1415, 0.0275) (0.3437, 0.0161) A2 � A4 � A6 � A1 � A3 � A5
5 (0.3260, 0.0138) (0.5498, 0.0314) (0.1964, 0.0141) (0.3631, 0.0170) (0.1409, 0.0247) (0.3408, 0.0115) A2 � A4 � A6 � A1 � A3 � A5
6 (0.3244, 0.0113) (0.5492, 0.0304) (0.1957, 0.0114) (0.3613, 0.0148) (0.1405, 0.0228) (0.3389, 0.0086) A2 � A4 � A6 � A1 � A3 � A5
7 (0.3232, 0.0095) (0.5488, 0.0298) (0.1952, 0.0094) (0.3601, 0.0131) (0.1402, 0.0215) (0.3376, 0.0064) A2 � A4 � A6 � A1 � A3 � A5

Furthermore, in some other existing Bonferroni mean (BM) and generalized Bonferroni mean
(GBM) operators, the information takes only two or three arguments during an aggregation. Also, in
BM operator there is need of two additional parameters (p, q) while the three parameters (p, q, r) for
GBM from an infinite rational set. Thus, the computational complexity is too high in such cases. On the
other hand, in the proposed operator, there is only one parameter k from a finite integer set and hence
the computational complexity is low and easier to understand. Finally, the several operators such as
averaging, BM and geometric for the T2IFNs can be deduced from the proposed ones by setting k = 1,
k = 2 and k = n respectively. Subsequently, our proposed operator and the strategy are more summed
up and adaptable to tackle the decision-making problems.
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6.3. Comparative Study

In this section, we perform some comparative analysis of the proposed method result with some
of the existing approaches results in [36,46–48] under the uncertain environment. The results computed
from them on to the considered problem are summarized as below:

1. In [36], authors proposed the weighted geometric Bonferroni mean operator under the type-2
fuzzy environment, denoted by IT2FWGBM, which is defined as

dk = IT2FWGBMp,q
w (A1, A2, . . . , Am)

=
1

p + q

⎛⎜⎝ m⊗
i,j=1
i 	=j

(
p(Ai)

wi ⊕ q(Aj)
wj
)⎞⎟⎠

1/m(m−1)

(28)

By applying Equation (28) on to the considered data, we get the aggregated value corresponding
to each alternative as

d1 = IT2FWGBM1,1
w (A11, A12, A13, A14, A15, A16, A17)

= (0.8321, 0.9050, 0.9050, 0.9534, 0.6065)

d2 = IT2FWGBM1,1
w (A21, A22, A23, A24, A25, A26, A27)

= (0.8671, 0.9486, 0.9486, 1.0000, 0.7500)

d3 = IT2FWGBM1,1
w (A31, A32, A33, A34, A35, A36, A37)

= (0.7980, 0.8676, 0.8676, 0.9137, 0.6015)

d4 = IT2FWGBM1,1
w (A41, A42, A43, A44, A45, A46, A47)

= (0.8317, 0.9131, 0.9131, 0.9656, 0.6080)

d5 = IT2FWGBM1,1
w (A51, A52, A53, A54, A55, A56, A57)

= (0.7802, 0.8456, 0.8456, 0.8895, 0.6085)

d6 = IT2FWGBM1,1
w (A61, A62, A63, A64, A65, A66, A67)

= (0.8318, 0.9073, 0.9073, 0.9569, 0.6000)

Therefore, the score values of these aggregated numbers are s(d1) = 0.5405, s(d2) = 0.7079,
s(d3) = 0.5182, s(l4) = 0.5450, s(l5) = 0.5052, and s(l6) = 0.5418 and hence the final ranking of
all alternatives Ak(k = 1, 2, . . . , 6) is found as

A2 � A4 � A6 � A1 � A3 � A5

2. If we use the existing WSTIT2FHM operator as proposed by Qin [46] under
the T2FS environment
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lp = WSTIT2FHM(k)(A1, A2, . . . , An) (29)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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k
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) 1
k
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k )

,

∑
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1−

k
∑

j=1
wij

)(
k

∏
j=1

�αij

) 1
k

(n−1
k )

,

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
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,

1−

⎛⎜⎜⎜⎜⎝ ∏
1≤i1<

...<ik≤n

⎛⎝1−
(

k

∏
j=1

ϕ∗αij

) 1
k
⎞⎠
(

1−
k
∑

j=1
wij

)⎞⎟⎟⎟⎟⎠
1

(
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k )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then, the aggregated values corresponding to each alternative (by taking k = 2) are obtained as

l1 = (0.5154, 0.2276, 0.7820, 0.8314); l2 = (0.6950, 0.3239, 0.8546, 0.9054)

l3 = (0.3846, 0.1681, 0.7166, 0.7633); l4 = (0.5481, 0.2612, 0.7951, 0.8449)

l5 = (0.3201, 0.1342, 0.6769, 0.7244); l6 = (0.5272, 0.2390, 0.7914, 0.8414)

Thus, the score values are

s(l1) = (0.2077, 0.8067); s(l2) = (0.3055, 0.8799); s(l3) = (0.1422, 0.7400)

s(l4) = (0.2245, 0.8200); s(l5) = (0.1120, 0.7006); s(l6) = (0.2150, 0.8164)

and hence ordering is

A2 � A4 � A6 � A1 � A3 � A5

From the above examinations, it is revealed that the ranking order of the alternatives stays same
yet the computational procedure is altogether unique. For instance, in [36,46] authors have introduced
AOs under TIT2FNs by considering just the degree of membership during an examination. But it is
quite recognizable that the level of non-membership likewise assumes a predominant part during
the aggregation process. Thus, the outcomes processes by these methodologies [36,46] might be
unreasonable under some specific constraints where the degree of non-membership pays a more
significance than the degree of agreement.

However, apart from these, we give some characteristics comparison of our proposed method
and the aforementioned methods, which are listed in Table 4.

Table 4. The characteristic comparisons of different methods.

Methods
Whether Captures Whether Captures Whether It Makes the Whether Criteria Weights Whether Describe Whether Flexible to

Interrelationship of Two Interrelationship of Multiple Method Flexible by Are Depends on the Information Using Express a Wider
Aggregated Arguments Aggregated Arguments the Parameter Vector Collective Information Linguistic Features Range of Information

Gong et al. [36] � × × × × ×
Liu and Wang [47] × × × × × ×
Pedrycz and Song [48] × × × � � ×
Qin [46] � � � × � ×
The proposed method � � � � � �
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In [47], authors presented an analytical method for solving the problems by using the fuzzy
weighted average. In [36], the authors have presented the BM by considering simultaneously
the values of UMF and LMF to aggregate IT2FS information. On the other hand, the present study
is based on the HM operator which is more adaptable and robustness in process of information
fusion than others such as BM, GBM. The outstanding characteristic of the HM operator is to catch
the inter-relationship between more than two input arguments with a parameter k from the finite integer
set. Furthermore, in [46], the author developed HM operator by taking into account the membership
degree only but in practical problems, it is sometimes not possible for DM to give their preferences
in terms of acceptance degree only. Therefore, the non-membership degree is required for handling
the problems in which rejection degree is not equal to one minus acceptance degree. Also by comparing
with the AHP-based method [48], the proposed method does not require any software package
to compute the results while the technique proposed in [48] requires it. Thus, the computation
complexity of the proposed technique is comparatively easy. Furthermore, the AHP-based technique
is usually dependent on various parameters and thus the final ranking may some time suffers from
inconsistency, in the case of inappropriate parameter selection. On the other hand, the proposed
method draws up a more authentic ranking result as it can terminate the difference, draws up for
the flaws of already existing aggregation methods that do not capture experts utility or decision
preference and achieves more stationary and commendable interrelationships result with less
information loss. The proposed method takes into consideration the uniformity of the alternatives as
well as highlights the significance and interactions in association with any solutions of alternatives.
On the other hand, the AHP-based technique is good at calculating only the optimal ranking values of
the alternatives beyond inter-relationships.

7. Conclusions

In this paper, an endeavor has been made to exhibit the some new AOs to accommodate the IT2IF
conditions. IT2IFS is one of the augmentations of the conventional FS, IFS by considering grades
of the primary membership functions also. On the other hand, in practical application problems,
the criteria interrelationship phenomenon occurs frequently. To address it, Hamy means (HM) operator
is a standout among the most critical operators that catches the inter-relationship together with
the multi-input arguments. Furthermore, to diminish the computational complexity of the IT2IFS,
we introduce symmetric IT2IFS and characterize some operation laws. Then, keeping the advantages
of STIT2IFS and HM operators, we exhibit the symmetric TIT2 intuitionistic fuzzy HM (STIT2IFHM)
operator and weighted symmetric TIT2 intuitionistic fuzzy HM (WSTIT2IFHM) operator under
a provision of type-2 intuitionistic uncertain situation. Various beneficial characteristics of these
operators have endorsed. Furthermore, in light of these operators, a decision-making approach is
introduced to solve the MCDM problems. The presented approach has been tried and clarified with
a numerical illustration and registered that it can efficiently deal with the available information by
eliminating more amount of fuzziness as compared to the existing approaches. The major advantages
of the proposed operator with respect to the existing ones are that it need only one parameter k from a
finite integer set while other needs more than one from an infinite rational set such as BM and GBM
etc., and hence the computational complexity is low and easier to understand. Additionally, a portion
of the existing studies can be effectively concluded from the proposed operators by setting k = 1, k = 2
and k = n. Thus, it expresses a better technique for taking care of the decision-making problems with
additional benefits.

In future research, we shall extend the present study to some more generalized environment and
applied it to many other fields such as graph theory, transportation evaluation, resource management
using different uncertain environments [57–62].
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Abstract: Decision making is the key component of people’s daily life, from choosing a mobile phone
to engaging in a war. To model the real world more accurately, probabilistic linguistic term sets
(PLTSs) were proposed to manage a situation in which several possible linguistic terms along their
corresponding probabilities are considered at the same time. Previously, in linguistic term sets,
the probabilities of all linguistic term sets are considered to be equal which is unrealistic. In the
process of decision making, due to the vagueness and complexity of real life, an expert usually
hesitates and unable to express its opinion in a single term, thus making it difficult to reach a final
agreement. To handle real life scenarios of a more complex nature, only membership linguistic
decision making is unfruitful; thus, some mechanism is needed to express non-membership linguistic
term set to deal with imprecise and uncertain information in more efficient manner. In this article,
a novel notion called probabilistic hesitant intuitionistic linguistic term set (PHILTS) is designed,
which is composed of membership PLTSs and non-membership PLTSs describing the opinions of
decision makers (DMs). In the theme of PHILTS, the probabilities of membership linguistic terms
and non-membership linguistic terms are considered to be independent. Then, basic operations,
some governing operational laws, the aggregation operators, normalization process and comparison
method are studied for PHILTSs. Thereafter, two practical decision making models: aggregation based
model and the extended TOPSIS model for PHILTS are designed to classify the alternatives from
the best to worst, as an application of PHILTS to multi-attribute group decision making. In the end,
a practical problem of real life about the selection of the best alternative is solved to illustrate the
applicability and effectiveness of our proposed set and models.

Keywords: hesitant intuitionistic fuzzy linguistic term set; probabilistic hesitant intuitionistic
linguistic term set; multi-attribute group decision making; aggregation operators; TOPSIS

1. Introduction

The choices we make today determine our future, therefore, to choose the best alternative subject
to certain attributes is an important problem. Multi-attribute group decision making (MAGDM)
has established its importance by providing the optimal solution considering different attributes in
many real life problems. For this purpose, many sets and models have been designed to express and
comprehend the opinions of DMs. The classical set theory is too restrictive to express one’s opinion, as
some real life scenarios are too complicated and the vague data are often involved, therefore the DMs
are unable to form a definite opinion. Fuzzy set theory is proposed as a remedy for such kind of real
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life problems. Fuzzy set approaches are suitable to use when the modelling of human knowledge is
necessary and when human evaluations are required. However, the usual fuzzy set theory is limited
to the modelling in which the diversity of variants occurs at the same time.

To overcome such situation, different extensions of fuzzy set have been proposed to better
model the real world, such as intuitionistic fuzzy set [1], hesitant fuzzy set [2], hesitant probabilistic
fuzzy set [3], hesitant probabilistic multiplicative set [4], and necessary and possible hesitant fuzzy
set [5]. Zadeh [6] suggested the concept of a linguistic variable that is more natural for humans to
express there will in situations where data are imprecise. Thus far, linguistic environment has been
extensively used to cope with the problems of decision making within [7]. Mergió et al. [8] used the
Dempster–Shafer theory of evidence to construct an improved linguistic representation model for
the sake of decision making process. Next, they introduced several linguistic aggregation operators.
Zhu et al. [9] proposed a two-dimensional linguistic lattice implication algebra to determine implicitly
and further the compilation of two-dimensional linguistic information decision in MAGDM dilemmas.
Meng and Tang [10] generalized the 2-tuple linguistic aggregation operators and then used them in
MAGDM dilemmas. Li and Dong [11] gave an introduction to the proportional 2-tuple linguistic
form to make easy the solving of MAGDM dilemmas. Xu [12] introduced a dynamic linguistic
weighted geometric operator to cumulate the linguistic information and then solved the problem of
MAGDM when the judgment in different periods to change the linguistic information. Li [13] applied
the concept of extended linguistic variables to construct an advanced way to cope with MAGDM
dilemmas under linguistic environments. Agell et al. [14] used qualitative thinking approaches to
perform and incorporate linguistic decision information and then applied it to MAGDM dilemmas.

Because of the uncertainty, vagueness and complexity of real world problems, it is troublesome
for experts to grant linguistic judgment using a single linguistic term. Torra [2] managed the situation
where several membership values of a fuzzy set are possible by defining hesitant fuzzy set (HFS).
Experts may hesitate among several possible linguistic terms. For this purpose, Rodriguez et al. [15]
introduced the concept of hesitant fuzzy linguistic term sets (HFLTS) to improve the flexibility
of linguistic information within hesitant situation. Zhu and Li [16] designed hesitant fuzzy
linguistic aggregation operators based on the Hamacher t-norm and t-conorm. Cui and Ye [17]
proposed multiple-attribute decision-making method using similarity measures of hesitant linguistic
neutrosophic numbers regarding least common multiple cardinality. Liu et al. [18] defined new kind
of similarity and distance measures based on a linguistic scale function. However, in some cases,
the probabilities of these possible terms are not equal. Given this reality, Peng et al. [19] proposed the
more generalized concept, called probabilistic linguistic term sets (PLTSs). PLTSs allow DMs to state
more than one linguistic term, as an assessment for linguistic variable. This increases the flexibility
and the fruitfulness of the expression of linguistic information and it is more reasonable for DMs to
state their preference in terms of PLTSs because the PLTSs can reflect different probabilities for each
possible assessment of a given object. Therefore, the research on the PLTSs is necessary. Thus, they
used PLTSs in multi-attribute group decision making problem and construct an extended TOPSIS
method as well as an aggregation-based method for MAGDM. Recently, in 2017, Lin et al. [20] extended
the PLTSs to probabilistic uncertain linguistic term set, which is designed as some possible uncertain
linguistic terms coupled with the corresponding probabilities, and developed an extended approach
for preference to rank the alternatives.

Atanassov [1,21] presented the concept of the intuitionistic fuzzy set (IFS) which has three
main parts, membership function, non-membership function and hesitancy function, and is better
suited to handling uncertainty than the usual fuzzy set. Many researchers have been applying
IFS for multi-attribute decision making under various different fuzzy environments. Up to now,
the intuitionistic fuzzy set has been applied extensively to decision making problems [22–27].
Beg and Rashid [28] generalized the concept of HFLTS by hesitant intuitionistic fuzzy linguistic term
set (HIFLTS) which is characterized by a membership and non-membership function that is more
applicable for dealing with uncertainty than the HFLTS. HIFLTS collects possible membership and
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non-membership linguistic values provided by the DMs. This approach is useful to model more
complex real life scenarios.

In this article, we introduce the concept of PHILTS. The main idea is to facilitate DMs to provide
their opinions about membership and non-membership linguistic terms more freely to cope with the
vagueness and uncertainties of real life. To make meaningful decision making, the basic framework of
PHILTS is developed. In this regard, normalization process for the purpose to equalize the length of
PHILTSs, basic operations and their governing laws are presented. Furthermore, to deal with different
scenarios, range of aggregation operators, i.e., probabilistic hesitant intuitionistic linguistic averaging
operator, probabilistic hesitant intuitionistic linguistic weighted averaging operator, probabilistic
hesitant intuitionistic linguistic geometric operator and probabilistic hesitant intuitionistic linguistic
weighted geometric operator are proposed. The DM can choose the aggregation operator according to
his preference. Lastly, for practical use of PHILTS in decision making, an extended TOPSIS method
is derived, in which the DMs provide their opinions in PHILTSs which are further aggregated and
processed according to the proposed mechanism of extended TOPSIS to find the best alternative.

This paper is organized as follows. In Section 2, we review some basic knowledge needed
to understand our proposal. In Section 3, the concept of PHILTSs is firstly proposed and then
some concepts concerning PHILTS, i.e., normalization process, deviation degree, score function,
operations and comparison between probabilistic hesitant intuitionistic linguistic term elements
(PHILTEs), are also discussed. In Section 4, aggregation operators, deviation degree between two
PHILTEs and weight vector are derived. In Section 5, we propose an extended TOPSIS method and
aggregation based method designed for MAGDM with probabilistic hesitant intuitionistic linguistic
information. An example is provided in Section 6 to illustrate the usefulness and practicality of our
methodology by ranking of alternatives. Section 7 is dedicated to highlighting the advantages of the
proposed set and comparing proposed models with existing theory. Finally, some concluding remarks
are given in Section 8.

2. Preliminaries

In this section, we give some concepts and operations related to HFLTSs, HIFLTSs and PLTSs that
will be used in coming sections.

2.1. Hesitant Fuzzy Linguistic Term Set

The DMs may face such a problem where they hesitate with certain possible values. For this
purpose, Rodriguez et al. [15] introduced the following concept of hesitant fuzzy linguistic term
set (HFLTS).

Definition 1 ([15]). Let S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set; then, HFLTS, HS, is a finite and
ordered subset of the consecutive linguistic terms of S.

Example 1. Let S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = medium, s4 = good, s5 = very good ,

s6 = extremely good

}
be a linguistic term set. Then, two different HFLTSs may be defined as:
HS (x) = {s1 = very poor, s2 = poor, s3 = medium, s4 = good} and HS (y) = {s3 = medium, s4 = good, s5 = very good}.

Definition 2 ([15]). Let S = {sα; α = 0, 1, 2, . . . , g} be an ordered finite set of linguistic terms and E be an
ordered finite subset of the consecutive linguistic terms of S. Then, the operators “max” and “min” on E can be
defined as follows:

(i) max (E) = max (sl) = sm ; sl ∈ E and sl ≤ sm ∀l
(ii) min (E) = min (sl) = sn ; sl ∈ E and sl ≥ sn ∀l.
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2.2. Hesitant Intuitionistic Fuzzy Linguistic Term Set

In 2014, Beg and Rashid [28] introduced the concept of hesitant intuitionistic fuzzy linguistic term
set (HIFLTS). This concept is actually based on HFLTS and intuitionistic fuzzy set.

Definition 3 ([28]). Let X be a universe of discourse, and S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set,
then HIFLTS on X are two functions h and h

′
that when applied to an element of X return finite and ordered

subsets of consecutive linguistic terms of S, this can be presented mathematically as:

A =
{〈

x, h (x) , h
′
(x)
〉
|x ∈ X

}
,

where h (x) and h
′
(x) denote the possible membership and non-membership degree in terms of consecutive

linguistic terms of the element x ∈ X to the set A such that the following conditions are satisfied:

(i) max (h (x)) + min
(

h
′
(x)
)
≤ sg;

(ii) min (h (x)) + max
(

h
′
(x)
)
≤ sg.

2.3. Probabilistic Linguistic Term Sets

Recently, in 2016, Pang et al. [19] introduced the concept of PLTSs by attaching probabilities with
each linguistic term, which is basically the generalization of HFLTS, and thus they opened a new
dimension of research in decision theory.

Definition 4 ([19]). Let S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set, then a PLTS can be presented
as follows:

L (p) =

{
L(i)
(

p(i)
)
| L(i) ∈ S, p(i) ≥ 0 i = 1, 2, . . . , #L (p) ,

#L(p)

∑
i=1

p(i) ≤ 1

}
. (1)

where L(i)
(

p(i)
)

is the ith linguistic term L(i) associated with the probabilityp(i), and #L (p) denotes the
number of linguistic terms in L (p) .

Definition 5 ([19]). Let L (p) =
{

L(i)
(

p(i)
)

; i = 1, 2, . . . , #L (p)
}

, r(i) be the lower index of linguistic

term L(i), L (p) is called an ordered PLTS, if all the elements L(i)
(

p(i)
)

in L (p) are ranked according to the

values of r(i) × p(i) in descending order.

However, in a PLTS, it is possible for two or more linguistic terms with equal values of r(i) × p(i).
Taking a PLTS L (p) = {s1 (0.4) , s2 (0.2) , s3 (0.4) }, here r(1) × p(1) = r(2) × p(2) = 0.4

According to the above rule, these two values cannot be arranged. To handle such type of problem,
Zhang et al. [29] defined the following ranking rule.

Definition 6 ([29]). Let L (P) =
{

L(i)
(

p(i)
)

; i = 1, 2, . . . , #L (p)
}

, r(i) be the lower index of linguistic

term L(i).

(1) If the values of r(i)
(

p(i)
)

are different for all elements in PLTS, then arrange all the elements according to

the values of r(i)
(

p(i)
)

directly.

(2) If all the values of r(i)
(

p(i)
)

become equal for two or more elements, then

(a) When the lower indices r(i) (i = 1, 2, . . . , #L (p)) are unequal, arrange r(i)
(

p(i)
)
(i = 1, 2, . . . , #L (p))

according to the values of r(i) (i = 1, 2, . . . , #L (p)) in descending order.
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(b) When the lower indices r(i) (i = 1, 2, . . . , #L (p)) are incomparable, arrange
r(i)
(

p(i)
)
(i = 1, 2, . . . , #L (p)) according to the values of p(i) (i = 1, 2, . . . , #L (p)) in

descending order.

Definition 7 ([19]). Let L (p) be a PLTS such that
#L(p)

∑
i=1

p(i) < 1, then the associated PLTS is denoted and

defined as
L	 (p) =

{
L(i)
(

p	
(i)
)

; i = 1, 2, . . . , #L (p)
}

(2)

where p	
(i)

= p(i)
#L(p)

∑
i=1

p(i)
, ∀i = 1, 2, . . . , #L (p) .

Definition 8 ([19]). Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) ={

L(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
be two PLTSs, where #L1 (p) and #L2 (p) denote the number of

linguistic terms in L1 (p) and L2 (p), respectively. If #L1 (p) > #L2 (p), then #L1 (p)− #L2 (p) linguistic
terms will be added to L2 (p) so that the number of elements in L1 (p) and L2 (p) becomes equal. The added
linguistic terms are the smallest one’s in L2 (p) and the probabilities of all the linguistic terms are zero.

Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) =

{
L(i)

2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
,

then the Normalized PLTSs denoted by L̃1 (p) =

{
L̃(i)

1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L̃2 (p) ={

L̃(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
can be obtained according to the following two steps:

(1) If
#Lk(p)

∑
i=1

p(i)k < 1, then L	
k (p) , k = 1, 2 is calculated according to Definition 7.

(2) If #L1 (p) 	= #L2 (p), then according to Definition 8, add some linguistic terms to the one with the
smaller number of elements.

The deviation degree between PLTSs, which is analogous to the Euclidean distance between
hesitant fuzzy sets [30] can be defined as:

Definition 9 ([19]). Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) ={

L(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
be two PLTSs, where #L1 (p) and #L2 (p) denote the number of

linguistic terms in L1 (p) and L2 (p), respectively, with #L1 (p) = #L2 (p). Then, the deviation degree between
these two PLTSs can be defined as

d (L1 (p) , L2 (p)) =

√√√√ 1
#L1 (p)

L1(p)

∑
i=1

(
p(i)1 r(i)1 − p(i)2 r(i)2

)2
(3)

where r(i)1 and r(i)2 denote the lower indices of linguistic terms L(i)
1 and L(i)

2 , respectively.

For further detail of PLTS, one can see Ref. [19].

3. Probabilistic Hesitant Intuitionistic Linguistic Term Set

Although HIFLTS allow the DM to state his assessments by using several linguistic terms, it cannot
reflect the probabilities of the assessments of DM.

To overcome this issue, in this section, the concept of probabilistic hesitant intuitionistic linguistic
term set (PHILTS) which is based on the concept of HIFLTS and PLTS is proposed. Furthermore, some
basic operations for PHILTS are also designed.
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Definition 10. Let X be a universe of discourse, and S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set, then
a PHILTS on X are two functions l and l

′
that when applied to an element of X return finite and ordered subsets

of the consecutive linguistic terms of S along with their occurrence probabilities, which can be mathematically
expressed as

A (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
x, l (x) (p (x)) =

{
l(i) (x)

(
p(i) (x)

)}
, l
′
(x)
(

p
′
(x)
)
=

{
l
′(j)

(x)
(

p
′(j)

(x)
)}〉

|p(i) (x) ≥ 0, i = 1, 2, . . . , #l (x) (p (x)) ,
#l(x)(p(x))

∑
i=1

pi (x) ≤ 1 &

p
′(j)

(x) ≥ 0, j = 1, 2, . . . , #l
′
(x)
(

p
′
(x)
)

,
#l
′
(x)
(

p
′
(x)
)

∑
j=1

p
′(j)

(x) ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where l (x) (p (x)) and l
′
(x) p

′
(x) are the PLTSs, denoting the membership and non-membership degree of the

element x ∈ X to the set A (p) such that the following two conditions are satisfied:

(i) max (l (x)) + min
(

l
′
(x)
)
≤ sg;

(ii) min (l (x)) + max
(

l
′
(x)
)
≤ sg.

For the sake of simplicity and convenience, we call the pair A (x) (p (x)) =〈
l (x) (p (x)) , l

′
(x)
(

p
′
(x)
)〉

as the intuitionistic probabilistic linguistic term element (PHILTE),

denoted by A (p) =
〈

l (p) , l
′ (

p
′)〉

for short.

Remark 1. Particularly, if the probabilities of all linguistic terms in membership part and non-membership
part become equal, then PHILTE reduces to HIFLTE.

Example 2. Let S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = medium, s4 = good, s5 = very good ,

s6 = extremely good

}
be a linguistic term set. A PHILTS is
A (p) = {〈x1, {s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉 , 〈x2, {s4 (0.33) , s5 (0.5)} , {s1 (0.2) , s2 (0.45)}〉}

One can easily check the conditions of PHILTS for A (p).
To illustrate the PHILTS more straightforwardly, in the following, a practical life example is given

to depict the difference between the PHILTS and HIFLTS:

Example 3. Take the evaluation of a vehicle on the comfortable degree attribute/criteria as an example. Let S be
a linguistic term set used in the above example. An expert provides an HIFLTE 〈{s1, s2, s3} , {s3, s4}〉 on the
comfortable degree due to his/her hesitation for this evaluation. However, he/she is more confident in the linguistic
term s2 for the membership degree set and the linguistic term s4 for the non-membership degree set. The HIFLTS
fails to express his/her confidence. Therefore, we utilize the PHILTS to present his/her evaluations. In this case,
his/her evaluations can be expressed as A (p) = 〈{s1 (0.2) , s2 (0.6) , s3 (0.2)} , {s3 (0.2) , s4 (0.8)}〉.

In the following, the ordered PHILTE is defined to make sure that the operational results among
PHILTEs can be determined easily.

Definition 11. A PHILTE A (p) =
〈

l (p) , l
′ (

p
′)〉

is known to be an ordered PHILTE, if l (p) and l
′ (

p
′)

are ordered PLTSs.

Example 4. Consider a PHILTE A (p) = 〈{s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉 used
in the Example 2. Then, according to Definition 11 the ordered PHILTE is A (p) =

〈{s3 (0.35) , s1 (0.4) , s2 (0.1)} , {s4 (0.4) , s3 (0.3)}〉
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3.1. The Normalization of PHILTEs

Ideally, the sum of the probabilities is one, but in PHILTE if either of the membership probabilities
or non-membership probabilities have sum less than one than this issue is resolved as follows.

Definition 12. Consider a PHILTE A (p) =
〈

l (p) , l
′ (

p
′)〉

, the associated PHILTE A	 (p) =〈
l (p	) , l

′ (
p
′	)〉

is defined, where

l
(

p	
)
=
{

l(i)
(

p	
(i)
)
|i = 1, 2, . . . , #l (p)

}
; p	

(i)
=

p(i)

#l(p)
∑

i=1
p(i)

, ∀i = 1, 2, . . . , #l (p) (5)

and

l
′ (

p
′	)

=

{
l
′(j)
((

p
′	(j)
))
|j = 1, 2, . . . , l

′ (
p
′)}

; p
′	(j)

=
p
′(j)

l′(p′)
∑

j=1
p′(j)

, ∀j = 1, 2, . . . , l
′ (

p
′)

. (6)

Example 5. Consider a PHILTE A (p) = 〈{s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉. Here, we see

that
#l(p)
∑

i=1
p(i) = 0.85 < 1 also

#l
′(

p
′)

∑
j=1

p
′(j)

= 0.7 < 1 so the associated PHILTE A	 (p) =
〈

l (p	) , l
′ (

p
′	)〉

=〈{
s1

(
0.4

0.85

)
, s2

(
0.1

0.85

)
, s3
( 0.35

0.85
)}

,
{

s3
( 0.3

0.7
)

, s4

(
0.4
0.7

)}〉
.

In decision making process, experts usually face such problems in which the length of PHILTEs is
different. Let A (p) =

〈
l (p) , l

′ (
p
′)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be two PHILTEs of different

lengths. Then, the following three cases are possible (I) #l (p) 	= #l1 (p1) , (I I) #l
′ (

p
′) 	= #l

′
1

(
p
′
1

)
,

(I I I) #l (p) 	= #l1 (p1) and #l
′ (

p
′) 	= #l

′
1

(
p
′
1

)
. In such situation, they need to equalize their lengths by

increasing the number of probabilistic linguistic terms in that PLTS in which the number of probabilistic
linguistic terms are relatively small because PHILTEs of different lengths create great problems in
operations, aggregation operators and finding the deviation degree between two PHILTEs.

Definition 13. Given any two PHILTEs A (p) =
〈

l (p) , l
′ (

p
′)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
if

#l (p) > #l1 (p1) then #l (p)− #l1 (p1) linguistic terms should be added to l1 (p1) to make their cardinalities
identical. The added linguistic terms are the smallest one(s) in l1 (p1), and the probabilities of all the linguistic
terms are zero.

The remaining cases are analogous to Case (I).
Let A1 (p1) =

〈
l1 (p1) , l

′
1

(
p
′
1

)〉
and A2 (p2) =

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
be two PHILTEs. Then, the

following two simple steps are involved in normalization process.

Step 1: If
#lj(pj)

∑
i=1

p(i)j < 1 or
#l
′
j

(
p
′
j

)
∑

i=1
p
′(i)
j < 1 ; j = 1, 2, then we calculate lj

(
p	j
)

, l
′
j

(
p
′	
j

)
; j = 1, 2

using Equations (5) and (6).
Step 2: If #l1 (p1) 	= #l2 (p2) or #l

′
1

(
p
′
1

)
	= #l

′
2

(
p
′
2

)
, then we add some elements according to

Definition 13 to the one with small number of elements.
The resultant PHILTEs are called the normalized PHILTEs which are denoted as Ã (p) and

Ã1 (p1).
Note, for the convenience of presentation, we denote the normalized PHILTEs by A (p) and

A1 (p1) as well.
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Example 6. Let A (p) = 〈{s2 (0.3) , s3 (0.7)} , {s0 (0.2) , s1 (0.4) , s2 (0.3)}〉 and A1 (p1) =

〈{s3 (0.4) , s4 (0.3) , s5 (0.3)} , {s1 (0.4) , s2 (0.6)}〉 then
Step 1: According to Equation (6) l

′ (
p
′	)

=
{

s0
( 0.2

0.9
)

, s1

(
0.4
0.9

)
, s2
( 0.3

0.9
)}

Step 2: Since #l (p) < #l1 (p1), so we add the linguistic term s2 to l (p) so that the number of linguistic
terms in l (p) and l1 (p1) becomes equal, thus l (p) = {s2 (0.3) , s3 (0.7) , s2 (0)}. In addition, #l

′
1

(
p
′
1

)
<

#l
′ (

p
′)

so we add the linguistic term s1 to l
′
1

(
p
′
1

)
, l
′
1

(
p
′
1

)
= {s1 (0.4) , s2 (0.6) , s1 (0)}. Therefore, after

normalization, we have
A (p) = 〈{s2 (0.3) , s3 (0.7) , s2 (0)} , {s0 (0.2) , s1 (0.4) , s2 (0.3)}〉 and
A1 (p1) = 〈{s3 (0.4) , s4 (0.3) , s5 (0.3)} , {s1 (0.4) , s2 (0.6) , s1 (0)}〉 .

3.2. The Comparison between PHILTEs

In this section, the comparison between two PHILTEs is presented. For this purpose, the score
function and the deviation degree of the PHILTE are defined.

Definition 14. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . , #l (p) , j =

1, 2, . . . , l
′ (

p
′)

be a PHILTE with a linguistic term set S = {sα; α = 0, 1, 2, . . . , g} such that r(i) and r
′(j)

denote, respectively, the lower indices of linguistic terms l(i) and l
′(j)

, then the score of A (p) is denoted and
defined as follows:

E (A (p)) = sγ (7)

where γ =
g + α− β

2
; α =

#l(p)
∑

i=1
r(i)p(i)

#l(p)
∑

i=1
p(i)

and β =

#l
′(

p
′)

∑
j=1

r
′(j)

p
′(j)

#l′(p′)
∑

j=1
p′

(j)

.

It is easy to see that 0 ≤ g+α−β
2 ≤ g which means sγ ∈ S = {sα|α ∈ [0, g]} .

Apparently, the score function represents the averaging linguistic term of PHILTE.
For two PHILTEs A (p) and A1 (p1), if E (A (p)) > E (A1 (p1)) , then A (p) is superior to A1 (p1),

denoted as A (p) > A1 (p1); if E (A (p)) < E (A1 (p1)), then E (A (p)) is inferior to A1 (p1), denoted as
A (p) < A1 (p1); and, if E (A (p)) = E (A1 (p1)), then we cannot distinguish between them. Thus,
in this case, we define another indicator, named as the deviation degree as follows:

Definition 15. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . #l (p) , j =

1, 2, . . . , l
′ (

p
′)

be a PHILTE such that r(i) and r
′(j)

denote, respectively, the lower indices of linguistic terms

l(i) and l
′(j)

, then the deviation degree of A (p) is denoted and defined as follows:

σ (A (p)) =

⎛⎜⎜⎜⎜⎜⎜⎝
#l(p)
∑

i=1

(
p(i)
(

r(i) − γ
))2

#l(p)
∑

i=1
p(i)

+

#l
′(

p
′)

∑
j=1

(
p
′(j)
(

r
′(j)
− γ

))2

#l′(p′)
∑

j=1
p′

(j)

⎞⎟⎟⎟⎟⎟⎟⎠

1
2

(8)

The deviation degree shows the distance from the average value in the PHILTE. The greater value
of σ implies lower consistency while the lesser value of σ indicates higher consistency.

Thus, A (p) and A1 (p1) can be ranked by the following procedure:

448



Symmetry 2018, 10, 392

(1) if E (A (p)) > E (A1 (p1)), then A (p) > A1 (p1) ;
(2) if E (A (p)) = E (A1 (p1)) and

(a) σ (A (p)) > σ (A1 (p1)), then A (p) < A1 (p1);
(b) σ (A (p)) < σ (A1 (p1)), then A (p) > A1 (p1);
(c) σ (A (p)) = σ (A1 (p1)), then A (p) is indifferent to A1 (p1) and is denoted as A (p) ∼

A1 (p1).

Example 7. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

= 〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s2 (0.1) , s3 (0.3) , s4 (0.6)}〉
, A1 (p1) =

〈
l1 (p1) , l

′
1

(
p
′
1

)〉
= 〈{s2 (0.3) , s3 (0.3)} , {s3 (0.35) , s4 (0.35)}〉 and S be the linguistic term

set used in Example 2 then

α =
1× 0.12 + 2× 0.26 + 3× 0.62

0.12 + 0.26 + 0.62
= 2.5, β =

2× 0.1 + 3× 0.3 + 4× 0.6
0.6 + 0.3 + 0.1

= 3.5,

γ =
6 + 2.5− 3.5

2
= 2.5, E (A (p)) = s2.5

α1 =
2× 0.3 + 3× 0.3

0.3 + 0.3
= 2.5, β1 =

0.35× 3 + 0.35× 4
0.35 + 0.35

= 3.5,

γ1 =
6 + 2.5− 3.5

2
= 2.5, E (A1 (P1)) = s2.5

Since E (A (p)) = E (A1 (p1)), we have to calculate the deviation degree of A (p) and A1 (p1) .

σ (A (p)) =

√
((0.12(1−2.5))2+(0.26(2−2.5))2+(0.62(3−2.5))2)

0.12+0.26+0.62 +
((0.6(4−3.5))2+(0.3(3−3.5))2+(0.1(2−3.5))2)

0.6+0.3+0.1 =
0.529,

σ (A1 (p1)) =

√
((0.3(2−2.5))2+(0.3(3−2.5))2)

0.3+0.3 +
((0.35(3−3.5))2+(0.35(4−3.5))2)

0.35+0.35 = 0.37

Thus, σ (A (p)) > σ (A1 (p1)) so A (p) is inferior to A1 (p1).

In the following, we present a theorem which shows that the association does not affect the score
and deviation degree of PHILTE.

Theorem 1. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

be a PHILTE and A	 (p) =
〈

l (p	) , l
′ (

p
′	)〉

be the associated
PHILTE then E (A (p)) = E (A	 (p)) and σ (A (p)) = σ (A	 (p)).

Proof. E (A	 (p)) = s 	
γ

where
	
γ = g+

	
α−

	
β

2 and
	
α =

#l(p	)
∑

i=1
r(i)p	

(i)

#l(p	)
∑

i=1
p	(i)

. Since
#l(p	)

∑
i=1

p	
(i)

= 1 and p	
(i)

= p(i)
#l(p)

∑
i=1

p(i)
,

which implies that
	
α =

#l(p)
∑

i=1
r(i)p(i)

#l(p)
∑

i=1
p(i)

= α and
	
β =

#l
′(

p
′ 	
)

∑
j=1

r(j)p
′	(j)

#l′(p′ .)
∑

j=1
p′ 	(j)

. Since
#l
′(

p
′	)

∑
j=1

p
′	(j)

= 1 and p
′ .(j) =

p′(j)

#l′(p′)
∑

j=1
p′(j)

which further implies that
	
β =

#l
′(

p
′)

∑
j=1

r(i)p
′(i)

#l′(p′)
∑

i=1
p′(i)

= β. Hence, E (A	 (p)) = E (A (p)) .
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Next, σ (A	 (p)) =

⎛⎜⎜⎜⎜⎝
#l(p	)

∑
i=1

(
p	(i)
(

r(i)−
	
γ

))2

#l(p.)
∑

i=1
p.(i)

+

#l
′(

p
′ 	
)

∑
j=1

(
p
′ 	(j)
(

r
′(j)
−

	
γ

))2

#l′(p′ 	)
∑

j=1
p′	(j)

⎞⎟⎟⎟⎟⎠
1
2

Since
#l(p	)

∑
i=1

p	(i) = 1, p	(i) = p(i)
#l(p)

∑
i=1

p(i)
,

#l
′(

p
′ 	
)

∑
j=1

p
′	(j) = 1, p

′	(j) = p
′(j)

#l′(p′)
∑

j=1
p′(j)

and
	
γ = γ.

It yields that σ (A	 (p)) =

⎛⎜⎜⎜⎜⎝
#l(p)

∑
i=1

(p(i)(r(i)−γ))
2

#l(p)
∑

i=1
p(i)

+

#l
′(

p
′)

∑
j=1

(
p
′(j)(

r
′(j)
−γ

))2

#l′(p′)
∑

j=1
p′
(j)

⎞⎟⎟⎟⎟⎠
1
2

= σ (A (p)).

The following theorem shows that order of comparison between two PHILTEs remains unaltered
after normalization.

Theorem 2. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be any two PHILTEs,

Ã (p) =
〈

l̃ (p) , l̃′
(

p
′)〉

and Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
be the corresponding normalized PHILTEs

respectively, then A (p) < A1 (p1) ⇐⇒ Ã (p) < Ã1 (p1) .

Proof. The proof is quite clear because, according to Theorem 1, E (A (p)) = E (A	 (p)) and
σ (A (p)) = σ (A	 (p)), so order of comparison in Step (1) of normalization process is preserved
and so for Step (2) is concerned in that step we add some elements to PHILTEs though it does not
change the order as we attach zero probabilities with the corresponding added elements so this means
E
(

Ã (p)
)
= E

(
Ã1 (p1)

)
and σ

(
Ã (p)

)
= σ

(
Ã1 (p1)

)
. Hence, the result holds true.

In the following definition, we summarize the fact that comparison of any two PHILTEs can be
done by their corresponding normalized PHILTEs.

Definition 16. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be any two PHILTEs,

Ã (p) =
〈

l̃ (p) , l̃′
(

p
′)〉

and Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
be the corresponding normalized PHILTEs,

respectively, then

(I) If E
(

Ã (p)
)
> E

(
Ã1 (p1)

)
then A (p) > A1 (p1).

(II) If E
(

Ã (p)
)
< E

(
Ã1 (p1)

)
then A (p) < A1 (p1).

(III) If E
(

Ã (p)
)

= E
(

Ã1 (p1)
)

then in this case we are unable to decide which one is superior.
Thus, in this case, we do the comparison of PHILTEs on the bases of the deviation degree of
normalized PHILTEs as follows.

(1) If δ
(

Ã (p)
)
> δ
(

Ã1 (p1)
)

then A (p) < A1 (p1).

(2) If δ
(

Ã (p)
)
< δ
(

Ã1 (p1)
)

then A (p) > A1 (p1).

(3) If δ
(

Ã (p)
)
= δ
(

Ã1 (p1)
)

in such case we say that A (p) is indifferent to A1 (p1) and is denoted
by A (p) ∼ A1 (p1).

Example 8. Let S be the linguistic term set used in Example 2, A (p) =
〈

l (p) , l
′ (

p
′)〉

=

〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s2 (0.1) , s3 (0.3) , s4 (0.5)}〉 and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=
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〈{s2 (0.3) , s3 (0.3)} , {s3 (0.35) , s4 (0.35)}〉 then the corresponding normalized PHILTEs are
Ã (p) =

〈
l̃ (p) , l̃′

(
p
′)〉

= 〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s3 (0.375) , s4 (0.625) , s3 (0)}〉 and

Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
= 〈{s2 (.5) , s3 (0.5) , s2 (0)} , {s3 (0.5) , s4 (0.5) , s3 (0)}〉.

We calculate the score of these normalized PHILTEs

α =
1× 0.12 + 2× 0.26 + 3× 0.62

0.12 + 0.26 + 0.62
= 2.5, β =

3× 0.375 + 4× 0.625 + 3× 0
0.375 + 0.625 + 0

= 3.625,

γ =
6 + 2.5− 3.625

2
= 2.437, E

(
Ã (P)

)
= s2.437

α1 =
2× 0.5 + 3× 0.5 + 0× 2

0.5 + 0.5
= 2.5, β1 =

0.5× 3 + 0.5× 4 + 0× 3
0.5 + 0.5

= 3.5,

γ1 =
6 + 2.5− 3.5

2
= 2.5, E

(
Ã1 (p1)

)
= s2.5

Since E
(

Ã (p)
)
< E

(
Ã1 (p1)

)
so A (p) < A1 (p1) .

3.3. Basic Operations of PHILTEs

Based on the operational laws of the PLTSs [19], we develop some basic operational framework
of PHILTEs and investigate their properties in preparation for applications to the practical real life
problems. Hereafter, it is assumed that all PHILTEs are normalized.

Definition 17. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . , #l (p) , j =

1, 2, . . . , #l
′ (

p
′)

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=

〈
l(i)1

(
p(i)1

)
, l
′(j)

1

(
p
′(j)

1

)〉
; i =

1, 2, . . . , #l1 (p1) , j = 1, 2, . . . , #l
′
1

(
p
′
1

)
be two normalized and ordered PHILTEs, then

Addition:

A (p)⊕ A1 (p1) =
〈

l (p)⊕ l1 (p1) , l
′ (

p
′)⊕ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′
(j)

1

(
p′
(j)

1

) {p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉
(9)

Multiplication:

A (p)⊗ A1 (p1) =
〈

l (p)⊗ l1 (p1) , l
′ (

p
′)⊗ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

}
,∪

l′
(j) ∈l′ (p′ ),l′

(j)

1 ∈l′1(p1)

⎧⎪⎨⎪⎩
(

l
′(j)
)p′

(j)

⊗
(

l
′(j)

1

)p′
(j)

1

⎫⎪⎬⎪⎭
〉

(10)

Scalar multiplication:

γ (A (p)) =
〈

γl (p) , γl
′ (

p
′)〉

=

〈
∪l(i)∈l(p)γp(i)l(i),∪

l′
(j) ∈l′ (p′ )

γp
′(j)

l
′(j)
〉

(11)

Scalar power:

(A (p))γ =
〈
(l (p))γ ,

(
l
′ (

p
′)γ)〉

=

〈
∪l(i)∈l(p)

(
l(i)
)γp(i)

,∪
l′
(j) ∈l′ (p′ )

(
l
′(j)
)γp′

(j) 〉
(12)
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where l(i) and l(i)1 are the ith linguistic terms in l (p) and l1 (p1), respectively; l
′(j)

and l
′(j)

1 are the jth linguistic terms

in l
′
(

p
′
)

and l
′
1

(
p
′
1

)
, respectively; p(i) and p(i)1 are the probabilities of the ith linguistic terms in l (p) and l1 (p1),

respectively; p
′(j)

and p
′(j)

1 are the probabilities of the jth linguistic terms in l
′
(

p
′
)

and l
′
1

(
p
′
1

)
, respectively; and γ denote a

nonnegative scalar.

Theorem 3. Let A (p) =
〈

l (p) , l
′ (

p
′)〉

, A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
, A2 (p2) =

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
be any three ordered and normalized PHILTEs, γ1,γ2, γ3 ≥ 0, then

(1) A (p)⊕ A1 (p1) = A1 (p1)⊕ A (p) ;
(2) A (p)⊕ (A1 (p1)⊕ A2 (p2)) = (A (p)⊕ A1 (p1))⊕ A2 (p2) ;
(3) γ (A (p)⊕ A1 (p1)) = γA (p)⊕ γA1 (p1) ;
(4) (γ1 + γ2) A (p) = γ1 A (p)⊕ γ2 A (p) ;
(5) A (p)⊗ A1 (p1) = A1 (p1)⊗ A (p) ;
(6) A (p)⊗ (A1 (p1)⊗ A2 (p2)) = (A (p)⊗ A1 (p1))⊗ A2 (p2) ;
(7) (A (p)⊗ A1 (p1))

γ = (A (p))γ ⊗ (A1 (p1))
γ ;

(8) (A (p))γ1+γ2 = (A (p))γ1 ⊗ (A (p))γ2 .

Proof. (1) A (p) ⊕ A1 (p1) =
〈

l (p) , l
′ (

p
′)〉 ⊕ 〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=〈

l (p)⊕ l1 (p1) , l
′ (

p
′)⊕ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)1 l(i)1 ⊕ p(i)l(i)

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

1 l
′(j)

1 ⊕ p
′(j)

l
′(j)
}〉

=
〈

l1 (p1)⊕ l (p) , l
′
1

(
p
′
1

)
⊕ l

′ (
p
′)〉

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊕
〈

l (p) , l
′ (

p
′)〉

= A1 (P1)⊕ A (p)
(2) A (p)⊕ (A1 (p1)⊕ A2 (p2)) =

〈
l (p) , l

′ (
p
′)〉⊕ (〈l1 (p1) , l

′
1

(
p
′
1

)〉
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉)
=
〈

l (p)⊕ (l1 (p1)⊕ l2 (p2)) , l
′ (

p
′)⊕ (l

′
1

(
p
′
1

)
⊕ l

′
2

(
p
′
2

))〉
=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l(i)(z)∈l2(p2)

{
p(i)l(i) ⊕

(
p(i)1 l(i)1 ⊕ p(i)2 l(i)2

)}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)

(z)∈l′2(p2)

{
p
′(j)

l
′(j)
⊕
(

p
′(j)

1 l
′(j)

1 ⊕ p
′(j)

2 l
′(j)

2

)} 〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l(i)(z)∈l2(p2)

{(
p(i)l(i) ⊕ p(i)1 l(i)1

)
⊕ p(i)2 l(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)

(z)∈l′2(p2)

{(
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

)
⊕ p

′(j)

2 l
′(j)

2

} 〉

=
〈
(l (p)⊕ l1 (p1))⊕ l2 (p2) ,

(
l
′ (

p
′)⊕ l

′
1

(
p
′
1

))
⊕ l

′
2

(
p
′
2

)〉
=
(〈

l (p) , l
′ (

p
′)〉⊕ 〈l1 (p1) , l

′
1

(
p
′
1

)〉)
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
= (A (p)⊕ A1 (p1))⊕ A2 (p2)

(3) γ (A (p)⊕ A1 (p1)) = γ
〈

l (p) , l
′ (

p
′)〉 ⊕ 〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=

γ
〈

l (p)⊕ l1 (p1) , l
′ (

p
′)⊕ l

′
1

(
p
′
1

)〉
= γ

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
γp(i)l(i) ⊕ γp(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
γp
′(j)

l
′(j)
⊕ γp

′(j)

1 l
′(j)

1

}〉
=
〈

γl (p)⊕ γl1 (p1) , γl
′ (

p
′)⊕ γl

′
1

(
p
′
1

)〉
=
〈

γl (p) , γl
′ (

p
′)〉⊕ 〈γl1 (p1) , γl

′
1

(
p
′
1

)〉
= γA (p)⊕ γA1 (p1)
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(4) (γ1 + γ2) A (p) = (γ1 + γ2)
〈

l (p) , l
′ (

p
′)〉

= γ

〈
∪l(i)∈l(p)

{
(γ1 + γ2) p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
(γ1 + γ2) p

′(j)
l
′(j)
}〉

=

〈
∪l(i)∈l(p)

{
γ1 p(i)l(i) ⊕ γ2 p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
γ1 p

′(j)
l
′(j)
⊕ γ2 p

′(j)
l
′(j)
}〉

=

〈
∪l(i)∈l(p)

{
γ1 p(i)l(i)

}
⊕∪l(i)∈l(p)

{
γ2 p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
γ1 p

′(j)
l
′(j)
}
⊕∪

l′
(j)
∈l′(p′)

{
γ2 p

′(j)
l
′(j)
}〉

=
〈

γ1l (p)⊕ γ2l (p) , γ1l
′ (

p
′)⊕ γ2l

′ (
p
′)〉

=
〈

γ1l (p) , γ1l
′ (

p
′)〉⊕ 〈γ2l (p) , γ2l

′ (
p
′)〉

= γ1 A (p)⊕ γ2 A (P)
(5) A (p)⊗ A1 (p1) =

〈
l (p) , l

′ (
p
′)〉⊗ 〈l1 (p1) , l

′
1

(
p
′
1

)〉
=
〈

l (p)⊗ l1 (p1) , l
′ (

p
′)⊗ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

⎧⎪⎨⎪⎩
(

l
′(j)
)p
′(j)

⊗
(

l
′(j)

1

)p
′(j)

1

⎫⎪⎬⎪⎭
〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)1

)p(i)1 ⊗
(

l(i)
)p(i)

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

⎧⎪⎨⎪⎩
(

l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)
)p
′(j)
⎫⎪⎬⎪⎭
〉

=
〈

l (y) (p (y))⊗ l (p) , l
′
(y)
(

p
′
(y)
)
⊗ l

′ (
p
′)〉

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊗
〈

l (p) , l
′ (

p
′)〉

= A1 (P1)⊗ A (p)
(6) A (p)⊗ (A1 (p1)⊗ A2 (p2)) =

〈
l (p) , l

′ (
p
′)〉⊗ (〈l1 (p1) , l

′
1

(
p
′
1

)〉
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉)
=
〈

l (p)⊗ (l1 (p1)⊗ l2 (p2)) , l
′ (

p
′)⊗ (l

′
1

(
p
′
1

)
⊗ l

′
2

(
p
′
2

))〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1 ⊗
(

l(i)2

)p(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)
2 ∈l′2(p2)

⎧⎪⎨⎪⎩
(

l
′(j)
)p
′(j)

⊗

⎛⎜⎝(l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)

2

)p
′(j)

2

⎞⎟⎠
⎫⎪⎬⎪⎭
〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2)

{((
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

)
⊗
(

l(i)2

)p(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)
2 ∈l′2(p2)

⎧⎪⎨⎪⎩
⎛⎜⎝(l

′(j)
)p
′(j)

⊗
(

l
′(j)

1

)p
′(j)

1

⎞⎟⎠⊗(l
′(j)

2

)p
′(j)

2

⎫⎪⎬⎪⎭
〉

=
〈
(l (p)⊗ l1 (p1))⊗ l2 (p2) ,

(
l
′ (

p
′)⊗ l

′
1

(
p
′
1

))
⊗ l

′
2

(
p
′
2

)〉
=
(〈

l (p) , l
′ (

p
′)〉⊗ 〈l1 (p1) , l

′
1

(
p
′
1

)〉)
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
= (A (p)⊗ A1 (p1))⊗ A2 (p2)

(7) (A (p)⊗ A1 (p1))
γ =

(〈
l (p) , l

′ (
p
′)〉⊗ 〈l1 (p1) , l

′
1

(
p
′
1

)〉)γ

=
〈
(l (p)⊗ l1 (p1))

γ ,
(

l
′ (

p
′)⊗ l

′
1

(
p
′
1

))γ〉
=

〈(
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊗ p(i)1 l(i)1

})γ

,

(
∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊗ p

′(j)

1 l
′(j)

1

})γ〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)γp(i)

⊗
(

l(i)1

)γp(i)1

}
,∪

l′
(j) ∈l′ (p′ ),l′

(j)
(y)∈l′1(p1)

⎧⎪⎨⎪⎩
(

l
′(j)
)γp′

(j)

⊗
(

l
′(j)

1

)γp′
(j)

1

⎫⎪⎬⎪⎭
〉

=
〈
(l (p))γ ⊗ (l1 (p1))

γ ,
(

l
′ (

p
′))γ

⊗
(

l
′
1

(
p
′
1

))γ〉
=
〈
(l (p))γ ,

(
l
′ (

p
′))γ〉

⊗
〈
(l1 (p1))

γ ,
(

l
′
1

(
p
′
1

))γ〉
= (A (p))γ ⊗ (A1 (p1))

γ

(8) (A (p))γ1+γ2 =
(〈

l (p) , l
′ (

p
′)〉)γ1+γ2

=

〈
(l (p))

γ1+γ2 ,
(

l
′ (

p
′))γ1+γ2

〉
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=

〈
∪l(i)∈l(p)

{(
l(i)
)(γ1+γ2)p(i)

}
,∪

l′
(j)
∈l′(p′)

⎧⎪⎨⎪⎩
(

l
′(j)

(x)
)(γ1+γ2)p

′(j)
⎫⎪⎬⎪⎭
〉

=

〈
∪l(i)∈l(p)

{(
l(i)
)γ1 p(i)

⊗
(

l(i)
)γ2 p(i)

}
,∪

l′
(j)
∈l′(p′)

⎧⎪⎨⎪⎩
(

l
′(j)
)γ1 p

′(j)

⊗
(

l
′(j)
)γ2 p

′(j)
⎫⎪⎬⎪⎭
〉

=

〈 ∪l(i)∈l(p)

{(
l(i)
)γ1 p(i)

}
⊗∪l(i)(x)∈l(p)

{(
l(i)
)γ2 p(i)

}
,

∪
l′
(j)
∈l′(p′)

⎧⎪⎨⎪⎩
(

l
′(j)
)γ1 p

′(j)
⎫⎪⎬⎪⎭⊗∪l′

(j)
∈l′(p′)

⎧⎪⎨⎪⎩
(

l
′(j)
)γ2 p

′(j)
⎫⎪⎬⎪⎭
〉

=
〈
(l (p))γ1 ⊗ (l (p))γ2 ,

(
l
′ (

p
′))γ1 ⊗

(
l
′ (

p
′))γ2

〉
=
〈
(l (p))γ1 ,

(
l
′ (

p
′))γ1

〉
⊗
〈
(l (p))γ2 ,

(
l
′ (

p
′))γ2

〉
= (A (p))γ1 ⊗ (A (p))γ2 .

4. Aggregation Operators and Attribute Weights

This section is dedicated to discussion on some basic aggregation operators of PHILTS.
Deviation degree between two PHILTEs is also defined in this section. Finally, we calculate the
attribute weights in the light of PHILTEs.

4.1. The Aggregation Operators for PHILTEs

The aggregation operators are powerful tools to deal with linguistic information. To make a better
usage of PHILTEs in real world problems, in the following, aggregation operators for PHILTEs have
been developed.

Definition 18. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILA (A1 (p1) , A2 (p2) , . . . , An (pn))

=
1
n

(〈
l1 (p1) , l

′
1

(
p
′
1

)〉
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
⊕ . . .⊕

〈
ln (pn) , l

′
n

(
p
′
n

)〉)
=

1
n

〈
l1 (p1)⊕ l2 (p2)⊕ . . .⊕ ln (pn) , l

′
1

(
p
′
1

)
⊕ l

′
2

(
p
′
2

)
⊕ . . .⊕ l

′
n

(
p
′
n

)〉
=

1
n

〈 ∪
l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2),...,l

(i)
n ∈ln(pn)

{
p(i)1 l(i)1 ⊕ p(i)2 l(i)2 ⊕ . . .⊕ p(i)n l(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)

,l′
(j)

2 ∈l′2
(

p′2
)

,...,l′
(j)

n ∈l′n
(

p′n
) {p

′(j)

1 l
′(j)

1 ⊕ p
′(j)

2 l
′(j)

2 ⊕ . . .⊕ p
′(j)

n l
′(j)

n

} 〉
(13)

is called the probabilistic hesitant intuitionistic linguistic averaging (PHILA) operator.

Definition 19. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILWA (A1 (p1) , A2 (p2) , . . . , An (pn))

= w1

〈
l1 (p1) , l

′
1

(
p
′
1

)〉
⊕ w2

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
⊕ . . .⊕ wn

〈
ln (pn) , l

′
n

(
p
′
n

)〉
=
〈

w1l1 (p1)⊕ w2l2 (p2)⊕ . . .⊕ wnln (pn) , w1l
′
1

(
p
′
1

)
⊕ w2l

′
2

(
p
′
2

)
⊕ . . .⊕ wnl

′
n

(
p
′
n

)〉
=

〈 ∪
l(i)1 ∈l1(p1)

{
w1 p(i)1 l(i)1

}
⊕∪

l(i)2 ∈l2(p2)

{
w2 p(i)2 l(i)2

}
⊕ . . .⊕∪

l(i)n ∈ln(pn)

{
wn p(i)n l(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
) {w1 p

′(j)

1 l
′(j)

1

}
⊕∪

l′
(j)

2 ∈l′2
(

p′2
) {w2 p

′(j)

2 l
′(j)

2

}
⊕ . . .⊕∪

l′
(j)

n ∈l′n
(

p′n
) {wn p

′(j)

n l
′(j)

n

} 〉
(14)
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is called the probabilistic hesitant intuitionistic linguistic weighted averaging (PHILWA) operator, where w =

(w1, w2, . . . , wn)
t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0, k = 1, 2, . . . , n, and

n
∑

k=1
wk = 1.

Particularly, if we take w =
(

1
n , 1

n , . . . , 1
n

)t
, then the PHILWA operator reduces to the

PHILA operator.

Definition 20. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then,

PHILG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
(〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
⊗ . . .⊗

〈
ln (pn) , l

′
n

(
p
′
n

)〉) 1
n

=
(〈

l1 (p1)⊗ l2 (p2)⊗ . . .⊗ ln (pn) , l
′
1

(
p
′
1

)
⊗ l

′
2

(
p
′
2

)
⊗ . . .⊗ l

′
n

(
p
′
n

)〉) 1
n

=

⎛⎜⎜⎜⎜⎜⎜⎝
〈 ∪

l(i)1 ∈l1(p1),l
(i)
2 ∈l2(p2),...,l

(i)
n ∈ln(pn)

{(
l(i)1

)p(i)1 ⊗
(

l(i)2

)p(i)2 ⊗ . . .⊗
(

l(i)n

)p(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)

,l′
(j)

2 ∈l′2
(

p′2
)

,...,l′
(j)

n ∈l′n
(

p′n
)
⎧⎪⎨⎪⎩
(

l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)

2

)p
′(j)

2
⊗ . . .⊗

(
l
′(j)

n

)p
′(j)
n

⎫⎪⎬⎪⎭
〉
⎞⎟⎟⎟⎟⎟⎟⎠

1
n (15)

is called the probabilistic hesitant intuitionistic linguistic geometric (PHILG) operator.

Definition 21. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILWG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉w1 ⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉w2 ⊗ . . .⊗
〈

ln (pn) , l
′
n

(
p
′
n

)〉wn

=
〈
(l1 (p1))

w1 ⊗ (l2 (p2))
w2 ⊗ . . .⊗ (ln (pn))

wn ,
(

l
′
1

(
p
′
1

))w1 ⊗
(

l
′
2

(
p
′
2

))w2 ⊗ . . .⊗
(

l
′
n

(
p
′
n

))wn〉

=

〈 ∪
l(i)1 ∈l1(p1)

{(
l(i)1

)w1 p(i)1

}
⊗∪

l(i)2 ∈l2(p2)

{(
l(i)2

)w2 p(i)2

}
⊗ . . .⊗∪

l(i)n ∈ln(pn)

{(
l(i)n

)wn p(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)
⎧⎪⎨⎪⎩
(

l
′(j)

1

)w1 p
′(j)

1

⎫⎪⎬⎪⎭⊗∪l′
(j)

2 ∈l′2
(

p′2
)
⎧⎪⎨⎪⎩
(

l
′(j)

2

)w2 p
′(j)

2

⎫⎪⎬⎪⎭⊗ . . .⊗∪
l′
(j)

n ∈l′n
(

p′n
)
⎧⎪⎨⎪⎩
(

l
′(j)

n

)wn p
′(j)
n

⎫⎪⎬⎪⎭
〉 (16)

is called the probabilistic hesitant intuitionistic linguistic weighted geometric (PHILWG) operator, where w =

(w1, w2, . . . , wn)
t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0, k = 1, 2, . . . , n, and

n
∑

k=1
wk = 1.

Particularly, if we take w =
(

1
n , 1

n , . . . , 1
n

)t
, then the PHILWG operator reduces to the

PHILG operator.

4.2. Maximizing Deviation Method for Calculating the Attribute Weights

The choice of weights directly affects the performance of weighted aggregation operators. For this
purpose, in this subsection, the affective maximizing deviation method is adopted to calculate weight
in MAGDM when weights are unknown or partly known. Based on Definition 9, the deviation degree
between two PHILTEs is defined as follows:

Definition 22. Let A (p) and A1 (p1) be any two PHILTEs of equal length. Then, the deviation degree D
between A (p) and A1 (p1) is given by

D (A (p) , A1 (p1)) = d (l (p) , l1 (p1)) + d
(

l
′ (

p
′)

, l
′
1

(
p
′
1

))
(17)

455



Symmetry 2018, 10, 392

where

d (l (p) , l1 (p1)) =

√√√√√√ #l(p)
∑

i=1

(
p(i)r(i) − p(i)1 r(i)1

)
#l (p)

, (18)

d
(

l
′ (

p
′)

, l
′
1

(
p
′
1

))
=

√√√√√√√
#l′(p′)

∑
j=1

(
p′(j)r′(j) − p′(j)

1 r′(j)
1

)
#l′
(

p′
) (19)

r(i) denote the lower index of the ith linguistic term of l (p) and r
′(j)

denote the lower index of the jth linguistic
term of l

′ (
p
′)

.

Based on the above definition, in the following, we derive attribute weight vector because working
on the probabilistic linguistic data to deal with the MAGDM problems, in which the weight information
of attribute values is completely unknown or partly known, we must find the attribute weights in
advance.

Given the set of alternatives x = {x1, x2, . . . , xm} and the set of “n” attributes c = {c1, c2, . . . , cn},
respectively, then, by using Equation (17), the deviation measure between the alternative “xi” and all
other alternatives with respect to the attribute “cj” can be given as:

Dij (w) = ∑
q=1,q 	=i

wjD
(
hij, hqj

)
, i = 1, 2, . . . , m, j = 1, 2, . . . , n (20)

In accordance with the theme of the maximizing deviation method, if the deviation degree among
alternatives is smaller for an attribute, then the attribute should give a smaller weight. This one shows
that the alternatives are homologous to the attribute. Contrarily, it should give a larger weight. Let

Dj (w) =
m
∑

i=1
Dij (w) =

m
∑

i=1

m
∑

q 	=i
wjD

(
hij, hqj

)
=

m

∑
i=1

m

∑
q 	=i

wj

(
d
(
lij
(

pij
)

, lqj
(

pqj
))

+ d
(

l
′
ij

(
p
′
ij

)
, l
′
qj

(
p
′
qj

)))
(21)

show the deviation degree of one alternative and others with respect to the attribute “cj” and let

D (w) =
n
∑

j=1
Dj (w) =

n
∑

j=1

m
∑

i=1
Dij (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 	=i
wjD

(
hij, hqj

)
=

n
∑

j=1

m
∑

i=1

m
∑

q 	=i
wj

(
d
(
lij
(

pij
)

, lqj
(

pqj
))

+ d
(

l
′
ij

(
p
′
ij

)
, l
′
qj

(
p
′
qj

)))

=
n

∑
j=1

m

∑
i=1

m

∑
q 	=i

wj

⎛⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

⎞⎟⎟⎟⎟⎟⎟⎠ (22)

express the sum of the deviation degrees among all attributes.
To obtain the attribute weights vector w = (w1, w2, . . . , wn)

t, we build the following single
objective optimization model (named as M1) to drive the deviation degree d (w) as large as possible.

M1 =

⎧⎪⎪⎨⎪⎪⎩
max D (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 	=i
wjD

(
hij, hqj

)
wj ≥ 0, j = 1, 2, . . . , n,

n
∑

j=1
w2

j = 1

To solve the above model M1, we use the Lagrange multiplier function:
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L (w, η) =
n

∑
j=1

m

∑
i=1

m

∑
q 	=i

wjD
(
hij, hqj

)
+

η

2

(
n

∑
j=1

w2
j − 1

)
(23)

where η is the Lagrange parameter.
Then, we compute the partial derivatives of Lagrange function with respect to wj and η and let

them be zero: ⎧⎪⎪⎨⎪⎪⎩
∂L(w,η)

∂wj
=

m
∑

i=1

m
∑

q 	=i
wjD

(
hij, hqj

)
+ ηwj = 0, j = 1, 2, . . . , n.

δL(w,η)
∂η =

n
∑

j=1
w2

j − 1 = 0
(24)

By solving Equation (24), one can obtain the optimal weight w = (w1, w2, . . . , wn)
t .

wj =

m
∑

i=1

m
∑

q 	=i
D(hij ,hqj)√√√√ n

∑
j=1

(
m
∑

i=1
∑

q 	=i
D(hij ,hqj)

)2
=

m
∑

i=1

m
∑

q 	=i

(
d(lij(pij),lqj(pqj))+d

(
l
′
ij

(
p
′
ij

)
,l
′
qj

(
p
′
qj

)))
√√√√ n

∑
j=1

(
m
∑

i=1
∑

q 	=i

(
d(lij(pij),lqj(pqj))+d

(
l′ij
(

p′ij
)

,l′qj

(
p′qj

))))2

wj =

m
∑

i=1

m
∑

q 	=i

⎛⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

⎞⎟⎟⎟⎟⎟⎟⎠
√√√√√√√√√√√

n
∑

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
m
∑

i=1
∑

q 	=i

⎛⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

2
(25)

where j = 1, 2, . . . , n.
Obviously, wj ≥ 0 ∀ j. By normalizing Equation (25), we get:

wj =

m
∑

i=1

m
∑

q 	=i
D(hij ,hqj)

n
∑

j=1

m
∑

i=1
∑

q 	=i
D(hij ,hqj)

wj =

m
∑

i=1

m
∑

q 	=i

⎛⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

⎞⎟⎟⎟⎟⎟⎟⎠

n
∑

j=1

m
∑

i=1
∑

q 	=i

⎛⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

⎞⎟⎟⎟⎟⎟⎟⎠

(26)

where j = 1, 2, . . . , n.
The above end result can be applied to the situations where the information of attribute weights

is completely unknown. However, in real life decision making problems, the weight information is
usually partly known. In such cases, let H be a set of the known weight information, which can be
given in the following forms based on the literature [31–34].
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Form 1. A weak ranking:
{

wi ≥ wj
}
(i 	= j).

Form 2. A strict ranking:
{

wi − wj ≥ βi
}
(i 	= j).

Form 3. A ranking of differences:
{

wi − wj ≥ wk − wl
}
(j 	= k 	= l).

Form 4. A ranking with multiples:
{

wi ≥ βiwj
}
(i 	= j).

Form 5. An interval form:
{

βi ≤ wj ≤ βi + εi
}
(i 	= j).

βi and εi denote the non-negative numbers.
With the set H, we can build the following model:

M2 =

⎧⎪⎪⎨⎪⎪⎩
max D (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 	=i
wjD

(
hij, hqj

)
wj ∈ H, wj ≥ 0, j = 1, 2, . . . , n,

n
∑

j=1
w2

j = 1

from which the optimal weight vector w = (w1, w2, . . . , wn)
t obtained.

5. MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information

In this section, two practical methods, i.e., an extended TOPSIS method and an aggregation based
method, for MAGDM problems are proposed, where the opinions of DMs take the form of PHILTSs.

5.1. Extended TOPSIS Method for MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information

Of the numerous MAGDM methods, TOPSIS (Technique for Order of Preference by Similarity
to Ideal Solution) is one of the effective methods for ranking and selecting a number of possible
alternatives by measuring Euclidean distances. It has been successfully applied to solve evaluation
problems with a finite number of alternatives and criteria [19,24,28] because it is easy to understand
and implement, and can measure the relative performance for each alternative.

In the following, we discuss the complete construction of extended TOPSIS method in PHILTS
regard. This methodology involves the following steps.

Step 1: Analyze the given MAGDM problem; since the problem is group decision making, so let
there be “l” decision makers or experts M = {m1, m2, . . . , ml} involved in the given problem. The set of
alternatives is x = {x1, x2, . . . , xm} and the set of attributes is c = {c1, c2, . . . , cn}. The experts provide
their linguistic evaluation values for membership and non-membership by using linguistic term set S ={

s0, s1, . . . , sg
}

over the alternative xi (i = 1, 2, . . . , m) with respect to the attribute cj (j = 1, 2, . . . , n).
The DM mk (k = 1, 2, . . . , l) states his membership and non-membership linguistic evaluation

values keeping in mind all the alternatives and attributes in the form of PHILTEs. Thus, intuitionistic

probabilistic linguistic decision matrix Hk =
[〈

lk
ij
(

pij
)

, l
′(k)
ij

(
p
′
ij

)〉]
m×n

is constructed. It should be

noted that preference of alternative “xi” with respect to decision maker “mk” and attribute “cj” is
denoted as PHILTE Ak

ij
(

pij
)

in a group decision making problem with “l” experts.
Step 2: Calculate the one probabilistic hesitant intuitionistic linguistic decision matrix H by

aggregating the opinions of DMs
(

H(1), H(2), . . . , H(l)
)

; H =
[
hij
]

, where

hij =
〈{

smij

(
pij
)

, snij

(
qij
)}

,
{

s
′
mij

(
p
′
ij

)
, s
′
nij

(
q
′
ij

)}〉
where

smij

(
pij
)
= min

{
l

min
k=1

(
max lk

ij
(

pij
))

,
l

max
k=1

(
min lk

ij
(

pij
))}

,

snij

(
qij
)
= max

{
l

min
k=1

(
max lk

ij
(
qij
))

,
l

max
k=1

(
min lk

ij
(
qij
))}

,

sm′ij

(
p
′
ij

)
= min

{
l

min
k=1

(
max l

′k

ij

(
p
′
ij

))
,

l
max
k=1

(
min l

′k

ij

(
p
′
ij

))}
,

sn′ij

(
q
′
ij

)
= max

{
l

min
k=1

(
max l

′k

ij

(
q
′
ij

))
,

l
max
k=1

(
min l

′k

ij

(
q
′
ij

))}
,

Here, max lk
ij
(

pij
)

and min lk
ij
(

pij
)

are taken according to the maximum and minimum value of

pij × rl
ij, l = 1, 2, . . . , #lk

ij
(

pij
)
, respectively, where rl

ij denotes the lower index of the lth linguistic term
and pij is its corresponding probability.
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In this aggregated matrix H, the preference of alternative ai with respect to attribute cj is denoted
as hij.

Each term of the aggregated matrix H i.e., hij is also an PHILTE; for this, we have to prove that

smij

(
pij
)
+ s

′
nij

(
q
′
ij

)
≤ sg and snij

(
qij
)
+ s

′
mij

(
p
′
ij

)
≤ sg. Since we know that

[
lk
ij
(

pij
)

, l
′
ij

(
p
′
ij

)]
is a PHILTS for every kth expert, ith alternative and jth attribute, a PHILTS it must satisfy the conditions

min
(

l(k)ij

)
+ max

(
l
′(k)

ij

)
≤ sg , max

(
l(k)ij

)
+ min

(
l
′(k)

ij

)
≤ sg.

Thus, the above simple construction of smij

(
pij
)
, snij

(
qij
)
, s
′
mij

(
p
′
ij

)
, and sn′ij

(
q
′
ij

)
guarantees that

the hij is a PHILTE.
Step 3: Normalize the probabilistic hesitant intuitionistic linguistic decision matrix H =

[
hij
]

according to the method in Section 3.1.
Step 4: Obtain the weight vector w = (w1, w2, . . . , wn)

t of the attributes cj (j = 1, 2, . . . , n) . wj =
m
∑

i=1
∑

q 	=i
D(hij ,hqj)

n
∑

j=1

m
∑

i=1
∑

q 	=i
D(hij ,hqj)

=

m
∑

i=1
∑

q 	=i
d(lij(pij),lqj(pqj))+d

(
l
′
ij

(
p
′
ij

)
,l
′
qj

(
p
′
qj

))
n
∑

j=1

m
∑

i=1
∑

q 	=i
d(lij(pij),lqj(pqj))+d

(
l′ij
(

p′ij
)

,l′qj

(
p′qj

)) , j = 1, 2, . . . , n

Step 5: The PHILTS positive ideal solution (PHILTS-PIS) of alternatives, denoted by A+ =〈
l+ (p) , l

′+
(p)
〉

, is defined as follows:

A+ =
〈

l+ (p) =
(
l+1 (p) , l+2 (p) , . . . , l+n (p)

)
, l
′+
(p) =

(
l
′+
1 (p) , l

′+
2 (p) , . . . , l

′+
n (p)

)〉
(27)

where l+j (p) =

{(
l(k1)
j

)+
|k1 = 1, 2, . . . , #lij (p)

}
and

(
l(k1)
j

)+
=

smaxi

{
p(k1)

ij r(k1)
ij

}
, k1 = 1, 2, . . . , #lij (p), j = 1, 2, . . . , n and r(k1)

ij is lower index of the linguistic

term l(k1)
ij while l

′+
j (p) =

{(
l
′(k2)
j

)+
|k2 = 1, 2, . . . , #l

′
ij (p)

}
and

(
l
′(k2)
j

)+
= smini

{
p
′(k2)
ij r

′(k2)
ij

}
, k2 =

1, 2, . . . , #l
′
ij (p) , j = 1, 2, . . . , n and r

′(k2)
ij is lower index of the linguistic term l

′(k2)
ij . Similarly, the

PHILTS negative ideal solution (PHILTS-NIS) of alternatives, denoted by A− =
〈

l− (p) , l
′− (p)

〉
, is

defined as follows:

A− =
〈

l− (p) =
(
l−1 (p) , l−2 (p) , . . . , l−n (p)

)
, l
′−
(p) =

(
l
′−
1 (p) , l

′−
2 (p) , . . . , l

′−
n (p)

)〉
(28)

where l−j (p) =

{(
l(k1)
j

)−
|k1 = 1, 2, . . . , #lij (p)

}
and

(
l(k1)
j

)−
= smini

{
p(k1)

ij r(k1)
ij

}
, k1 =

1, 2, . . . , #lij (p) , j = 1, 2, . . . , n and r(k1)
ij is lower index of the linguistic term l(k1)

ij while l
′−
j (p) ={(

l
′(k2)
j

)−
|k2 = 1, 2, . . . , #l

′
ij (p)

}
and

(
l
′(k2)
j

)+
= smaxi

{
p
′(k2)
ij r

′(k2)
ij

}
, k2 = 1, 2, . . . , #l

′
ij (p) ; j =

1, 2, . . . , n and r
′(k2)
ij is lower index of the linguistic term l

′(k2)
ij .

Step 6: Compute the deviation degree between each alternative xi PHILTS-PIS A+ as follows:

D (xi, A+) =
n
∑

j=1
wjD

(
hij, A+

)
=

n
∑

j=1
wj

(
d
(

lij (p) , l+j (p)
)
+ d
(

l
′
ij (p) , l

′+
j (p)

))

=
n

∑
j=1

wj

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(p)

#lij(p)

∑
k1=1

(
p(k1)

ij r(k1)
ij −

(
p(k1)

j r(k1)
j

)+)2
+√√√√√ 1

#l′ij(p)

#l′ij(p)

∑
k2=1

⎛⎝p
′
(k1)
ij r

′(k2)
ij −

(
p
′
(k2)
j r

′(k2)
j

)+
⎞⎠2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(29)

The smaller is the deviation degree D (xi, A+), the better is alternative xi.
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Similarly, compute the deviation degree between each alternative xi PHILTS-NIS A− as follows:

D (xi, A−) =
n
∑

j=1
wjD

(
hij, A−

)
=

n
∑

j=1
wj

(
d
(

lij (p) , l−j (p)
)
+ d
(

l
′
ij (p) , l

′−
j (p)

))

=
n

∑
j=1

wj

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√√√ 1
#lij(p)

#lij(p)

∑
k1=1

(
p(k1)

ij r(k1)
ij −

(
p(k1)

j r(k1)
j

)−)2
+√√√√√ 1

#l′ij(p)

#l′ij(p)

∑
k2=1

⎛⎝p
′
(k1)
ij r

′(k2)
ij −

(
p
′
(k2)
j r

′(k2)
j

)−⎞⎠2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(30)

The larger is the deviation degree D (xi, A−), the better is alternative xi.
Step 7: Determine Dmin (xi, A+) and Dmax (xi, A−) , where

Dmin
(
xi, A+

)
= min

1≤i≤m
D
(
xi, A+

)
(31)

and
Dmax

(
xi, A−

)
= max

1≤i≤m
D
(
xi, A−

)
(32)

Step 8: Determine the closeness coefficient Cl of each alternative xi to rank the alternatives.

Cl (xi) =
D (xi, A−)

Dmax (xi, A−)
− D (xi, A+)

Dmin (xi, A+)
(33)

Step 9: Pick the best alternative xi on the basis of the closeness coefficient Cl, where the larger is
the closeness coefficient Cl (xi) , the better is alternative xi. Thus, the best alternative

xb =

{
xi| max

1≤i≤m
Cl (xi)

}
(34)

5.2. The Aggregation-Based Method for MAGDM with Probabilistic Hesitant Intuitionistic
Linguistic Information

In this subsection, the aggregation-based method for MAGDM is presented, where the preference
opinions of DMs are represented by PHILTS. In Section 4, we have developed some aggregation
operators, i.e., PHILA, PHILWA, PHILG and PHILWG. In this algorithm, we use PHILWA operator to
aggregate the attribute values of each alternative xi, into the overall attribute values. The following
steps are involved in this algorithm. The first four Steps are similar to the extended TOPSIS method.
Therefore, we go to Step 5.

Step 5: Determine the overall attribute values Z̃i (w) (i = 1, 2, . . . , m) , where w = (w1, w2, . . . , wn)
T

is the weight vector of attributes, using PHILWA operator, this can be expressed as follows:

Z̃i (w) = w1

〈
li1 (p) , l

′
i1

(
p
′)〉⊕ w2

〈
li2 (p) , l

′
i2

(
p
′)〉⊕ . . .⊕ wn

〈
lin (p) , l

′
in

(
p
′)〉

=
〈

w1li1 (p)⊕ w2li2 (p)⊕ . . .⊕ wnlin (p) , w1l
′
i1

(
p
′)⊕ w2l

′
i2

(
p
′)⊕ . . .⊕ wnl

′
in

(
p
′)〉

=

〈 ∪
l(

k1)
i1 ∈li1(p)

{
w1 p(k1)

i1 l(k1)
i1

}
⊕∪

l(
k1)

i2 ∈li2(p)

{
w2 p(k1)

i2 l(k1)
i2

}
⊕ . . .⊕∪

l(
k1)

in ∈lin(p)

{
wn p(k1)

in l(k1)
in

}
,

∪
l
′(k2)
i1 ∈l′i1(p′)

{
w1 p

′(k2)
i1 l

′(k2)
i1

}
⊕∪

l
′(k2)
i2 ∈l′i2(p′)

{
w2 p

′(k2)
i2 l

′(k2)
i2

}
⊕ . . .⊕∪

l
′(k2)
in ∈l′in(p′)

{
wn p

′(k2)
in l

′(k2)
in

} 〉 (35)

where i = 1, 2, . . . , m.
Step 6: Compare the overall attribute values Z̃i (w) (i = 1, 2, . . . , m) mutually, based on their score

function and deviation degree whose detail is given in Section 3.2.
Step 7: Rank the alternatives xi (i = 1, 2, . . . , m) according to the order of Z̃i (w) (i = 1, 2, . . . , m)

and pick the best alternative.
The flow chart of the proposed models is presented in Figure 1.
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Figure 1. Extended TOPSIS and Aggregation-based models.

6. A Case Study

To validate the proposed theory and decision making models, in this section, a practical example
taken from [28] is solved. A group of seven peoples ml (l = 1, 2, 3, . . . , 7) need to invest their savings
in a most profitable way. They considered five possibilities: x1 is real estate, x2 is stock market, x3

is T-bills, x4 is national saving scheme, and x5 is insurance company. To determine best option, the
following attributes are taken into account: c1 is the risk factor, c2 is the growth, c3 is quick refund, and
c4 is complicated documents requirement. Base upon their knowledge and experience, they provide
their opinion in terms of following HIFLTSs.

6.1. The Extended TOPSIS Method for the Considered Case

We handle the above problem by applying the extended TOPSIS method.
Step 1: The probabilistic hesitant intuitionistic linguistic decision matrices derived from Tables 1–3

are shown in Tables 4–6, respectively.

Table 1. Decision matrix provided by the DMs 1, 2, 3 (m1, m2, m3).

c1 c2 c3 c4

x1 〈{s3, s4, s5} , {s1, s2}〉 〈{s4, s5} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s1, s2} , {s3, s4}〉
x2 〈{s1, s2} , {s3, s4}〉 〈{s3, s4, s5} , {s1, s2}〉 〈{s3, s4} , {s0, s1}〉 〈{s4, s5} , {s1, s2}〉
x3 〈{s4, s5)} , {s0, s1, s2}〉 〈{s3, s4} , {s1, s2}〉 〈{s5, s6} , {s0}〉 〈{s1, s2} , {s2, s3, s4}〉
x4 〈{s5, s6} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s1, s2} , {s3, s4}〉 〈{s3, s4, s5} , {s1, s2}〉
x5 〈{s6} , {s0}〉 〈{s1, s2} , {s3, s4, s5}〉 〈{s0, s1} , {s2, s3}〉 〈{s4, s5} , {s1, s2}〉

Table 2. Decision matrix provided by the DMs 4, 5 (m4, m5).

c1 c2 c3 c4

x1 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0, s1}〉 〈{s0, s1} , {s3, s4}〉 〈{s3, s4} , {s1, s2}〉
x2 〈{s0, s1} , {s2, s3}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s4, s5} , {s0, s1}〉 〈{s5, s6} , {s0}〉
x3 〈{s3, s4} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s4, s5} , {s1, s2)}〉 〈{s0, s1} , {s2, s3}〉
x4 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s0, s1, s2}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s4, s5} , {s0}〉
x5 〈{s4, s5} , {s1, s2}〉 〈{s3, s4} , {s1, s2, s3}〉 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0}〉
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Table 3. Decision matrix provided by the DMs 6, 7 (m6, m7).

c1 c2 c3 c4

x1 〈{s4, s5} , {s0, s1}〉 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s1, s2}〉 〈{s0, s1} , {s3, s4}〉
x2 〈{s3, s4} , {s1, s2, s3}〉 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s1, s2}〉
x3 〈{s1, s2} , {s2, s3, s4}〉 〈{s5, s6} , {s0}〉 〈{s4, s5} , {s0, s1}〉 〈{s0, s1} , {s3, s4}〉
x4 〈{s4, s5} , {s1, s2}〉 〈{s4, s5} , {s0, s1}〉 〈{s0, s1, s2} , {s2, s3}〉 〈{s3, s4, s5} , {s1, s2}〉
x5 〈{s3, s4} , {s0, s1, s2}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s2, s3} , {s3, s4}〉 〈{s6} , {s0}〉

Table 4. Probabilistic hesitant intuitionistic linguistic decision matrix H1 with respect to DMs 1, 2, 3
(m1, m2, m3) .

c1 c2

x1 〈{(s3 (0.14) , s4 (0.28) , s5 (0.28))} , {s1 (0.28) , s2 (0.14)}〉 〈{s4 (0.14) , s5 (0.42)} , {s0 (0.42) , s1 (0.28)}〉
x2 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.42) , s4 (0.14)}〉 〈{s3 (0.14) , s4 (.14) , s5 (0.14)} , {s1 (0.14) , s2 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.14)} , {s0 (0.28) , s1 (0.28) , s2 (0.28)}〉 〈{s3 (0.14) , s4 (0.28)} , {s1 (0.14) , s2 (0.14)}〉
x4 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉
x5 〈{s6 (0.14)} , {s0 (0.28)}〉 〈{s1 (0.28) , s2 (0.28)} , {s3 (0.42) , s4 (0.28) , s5 (0.14)}〉

c3 c4

x1 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.28) , s4 (0.28)}〉 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.28) , s4 (0.28)}〉
x2 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.42) , s1 (0.28)}〉 〈{s4 (0.14) , s5 (0.28)} , {s1 (0.28) , s2 (0.28)}〉
x3 〈{s5 (0.42) , s6 (0.14)} , {s0 (0.28)}〉 〈{s1 (0.42) , s2 (0.14)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉
x4 〈{s1 (0.42) , s2 (.42)} , {s3 (0.42) , s4 (0.28)}〉 〈{s3 (0.28) , s4 (0.42) , s5 (0.42)} , {s1 (0.28) , s2 (0.28)}〉
x5 〈{s0 (0.14) , s1 (0.28)} , {s2 (0.28) , s3 (0.42)}〉 〈{s4 (0.14) , s5 (0.28)} , {s1 (0.14) , s2 (0.14)}〉

Table 5. Probabilistic hesitant intuitionistic linguistic decision matrix H2 with respect to DMs
4, 5 (m4, m5).

c1 c2

x1 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.42) , s1 (0.28)}〉
x2 〈{s0 (0.14) , s1 (0.28)} , {s2 (0.28) , s3 (0.42)}〉 〈{s1 (0.28) , s2 (0.28)} , {s2 (0.28) , s3 (0.28) , s4 (0.28)}〉
x3 〈{s3 (0.14) , s4 (.28)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉
x4 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.28)}〉 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.28) , s1 (0.28) , s2 (0.14)}〉
x5 〈{s4 (0.28) , s5 (0.14)} , {s1 (0.28) , s2 (0.28)}〉 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.28) , s3 (0.42)}〉

c3 c4

x1 〈{s0. (0.14) , s1 (0.28)} , {s3 (0.28) , s4 (0.28)}〉 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.14)}〉
x2 〈{s4 (0.28) , s5 (0.28)} , {s0 (0.42) , s1 (0.28)}〉 〈{s5 (0.28) , s6 (0.14)} , {s0 (0.14)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s1 (0.28) , s2 (0.14)}〉 〈{s0 (0.28) , s1 (0.42)} , {s2 (0.28) , s3 (0.42)}〉
x4 〈{s1 (0.42) , s2 (0.42)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉 〈{s4 (0.42) , s5 (0.42)} , {s0 (0.14)}〉
x5 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.42) , s4 (0.28)}〉 〈{s5 (0.28) , s6 (0.28)} , {s0 (0.28)}〉

Table 6. Probabilistic hesitant intuitionistic linguistic decision matrix H3 with respect to DMs
6, 7 (m6, m7).

c1 c2

x1 〈{s4 (0.28) , s5 (0.28)} , {s0 (0.14) , s1 (0.28)}〉 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.42)}〉
x2 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.28) , s3 (0.42)}〉 〈{s1 (0.28) , s2 (0.28)} , {s3 (0.28) , s4 (0.28)}〉
x3 〈{s1 (0.14) , s2 (0.14)} , {s2 (0.28) , s3 (0.14) , s4 (0.14)}〉 〈{s5 (0.28) , s6 (0.14)} , {s0 (0.14)}〉
x4 〈{s4 (0.14) , s5 (0.42)} , {s1 (0.28) , s2 (0.14)}〉 〈{s4 (0.28) , s5 (0.14)} , {s0 (0.28) , s1 (0.28)}〉
x5 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.28) , s1 (0.28) , s2 (0.28)}〉 〈{s1 (0.28) , s2 (0.28)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉

c3 c4

x1 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.14)}〉 〈{s0 (0.14) , s1 (0.28)} , {s3 (0.28) , s4 (0.28)}〉
x2 〈{s5 (0.28) , s6 (0.14)} , {s0 (.42)}〉 〈{s3 (0.14) , s4 (0.28)} , {s1 (0.28) , s2 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s0 (0.28) , s1 (0.42)} , {s3 (0.42) , s4 (0.28)}〉
x4 〈{s0 (0.14) , s1 (0.42) , s2 (0.42)} , {s2 (0.28) , s3 (0.42)}〉 〈{s3 (0.28) , s4 (0.42) , s5 (0.42)} , {s1 (0.28) , s2 (0.28)}〉
x5 〈{s2 (0.14) , s3 (0.14)} , {s3 (0.28) , s4 (0.28)}〉 〈{s6 (0.28)} , {s0 (0.28)}〉

Step 2: The decision matrix H in Table 7 is constructed by utilizing Tables 4–6.
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Table 7. Decision matrix (H).

c1 c2

x1 〈{s2 (0.14) , s4 (0.28)} , {s1 (0.28) , s3 (0.14)}〉 〈{s6 (0.28) , s5 (0.42)} , {s0 (0.42) , s0 (0.42)}〉
x2 〈{s1 (0.28) , s3 (0.14)} , {s4 (0.14) , s3 (0.42)}〉 〈{s2 (0.28) , s3 (0.14)} , {s2 (0.28) , s3 (0.28)}〉
x3 〈{s2 (0.14) , s0 (0.14)} , {s1 (0.28) , s3 (0.14)}〉 〈{s2 (0.14) , s6 (0.14)} , {s0 (0.14) , s3 (0.14)}〉
x4 〈{s6 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s2 (0.14) , s5 (0.14)} , {s1 (0.28) , s3 (0.14)}〉
x5 〈{s6 (0.14) , s6 (0.14)} , {s0 (0.28) , s1 (0.28)}〉 〈{s3 (0.14) , s2 (0.28)} , {s5 (0.14) , s3 (0.42)}〉

c3 c4

x1 〈{s1 (0.28) , s3 (0.14)} , {s2 (0.14) , s3 (0.28)}〉 〈{s1 (0.28) , s3 (0.14)} , {s2 (0.14) , s3 (0.28)}〉
x2 〈{s4 (0.28) , s4 (0.14)} , {s0 (0.42) , s0 (0.42)}〉 〈{s1 (0.28) , s3 (0.14)} , {s0 (0.14) , s3 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.42)} , {s4 (0.28) , s3 (0.42)}〉
x4 〈{s1 (0.42) , s2 (0.42)} , {s4. (0.28) , s3 (0.42)}〉 〈{s4 (0.42) , s5 (0.42)} , {s0 (0.14) , s2 (0.28)}〉
x5 〈{s1 (0.28) , s2 (0.14)} , {s4. (0.28) , s3 (0.42)}〉 〈{s5 (0.28) , s6 (0.28)} , {s0 (0.28) , s1 (0.14)}〉

Step 3: The normalized probabilistic hesitant intuitionistic linguistic decision matrix of the group
is shown in Table 8.

Table 8. The normalized probabilistic hesitant intuitionistic linguistic decision matrix.

c1

x1 〈{s4 (0.6666667) , s2 (0.3333333)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x2 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.75) , s4 (0.25)}〉
x3 〈{s0 (0.5) , s2 (0.5)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x4 〈{s5 (0.6) , s6 (0.4)} , {s1 (0.5) , s0 (0.5)}〉
x5 〈{s6 (0.5) , s6 (0.5)} , {s0 (0.5) , s1 (0.5)}〉

c2

x1 〈{s5 (0.6) , s6 (0.4)} , {s0 (0.5) , s0 (0.5)}〉
x2 〈{s3 (0.3333333) , s2 (0.6666667)} , {s3 (0.5) , s2 (0.5)}〉
x3 〈{s6 (0.5) , s2 (0.5)} , {s3 (0.5) , s0 (0.5)}〉
x4 〈{s5 (0.5) , s2 (0.5)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x5 〈{s2 (0.6666667) , s3 (0.3333333)} , {s3 (0.75) , s5 (0.25)}〉

c3

x1 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s2 (0.3333333)}〉
x2 〈{s4 (0.6666667) , s4 (0.3333333)} , {s0 (0.5) , s0 (0.5)}〉
x3 〈{s5 (0.6) , s4 (0.4)} , {s5 (0.6) , s4 (0.4)}〉
x4 〈{s1 (0.5) , s2 (0.5)} , {s3 (0.6) , s4. (0.4)}〉
x5 〈{s1 (0.6666667) , s2 (0.3333333)} , {s3 (0.6) , s4 (0.4)}〉

c4

x1 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s2 (0.3333333)}〉
x2 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s0 (0.3333333)}〉
x3 〈{s2 (0.75) , s1 (0.25)} , {s3 (0.6) , s4 (0.4)}〉
x4 〈{s5 (0.5) , s4 (0.5)} , {s0 (0.3333333) , s2 (0.6666667)}〉
x5 〈{s6 (0.5) , s5 (0.5)} , {s1 (0.3333333) , s0 (0.6666667)}〉

Step 4: The weight vector is derived from Equation (26) as follows:
w = (0.2715, 0.2219, 0.2445, 0.2621)t

Step 5: The PHILTS-PIS “A+” and the PHILTS-NIS “A−” of each alternative are derived using
Equations (27) and (28) as follows:

A+ = (〈{3, 3} , {0, 0}〉 , 〈{3, 2.4} , {0, 0}〉 , 〈{3, 1.6} , {0, 0}〉 , 〈{3, 2.5} , {0, 0}〉)
A− = (〈{0, 0.661} , {2.25, 1}〉 , 〈{1, 1} , {2.25, 1.25}〉 , 〈{.5, 0.66} , {2, 1.6}〉 , 〈{1, 0.2} , {2, 1.6}〉)
D (x1, A+) = 2.1211, D (x2, A+) = 2.5516, D (x3, A+) = 2.9129, D (x4, A+) = 1.7999,

D (x5, A+) = 1.6494
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D (x1, A−) = 2.0142, D (x2, A−) = 1.5861, D (x3, A−) = 1.6204, D (x4, A−) = 2.4056,
D (x5, A−) = 2.2812

Step 7: Calculate Dmin (xi, A+) and Dmax (xi, A−) by Equations (31) and (32) :
Dmin (xi, A+) = 1.6494, Dmax (xi, A−) = 2.4050
Step 8: Determine the closeness coefficient of each alternative xi by Equation (33) :
Cl (x1) = −0.4486, Cl (x2) = −0.8876, Cl (x3) = −1.0924, Cl (x4) = −0.0912, Cl (x5) = −0.0519
Step 9: Rank the alternatives according to the ranking of Cl (xi) (i = 1, 2, . . . , 5): x5 > x4 > x1 >

x2 > x3, and thus, x5(insurance company) is the best alternative.

6.2. The Aggregation-Based Method for the Considered Case

We can also apply the aggregation-based method to attain the ranking of alternatives for the
case study.

Step 1: Construct the probabilistic hesitant intuitionistic fuzzy decision matrices of the group as
listed in Tables 4–6, and then aggregated and normalized as shown in Tables 7 and 8.

Step 2: Utilize Equation (26) to obtain the weight vector
w = (0.2715, 0.2219, 0.2445, 0.2621)t .
Step 3: Derive the overall attribute value of each alternative xi (i = 1, 2, 3, 4, 5) by using

Equation (35) :
Z̃1 (w) = 〈{s1.8962, s0.5187} , {s1.2847, s0.5187}〉 ,
Z̃2 (w) = 〈{s1.4074, s0.9776} , {s1.4679, s0.4934}〉 ,
Z̃3 (w) = {s1.7923, s1.1256} , {s1.8096, s0.9915} ,
Z̃4 (w) = 〈{s2.1467, s1.642} , {s0.7977, s0.8886}〉 ,
Z̃5 (w) = 〈{s2.0596, s1.8546} , {s1.0267, s0.8043}〉 .
Step 4: Compute the score of each attribute value Z̃i (w) by Definition 14:
E
(

Z̃1 (w)
)

= s3.1528, E
(

Z̃2 (w)
)

= s3.1059, E
(

Z̃3 (w)
)

= s3.0584, E
(

Z̃4 (w)
)

= s4.0512,

E
(

Z̃5 (w)
)
= s5.8726

Step 5: Compare the overall attribute values of alternatives according to the values of the score
function. It is obvious, that x5 > x4 > x1 > x2 > x3. Thus, again, we get the best alternative x5.

7. Discussions and Comparison

For the purpose of comparison, in this subsection, the case study is again solved by applying the
TOPSIS method with traditional HIFLTSs.

Step 1: The decision matrix X in Table 9 is constructed by utilizing Tables 1–3 as follows:

Table 9. Decision matrix (X).

c1 c2 c3 c4

x1 ([s2, s4] , [s1, s3]) ([s5, s5] , [s0, s0]) ([s1, s3] , [s2, s3]) ([s1, s3] , [s2, s3])
x2 ([s1, s3] , [s3, s3]) ([s2, s3] , [s2, s3]) ([s4, s5] , [s0, s0]) ([s4, s5] , [s0, s1])
x3 ([s2, s4] , [s1, s2]) ([s3, s5] , [s0, s3]) ([s5, s5] , [s0, s1]) ([s1, s1] , [s3, s3])
x4 ([s5, s5] , [s0, s1]) ([s2, s4] , [s1, s3]) ([s1, s2] , [s3, s3]) ([s4, s5] , [s1, s2])
x5 ([s4, s6] , [s0, s1]) ([s2, s3] , [s3, s3]) ([s1, s2] , [s3, s3]) ([s5, s6] , [s0, s1])

Step 2: Determine the HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” for cost criteria c1,c4 and
benefit criteria c2,c3 as follows:

P+ = [([s0, s1] , [s3, s4]) , ([s5, s6] , [s0, s0]) , ([s5, s6] , [s0, s0]) , ([s0, s1] , [s3, s4])]

P− = [([s6, s6] , [s0, s0]) , ([s1, s2] , [s3, s5]) , ([s0, s1] , [s3, s4]) , ([s6, s6] , [s0, s0])]

Note: One can see the detail of HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” in [28].
Step 3: Calculate the positive ideal matrix D+ and the negative ideal matrix D− as follows:
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D+ =

⎡⎢⎢⎢⎢⎢⎣
8 + 1 + 12 + 5

4 + 11 + 2 + 14
9 + 7 + 2 + 2

15 + 9 + 14 + 12
15 + 12 + 14 + 16

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
26
31
20
50
57

⎤⎥⎥⎥⎥⎥⎦
D+

11 = d
(

x11, v+1
)
+ d

(
x12, v+2

)
+ d

(
x13, v+3

)
+ d

(
x14, v+4

)
in which d

(
x11, v+1

)
=

d (([s2, s4] , [s1, s3]) , ([s0, s1] , [s3, s4])) = |2− 0|+ |4− 1|+ |1− 3|+ |3− 4| = 8
Other entries can be found by similar calculation.

D− =

⎡⎢⎢⎢⎢⎢⎣
10 + 15 + 5 + 13
14 + 5 + 15 + 4
9 + 9 + 15 + 16

3 + 7 + 3 + 6
3 + 4 + 3 + 2

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
43
38
49
19
12

⎤⎥⎥⎥⎥⎥⎦
Step 4: The relative closeness(RC) of each alternative to the ideal solution can be obtained

as follows:
RC(x1) = 43/ (26 + 43) = 0.6232
RC(x2) = 38/ (31 + 38) = 0.5507
The RC of other alternatives can be find by similar calculations.
RC(x3) = 0.7101 , RC(x4) = 0.2754 , RC(x5) = 0.1739.
Step 5: The ranking of alternatives of alternatives xi (i = 1, 2, . . . , 5) according to the closeness

coefficient RC(xi) is:
x3 > x1 > x2 > x4 > x5.

• In Table 9, the disadvantages of HIFLTS are apparent because in HIFLTS the probabilities of the
linguistic terms is not considered which means that all possible linguistic terms in HIFLTS have
same occurrence possibility which is unrealistic, whereas the inspection of Table 7 shows that
PHILTS not only contains the linguistic terms, but also considers the probabilities of linguistic
terms, and, thus, PHILTS constitutes an extension of HIFLTS.

• The inspection of Table 10 reveals that the extended TOPSIS method and the aggregation-based
method give the same best alternative x5. The TOPSIS method with the traditional HIFLTSs gives
x3 as the best alternative.

• This difference of best alternative in Table 10 is due to the effect of probabilities of membership
and non-membership linguistic terms, which highlight the critical role of probabilities. Thus, our
methods are more rational to get the ranking of alternatives and further to find the best alternative.

• Extended TOPSIS method and aggregation-based method for MAGDM with PLTS information
explained in [19] are more promising and better than extended TOPSIS method and
aggregation-based method for MAGDM with HFLTS information. However, a clear superiority
of PHILTS is that it assigns to each element the degree of belongingness and also the degree of
non-belongingness along with probability. PLTS only assigns to each element a belongingness
degree along with probability. Using PLTSs, various frameworks have been developed by
DMs [19,29] but they are still intolerant, since there is no mean of attributing reliability or
confidence information to the degree of belongingness.

Table 10. Comparison of Results.

TOPSIS [28] x3 > x1 > x2 > x4 > x5

Proposed extend TOPSIS x5 > x4 > x1 > x2 > x3

Proposed aggregation model x5 > x4 > x1 > x2 > x3

The comparisons and other aspects are summarized in Table 11.
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Table 11. The advantages and limitations of the proposed methods.

Advantages Limitations

1. PHILTS generalize the existing PLTS models 1. It is essential to take membership as
since PHILTS take more information from the DMs well as non-membership probabilistic
into account. data.
2. PHILTS is not affected by partial vagueness. 2. Its computational index is
3. PHILTS is more in line with people’s language, high.
leading to much more fruitful decisions.
4. The attribute weights are calculated with
objectivity (without favor).

8. Conclusions

Because of the blurring of human thinking, sometimes it becomes difficult for experts to accurately
measure the opinions in the area of the usual fuzzy set theory, even in the HIFLTSs and PLTSs. For this
purpose, in this article, a new concept called PHILTS was introduced to extend the current HIFLTS
and PLTS. To facilitate the calculation of the PHILTSs, a normalization process, basic operations and
aggregation operators for PHILTSs are also designed. An extended TOPSIS method and aggregation
based method have been proposed to solve decision ranking problems of the group with the multiple
conflict criteria in PHILTS. The proposed models are compared with existing model of TOPSIS.
The PLTS and HIFLTS are special cases of PHILTS, it grants the freedom to DMs to express their
opinions in more dynamic way. Furthermore, the occurrence probabilities of membership and
non-membership linguistic term sets greatly affects the decision making, validating the importance
of designed theory and models in this manuscript. The probability is one of the best tool to handle
uncertainty of future, thus our proposed models are more suitable of decision making related to the
possible future scenarios. However, its arithmetic complexity is high.

In the future, all the work which has been done thus far PLTSs and HIFLTSs can be studied for
PHILTS and then applied to decision making.
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Abstract: This paper first merges two noteworthy aspects of choice. On the one hand, soft sets
and fuzzy soft sets are popular models that have been largely applied to decision making problems,
such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or
international trade. They provide crisp or fuzzy parameterized descriptions of the universe of
alternatives. On the other hand, in many decisions, costs and benefits occur at different points in
time. This brings about intertemporal choices, which may involve an indefinitely large number of
periods. However, the literature does not provide a model, let alone a solution, to the intertemporal
problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose
a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important
gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal
option in intertemporal choice problems with an infinite time horizon. We illustrate its application
with a numerical example involving alternative portfolios of projects that a public administration may
undertake. This allows us to establish a pioneering intertemporal model of choice in the framework
of extended fuzzy set theories.

Keywords: fuzzy soft set; intertemporal choice; comparison table; decision making

1. Introduction

The scientific contribution of this paper is setting up a novel framework for making decisions
that stems from the first cross-fertilization of two features: (a) intertemporal aspects of choice; and
(b) extended fuzzy set models. We also give a novel adjustable algorithm that prioritizes alternatives
with the aforementioned features.

Decisions whose consequences extend across multiple time periods are called intertemporal
choices. The entry “Intertemporal choice” in the Palgrave Dictionary of Economics states: “Most
choices require decision-makers to trade-off costs and benefits at different points in time. Decisions
with consequences in multiple time periods are referred to as intertemporal choices. Decisions about
savings, work effort, education, nutrition, exercise, and health care are all intertemporal choices” [1].
Although its analysis is preeminent in the standard crisp literature, to the best of our knowledge,
the problem of intertemporal choice has never been modeled when the data are imprecise, uncertain or
subjective in the sense of the extended fuzzy set theories. In this paper, we first put forward a model
that fills this important gap. To prove that it can be used to make decisions, we propose a flexible
mechanism that provides a ranking of the alternatives that are characterized by these characteristics.
We also present some examples that illustrate the application of our decision making procedure.

To achieve our goals, we have selected the successful setting of fuzzy soft sets. (Other models
of imprecise knowledge would require an ad hoc analysis, which we postpone for subsequent
investigations to avoid confusions.) The new model that arises (from the amalgamation of the
intertemporal setting of choice and data in the form of fuzzy soft sets) is called intertemporal fuzzy
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soft sets. We put forward various equivalent and complementary definitions of this concept. Some are
more convenient for the purpose of algebraic manipulations and intuitions. Some are better suited to
describe the computational machinery that produces the results from which the decisions are achieved.

In relation with the latter issue, the gist of standard intertemporal problems is that the
consequences of a decision span along an infinite number of periods. However, to decide among
various alternatives, their consequences across time are summarized by an amount called their
respective Net Present Values. In this fashion, the infinite expansion that characterizes an alternative
is summarized by a unique number, for example through a discounted sum. By inspiration of this
widely accepted position, we propose to condense the information of intertemporal fuzzy soft sets
into fuzzy soft sets in order to make optimal decisions. The tool that we introduce to achieve this
target is called a reduction mechanism. Reduction mechanisms can both indicate symmetry in the
valuation of a reward irrespective of the period when it is obtained, or a preference for earlier rewards
(i.e., violation of the symmetric treatment of the periods). We provide several noteworthy examples of
both behaviors. Once this reduction to a fuzzy soft set has been performed, our decision can rely on
widely accepted solutions stated for that setting.

Actually, the main reason for choosing fuzzy soft sets in our pioneering approach is that there is a
fully-developed theory for fuzzy soft set based decision making. To further assess the importance of
this setting, in the next section, we review some general background about soft computing models
with a more explicit explanation about soft set based modelizations and their decision making. We also
dwell on the fundamentals of the intertemporal problem of choice and its applications.

This paper is organized as follows. In Section 2, we give some general background about the main
notions that are used in our research. A fully developed real example helps to clarify the application
of the discounted utility aggregation model. Section 3 recalls some terminology and definitions.
In Section 4, we define our new model of intertemporal fuzzy soft sets and we also offer alternative
formalizations. In Section 5, we define the notion of a reduction mechanism, which we use to state
the decision algorithm that prioritizes alternatives in the framework of intertemporal fuzzy soft sets.
We also illustrate the model with a numerical application to the selection of alternative portfolios of
public projects. Finally, we conclude in Section 6.

2. Background

In this section, we give some background about various pertinent topics. Firstly, we provide some
basic knowledge about the theory and practice of intertemporal choices, inclusive of a fully developed
real example. Secondly, we give a general overview of fuzzy sets and other related models of uncertain
information. Finally, we focus on the specific characteristics of the framework where we develop our
contribution, namely, fuzzy soft sets and their decision making.

2.1. Intertemporal Choice: Theory and Practice

Intertemporal choices are decisions whose consequences (costs and benefits) are distributed over
time [2]. Decisions about investments, spending and savings are standard examples of monetary
intertemporal choices. However, there are also non-monetary intertemporal choices such as decisions
related with sustainability (environmental issues such as forestry [3], climate policy [4] or the use of
energy-using durables [5]), health (diet, exercise, and addictions [6,7]), job search [8], or work effort [9].

Discounted utility theory is the normative theory for intertemporal choice, or choices between
outcomes accruing at different points in time; usually between immediate and delayed outcomes [10].
Since its introduction by Samuelson [11] in 1937, the discounted utility (DU) model has dominated the
economic analysis of intertemporal choice (e.g., the aforementioned [4,5,9]). DU model was completed
by Koopmans [12] who clarified its logic and main assumptions. This model presumes that people
evaluate the pleasures and pains resulting from a decision in a similar way that financial markets
evaluate gains and losses spread out over time. Anyone prefers to get 1000 dollars now rather than
1000 dollars in a year. However, people behave differently if they have to choose between receiving
1000 dollars now or 1100 dollars in a year. To compare choices made in different moments of time,
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under DU, it is assumed that agents exponentially discount these costs and benefits according to how
delayed they are in time [13]. Although there is experimental evidence showing that this is not always
the case [2,14,15], a fact that prompted the appearance of other explanatory models such as hyperbolic
discounting [16–18] or q-exponential discounting [19–21], the DU model is nevertheless used as the
common tool for public policy in the evaluation of public projects. The model can be calibrated with
suitable discount factors, for example, using a decreasing sequence of discount rates for projects with
very long-term impacts to account for intergenerational equity [22]. The governments of the United
Kingdom and France, in line with the proposals of several authors for long-term valuations [23],
recommend the use of decreasing discount rates in public projects with long time horizons [24,25].

In real practice, and provided that the DU model is adopted for the evaluation of intertemporal
projects, the expected cash-flows of a project are always discounted to obtain its Net Present Value
(NPV) at instant 0 (time of evaluation), see for example [26]. To that purpose, a well-known formula
is applied which requires using an appropriate discount rate. For private projects, the weighted
average cost of capital or a required profitability are usually used as a discount rate. For public
projects, the social time preference rate is employed to calculate the discount rate, which is then
called social discount rate (SDR). The social time preference rate is a rate used for discounting future
benefits and costs, and it is based on comparisons of utility across different points in time or different
generations [24]. The SDR “is used by society to give relative weight to social consumption or income
accruing at different points in time” [3].

Since we are applying our intertemporal model of choice to concrete examples, we need to fix an
appropriate discount rate. Our choice is not arbitrary. On the contrary, we take advantage of the fact
that, for EU funded projects, the European Commission [26] recommends the use of the exponential
discounting model and a constant 5% European social discount rate for the Cohesion Fund eligible
countries and 3% for the others (countries non-eligible for the Cohesion Fund). Therefore, 5% is our
reference rate unless otherwise stated.

According to the previous discussion, discounted utility computations made for choices in the
present and at various moments in the future (x0, x1, . . . , xT) adopt the form

T

∑
t=0

βtu(xt) (1)

Here, xt is the choice made at moment t, whose utility at that moment is u(xt); βt is the discount
factor for a time period of t periods, usually years (for example, β = 1

1+0.05 under our assumption for
the reference rate); choices are made along periods t = 0 (the present), t = 1, 2, . . . , T; and T may be
+∞. Put otherwise, if we want to assess the temporal sequence (x0, x1, . . . , xT) and the utility u gives
us the degree of satisfaction of each choice xt, which is of course u(xt), then ∑T

t=0 βtu(xt) gives the
discounted utility of this temporal sequence. The β parameter accounts for the fact that people prefer
to enjoy utility as soon as possible.

Let us now give a real example that illustrates the application of our reference model for
intertemporal choice.

Example 1. On 7 November 2017, the Spanish infrastructure operator Ferrovial published a press release
(see https://www.ferrovial.com/en/press-room/press_releases/500-million-euro-2-124-perpetual-hybrid-bond/,
retrieved 18 August 2018.) It stated: “Taking advantage of a favorable market environment with low interest
rates, Ferrovial today successfully priced a 500 million euro perpetual hybrid bond. The issue pays a 2.124%
annual coupon until 14 May 2023. Subsequently, it will pay a fixed coupon equal to the applicable swap rate plus
a spread of 2.127% until 14 May 2043 and of 2.877% thereafter. The swap rate will be updated every five years.”

Therefore, Ferrovial perpetual bonds, with a face value of 100 euros, will pay a 2.124% annual coupon
during the first six years, 2.127% (supposing a swap rate of 0%) the following 20 years, and a 2.877% thereafter.
Table 1 expresses this intertemporal situation and gives the computations that produce the NPV at time 0 of such
a bond when we assume a discount rate of 3%, hence β = (1 + 0.03)−1 = 0.97087.
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Table 1. Detailed computations of the NPV, assuming a discount rate of 3%, in the real Example 1. It is
the sum of the present values at the right column of the table.

Period Interest Rate Cash-Flows Annual Coupon Discount Factor Present Value

1 2.124% 2.124 = 100 × 0.02124 0.97087 = (1 + 0.03)−1 = β1 2.0621 = 2.124 × 0.97087
2 2.124% 2.124 0.94260 = (1 + 0.03)−2 = β2 2.0021 = 2.124 × 0.94260
3 2.124% 2.124 0.91514 = β3 1.9438
4 2.124% 2.124 0.88849 = β4 1.8871
5 2.124% 2.124 0.86261 = β5 1.8322
6 2.124% 2.124 0.83748 = β6 1.7788
7 2.127% 2.127 = 100 × 0.02127 0.81309 = β7 1.7294
8 2.127% 2.127 0.78941 = β8 1.6791
...

...
...

...
...

26 2.127% 2.127 0.46369 = β26 0.9863

27 and onwards 2.877% 2.877 = 100 × 0.02877 44.4683 = 2.877
β26

0.03
NPV 82.4761

2.2. A Concise Presentation of Fuzzy Sets and Related Notions

Since Zadeh [27] laid the foundations of fuzzy set theory, whose main feature is the introduction of
partial membership degrees, many authors produced a large amount of literature on their advantages
and potential applications in decision making. Mardani et al. [28] gave a summary of articles about
fuzzy multi-criteria decision making from the period 1994–2014. Other classical references for the
fundamentals of decision making in fuzzy set theory include Tanino [29] and Fodor and Roubens [30].

When imprecise individual or collective knowledge cannot be faithfully represented by fuzzy
sets, extensions of this concept and multiple variations offer more suitable models. Atanassov [31,32]
presented the idea of intuitionistic fuzzy sets. Afterwards, Chen et al. [33] or Wei [34] produced
intuitionistic fuzzy multi-attribute group decision making methods, and De Miguel et al. [35] applied
interval-valued Atanassov intuitionistic fuzzy sets in multi-expert decision making. Pythagorean fuzzy
sets are surveyed in Peng and Selvachandran [36], and interval-valued Pythagorean fuzzy sets were
studied by Peng and Yang [37] and Peng [38]. Hesitancy was first merged with fuzzy sets by Torra [39]
(for more information, a good source is Rodríguez et al. [40]; see also Alcantud and Torra [41] for the
first decomposition theorems and extension principles in the framework of hesitant fuzzy sets).

From a different position, rough set theory was established by Pawlak [42] and, in his first
formulation, an equivalence binary relation is the source of granulation of the set of alternatives.

It is at this junction that a different, parameterized description of the alternatives made its
appearance. The idea produced soft sets, extensions and hybrid models. Since they are a benchmark in
our paper, we proceed to describe them succinctly in the next subsection.

2.3. Soft Sets, Extensions and Hybrid Models

The theory of soft sets originates with the seminal paper [43]. Feng and Zhou ([44], Section 1)
cleverly described soft set theory in the following terms: it “is considered as a new mathematical
tool for dealing with uncertainties which is free from the inadequacy of parameter tools. In soft set
theory, the problem of setting the membership function simply does not arise as in fuzzy set theory,
which makes the theory convenient and easy to use in practice.” Its relevancy to decision making in
various fields was already pointed out in [43], which also explained that the models by fuzzy sets
and soft sets are linked to each other. Further relationships are proven in [45–48]. The early works
of Maji et al. [49] and Aktaş and Çağman [50] among others expanded the basic theory of soft sets.
Khameneh and Kılıçman [51] systematically reviewed multi-attribute decision-making based on soft
set theory. Zhan and Alcantud [52] recently summarized parameter reduction of soft sets, a thriving
area that allows for approaches in extended models.
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Indeed, suitable extensions of soft sets come up from the incorporation of ideas such as the
aforementioned fuzziness and hesitancy. Fuzzy soft sets were designed by Maji, Biswas and Roy [53].
Parameter reduction in the context of fuzzy soft sets was developed, e.g., by Khameneh and
Kılıçman [54]. Wang, Li and Chen [55] produced hesitant fuzzy soft sets by adding up hesitancy
to the latter concept. Because data collection and measurement often produce errors or are restricted,
some studies (e.g., [56–58]) are concerned with another extended form of soft sets called incomplete
soft sets, while other [59,60] are concerned with the natural extension called incomplete fuzzy soft sets.

Let us now consider fuzzy soft set based decision making. The performance of the pioneering
analysis by Roy and Maji [61] has been improved by [62,63]. Feng et al. [64] put forward a flexible
method based on level soft sets. They explained that [65] challenges the position in [61] by claiming
that the criterion for making a decision should use scores instead of fuzzy choice values, a point
of view that found little support among other scholars. Liu et al. [66] gave another methodology
for fuzzy soft set based decision-making based on an ideal solution. Feng and Guo [67] intended
to effectively resolve the natural group decision-making problem in the context of fuzzy soft sets.
To achieve their goal, they first design another adjustable method for solving fuzzy soft set based
decision-making problems.

Hybrid models combine the spirit of soft sets with other methodologies. Peng, Dai and Yuan ([68]
and the references therein) contributed to interval-valued fuzzy soft decision making. Park, Kwun and
Son [69] gave an approach to decision making problems based on generalized intuitionistic fuzzy soft
sets (see also [70] for the operations in that framework). Feng et al. [48] used soft approximation spaces
instead of binary relations in rough set theory. Zhan and Wang [71] built five new different types
of soft coverings based rough sets and investigated relationships between soft rough sets and soft
covering based rough sets. Zhan and Alcantud [72] designed a soft rough covering by means of soft
neighborhoods, which they utilized to improve decision making in a multi-criteria group environment.
Ma et al. [73] presented an updated summary of decision making methodologies based on two classes
of hybrid soft set models. Fatimah et al. [74] studied the decision-making implications of probabilistic
and dual probabilistic soft sets.

Now, we proceed to state the formal definitions that we shall use in the remaining of this paper.

3. Definitions: Soft Sets and Fuzzy Soft Sets

In soft set theory and their extensions, we start with U, which is a set of alternatives (or a universe
of objects), and E, which is a universal set of attributes, parameters or characteristics. We let P(U)

denote the set of parts of U, i.e., the set formed by all the subsets of U.

Definition 1 (Molodtsov [43]). A soft set over U is a pair (F, A) with A ⊆ E and F : A −→ P(U).

A soft set over U is a parameterized family of subsets of U, and the set A contains the relevant
parameters. For every e ∈ A, the subset F(e) is the set of e-approximate elements, or also, the subset
of U approximated by e. For example, if U = {s1, s2, s3} is a universe of shirts and A contains
the parameter e that describes “blue color” and the parameter e′ that describes “silk fabric” then
F(e) = {s1}means that the only shirt with blue color is s1 and F(e′) = {s1, s3}means that exactly s1

and s3 have silk fabric.
To model more general situations, the following notion is subsequently proposed and investigated

in [53]:

Definition 2 (Maji, Biswas and Roy [53]). Let FS(U) denote the set of all fuzzy sets on U. The pair (F, A)

is a fuzzy soft set (FSS) over U when A ⊆ E and F : A −→ FS(U).

Needless to say, soft sets are an example of fuzzy soft sets. However, fuzzy soft sets are better
suited to model subjectively perceived properties, since partial memberships are designed to express
such subjectivity.
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In the standard instance with finite U and A, both soft and fuzzy soft sets can be displayed in the
form of a table, where rows correspond to the alternatives in U, columns correspond to the attributes
in A, and there is a number from [0, 1] in each cell. Of course, the cells of these matrices contain either
0 or 1 when the fuzzy soft set is a soft set.

To illustrate these ideas and motivate the subsequent decisional analysis, let us put forward an
example in terms of an object recognition problem:

Example 2. A collection of objects U = {o1, ..., o6} is characterized in terms of a space of attributes which
is denoted as A = {p1, . . . , p7}. Here, the attributes represent the relevant combinations of characteristics.
The fuzzy soft set that describes the objects is (F, A), which is given by the tabular representation in Table 2.
For illustration, number 0.650 at the junction of Row o1 and Column p1 means that the degree of membership of
o1 to the objects that verify characteristic p1 is 0.650.

Table 2. Tabular representation of the fuzzy soft set (F, A) in Example 2.

p1 p2 p3 p4 p5 p6 p7

o1 0.650 0.150 0.064 0.216 0.048 0.054 0.405
o2 0.144 0.720 0.360 0.045 0.036 0.020 0.175
o3 0.120 0.084 0.180 0.350 0.096 0.021 0.294
o4 0.504 0.192 0.108 0.090 0.048 0.620 0.280
o5 0.084 0.245 0.036 0.096 0.270 0.200 0.320
o6 0.216 0.315 0.042 0.108 0.224 0.126 0.410

Fuzzy Soft Set Based Decision Making

Soft set based decision making relies on [44,75,76]. However, since the appearance of the
seminal [61], there have been many remarkable approaches to decision making in the framework
of fuzzy soft sets. The most successful contributions include [61–67]. We do not describe them all in
detail here. For our purposes, it should suffice to know their general features and relative advantages,
which are summarized in Table 3. It compares various noteworthy criteria with respect to their
main characteristics.

Table 3. A critical summary of the main fuzzy soft set based decision making procedures.

Ref. Aggregation Methodology Solution Other Issues

[61] Min operator Scores from a Unique Many ties
comparison matrix Loss of information

[63] reformulates algorithm

[65] Not discussed Fuzzy choice values Unique It is too controversial

[64] Not discussed Choice value of level Not unique Ties multiply
soft set Richness at the cost of

indeterminacy
Additional inputs needed
(e.g., threshold fuzzy set)

[62] Product Scores from alternative Unique Improved power of discrimination
operator comparison matrix

[66] Not discussed Similarity measure Unique Application of subjective weights
and substitutable Low time complexity

[67] Not discussed Distance measure for Not unique Two methods for obtaining
Group Decision Making appropriate experts’ weights

As explained in Section 1, ultimately we need to make choices from a fuzzy soft set to solve the
intertemporal choice problem for fuzzy soft sets that we present in Section 4. Therefore, it is convenient
to be familiar with the machinery of at least one such procedure. For the sake of clarity, to apply fuzzy
soft sets in decision making practice, we focus on the proposal by Alcantud [62], who stated a feasible
algorithmic solution to solve problems in the format of Example 2.
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To make this paper self-contained, we recall that the application of Alcantud’s algorithm
proceeds as follows (afterwards Example 3 illustrates the application of Algorithm 1 below to a
concrete situation):

Algorithm 1 (Alcantud [62])

Input: a fuzzy soft set (F, A), which we place in the form of a table. Its cell (i, j) is represented by tij

1: For every attribute j, let Mj denote the maximum membership value of the alternatives, i.e.,
Mj = maxi=1,...,k tij for each j = 1, ..., q.

Produce a k× k comparison matrix A = (aij)k×k as follows: for every i, j, aij is the sum of the
non-negative values in the following finite sequence:

ti1 − tj1

M1
,

ti2 − tj2

M2
, ......,

tiq − tjq

Mq
.

We can display this matrix as a comparison table.
2: For each i = 1, ..., k, calculate Ri as the sum of the elements in row i of A, and Ti as the sum of the

elements in column i of A. For every i = 1, ..., k, calculate the score Si = Ri − Ti of object i.
3: The result of the decision is any object ok such that Sk = maxi=1,...,k Si.

Example 3. Let us assume that we have the input data of Example 2. Its comparison table is given in Table 4,
as computed by Algorithm 1 above. Then, Table 5 shows its associated scores.

As a result, one concludes that o4 should be selected when we consider the input data of Example 2 and we
adhere to Algorithm 1.

Table 4. Comparison table of the fuzzy soft set (F, A) in Example 2 using Algorithm 1.

o1 o2 o3 o4 o5 o6

o1 0 1.93 1.23 0.89 1.5 1.04
o2 1.61 0 1.42 1.43 1.65 1.45
o3 0.88 1.39 0 1.15 1.18 1.07
o4 1.09 1.95 1.71 0 1.52 1.42
o5 1.19 1.66 1.22 1.01 0 0.29
o6 1.01 1.73 1.39 1.19 0.57 0

Table 5. Score table of the fuzzy soft set (F, A), derived from its Comparison table by Algorithm 1.

Row-Sum (Ri) Column-Sum (Ti) Score (Si)

o1 6.58 5.79 0.79
o2 7.57 8.65 −1.08
o3 5.68 6.97 −1.29
o4 7.7 5.68 2.02
o5 5.37 6.43 −1.06
o6 5.9 5.27 0.63

4. A New Model: Intertemporal Fuzzy Soft Sets

Thus far, the literature has dealt with alternatives with a very simple structure: for each
characteristic, we know the degree of membership of the alternative to the set of elements that
verify the characteristic. However, it is not difficult to find examples where the performance of the
options is far more complex. Particularly, in this paper, we are concerned with an intertemporal setting.
Indeed, in the general framework of project selection (e.g., solar energy projects [77], environmental
impact assessment [78], financial portfolio [79], etc.), each alternative has a performance along an
indefinite number of periods, typically years. Therefore, if we want to decide which of a list of projects
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should be selected, we face an infinite number of fuzzy soft sets (one that represents each possible
period). Neither of the existing approaches to fuzzy soft set based decision making can deal with this
potentially infinite structure.

To tackle this new problem, now we proceed to formalize our model. It accounts for the
intertemporal setting that we have motivated. Afterwards, we interpret the formal statement of
the model in terms of tables when the number of alternatives and attributes is finite, which facilitates
their computational manipulation. In the next section, we give a procedure for making decisions in this
novel framework. In addition, in that section, an example illustrates the decision making algorithm in
a situation motivated by public projects evaluation. For comparison, recall that Example 1 shows a
recent, real situation in a financial environment with crisp data.

4.1. The Structure of Intertemporal Fuzzy Soft Sets

Molodtsov’s notion of parameterized descriptions of the universe has already been combined
with features that do not pertain to the original formulation of soft sets. Here, we propose a model
where for each of a possibly infinite number of periods, each attribute produces a possibly different
fuzzy parameterization of the universe.

The statement of the model is simple but powerful:

Definition 3. An intertemporal fuzzy soft set (ItFSS) over U is a sequence F = {(Fi, A)}i∈N of fuzzy soft sets
over the common universe U.

In Section 4.2, we specify two alternative formulations of this definition, that are amenable for
calculations with computers.

The basic idea is that the fuzzy parameterization of the universe is allowed to vary with time.
According to this model, a fixed set of attributes is given, and then for each period i a parameterized
description of the common universe produces a fuzzy soft set (Fi, A) which accounts for the situation
at that period. To emphasize differences, on occasions, we refer to these standard FSSs as static FSSs.

Remark 1. When the sequence in Definition 3 is constant (in other words, we use {(Fi, A)}i∈N with Fi = F
for each i), then we identify the ItFSS with a standard FSS. Therefore, our model of ItFSSs is a natural extension
of FSSs in Definition 2.

Henceforth, we assume that the common attributes in A are all positive (otherwise, we can
proceed as in [80] to convert the input into this format). Therefore, the higher is the membership
degree, the better. The decision problem that arises consists of determining an optimal alternative
from the list U. We propose a flexible solution in Section 5.

The next motivating example illustrates the structure of our model above. Observe that in this
simplified statement it is possible to display the information pertaining to an intertemporal fuzzy soft
set in one table, even though it concerns an infinite number of periods:

Example 4. A civil project (e.g., building a bridge or a dam) will have a long-term impact on the population of a
certain geographical area. There are two targets that should be achieved: environmental effects (e1) and economic
development (e2). Let A = {e1, e2}. There are two possible projects, namely, p1 and p2. Their respective yearly
effects are captured by the ItFSS G = {(Gi, A)}i∈N over U shown in Table 6, where U = {p1, p2}.

It is not difficult to check that, in every period i, the positive effects of p1 exceed the effects of p2 at any of
the two target attributes:

0.3 +
1

i + 1
> 0.2 +

1
i + 2

for each i

0.4 +
1

i + 1
> 0.3 +

1
i + 2

for each i

Therefore, project p1 should be selected.
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Table 6. A tabular representation of the intertemporal fuzzy soft set G = {(Gi, A)}i∈N in Example 4.

(Gi, A) e1 e2

p1 0.3 + 1
i+1 0.4 + 1

i+1
p2 0.2 + 1

i+2 0.3 + 1
i+2

The streamlined Example above is very simple for two reasons. Firstly, even though there are an
infinite number of different FSSs for the infinite periods, the ItFSS can be represented by one parametric
table, which is often not the case. Secondly, we do not need to use the theoretical contribution of
Section 5 because the decision about which project should be selected is trivial: there is a sort of
domination of the first project over the second in all attributes and for all periods that makes the
decision obvious. Now, we proceed to give a different example where the modelling power of ItFSSs is
more apparent. We can also infer the need for a formal analysis of decision making in that context,
hence the next example motivates Section 5.

Example 5. A new regulation will have long-term effects on the population of a country. There are three
groups that are potentially affected in terms of satisfaction: students (e1), working class (e2) and retired
people (e3). There are two possibilities, namely, passing the law (p1) and retaining the current regulation (p2).
Their respective yearly effects on the satisfaction across groups are captured by Table 7, which embodies an ItFSS
F = {(Fi, A)}i∈N over U = {p1, p2} where A = {e1, e2, e3}.

We read, for example, that in year 1 the students’ degree of membership to being satisfied with the new
regulation is 0.3, and it is 0.2 under the current law. For the working class, the respective degrees of satisfaction
are 0.4 and 0.6. For retired people, the respective degrees of satisfaction are 0.7 and 0.8.

From the third year onwards, the students’ degree of membership to being satisfied with the new regulation
is 0.6, and it is 0.3 under the current law. For the working class, the respective degrees of satisfaction are 0.6 and
0.4. For retired people, the respective degrees of satisfaction are 0.8 and 0.6.

Table 7. Tabular representation of the intertemporal fuzzy soft set in Example 5.

(F1, A) e1 e2 e3

p1 0.3 0.4 0.7
p2 0.2 0.6 0.8

(F2, A) e1 e2 e3

p1 0.4 0.4 0.7
p2 0.3 0.5 0.7

(Fi, A) e1 e2 e3

p1 0.6 0.6 0.8
p2 0.3 0.4 0.6

∀i > 2

Example 5 shows the intrinsic difficulty of dealing with these problems. The snapshots at different
moments can vary substantially from each other, and of course they are not always as obvious as the
situation of Example 4. Additionally, the “attributes” can have different weights, for example because
they represent characteristics of groups with different proportions in the society.

For the purpose of favoring implementability, now we proceed to state an equivalent formulation
of our intertemporal model. It allows us to work with a tabular format that is amenable
for computations.
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4.2. An Alternative Representation of Intertemporal Fuzzy Soft Sets

In practical terms, when both U = {o1, . . . , om} and A = {e1, . . . , en} are finite, we can represent
the information that describes an ItFSS in a table where the cells are either finite or infinite sequences
of membership degrees. Table 8 gives the general form of such a representation.

Table 8. The tabular representation of our novel intertemporal model for fuzzy soft sets.

e1 e2 . . . en

o1 (u1
11, u2

11, . . . , ut
11, . . .) (u1

12, u2
12, . . . , ut

12, . . .) . . . (u1
1n, u2

1n, . . . , ut
1n, . . .)

...
om (u1

m1, u2
m1, . . . , ut

m1, . . .) (u1
m2, u2

m2, . . . , ut
m2, . . .) . . . (u1

mn, u2
mn, . . . , ut

mn, . . .)

Let us analyze this alternative description. To that purpose, the set of infinite sequences of
numbers from [0, 1] (or infinite utility streams [81–83]) is denoted by S . Our intertemporal model of
fuzzy soft sets over U can also be defined by F̄ : A −→ S(U) where S(U) represents the mappings
U −→ S . Consequently, for each attribute, we capture the degree of membership of any alternative in
each moment of time.

Indeed, in Table 8, we can define F̄(ej)(oi) = (u1
ij, u2

ij, . . . , ut
ij, . . .) ∈ S , hence ut

ij means the
degree of membership of alternative oi to the fuzzy set of elements that verify attribute ej in period t.
Conversely, every F̄ : A −→ S(U) produces a table with the structure of Table 8 under the finiteness
restriction for both A and U.

We can also swap between the tabular form and the notation of Definition 3.
From the aforementioned tabular representation of F̄ : A −→ S(U), we can define the corresponding

ItFSS over U as the sequence F = {(Fi, A)}i∈N where the tabular form of each FSS (Fi, A) is described
in Table 9.

Table 9. The tabular representation of the fuzzy soft set (Fi, A) corresponding to moment i in the ItFSS
F = {(Fi, A)}i∈N represented by Table 8.

e1 e2 . . . en

o1 ui
11 ui

12 . . . ui
1n

...
om ui

m1 ui
m2 . . . ui

mn

Conversely, an ItFSS given by the construction in Section 4.1 can be trivially transformed into the
tabular form presented in this subsection. We do this in Table 10 for the case of G in Example 4.

Table 10. The tabular representation of G = {(Gi, A)}i∈N in Example 4.

G e1 e2

p1 (0.3 + 1
2 , 0.3 + 1

3 , 0.3 + 1
4 , . . .) (0.4 + 1

2 , 0.4 + 1
3 , 0.4 + 1

4 , . . .)
p2 (0.2 + 1

3 , 0.2 + 1
4 , 0.2 + 1

5 , . . .) (0.3 + 1
3 , 0.3 + 1

4 , 0.3 + 1
5 , . . .)

5. Choices from Intertemporal Fuzzy Soft Sets

When it comes to prioritizing alternatives in the framework of intertemporal fuzzy soft sets, the
most natural course of action is to associate a FSS with our original ItFSS and then apply Algorithm 1
(or any other existing proposal, see Table 3) to the latter fuzzy soft set.
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To implement this solution, now we proceed to describe some procedures that from each ItFSS
produce a static or standard fuzzy soft set (cf., Section 5.1). Afterwards, we show how we can integrate
these procedures with decision making based on FSSs to design an intertemporal fuzzy soft set based
decision making procedure (cf., Section 5.2).

5.1. Static FSSs Associated with an Intertemporal FSS

In this subsection, we formalize some methods that associate a static FSS (Definition 2) with any
intertemporal FSS (Definition 3). We refer to these methods as reduction mechanisms.

The simplest reduction mechanisms act cell-by-cell on the tabular representation. For instance,
one can pinpoint the evaluation at a distinguished moment (e.g., the first period); or, in the case of
finite time horizon, their lowest or highest evaluation, their (either arithmetic or geometric) average,
etc. Under a genuine infinity of periods, we can use the natural modifications by infimum, supremum
or discounted sums for the same purpose.

Let us now formalize a few explicit reduction mechanisms. We fix F = {(Fi, A)}i∈N, an
intertemporal fuzzy soft set over U. We can obtain a reduced FSS associated with F by the application
of one of the following expressions:

1. The pessimistic FSS associated with F is (Fp, A) such that the fuzzy parameterization Fp : A −→
FS(U) verifies that for each a ∈ A, Fp(A) = inf{Fi(a) : i ∈ N}.

2. The optimistic FSS associated with F is (Fo, A) such that the fuzzy parameterization Fo : A −→
FS(U) verifies that for each a ∈ A, Fo(A) = sup{Fi(a) : i ∈ N}.

3. Let δ ∈ [0, 1) be a factor. The δ-discounted FSS associated with F is (Fδ, A), where the fuzzy
parameterization Fδ : A −→ FS(U) verifies that for each a ∈ A,

Fδ(A) =
1− δ

δ

∞

∑
i=1

δiFi(a). (2)

Observe that these definitions are correct: the only non-trivial case is justified in the following
auxiliary result.

Lemma 1. The δ-discounted FSS is well-defined, i.e., it is a FSS.

Proof. We just need to observe that, because each (Fi, A) is a FSS, ∑∞
i=1 δiFi(a) is bounded above by

∑∞
i=1 δi = δ

1−δ . Hence, ∑∞
i=1 δiFi(a) converges for each a ∈ A, and 1−δ

δ ∑∞
i=1 δiFi(a) 
 1. Obviously,

1−δ
δ ∑∞

i=1 δiFi(a) � 0.

The first two reduction mechanisms are symmetric, in the standard sense: when Fσ =

{(Fσ(i), A)}i∈N is the ItFSS derived from a permutation of the periods σ : N −→ N, one has Fp
σ = Fp

and Fo
σ = Fo. However, the δ-discounted reduction mechanism violates the symmetric treatment of the

periods, i.e., the statement Fδ
σ = Fδ is in general false in the aforementioned conditions.

However, the δ-discounted reduction mechanism has an important advantage over the pessimistic
and optimistic reduction mechanisms. The pessimistic and optimistic reduction mechanisms produce
a considerable loss of information because they discard the data about the degrees of membership that
are not minimal and maximal respectively, whereas the δ-discounted reduction mechanism uses all the
information available to produce the reduced FSS.

Our next remark insists on the importance of this mechanism in decision making.

Remark 2. The deduction of the δ-discounted FSS is motivated by a successful solution to the problem of
aggregating intergenerational utilities [81–83]. In Section 2.1, we explained that according to the popular DU
model [11,12,84], decision-makers evaluate the alternatives on the basis of the weighted addition of utilities,
these weights being discount factors based on temporal delays. In our benchmark case, these delays can extend
to infinity.
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Due to the aforementioned advantages, henceforth we adopt the δ-discounted reduction
mechanism as the standard mechanism for transforming an ItFSS into a FSS in practical problems.

5.2. Decision Making in Intertemporal FSSs

We are ready to put forward a procedure for ranking a finite list of alternatives when the
decision-making problem is characterized by an intertemporal FSS. It consists of three basic steps.

Put shortly, the algorithm suggests to reduce the ItFSS to a FSS (Step 1) and then order the
alternatives according to standard decision-making in this framework (Step 2). The ordering in the
reduced FSS carries forward in the ItFSS for which it is a natural representation (Step 3), which solves
our problem. The next subsection illustrates how this can be put into practice in a concrete example of
project appraisal.

5.3. An Example of Decision Making in the Framework of ItFSSs

In this section, we develop an example that serves two purposes. Firstly, we describe the structure
of the problem in a practical fashion that is different from the description in Section 4.2. Secondly, it
illustrates the application of Algorithm 2.

Algorithm 2 Algorithm for decision making

Inputs: An intertemporal table of fuzzy soft sets (in the notation of Table 8 or, otherwise, see Section 5.3).
A reduction mechanism (e.g., from Section 5.1). A fuzzy soft set decision making procedure (e.g., from
Table 3).

1: Apply the selected reduction mechanism to the ItFSS in order to obtain a (reduced) FSS.
2: Rank the alternatives in this FSS by the decision making procedure that we have singled out.
3: Any object that is at the top of the ranking in the previous step is an optimal choice of the

intertemporal statement of the problem.

Example 6. For the convenience of presentation, we are going to evaluate two alternative portfolios of projects
that a public administration may undertake. Portfolios 1 and 2 are parameterized in terms of four attributes
along an infinite number of periods, and each of these characteristics can also be regarded as a project on its own
(e.g. bike lanes, urban parks, sports facilities, and sewage treatment plants). The objective of this evaluation is to
choose the best alternative.

For each project, a value for its social suitability in each period is assigned. To simplify, we consider
projects whose utilities follow the following patterns: increasing and then constant; decreasing and then constant;
decreasing, then increasing and finally constant; and constant.

Tables 11 and 12, respectively, describe these two portfolios P1 and P2. At their bottoms they contain
additional values whose meaning we explain below.

These tables jointly define an ItFSS that we have displayed in Table 13, albeit in incomplete form due
to obvious restrictions: we cannot display the infinite digits that appear at each cell. According to Step 1 of
Algorithm 2, with this element we associate a standard FSS that we denote as (S, P), by the application of the
DU reduction mechanism with a 0.05 discount rate, hence δ = 1

1.05 ≈ 0.952381. The suitability of this rate
has been argued in Section 2.1. Let us denote T = 1−δ

δ = 0.05. The reduced fuzzy soft set (S, P) is displayed
in Table 14. The results of the computations that produce it already appear at the bottom of Tables 11 and 12,
and now we explain how we have obtained them (see Equation (2), and Remark 2 for inspiration). In the case of
Portfolio 1,

A1 = 13.085321 = 0.05δ + 0.10δ2 + 0.15δ3 + 0.20δ4 + . . .

A2 = 10.60642701 = 1δ + 0.95δ2 + 0.90δ3 + 0.85δ4 + . . .

A3 = 14 = 0.70δ + 0.70δ2 + 0.70δ3 + 0.70δ4 + . . .

A4 = 18.3258941 = 0.05δ + 0.10δ2 + 0.15δ3 + 0.20δ4 + . . . + 0.70δ9 + 0.75δ10 + . . .
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Therefore, in the reduced FSS (S, P), Equation (2) states that the degrees of membership for Portfolio 1 are
T ∗Ai. We proceed similarly to obtain the degrees of membership for Portfolio 2.

We now apply Algorithm 1 to the FSS (S, P). Table 15 gives the necessary computations.
From the last computation in Table 15, we conclude that the first portfolio should be selected.

Table 11. Portfolio 1.

Period Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 0.05 1.00 0.70 1.00
2 0.10 0.95 0.70 0.95
3 0.15 0.90 0.70 0.90
4 0.20 0.85 0.70 0.85
5 0.25 0.80 0.70 0.80
6 0.30 0.75 0.70 0.75
7 0.35 0.70 0.70 0.70
8 0.40 0.65 0.70 0.65
9 0.45 0.60 0.70 0.70
10 0.50 0.55 0.70 0.75
11 0.55 0.50 0.70 0.80
12 0.60 0.45 0.70 0.85
13 0.65 0.40 0.70 0.90
14 0.70 0.35 0.70 0.95
15 0.75 0.35 0.70 1.00
16 0.80 0.35 0.70 1.00
17 0.85 0.35 0.70 1.00
18 0.90 0.35 0.70 1.00
19 0.95 0.35 0.70 1.00
20 1.00 0.35 0.70 1.00
21 1.00 0.35 0.70 1.00
22 1.00 0.35 0.70 1.00

23 and onwards 1.00 0.35 0.70 1.00

Ai 13.085321 10.60642701 14 18.3258941

Ai*T 0.65427 0.530321351 0.7 0.91629471
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Table 12. Portfolio 2.

Period Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 0.00 1.00 0.60 1.00
2 0.10 0.94 0.60 0.90
3 0.20 0.88 0.60 0.80
4 0.30 0.82 0.60 0.70
5 0.40 0.76 0.60 0.60
6 0.50 0.70 0.60 0.50
7 0.60 0.64 0.60 0.40
8 0.70 0.58 0.60 0.30
9 0.80 0.52 0.60 0.40
10 0.90 0.52 0.60 0.50
11 1.00 0.52 0.60 0.60
12 1.00 0.52 0.60 0.70
13 1.00 0.52 0.60 0.80
14 1.00 0.52 0.60 0.90
15 1.00 0.52 0.60 1.00
16 1.00 0.52 0.60 1.00
17 1.00 0.52 0.60 1.00
18 1.00 0.52 0.60 1.00
19 1.00 0.52 0.60 1.00
20 1.00 0.52 0.60 1.00
21 1.00 0.52 0.60 1.00
22 1.00 0.52 0.60 1.00

23 and onwards 1.00 0.52 0.60 1.00

Ai 15.44 12.24 12.00 16.65

Ai*T 0.772173493 0.612207234 0.6 0.832589415

Table 13. A (necessarily incomplete) tabular representation of the intertemporal fuzzy soft set in
Example 6. Each cell actually contains an infinite sequence.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

P1 (0.05, 0.10, 0.15, 0.20, 0.25, . . .) (1.00, 0.95, 0.90, 0.85, 0.80, . . .) (0.70, 0.70, 0.70, 0.70, . . .) (1.00, 0.95, 0.90, 0.85, 0.80, . . .)
P2 (0.00, 0.10, 0.20, 0.30, 0.40, . . .) (1.00, 0.94, 0.88, 0.82, 0, 76, . . .) (0.60, 0.60, 0.60, 0.60, . . .) (1.00, 0.90, 0.80, 0.70, 0.60, . . .)

Table 14. Tabular representation of the reduced fuzzy soft set (S, P) in Example 6.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

P1 0.65 0.53 0.70 0.92
P2 0.77 0.61 0.60 0.83

Table 15. Computing the Comparison table and scores of the reduced fuzzy soft set (S, P) through
Algorithm 1.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

Diff. memberships P1 vs. P2 −0.12 −0.08 0.10 0.08
Diff. memberships P2 vs. P1 0.12 0.08 −0.10 −0.08

Mj 0.77 0.61 0.70 0.92

P1 P2

P1 0 0.29
P2 0.23 0

Row-Sum (Ri) Column-Sum (Ti) Score (Si)

P1 0.29 0.23 0.06
P2 0.23 0.29 −0.06
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6. Discussion and Concluding Remarks

We have designed a pioneering framework for making choices in soft computing models. For the
first time in this broad area, we have considered the situation where the consequences of a decision
extend along an unlimited number of periods, such as a financial investment or a social project. Existing
models universally refer to a finite framework, hence they are incapable of dealing with these practical
issues. We have set the grounds for a correct extension to this critical aspect of decision making.

In this paper, our reference model for uncertainty has been fuzzy soft sets, which allows for
fuzzy parameterized description of the alternatives in terms of a list of attributes. We have opted for
working with this environment because fuzzy soft sets are especially amenable for decision making,
with plenty of interesting approaches in the literature. Future research should expand the scope of the
intertemporal analysis that we have founded to other frameworks such as incomplete fuzzy soft sets,
rough sets, hesitant fuzzy sets, or hesitant fuzzy soft sets among many others. Whatever the selected
format for the input data, when choices extend along an infinite number of periods, the fundamental
roadmap for making decisions has been established in this paper.

Obviously, it may also be possible to approach the exact problem that we have described in this
paper by alternative methodologies to improve the performance of our proposal, or make it more
faithfully adapted to the circumstances of the problem under inspection.

Overall, we believe that the intertemporal modelization may become a thriving area of research
in the extended theories of fuzziness, vagueness and uncertainty.
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Abstract: We consider the constrained ordered weighted averaging (OWA) aggregation problem
with a single constraint and lower bounded variables. For the three-dimensional constrained OWA
aggregation problem with lower bounded variables, we present four types of solution depending
on the number of zero elements. According to the computerized experiment we perform, the lower
bounds can affect the solution types, thereby affecting the optimal solution of the three-dimensional
constrained OWA aggregation problem with lower bounded variables.

Keywords: ordered weighted averaging (OWA) operators; constrained OWA aggregation problem;
lower bounded variables

1. Introduction

An ordered weighted averaging (OWA) operator, proposed by Yager [1], is a general class
of parametric aggregation operators that appears in many applications such as control, decision
making, expert systems, fuzzy system, neural networks, regression analysis and risk analysis [2–6].
A citation-based survey of the literature in all types of optimization problems associated to OWA
operators can be found in [7]. In 1996, Yager [8] investigated the constrained OWA aggregation
problem [8–15] which is concerned with an optimization problem with an OWA operator. In particular,
for the constrained OWA aggregation problem with a single constraint on the sum of all variables,
Yager [8] presented the optimal solutions for the three-dimensional case. Furthermore, Carlsson,
Fullér and Majlender [9] proposed a simple algorithm for obtaining the optimal solutions for any
dimensions. Recently, Coroianu and Fullér [10] presented the optimal solution for the constrained
OWA aggregation problem with a single constraint and any coefficients. However, in most practical
problems the variables are usually bounded. This paper considers the three-dimensional constrained
OWA aggregation problem with lower bounded variables.

The organization of this paper is as follows. Section 2 briefly reviews the constrained OWA
aggregation problem. Section 3 discusses the constrained OWA aggregation problem with the same
lower bounds. Section 4 presents the solution behaviors of three-dimensional constrained OWA
aggregation problems with lower bounded variables. Section 5 outlines the design of the experiment
and evaluates the optimal solution behaviors of the three-dimensional constrained OWA aggregation
problems with the lower bounded variables. Finally, some concluding remarks are presented.

2. Constrained Ordered Weighted Averaging (OWA) Aggregation Problem

An OWA operator of dimension n is a mapping F : Rn → R that associates a weighting vector
W = (w1, w2, . . . , wn) satisfying:

w1 + w2 + . . . + wn = 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . , n

Symmetry 2018, 10, 339; doi:10.3390/sym10080339 www.mdpi.com/journal/symmetry487
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and such that:
F(x1, x2, . . . , xn) = ∑n

i=1 wiyi, (1)

with yi being the ith largest of {x1, x2, . . . , xn}.
Consider the following constrained OWA aggregation problem:

Max WTY
s.t.AX ≤ b

X ≥ 0

(2)

where the column vectors X, Y, W and b, and the m× n matrix A are:

X =

⎡⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎦,Y =

⎡⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎦,W =

⎡⎢⎢⎢⎢⎣
w1

w2
...

wn

⎤⎥⎥⎥⎥⎦,b =

⎡⎢⎢⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎥⎥⎦,A =

⎡⎢⎢⎢⎢⎣
a11 a12

a21 a22
· · · a1n

a2n
...

. . .
...

am1 am2 · · · amn

⎤⎥⎥⎥⎥⎦.

By introducing the (n− 1)× n matrix:

G =

⎡⎢⎢⎢⎢⎣
−1 1 0 0
0 −1 1 0

· · · 0 0
0 0

...
. . .

...
0 0 0 0 · · · −1 1

⎤⎥⎥⎥⎥⎦
and the column binary vectors Zi ∈ {0, 1}n, i = 1, 2, . . . , n, Yager [8] transformed the above non-linear
programing problem to the following mixed integer linear programming (MIP) problem:

Max WTY
s.t.AX ≤ b

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0

(3)

where M is a huge positive number and I is the column vector with all elements equal 1.
For the MIP (3), the number of constraints is:

m + n− 1 + n2 + n− 1 = m + n2 + 2n− 2,

and the number of variables is:
n + n + (n− 1)n = n2 + n.
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In the literature, the constrained OWA aggregation problem with a single constraint on the sum
of all variables is as follows:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0.

(4)

If:

X∗ =

⎡⎢⎢⎢⎢⎣
x∗1
x∗2
...

x∗n

⎤⎥⎥⎥⎥⎦
is an optimal solution of (4), then, ⎡⎢⎢⎢⎢⎣

x∗σ1
x∗σ2

...
x∗σn

⎤⎥⎥⎥⎥⎦
is also the optimal solution, for some σ ∈ Sn, where Sn is the set of all permutations of the set
{1, 2, . . . , n}. To reduce the multiple solutions of the MIP (4), we introduce the following constraints:

Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2.

by inspecting the jth element of the constraint yiI − X−MZi ≤ 0,

yi − xj −MZij ≤ 0,

if Zij = 0, then:
yi ≤ xj.

From the optimal solution:

ITZi = n− i and ITZi+1 = n− i− 1

it follows that:
Zi+1,j = 0

so,
yi+1 ≤ xj.

If Zij = 1, then no restriction is imposed on yi, it implies that:

yi+1 ≤ xj and yi+1 > xj

so Zi+1,j = 0 or 1.
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Therefore, the more efficient MIP is as follows:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0.

(5)

3. Constrained OWA Aggregation Problem with the Same Lower Bounds

In most practical problems the variables are usually bounded. A typical variable xi is bounded
from below by li and from above by ui, where li < ui and i = 1, 2, . . . , n. If we let ui = ∞, we get the
following constrained OWA aggregation problem with lower bounded variables:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ L

(6)

where the column vector:

L =

⎡⎢⎢⎢⎢⎣
l1
l2
...

ln

⎤⎥⎥⎥⎥⎦.

By using the change of variable:
X′ = X− L

the lower bound vector can be transformed into the zero vector. The constrained OWA aggregation
problem with lower bounded variables is:

Max WTY
s.t.ITX′ ≤ 1− ITL

GY ≤ 0
yiI − X′ −MZi ≤ L, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X′ ≥ 0

(7)

490



Symmetry 2018, 10, 339

If 1−ITL < 0, the constrained OWA aggregation problem has no feasible solution. If 1−ITL = 0,
the unique optimal solution is X′∗ = 0, so:

X∗ = L.

It remains to discuss the case that 1− ITL > 0. More precisely, the three dimensional constrained
OWA aggregation problem with lower bounded variables is as follows:

Max F = w1y1 + w2y2 + w3y3

s.t. x′1 + x′2 + x′3 ≤ 1− l1 − l2 − l3
y2 − y1 ≤ 0
y3 − y2 ≤ 0
y3 − x′1 ≤ l1
y3 − x′2 ≤ l2
y3 − x′3 ≤ l3
y2 − x′1 −MZ21 ≤ l1
y2 − x′2 −MZ22 ≤ l2
y2 − x′3 −MZ23 ≤ l3
Z21 + Z22 + Z23 ≤ 1
y1 − x′1 −MZ11 ≤ l1
y1 − x′2 −MZ12 ≤ l2
y1 − x′3 −MZ13 ≤ l3
Z11 + Z12 + Z13 ≤ 2
Z21 ≤ Z11

Z22 ≤ Z12

Z23 ≤ Z13

x′1, x′2, x′3 ≥ 0, Z21, Z22, Z23, Z11, Z12, Z13 ∈ {0, 1}.

(8)

For the special case that the same lower bounds li = l, i = 1, 2, . . . , n, by the observing that the
ith largest (xσi) of {x1, x2, . . . , xn} is the same variable of the ith largest (x′σi) of

{
x′1, x′2, . . . , x′n

}
, let:

x′′i =
x′i

1− nl

it follows that the optimal solution is the same as that of the constrained OWA aggregation problem [8].
We establish the main results described as follows:

Theorem 1. Consider the three-dimensional constrained OWA aggregation problem (8).

(a) If w1 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

⎡⎢⎣ 1
0
0

⎤⎥⎦,

⎡⎢⎣ 0
1
0

⎤⎥⎦ or

⎡⎢⎣ 0
0
1

⎤⎥⎦, X∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦,

⎡⎢⎣ l
1− 2l

l

⎤⎥⎦ or

⎡⎢⎣ l
l

1− 2l

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦ and F = w1 + l − 3w1l.

(b) If w2 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

⎡⎢⎣ 1/2
1/2

0

⎤⎥⎦,

⎡⎢⎣ 1/2
0

1/2

⎤⎥⎦ or

⎡⎢⎣ 0
1/2
1/2

⎤⎥⎦,

X∗ =

⎡⎢⎣ (1− l)/2
(1− l)/2

l

⎤⎥⎦,

⎡⎢⎣ (1− l)/2
l

(1− l)/2

⎤⎥⎦ or

⎡⎢⎣ l
(1− l)/2
(1− l)/2

⎤⎥⎦, Y∗ =

⎡⎢⎣ (1− l)/2
(1− l)/2

l

⎤⎥⎦ and F =
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(1− w3 − l + 3w3l)/2 for w1 + w2 ≥ 2w3, and X
′′∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, X∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦,

and F = 1/3 for w1 + w2 ≤ 2w3.

(c) If w3 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

⎡⎢⎣ 1
0
0

⎤⎥⎦,

⎡⎢⎣ 0
1
0

⎤⎥⎦ or

⎡⎢⎣ 0
0
1

⎤⎥⎦, X∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦,

⎡⎢⎣ l
1− 2l

l

⎤⎥⎦ or

⎡⎢⎣ l
l

1− 2l

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦ and F = w1 + l − 3w1l for w2 + w3 ≤ 2w1, and

X
′′∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, X∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦ and F = 1/3 for w2 + w3 ≥ 2w1.

Proof. For the three-dimensional constrained OWA aggregation problem, three cases are considered.
Firstly, if:

w1 = max
i=1,2,3

wi

the optimal solutions are:

X
′′∗ =

⎡⎢⎣ 1
0
0

⎤⎥⎦,

⎡⎢⎣ 0
1
0

⎤⎥⎦ or

⎡⎢⎣ 0
0
1

⎤⎥⎦
So

X∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦,

⎡⎢⎣ l
1− 2l

l

⎤⎥⎦ or

⎡⎢⎣ l
l

1− 2l

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦
and the most favorable value is:

F = w1 + l − 3w1l.

Secondly, if:
w2 = max

i=1,2,3
wi

two subcases are considered. If:
w1 + w2 ≥ 2w3,

then the optimal solutions are:

X
′′∗ =

⎡⎢⎣ 1/2
1/2

0

⎤⎥⎦,

⎡⎢⎣ 1/2
0

1/2

⎤⎥⎦ or

⎡⎢⎣ 0
1/2
1/2

⎤⎥⎦
so:

X∗ =

⎡⎢⎣ (1− l)/2
(1− l)/2

l

⎤⎥⎦,

⎡⎢⎣ (1− l)/2
l

(1− l)/2

⎤⎥⎦ or

⎡⎢⎣ l
(1− l)/2
(1− l)/2

⎤⎥⎦, Y∗ =

⎡⎢⎣ (1− l)/2
(1− l)/2

l

⎤⎥⎦
and the largest objective function value is:

F = (1− w3 − l + 3w3l)/2.
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If:
w1 + w2 ≤ 2w3,

then the optimal solutions are:

X
′′∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦
so:

X∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦ and F = 1/3

Finally, if:
w3 = max

i=1,2,3
wi

two subcases are considered. If:
w2 + w3 ≤ 2w1,

then the optimal solutions are:

X
′′∗ =

⎡⎢⎣ 1
0
0

⎤⎥⎦ ,

⎡⎢⎣ 0
1
0

⎤⎥⎦ or

⎡⎢⎣ 0
0
1

⎤⎥⎦
so:

X∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦ ,

⎡⎢⎣ l
1− 2l

l

⎤⎥⎦ or

⎡⎢⎣ l
l

1− 2l

⎤⎥⎦ , Y∗ =

⎡⎢⎣ 1− 2l
l
l

⎤⎥⎦,

and:
F = w1 + l − 3w1l.

If:
w2 + w3 ≥ 2w1,

then the optimal solutions are:

X
′′∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦
so:

X∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦, Y∗ =

⎡⎢⎣ 1/3
1/3
1/3

⎤⎥⎦ and F = 1/3. �

4. Constrained OWA Aggregation Problem with Lower Bounded Variables

For simplicity, we consider the three-dimensional constrained OWA aggregation problem with
lower bounded variables. From the optimal solution of the first constraint of the model (8):

x′1 + x′2 + x′3 = 1− l1 − l2 − l3 (9)

there are four types (I, II, III and IV) of
(

x′1, x′2, x′3
)

depending on the number of zero elements.
The number of zero elements is two for type I, one for types II and III, and zero for type III. The solutions

493



Symmetry 2018, 10, 339

of X′ =
(

x′1, x′2, x′3
)

and Y = (y1, y2, y3) for the three-dimensional constrained OWA aggregation
problem with lower bounded variables (8) are described as follows:

Theorem 2. Consider the three-dimensional constrained OWA aggregation problem with lower bounded
variables (8). For type I solution, there are three forms (1− l1 − l2 − l3, 0, 0), (0, 1− l1 − l2 − l3, 0),
(0, 0, 1− l1 − l2 − l3) for X′ and six forms (1− l2 − l3, l2, l3), (1− l2 − l3, l3, l2), (1− l1 − l3, l1, l3),
(1− l1 − l3, l3, l1), (1− l1 − l2, l1, l2), (1− l1 − l2, l2, l1) for Y. For type II, there are three forms(

1−2l1−l3
2 , 1−2l2−l3

2 , 0
)

,
(

1−2l1−l2
2 , 0, 1−l2−2l3

2

)
,
(

0, 1−l1−2l2
2 , 1−l1−2l3

2

)
for X′ and six forms

(
1−l3

2 , 1−l3
2 , l3

)
,(

l3, 1−l3
2 , 1−l3

2

)
,
(

1−l2
2 , 1−l2

2 , l2
)

,
(

l2, 1−l2
2 , 1−l2

2

)
,
(

1−l1
2 , 1−l1

2 , l1
)

,
(

l1, 1−l1
2 , 1−l1

2

)
for Y. For type

III, there are six forms (l3 − l1, 1− l2 − 2l3, 0), (1− l1 − 2l3, l3 − l2, 0), (l2 − l1, 0, 1− 2l2 − l3),
(1− l1 − 2l2, 0, l2 − l3), (0, l1 − l2, 1− 2l1 − l3), (0, 1− 2l1 − l2, l1 − l3) for X′ and six forms
(l3, l3, 1− 2l3), (1− 2l3, l3, l3), (l2, l2, 1− 2l2), (1− 2l2, l2, l2), (l1, l1, 1− 2l1), (1− 2l1, l1, l1) for Y.
For type IV, there are only one form (1/3− l1, 1/3− l2, 1/3− l3) for X′ and one form (1/3, 1/3, 1/3) for Y.

Proof. For type I, the possible values of
(

x′1, x′2, x′3
)

are:

(1− l1 − l2 − l3, 0, 0), (0, 1− l1 − l2 − l3, 0) and (0, 0, 1− l1 − l2 − l3)

For the case of
(

x′1, x′2, x′3
)
= (1− l1 − l2 − l3, 0, 0), we have:(

x′1, x′2, x′3
)
= (1− l2 − l3, l2, l3)(y1, y2, y3) = (1− l2 − l3, l2, l3) or (1− l2 − l3, l3, l2).

For the case of (y1, y2, y3) = (1− l2 − l3, l2, l3), if:

l1 + l2 + l3 ≤ 1, l2 ≥ l3 and 2l2 + l3 ≤ 1,

then:
(x1, x2, x3) = (1− l2 − l3, l2, l3) and (y1, y2, y3) = (1− l2 − l3, l2, l3)

is solution of MIP (8) and the objective value is:

F = w1 + l2(−w1 + w2) + l3(−w1 + w3).

Since w1 + w2 + w3 = 1, we can express the objective value F in only two weights. Then the other
three formats of F are:

F = w1 + l2(−w1 + w2) + l3(1− 2w1 − w2),

F = w1 + l2(1− 2w1 − w3) + l3(−w1 + w3)

and:
F = 1− w2 − w3 + l2(−1 + 2w1 + w3) + l3(−1 + w2 + 2w3).

Among these four formats, the explicit format adopted is F = w1 + l2(−w1 + w2) + l3(−w1 + w3)

which is the most compact one.
If:

l1 + l2 + l3 ≤ 1, l2 ≤ l3 and l2 + 2l3 ≤ 1,

then:
(x1, x2, x3) = (1− l2 − l3, l2, l3) and (y1, y2, y3) = (1− l2 − l3, l3, l2)

is the solution of MIP (8) and the objective value is:

F = w1 + l2(−w1 + w3) + l3(−w1 + w2).
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In Table 1, we display the possible solutions
(

x′1, x′2, x′3
)
, (x1, x2, x3), (y1, y2, y3), F and the

conditions for the different choices of the type I.
We now consider that the number of zero elements is one. The possible values of

(
x′1, x′2, x′3

)
are:(

x′1, x′2, 0
)
,
(
x′1, 0, x′3

)
and

(
0, x′2, x′3

)
For the case of

(
x′1, x′2, 0

)
, we have:

(x1, x2, x3) =
(
x′1 + l1, x′2 + l2, l3

)
.

At optimal, the possible choices of
(
x′1, x′2, x′3

)
are:

x′1 + l1 = x′2 + l2, x′1 + l1 = l3 or x′2 + l2 = l3.

We choose x′1 + l1 = x′2 + l2 for type II, and x′1 + l1 = l3 or x′2 + l2 = l3 for type III. For x′1 + l1 =

x′2 + l2, from (9), it follows that:

(
x′1, x′2, x′3

)
= (

1− 2l1 − l3
2

,
1− 2l2 − l3

2
, 0).

so:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (
1− l3

2
,

1− l3
2

, l3) or (l3,
1− l3

2
,

1− l3
2

)

More precisely, if:
l3 ≤ 1/3, 2l2 + l3 ≤ 1 and 2l1 + l3 ≤ 1,

then:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (
1− l3

2
,

1− l3
2

, l3)

is the solution of MIP (8) and the objective value is:

F =
1− w3 − l3 + 3l3w3

2
.

If:
l3 ≥ 1/3, 2l2 + l3 ≤ 1 and 2l1 + l3 ≤ 1,

then:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (l3,
1− l3

2
,

1− l3
2

)

is the solution of MIP (8) and the objective value is:

F =
1− w1 − l3 + 3l3w1

2
.

For other cases of
(

x′1, 0, x′3
)
, (0, x′2, x′3), the solutions and conditions are displayed in Table 2.

For type III, we have two possible x′1 + l1 = l3 or x′2 + l2 = l3. For x′1 + l1 = l3, from (9), it follows
that if:

l3 ≥ l1, l3 ≥ 1/3 and l2 + 2l3 ≤ 1

then:(
x′1, x′2, x′3

)
= (l3 − l1, 1− l2 − 2l3, 0), (x1, x2, x3) = (l3, 1− 2l3, l3), (y1, y2, y3) = (l3, l3, 1− 2l3) and

F = w3 + l3 − 3l3w3.
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If:
l3 ≥ l1, l3 ≤ 1/3 and l2 + 2l3 ≤ 1

then:(
x′1, x′2, x′3

)
= (l3 − l1, 1− l2 − 2l3, 0), (x1, x2, x3) = (l3, 1− 2l3, l3), (y1, y2, y3) = (1− 2l3, l3, l3) and

F = w1 + l3 − 3l3w1.

For different choices of type III, detailed results are presented in Table 3.
For type IV, from (9), it follows that:(

x′1, x′2, x′3
)
= (1/3− l1, 1/3− l2, 1/3− l3).

So, if:
l1 ≤ 1/3, l2 ≤ 1/3 and l3 ≤ 1/3

then the solution of MIP (8) is:

(x1, x2, x3) = (1/3, 1/3, 1/3) and (y1, y2, y3) = (1/3, 1/3, 1/3) and F = 1/3. �

Table 1. The values of
(
x′1, x′2, x′3

)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type I.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

I1 (1− l1 − l2 − l3, 0, 0) (1− l2 − l3, l2, l3) (1− l2 − l3, l2, l3)
w1 + l2(−w1 + w2) +

l3(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l2 ≥ l3, 2l2 + l3 ≤ 1

I2 (1− l1 − l2 − l3, 0, 0) (1− l2 − l3, l2, l3) (1− l2 − l3, l3, l2)
w1 + l2(−w1 + w3) +

l3(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l2 ≤ l3, l2 + 2l3 ≤ 1

I3 (0, 1− l1 − l2 − l3, 0) (l1, 1− l1 − l3, l3) (1− l1 − l3, l1, l3)
w1 + l1(−w1 + w2) +

l3(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l1 ≥ l3, 2l1 + l3 ≤ 1

I4 (0, 1− l1 − l2 − l3, 0) (l1, 1− l1 − l3, l3) (1− l1 − l3, l3, l1)
w1 + l1(−w1 + w3) +

l3(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l1 ≤ l3, l1 + 2l3 ≤ 1

I5 (0, 0, 1− l1 − l2 − l3) (l1, l2, 1− l1 − l2) (1− l1 − l2, l1, l2)
w1 + l1(−w1 + w2) +

l2(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l1 ≥ l2, 2l1 + l2 ≤ 1

I6 (0, 0, 1− l1 − l2 − l3) (l1, l2, 1− l1 − l2) (1− l1 − l2, l2, l1)
w1 + l1(−w1 + w3) +

l2(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l1 ≤ l2, l1 + 2l2 ≤ 1

Table 2. The values of
(

x′1, x′2, x′3
)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type II.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

II1 ( 1−2l1−l3
2 , 1−2l2−l3

2 , 0) ( 1−l3
2 , 1−l3

2 , l3) ( 1−l3
2 , 1−l3

2 , l3)
1− w3 − l3 + 3l3w3

2
l3 ≤ 1/3, 2l2 + l3 ≤ 1,

2l1 + l3 ≤ 1

II2 ( 1−2l1−l3
2 , 1−2l2−l3

2 , 0) ( 1−l3
2 , 1−l3

2 , l3) (l3, 1−l3
2 , 1−l3

2 )
1− w1 − l3 + 3l3w1

2
l3 ≥ 1/3, 2l2 + l3 ≤ 1,

2l1 + l3 ≤ 1

II3 ( 1−2l1−l2
2 , 0, 1−l2−2l3

2 ) ( 1−l2
2 , l2, 1−l2

2 ) ( 1−l2
2 , 1−l2

2 , l2)
1− w3 − l2 + 3l2w3

2
l2 ≤ 1/3, 2l1 + l2 ≤ 1,

l2 + 2l3 ≤ 1

II4 ( 1−2l1−l2
2 , 0, 1−l2−2l3

2 ) ( 1−l2
2 , l2, 1−l2

2 ) (l2, 1−l2
2 , 1−l2

2 )
1− w1 − l2 + 3l2w1

2
l2 ≥ 1/3, 2l1 + l2 ≤ 1,

l2 + 2l3 ≤ 1

II5 (0, 1−l1−2l2
2 , 1−l1−2l3

2 ) (l1, 1−l1
2 , 1−l1

2 ) ( 1−l1
2 , 1−l1

2 , l1)
1− w3 − l1 + 3l1w3

2
l1 ≤ 1/3, l1 + 2l2 ≤ 1,

l1 + 2l3 ≤ 1

II6 (0, 1−l1−2l2
2 , 1−l1−2l3

2 ) (l1, 1−l1
2 , 1−l1

2 ) (l1, 1−l1
2 , 1−l1

2 )
1− w1 − l1 + 3l1w1

2
l1 ≥ 1/3, l1 + 2l2 ≤ 1,

l1 + 2l3 ≤ 1
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Table 3. The values of
(
x′1, x′2, x′3

)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type III.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

III1 (l3 − l1, 1− l2 − 2l3, 0) (l3, 1− 2l3, l3) (l3, l3, 1− 2l3) w3 + l3 − 3l3w3 l3 ≥ l1, l3 ≥ 1/3, l2 + 2l3 ≤ 1
III2 (l3 − l1, 1− l2 − 2l3, 0) (l3, 1− 2l3, l3) (1− 2l3, l3, l3) w1 + l3 − 3l3w1 l3 ≥ l1, l3 ≤ 1/3, l2 + 2l3 ≤ 1
III3 (1− l1 − 2l3, l3 − l2, 0) (1− 2l3, l3, l3) (l3, l3, 1− 2l3) w3 + l3 − 3l3w3 l3 ≥ l2, l3 ≥ 1/3, l1 + 2l3 ≤ 1
III4 (1− l1 − 2l3, l3 − l2, 0) (1− 2l3, l3, l3) (1− 2l3, l3, l3) w1 + l3 − 3l3w1 l3 ≥ l2, l3 ≤ 1/3, l1 + 2l3 ≤ 1
III5 (l2 − l1, 0, 1− 2l2 − l3) (l2, l2, 1− 2l2) (l2, l2, 1− 2l2) w3 + l2 − 3l2w3 l2 ≥ l1, l2 ≥ 1/3, 2l2 + l3 ≤ 1
III6 (l2 − l1, 0, 1− 2l2 − l3) (l2, l2, 1− 2l2) (1− 2l2, l2, l2) w1 + l2 − 3l2w1 l2 ≥ l1, l2 ≤ 1/3, 2l2 + l3 ≤ 1
III7 (1− l1 − 2l2, 0, l2 − l3) (1− 2l2, l2, l2) (l2, l2, 1− 2l2) w3 + l2 − 3l2w3 l2 ≥ l3, l2 ≥ 1/3, l1 + 2l2 ≤ 1
III8 (1− l1 − 2l2, 0, l2 − l3) (1− 2l2, l2, l2) (1− 2l2, l2, l2) w1 + l2 − 3l2w1 l2 ≥ l3, l2 ≤ 1/3, l1 + 2l2 ≤ 1
III9 (0, l1 − l2, 1− 2l1 − l3) (l1, l1, 1− 2l1) (l1, l1, 1− 2l1) w3 + l1 − 3l1w3 l2 ≤ l1, l1 ≥ 1/3, 2l1 + l3 ≤ 1

III10 (0, l1 − l2, 1− 2l1 − l3) (l1, l1, 1− 2l1) (1− 2l1, l1, l1) w1 + l1 − 3l1w1 l2 ≤ l1, l1 ≤ 1/3, 2l1 + l3 ≤ 1
III11 (0, 1− 2l1 − l2, l1 − l3) (l1, 1− 2l1, l1) (l1, l1, 1− 2l1) w3 + l1 − 3l1w3 l3 ≤ l1, l1 ≥ 1/3, 2l1 + l2 ≤ 1
III12 (0, 1− 2l1 − l2, l1 − l3) (l1, 1− 2l1, l1) (1− 2l1, l1, l1) w1 + l1 − 3l1w1 l3 ≤ l1, l1 ≤ 1/3, 2l1 + l2 ≤ 1

For the three-dimensional constrained OWA aggregation problem with lower bounded variables
(8), there are three forms for X′ and six forms for Y for Type I solution. For type II, there are three
forms for X′ and six forms for Y. For type III, there are six forms for X′ and six forms for Y. Type IV is
that the number of zero elements of solution is zero, there are only one form for X′ and one form for Y.

We illustrate some concrete examples with various (l1, l2, l3) and (w1, w2, w3).

Example 1. For the case of w1 > max
i=2,3

wi, we perform an exhaustive search for li ∈ {−1,−0.9,−0.8, . . . , 1}
and wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3. The first type I is (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) =

(0.9, 0, 0.1). The optimal solution is (y1, y2, y3) = (3,−1,−1),
(
x′1, x′2, x′3

)
= (4, 0, 0), (x1, x2, x3) =

(3,−1,−1) and F = 2.6.

Example 2. Consider the case of w2 > max
i=1,3

wi. Applying an exhaustive search for li ∈
{−1,−0.9,−0.8, . . . , 1} and wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3, the value of (l1, l2, l3) = (−1,−1, 1)
and (w1, w2, w3) = (0, 0.9, 0.1) is the first one satisfies type I. The optimal solution is (y1, y2, y3) = (1, 1,−1),(

x′1, x′2, x′3
)

= (0, 2, 0), (x1, x2, x3) = (−1, 1, 1) and F = 0.8. For (l1, l2, l3) = (−1,−1,−1) and
(w1, w2, w3) = (0, 0.9, 0.1), the type II solution is (y1, y2, y3) = (1, 1,−1),

(
x′1, x′2, x′3

)
= (0, 2, 2),

(x1, x2, x3) = (−1, 1, 1) and F = 0.8. For (l1, l2, l3) = (−1,−1, 0.4) and (w1, w2, w3) = (0, 0.6, 0.4),
the type III solution is (y1, y2, y3) = (0.4, 0.4, 0.2),

(
x′1, x′2, x′3

)
= (1.2, 1.4, 0), (x1, x2, x3) = (0.2, 0.4, 0.4)

and F = 0.32. For (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0, 0.6, 0.4), the type IV solution is
(y1, y2, y3) =

(
1
3 , 1

3 , 1
3

)
,
(

x′1, x′2, x′3
)
= (4/3, 4/3, 4/3), (x1, x2, x3) =

(
1
3 , 1

3 , 1
3

)
and F = 1/3.

Example 3. Consider the case of w3 > max
i=2,3

wi. For li ∈ {−1,−0.9,−0.8, . . . , 1} and wi ∈
{0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3, the value of (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0.4, 0, 0.6)
is the first one satisfies type I. The optimal solution is (y1, y2, y3) = (3,−1,−1),

(
x′1, x′2, x′3

)
= (4, 0, 0),

(x1, x2, x3) = (3,−1,−1) and F = 0.6. For (l1, l2, l3) = (−1,−1, 0.4) and (w1, w2, w3) = (0, 0.1, 0.9),
the type II solution is (y1, y2, y3) = (0.4, 0.3, 0.3),

(
x′1, x′2, x′3

)
= (1.3, 1.3, 0), (x1, x2, x3) = (0.3, 0.3, 0.4)

and F = 0.3. For (l1, l2, l3) = (−1,−0.9,−0.8) and (w1, w2, w3) = (0.4, 0, 0.6), the type III solution
is (y1, y2, y3) = (2.8,−0.9,−0.9),

(
x′1, x′2, x′3

)
= (0.1, 0, 3.6), (x1, x2, x3) = (−0.9,−0.9,−2.8) and

F = 0.58. For (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0, 0.1, 0.9), the type IV solution is
(y1, y2, y3) =

(
1
3 , 1

3 , 1
3

)
,
(

x′1, x′2, x′3
)
= (4/3, 4/3, 4/3), (x1, x2, x3) =

(
1
3 , 1

3 , 1
3

)
and F = 1/3.
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Minimizing the objective function of the constrained OWA aggregation problem with bounded
variables is also important. One interesting model is the constrained OWA aggregation problem with
upper bounded variables described as follows:

Min WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≤ U

(10)

where the column vector:

U =

⎡⎢⎢⎢⎢⎣
u1

u2
...

un

⎤⎥⎥⎥⎥⎦.

By using the change of variable:

X′ = U −X, yi = −y′n+1−i and Y′ =

⎡⎢⎢⎢⎢⎣
y′n

y′n−1
...

y′1

⎤⎥⎥⎥⎥⎦
minimizing the objective function of the constrained OWA aggregation problem with upper bounded
variables is:

Max WTY′

s.t.IT ≥ ITU− 1
GY′ ≤ 0
y′1I − X′ ≥ −U
y′iI − X′ + MZi ≥ −U, i = 2, 3, . . . , n
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X′ ≥ 0

(11)

If ITU − 1 < 0, the constrained OWA aggregation problem has unbounded solution.
If ITU − 1 = 0, the unique optimal solution is X′∗ = 0, so:

X∗ = U.

For the case of 1− ITL > 0, the similar results as Theorem 2 can be derived.

5. Numerical Results

To evaluate the optimal solution behaviors of the three-dimensional constrained OWA aggregation
problem with lower bounded variables, we present some numerical experiments.
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In Table 4, we display the number of solution type I, II, III and IV for different choices of the
weights and the lower bounds. To this end, we consider four types of solution forms I, II, III and IV
and six types of weights:

w1 = max
i=1,2,3

wi, w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi.

Each cell is associated to a pair (W, S) and gives the number of different instances of
(l1, l2, l3, w1, w2, w3) satisfying weight (W) and solution (S) conditions. We restrict our attention
to:

W ∈
{

w1 = max
i=1,2,3

wi, w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi

}
,

S ∈ {I, II, III, IV }, li ∈ {−1,−0.9,−0.8, . . . , 1}, wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3.

For each cell, the instances (l1, l2, l3, w1, w2, w3) of the test problem are 179,760 for w1 = max
i=1,2,3

wi,

w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi and 119,840 for w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi. The total

instances of the test problem are 898,800. An examination of the table reveals that the type IV is not
optimal solution for w1 = max

i=1,2,3
wi. In particular, for w1 > max

i=2,3
wi, the optimal solution type is always

type I solution. If the lower bounds (l1, l2, l3) = (0, 0, 0), then the optimal solution is types II, III
and IV for w2 = max

i=1,2,3
wi and w2 > max

i=1,3
wi, and types I and IV for w3 = max

i=1,2,3
wi and w3 > max

i=2,3
wi.

However, from Table 4, the possible optimal solutions are all the types I, II, III and IV for w2 = max
i=1,2,3

wi,

w3 = max
i=1,2,3

wi, w2 > max
i=1,3

wi and w3 > max
i=2,3

wi. Among a set of four optimal solution types, the largest

number of instances of the test problem is the solution type II. Therefore, the optimal solution type
is I for w1 = max

i=1,2,3
wi and w1 > max

i=2,3
wi, and types I, II, III and IV for w2 = max

i=1,2,3
wi, w3 = max

i=1,2,3
wi,

w2 > max
i=1,3

wi and w3 > max
i=2,3

wi.

Table 4. The number of different instances satisfying weight (W) and solution type (S).

W I II III IV

w1 ≥ w2, w1 ≥ w3 168,101 6826 4833 0
w2 ≥ w1, w2 ≥ w3 47,133 114,240 7411 10,976
w3 ≥ w1, w3 ≥ w2 51,302 56,618 16,960 54,880

w1 > w2, w1 > w3, w2 	= w3 119,840 0 0 0
w2 > w1, w2 > w3, w1 	= w3 28,856 80,164 5332 5488
w3 > w1, w3 > w2, w1 	= w2 30,720 40,656 10,048 38,416

For the three-dimensional constrained OWA aggregation problem with lower bounded variables,
from the numerical experiments the solution type I is the same as that of the constrained OWA
aggregation problem without lower bounded variables for w1 > max

i=2,3
wi. However, for w2 > max

i=1,3
wi

and w3 > max
i=2,3

wi, there are all solution types. For the constrained OWA aggregation problem without

lower bounded variables, the solution are types II, III, IV and types I, IV, for w2 > max
i=1,3

wi and

w3 > max
i=2,3

wi, respectively. The four solution types may be too simple for the three-dimensional

constrained OWA aggregation problem with lower bounded variables. From this result, we anticipate
more complication in the higher dimensions of the constrained OWA aggregation problem with lower
bounded variables.
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6. Conclusions

For the constrained OWA aggregation problem with one constraint on the sum of all variables, this
paper introduces some constraints to reduce the multiple solution problem. For the three-dimensional
constrained OWA aggregation problem with the same lower bounds, by using the change of variables,
the optimal solution is the same as that of the constrained OWA aggregation problem without lower
bounded variables. For the three-dimensional constrained OWA aggregation problem with lower
bounded variables, this paper presents four types (I, II, III and IV) of solutions depending on the
number of zero elements. When the number of zero elements of solution is two (type I), there are three
closed-form expressions of X′ and six closed-form expressions of Y. When the number of zero elements
of the solution is one (types II and III), there are three closed-form expressions of X′ and six closed-form
expressions of Y for type II, and six closed-form expressions of X′ and six closed-form expressions of
Y for type III. When the number of zero elements of the solution is zero (type IV), there is only one
closed-form expression of X′ and one closed-form expression of Y. According to the computerized
experiment we perform for the three-dimensional constrained OWA aggregation problem with lower
bounded variables, the optimal solution type is I for w1 = max

i=1,2,3
wi and w1 > max

i=2,3
wi, and types I, II,

III and IV for w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w2 > max
i=1,3

wi and w3 > max
i=2,3

wi.

Worthy of future research is that the analysis is extended to the lower and upper bounded variables
for the constrained OWA aggregation problem, especially for the three-dimensional constrained OWA
aggregation problem with upper bounded variables. Thus, the analysis of the constrained OWA
aggregation problem with bounded variables is a subject of considerable ongoing research.
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Abstract: Nowadays, more and more applications are dependent on storage and management of
semi-structured information. For scientific research and knowledge-based decision-making, such data
often needs to be published, e.g., medical data is released to implement a computer-assisted clinical
decision support system. Since this data contains individuals’ privacy, they must be appropriately
anonymized before to be released. However, the existing anonymization method based on l-diversity
for hierarchical data may cause serious similarity attacks, and cannot protect data privacy very well.
In this paper, we utilize fuzzy sets to divide levels for sensitive numerical and categorical attribute
values uniformly (a categorical attribute value can be converted into a numerical attribute value
according to its frequency of occurrences), and then transform the value levels to sensitivity levels.
The privacy model (αh

lev, k)-anonymity for hierarchical data with multi-level sensitivity is proposed.
Furthermore, we design a privacy-preserving approach to achieve this privacy model. Experiment
results demonstrate that our approach is obviously superior to existing anonymous approach in
hierarchical data in terms of utility and security.

Keywords: fuzzy set theory; decision-making; hierarchical data; privacy model; anonymous
approach; similarity attack

1. Introduction

Hospitals and other organizations often need to publish data, e.g., medical data or census data,
for the purposes of scientific research and knowledge-based decision-making [1–10]. To avoid the
leakage of individual privacy, explicit identifying information is removed when data is released.
However, individual privacy still could be leaked by linking other public data [11]. Privacy-preserving
data publishing provides methods and tools for publishing useful information while preserving
individual privacy [12]. In recent years, the problem of privacy-preserving data publishing has been
studied extensively. The existing privacy protection methods mainly focus on relational data, and many
mature privacy models are proposed, such as k-anonymity [11], l-diversity [13], (α, k)-anonymity [14]
and t-closeness [15]. However, data often has a complicated structure in the real world. With the
advent of document-oriented databases (e.g., MongoDB) and the wide use of markup languages
(e.g., XML), hierarchical data has become ubiquitous [16]. To avoid the leakage of individual privacy,
the hierarchical data must be properly anonymized before it is released. At present, there are few
researches on privacy protection for hierarchical data. Ozalp et al. [16] proposed l-diversity anonymous
methods for hierarchical data. An example for hierarchical data is given in Figure 1. The schema for
education data is obtained from Sabanci University [16] and the examples appearing in this paper
are related to the schema. Figure 1a represents a student’s record, which fits the education schema
shown in Figure 1b. The student is born in 1990 and majors in Computer Science. He took two courses,
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CS201 and CS305. For CS201, his evaluations are submitted for two instructors. For CS305, he submitted
an evaluation and showed he bought a database book. The labels of vertices are all quasi-identifiers
(QIs) of the student and the corresponding sensitive information is remarked in the side of every vertex.
Quasi-identifier is a set of attributes that can potentially identify an individual [11]. Assume that
an attacker knows some QIs of a victim, and his goal is to reason the sensitive information of the victim.
In [16], they used suppression and generalization [11] to make the anonymous hierarchical dataset
satisfy l-diversity, which ensures the frequency of every sensitive value for the union-compatible
vertices (belonging to the same vertex in schema) in an equivalence class is not more than 1/l.
The constraint also can guarantee that every equivalence class contains at least l hierarchical data
records. An equivalence class in an anonymous hierarchical dataset is a set of records with the same
values for the QIs. However, the method does not consider the sensitivity of different sensitive
attribute values, which lead to similarity attacks [15]. For example, an equivalence class contains three
hierarchical data records and its class representative is shown in Figure 2, which satisfies 3-diversity.
The sensitive values of their cumulative GPAs are 0.31, 0.15 and 0.09, respectively, where GPA is
the grade point average. An attacker knows a victim in the equivalence class by linking with some
QIs of the victim. Although the attacker does not infer the victim’s specific sensitive value, he can
know that the victim’s academic performance is low with 100% probability and the victim’s privacy
is leaked. Similarly, the attacker can confirm that the grade of the victim in the course CS201 is very
low according to the value {D, D+, D−}. Also, the attacker can infer that the victim is very dissatisfied
with the DB Prof. by the value {0, 1/10, 2/10}. To avoid similarity attack, we propose a multi-level
privacy-preserving approach in hierarchical data based on fuzzy sets.

Figure 1. An example for hierarchical data: (a) A student’s record; (b) Schema for education data.

The contributions of this paper are summarized as follows:

• We utilize the fuzzy set theory to obtain the sensitivity levels for sensitive numerical and
categorical attribute values, and present the privacy model (αh

lev, k)-anonymity for hierarchical data
with multi-level sensitivity. This model can solve the similarity attack, and provide reasonable
privacy protection for sensitive value in different sensitivity level.

• We improve the privacy-preserving approach in hierarchical data to obtain the anonymous data
that satisfies (αh

lev, k)-anonymity.
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• We do experiments to compare our approach with the existing anonymous method ClusTree
proposed in [16]. Experiment results demonstrate that our approach is superior to ClusTree in
terms of utility and security.

Figure 2. A class representative satisfying 3-diviersity.

2. Related Work

In this section, we review the related work about privacy preserving data publishing for relational
data and hierarchical data.

2.1. Preserving Privacy for Publishing Relational Data

The first privacy model, proposed by Samarati and Sweeney [11] in 1998, is k-anonymity
for relational data, which requires that every record in a table is indistinguishable from at least
k-1 other records with respect to QI. There exist many anonymization methods to implement
k-anonymity, such as bottom-up generalization, top-down specialization and anonymity by clustering
technique [17–19]. k-anonymity can protect against identity disclosure, but cannot prevent attribute
disclosure. Therefore, l-diversity has been proposed [13]. It requires that every equivalence
class contains at least l different sensitive values. There are numerous methods for achieving
l-diversity [20,21]. Furthermore, Wong et al. [14] extended k-anonymity to (α, k)-anonymity to limit
the confidence of the implications from the QI to a sensitive value to within α in order to protect
the sensitive information from being inferred by strong implications, and proposed a bottom-up
generalization algorithm to achieve (α, k)-anonymity. Li et al. [15] pointed out that l-diversity does not
prevent skewness attack and similarity attack, so they introduced t-closeness model, which requires
that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the
attribute in the overall table. They also revised the Incognito algorithm [17], which is a top-down
generalization method proposed for k-anonymity, to achieve t-closeness. However, t-closeness still does
not prevent similarity attacks. Han et al. [22] considered the difference of sensitivity for sensitive values,
and proposed multi-level l-diversity model for numerical sensitive attribute. Furthermore, Jin et al. [23]
presented the (αi, k)-anonymity privacy preservation based on sensibility grading. However, the levels
are artificially assigned. Some researches proposed fuzzy based methods for privacy preserving [24,25].
They used fuzzy sets to transform sensitive values to semantic values and published the data with
fuzzy sensitive information, which decreases the utility of sensitive information and still does not
resist similarity attacks.

505



Symmetry 2018, 10, 333

2.2. Preserving Privacy for Publishing Hierarchical Data

There are several studies about preserving privacy for publishing hierarchical or tree-structured
data. Yang and Li [26] found that the dependencies between nodes in the XML data information may
result in privacy leakage. They formally defined these dependencies as XML constraints, and designed
an algorithm to sanitize XML documents by considering these constraints such that no privacy is
leaked. However, their attack model is too weak. Our adversarial model assumes that the attacker
has some information about the victim. Landberg et al. [27] proposed δ-dependency and extended
the anatomy method in relational data to hierarchical data. But the dissection method will damage
the original semantic structure of hierarchical data, and the generalization in sensitive attributes
will affect the effectiveness of hierarchical data. Nergiz et al. [28] extended k-anonymity methods to
a multi-relational database, and proposed multi-relational k-anonymity. Firstly, hierarchical data will
be converted to multiple relational data tables, which related to each other by primary key or foreign
key, then performed k-anonymity separately on each relational data. However, converting hierarchical
data into relational data is not a simple matter, and will produce large amounts of data redundancy,
which made the executive efficiency of algorithm extremely low. It will also lose a lot of structural
information. Gkountouna and Terrovitistis [29] proposed the k(m, n)-anonymity for tree-structured
data. By using generalization and structure decomposition methods, they ensured that the number of
matching records not less than k when the attacker knows up to m nodes in a tree and to n structural
relations between these nodes. But the method cannot resist the attack with stronger background
knowledge. In addition, they used structural decomposition that destroys the structural information
of the hierarchical data. Ozalp et al. [16] extended l-diversity to hierarchical data. They utilized
generalization and suppression to anonymize the hierarchical data, and make the hierarchical records
in an equivalence class to be indistinguishable in terms of the QIs and structure and the sensitive
values for the union-compatible vertices in an equivalence class satisfies the requirements of l-diversity.
This method is very scalable for the general anonymous method of hierarchical data. However,
this method does not consider the different sensitivity of sensitive attribute values in anonymous
hierarchical data, so the anonymous hierarchical data still does not resist similarity attack. In this paper,
we use fuzzy set theory to partition rank for sensitive values of union-compatible vertices, and propose
a multi-level privacy-preserving approach in hierarchical data to solve similarity attacks.

3. Problem Descriptions

In this section, we describe the attack model, give some fundamental definitions, and introduce
our privacy protection model.

3.1. Attack Model

We assume that an attacker knows a victim’s QI information, which contains any combination of
QI values in the same or different vertices of the victim’s record. Also, the attacker can obtain some
structural links. For example, the victim took two courses, and purchased only a book for course
CS201. In addition, the attacker has some negative knowledge, e.g., the victim did not take CS305.
Our anonymization approach can ensure that an attacker, who has this background knowledge about
a victim, does not infer any sensitive value of the victim is in some level with the probability, which is
greater than a given threshold.

3.2. Basic Definitions in Hierarchical Data

In this subsection, we give some basic definitions for hierarchical data [16]. Let T be a graph with
n vertices. We say that T is a rooted tree if and only if (1) T is a directed acyclic graph with n-1 edges;
(2) for every vertex (except root vertex), there is a single path from the root vertex to it in T; (3) there
exists an edge v→ ci if ci ∈ children(v), where children(v) is the children of vertex v. Such tree is denoted
by T(V, E), where V and E are the sets of vertices and edges in the tree, respectively.
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A hierarchical data record satisfies the following conditions: (1) it follows a rooted tree structure;
(2) each vertex v has two j-tuples (j ≥ 0), vQIt and vQI, which contains the names of QI attributes and
the values of corresponding QIs, respectively; (3) each vertex v also has two m-tuples (0 ≤ m ≤ 1),
vSAt and vSA, which contains the name of sensitive attribute and the value of corresponding sensitive
attribute, respectively; (4) assume that |vQI| + |vSA| ≥ 1 to eliminate empty vertices. For a vertex v of
a hierarchical data record, vQI is the label of v and vSA is next to v. For Figure 1, vQIt = {major program,
year of birth}, vSat = {GPA}, vQI = {Computer Science, 1990}, and vSA = {3.75}.

Definition 1 (Union-Compatibility) [16]. Two vertices v and v′ are union-compatible if and only if
vQIt = v′QIt and vSAt = v′SAt.

Definition 2 (QI-isomorphism) [16]. Let T1(V1, E1) and T2(V2, E2) are two hierarchical data records.
T1(V1, E1) is isomorphic to T2(V2, E2) if and only if there exists a bijection f: V1 → V2, such that:

(1) For x, y ∈ V1, there exists an edge ei ∈ E2 from f(x) to f(y) if and only if there exists an edge ej ∈ E1 from x
to y.

(2) f(r1) = r2, where r1 ∈ V1 and r2 ∈ V2 be the roots of T1(V1, E1) and T2(V2, E2), respectively.
(3) For all pairs (x, x′), where x ∈ V1 and x′ = f(x), x and x′ are union-compatible and xQI = x′QI.

Definition 3 (Equivalence Class of Hierarchical Records) [16]. Let Q = {T1,T2,...,Tk} is a collection of k
hierarchical data records. We say Q is an equivalence class, if for ∀i, j ∈ {1, . . . , k}, Ti and Tj are QI-isomorphic.

Definition 4 (Class Representative) [16]. Let Q = {T1,T2,...,Tk} be an equivalence class in hierarchical data,
and fi (1 ≤ i ≤ k-1) be a bijection that maps T1

′s vertices to Ti+1
′s vertices as in QI-isomorphism. T̂ is the

class representative for Q if T̂ is QI-isomorphic to T1 with a bijection function f and ∀v ∈ T̂, vSA = {f(v)SA,
f1(f(v))SA,..., fk−1(f(v))SA}.

Let X = {x1, x2, ..., xo} be a multiset of values from the domain of a sensitive attribute A. X satisfies
l-diversity if ∀xi ∈ X, p(xi) ≤ 1/l, where p(xi) is the frequency of si in X. For an equivalence class Q
in hierarchical data, T̂ is the class representative for Q. If for ∀v ∈ T̂, vSA satisfies l-diversity, then T̂
satisfies l-diversity. Given a hierarchical data D, an anonymous hierarchical data D* satisfies l-diversity,
if the class representative of any equivalence class in D* satisfies l-diversity. The l-diversity hierarchical
data does not prevent similarity attack, since it does not consider the different sensitivity of sensitive
attribute values.

3.3. Privacy Model

For every sensitive attribute, including numerical and categorical attributes, we partition sensitive
values to five levels: low, very low, middle, very high and high (for some sensitive attributes, e.g.,
a student’s grade in a course, the levels have been divided, and we do not need to handle it),
and transform these value levels to corresponding sensitivity levels.

Let U be a universe of discourse. A mapping μA: U→ [0, 1] is called a membership function on
U, where the set A, which consists of μA(u) (u ∈ U), is a fuzzy set on U, and μA(u) is the membership
degree of u to A [30–32]. The trapezoidal distribution [33] is used to give the membership functions
for fuzzy sets low, very low, middle, very high and high, denoted by A1, A2, A3, A4, and A5, respectively.
Let U be the domain of a numerical attribute (for categorical attribute, a numerical attribute can be
obtained according to the frequency of every value), and min and max be the minimum and maximum
values in U, respectively. The five fuzzy sets have values in the range [min, a2], [a1, a3], [a2, a4], [a3, a5]
and [a4, max], respectively, where a3 = (min + max)/2, a1 = min + (a3-min)/3, a2 = min + 2(a3-min)/3,
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a4 = a3 + (max-a3)/3, a5 = a3 + 2(max-a3)/3. That is, a1, a2, a3, a4 and a5 uniformly divide the interval
[min, max]. The membership functions for Ai (i = 1, 2, ..., 5) are shown as follows.

μA1(u) =

⎧⎪⎨⎪⎩
1 u ≤ min

a2−u
a2−min min < u < a2

0 u ≥ a2

(1)

μAi (u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 u ≤ ai−1
u−ai−1
ai−ai−1

ai−1 < u < ai

1 u = ai i = 1, 2, 3
ai+1−u
ai+1−ai

ai < u < ai+1

0 u ≥ ai+1

(2)

μA5(u) =

⎧⎪⎨⎪⎩
0 u ≤ min

u−a4
max−a4

a4 < u < max
1 u ≥ max

(3)

For any u ∈ U, argmax{uAi(u)|i ∈ {1, 2, 3, 4, 5}} is the level which u belongs to. We transform the
value level to sensitivity level. For some sensitive attributes, the higher the value level is, the larger
the sensitivity level is, e.g., income; but it is reversed for other sensitive attributes, e.g., student’s
cumulative GPA. For a numerical attribute, we divide the five levels from 1 to 5 for sensitivity. Level 5
is the highest and level 1 is the lowest. The higher sensitivity level is, the stronger privacy protection
will be given.

For example, for an equivalence class Q in a hierarchical data, we assume that the sensitive
attribute of the root vertex in the class representative of Q is the cumulative GPA, whose value is
{0.8, 1.6, 2.3, 2.7, 3.5, 3.9}, where the domain of the cumulative GPA is [0, 4]. We can obtain the min = 0,
max = 4, a3 = 2, a1 = 2/3, a2 = 4/3, a4 = 8/3 and a5 = 10/3. The membership degree of ui to Aj are
shown in Table 1, where ui ∈ {0.8, 1.6, 2.3, 2.7, 3.5, 3.9} and Aj ∈ {low, very low, middle, very high, high}.
We can know that 0.8, 1.6, 2.3, 2.7, 3.5 and 3.9 are belong to low, very low, middle, very high, high and high,
respectively. Their sensitivity levels are 5, 4, 3, 2, 1 and 1, respectively.

Table 1. The membership degree of ui to Aj.

Value Level

GPA
0.8 1.6 2.3 2.7 3.5 3.9

Low 0.40 0 0 0 0 0
Very low 0.20 0.60 0 0 0 0
Middle 0 0.40 0.55 0 0 0

Very high 0 0 0.45 0.95 0 0
High 0 0 0 0.025 0.625 0.925

In fact, for every sensitive value a numerical attribute A, we can confirm quickly its value level by
using the membership functions. As shown in Figure 3, the [min, max] is the domain of A, a1, a2, a3,
a4 and a5 equally divide the [min, max]. p1, p2, p3 and p4 are the points of intersection of membership
functions μA1 and μA2 , μA2 and μA3 , μA3 and μA4 , and μA4 and μA5 , respectively. The ranges of low,
very low, middle, very high and high are [min, p1], [p1, p2], [p2, p3], [p3, p4] and [p4, max], respectively.
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Figure 3. The membership functions for five value levels.

For example, for the cumulative GPA and evaluation score for a teacher, the domains are [0, 4]
and [0, 1], respectively. Their value levels and sensitivity levels are shown in Table 2. The letter grade
of a course has been divided five levels.

Table 2. The value levels and sensitivity levels for sensitive attributes.

Value Level GPA Letter Grade Evaluation Score Sensitivity Level αh
lev

Low [0, 0.89) E [0, 0.25) 5 0.1
Very low [0.89, 1.67) D−, D, D+ [0.25, 0.42) 4 0.2
Middle [1.67, 2.33) C−, C, C+ [0.42, 0.58) 3 0.4

Very high [2.33, 3.11) B−, B, B+ [0.58, 0.78) 2 0.6
High [3.11, 4] A−, A, A+ [0.78, 1] 1 0.8

For a categorical attribute, e.g., disease, according to the frequency of every value, we obtain
an attribute Frequency. The values of Frequency can be divided into 5 levels including low, very low,
middle, very high and high. For the disease HIV, it is more sensitive than flu, and the frequency of HIV is
less than one of flu. Therefore, we divide the values of disease into 5 sensitivity levels according to the
value levels of Frequency. The lower the value level is, the larger the sensitivity level is.

Definition 5 ((αh
lev, k)-anonymity in Hierarchical Data). Given a hierarchical data H, a published

anonymous hierarchical data H′ satisfies (αh
lev, k)-anonymity if every equivalence class Q in H′ satisfies (αh

lev,
k)-anonymity. That is, Q contains at least k hierarchical data records, and for every vertex v in the class
representative of Q, the frequency of the values in vSA which belong to the sensitivity level i is less than or equal
to αh

lev[i], where αh
lev = {0.8, 0.6, 0.4, 0.2, 0.1}.

4. The Anonymization Method

In this section, we introduce our anonymous method, which is divided into two parts. The first
step is to realize the anonymization of two hierarchical data records or class representatives, and the
second step is to anonymize the entire hierarchical data by using a clustering method.

The anonymization for two hierarchical data records is shown in Algorithm 1. The input is
arbitrary two hierarchical data records T1 and T2. Without loss of generality, we assume that T1 has
fewer subtrees than T2. The output is the information loss of anonymizing the two records.

We first check the root nodes of T1 and T2, stored in variables a and b, respectively, whether satisfy
the anonymous constraint check_cons(a, b), shown as follows:

check_cons(a, b) =

⎧⎪⎨⎪⎩
1 if a and b are union-compatibility and aSA∪

bSA is identical to (αh
lev, k)− anonymity;

0 Otherwise,
(4)
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where aSA ∪ bSA is identical to (αh
lev, k)-anonymity, i.e., for any an vertex v in the class representative,

the number of the values in vSA, which lie in sensitivity level i, is less than or equal to k*αh
lev[i].

If check_cons(a, b) is 0, tree(a) and tree(b) are suppressed, where tree(ai) (ai ∈ {a, b}) denotes the subtree
rooted ai; otherwise, the values in QI of a and b are generalized. Let subtrees(a) and subtrees(b)
represent the set of subtrees under a and b, respectively. There are three cases: (1) subtrees(a) = ∅
and subtrees(b) = ∅, which indicates that a and b are leaves of hierarchical records, i.e., no vertex need
to be processed, and algorithm returns the total cost in tree(a) and tree(b); (2) subtrees(a) = ∅ and
subtrees(b) 	= ∅, and we suppress all vertices under b to keep the structural consistency, and return
the total cost; (3) subtrees(a) 	= ∅ and subtrees(b) 	= ∅, the subtrees under a and b need to be further
processed. To minimize the information loss caused by anonymization, the subtrees under the a and b
need to be optimally matched. Let subtrees(a) = {U1, U2, ..., Um} and subtrees(b) = {V1, V2, ..., Vn} For
every subtrees Ui of a, we find the subtrees Vj of b with minimum MLevAnonytree(Ui, Vj), as shown in
lines 12–23. For every pair (i, j) in pairs, we call MLevAnonytree(Ui, Vj) to generalize them. In lines 26
and 27, we suppress the unpaired subtrees of b if they exist.

Algorithm 1. MLevAnonytree(T1, T2)

Input: Two hierarchical data records T1 and T2
Output: Anonymous information loss
1 a← root(T1); b← root(T2);
2 if check_condition(a, b) then

3 suppress tree(a) and tree(b);
4 return cost(tree(a)) + cost(tree(b));
5 for i = 1 to |aQI| do

6 replace aQI[i] and bQI[i] with their generalized value;
7 if subtrees(a) = ∅ and subtrees(b) = ∅ then

8 return cost(tree(a)) + cost(tree(b));
9 if subtrees(a) = ∅ and subtrees(b) 	= ∅ then

10 suppress all vertices under b;
11 return cost(tree(a)) + cost(tree(b));
12 pairs← ∅;
13 for i = 1 to m do

14 min_cost← ∞;
15 paired_index← ∅;
16 for j = 1 to n do

17 if j ∈ pairs then

18 continue;
19 x← Ui; y← Vj;
20 loss←MLevAnonytree(x, y);
21 if loss < min_cost then

22 min_cost← loss; paired_index← j;
23 pairs.append(i, paired_index);
24 for (i, j) ∈ pairs do

25 MLevAnonytree (Ui, Vj);
26 if there are unpaired subtrees in b then

suppress them;
27 return cost(tree(a)) + cost(tree(b));

An anonymous example of two hierarchical data records is shown in Figure 4, where Figure 4a–c
are two raw hierarchical data records, with their anonymous results identical to (αh

lev, 2)-anonymity,
and their class representative, respectively.

510



Symmetry 2018, 10, 333

Figure 4. An anonymous example: (a) Two raw hierarchical data records; (b) The anonymous results;
(c) Class representative of results.

Now, we give the clustering algorithm for anonymizing the entire hierarchical data, as shown
in Algorithm 2. The input is a hierarchical data H and privacy parameters αh

lev and k. The output is
the anonymous data H′ satisfies (αh

lev, k)-anonymity. In lines 2–16, when the number of records in H is
equal or larger than k, the algorithm creates an equivalence class from H. The first record is randomly
picked in an equivalence class Q. For any residual record Ti in H, we compute the information loss by
adding Ti to Q, and then sort H in ascending order according to the information loss. We select other
k-1 records from the first 50 records to decrease the runtime of algorithm. In lines 17 and 18, when the
number of records in H is less than k, the algorithm suppresses the all records in H.
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Algorithm 2. MLevCluTree(H, αh
lev, k)

Input: A hierarchical data H = {T1, T2, ..., Tn}, and privacy parameters αh
lev, k;

Output: anonymous dataset H′ which satisfies (αh
lev, k)-anonymity

1 H′ ← ∅;
2 while H ≥ k do

3 pick randomly a record x from H; H← H-x;
4 initialize Q with x and Crep ← x;
5 Q_cost← ∅;
6 for i = 1 to |H| do

7 loss←MLevAnonytree(copy(x), copy(Ti));
8 Q_cost.append(loss);
9 use Q_cost to sort H in ascending order;
10 cand_set← H[1:50];
11 for j = 2 to k do

12 y′ ← argminy ∈ cand_set(MLevAnonytree(copy(Crep), copy(y)));
13 H← H- y′; cand_set← cand_set- y′; Q← Q ∪ y′;
14 update Crep;
15 H′←H′∪Q;
16 if H 	= ∅ then

17 suppress all records in H;
18 return H′;

5. Experimental Results

The objective of these experiments is to evaluate the performance of the proposed algorithm with
respect to data utility, security and efficiency by comparing with existing anonymous approach
Clutree [16] in hierarchical data which achieves l-diversity. The algorithms are implemented in
Python, and ran on a computer with a four-core 3.4 GHz CPU and 8 GB RAM running Windows 7.
We experimented on two synthetic datasets, which are obtained by the authors in [16]. They were
modeled synthetically based on the real information of graduates from Sabanci University in Turkey.
The synthetic dataset A has two levels (h = 2), in the order of (major program, year of birth)→ courses,
which contains 1000 students and nearly 20 courses per student. The synthetic data set B has three
levels (h = 3), in the order of (major program, year of birth) → courses → teachers, in which there are
1000 students, every student studies nearly 20 courses, and every course has one to two teachers.

5.1. Evaluation Metrics

We evaluate data utility, security and efficiency of our method by using LM cost [16,28],
dissimilarity degree of the equivalence class [22] and the execution time, respectively.

For a hierarchical data record T, the cost of T is computed as follows:

cos t(T) = ∑
v∈Ω

∑
q∈vQI

LM′(q) + ∑
ω∈Ψ

∣∣ωQI
∣∣ (5)

where Ω and Ψ are the sets of vertices which are not suppressed and suppressed, respectively, |ωQI| is
the number of QI attributes in ω, and LM′(q) = (|uq| − 1)/(|u| − 1) is the information loss of
generalizing q to uq. The larger information loss is, the lower utility is. LM cost is an important index
to evaluate the utility of the anonymous method.

The equivalence class dissimilarity is proposed in [22] for relational data, and we extend it to
hierarchical data. Let Q be an equivalence class and its class representative be Crep. v is a vertex in Crep,
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m is the number of sensitive values in v, and z is the number of sensitivity levels. The dissimilarity
degree of v is defined as:

DSimDegree(v) =

m−1
∑

i=1

m
∑

j=i+1
mij

z−1
∑

i=1

z
∑

j=i+1
zij

(6)

where mij is the distance between the sensitivity levels of the ith and jth sensitive values, and zij is the
distance between the ith and jth sensitivity levels. The dissimilarity degree of Q is

DSimDegree(Q) =

N
∑

i=1
Degree(vi)

N
(7)

where N is the number of vertices of Crep. The larger Degree(Q) is, the larger the difference between the
sensitive values is, the stronger the ability to resist attacks is and the higher the security is.

5.2. Experimental Analysis

We compare our algorithm MLevCluTree with Clustree in [16] with respect to data utility,
security and efficiency. Because l-diversity can ensure there are at least l hierarchical data records in
an equivalence class, we set k = l. k is varied from 2 to 6. The value of each point is the mean value on
10 experiments.

The average information loss of a hierarchical data record for algorithms MLevClusTree and
Clustree is shown in Figure 5. From the two figures, we can see that the information loss increases
when k increases. Because k increases, an equivalence class contains more hierarchical data records,
and the possibility of providing more general values for every QI attributes increases. Therefore,
the information loss increases. For the dataset B with h = 3, because more vertices for a hierarchical
data record are needed to generalize, the information loss is higher than that of the dataset B with
h = 2. Although MLevClusTree considers that multiple sensitive values lie in the same level, different
sensitivity levels are evaluated with different constraints. So the information loss for our MLevClusTree
is less than one for Clustree, i.e., the utility of MLevClusTree is better than that of Clustree.

Figure 5. Information loss on two datasets: (a) Dataset A with h = 2; (b) Dataset B with h = 3.

The security of our MLevClusTree and Clustree is evaluated by the dissimilarity degree of
equivalence class, and the results are shown in Figure 6. The ordinate denotes the average dissimilarity
degree of an equivalence class. For an equivalence class, we can use Equation (7) to obtain its
dissimilarity degree. Therefore, the results of dataset A with h = 2 and dataset B with h = 3 are
not significantly different. As k increases, there are more sensitive values in different sensitivity levels,
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and the dissimilarity degree of a vertex in the class representative of an equivalence class increases.
So the average dissimilarity degree of an equivalence class increases. From Figure 6, we can see that
the average dissimilarity degree of an equivalence class for our MLevClusTree is higher than that for
Clustree, since our approach restricts the proportion of sensitive values in different sensitivity levels.
Therefore, our approach enhances the ability to resist similarity attacks and improves the data security.

Figure 6. Dissimilarity degree of equivalence class on two datasets: (a) Dataset A with h = 2; (b) Dataset
B with h = 3.

Finally, we evaluate the efficiency of our algorithm by the execution time. The experimental
results are shown in Figure 7. We can see that the execution time of two algorithms increases with the
increment of k. For every equivalence class Q in hierarchical data, the first hierarchical data record is
randomly selected and we do not need to compute. For every other record in the equivalence class, we
need to scan partial hierarchical data to find the record whose distance to current Q is approximately
minimum. When k increases, the size of an equivalence class increases. Thus, the runtime increases.
Also, we can see that the time for dataset B is more than that for dataset A, because the hierarchical
data with more levels needs more time to find the record whose distance to current Q is approximately
minimum. From Figure 7, we know that our MLevClusTree is slightly higher than that of ClusTree when
k increases, since for every equivalence class MLevClusTree needs to decide whether the number of
sensitive values in every sensitivity level exceeds the given threshold.

Figure 7. Execution time on two synthetic datasets: (a) Dataset A with h = 2; (b) Dataset B with h = 3.

From these experimental results, we can see that our MlevClusTree provides stronger privacy
protection and has lower information loss, although it takes more time. It is acceptable because the
anonymized process is offline.
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6. Conclusions

Hierarchical data has become ubiquitous with the advent of document-oriented databases and
the wide use of markup languages. However, this data contains privacy information, and so must
be appropriately anonymized before it is to be published for scientific research and decision-making.
To prevent similarity attacks in hierarchical data, in this paper, we use fuzzy set theory to partition
sensitive values for a sensitive numerical or categorical attribute uniformly into five levels by
converting the categorical attribute values into the numerical attribute values, and then map the five
value levels to five sensitivity levels. According to these sensitivity levels, we propose privacy model
(αh

lev, k)-anonymity for hierarchical data with multi-level sensitivity and design a privacy-preserving
approach to achieve (αh

lev, k)-anonymity. Experimental results show that the average dissimilarity
degree of these equivalence classes in anonymized hierarchical data obtained by our approach is
higher than that for existing anonymous approaches in hierarchical data. Thus, our approach can
effectively resist similarity attacks. Also, our approach causes less information loss and so improves
the utility of anonymized hierarchical data.
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Abstract: Linguistic neutrosophic numbers (LNNs) are a powerful tool for describing fuzzy
information with three independent linguistic variables (LVs), which express the degrees of truth,
uncertainty, and falsity, respectively. However, existing LNNs cannot depict the hesitancy of the
decision-maker (DM). To solve this issue, this paper first defines a hesitant linguistic neutrosophic
number (HLNN), which consists of a few LNNs regarding an evaluated object due to DMs’ hesitancy
to represent their hesitant and uncertain information in the decision-making process. Then, based on
the least common multiple cardinality (LCMC), we present generalized distance and similarity
measures of HLNNs, and then develop a similarity measure-based multiple-attribute decision-making
(MADM) method to handle the MADM problem in the HLNN setting. Finally, the feasibility of the
proposed approach is verified by an investment decision case.

Keywords: hesitant linguistic neutrosophic number (HLNN); decision-making; similarity measure;
distance measure; least common multiple cardinality (LCMC)

1. Introduction

In the real world, the linguistic expression is well-suited for the thinking and expressing patterns
of human beings. Due to the vagueness of languages and the complexity of decision-making
environments, the linguistic fuzzy theory has been well developed in the past decades and shows
irreplaceable advantages in the fuzzy decision-making field. Linguistic variables (LVs) were defined
for fuzzy reasoning and decision-making [1–4]. Linguistic uncertain variables [5,6] (interval-valued
linguistic variables) were then defined to depict uncertain linguistic information in decision-making
problems [7,8]. After that, a linguistic intuitionistic fuzzy number (LIFN) [9], which contains two
independent LVs to describe the degrees of truth and falsity, respectively, was presented to handle
the uncertainty and incompleteness in linguistic decision-making environments [10]. Furthermore,
with the wide application of the neutrosophic theory in decision-making [11–13], Fang and Ye [14]
proposed a linguistic neutrosophic number (LNN) by adding a new LV to the LIFN for representing
the indeterminacy degree to do with the indeterminate and inconsistent linguistic information [15].
Although there exist some research works on LNNs [14,15], existing LNNs cannot depict the hesitancy
of decision-makers (DMs) in the linguistic assessment of alternatives.

Concerning the handling of the human hesitant cognition in decision-making environments,
many works have been published so far. Torra and Narukawa [16] and Torra [17] originally introduced
hesitant fuzzy sets (HFSs) to express the hesitancy by allowing the membership to contain several
possible values. Then, for linguistic decision-making problems, the expression of a hesitant fuzzy
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linguistic set (HFLS) [18] was obtained based on combining a linguistic term (LT) set with a HFS so as
to satisfy the hesitant linguistic evaluation requirements [19,20] of DMs. After that, an interval-valued
HFLS [21] was presented as an extension form by combining an interval-valued LT set with a HFS.
Recently, Ye [22] proposed the hesitant neutrosophic linguistic number (HNLN) to carry out hesitant
decision-making problems with the neutrosophic linguistic number that contains partial determinacy
and partial indeterminacy. However, there is no definition or decision-making method for the hesitant
sets of LNNs in the existing literature. Additionally, in the hesitant linguistic expressions of DMs,
the components between two hesitant sets generally have difference in their length sizes, and thus it is
difficult to directly perform measure calculations between hesitant sets. Thus, several researchers have
proposed some extension methods to extend the shorter items in the two hesitant sets by adding the
minimum values, maximum values, or any values [23,24] to reach their identical length. However,
these extension methods depend too much on the subjective preferences and interests of the DMs.
To solve this problem, we have already introduced the least common multiple cardinality (LCMC)
to extend the hesitant fuzzy elements in our previous research works [22,25], which become more
objective for the decision-making calculation of HFSs.

As aforementioned, there is a gap of hesitant LNNs in existing studies. For instance, suppose that
we hesitate between two single-valued LNNs, <h7, h3, h4> and <h5, h3, h1>, from the given LT set
H = {hs|s ∈ [0, 8]} regarding an evaluated object. However, it is difficult to express the hesitation
information and the LNN information of the DMs simultaneously by a unique LNN or a unique HFS.
Therefore, for the purposes of satisfying the demand of hesitant decision-making with LNNs and
ensuring the objectivity of the measure calculation, this paper aims to (i) define the concept of HLNNs
by combining HFSs with LNNs, (ii) present the LCMC-based generalized distance and similarity
measures of HLNNs for more objective measure calculation of HLNN information, and (iii) to propose
a novel multiple-attribute decision-making (MADM) method based on the proposed LCMC-based
similarity measure in the HLNN setting.

In order to do so, Section 2 briefly reviews LNNs. Section 3 defines a HLNN and a HLNN
set. Then, in Section 4, the LCMC-based generalized distance and similarity measures of HLNNs
are presented. In Section 5, a new MADM method was developed by using the proposed similarity
measure of HLNNs. In Section 6, the feasibility of the proposed approach is demonstrated by an
investment case. The conclusions and future research of HLNNs are discussed in the last section.

2. Linguistic Neutrosophic Numbers (LNNs)

Fang and Ye [14] originally presented the following definition of the LNN:

Definition 1 ([14]). Let H = {h0, h1, ..., hτ} be a LT set, where τ + 1 is an odd cardinality. A LNN can be
defined as ϑ = < hT, hU, hF> for hT, hU, hF ∈ H and T, U, F ∈ [0, τ], where hT, hU, hF represent the degrees of
truth, indeterminacy, and falsity, respectively.

For the comparison of LNNs, the score and accuracy functions of LNNs are defined as follows [14]:

Definition 2 ([14]). Let ϑ = <hT, hU, hF> be a LNN in H. Then its score function can be given by:

S(ϑ) = (2τ + T −U − F)/3τ for S(ϑ) ∈ [0, 1], (1)

and its accuracy function can be expressed as

V(ϑ) = (T − F)/τ for V(ϑ) ∈ [−1, 1]. (2)

Definition 3 ([14]). Let ϑα =< hTα , hUα , hFα > and ϑβ =< hTβ
, hUβ

, hFβ
> be two LNNs in H. There exist

the following relations:
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(1) If S(ϑα) < S(ϑβ), then ϑα < ϑβ;
(2) If S(ϑα) > S(ϑβ), then ϑα > ϑβ;
(3) If S(ϑα) = S(ϑβ) and V(ϑα) < V(ϑβ), then ϑα < ϑβ;
(4) If S(ϑα) = S(ϑβ) and V(ϑα) > V(ϑβ), then ϑα > ϑβ;
(5) If S(ϑα) = S(ϑβ) and V(ϑα) = V(ϑβ), then ϑα = ϑβ.

3. Hesitant Linguistic Neutrosophic Numbers (HLNNs) and HLNN Set

Torra and Narukawa [16] and Torra [17] first defined the HFS as follows:

Definition 4 ([16,17]). Assume S is a universe set, then a HFS N on S can be given by

N = {< s, E(s) >|s ∈ S},

where E(s) is a hesitant component of N containing a set of some values in [0, 1], which represents all possible
membership degrees of s.

By integrating HFS with LNN, we define a HLNN set as follows:

Definition 5. Set a universe of discourse S = {s1, s2, . . . , sq} and a finite LT set H = {h0, h1, . . . , hτ}, and then
a HLNN set Nl on S can be expressed as

Nl =
{
< sj, El(sj) >

∣∣sj ∈ S, j = 1, 2, · · · , q
}

where El(sj) is a set of mj LNNs, denoted by a HLNN El(sj) = {< hTk
j
, hUk

j
, hFk

j
> hTk

j
∈ H, hUk

j
∈ H, hFk

j
∈

H, k = 1, 2, · · · , mj} for sj ∈ S.

4. LCMC-Based Distance and Similarity Measures of HLNNs

In most situations, the cardinal numbers (the number of LNNs) of HLNNs evaluated for the same
object are usually different. Thus, it is necessary to make the cardinal numbers of the two HLNNs the
same to satisfy the distance and similarity measures between them.

We assume that p HLNNs on S = {s1, s2, . . . , sq} are El1(sj), El2(sj), · · · , Elp(sj) for sj ∈ S (j = 1, 2,
..., q). Then, the HLNNs Eli (sj) for i = 1, 2, . . . , p can be given by

El1(sj) = {< hT1
1j

, hU1
1j

, hF1
1j
>,< hT2

1j
, hU2

1j
, hF2

1j
>, · · · ,< h

T
m1j
1j

, h
U

m1j
1j

, h
F

m1j
1j

>},

El2(sj) = {< hT1
2j

, hU1
2j

, hF1
2j
>,< hT2

2j
, hU2

2j
, hF2

2j
>, · · · ,< h

T
m2j
2j

, h
U

m2j
2j

, h
F

m2j
2j

>},

· · · ,
Elp(sj) = {< hT1

pj
, hU1

pj
, hF1

pj
>,< hT2

pj
, hU2

pj
, hF2

pj
>, · · · ,< h

T
mpj
pj

, h
U

mpj
pj

, h
F

mpj
pj

>},

where mij is the cardinal number of Eli (sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q).
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Provided that the LCMC of mij (i = 1, 2, ..., p and j = 1, 2, ..., q) is cj (j = 1, 2, . . . , q), by increasing
the number of LNNs < hTk

ij
, hUk

ij
, hFk

ij
> (k = 1, 2, ..., mij) in Eli (sj) depending on cj (j = 1, 2, . . . , q),

the extended HLNN Eo
li
(sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q) will be obtained by the extension forms:

Eo
l1
(sj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cj︷ ︸︸ ︷

< hT1
1j

, hU1
1j

, hF1
1j
>, · · ·︸ ︷︷ ︸

R1j

,< hT2
1j

, hU2
1j

, hF2
1j
>, · · ·︸ ︷︷ ︸

R1j

, · · · ,< h
T

m1j
1j

, h
U

m1j
1j

, h
F

m1j
1j

>, · · ·︸ ︷︷ ︸
R1j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

Eo
l2
(sj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cj︷ ︸︸ ︷

< hT1
2j

, hU1
2j

, hF1
2j
>, · · ·︸ ︷︷ ︸

R2j

,< hT2
2j

, hU2
2j

, hF2
2j
>, · · ·︸ ︷︷ ︸

R2j

, · · · ,< h
T

m2j
2j

, h
U

m2j
2j

, h
F

m2j
2j

>, · · ·︸ ︷︷ ︸
R2j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

· · · ,

Eo
lp
(xj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cj︷ ︸︸ ︷

< hT1
pj

, hU1
pj

, hF1
pj
>, · · ·︸ ︷︷ ︸

Rpj

,< hT2
pj

, hU2
pj

, hF2
pj
>, · · ·︸ ︷︷ ︸

Rpj

, · · · ,< h
T

mpj
pj

, h
U

mpj
pj

, h
F

mpj
pj

>, · · ·︸ ︷︷ ︸
Rpj

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

where Rij is the number of LNNs < hTk
ij
, hUk

ij
, hFk

ij
> (k = 1, 2, ..., mij) in Eo

li
(xj) (i = 1, 2, . . . , p and j = 1, 2,

. . . , q), calculated by:

Rij =
cj

mij
. (3)

Additionally, the elements ϑ
σ(k)
ij =< h

Tσ(k)
ij

, h
Uσ(k)

ij
, h

Fσ(k)
ij

> (k = 1, 2, . . . , cj) in Eo
li
(xj) are arranged

in an ascending order, denoted as Eo
li
(xj) = {ϑσ(1)

ij , ϑ
σ(2)
ij , · · · , ϑ

σ(cj)

ij } (i = 1, 2, . . . , p and j = 1, 2, . . . , q),

where σ : (1, 2, . . . , cj)→ (1, 2, . . . , cj) is a permutation satisfying ϑ
σ(k)
ij ≤ ϑ

σ(k+1)
ij (k = 1, 2, . . . , cj).

Definition 6. Let Nl1 =
{

El1(s1), El1(s2), · · · , El1(sq)
}

and Nl2 =
{

El2(s1), El2(s2), · · · , El2(sq)
}

be two
HLNN sets on S = {s1, s2, ..., sq}, where El1(sj) and El2(sj) (j = 1, 2, . . . , q) are HLNNs in a LT set H = {h0,
h1, ..., hτ} for hj ∈ H. Let f(hj) = j/τ be a linguistic scale function. Then, the normalized generalized distance
between Nl1 and Nl2 can be represented as:

d(Nl1 , Nl2) =

{
1
q

q
∑

j=1

[
1

3cj

cj

∑
k=1

(| f (h
Tσ(k)

1j
)− f (h

Tσ(k)
2j

)|ρ + | f (h
Uσ(k)

1j
)− f (h

Uσ(k)
2j

)|ρ + | f (h
Fσ(k)

1j
)− f (h

Fσ(k)
2j

)|ρ)
]}1/ρ

=

{
1
q

q
∑

j=1

[
1

3cjτ
ρ

cj

∑
k=1

(|Tσ(k)
1j − Tσ(k)

2j |ρ + |U
σ(k)
1j −Uσ(k)

2j |ρ + |F
σ(k)
1j − Fσ(k)

2j |ρ)
]}1/ρ

f or ρ > 0.

(4)

Obviously, d(Nl1 , Nl2) degenerates to the normalized generalized distance of Hamming for ρ = 1
and to the normalized generalized distance of Euclidean for ρ = 2.

For the generalized distance d(Nl1 , Nl2), there is a proposition as follows:

Proposition 1. For any two HLNN sets Nl1 =
{

El1(s1), El1(s2), · · · , El1(sq)
}

and Nl2 ={
El2(s1), El2(s2), · · · , El2(sq)

}
, the generalized distance d(Nl1 , Nl2) between Nl1 and Nl2 for ρ > 0 contains

the following properties:

(HP1) 0 ≤ d(Nl1 , Nl2) ≤ 1;
(HP2) d(Nl1 , Nl2) = 0 if and only if Nl1 = Nl2 ;
(HP3) d(Nl1 , Nl2) = d(Nl2 , Nl1);
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(HP4) Let Nl3 =
{

El3(s1), El3(s2), · · · , El3(sq)
}

be a HLNN set, then d(Nl1 , Nl2) ≤ d(Nl1 , Nl3) and
d(Nl2 , Nl3) ≤ d(Nl1 , Nl3) if Nl1 ⊆ Nl2 ⊆ Nl3 .

Proof. It is obvious that the properties (HP1)–(HP3) are satisfied for d(Nl1 , Nl2). Thus, we only need to
prove the property (HP4).

Since there is Nl1 ⊆ Nl2 ⊆ Nl3 , there exists E0
l1
(sj) ≤ E0

l2
(sj) ≤ E0

l3
(sj) for sj ∈ S (j = 1, 2, ..., q),

which implies Tσ(k)
3j ≥ Tσ(k)

2j ≥ Tσ(k)
1j , Uσ(k)

3j ≤ Uσ(k)
2j ≤ Uσ(k)

1j , Fσ(k)
3j ≤ Fσ(k)

2j ≤ Fσ(k)
1j for k = 1, 2, ..., cj.

It follows that ∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ,
∣∣∣Tσ(k)

2j − Tσ(k)
3j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ,∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ ≤∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ ,
∣∣∣Uσ(k)

2j −Uσ(k)
3j

∣∣∣ρ ≤∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ,∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ ≤∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ ,
∣∣∣Fσ(k)

2j − Fσ(k)
3j

∣∣∣ρ ≤∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ.

Then there are the following inequalities:∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ,∣∣∣Tσ(k)
2j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
2j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
2j − Fσ(k)

3j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ.

Thus, the following relations can be further obtained:

1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

2j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

2j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

2j )|ρ)
]

≤ 1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

3j )|ρ)
]

,

1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
2j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
2j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
2j )− (Fσ(k)

3j )|ρ)
]

≤ 1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

3j )|ρ)
]

.

By Equation (4), there are d(Nl1 , Nl2) ≤ d(Nl1 , Nl3) and d(Nl2 , Nl3) ≤ d(Nl1 , Nl3) for ρ > 0.
Therefore, the property (HP4) can hold. �

If we consider the weight wj of an element sj ∈ S with wj ∈ [0, 1] and ∑
q
j=1 wj = 1, the generalized

weighted distance between Nl1 and Nl2 is

dw(Nl1 , Nl2) =

{
q
∑

j=1
wj

[
1

3cj

cj

∑
k=1

(
| f (h

Tσ(k)
1j

)− f (h
Tσ(k)

2j
)|ρ + | f (h

Uσ(k)
1j

)− f (h
Uσ(k)

2j
)|ρ + | f (h

Fσ(k)
1j

)− f (h
Fσ(k)

2j
)|ρ
)]}1/ρ

=

{
q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(
|Tσ(k)

1j − Tσ(k)
2j |ρ + |U

σ(k)
1j −Uσ(k)

2j |ρ + |F
σ(k)
1j − Fσ(k)

2j |ρ
)]}1/ρ

f or ρ > 0.

(5)

Since the measures of similarity and distance are complementary with each other, the weighted
measure of similarity between Nl1 and Nl2 can be represented by

Sw(Nl1 , Nl2) = 1− dw(Nl1 , Nl2)

= 1−
{

q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ)]}1/ρ

f or ρ > 0.
(6)

Similar to the properties (HP1)–(HP4) satisfied by the generalized distance measure in
Proposition 1, the similarity measure Sw(Nl1 , Nl2) also has the proposition as follows:
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Proposition 2. The similarity measure Sw(Nl1 , Nl2) for ρ > 0 contains the following properties:

(HP1) 0 ≤ Sw(Nl1 , Nl2) ≤ 1;
(HP2) Sw(Nl1 , Nl2) = 1 if and only if Nl1 = Nl2 ;
(HP3) Sw(Nl1 , Nl2) = Sw(Nl2 , Nl1);
(HP4) Let Nl3 be a HLNN set, then there are Sw(Nl1 , Nl2) ≥ Sw(Nl1 , Nl3) and Sw(Nl2 , Nl3) ≥ Sw(Nl1 , Nl3)

if Nl1 ⊆ Nl2 ⊆ Nl3 .

Proof. It is clear that Sw(Nl1 , Nl2) satisfies the properties (SP1)–(SP3). Thus, we only prove the property
(SP4) here.

According to the proved property (HP4) in Proposition 1, if Nl1 ⊆ Nl2 ⊆ Nl3 , there exists
the relations of dw(Nl1 , Nl2) ≤ dw(Nl1 , Nl3) and dw(Nl2 , Nl3) ≤ dw(Nl1 , Nl3) for ρ > 0. Since the
similarity measure is the complement of the distance measure, both Sw(Nl1 , Nl2) ≥ Sw(Nl1 , Nl3) and
Sw(Nl2 , Nl3) ≥ Sw(Nl1 , Nl3) can be easily obtained. Therefore, the property (SP4) can hold. �

5. MADM Method Using the Similarity Measure of HLNNs

For a MADM problem in the HLNN setting, some DMs need to evaluate p alternatives (denoted
by G = {g1, g2, . . . , gp}) over q attributes (denoted by S = {s1, s2, . . . , sq}) from the LT set H = {h0, h1, . . . ,
hτ}. Then, a weight vector W = (ω1, ω2, . . . , ωq), which is on the conditions of 0 ≤ ωj ≤ 1 (j = 1, 2, ..., q)
and ∑

q
j=1 ωj = 1, represents the importance of the attributes in S. Thus, the HLNN decision matrix M

can be expressed as:

M = (Eli (sj))p×q =

g1

g2
...

gp

⎡⎢⎢⎢⎢⎣
El1(s1) El1(s2) · · · El1(xq)

El2(s1) El2(s2) · · · El2(sq)
...

...
. . .

...
Elp(s1) Elp(s2) · · · Elp(sq)

⎤⎥⎥⎥⎥⎦.

where Eli (sj) = {< hT1
ij
, hU1

ij
, hF1

ij
>,< hT2

ij
, hU2

ij
, hF2

ij
>, · · · ,< h

T
mij
ij

, h
U

mij
ij

, h
F

mij
ij

>} is a HLNN for sj ∈
S, and mij is the number of LNNs in Eli (sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q).

On the basis of the proposed similarity measure, a novel MADM method of HLNN is presented
by the following steps:

Step 1: For any HLNN Eli (sj) (j = 1, 2, . . . , q) in M, rank all elements ϑ
σ(k)
ij (k = 1, 2, . . . , mij) in each

HLNN Eli (sj) (j = 1, 2, . . . , q) in an ascending order according to their score and accuracy functions,
then yield the corresponding extended HLNN Eo

li
(sj) based on the LCMC cj and the occurrence number

Rij of every LNN in Eli (sj) obtained by Equation (3). Hence, the extended decision matrix M
◦

is

Mo = (Eo
li (sj))p×q

=

g1

g2
...

gp

⎡⎢⎢⎢⎢⎣
Eo

l1
(s1) Eo

l1
(s2) · · · Eo

l1
(sq)

Eo
l2
(s1) Eo

l2
(s2) · · · Eo

l2
(sq)

...
...

. . .
...

Eo
lp
(s1) Eo

lp
(s2) · · · Eo

lp
(sq)

⎤⎥⎥⎥⎥⎦,

where Eo
li
(sj) = {ϑσ(1)

ij , ϑ
σ(2)
ij , · · · , ϑ

σ(cj)

ij } (i = 1, 2, . . . , p and j = 1, 2, . . . , q) satisfies ϑ
σ(k)
ij ≤ ϑ

σ(k+1)
ij

(k = 1, 2, . . . , cj).
Step 2: Specify an ideal HLNN set as g∗ = {Eo

l (s1), Eo
l (s2), . . . , Eo

l (sq)} =

{{ϑσ(1)
1 , ϑ

σ(2)
1 , . . . , ϑ

σ(c1)
1 }, {ϑσ(1)

2 , ϑ
σ(2)
2 , . . . , ϑ

σ(c2)
2 }, . . . , {ϑσ(1)

q , ϑ
σ(2)
q , . . . , ϑ

σ(cq)
q }} for all ϑ

σ(k)
j =<

hτ , h0, h0 > (k = 1, 2, ..., cj and j = 1, 2, ..., q).
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Hence, the similarity measure between gi (i = 1, 2, . . . , p) and g* can be calculated by

Sw(gi, g∗) = 1− dw(gi, g∗)

= 1−
{

q
∑

j=1
wj

[
1

3cj

cj

∑
k=1

(
| f (h

Tσ(k)
aij

)− f (hτ)|ρ + | f (hUσ(k)
aij

)− f (h0)|ρ + | f (hFσ(k)
aij

)− f (h0)|ρ
)]}1/ρ

= 1−
{

q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(
|Tσ(k)

aij − τ|ρ + |Uσ(k)
aij |ρ + |F

σ(k)
aij |ρ

)]}1/ρ

f or ρ > 0.

(7)

Step 3: According to the similarity measure results, rank the alternatives in G = {g1, g2, . . . , gm} in
a descending order and choose the best one.

Step 4: End.
HLNN is a hybrid form of a LNN and HFS, which inherits the advantages of both the LNN

and HFS, and expresses the decision-making information with a hesitant set of LNNs. The proposed
LCMC-based distance and similarity measures can deal with not only the HLNN information, but also
the LNN information, because the LNN is only a special case of the HLNN when the DMs have no
hesitation; while all existing aggregation operators of LNNs [14] cannot aggregate HLNN information
for the reason that the HLNN is a LNN set of any length. Furthermore, existing MADM methods
cannot deal with decision-making problems in the HLNN setting.

Moreover, to ensure the objectivity of the measure calculational results, the proposed LCMC-based
distance and similarity measures are based on the LCMC extension method in HLNNs rather than
by simply adding special components, such as the maximum or the minimum or the average values,
which heavily depend on the personal interests and preferences of DMs [23,24] so as to easily result in
subjective decision-making results. Thus, the novel MADM method of HLNN provides a more general
and objective decision-making process for decision-makers.

6. Actual Example

In this section, to verify whether the novel MADM approach with HLNNs is feasible and
reasonable in practical applications, an investment decision-making case adapted from [14] is
illustrated under a HLNN environment. In this case, the investment company makes an optimal
selection in a set of four possible manufacturers, G = {g1, g2, g3, g4}, for producing computers (g1),
cars (g2), food (g3), and clothing (g4), respectively. The four alternatives must satisfy a set of three
attributes, S = {s1, s2, s3}, including the risk (s1), the growth (s2), and the environmental impact (s3),
with the importance given by the weight vector W = (0.35, 0.25, 0.4). Now, some DMs are assigned to
assess the alternatives over the attributes by HLNN expressions from the given LT set H = {h0: none, h1:
lowest, h2: lower, h3: low, h4: moderate, h5: high, h6: higher, h7: highest, h8: perfect}. Then, the assessment
results regarding the four alternatives g1, g2, g3, and g4 on the three attributes s1, s2, and s3 can be
constructed as

M =

g1

g2

g3

g4

⎡⎢⎢⎢⎣
{< h6, h1, h2 >,< h6, h1, h2 >,< h7, h3, h4 >} {< h7, h2, h1 >,< h6, h1, h1 >,< h7, h3, h3 >} {< h6, h2, h2 >,< h4, h2, h3 >}
{< h7, h1, h1 >,< h7, h2, h3 >,< h6, h3, h4 >} {< h7, h3, h2 >,< h6, h1, h1 >} {< h7, h3, h2 >,< h6, h1, h1 >}

{< h6, h2, h2 >,< h5, h1, h2 >} {< h7, h1, h1 >,< h5, h1, h2 >} {< h6, h2, h2 >,< h5, h4, h2 >}
{< h7, h1, h2 >,< h6, h1, h1 >,< h7, h2, h3 >} {< h7, h2, h3 >,< h5, h1, h1 >} {< h7, h2, h1 >,< h5, h2, h3 >}

⎤⎥⎥⎥⎦.

Thus, there are the following decision steps:
Step 1: According to the score and accuracy functions obtained by Equations (1) and (2), rank the

LNNs ϑ
σ(k)
ij (k = 1, 2, . . . , mij) in each HLNN Eli (sj) (i = 1, 2, 3, 4 and j = 1, 2, 3) in an ascending order,

and obtain the following matrix:

M′ =

g1

g2

g3

g4

⎡⎢⎢⎢⎣
{< h7, h3, h4 >,< h6, h1, h2 >,< h6, h1, h2 >} {< h7, h3, h3 >,< h6, h1, h1 >,< h7, h2, h1 >} {< h4, h2, h3 >,< h6, h2, h2 >}
{< h6, h3, h4 >,< h7, h2, h3 >,< h7, h1, h1 >} {< h7, h3, h2 >,< h6, h1, h1 >} {< h4, h2, h3 >,< h6, h2, h3 >,< h7, h2, h1 >}

{< h5, h1, h2 >,< h6, h2, h2 >} {< h5, h1, h2 >,< h7, h1, h1 >} {< h5, h4, h2 >,< h6, h2, h2 >}
{< h7, h2, h3 >,< h7, h1, h2 >,< h6, h1, h1 >} {< h7, h2, h3 >,< h5, h1, h1 >} {< h5, h2, h3 >,< h7, h2, h1 >}

⎤⎥⎥⎥⎦
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Then, according to the LCMC cj = 6 (j = 1, 2, 3) and the number of occurrences of LNNs Rij of
Eli (sj) (i = 1, 2, 3, 4 and j = 1, 2, 3) obtained by Equation (3), yield the following extended decision
matrix M

◦
:

Mo =

g1

g2

g3

g4

⎡⎢⎢⎢⎣
{< h7, h3, h4 >,< h7, h3, h4 >,< h6, h1, h2 >,< h6, h1, h2 >,< h6, h1, h2 >,< h6, h1, h2 >}
{< h6, h3, h4 >,< h6, h3, h4 >,< h7, h2, h3 >,< h7, h2, h3 >,< h7, h1, h1 >,< h7, h1, h1 >}
{< h5, h1, h2 >,< h5, h1, h2 >,< h5, h1, h2 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h7, h2, h3 >,< h7, h2, h3 >,< h7, h1, h2 >,< h7, h1, h2 >,< h6, h1, h1 >,< h6, h1, h1 >}
{< h7, h3, h3 >,< h7, h3, h3 >,< h6, h1, h1 >,< h6, h1, h1 >,< h7, h2, h1 >,< h7, h2, h1 >}
{< h7, h3, h2 >,< h7, h3, h2 >,< h7, h3, h2 >,< h6, h1, h1 >,< h6, h1, h1 >,< h6, h1, h1 >}
{< h5, h1, h2 >,< h5, h1, h2 >,< h5, h1, h2 >,< h7, h1, h1 >,< h7, h1, h1 >,< h7, h1, h1 >}
{< h7, h2, h3 >,< h7, h2, h3 >,< h7, h2, h3 >,< h5, h1, h1 >,< h5, h1, h1 >,< h5, h1, h1 >}
{< h4, h2, h3 >,< h4, h2, h3 >,< h4, h2, h3 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h4, h2, h3 >,< h4, h2, h3 >,< h6, h2, h3 >,< h6, h2, h3 >,< h7, h2, h1 >,< h7, h2, h1 >}
{< h5, h4, h2 >,< h5, h4, h2 >,< h5, h4, h2 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h5, h2, h3 >,< h5, h2, h3 >,< h5, h2, h3 >,< h7, h2, h1 >,< h7, h2, h1 >,< h7, h2, h1 >}

⎤⎥⎥⎥⎦.

Step 2: Obtain the similarity measures between the alternatives g1, g2, g3, and g4 and the ideal
solution g* = {{<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>,
<8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}} by Equation (7) for ρ = 1 and 2:

Sw(g1, g∗) = 0.7354, Sw(g2, g∗) = 0.7493, Sw(g3, g∗) = 0.7406, Sw(g4, g∗) = 0.7747 for ρ = 1.
Sw(g1, g∗) = 0.7121, Sw(g2, g∗) = 0.7224, Sw(g3, g∗) = 0.7217, Sw(g4, g∗) = 0.7525 for ρ = 2.

Step 3: Due to Sw(g4, g*) > Sw(g2, g*) > Sw(g3, g*) > Sw(g1, g*) for ρ = 1 and 2, the ranking of the
four alternatives is g4 > g2 >g3 > g1; thus, the best choice is g4.

By following the above steps, the MADM calculations of ρ ∈ [3, 100] are further performed for this
example. The relative decision results, including the similarity measure, ranking order, average value
(AV), standard deviation (SD), and the best alternative, are shown in Table 1. Obviously, the ranking
order is g4 > g2 > g3 > g1 for ρ = 1 and 2, and then it becomes g4 > g3 > g2 > g1 for ρ > 2; while the best
alternative is always g4.

Table 1. Decision results of the proposed multiple-attribute decision-making (MADM) method for ρ ∈
[1, 100] and W = (0.35, 0.25, 0.4).

ρ 1 Sw(g1, g*), Sw(g2, g*), Sw(g3, g*), Sw(g4, g*) 2 Ranking Order AV 3 SD 4 Best
Alternative

1 0.7354, 0.7493, 0.7406, 0.7747 g4 > g2 > g3 > g1 0.7500 0.0151 g4
2 0.7121, 0.7224, 0.7217, 0.7525 g4 > g2 > g3 > g1 0.7272 0.0152 g4
3 0.6905, 0.6985, 0.7037, 0.7335 g4 > g3 > g2 > g1 0.7066 0.0163 g4
4 0.6710, 0.6781, 0.6867, 0.7182 g4 > g3 > g2 > g1 0.6885 0.018 g4
5 0.6539, 0.6608, 0.6710, 0.7061 g4 > g3 > g2 > g1 0.6730 0.0201 g4

10 0.5972, 0.6047, 0.6133, 0.6722 g4 > g3 > g2 > g1 0.6219 0.0296 g4
15 0.5690, 0.5754, 0.5817, 0.6575 g4 > g3 > g2 > g1 0.5959 0.0358 g4
20 0.5531, 0.5582, 0.5631, 0.6497 g4 > g3 > g2 > g1 0.5810 0.0398 g4
30 0.5361, 0.5397, 0.5432, 0.6417 g4 > g3 > g2 > g1 0.5652 0.0443 g4
40 0.5273, 0.5301, 0.5327, 0.6376 g4 > g3 > g2 > g1 0.5569 0.0466 g4
50 0.5220, 0.5242, 0.5264, 0.6351 g4 > g3 > g2 > g1 0.5519 0.048 g4

100 0.5111, 0.5123, 0.5134, 0.6301 g4 > g3 > g2 > g1 0.5417 0.051 g4

Notes: 1 ρ: parameter; 2 Sw(gi, g*): the similarity measures between the alternatives gi(i = 1, 2, 3, 4) and the ideal
solution g* = {{<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>,
<8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}}; 3 AV: average value; 4 SD: standard deviation.
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7. Discussion and Analysis

In this section, further discussion and analysis are carried out for the resolution and the sensitivity
of the novel MADM method of HLNNs.

7.1. Resolution Analysis

According to Table 1, Figure 1 illustrates the SDs of the similarity measures for ρ ∈ [1, 100].
Clearly, the SD increases with increasing the value of ρ. Then, it reaches 0.051 for ρ = 100. Since the
SD can reflect the resolution/discrimination level of the MADM method, it is obvious that the
resolution/discrimination level will be enhanced with increasing the value of ρ so as to provide
effective decision information for decision-makers in the MADM process. However, considering that
the computational complexity of MADM increases with increasing the value of ρ, we recommend
selecting the MADM method with some suitable value of ρ under the condition that the resolution
degree meets some actual requirement and the DMs’ preference.

Figure 1. SD of similarity measure values for ρ∈ [1, 100] and W = (0.35, 0.25, 0.4).

7.2. Sensitivity Analysis of Weights

The average weight vector of W = (1/3, 1/3, 1/3) is applied to the actual example as a comparison
with W = (0.35, 0.25, 0.4) to illustrate the weight sensitivity of the MADM method. The decision results
with W = (1/3, 1/3, 1/3) are shown in Table 2. Then, the similarity measure values for W = (0.35, 0.25,
0.4) and W = (1/3, 1/3, 1/3) are further illustrated in Figure 2a,b.

From Figure 2, obviously, the similarity measure curves with W = (0.35, 0.25, 0.4) are very similar to
those with W = (1/3, 1/3, 1/3). By carefully comparing Tables 1 and 2, we find that the ranking orders
are identical except that of ρ = 2. For ρ = 2, the ranking orders of g4 > g2 > g3 > g1 for W = (0.35, 0.25, 0.4)
and g4 > g3 > g2 > g1 for W = (1/3, 1/3, 1/3) indicate a little difference. Then, the best alternatives
are the same within the entire range of ρ. Hence, the ranking orders in this example imply a little
sensitivity to the attribute weights.
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Table 2. Decision results of the proposed MADM method for ρ ∈ [1, 100] and W = (1/3, 1/3, 1/3).

ρ Sw(g1, g*), Sw(g2, g*), Sw(g3, g*), Sw(g4, g*) Ranking Order AV SD
Best

Alternative

1 0.7431, 0.7546, 0.7500, 0.7755 g4 > g2 > g3 > g1 0.7558 0.0121 g4
2 0.7189, 0.7278, 0.7300, 0.7529 g4 > g3 > g2 > g1 0.7324 0.0125 g4
3 0.6968, 0.7039, 0.7112, 0.7336 g4 > g3 > g2 > g1 0.7114 0.0138 g4
4 0.6769, 0.6833, 0.6938, 0.7180 g4 > g3 > g2 > g1 0.693 0.0156 g4
5 0.6596, 0.6659, 0.6779, 0.7057 g4 > g3 > g2 > g1 0.6773 0.0177 g4

10 0.6019, 0.6088, 0.6193, 0.6717 g4 > g3 > g2 > g1 0.6254 0.0274 g4
15 0.5727, 0.5786, 0.5865, 0.6572 g4 > g3 > g2 > g1 0.5988 0.0341 g4
20 0.556, 0.5608, 0.5671, 0.6495 g4 > g3 > g2 > g1 0.5834 0.0384 g4
30 0.5381, 0.5415, 0.5459, 0.6415 g4 > g3 > g2 > g1 0.5668 0.0432 g4
40 0.5289, 0.5315, 0.5349, 0.6374 g4 > g3 > g2 > g1 0.5582 0.0458 g4
50 0.5232, 0.5254, 0.5281, 0.6350 g4 > g3 > g2 > g1 0.5529 0.0474 g4
100 0.5118, 0.5128, 0.5142, 0.6300 g4 > g3 > g2 > g1 0.5422 0.0507 g4

Figure 2. Similarity measure values of four alternatives for ρ∈ [1, 100]. (a) W = (0.35, 0.25, 0.4) and (b)
W = (1/3, 1/3, 1/3).

8. Conclusions

This paper firstly defined the concept of HLNNs by integrating a HFS with a LNN. Then,
the normalized generalized distance and similarity measures of HLNNs were presented based on
the LCMC method. Next, a novel MADM method based on the proposed similarity measure was
presented under the HLNN environment. Finally, a MADM example of an investment problem was
illustrated to demonstrate that the developed method is feasible and applicable. Since the HLNN
combines the merits of the HFS and LNN, containing more information than the LNN, the MADM
method of HLNNs based on the LCMC method is more objective and more suitable for the practical
applications with HLNN information.

However, some advantages of the proposed HLNNs and MADM method based on the LCMC
method are listed as follows:

(1) The proposed HLNN provides a new effective way to express more decision information than
existing LNNs by considering the hesitancy of DMs.

(2) The proposed MADM method of HLNNs solves the MADM problems with HLNN information
for the first time, as well as the gap of existing linguistic decision-making methods.

(3) The proposed distance and similarity measures of HLNNs based on the LCMC extension method
for HLNNs are more objective and more reasonable than those reported in [23,24].

Future research on HLNNs will focus on the development of new aggregation operators and
correlation coefficients of HLNNs, and their applications in fault diagnosis, medical diagnosis,
decision-making, and so on in the HLNN setting.
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Abstract: A complex fuzzy set is an extension of the traditional fuzzy set, where traditional
[0,1]-valued membership grade is extended to the complex unit disk. The aggregation operator
plays an important role in many fields, and this paper presents several complex fuzzy geometric
aggregation operators. We show that these operators possess the properties of rotational invariance
and reflectional invariance. These operators are also closed on the upper-right quadrant of the
complex unit disk. Based on the relationship between Pythagorean membership grades and complex
numbers, these operators can be applied to the Pythagorean fuzzy environment.

Keywords: complex fuzzy sets; aggregation operator; complex fuzzy geometric operators; rotational
invariance; reflectional invariance

1. Introduction

Ramot et al. [1] introduced the innovative concept of complex fuzzy sets (CFSs), which is an
extension of the traditional fuzzy sets [2] where traditional unit interval [0,1]-valued membership
degrees are extended to the complex unit disk. CFSs are completely distinct from the fuzzy complex
numbers discussed by Buckley [3–5]. The complex-valued membership grade has an amplitude
term with the addition of a phase term. The phase term of complex-valued membership grade is
the key feature which essentially distinguishes complex fuzzy sets from other extensions of fuzzy
sets. Ramot et al. [1,6] then introduced several operators of CFSs and a novel framework for complex
fuzzy reasoning. Hu et al. [7] introduced the orthogonality relation for CFSs. Bi et al. [8] proposed
the parallelity of CFSs and the parallelity-preserving operators. Zhang et al. [9] proposed the
δ-equalities for CFSs. Alkouri and Salleh [10] and Hu et al. [11] defined several distances between
CFSs. Tamir et al. [12] proposed a new interpretation of complex membership degree. They [13]
then proposed complex fuzzy propositional and first-order logics. Dick [14] proposed the concept
of rotational invariance for complex fuzzy operators. Recently, several scholars have developed
extensions of CFSs. Greenfield et.al [15,16] introduced interval-valued complex fuzzy sets. Alkouri
and Saleh [17] proposed complex intuitionistic fuzzy sets. Ali and Smarandache [18] introduced
complex neutrosophic sets. Recently, CFSs and their extensions have been successfully applied in
many fields, such as time series prediction [19–22], decision making [23], signal processing [1,7,9],
and image restoration [24].

Yager and Abbsocv [25] discussed the relationship between CFSs and Pythagorean fuzzy
sets (PFSs), which was developed by Yager [26,27] as an extension of Atanssov’s intuitionistic
fuzzy sets [28]. They showed that Pythagorean fuzzy membership grades can be viewed as
complex numbers on the upper-right quadrant of the complex unit disk, named Π − i numbers.
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Dick, Yager, and Yazdanbahksh [29] then discussed several lattice-theoretic properties of PFSs and
CFSs. Quantum information processing also allows for meaningful aggregation using complex
numbers. Since qubits can be represented by unit vectors in the two-dimensional complex Hilbert
space, geometric information or vector aggregation are used for meaningful clustering [30,31].

The information aggregation operator plays an important role in many fields of decision
making. In the past several decades, many aggregation techniques for decision making have been
developed. The ordered weighted averaging (OWA) operator introduced by Yager [32] is one of the
well-known aggregation operators. Many different aggregation techniques have been applied in many
different fuzzy environments, such as intuitionistic [33–35], Pythagorean [36–38], neutrosophic [39–41],
interval-valued intuitionistic [42–45], and hesitant fuzzy environments [46–48].

As mentioned in [19], CFSs are suitable to represent information with uncertainty and periodicity,
and thus this information aggregation procedure needs to simultaneously process the uncertainty
and periodicity in the data. However, comparatively few aggregation techniques have been made in
the complex fuzzy environment. Ramot et al. [6] defined the complex fuzzy aggregation operations
as vectors aggregation. In particular, the complex weights are used in their definition. Ma et al. [19]
developed a product-sum aggregation operator for multiple periodic factor prediction problems.
They proved the continuity of this operator. However, they did not focus on techniques for complex
fuzzy information aggregation in these two articles.

In this paper, we study aggregation operators in the complex fuzzy environment. Dick’s [14]
concept of rotational invariance is an intuitive and desirable feature for complex fuzzy operators.
This feature is examined for complex fuzzy aggregation operators. This paper proposes a novel
feature for complex fuzzy aggregation operators called reflectional invariance. Moreover, we study the
aggregation operators of complex numbers in the upper-right quadrant of the complex unit disk.

The main contributions of the study include: (1) A concept of reflectional invariance for complex
fuzzy operators. (2) Several complex fuzzy weighted geometric operators; we also show that these
operators can also be used in a Pythagorean fuzzy environment. (3) A target location method which
involves the complex fuzzy aggregation operators.

This paper is organized as follows. In Section 2, we review some basic and fundamental concepts
of CFSs, rotational invariance, reflectional invariance, and Ramot et al.’s [6] complex fuzzy aggregation
operators. In Section 3 we study the complex fuzzy weighted geometric (CFWG) operator on CFSs
and its properties. In Section 4, we develop the complex fuzzy ordered weighted geometric (CFOWG)
operator based on the traditional partial ordering by the modulus of a complex number, and study its
properties. In Section 5, we study these operators in the domain of Π− i numbers which belong to the
upper-right quadrant of the complex unit disk. In Section 6, we present an application example in a
target location. Conclusions are made in Section 7.

2. Preliminaries

In this section, we present some basic material, including the concepts of CFSs [1], rotational
invariance [14], reflectional invariance, and complex fuzzy aggregation operators [1].

2.1. Complex Fuzzy Sets

Ramot et al. [1] defined the concept of CFSs as follows.

Definition 1 ([1]). Let X be a universe, D be the set of complex numbers whose modulus is less than or equal
to 1, i.e.,

D =
{

a ∈ C
∣∣|a| ≤ 1

}
,

a complex fuzzy set A defined on X is a mapping: X → D, which can be denoted as below:

A =
{
< x, tA(x) · ejνA(x) > |x ∈ X

}
, (1)
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where j =
√
−1, the amplitude term tA(x) and the phase term νA(x) are both real-valued, and tA(x) ∈ [0, 1].

For convenience, we only consider the complex numbers on D, called complex fuzzy values
(CFVs). Let a = ta · ejνa be a CFV, then the amplitude of a is denoted by ta and the phase of a is denoted
by νa. They are both real-valued, ta ∈ [0, 1]. The modulus of a is ta, denoted by |a|.

Let a = ta · ejνa and b = tb · ejνb be two CFVs, then we have the following two commonly used
binary operations.

(i) Algebraic product:
a · b = ta · tb · ej(νa+νb). (2)

(ii) Average:
a + b

2
=

ta cos νa + tb cos νb
2

+ j
ta sin νa + tb sin νb

2
. (3)

The partial ordering of CFVs is the traditional partial ordering by the modulus of a complex
number, that is, a ≤ b if and only if |a| ≤ |b|, equivalently, ta ≤ tb.

2.2. Rotational Invariance and Reflectional Invariance

Let a = ta · ejνa be a CFV, then we have the following two commonly used unary operations:

(i) the rotation of a by θ radians, denoted Rotθ(a), is defined as

Rotθ(a) = ta · ej(νa+θ); (4)

(ii) the reflection of a, denoted Re f (a), is defined as

Re f (a) = ta · ej−νa . (5)

Then, based on the rotation operation, Dick [14] introduced the concept of rotational invariance
for complex fuzzy operators.

Definition 2 ([14]). A function f : D2 → D is rotationally invariant if and only if

f
(

Rotθ(a), Rotθ(b)
)
= Rotθ

(
f (a, b)

)
, (6)

for any θ.

We extend the above concept to multivariate operators.

Definition 3. Let f : Dn → D be an n-order function. f is rotationally invariant if and only if

f
(

Rotθ(a1), Rotθ(a2), ..., Rotθ(an)
)
= Rotθ

(
f (a1, a2, ..., an)

)
, (7)

for any θ.

In particular, since the periodicity of complex-valued membership grade, that is, Rot2π(x) = x for
any x ∈ D, we have f

(
Rot2π(a1), Rot2π(a2), ..., Rot2π(an)

)
= f (a1, a2, ..., an) = Rot2π

(
f (a1, a2, ..., an)

)
.

This is a special case of rotational invariance.
Similar to the above definition, we introduce the concept of reflectional invariance for complex

fuzzy operators based on the reflection operation.

Definition 4. Let f : Dn → D be an n-order function. f is reflectionally invariant if and only if

f
(

Re f (a1), Re f (a2), ..., Re f (an)
)
= Re f

(
f (a1, a2, ..., an)

)
. (8)
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Rotational invariance and reflectional invariance are intuitive properties for complex fuzzy
operators. It makes a great deal of sense that a operator is invariant under a rotation or a reflection.
If we rotate two vectors by a common value, rotational invariance states that an aggregation of those
vectors will be rotated by the same value, as shown in Figure 1a. If we reflect two vectors, reflectional
invariance states that an aggregation of those vectors will be reflected as well, as shown in Figure 1b.

A

B

f(A,B)

A’

B’

f(A’,B’)

(a)

A

B

f(A,B)

A’

B’
f(A’,B’)

11
2

2

3

3
Real

(b)

Figure 1. (a) Rotational invariance and (b) reflectional invariance.

Reflectional invariance and rotational invariance are two properties which are only concerned
with the phase of CFVs.

These two properties of the algebraic product and average operators were examined, and the
results are given as follows.

Theorem 1 ([14]). The algebraic product is not rotationally invariant.

Theorem 2. The algebraic product is reflectionally invariant.

Proof. For any a, b ∈ D, we have

Re f (a) · Re f (b) = ta · ej−νa · tb · ej−νb = ta · tb · ej(−νa−νb),

Re f (a · b) = Re f
(

ta · tb · ej(νa+νb)
)
= ta · tb · ej(−νa−νb),

then Re f (a) · Re f (b) = Re f (a · b).

Theorem 3. The average operator is reflectionally invariant and rotationally invariant.

Proof. (i) Let a = ra + jωa, b = rb + jωb ∈ D. We have

Re f (a) + Re f (b)
2

=
ra + rb

2
+ j
−ωa −ωb

2
=

ra + rb
2
− j

ωa + ωb
2

= Re f (
a + b

2
).

Then, the average operator is reflectionally invariant.
(ii) For any a, b ∈ D, we have

a · ejθ + b · ejθ

2
=

(a + b) · ejθ

2
=

(a + b)
2

· ejθ .
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Then, the average operator is rotationally invariant.

2.3. Complex Fuzzy Aggregation Operators

Ramot et al. [6] defined the aggregation operation on CFSs as vector aggregation:

Definition 5 ([6]). Let A1, A2, ..., An be CFSs defined on X. Vector aggregation on A1, A2, ..., An is defined
by a function v.

v : Dn → D. (9)

The function v produces an aggregate CFS A by operating on the membership grades of A1, A2, ..., An for
each x ∈ X. For all x ∈ X, v is given by

μA(x) = v
(

tA1 · e
jνA1 , tA2 · e

jνA2 , · · · , tAn · ejνAn ,
)

=
n

∑
i=1

(
wi · tAi · e

jνAi

)
,

(10)

where wi ∈ D for all i, and ∑n
i=1 |wi| = 1.

The complex weights are used in Ramot et al.’s definition for the purpose of maintaining a
definition that is as general as possible. In this paper, we only discuss the complex fuzzy aggregation
operations with real-valued weights.

We notice that the above definition of Ramot et al’s [6] aggregation operator is a complex fuzzy
weighted arithmetic (CFWA) operator. For convenience, let a1, a2, ..., an be CFVs. The CFWA operator
is given as

CFWA(a1, a2, ..., an) =
n

∑
i=1

(
wi · ai

)
, (11)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1.

When a1, a2, ..., an ∈ [0, 1], the CFWA operator can reduce to a traditional fuzzy weighted
arithmetic operator.

When wi = 1/n for all i, then the CFWA operator is the arithmetic average of (a1, a2, ..., an),
denoted by the complex fuzzy arithmetic average (CFAA) operator. That is,

CFAA(a1, a2, ..., an) =
1
n
·

n

∑
i=1

ai. (12)

When a1, a2, ..., an ∈ [0, 1] and wi = 1/n for all i, the CFAA operator is the arithmetic mean of
numbers on [0,1].

As a special case of the CFWA operator, note that the average operator on CFVs is reflectionally
invariant and rotationally invariant (see Theorem 3). We show that the CFWA operator also possesses
these two properties.

Theorem 4. The CFWA operator is reflectionally invariant and rotationally invariant.
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Proof. (i) Let a1 = ra1 + jωa1 , a2 = ra2 + jωa2 , · · · , an = ran + jωan be CFVs. We have

Re f
(
CFWA(a1, a2, ..., an)

)
= Re f

( n

∑
i=1

(
wi · rai

)
+ j

n

∑
i=1

(
wi ·ωai

))
=

n

∑
i=1

(
wi · rai

)
− j

n

∑
i=1

(
wi ·ωai

)
=

n

∑
i=1

(
wi · (rai −ωai )

)
=

n

∑
i=1

(
wi · Re f (ai)

)
.

Then, the CFWA operator is reflectionally invariant.
(ii) For any CFVs a1, a2, ..., an, we have

CFWA(a1 · ejθ , a2 · ejθ , ..., an · ejθ) = w1 · a1 · ejθ + w2 · a2 · ejθ + ... + wn · an · ejθ

= (w1 · a1 + w2 · a2 + ... + wn · an) · ejθ

= CFWA(a1, a2, ..., an) · ejθ .

Then, the CFWA operator is rotationally invariant.

3. Complex Fuzzy Weighted Geometric Operators

In this section, we introduce the weighted geometric aggregation operators in a complex fuzzy
environment and discuss their fundamental characteristics.

Definition 6. Let a1, a2, ..., an be CFVs, a complex fuzzy weighted geometric (CFWG) operator is defined as:

CFWG(a1, a2, ..., an) =
n

∏
i=1

awi
i , (13)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1.

Denoting CFWG(a1, a2, ..., an) = t · ejν, we have a weighted geometric aggregation
(WGA) operator on [0,1], that is, t = ∏n

i=1 twi
ai and a weighted arithmetic aggregation (WAA) operator

on R, that is, ν = ∑n
i=1 wi · νai .

When a1, a2, ..., an ∈ [0, 1], the CFWG operator can reduce to a traditional fuzzy weighted
geometric operator.

When wi = 1/n for all i, then t = n
√

ta1 · ta2 · · · tan is the geometric mean of real numbers on unit
interval [0,1], ν = 1

n ·∑n
i=1 νai is the arithmetic mean of real numbers on R.

When a1, a2, ..., an ∈ [0, 1] and wi = 1/n for all i, the CFWG operator is the geometric mean of real
numbers on unit interval [0,1].

Theorem 5. Let a1, a2, ..., an be CFVs, then the aggregated value CFWG(a1, a2, ..., an) is also a complex
fuzzy value.

Proof. Since |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai , which is a weighted arithmetic aggregation operator
on unit interval [0,1], we have |CFWG(a1, a2, ..., an)| ≤ 1.

Similar to Theorem 4, the CFWA operator is reflectionally invariant and rotationally invariant.
We show that the CFWG operator also possesses these two properties.

Theorem 6. The CFWG operator is reflectionally invariant and rotationally invariant.
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Proof. (i) For any CFVs a1, a2, ..., an, we have

Re f
(
CFWG(a1, a2, ..., an)

)
= Re f

( n

∏
i=1

twi
ai · e

j ∑n
i=1 wi ·νai

)
=

n

∏
i=1

twi
ai · e

j−∑n
i=1 wi ·νai

=
n

∏
i=1

twi
ai · e

j ∑n
i=1 wi ·(−νai )

=
n

∏
i=1

Re f (ai)
wi

= CFWG
(

Re f (a1), Re f (a2), ..., Re f (an)
)
;

(ii) and

CFWG(a1 · ejθ , a2 · ejθ , ..., an · ejθ) = aw1
1 · ejw1θ · aw1

2 · ejw2θ · ... · awn
n · ejwnθ

=
( n

∏
i=1

awi
i

)
· ej(w1·θ+w2·θ+...+wn ·θ)

= CFWG(a1, a2, ..., an) · ejθ .

Idempotency, boundedness, and monotonicity are three important properties of aggregation
operators. The CFWG operator satisfies the following properties.

Theorem 7. Let a1, a2, ..., an, b1, b2, ..., bn be CFVs, CFWG weights are real values, that is, wi ∈ [0, 1] for all i,
and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If a1 = a2 = ... = an then

CFWG(a1, a2, ..., an) = a1.

(2) (Amplitude boundedness): ∣∣CFWG(a1, a2, ..., an)
∣∣ ≤ a,

where a = max
i
|ai|.

(3) (Amplitude monotonicity): If |ai| ≤ |bi| i = 1, 2, ..., n, then

|CFWAA(a1, a2, ..., an)| ≤ |CFWAA(b1, b2, ..., bn)|.

Proof. (1) Trivial form the facts that both WAA operator on [0,1] and WGA operator on R satisfy the
property of idempotency.

(2) Trivial form the facts that |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai and WGA operator on R satisfy
the property of boundedness.

(3) Trivial form the facts that |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai and WGA operator on R satisfy
the property of monotonicity.

In this paper, for complex fuzzy aggregation operators, boundedness and monotonicity are
restricted exclusively to the amplitude of CFVs. They are two properties which are only concerned
with the amplitude of CFVs. Idempotency is a property that is concerned with both the phase and
amplitude of CFVs.

It is easy to prove that the CFWA operator satisfies idempotency and amplitude boundedness,
but it does not satisfy the property of amplitude monotonicity.
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Example 1. Let a1 = 0.4, a2 = 0.4 · ej2π/3, b1 = b2 = 0.3 and weights be w1 = w2 = 0.5. Then,

CFWA(a1, a2) = 0.5 · 0.4 + 0.5 · 0.4 · ej2π/3

= 0.2 · ejπ/3

and CFWA(b1, b2) = 0.3. Then, |a1| ≥ |b1|, |a2| ≥ |b2|, but |CFWA(a1, a2)| ≤ |CFWA(b1, b2)|.

4. Complex Fuzzy Ordered Weighted Geometric Operators

Based on the partial ordering of complex numbers, we propose a complex fuzzy ordered weighted
geometric (CFOWG) operator as follows:

Definition 7. Let a1, a2, ..., an be CFVs, a CFOWG operator is defined as

CFOWG(a1, a2, ..., an) =
n

∏
i=1

awi
σ(i), (14)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that

|aσ(i−1)| ≥ |aσ(i)| for all i.

Especially when wi = 1/n for all i, then the CFOWG operator is reduced to the CFWG operator.
Similar to Theorem 5, we have the following.

Theorem 8. Let a1, a2, ..., an be CFVs, then the aggregated value CFOWG(a1, a2, ..., an) is also a complex
fuzzy value.

Similar to Theorem 6, the CFWG operator is reflectionally invariant and rotationally invariant.
The CFOWG operator also possesses these two properties.

Theorem 9. The CFOWG operator is reflectionally invariant and rotationally invariant.

Similar to Theorem 7, the CFOWG operator satisfies idempotency, amplitude boundedness,
and amplitude monotonicity.

Theorem 10. Let a1, a2, ..., an, b1, b2, ..., bn be CFVs, CFOWAA weights are real values, that is, wi ∈ [0, 1] for
all i, and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If a1 = a2 = ... = an, then

CFOWG(a1, a2, ..., an) = a1.

(2) (Boundedness): ∣∣CFOWG(a1, a2, ..., an)
∣∣ ≤ a,

where a = max
i
|ai|.

(3) (Monotonicity): If |ai| ≤ |bi| i = 1, 2, ..., n, then

|CFOWG(a1, a2, ..., an)| ≤ |CFWAA(b1, b2, ..., bn)|.

Besides the above properties, the CFOWG operator has the following.

Theorem 11. Let a1, a2, ..., an be CFVs, CFOWG weights are real values, that is, wi ∈ [0, 1] for all i,
and ∑n

i=1 wi = 1. Then, we have the following:
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(1) If w = (1, 0, ..., 0), then
|CFOWG(a1, a2, ..., an)| = max

i
|ai|;

(2) If w = (0, 0, ..., 1), then ∣∣CFOWG(a1, a2, ..., an)
∣∣ = min

i
|ai|;

(3) If wi = 1, wk = 0, k 	= i, then ∣∣CFOWG(a1, a2, ..., an)
∣∣ = |aσ(i)|,

where aσ(i) is the i-th (modulus-based) largest of a1,a2, ...,an.

Now we give a brief summary of the properties of the CFWG and CFOWG operators with
real-valued weights. The results are summarized in Table 1, in which

√
and × represent that the

corresponding property holds and does not hold, respectively.

Table 1. Properties of the complex fuzzy aggregation operators.
√

and × represent that the
corresponding property holds and does not hold, respectively.

Idempotency
Amplitude

Boundedness
Amplitude

Monotonicity
Reflectional
Invariance

Rotational
Invariance

CFAA
√ √ × √ √

CFWA
√ √ × √ √

CFWG
√ √ √ √ √

CFOWG
√ √ √ √ √

5. Complex Fuzzy Values and Pythagorean Fuzzy Numbers

Yager and Abbasov [25] showed that Pythagorean membership grades can be expressed using
complex numbers, called Π− i numbers, which belong to the upper-right quadrant of the complex
unit disk. Essentially, the CFWAA and CFOWAA operators are used to deal with special complex
numbers, which belong to the complex unit disk.

In this section, we consider the CFWG and CFOWG operators in the domain of Π− i numbers.
We first recall the concepts of Pythagorean fuzzy sets (PFSs) and Π− i numbers.

Definition 8 ([25]). Let X be a universe. A PFS A is defined by

A =
{
< x, pA(x), νA(x),>

∣∣x ∈ X
}

, (15)

where pA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] respectively represent the membership grade and nonmembership grade
of the element x to set A, such that

0 ≤
(

pA(x)
)2

+
(
νA(x)

)2 ≤ 1

for all x ∈ X. The degree of indeterminacy of the element x to set A is πA(x), defined by

πA(x) =
√

1−
(

pA(x)
)2 −

(
νA(x)

)2.

For convenience, Zhang and Xu [49] referred to
(

pA(x), νA(x)
)

as a Pythagorean fuzzy number
(PFN) simply denoted by a = (pa, νa), where pa ∈ [0, 1], νa ∈ [0, 1] and (pa)2 + (νa)2 ≤ 1.

Yager and Abbasov [25] discussed the relationship between Pythagorean membership grades
and complex numbers. They showed that the complex numbers of the form z = r · ejθ with conditions
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r ∈ [0, 1] and θ ∈ [0, π/2] can be interpretable as PFNs (r cos θ, r sin θ). They referred to these complex
numbers as “Π− i numbers”, which are complex numbers in the upper-right quadrant of the complex
unit disk.

As explained in [25], we should consider which aggregation operation is closed under
Π− i numbers.

Let us consider the closeness of Π− i numbers under the CFWG and CFOWG operations. For the
CFWG operator, we have the following result.

Theorem 12. Let z1, z2, ..., zn be Π− i numbers, and the CFWG weights are real values, that is, wi ∈ [0, 1] for
all i, and ∑n

i=1 wi = 1. Then, the aggregated value CFWG(z1, z2, ..., zn) is also a Π− i number.

Proof. Denoting CFWG(z1, z2, ..., zn) = t · ejν = ∏n
i=1 twi

zi · e
j ∑n

i=1 wi ·νzi , from Theorem 2, we have
t =
∣∣CFWG(z1, z2, ..., zn)

∣∣ ≤ 1.
Since ν = ∑n

i=1 wi · νzi is a weighted geometric aggregation (WGA) operator of real numbers on
[0, π/2], then we have ν ∈ [0, π/2]. Thus, CFWG(z1, z2, ..., zn) is also a Π− i number.

Similar to the above Theorem, we have the following.

Theorem 13. Let z1, z2, ..., zn be Π− i numbers, and the CFOWG weights are real values, that is, wi ∈ [0, 1]
for all i, and ∑n

i=1 wi = 1. Then, the aggregated value CFOWG(z1, z2, ..., zn) is also a Π− i number.

The above theorems show us that the CFWG and the CFOWG operators are closed under Π− i
numbers. When PFNs are interpreted as Π− i numbers, then we can aggregate these PFNs to a PFN
by using the CFWG or CFOWG operator.

From the above theorems, the CFWG and the CFOWG operators are closed on the upper-right
quadrant of complex unit disk.

Consider other quadrants of the complex unit disk. Let

Dk =
{

z = r · ejθ∣∣r ∈ [0, 1], θ ∈ [
(k− 1)π

2
,

kπ

2
]
}

for k = 1 to 4. D1 is the set of Π− i numbers.
Now, we discuss the closeness of the CFWG and the CFOWG operators on other quadrants of the

complex unit disk. Plainly, we have the following.

Theorem 14. For any k ∈ {1, 2, 3, 4}, if z1, z2, ..., zn ∈ Dk, and the weights are real values, that is, wi ∈ [0, 1]
for all i, and ∑n

i=1 wi = 1. Then, we have

CFWG(z1, z2, ..., zn) ∈ Dk,

CFOWG(z1, z2, ..., zn) ∈ Dk.

Proof. Similar to Theorem 13.

Theorem 15. For any k ∈ {1, 2, 3, 4}, if z1, z2, ..., zn, y1, y2, ..., yn ∈ Dk, and the weights are real values,
that is, wi ∈ [0, 1] for all i, and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If z1 = z2 = ... = zn, then

CFWG(z1, z2, ..., zn) = z1,

CFOWG(z1, z2, ..., zn) = z1.
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(2) (Amplitude boundedness): ∣∣CFWG(z1, z2, ..., zn)
∣∣ ≤ z,∣∣CFOWG(z1, z2, ..., zn)
∣∣ ≤ z,

where z = max
i
|zi|.

(3) (Amplitude monotonicity): If |zi| ≤ |yi| i = 1, 2, ..., n, then

|CFWG(a1, a2, ..., an)| ≤ |CFWG(y1, y2, ..., yn)|,

|CFOWG(a1, a2, ..., an)| ≤ |CFWG(y1, y2, ..., yn)|.

Proof. Similar to Theorem 7.

6. Example Application

In this section, we consider a target location application of the complex fuzzy aggregation operator.
We do not intend to show the potential advantages of using complex fuzzy aggregation methods in
comparison with existing alternative aggregation approaches in this section.

Assume the observer position is fixed. Using a position sensor and an angular sensor, the observer
measures the distance and angle of the fixed target. To improve the target location accuracy,
the observer repeatedly measures the same target. Then, the target position is estimated according to
aggregation theory.

Assume n measurements
(
(d1, θ1), (d2, θ2), ..., (dn, θn)

)
have been measured by the observer.

The target position is estimated in the following five stages, as illustrated in Figure 2.

Step 1 Complexification of the measured results; each measurement is represented as ci = di · eθi .
Step 2 (Fuzzification) Normalize the amplitudes of all measurements. Let d = maxi di, for each ci,

the normalized result is ai = ci/d, where tai = di/d.
Step 3 (Aggregation) Produce an aggregate result. For simplicity, using the CFWG operator with

weights (1/n, 1/n, ..., 1/n). We obtain

a =
n

∏
i=1

a1/n
i , (16)

where ta = n
√

ta1 · ta2 · · · tan and νa =
1
n ·∑n

i=1 θi.
Step 4 (Defuzzification) Calculate c = a · d, where tc = ta · d.
Step 5 Decomplexification (or sometimes “realification”) of c. We get the target position (p, ν),

where p = tc, ν = νa.

Aggregation Weighs

FuzzificationComplexification

DefuzzificationDecomplexificationOutput

Inputs

Figure 2. A simple method of target location based on complex fuzzy aggregation.
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Numerical Example:Assume that the observer obtains five measurements as follows:(
(865, 24◦), (867, 25◦), (871, 24◦), (866, 25◦), (869, 23◦)

)
,

where (d, θ) means that the target lies on the θ degrees east of south of the observer and d metres from
the observer. Then,

Step 1 Complexifications of the measured results are calculated as(
(865 · ej2π336/360), (867 · ej2π335/360), (871 · ej2π336/360), (866 · ej2π335/360), (869 · ej2π337/360)

)
.

Step 2 Normalizations of the amplitudes of all measurements are calculated as(
0.9931 · ej2π336/360, 0.9954 · ej2π335/360, 1 · ej2π336/360, 0.9943 · ej2π335/360, 0.9977 · ej2π337/360).

Step 3 Aggregation of CFVs is calculated as

0.9961 · ej2π335.8/360,

where the weights are (1/5, 1/5, ..., 1/5).
Step 4 Defuzzification of the aggregate result is calculated as 867.6 · ej2π335.8/360.
Step 5 Decomplexification of the above result is calculated as (867.6, 24.2).

Then, the target position is estimated at (867.6, 24.2). That is, it lies 24.2 degrees east of south of
the observer and 867.6 m from the observer.

Note that we do not discuss how to choose complex fuzzy aggregation functions, nor their
weights.

7. Conclusions

In this paper, we propose two complex fuzzy aggregation operators: the CFWG and CFOWG
operators. Their main properties are summarized in Table 1. In particular, both the CFWG and the
CFOWG operators are reflectionally invariant and rotationally invariant. We also showed that the
CFWG and the CFOWG operators are closed under Π− i numbers.

As we know, complex data are frequently encountered in many different applications, such as
engineering, management, finance, and medicine. CFSs are suitable to represent information with
uncertainty and periodicity simultaneously. Complex fuzzy information aggregation techniques may
be useful in these applications.
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Abstract: In this paper, the existing definition of the group-based generalized intuitionistic fuzzy soft
set is clarified and redefined by merging intuitionistic fuzzy soft set over the set of alternatives and a
group of intuitionistic fuzzy sets on parameters. In this prospect, two new subsets of the group-based
generalized intuitionistic fuzzy soft set are proposed and several operations are contemplated.
The two new aggregation operators called generalized group-based weighted averaging and
generalized group-based weighted geometric operator are introduced. The related properties of
proposed operators are discussed. The recent research is emerging on multi-attribute decision making
methods based on soft sets, intuitionistic fuzzy soft sets, and generalized intuitionistic fuzzy soft sets.
An algorithm is structured and two case studies of multi-attribute decision makings are considered
using proposed operators. Further, we provide the comparison and advantages of the proposed
method, which give superiorities over recent major existing methods.

Keywords: decision-making; soft sets; intuitionistic fuzzy soft sets; group-based generalized
intuitionistic fuzzy soft sets; aggregation operators

1. Introduction

The concept of fuzzy soft sets was popularized by Maji et al. [1], in the combination of fuzzy
sets (Zadeh [2]) and soft sets (Molodtsov [3], Maji [4] and Ali [5]). To analyze the real-life problems,
different types of uncertainties have been evaluated with fuzzy soft sets [6] and it has wide range of
applications to deal with parameterizations and granularity. By virtue of robustness of fuzzy soft set
theory in dealing with uncertain data, many researchers serve to integrate it with inductive learning
techniques for better results. In recent past, fuzzy sets, soft sets and fuzzy soft sets are applied to
evaluate vagueness in decision makings [7–18], algebraic structures [19,20], medical diagnosis [21] and
differential equations [22]. Some hybrid models of fuzzy soft sets have been introduced and applied in
several fields [23,24].

In 1986, Atanassov proposed the intuitionistic fuzzy set (IFS) [25], which appears as an inclusion
of non-compatibility value with fuzzy set [2]. Every value of IFS is referred to a compatibility,
a non-compatibility and a hesitancy, which assign it more dynamics in dealing with imprecise
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information. The initial aggregation instruments [26,27] on IFSs were introduced by Atanassov and Xu,
and then applied in a various fields. The geometric [28], and arithmetic aggregation operators [27] have
been studied in diverse fields and especially in multi-attribute decision making (MADM) problems in
financial management, medical diagnosis, business and engineering designs [29–32].

IFSs with soft sets, that is, intuitionistic fuzzy soft sets (IFSSs) [33], are very instrumental and
more realistic tools for uncertainty than fuzzy soft sets. As the dual-memberships structure of IFS
allow marking hesitancy factors, the use of IFSSs in inductive learning techniques accounts for the
degree of imprecision by assigning grades of compatibility and non-compatibility. In an inclusive way,
several decision-making problems have been considered using IFSSs; some attempts are hybrid with
intervals [34], multi-attributes [35] and nonlinear-programming [36]. Garg et al. [37,38] popularized
aggregation operators on IFSSs and considered related decision-making methods. Several strategies are
used to overcome the challenges of granularity and vagueness. Despite there being the applicability of
IFSSs in diverse fields, an opinion of an expert who implicitly exercises his assessments on parameters
of an IFSS is needed. On this motivation, Agarwal et al [39], who popularized generalized intuitionistic
fuzzy soft set (GIFSS) by including assessment of a moderator on parameters, thus validating and
supporting the information. Thus, the accumulation of generalized parameter can reduce possibility
of errors which are occur due to imprecise data.

Although the definition of GIFSS in [39] is useful to tackle imprecise data, some difficulties
appear in several notions [40,41]. Altogether, the assertions in [39] have been pointed out and a
novel definition of GIFSS was established by Feng et al. [42]. They presented several operations
and developed related multi-attribute decision-making methods by introducing operators on GIFSSs.
On this prospect, a practical application of GIFSS for design concept evaluation was proposed by
Hayat et al. [43]. Even though GIFSSs are applicable in diverse fields, sometimes assessments of more
than one prospectors are needed in various problems. Thus, we consider the problem of validation
of the notion of group-based GIFSS (GGIFSS) [44,45], and introduce a novel definition of GGIFSS,
which is the generalization of the notion of GIFSS in [42]. Further, some basic properties are validated
and aggregation instruments are proposed to determine the industrial applicability of GGIFSSs.
Usually, an accurate aggregation process recommends the nature of MCDM model, which aggregates
interdependent information and behaves in a linear manner. The prospect of proposing group-based
generalized weighted averaging and geometric operators (hereafter, GBGWA and GBGWG) is to
contemplate the information together with the influence of mathematical operations on GGIFSSs.
The advantages of the given framework are to contemplate the prospector’s demands or experts’
judgments in an incorporated way such that establishing more operators constitutes the design concept
of the evaluation mechanism of GGIFSSs.The results presented in this paper can be studied in several
fields, such as electrical engineering, industrial designs, and construction engineering, as estimation of
risk factors in risk management is a complex tasks.

The paper is organized as follows. Section 2 introduce basic concepts and notations. Section 3
clarify and redefine the notion of GGIFSS. Section 4 give operations on GGIFSSs, and introduce
GBGWA(GBGWG) operators and related properties. Section 5 put forward the aggregation instruments
of GGIFSSs into algorithm and discuss two different case studies. We present the comparison and
benefits of method in Section 6. Advantages and superiorities are given in Section 7. Section 8 provide
the conclusions of the paper.

2. Preliminaries

In this section, we present the basic definitions of fuzzy sets, IFSs, soft sets and GIFSS which
would be useful for subsequent discussions. Throughout the paper, X is the universe.

A fuzzy set t̃ in X is usually identified as its membership function t̃ : X −→ [0, 1] [2], each x ∈ X,
where the membership grade t̃(x) indicates the degree to which the element x belongs to the fuzzy set
t̃. Here, we denote by F (X) the collection of all fuzzy sets in X. The subsets intersection, union and
complement of fuzzy sets follow from Zadeh [2].
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In 1999, Molodtsov [3] introduced the parameterization concept soft set theory, which is different
from many traditional tools for dealing with uncertainties, such as fuzzy set theory [2], rough set
theory [46], IFSs [25], and hesitant fuzzy sets. The main advantage of soft set theory is that it can
be freely applied to characterized parameters, sentence, words and numbers. The natural manner
of parameterization of this theory was augmented by the works of Maji et al. [4] and Ali et al. [5],
among others.

Definition 1. [3] Let E be the set of parameters, A ⊆ E. A pair (S ,A) is called a soft set over X, where S is a
mapping given by S : A −→ P(X). P(X) is the set of all power sets of X.

The set of all soft sets over X, with respect to subsets of E, is denoted by SASSE(X).

2.1. Intuitionistic Fuzzy Sets

In the fuzzy set, only one compatibility degree exists, whereas intellectual insight in many cases
suggests that non-compatibility degrees should be paired with compatibility degree. Atanassov [25]
introduced the concept of IFS, which is an intellectual intuition to judge the uncertainty over the
objects. Atanassov gave the definition of the IFS as follows:

Definition 2. [25] An intuitionistic fuzzy set (IFS) in a universe X is defined as

A = {〈x, t̃A(x), f̃A(x)〉 | x ∈ X},

where the functions t̃, f̃ : X −→ [0, 1] define, respectively, a membership function and a non-membership
function of the element x ∈ X to the set A. Moreover, it is required that

0 ≤ t̃A(x) + f̃A(x) ≤ 1.

The function πA = 1− (t̃A(x) + f̃A(x)) is called the degree of hesitancy of x to A. The collection of all
IFSs in X is denoted by IFS(X).

Let A, B ∈ IFS(X). Then,

A+ B = {〈x, max{t̃A(x), t̃B(x)}, min{ f̃A(x), f̃B(x)}〉 | x ∈ X},
A, B = {〈x, min{t̃A(x), t̃B(x)}, max{ f̃A(x), f̃B(x)}〉 | x ∈ X},
A - B ⇐⇒ t̃A(x) ≤ t̃B(x) and f̃A(x) ≥ f̃B(x)∀x ∈ X.

Deschrijver and Kerre [47] defined that IFSs can be considered as L-fuzzy sets with respect
to the complete lattice (V∗,
V∗), where V∗ = {〈μ1, μ2〉 ∈ [0, 1]2 | μ1 + μ2 ≤ 1}, and the
corresponding partial order 
V∗ is defined as 〈μ1, μ2〉 
V∗ 〈ν1, ν2〉 ⇐⇒ (μ1 ≤ ν1) ∧ (μ2 ≤ ν2)

for all 〈μ1, μ2〉, 〈ν1, ν2〉 ∈ V∗. Any ordered pair 〈μ1, μ2〉 ∈ V∗ is called an intuitionistic fuzzy value
(IFV) or intuitionistic fuzzy number (IFN).

Let V∗ be the set of IFVs of IFS A, such that 〈t̃A, f̃A〉 ∈ V∗. Chen and Tan [48] presented score
function, which was updated by Feng et al. [42] as follows:

Definition 3. [42] Let 〈t̃A, f̃A〉 ∈ V∗ be an IFV in a universe X. Then, expectation score function is a mapping
δ : V∗ → [0, 1], defined as follows:

δA =
t̃A − f̃A + 1

2
(1)

where δA is called the decision value of 〈t̃A, f̃A〉 in A. In addition, fuzzy set δA is called the utility fuzzy set
derived from the IFS A.
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Definition 4. [28] Let V1 = 〈t̃A, f̃A〉, V2 = 〈t̃′A, f̃ ′A〉 ∈ V∗ be two IFVs in a universe X. Then we have,

(i) V1 ⊕V2 = 〈t̃A + t̃′A − t̃A t̃′A, f̃A f̃ ′A〉.
(ii) V1 ⊗V2 = 〈t̃A t̃′A, f̃A + f̃ ′A − f̃A f̃ ′A〉.
(iii) εV1 = 〈1− (1− t̃A)ε, ( f̃A)ε〉, where ε is a positive real number.

More operations and properties of IFVs (or IF numbers (IFNs)) can be seen in [27,28,42].
Let c1, c2, ..., cm be the IFVs and φ = (φ1, φ2, ..., φm) be the correlated weighted normalized vector,
then, from Yager [28] and Xu [27], we denote and symbolize the following operators:

IFWA(c1, c2, ..., cm) = φ1c1 ⊗ φ2c3⊗, ...,⊗φmcm = 〈1−
m

∏
i
(1− t̃ci )

φi ,
m

∏
i

f̃ φi
ci 〉, (2)

IFWG(c1, c2, ..., cm) = cφ1
1 ⊗ cφ3

3 ⊗, ...,⊗cφm
m = 〈

m

∏
i

t̃φi
ci , 1−

m

∏
i
(1− f̃ci )

φi 〉. (3)

IFWA and IFWG are the IF weighted averaging and geometric operators, respectively.

2.2. Intuitionistic Fuzzy Soft Sets and Generalized Intuitionistic Fuzzy Soft Sets

In this section, we present some basic notions in the theory of IFSS and GIFSS. The notion of IFSS
is given as follows:

Definition 5. [33] Let (X, E) be a soft universe and A ⊆ E. A pair F = (S̃ ,A) is called intuitionistic fuzzy
soft set (IFSS) over X, where S̃ is a mapping defined by S̃ : A −→ IFS(X).

Formally, S̃ : A −→ IFS(X) is referred to as the approximate function of the IFSS (S̃ ,A). It is
easy to see that IFSSs extend both Atanassov’s IFSs and Molodtsov’s soft sets. The set of all IFSSs over
X, with respect to subsets of E, is denoted by IFSSE(X). Next, the two new subsets of a IFSS are
presented as follows:

Definition 6. [42] Let F = (S̃ ,A) and G = (T̃ ,B) be IFSSs over X and A,B ⊂ E. Then, G is
anintuitionistic fuzzy soft F-subsetof F , denoted by G ⊆̃FF , if

(i) B ⊆ A.
(ii) T̃ (a) ⊆ S̃(a) ∀a ∈ B.

Definition 7. [42] Let F = (S̃ ,A) and G = (T̃ ,B) be IFSSs over X and A,B ⊂ E. Then, G is an
intuitionistic fuzzy soft M-subsetof F , denoted by G ⊆̃MF , if

(i) B ⊆ A.
(ii) T̃ (a) = S̃(a) ∀a ∈ B.

The related whole IFSS is denoted as X̃ A(1,0)
, where all IFVs are (1, 0), and related null IFSS

is denoted as ĨA(0,1)
, where all IFVs are (0, 1). The other definitions of union, intersection and

complements of IFSSs follow [33,42]. It is required in many cases that an extra input of moderator with
IFSS could be useful. The definition of GIFSS was given by Agarwal et al. [39] as follows:

Definition 8. [39] Let (X, E) be a soft universe andA ⊆ E. A generalized intuitionistic fuzzy soft set (GIFSS),
Fα over the soft universe (X, E) is defined as a mapping Fα : A −→ IFSS(X)× IF, IFSS(X) the collection
of all intuitionistic fuzzy subsets of X and the generalization parameter, α : A −→ IF = (tα, fα), where IF is
an IFS. The GIFSS is of the form Fα(ei) = (S̃(ei), α(ei)).
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The model of GIFSS is very fruitful in decision making, especially the input of an extra opinion of
an expert works incentively. However, in Definition 8, IFSS(X)× IF is not a meaningful Cartesian
product and generalized parameter α̃ is not well-defined. A more well-defined and flexible form of
GIFSS was defined by Feng et al. [42]. They pointed out several assertions in [39], certified several
notions and discussed GIFFSs theoretically. The definition of GIFSS is given as follows:

Definition 9. [42] Let (X, E) be a soft universe and A ⊆ E. A triple F̃ = (S̃ ,A, α̃) is called generalized
intuitionistic fuzzy soft set (GIFSS) over X if (S̃ ,A) is an IFSS over X and α̃ is an IFS in A.

This representation of GIFSS can be more significant to handle problems in which uncertain and
unclear information are prevalent, and it enhances the accuracy and flexibility of results with opinions
of experts as an IFS on the set of parameters. The two different types of subsets of GIFSS and several
operations on GIFSSs are specified and categorized in [42]. Hayat et al. [43] presentes another form of
GIFSSs and related notions.

3. Group-Based Generalized Intuitionistic Fuzzy Soft Sets

In this section, we clarifiy and reformulate the definition of GGIFSS presented in [44]. First,
we recall the definition of GGIFSS that is given in [44];

Definition 10. [44] A group-based generalized intuitionistic fuzzy soft sets (GGIFSS), FG, over the soft
universe (X, E) is defined as FG : E → IFS(X) × IF for all υ ∈ E; we have FG(υ) = (F (υ), G�(υ)),
where F (υ) ∈ IFS(X) and G�(υ) ∈ IF. Here, G = (�1, �2, ..., �p) are intuitionistic fuzzy subset of set of the
parameter E and G�(υ) denotes the opinion of experts on the elements of X in F (υ).

Remark 1. The above definition of GGIFSS is very effective in many cases, due to its constructive scenario
for decision making. However, this definition has some difficulties and dissensions on group of extra input of
moderators, as well as on the mapping. Specifically, we identify the following:

(i) On the point that G�(υ) is an IFS, stated in Definition 10, but G�(υ) is a group of IFSs. IFS(X)× IF is
not a meaningful product. In this way, mapping FG : E→ IFS(X)× IF is not well-defined.

(ii) As the Definition 10 is stated on group of extra opinions, which is an intuitionistic fuzzy subset of set of
the parameter E, therefore G�(υ) is not defined in a precise way.

(iii) The extra inputs can be seen as another IFVs based data of alternatives.

To clarify the problems mentioned in Remark 1, we reformulate the notion of GGIFSS as follows:

Definition 11. Let (X, E) be a soft universe and A ⊆ E. A triple F̃g̃ = (S̃ ,A, g̃) is called group-based
generalized intuitionistic fuzzy soft set (GGIFSS) over X, if (S̃ ,A) is an elementary IFSS (EIFSS) over X and
g̃ = {α̃1, α̃2, ..., α̃p} where α̃1, α̃2, ..., α̃p are the parameterized IFSs (PIFSs) of A.
In other words, g̃ is a group of PIFSs considered by “p” number of experts/moderators.

Keeping the prospects of decision making in the mind, (S̃ ,A) is basic IFS and g̃ is a group of
parameterized intuitionistic fuzzy sets (GPIFSs). The set of all GGIFSS over X obtained on E is denoted
by GGIFSSE(X). Further, the set of all GGIFSS over X obtained on subset A ⊂ E is denoted by
GGIFSSA(X).

Example 1. Let X = {κ1, κ2, ..., κ6} be the universe set, consisting six cellphones, under consideration and
E = {υ1, υ2, υ3, υ4} where υı(ı = 1, 2, 3, 4), respectively, stand for “high battery timing”, “low operating cost”,

“high quality of voice call” and “stylish look”. Consider a set of attributes B = {υ1, υ3, υ4} ⊂ E chosen by an
observerM, which are anticipated to be most fruitful for judgment of cellphones. ForM, the evaluation of
alternatives with rating values corresponding each parameters can be defined as EIFSS,
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S̃(υ1) = { κ1
〈0.6,0.4〉 ,

κ2
〈0,0.3〉 ,

κ3
〈0.2,0.2〉 ,

κ4
〈0,1〉 ,

κ5
〈0.1,0.6〉 ,

κ6
〈0.6,0.2〉 }

S̃(υ3) = { κ1
〈0.6,0.2〉 ,

κ2
〈0.7,0.3〉 ,

κ3
〈0.3,0.6〉 ,

κ4
〈0.4,0.1〉 ,

κ5
〈0.4,0.2〉 ,

κ6
〈0.3,0.3〉 }

S̃(υ4) = { κ1
〈0.9,0〉 ,

κ2
〈0.5,0.1〉 ,

κ3
〈0.5,0.1〉 ,

κ4
〈0.2,0.5〉 ,

κ5
〈0.5,0.2〉 ,

κ6
〈0.6,0.1〉 }

Consider three moderators d1, d2, d3 for assessment of rating value, such that the opinion of each moderator
on each parameter ofM is analyzed and based on opinions, PIFSs α̃d1 , α̃d2 and α̃d3 are defined on A as

g̃ =

⎧⎪⎪⎨⎪⎪⎩
α̃d1 = {(υ1, 〈0.6, 0.2〉), (υ3, 〈0.3, 0.4〉), (υ4, 〈0.2, 0.2〉)},
α̃d2 = {(υ1, 〈0.3, 0.4〉), (υ3, 〈0.2, 0.4〉), (υ4, 〈0.3, 0.5〉)},
α̃d3 = {(υ1, 〈0.3, 0.4〉), (υ3, 〈0.5, 0.4〉), (υ4, 〈0.4, 0.1〉)}.

Then, the GGIFSS is represented in Table 1.

Table 1. Tabular representation of the GGIFSS, F̃g̃ = (S̃ ,A, g̃).

X�A υ1 υ3 υ4

κ1 〈0.6, 0.4〉 〈0.6, 0.2〉 〈0.9, 0〉
κ2 〈0, 0.3〉 〈0.7, 0.3〉 〈0.5, 0.1〉
κ3 〈0.2, 0.2〉 〈0.3, 0.6〉 〈0.5, 0.1〉
κ4 〈0, 1〉 〈0.4, 0.1〉 〈0.2, 0.5〉
κ5 〈0.1, 0.6〉 〈0.4, 0.2〉 〈0.5, 0.2〉
κ6 〈0.6, 0.2〉 〈0.3, 0.3〉 〈0.6, 0.1〉
α̃d1

〈0.6, 0.2〉 〈0.3, 0.4〉 〈0.2, 0.2〉
α̃d2 〈0.3, 0.4〉 〈0.2, 0.4〉 〈0.3, 0.5〉
α̃d3 〈0.3, 0.4〉 〈0.5, 0.4〉 〈0.4, 0.1〉

If p = 1, then F̃g̃ = (S̃ ,A, g̃) operates as GIFSS. In general, F̃g̃ can be sighted as a common form
of generalized parameters with the information on IFSSs.

4. Operations on GGIFSSs and Aggregation Operators

In this section, several new operations on GGIFSSs and their examples are presented. As in
Remark 1, it is pointed out that the group of extra assessments of experts in [36] is not defined in a
precise way. In this scenario, we define two different subsets of a GGIFSS; for this purpose, a notion on
group of generalized parameters of two GGIFSSs is defined as follows:

Definition 12. Let (X, E) be a soft universe and A,B ⊆ E. Suppose that F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ =

(T̃ ,B, g̃2) are two GGIFSSs over X, where A ⊆ B, g̃1 = {α̃d1 , α̃d2 , ..., α̃dp} and g̃2 = {β̃d1 , β̃d2 , ..., β̃dp} and
d1, d2, ..., dp are “p” number of senior experts/members. If g̃1 is the group intuitionistic fuzzy subset of g̃2,
then it is denoted and defined by g̃1 ≪ g̃2 if and only if t̃α̃d1

(υi) ≤ t̃
β̃d1

(υi), f̃α̃d1
(υi) ≥ f̃

β̃d1
(υi), t̃α̃d2

(υi) ≤
t̃
β̃d2

(υi), f̃α̃d2
(υi) ≥ f̃

β̃d2
(υi),... , t̃α̃dp

(υi) ≤ t̃
β̃dp

(υi), f̃α̃dp
(υi) ≥ f̃

β̃dp
(υi), ∀ i = 1, 2, ..., m and υi ∈ A.

Based on Definition 12, the following two different kinds of group-based generalized intuitionistic
fuzzy soft subsets can be presented.

Definition 13. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X and A,B ⊆ E. Then,
F̃g̃ is a group-based generalized intuitionistic fuzzy soft F-subsetof G̃g̃, denoted by F̃g̃-̃FG̃g̃, if

(i) (S̃ ,A)⊆̃F(T̃ ,B).
(ii) g̃1 ≪ g̃2.
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Now, an example is given to clarify group-based generalized intuitionistic fuzzy soft F-subset of
a GGIFSS.

Example 2. Let X = {κ1, κ2, ..., κ6} be the universe set, consisting six robots under consideration and E =

{υ1, υ2, υ3, υ4}where υı, respectively, stand for “high capacity”, “low degree of freedom”, “high memory capacity”
and “high repeatability”. Consider two sets of parameters A = {υ1, υ4} ⊂ E, and B = {υ1, υ3, υ4} ⊂ E
chosen by observersM1 andM2, respectively, which are anticipated to be most fruitful for evaluation of robots.
ForM1 andM2, evaluation of alternatives with their ratting values corresponding each parameters can be
defined, respectively, as EIFSSs,

S̃(υ1) = { κ1
〈0.6,0.3〉 ,

κ2
〈0,0.3〉 ,

κ3
〈0.2,0.2〉 ,

κ4
〈0,1〉 ,

κ5
〈0.1,0.6〉 ,

κ6
〈0.6,0.2〉 }

S̃(υ4) = { κ1
〈0.9,0〉 ,

κ2
〈0.5,0.1〉 ,

κ3
〈0.5,0.1〉 ,

κ4
〈0.3,0.5〉 ,

κ5
〈0.5,0.2〉 ,

κ6
〈0.6,0.1〉 }

and

T̃ (υ1) = { κ1
〈0.6,0.4〉 ,

κ2
〈0.1,0.5〉 ,

κ3
〈0.3,0.2〉 ,

κ4
〈0,1〉 ,

κ5
〈0.2,0.7〉 ,

κ6
〈0.7,0.3〉 }

T̃ (υ3) = { κ1
〈0.6,0.2〉 ,

κ2
〈0.7,0.3〉 ,

κ3
〈0.3,0.6〉 ,

κ4
〈0.4,0.1〉 ,

κ5
〈0.4,0.2〉 ,

κ6
〈0.3,0.3〉 }

T̃ (υ4) = { κ1
〈0.9,0.1〉 ,

κ2
〈0.6,0.2〉 ,

κ3
〈0.5,0.2〉 ,

κ4
〈0.3,0.5〉 ,

κ5
〈0.6,0.3〉 ,

κ6
〈0.6,0.1〉 }

Consider three moderator, d1 from engineering department, d2 from production department and d3 from
quality inspection department; their additional opinions for assessments of each observer are analyzed and,
based on their opinions, PIFSs onM1: α̃d1 , α̃d2 , α̃d3 and IFSs ofM2: β̃d1 , β̃d2 , β̃d3 are defined.

g̃1 =

⎧⎪⎪⎨⎪⎪⎩
α̃d1 = {(υ1, 〈0.3, 0.2〉), (υ4, 〈0.3, 0.4〉)},
α̃d2 = {(υ1, 〈0.3, 0.4〉), (υ4, 〈0.2, 0.4〉)},
α̃d3 = {(υ1, 〈0.3, 0.4〉), (υ4, 〈0.5, 0.4〉)},

g̃2 =

⎧⎪⎪⎨⎪⎪⎩
β̃d1 = {(υ1, 〈0.6, 0.2〉), (υ3, 〈0.4, 0.5〉), (υ4, 〈0.4, 0.4〉)},
β̃d2 = {(υ1, 〈0.3, 0.2〉), (υ3, 〈0.4, 0.2〉), (υ4, 〈0.4, 0.3〉)},
β̃d3 = {(υ1, 〈0.4, 0.2〉), (υ3, 〈0.4, 0.4〉), (υ4, 〈0.4, 0.2〉)}.

Then, the GGIFSSs F̃g̃ and G̃g̃ are tabulated in Tables 2, and 3, respectively.

Table 2. Tabular representation of the GGIFSS F̃g̃ = (S̃ ,A, g̃1).

X�A υ1 υ4

κ1 〈0.6, 0.3〉 〈0.9, 0〉
κ2 〈0, 0.3〉 〈0.5, 0.1〉
κ3 〈0.2, 0.2〉 〈0.5, 0.1〉
κ4 〈0, 1〉 〈0.3, 0.5〉
κ5 〈0.1, 0.6〉 〈0.5, 0.2〉
κ6 〈0.6, 0.2〉 〈0.6, 0.1〉
α̃d1

〈0.3, 0.2〉 〈0.3, 0.4〉
α̃d2 〈0.3, 0.4〉 〈0.2, 0.4〉
α̃d3 〈0.3, 0.4〉 〈0.5, 0.4〉
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Table 3. Tabular representation of the GGIFSS, G̃g̃ = (T̃ ,B, g̃2).

X�B υ1 υ3 υ4

κ1 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.9, 0〉
κ2 〈0.1, 0.1〉 〈0.7, 0.3〉 〈0.6, 0.1〉
κ3 〈0.3, 0.2〉 〈0.3, 0.6〉 〈0.5, 0〉
κ4 〈0, 1〉 〈0.4, 0.1〉 〈0.4, 0.5〉
κ5 〈0.2, 0.3〉 〈0.4, 0.2〉 〈0.6, 0.1〉
κ6 〈0.7, 0.2〉 〈0.3, 0.3〉 〈0.8, 0.1〉
β̃d1

〈0.6, 0.2〉 〈0.4, 0.5〉 〈0.3, 0.4〉
β̃d2 〈0.3, 0.2〉 〈0.4, 0.2〉 〈0.3, 0.3〉
β̃d3 〈0.4, 0.2〉 〈0.4, 0.4〉 〈0.5, 0.2〉

One can easily check that (S̃ ,A)⊆̃F(T̃ ,B) and g̃1 ≪ g̃2. Thus, F̃g̃ = (S̃ ,A, g̃1) is group-based
generalized intuitionistic fuzzy soft F-subset of G̃g̃ = (T̃ ,B, g̃2).

Definition 14. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X and A,B ⊂ E. Then,
F̃g̃ is a group-based generalized intuitionistic fuzzy soft M-subsetof G̃g̃, denoted by F̃g̃-̃MG̃g̃, if

(i) (S̃ ,A)⊆̃M(T̃ ,B).
(ii) g̃1 ≪ g̃2.

The complement of a GGIFSS is given as follows:

Definition 15. Let G̃g̃ = (T̃ ,A, g̃) be GGIFSS over X. The complement of G̃g̃ is defined as the GGIFSS
G̃ c

g̃ = (T̃ c,A, g̃c) where (G̃c,A) is the complement of the EIFSS (G̃,A) and g̃c = {α̃c
d1 , α̃c

d2
, ..., α̃c

dp
} is the

complement of g̃ = {α̃d1 , α̃d2 , ..., α̃dp}.

Now, an example is given to clarify complement of a GGIFSS.

Example 3. Consider GGIFSS G̃g̃ = (T̃ ,A, g̃) defined in Example 1. Then, complement of G̃g̃ is defined
in Table 4.

Table 4. Tabular representation of the GGIFSS G̃ c
g̃ = (T̃ c,A, g̃c).

X�A υ1 υ3 υ4

κ1 〈0.4, 0.6〉 〈0.2, 0.6〉 〈0, 0.9〉
κ2 〈0.3, 0〉 〈0.3, 0.7〉 〈0.1, 0.5〉
κ3 〈0.2, 0.2〉 〈0.6, 0.3〉 〈0.1, 0.5〉
κ4 〈1, 0〉 〈0.1, 0.4〉 〈0.5, 0.2〉
κ5 〈0.6, 0.1〉 〈0.2, 0.4〉 〈0.2, 0.5〉
κ6 〈0.2, 0.6〉 〈0.3, 0.3〉 〈0.1, 0.6〉
α̃c

d1
〈0.2, 0.6〉 〈0.4, 0.3〉 〈0.2, 0.2〉

α̃c
d2

〈0.4, 0.3〉 〈0.4, 0.2〉 〈0.5, 0.3〉
α̃c

d3
〈0.4, 0.3〉 〈0.4, 0.5〉 〈0.1, 0.4〉

Next, the definitions of extended union, extended intersection, restricted union andrestricted intersection
are provided below.

Definition 16. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X, A,B ⊆ E, C = A∪ B
and g̃1 = {α̃d1 , α̃d2 , ..., α̃dp}, g̃2 = {β̃d1 , β̃d2 , ..., β̃dp}. The extended union of F̃g̃ and G̃g̃ is defined as the
GGIFSS

(H̃, C, g̃) = (S̃ ,A, g̃1) +̃E (T̃ ,B, g̃2)
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such that

(i) (H̃, C) = (S̃ ,A) ∪E (T̃ ,B).
(ii) For each moderator dk, γ̃dk

(k = 1, 2, ..., p) can be defined ∀υ ∈ C,

t̃γ̃dk
(υ) =

⎧⎪⎪⎨⎪⎪⎩
t̃α̃dk

(υ), if υ ∈ A\B,

t̃
β̃dk

(υ), if υ ∈ B\A,

max{t̃α̃dk
(υ), t̃

β̃dk
(υ)}, if υ ∈ A ∩ B;

and

f̃γ̃dk
(υ) =

⎧⎪⎪⎨⎪⎪⎩
f̃α̃dk

(υ), if υ ∈ A\B,

f̃
β̃dk

(υ), if υ ∈ B\A,

min{ f̃α̃dk
(υ), f̃

β̃dk
(υ)}, if υ ∈ A ∩ B.

Definition 17. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X, where A,B ⊆ E,
C = A∩ B and g̃1 = {α̃d1 , α̃d2 , ..., α̃dp}, g̃2 = {β̃d1 , β̃d2 , ..., β̃dp}. The extended intersection of F̃g̃ and G̃g̃ is
defined as the GGIFSS

(R̃, C, g̃) = (S̃ ,A, g̃1) ,̃E (T̃ ,B, g̃2)

such that

(i) (R̃, C) = (S̃ ,A) ∩E (T̃ ,B).
(ii) For each moderator dk, γ̃dk

(k = 1, 2, ..., p) can be defined ∀υ ∈ A ∪ B,

t̃γ̃dk
(υ) =

⎧⎪⎪⎨⎪⎪⎩
t̃α̃dk

(υ), if υ ∈ A\B,

t̃
β̃dk

(υ), if υ ∈ B\A,

min{t̃α̃dk
(υ), t̃

β̃dk
(υ)}, if υ ∈ A ∩ B;

and

f̃γ̃dk
(υ) =

⎧⎪⎪⎨⎪⎪⎩
f̃α̃dk

(υ), if υ ∈ A\B,

f̃
β̃dk

(υ), if υ ∈ B\A,

max{ f̃α̃dk
(υ), f̃

β̃dk
(υ)}, if υ ∈ A ∩ B.

Definition 18. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X, where A,B ⊆ E,
C = A∩B and g̃1 = {α̃d1 , α̃d2 , ..., α̃dp}, g̃2 = {β̃d1 , β̃d2 , ..., β̃dp}. The restricted union of F̃g̃ and G̃g̃ is defined
as the GGIFSS

(R̃, C, g) = (S̃ ,A, g̃1) +̃r(T̃ ,B, g̃2)

such that

(i) (R̃, C) = (S̃ ,A) ∪r (T̃ ,B);
(ii) For each moderator dk, γ̃dk

(k = 1, 2, ..., p) can be defined ∀υ ∈ C,

t̃γ̃dk
(υ) = max{t̃α̃dk

(υ), t̃
β̃dk

(υ)}, for all υ ∈ A ∩ B;

and
f̃γ̃dk

(υ) = min{ f̃α̃dk
(υ), f̃

β̃dk
(υ)}, for all υ ∈ A ∩ B.
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Definition 19. Let F̃g̃ = (S̃ ,A, g̃1) and G̃g̃ = (T̃ ,B, g̃2) be two GGIFSSs over X, where A,B ⊆ E,
C = A∩ B and g̃1 = {α̃d1 , α̃d2 , ..., α̃dp}, g̃2 = {β̃d1 , β̃d2 , ..., β̃dp}. The restricted intersection of F̃g̃ and G̃g̃ is
defined as the GGIFSS

(R̃, C, g) = (S̃ ,A, g̃1) ,̃r(T̃ ,B, g̃2)

such that

(i) (R̃, C) = (S̃ ,A) ∩r (T̃ ,B).
(ii) For each moderator dk, γ̃dk

(k = 1, 2, ..., p) can be defined ∀υ ∈ C,

t̃γ̃dk
(υ) = min{t̃α̃dk

(υ), t̃
β̃dk

(υ)}, for all υ ∈ A ∩ B;

and
f̃γ̃dk

(υ) = max{ f̃α̃dk
(υ), f̃

β̃dk
(υ)}, for all υ ∈ A ∩ B.

The definition of null GGIFSS and whole GGIFSS are specified below.

Definition 20. Let G̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where A ⊆ E, and g̃ = {α̃d1 , α̃d2 , ..., α̃dp}. Then, G̃g̃

is called the group-based generalized relative null intuitionistic fuzzy soft set, denoted by Ñ A
g̃ , if

(1) (S̃ ,A) = ĨA(0,1)
.

(2) For each moderator dk, t̃α̃dk
(υ) = 0 and f̃α̃dk

(υ) = 1 for all υ ∈ A.

Definition 21. Let G̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where A ⊆ E and g̃ = {α̃d1 , α̃d2 , ..., α̃dp}. Then, G̃g̃

is called the group-based generalized relative whole intuitionistic fuzzy soft set, denoted by W̃ A
g̃ , if

(1) (S̃ ,A) = X̃ A(1,0)
.

(2) For each moderator dk, t̃α̃dk
(υ) = 1 and f̃α̃dk

(υ) = 0 for all υ ∈ A.

Proposition 1. Let G̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where A ⊆ E and g̃ = {α̃d1 , α̃d2 , ..., α̃dp}. Then,

(i) G̃g̃ +̃E G̃g̃ = G̃g̃ +̃r G̃g̃ = G̃g̃.
(ii) G̃g̃ ,̃E G̃g̃ = G̃g̃ ,̃r G̃g̃ = G̃g̃.
(iii) G̃g̃ +̃E Ñ A

g̃ = G̃g̃ +̃r Ñ A
g̃ = G̃g̃.

(iv) G̃g̃ ,̃E Ñ A
g̃ = G̃g̃ ,̃r Ñ A

g̃ = Ñ A
g̃ .

(v) G̃g̃ +̃E W̃ A
g̃ = G̃ +̃r W̃A = W̃A.

(vi) G̃g̃ ,̃E W̃ A
g̃ = G̃g̃ ,̃r W̃ A

g̃ = G̃g̃.

Now, we introduce group-based generalized weighted averaging (GBGWA) and group-based
generalized weighted geometric (GBGWG) operators on GGIFSSs. On these operators, we contemplate
and discussed some properties as well. The definition of GBGWA operator is specified below.

Definition 22. GBGWA; Let F̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where g̃ = {α̃d1 , α̃d2 , ..., α̃dp} be the
group of PIFSs. Assume that w = (w1, w2, ..., wm)T is the normalized weight vector for A, such that wi > 0
and ∑m

i=1 wi = 1. Let ĨFV(κj) = {cj1, cj2, ..., cjm} (j = 1 to n) be the set of IFVs in EIFSS (S̃ ,A) for all
κj ∈ X. For each senior moderator/ prospector, α̃dk

(υ) = {〈t̃α̃dk
(υ), f̃α̃dk

(υ)〉 | υ ∈ A} (k = 1 to p) be the

PIFS, it can be represented as IF k = {ak1, ak2, ..., akm} (k = 1 to p) and � = (�1, �2, ..., �p)T is the set of
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weights for moderators, such that �k > 0 and ∑
p
k=1 �k = 1. Define GBGWA: Γm

s −→ Γs, IFWA: Γm −→ Γ,
where

GBGWA(cj1, cj2, ..., cjm) = IFWAk

⎛⎜⎝ (IFWAi(a11, a12, ..., a1m)⊗ IFWAi(cj1, cj2, ..., cjm)),
(IFWAi(a21, a22, ..., a2m)⊗ IFWAi(cj1, cj2, ..., cjm)), ...,
(IFWAi(ap1, ap2, ..., apm)⊗ IFWAi(cj1, cj2, ..., cjm))

⎞⎟⎠ (4)

where GBGWA is known as GGIFSS weighted averaging operator, then the set of all GBGWAs is denoted
L = {�′1, �′2, ..., �′n}. In addition, IFWAk and IFWAi are IFWA operators on set of moderators/prospectors and
set of parameters, respectively. Note that Γm

s and Γ are families of GGIFSS and IFSs, respectively.

Lemma 1. Let F̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where g̃ = {α̃d1 , α̃d2 , ..., α̃dp} be the group of IFSs.

If p = 1, then F̃g̃ is a GIFSS and GBGWA is given as follows:

GBGWA(cj1, cj2, ..., cjm) = IFWAi(a11, a12, ..., a1m)⊗ IFWAi(cj1, cj2, ..., cjm). (5)

Theorem 1. If cji = 〈t̃ji, f̃ ji〉 and aki = 〈t̃ki, f̃ki〉 (i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., p), be the IFVs,
then the accumulated value by GBGWA operator is given by
GBGWA(cj1, cj2, ..., cjm) = 〈1−∏

p
k=1(1− (1−∏m

i=1(1− t̃aki )) · (1−∏m
i=1(1− t̃cji ))), ∏

p
k=1(1− (1−

∏m
i=1 f̃aki )(1−∏m

i=1 f̃cji ))〉.

Proof. Let p = 1 and m = 2. Firstly, we apply mathematical induction on m, we have
GBGWA(cj1, cj2) = IFWAk(IFWA(a11, a12) ⊗ IFWA(cj1, cj2)) = (IFWA(a11, a12) ⊗ IFWA(cj1, cj2)) =

〈1− (1− t̃a11)
w1 · (1− t̃a12)

w2 , f̃ w1
a11 · f̃ w2

a12〉 ⊗ 〈1− (1− t̃cj1)
w1 · (1− t̃cj2)

w2 , f̃ w1
cj1 · f̃ w2

cj2 〉
= 〈(1− (1− t̃a11)

w1 · (1− t̃a12)
w2) · (1− (1− t̃cj1)

w1 · (1− t̃cj2)
w2), f̃ w1

a11 · f̃ w2
a12 + f̃ w1

cj1 . f̃ w2
cj2 − f̃ w1

a11 . f̃ w2
a12 . f̃ w1

cj1 ·
f̃ w2
cj2 〉 = 〈(1−∏2

i=1(1− t̃a1i )
wi ) · (1−∏2

i=1(1− t̃cji )
wi ), ∏2

i=1 f̃ wi
a1i + ∏2

i=1 f̃ wi
cji −∏2

i=1 f̃ wi
a1i . ∏2

i=1 f̃ wi
cji 〉.

Thus, theorem is true for m = 2; assuming that the result is true for m = s′, that is,
GBGWA(cj1, cj2, ..., cjs′) = 〈(1 − ∏s′

i=1(1 − t̃a1i ) · (1 − ∏s′
i=1(1 − t̃cji ))), 1 − ((1 − ∏s′

i=1 f̃a1i )(1 −
∏s′

i=1 f̃cji ))〉. then, for m = s′ + 1, GBGWA(cj1, cj2, ..., cj(s′+1)) = 〈(1−∏s′+1
i=1 (1− t̃a1i ) · (1−∏s′+1

i=1 (1−
t̃cji ))), 1− ((1−∏s′+1

i=1 f̃a1i )(1−∏s′+1
i=1 f̃cji ))〉. Thus, by mathematical induction, Theorem 1 holds for

all positive integer m. Similarly, we can prove this theorem for k = 2, 3, ..., p.

Example 4. Consider Example 1, where
ĨFV(κ1) = {c11, c12, c13} = {〈0.6, 0.4〉, 〈0.6, 0.2〉, 〈0.9, 0〉} is a family of IFVs in second row of Table 1.
The three IFSs of moderator’s assessments are

IF1 = {a11, a12, a13} = {〈0.6, 0.2〉, 〈0.3, 0.4〉, 〈0.2, 0.2〉}
IF2 = {a21, a22, a23} = {〈0.3, 0.4〉, 〈0.2, 0.4〉, 〈0.3, 0.5〉}
IF3 = {a31, a32, a33} = {〈0.3, 0.4〉, 〈0.5, 0.4〉, 〈0.4, 0.1〉},

respectively. Let w = {w1/0.29, w2/0.35, w3/0.36} be the weighted vector over E and � =

{�1/0.25, �2/0.40, �3/0.35} be the weighted vector for three senior experts. Now, the GBGWA is given below.

�′1 = GBGWA(c11, c12, c13) = IFWAk

⎛⎜⎝ (IFWAi(a11, a12, a13)⊗ IFWAi(c11, c12, c13)),
(IFWAi(a21, a22, a23)⊗ IFWAi(c11, c12, c13)),
(IFWAi(a31, a32, a33)⊗ IFWAi(c11, c12, c13))

⎞⎟⎠
Next, calculate, IFWAi(c11, c12, c13) = IFWAi(〈0.6, 0.4〉, 〈0.6, 0.2〉, 〈0.9, 0.0〉) = 〈0.7572, 0.0000〉,
IFWAi(a11, a12, a13) = IFWAi(〈0.6, 0.2〉, 〈0.3, 0.4〉, 〈0.2, 0.2〉) = 〈0.3755, 0.2549〉,
IFWAi(a21, a22, a23) = IFWAi(〈0.3, 0.4〉, 〈0.2, 0.4〉, 〈0.3, 0.5〉) = 〈0.2665, 0.4334〉,
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IFWAi(a31, a32, a33) = IFWAi(〈0.3, 0.4〉, 〈0.5, 0.4〉, 〈0.4, 0.1〉) = 〈0.4113, 0.2428〉.

Then,

�′1 = GBGWA(〈0.6, 0.4〉, 〈0.6, 0.2〉, 〈0.9, 0〉) = IFWAk

⎛⎜⎝ (〈0.2843, 0.2549〉,
〈0.2018, 0.4334〉,
〈0.3114, 0.2428〉)

⎞⎟⎠ = 〈0.7441, 0.3099〉.

Similarly, we can calculate �′2, �′3, �′4, �′5 and �′6.

Property 23. Idempotency; If cji = cj and aki = ak = a for all i, then GBGWA(cj1, cj2, ..., cjm) = (a⊗ cj).

Proof. Since cji = cj ∀j, that is, t̃cji = t̃cj and f̃cji = f̃cj . Therefore, for p = 2, a1i = a and a2i = a,

this implies that t̃a1i = t̃a, f̃a1i = f̃a and t̃a2i = t̃a, f̃a2i = f̃a. Then,

GBGWA(cj1, cj2, ..., cjm) = IFWAk

⎛⎜⎜⎜⎝
〈(1−∏m

i=1(1− t̃a1i )
wi ) · (1−∏m

i=1(1− t̃cji )
wi ),

∏m
i=1 f̃ wi

a1i + ∏m
i=1 f̃ wi

cji −∏m
i=1 f̃ wi

a1i .∏
m
i=1 f̃ wi

cji 〉
, 〈(1−∏m

i=1(1− t̃a2i )
wi ) · (1−∏m

i=1(1− t̃cji )
wi ),

∏m
i=1 f̃ wi

a2i + ∏m
i=1 f̃ wi

cji −∏m
i=1 f̃ wi

a2i .∏
m
i=1 f̃ wi

cji 〉

⎞⎟⎟⎟⎠

= IFWAk

⎛⎜⎜⎜⎜⎝
〈(1− (1− t̃a)∑m

i=1 wi ) · (1− (1− t̃cj)
∑m

i=1 wi ),

f̃ ∑m
i=1 wi

a + f̃ ∑m
i=1 wi

cj − f̃ ∑m
i=1 wi

a . f̃ ∑m
i=1 wi

cj 〉
, 〈(1− (1− t̃a)∑m

i=1 wi ) · (1− (1− t̃cj)
∑m

i=1 wi ),

f̃ ∑m
i=1 wi

a + f̃ ∑m
i=1 wi

cj − f̃ ∑m
i=1 wi

a . f̃ ∑m
i=1 wi

cj 〉

⎞⎟⎟⎟⎟⎠
= IFWAk

(
〈(1− (1− t̃a)) · (1− (1− t̃cj)), f̃a + f̃cj − f̃a. f̃cj〉
, 〈(1− (1− t̃a)) · (1− (1− t̃cj)), f̃a + f̃cj − f̃a. f̃cj〉

)

= IFWAk

(
〈t̃a .̃tcj , f̃a + f̃cj − f̃a. f̃cj〉
, 〈t̃a .̃tcj , f̃a + f̃cj − f̃a. f̃cj〉

)

=

(
〈1− (1− t̃a .̃tcj)

�1 · (1− t̃a .̃tcj)
�2 ,

( f̃a + f̃cj − f̃a. f̃cj)
�1 .( f̃a + f̃cj − f̃a. f̃cj)

�2〉

)

=

(
〈1− (1− t̃a .̃tcj)

∑2
k=1 �k ,

( f̃a + f̃cj − f̃a. f̃cj)
∑2

k=1 �k 〉

)

=
(
〈1− (1− t̃a .̃tcj), ( f̃a + f̃cj − f̃a. f̃cj)〉

)
= a⊗ cj

Now, using operation laws between IFVs, assume that results hold for p = p′, that is,

GBGWA(cj1, cj2, ..., cjm) = (a⊗ cj).

Then, for p = p′ + 1,
GBGWA(cj1, cj2, ..., cjm) = (a⊗ cj).

Thus, by mathematical induction, Theorem 23 holds for all positive integer p.

Property 24. Boundedness; If c+j = 〈t̃max
(aki⊗cji)

, f̃ min
(aki⊗cji)

〉 and

c−j = 〈t̃min
(aki⊗cji)

, f̃ max
(aki⊗cji)

〉, then c−j ≤ GBGWA(cji, cj2, ..., cjm) ≤ c+j .
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Proof. Let cji = 〈t̃cji , f̃cji 〉 and aki = 〈t̃aki , f̃aki 〉 be IFVs, for all i, j, k. Then, aki ⊗ cji = 〈t̃aki · t̃cji , 1− (1−
f̃aki )(1− f̃cji )〉 and denote t̃max

(aki⊗cji)
= t̃max

aki
· t̃max

cji
, t̃min

(aki⊗cji)
= t̃min

aki
· t̃min

cji
, f̃ max

(aki⊗cji)
= 1− (1− f̃ max

aki
) · (1−

f̃ max
cji

), f̃ min
(aki⊗cji)

= 1− (1− f̃ min
aki

) · (1− f̃ min
cji

).

Now, t̃min
cji
≤ t̃cji ≤ t̃max

cji
⇐⇒ (1− t̃max

cji
) ≤ (1− t̃cji ) ≤ (1− t̃min

cji
) ⇐⇒ (1− t̃max

cji
)∑m

i=1 wi ≤
∏m

i=1(1− t̃cji ) ≤ (1− t̃min
cji

)∑m
i=1 wi ⇐⇒ 1− (1− t̃min

cji
) ≤ 1−∏m

i=1(1− t̃cji ) ≤ 1− (1− t̃max
cji

) ⇐⇒
t̃min
cji
≤ 1−∏m

i=1(1− t̃cji ) ≤ t̃max
cji

. Similarly, we obtain t̃min
aki
≤ 1−∏m

i=1(1− t̃aki ) ≤ t̃max
aki

.

Therefore, t̃min
aki
· t̃min

cji
≤ (1−∏m

i=1(1− t̃aki ))(1−∏m
i=1(1− t̃cji )) ≤ t̃max

aki
· t̃max

cji
⇐⇒ t̃min

(aki⊗cji)
≤

(1 −∏m
i=1(1 − t̃aki ))(1 −∏m

i=1(1 − t̃cji )) ≤ t̃max
(aki⊗cji)

⇐⇒ 1 − t̃max
(aki⊗cji)

≤ 1 − (1 −∏m
i=1(1 − t̃aki )) ·

(1−∏m
i=1(1− t̃cji )) ≤ 1− t̃min

(aki⊗cji)
⇐⇒ (1− t̃max

(aki⊗cji)
)∑

p
k=1 �k ≤ ∏

p
k=1(1− (1−∏m

i=1(1− t̃aki )) · (1−

∏m
i=1(1− t̃cji ))) ≤ (1− t̃min

(aki⊗cji)
)∑

p
k=1 �k ⇐⇒ 1− (1− t̃min

(aki⊗cji)
) ≤ 1−∏

p
k=1(1− (1−∏m

i=1(1− t̃aki )) ·
(1−∏m

i=1(1− t̃cji ))) ≤ 1− (1− t̃max
(aki⊗cji)

) ⇐⇒

t̃min
(aki⊗cji)

≤ 1−
p

∏
k=1

(1− ((1−
m

∏
i=1

(1− t̃aki )) · (1−
m

∏
i=1

(1− t̃cji )))) ≤ t̃max
(aki⊗cji)

(6)

In addition, f̃ min
cji
≤ f̃cji ≤ f̃ max

cji
⇐⇒ f̃ min

cji
≤ ∏m

i=1 f̃cji ≤ f̃ max
cji

⇐⇒ 1− f̃ max
cji
≤ 1−∏m

i=1 f̃cji ≤
1− f̃ min

cji
. Similarly, we obtain 1− f̃ max

aki
≤ 1−∏m

i=1 f̃aki ≤ 1− f̃ min
aki

.

Therefore, 1− (1− f̃ min
aki

)(1− f̃ min
cji

) ≤ 1− (1−∏m
i=1 f̃aki )(1−∏m

i=1 f̃cji ) ≤ 1− (1− f̃ max
aki

)(1−
f̃ max
cji

) ⇐⇒ f̃ min
(aki⊗cji)

≤ 1 − (1 − ∏m
i=1 f̃aki )(1 − ∏m

i=1 f̃cji ) ≤ f̃ max
(aki⊗cji)

⇐⇒ ( f̃ min
(aki⊗cji)

)∑
p
k=1 �k ≤

∏
p
k=1(1− (1−∏m

i=1 f̃aki )(1−∏m
i=1 f̃cji )) ≤ ( f̃ max

(aki⊗cji)
)∑

p
k=1 �k ⇐⇒

f̃ min
(aki⊗cji)

≤
p

∏
k=1

(1− (1−
m

∏
i=1

f̃aki )(1−
m

∏
i=1

f̃cji )) ≤ f̃ max
(aki⊗cji)

. (7)

If GBGWA(cj1, cj2, ..., cjm) = 〈t̃ρ, f̃ρ〉, therefore from Equations (6) and (7), we have t̃min
(aki⊗cji)

≤ t̃ρ ≤
t̃max
(aki⊗cji)

and f̃ min
(aki⊗cji)

≤ f̃ρ ≤ f̃ max
(aki⊗cji)

. Further using score function δ(GBGWA(cj1, cj2, ..., cjm)) = t̃ρ −
f̃ρ ≤ t̃max

(aki⊗cji)
− t̃min

(aki⊗cji)
= δ(c+j ), δ(GBGWA(cj1, cj2, ..., cjm) = t̃ρ − f̃ρ ≥ t̃min

(aki⊗cji)
− t̃max

(aki⊗cji)
= δ(c−j ).

Hence, by order relation c−j ≤ GBGWA(cj1, cj2, ..., cjm) ≤ c+j .

Property 25. Monotonicity; If c′ji and cji are two IFVs such that c′ji ≤ cji,
then GBGWA(c′j1, c′j2, ..., c′jm) ≤ GBGWA(cj1, cj2, ..., cjm).

Proof. It follows from Theorem 24, thus it is omitted from here.

Proposition 2. Let G̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X. Then,

(i) If the assessments of each moderator/prospector on A, are IF k = {〈1, 0〉, 〈1, 0〉, ..., 〈1, 0〉}, k = 1, 2, ..., p,
then GBGWA(cj1, cj2, ..., cjm) = IFWAi(cj1, cj2, ..., cjm).

(ii) If the assessments of each moderator/prospector on A, are IF k = {〈0, 1〉, 〈0, 1〉, ..., 〈0, 1〉}, k = 1, 2, ..., p,
then GBGWA(cj1, cj2, ..., cjm) = 〈0, 1〉,

(iii) If (S̃ ,A) = X̃ A(1,0)
, then

GBGWA(cj1, cj2, ..., cjm) = IFWAk

(
IFWAi(a11, a12, ..., a1m),

IFWAi(a21, a22, ..., a2m), ..., IFWAi(ap1, ap2, ..., apm)

)
.

(iv) If (S̃ ,A) = ĨA(0,1)
, then GBGWA(cj1, cj2, ..., cjm) = 〈0, 1〉.

Proof. It is straightforward, thus it is omitted from here.
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Now, the definition of GBGWG operator is specified as follows:

Definition 26. GBGWG; Let F̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where g̃ = {α̃d1 , α̃d2 , ..., α̃dp} be the
group of PIFSs. Assume that w = (w1, w2, ..., wm)T be the normalized weight vector for A, such that wi > 0
and ∑m

i=1 wi = 1. Let ĨFV(κj) = {cj1, cj2, ..., cjm} (j = 1 to n) be the set of IFVs in EIFSS (S̃ ,A) for all
κj ∈ X. For each senior moderator/prospector, α̃dk

(υ) = {〈t̃α̃dk
(υ), f̃α̃dk

(υ)〉 | υ ∈ A} (k = 1 to p) be the

PIFS, it can be represented as IF k = {ak1, ak2, ..., akm} (k = 1 to p) and � = (�1, �2, ..., �p)T is the set of
weights for moderators, such that �k > 0 and ∑

p
k=1 �k = 1. Define GBGWG: Γm

s −→ Γs, IFWG: Γm −→ Γ,
where

GBGWG(cj1, cj2, ..., cjm) = IFWGk

⎛⎜⎝ (IFWGi(a11, a12, ..., a1m)⊗ IFWGi(cj1, cj2, ..., cjm)),
(IFWGi(a21, a22, ..., a2m)⊗ IFWGi(cj1, cj2, ..., cjm)), ...,
(IFWGi(ap1, ap2, ..., apm)⊗ IFWGi(cj1, cj2, ..., cjm))

⎞⎟⎠ (8)

where GBGWG is known as GGIFSS weighted geometric operator, then the set of all GBGWGs is denoted
L = {�′′1 , �′′2 , ..., �′′n}. In addition, IFWAk and IFWAi are IFWG operators on set of senior moderators/prospectors
and set of parameters, respectively. Note that Γm

s and Γ are families of GGIFSS and IFSs, respectively.

Lemma 2. Let F̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X, where g̃ = {α̃d1 , α̃d2 , ..., α̃dp} be the group of IFSs.

If p = 1, then F̃g̃ is a GIFSS and GBGWG is specified below.

GBGWG(cj1, cj2, ..., cjm) = IFWGi(a11, a12, ..., a1m)⊗ IFWGi(cj1, cj2, ..., cjm)). (9)

Theorem 2. If cij = (t̃ji, f̃ ji) and aki = (t̃ki, f̃ki) (i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., p), be an IFV, then
the aggregated value by GBGWG operator is given by
GBGWG(cj1, cj2, ..., cjm) = 〈∏p

k=1(1− (1−∏m
i=1 t̃aki )(1−∏m

i=1 t̃cji )), 1−∏
p
k=1(1− (1−∏m

i=1(1− f̃aki )) ·
(1−∏m

i=1(1− f̃cji )))〉.

Proof. It follows from Theorem 1, thus it is omitted from here.

In addition, the properties of idempotent, bounding and monotonicity for GBGWGs can be stated
and proved in a similar manner as for GBGWAs.

Proposition 3. Let G̃g̃ = (S̃ ,A, g̃) be a GGIFSS over X. Then,

(i) If the assessments of each moderator on A, are IF k = {〈1, 0〉, 〈1, 0〉, ..., 〈1, 0〉}, k = 1, 2, ..., p, then
GBGWG(cj1, cj2, ..., cjm) = IFWGi(cj1, cj2, ..., cjm).

(ii) If the assessments of each moderator on A, are IF k = {〈0, 1〉, 〈0, 1〉, ..., 〈0, 1〉}, k = 1, 2, ..., p, then
GBGWG(cj1, cj2, ..., cjm) = 〈0, 1〉.

(iii) If (S̃ ,A) = X̃ A(1,0)
, then

GBGWG(cj1, cj2, ..., cjm) = IFWGk

(
IFWGi(a11, a12, ..., a1m),

IFWGi(a21, a22, ..., a2m), ..., IFWGi(ap1, ap2, ..., apm)

)
.

(iv) If (S̃ ,A) = ĨA(0,1)
, then GBGWG(cj1, cj2, ..., cjm) = 〈0, 1〉.

Proof. It is straightforward, thus is omitted here.

As aggregation operators are used to create MCDM frameworks, based on proposed GBGWA or
GBGWG operators, some multi-criteria decision making methods are discussed in next section.

5. Multi-Attribute Decision Making under GGIFSSs Environment

In this section, firstly we present our approach comprising of an algorithm by virtue of GGIFSSs,
and GBGWA or GBGWG operators. Then, we conduct two illustrations on proposed method as in
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the case studies: (1) candidates evaluation for an insurance company; and (2) cinema selection for
the customers.

5.1. Proposed Method

As stated above, the properties of boundedness and monotonicity are valid for proposed
operators. Therefore, a comparison can be made among two or more GBGWA(GBGWG) operators.
Let ς be the number of committees established comprising specialists, which are intended to
classify each alternative κj(j = 1, 2, ..., n), while making in account with the imperative attributes
υi(i = 1, 2, ..., m), and by provision of their respective grades in terms of IFSSs. Consider d1, d2, ..., dp

be the members/experts(directors or officers), who are in-charge of constituted committees. Thereafter,
the subjective information (in the form of IFSSs) from committees is collected. The senior experts will
examine it and give their judgements as a group of IFSs. Then, the information of each committee
comprised the GGIFSS, and there will be ς number of GGIFSSs. The extended union on GGIFSSs
is computed, denoted as G̃g̃ and expressed in a table. Here, two types of criteria occur in the G̃g̃,
namely, benefit and cost criteria. To consolidate the criteria, the G̃g̃ must be normalized through the
following equation:

rji =

{
〈t̃A(υi), f̃A(υi)〉, if υi is a benefit criterion,
〈 f̃A(υi), t̃A(υi)〉, if υi is a cost criterion,

(10)

such that the normalized GGIFSS is denoted by G̃ ′ g̃ = (T̃ ′, E, g̃′), where (T̃ ′, E) is the normalization
of (T̃ , E) and g̃′ is the normalization of g̃. Finally, GBGWA or GBGWG can be used to aggregate the
data from G̃ ′ g̃ and each �′j or �′′j can be correlated through score function. Therefore, we propose our
methodology as an algorithm as follows.

Algorithm 1 Multi-attribute decision making on GGIFSSs
Input: A set of alternatives
Output: The felicitous alternative for a problem

1: Let X = {κ1, κ2, ..., κn} be the set of alternatives and E = A1 ∪A2∪, ...,∪Aς = {υ1, υ2, ..., υm} be
the set of attributes. Constitute a mechanism of the specialists’ judgements on attributes in the
form of IFVs and establish IFSSs on each committee of specialists.

2: Obtain ς number of GGIFSSs, F̃g̃1 = (S̃1,A1, g̃1), F̃g̃2 = (S̃2,A2, g̃2),... , F̃g̃ς = (S̃ς,Aς, g̃ς) over
X, which are handled by ς number of committees of experts and specialists. Each group g̃1, g̃2, ..., g̃ς

of IFSs is constituted by p number of senior members/moderators for available information on
each Ai′(i′ = 1, 2, ..., ς), respectively.

3: Compute extended union G̃g̃ = (+̃E )ς
i′=1F̃g̃i′ of GGIFSSs. Represent G̃g̃ in a table.

4: Normalized the data in G̃g̃ using Equation (3), and represent G̃ ′ g̃ in a table.

5: Calculate GBGWA �′j(j = 1, 2, ..., n) or GBGWG �′′j (j = 1, 2, ..., n) operators on GGIFFS G̃ ′ g̃. There
will be n operators.

6: Obtain score function on each operator �′j or �′′j using Definition 3.
7: Rank the alternatives on score function; the best choice is obtained on a maximum score.

This algorithm is depicted as a flowchart in Figure 1. The Algorithm 1 can be formulated to select
the best product or alternative for p number of customers. In this way, the extra inputs incorporate as
the demands of customers in GGIFSS, and the Algorithm 1 will conduct on a GGIFSS, F̃g̃ = (S̃ , E, g̃),
from Step 4. To operate above methodology, we establish two case studies as below.
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Figure 1. A flowchart for our algorithm.

5.2. Case Study: Candidate Selection Problem

In this case study, an example for evaluation of candidates is used to illustrate the applicability
of the proposed method. An insurance company HG in Guangzhou, China is engaged for insurance
of products, charging insurance premium, consultation on insurance, financial and other services for
individuals and enterprises. Every year, this company recruits new staff for the post of insurance sales
agents and consultants. To maintain the excellence and high admire reputation, the company consults
with experts for their assessments and opinions to recruit the candidates. Furthermore, the insurance
business department and human resources department are actively engaged in recruitment process.

Let X = {κ1, κ2, κ3, κ4, κ5} be the set of five candidates whom can be placed for the position of
insurance sales consultant. A group of three senior members (directors, officers, etc.) d1, d2 and d3

setup a committee of specialists and experts to appoint a felicitous candidate for this position. The set
of criteria for committee to select the candidate is E = {υ1, υ2, υ3, υ4, υ5, υ6, υ7}, where

υ1 : english level;
υ2 : relevant problem solving skills;
υ3 : relevant working experience;
υ4 : communication skills;
υ5 : finance and insurance professional;
υ6 : score obtained in a college degree; and
υ7 : interpersonal skills.

On the set parameters, the weight vector is given and denoted by
w = (w1/0.12, w2/0.13, w3/0.15, w4/0.15, w5/0.17, w6/0.11, w7/0.17)T such that ∑7

i=1 wi = 1.
The three senior members arrange specialists into two groups; the first group consists of the specialists
of insurance business management and the second group consists of the specialists of human resource
management. The set of parameters A = {υ2, υ3, υ5} is assigned for first group and the set of
parameters B = {υ1, υ4, υ6, υ7} is assigned for second group. These two groups give their judgments as
IFSSs (S̃1,A) and (S̃2,B), respectively. Then, the group of senior members examine the data of IFSSs
and then provide the two groups of IFSs, g1 = {α̃d1 , α̃d2 , α̃d3} and g2 = {β̃d1 , β̃d2 , β̃d3} to complete the
GGIFSSs, F̃g̃1 = (S̃1,A, g̃1) and F̃g̃2 = (S̃2,B, g̃2), as shown in Tables 5 and 6, respectively.
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Table 5. Tabular representation of the GGIFSS F̃g̃1 = (S̃1,A, g̃1)

X�A υ2 υ3 υ5

κ1 〈0.7, 0.1〉 〈0.7, 0.1〉 〈0.6, 0.1〉
κ2 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.4〉
κ3 〈0.5, 0.4〉 〈0.5, 0.4〉 〈0.9, 0.1〉
κ4 〈0.3, 0.4〉 〈0.7, 0.2〉 〈0.7, 0.2〉
κ5 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.8, 0.1〉
α̃d1

〈0.5, 0.2〉 〈0.5, 0.4〉 〈0.7, 0.2〉
α̃d2 〈0.4, 0.4〉 〈0.4, 0.6〉 〈0.3, 0.5〉
α̃d3 〈0.6, 0.4〉 〈0.3, 0.5〉 〈0.5, 0.5〉

Table 6. Tabular representation of the GGIFSS F̃g̃2 = (S̃2,B, g̃2)

X�B υ1 υ4 υ6 υ7

κ1 〈0.5, 0.5〉 〈0.6, 0.1〉 〈0.6, 0.4〉 〈0.7, 0.1〉
κ2 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.5, 0.4〉 〈0.8, 0.2〉
κ3 〈0.4, 0.4〉 〈0.7, 0.2〉 〈0.6, 0.3〉 〈0.4, 0.4〉
κ4 〈0.5, 0.2〉 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.5, 0.3〉
κ5 〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.6, 0.1〉
β̃d1

〈0.4, 0.3〉 〈0.7, 0.3〉 〈0.6, 0.2〉 〈0.7, 0.2〉
β̃d2 〈0.6, 0.4〉 〈0.3, 0.4〉 〈0.3, 0.6〉 〈0.5, 0.3〉
β̃d3 〈0.5, 0.5〉 〈0.4, 0.5〉 〈0.4, 0.4〉 〈0.7, 0.2〉

To evaluate most felicitous candidate on provided information in Tables 5 and 6, the extended
intersection of F̃g̃1 and F̃g̃2 is contemplated as follows:

G̃g̃ = F̃g̃1+̃EF̃g̃2 = (T̃ , E, g̃) = (S̃1,A, g̃1) +̃E (S̃2,B, g̃2)

and shown in Table 7.

Table 7. Tabular representation of the GGIFSS F̃g̃1+̃E .F̃g̃2.

X�E υ1 υ2 υ3 υ4 υ5 υ6 υ7

κ1 〈0.5, 0.5〉 〈0.7, 0.1〉 〈0.7, 0.1〉 〈0.6, 0.1〉 〈0.6, 0.1〉 〈0.6, 0.4〉 〈0.7, 0.1〉
κ2 〈0.5, 0.4〉 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.3, 0.4〉 〈0.6, 0.4〉 〈0.5, 0.4〉 〈0.8, 0.2〉
κ3 〈0.4, 0.4〉 〈0.5, 0.4〉 〈0.5, 0.4〉 〈0.7, 0.2〉 〈0.9, 0.1〉 〈0.6, 0.3〉 〈0.4, 0.4〉
κ4 〈0.5, 0.2〉 〈0.3, 0.4〉 〈0.7, 0.2〉 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.5, 0.3〉
κ5 〈0.7, 0.2〉 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.8, 0.1〉 〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.6, 0.1〉
γ̃d1

〈0.4, 0.3〉 〈0.5, 0.2〉 〈0.5, 0.4〉 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.6, 0.2〉 〈0.7, 0.2〉
γ̃d2 〈0.6, 0.4〉 〈0.4, 0.4〉 〈0.4, 0.6〉 〈0.3, 0.4〉 〈0.3, 0.5〉 〈0.3, 0.6〉 〈0.5, 0.3〉
γ̃d3 〈0.5, 0.5〉 〈0.6, 0.4〉 〈0.3, 0.5〉 〈0.4, 0.5〉 〈0.5, 0.5〉 〈0.4, 0.4〉 〈0.7, 0.2〉

As the all criterion are benefit type, the normalized GGIFSS, G̃g̃, is not needed. The weight
vector for three senior members is given by � = (�1/0.33, �2/0.34, �3/0.33)T such that ∑3

k=1 �k = 1.
The GBGWA operator is used on integrated data in Table 7, and given as follows:
�′1 = GGWA(c11, c12, ..., c17) =

IFWAk(〈0.390932, 0.353894〉, 〈0.260704, 0.518795〉, 〈0.325209, 0.489552〉) = 〈0.327079, 0.448601〉
�′2 = GGWA(c21, c22, ..., c27) =

IFWAk(〈0.355421, 0.494395〉, 〈0.237022, 0.623437〉, 〈0.295668, 0.600553〉) = 〈0.297119, 0.570421〉
�′3 = GGWA(c31, c32, ..., c37) =

IFWAk(〈0.390064, 0.455207〉, 〈0.260125, 0.594251〉, 〈0.324487, 0.569593〉) = 〈0.326346, 0.536655〉
�′4 = GGWA(c41, c42, ..., c47) =
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IFWAk(〈0.374141, 0.435074〉, 〈0.249507, 0.579256〉, 〈0.311241, 0.553687〉) = 〈0.312904, 0.519253〉
�′5 = GGWA(c51, c52, ..., c57) =

IFWAk(〈0.422383, 0.383619〉, 〈0.281678, 0.540934〉, 〈0.351372, 0.513036〉) = 〈0.353679, 0.474575〉

Now, the score functions are calculated on above five operators and given as in the following:
δ(�′1) = 0.439239, δ(�′2) = 0.363349, δ(�′3) = 0.394845, δ(�′4) = 0.396825, and δ(�′5) = 0.439552.
The descending order is acquired as κ5 > κ1 > κ4 > κ3 > κ2; thus, κ5 is the felicitous candidate for the
position because δ(�′5) = 0.439552 is the maximum score.

Next, a case study in a different scenario is given as follows.

5.3. Case Study: Alternative Evaluation on Customer Demands

Nowadays, the markets possess immense competition for the quality of service, besides the
demands of customers are increased and widened in the different prospects. The service industries are
booming and upgrading by entertainment, catering, tourism, and auction. Indeed, there is a fierce
competition among the service industries, but currently film industry is in the most competitive
position as customers always classify and compare cinemas on different parameters, such as
convenience, environment, quality of service, upcoming movies, and expenses.

Let X = {κ1, κ2, κ3, κ4} be the set of four cinemas. The set of attributes E = {υ1, υ2, υ3, υ4, υ5},
where

υ1 : quality of service;
υ2 : quality of expected films;
υ3 : environment in cinema;
υ4 : price reasonability; and
υ5 : convenience and luxuriousness.

A committee of experts and specialists from a cinema management organization give the judgment
for cinemas on provided attributes as an IFSSs (S̃ , E) (Table 8).

Table 8. Tabular representation of the IFSS, (S̃ , E).

X�E υ1 υ2 υ3 υ4 υ5

κ1 〈0.4, 0.5〉 〈0.5, 0.5〉 〈0.6, 0.4〉 〈0.3, 0.4〉 〈0.3, 0.3〉
κ2 〈0.6, 0.4〉 〈0.6, 0.3〉 〈0.5, 0.4〉 〈0.4, 0.4〉 〈0.6, 0.3〉
κ3 〈0.3, 0.4〉 〈0.4, 0.4〉 〈0.5, 0.4〉 〈0.6, 0.4〉 〈0.5, 0.5〉
κ4 〈0.5, 0.3〉 〈0.3, 0.3〉 〈0.3, 0.4〉 〈0.4, 0.6〉 〈0.5, 0.3〉
κ5 〈0.6, 0.4〉 〈0.5, 0.3〉 〈0.5, 0.5〉 〈0.5, 0.4〉 〈0.3, 0.4〉

Now, the two customers d1 and d2 desire to choose a most suitable cinema to watch movies;
their demands comprise IFSs,

α̃d1 = {υ1/〈0.4, 0.6〉, υ2/〈0.5, 0.3〉, υ3/〈0.5, 0.4〉, υ4/〈0.4, 0.6〉, υ5/〈0.4, 0.4〉},
α̃d2 = {υ1/〈0.5, 0.4〉, υ2/〈0.4, 0.5〉, υ3/〈0.5, 0.3〉, υ4/〈0.5, 0.4〉, υ5/〈0.4, 0.2〉}.

The attribute υ4 belongs to cost criteria, therefore corresponding IFVs can be normalized using
Equation (10). Let g̃ = {α̃d1 , α̃d2} and the normalization of g̃ is expressed as g̃′ = {α̃′d1

, α̃′d2
}. Thereafter,

Table 8 can be normalized. Then, the information can be extended into GGIFSS F̃ ′ g̃ = (S̃ ′, E, g̃′),
and specified in Table 9.
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Table 9. Tabular representation of the GGIFSS, (S̃ ′, E, g̃′).

X�E υ1 υ2 υ3 υ4 υ5

κ1 〈0.4, 0.5〉 〈0.5, 0.5〉 〈0.6, 0.4〉 〈0.4, 0.3〉 〈0.3, 0.3〉
κ2 〈0.6, 0.4〉 〈0.6, 0.3〉 〈0.5, 0.4〉 〈0.4, 0.4〉 〈0.6, 0.3〉
κ3 〈0.3, 0.4〉 〈0.4, 0.4〉 〈0.5, 0.4〉 〈0.4, 0.6〉 〈0.5, 0.5〉
κ4 〈0.5, 0.3〉 〈0.3, 0.3〉 〈0.3, 0.4〉 〈0.6, 0.4〉 〈0.5, 0.3〉
κ5 〈0.6, 0.4〉 〈0.5, 0.3〉 〈0.5, 0.5〉 〈0.4, 0.5〉 〈0.3, 0.4〉
α̃d1

〈0.4, 0.6〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.4〉 〈0.4, 0.4〉
α̃d2 〈0.5, 0.4〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.4, 0.2〉

Let w = (w1/0.18, w2/0.19, w3/0.21, w4/0.22, w5/0.2)T be the weight vector for attributes and
� = (�1/0.52, �2/0.48)T be the weight vector for customers. The GBGWA operator is used on
integrated data in Table 9, and given as follows:
�′1 = GGWA(c11, c21, ..., c15) =

IFWAk(〈0.220934, 0.635540〉, 〈0.199004, 0.605904〉) = 〈0.210483, 0.621138〉
�′2 = GGWA(c21, c22, ..., c52) =

IFWAk(〈0.265324, 0.619281〉, 〈0.238988, 0.588324〉) = 〈0.252798, 0.604223〉
�′3 = GGWA(c31, c32, ..., c35) =

IFWAk(〈0.209414, 0.678382〉, 〈0.188627, 0.652231〉) = 〈0.199503, 0.665701〉
�′4 = GGWA(c41, c42, ..., c45) =

IFWAk(〈0.223041, 0.608588〉, 〈0.200901, 0.576761〉) = 〈0.212491, 0.593098〉
�′5 = GGWA(c51, c52, ..., c55) =

IFWAk(〈0.227867, 0.654431〉, 〈0.205248, 0.626332〉) = 〈0.217091, 0.640789〉

Now, the score functions are calculated on above five operators and given as in the following:
δ(�′1) = 0.294672, δ(�′2) = 0.324287, δ(�′3) = 0.266901, δ(�′4) = 0.309696, and δ(�′5) = 0.288151. One can
check that κ2 is the suitable cinema for both customers as δ(�′2) = 0.324287 is the maximum score.

Now, based on our results, comparisons with other methods are given in next section.

6. Comparisons and Discussions

In this section, we compare our framework and results with existing methodologies. At first,
we make a comparison of our method with the framework presented in [44]. Then, we discuss the
advantages of proposed technique.

6.1. Comparisons with the Method of Garg

Garg et al. [44] defined geometric and averaging operators on the GGIFSSs and then provided
an algorithm for decision making methodology. Let X = {κ1, κ2, ..., κn′ } be the set of alternatives and
E = {υ1, υ2, ..., υm′ } be the set of criteria. To evaluate κj(j = 1, ..., n′) as a optimal choice, IFSS on E are
given and assessments of moderators are given as an IFSs G�(e), where G = (�1, �2, ..., �p) and G�(e)
denotes the opinion of experts on the elements of X by virtue of IFSS on E. We recall the algorithm
contemplated in [44] and given as follows:
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Algorithm 2 Grag’s Algorithm for faculty appointment

1: Make a framework of the specialists’ judgment related to each possible choice (alternatives) in the
form IFVs and then construct their corresponding decision matrix [h]n

′×m′ .
2: Get the generalization matrix [G�]n

′×1 by using the perceptions of the senior members/experts’
committee on each κj (j = 1, 2, ..., n′).

3: Construct the new matrix [hG]
n′×(m′+1) by placing [G�]n

′×1 in [h]n
′×m′ with respect to κj (j =

1, 2, ..., n′).
4: Apply operators with respect to κj, and the results are denoted by r′j, j = 1, 2, ..., n′.
5: Rank the κj(j = 1, 2, ..., n′) in descending order on their score values r′j (j = 1, 2, ..., n′).

Under the approach established in [44], we provide some key points and compare Algorithm 1,
with Algorithm 2 :

(i) In Algorithm 2, the generalized parameter matrix is obtained by incorporating preferences of
experts on alternatives. In other words, information from moderator on alternatives is given;
nevertheless, extra input can be sighted as another information over IFSS, and both information
types (IFSS and extra inputs) deal with alternatives. Conversely, in Algorithm 1, clear and
well-defined GGIFSSs are taken into account by incorporating IFSS and IFSs.

(ii) Operation of extended union is used in Algorithm 1 on two GGIFSSs, while, in Algorithm 2,
there are some difficulties in defining an operation of extended union on two or more GGIFSSs.

(iii) It seems that GGWA or GGWG operators in Algorithm 2 are applied contrarily on two different
information types, however, in Algorithm 1, an integrated manner is adopted to compile results
through GBGWA or GBGWG.

(iv) In Algorithm 1, the generalized parameters can be applied as the demands of customers, and thus
an integrated framework can be employed in industries. However, Algorithm 2 lacks creating
such frameworks.

6.2. Comparisons with the Results of GIFSSs

The obtained results on the case studies in Sections 5.2 and 5.3 are compared with the outcomes
that are achieved on GIFSSs as given below.

(i) As discussed earlier, GGIFSS with only single generalized parameter is known as GIFSS. Then,
Algorithm 1 can be separated for each senior moderator/customer in the case studies in
Sections 5.2 and 5.3.
1. Using the Lemma 1 and Algorithm 1, we obtained the results separately for each senior
experts/members in the case study in Section 5.2. If only Senior Member 1 is taken into account
during selection process, then δ(�′1) = 0.5185, δ(�′2) = 0.4305, δ(�′3) = 0.4674, δ(�′4) = 0.4695,
and δ(�′5) = 0.5194. The descending order is acquired as κ5 > κ1 > κ4 > κ3 > κ2; thus, κ5 is the
felicitous candidate for the position.
If only Senior Member 2 is taken into account during selection process in the case study
in Section 5.2, then δ(�′1) = 0.3709, δ(�′2) = 0.3068, δ(�′3) = 0.3329, δ(�′4) = 0.3351,
and δ(�′5) = 0.3704. The descending order is acquired as κ1 > κ5 > κ3 > κ4 > κ2; thus, κ1

is the felicitous candidate for the position.
If only Senior Member 3 is taken into account during selection process in the case study
in Section 5.2, then δ(�′1) = 0.4178, δ(�′2) = 0.3475, δ(�′3) = 0.3774, δ(�′4) = 0.3788,
and δ(�′5) = 0.4192. The descending order is acquired as κ5 > κ1 > κ4 > κ2 > κ3; thus, κ1

is the felicitous candidate for the position.
It can be observed from above discussion that κ5 is the most suitable candidate as per individual
opinions of Senior Members 1 and 3. Similarly, κ1 is the most felicitous candidate on individual
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opinion of Senior Member 2, while κ5 is on second place in descending order. Thus, in general, κ5

is the most suitable candidate.

2. Using the Lemma 1 and Algorithm 1, we obtained the results separately for each customer
for the case study in Section 5.3. If it is required to select cinema only for Customer 1,
then δ(�′1) = 0.2927, δ(�′2) = 0.3230, δ(�′3) = 0.2655, δ(�′4) = 0.3072, and δ(�′5) = 0.2867.
The order is acquired as κ2 > κ4 > κ1 > κ5 > κ3; thus, κ2 is the best cinema for Customer
1.
If it is required to select cinema only for the Customer 2, then δ(�′1) = 0.2965, δ(�′2) = 0.3253,
δ(�′3) = 0.2682, δ(�′4) = 0.3121, and δ(�′5) = 0.2894. The order is acquired as
κ2 > κ4 > κ1 > κ5 > κ3; thus, κ2 is the best cinema for Customer 2.
Thus, in general, κ2 is the most suitable for both customers.

(ii) Feng et al. [42] introduced a framework of decision makings on GIFSSs. We correlate proposed
results with their method as below. We acquired the results separately for each customer
for the case study in Section 5.3. If it is required to select cinema only for Customer
1, then δ(ZJ(κ1)) = 0.5344, δ(ZJ(κ2)) = 0.5928, δ(ZJ(κ3)) = 0.4857, δ(ZJ(κ1)) = 0.5549,
and δ(ZJ(κ1)) = 0.5251. The descending order acquired as κ2 > κ4 > κ1 > κ5 > κ3; thus,
κ2 is the best cinema for Customer 1. If it is require to select cinema only for Customer
2, then δ(ZJ(κ1)) = 0.5311, δ(ZJ(κ2)) = 0.5961, δ(ZJ(κ3)) = 0.4894, δ(ZJ(κ1)) = 0.5568,
and δ(ZJ(κ1)) = 0.5262. The descending order acquired as κ2 > κ4 > κ1 > κ5 > κ3; thus,
κ2 is the best cinema for Customer 2.

(iii) A framework for the best concept selection in design process has been computed in [43],
where GIFSSs are utilized to acquire integrated information on customers demands and design
concepts. To meet their objectives, they introduced an algorithm, which we updated as follows:

Algorithm 3 Updated form of Algorithm in [43]

1: The demands of p number of customers are represented as IFSs α̃1, α̃2, ..., α̃p.
2: Represent IFSS (S̃ , E) over set of all possible choices X.
3: Represent GIFSSs for each customer F̃k = (S̃ , E, α̃k)(k = 1, ..., p).
4: Compute int − AND − product operation on F̃1, F̃2, ..., F̃p, obtain GIFSS F̃ and show it in

tabular form.
5: Derive the utility fuzzy set Δ

F̃
from the GIFSS F̃ .

6: Output κj′ as the optimal decision if Δ
F̃
(κj′) = max{Δ

F̃
(κj) | κj ∈ X}.

7: If j′ has more than one values then any one of κj may be chosen.

The case study in Section 5.3 can be contemplated through Algorithm 3. On this prospect,
GGIFSS given in Table 9 can be separated into two GIFSSs. After adopting all steps of Algorithm 3,
Δ(κ1) = 0.2252, Δ(κ2) = 0.2678, Δ(κ3) = 0.2112, Δ(κ4) = 0.2419, and Δ(κ5) = 0.2261.
The descending order is acquired as κ2 > κ4 > κ5 > κ1 > κ3; thus, κ2 is the best cinema
for both customers.

The superiorities and advantages of our method are given in next section.

7. Superiority of Proposed Method

In this section, we give some counter-examples to show the superiority of proposed method over
recent approaches [42–44].

Example 5. Assume a decision making problem by letting the two alternatives κ1 and κ2, which have to be
evaluated by the committee of specialists over set of parameters E = {υ1, υ2, υ3}. The committee of specialists
provide the judgments in the form of IFSS, given in Table 10;
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Table 10. Tabular representation of the IFSS, (S̃ , E).

X�E υ1 υ2 υ3

κ1 〈0.5, 0.5〉 〈0.4, 0.6〉 〈0.6, 0.4〉
κ2 〈0.3, 0.7〉 〈0.5, 0.4〉 〈0.5, 0.3〉

Here, we apply the approach provided by Feng et al. [42], by letting an extra input
β̃ = {〈0.4, 0.2〉, 〈0.5, 0.3〉, 〈0.6, 0.4〉} of a moderator. Then, the GIFSS is consolidated as in Table 11;

Table 11. Tabular representation of the IFSS, (S̃ , E, β̃).

X�E υ1 υ2 υ3

κ1 〈0.5, 0.5〉 〈0.4, 0.6〉 〈0.6, 0.4〉
κ2 〈0.3, 0.7〉 〈0.5, 0.4〉 〈0.5, 0.3〉
β̃ 〈0.4, 0.2〉 〈0.6, 0.4〉 〈0.5, 0.3〉

The score function on IFVs in β̃ are 0.6, 0.6, and 0.6 and the weights are 0.33, 0.33, and 0.33, respectively. It
can be seen that, when we convert extra input into weights in initial stages of decision making, the importance of
membership and non-membership diminish. Using the method of Feng et al. [42], we get δ(ZJ(κ1)) = 0.503 >

δ(ZJ(κ2)) = 0.498 such that κ1 > κ2. Let w = {w1/0.32, w2/0.33, w3/0.35} be the weighted vector over E.
Then, by proposed method, δ(�′1) = 0.310 < δ(�′2) = 0.314 such that κ1 < κ2. Therefore, the conversation of
extra input into weighted vector in early process of decision making diminish the importance of membership and
non-membership. Thus, proposed approach is better then the method of Feng et al. [42].

Example 6. Assume that κ1,κ2 and κ3 are three products and E = {υ1, υ2, υ3} is the set of parameters. The
dependencies of products on criteria are provided in IFSS (S̃ , E) and given in Table 12.

Table 12. Tabular representation of the IFSS, (S̃ , E).

X�E υ1 υ2 υ3

κ1 〈0.3, 0.5〉 〈0.5, 0.3〉 〈0.6, 0.2〉
κ2 〈0.2, 0.6〉 〈0.3, 0.4〉 〈0.6, 0.4〉
κ3 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0.5, 0.3〉

Here, we consider the methodology of Hayat et al. [43]. To select best product for
two customers d1, d2, their demands are investigated as β̃d1 = {〈0.3, 0.5〉, 〈0.4, 0.4〉, 〈0.6, 0.2〉},
β̃d2 = {〈0.3, 0.6〉, 〈0.3, 0.4〉, 〈0.5, 0.4〉}, respectively. Then, the GIFSSs for d1 and d2 are given in Tables 13
and 14, respectively.

Table 13. GIFSS (S̃ , E, β̃d1
).

X�E υ1 υ2 υ3

κ1 〈0.3, 0.5〉 〈0.5, 0.3〉 〈0.6, 0.2〉
κ2 〈0.2, 0.6〉 〈0.3, 0.4〉 〈0.6, 0.4〉
κ3 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0.5, 0.3〉
β̃d1

〈0.3, 0.5〉 〈0.4, 0.4〉 〈0.6, 0.2〉
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Table 14. GIFSS (S̃ , E, β̃d2 ).

X�E υ1 υ2 υ3

κ1 〈0.3, 0.5〉 〈0.5, 0.3〉 〈0.6, 0.2〉
κ2 〈0.2, 0.6〉 〈0.3, 0.4〉 〈0.6, 0.4〉
κ3 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0.5, 0.3〉
β̃d2 〈0.3, 0.6〉 〈0.3, 0.4〉 〈0.5, 0.4〉

In [43], AND operation is computed on two GIFSSs for product for two customers. One can check that

S̃(υ1) ∧ S̃(υ2) = S̃(υ1) with t̃
β̃d1

(υ1) ∧ t̃
β̃d2

(υ2) = t̃
β̃d1

(υ1), f̃
β̃d1

(υ1) ∨ f̃
β̃d2

(υ2) = f̃
β̃d1

(υ1) (11)

S̃(υ1) ∧ S̃(υ3) = S̃(υ1) with t̃
β̃d1

(υ1) ∧ t̃
β̃d2

(υ3) = t̃
β̃d1

(υ1), f̃
β̃d1

(υ1) ∨ f̃
β̃d2

(υ3) = f̃
β̃d1

(υ1) (12)

S̃(υ2) ∧ S̃(υ3) = S̃(υ2) with t̃
β̃d1

(υ2) ∧ t̃
β̃d2

(υ3) = t̃
β̃d1

(υ2), f̃
β̃d1

(υ2) ∨ f̃
β̃d2

(υ3) = f̃
β̃d1

(υ2). (13)

It can be seen that, using AND operation, the importance of IFVs for υ2 and υ3 are diminished in Equations
(11) and (12). The importance of IFVs for υ3 are diminished in Equation (13). Thus, such an approach is not
valid in the initial stages of decision making; therefore, for this prospect, the proposed approach is better then
Hayat et al. [43].

In [44], GWA is computed on two information; one from a committee of experts (in form of IFSS)
and other from group of senior persons. The extra inputs can be seen as a so-called IFSS of a group of
senior persons over alternatives. Consider Example 5, where IFSS from a committee of experts is given
in Table 10. The extra input is given in Table 15, and can be seen as a so-called IFSS on alternatives.
In the prospect of Garg et al. [44], the extra opinions of the two senior experts d1, d2 can be merged
with IFSS in Table 10.

Table 15. Opinions of experts on alternatives.

X�Experts d1 d2

κ1 〈0.4, 0.5〉 〈0.4, 0.4〉
κ2 〈0.3, 0.3〉 〈0.2, 0.4〉

Clearly, the combination of two data ((i) IFSS and (ii) IFVs of experts) based matrix is analyzed as
GGIFSS in [44]. In another way, if it might be recognized that the group of extra inputs of senior experts
is a summarization of the data (IFSS obtained from a committee of specialists), then the results can be
obtained from Table 15, thus why would we contemplate two data based matrix over alternatives?
Nevertheless, there exist some serious difficulties in [44]. Noteworthily, the proposed results are
superior in certain aspects and a well-defined manner is considered.

Advantages of Proposed Method

Based on correlative and comparative research, the following benefits of present framework are
acquired and emphasized:

(i) The case study indicated in [44] is implemented on two IFVs based matrix but not for the GGIFSSs.
The extra inputs are located as in IFVs type weights on alternatives and operators presumed to be
collected on the two different IFVs based data. In this prospect, the proposed approach is based
on well-defined GGIFSSs.

(ii) In [42], an extra input turns into the weighted vector in initial stages of decision making after
calculation of score functions but it is not integrated with the information of experts to achieve
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better results. In the proposed method, extra inputs are taken into account in an accurate way
using GBGWA or GBGWG.

(iii) In [43], the AND operation is used on several GIFSSs. In many cases, AND or OR operations on
IFVs provide instantaneous results but do not give comprehensively aggregated results.

(iv) The judgements/demands of senior prospectors/customers in GGIFSSs as managed with
proposed operators are useful to rank the alternatives. The proposed framework can be correlated
with the shortening of any number of existing senior prospectors/customers.

8. Conclusions

It has been noticed that the definition of GGIFSS, given by Garg et al. [44], did not provide
supplementary information in a precise manner. Under this prospect, we have reformulated the
existing definition of GGIFSS by establishing a novel notion of GGIFSS and related operation are also
refined. We have aggregated GBGWA and GBGWG operators on GGIFSSs, which are employed to
aggregate our techniques. Then, we formulated the framework of decision makings in an algorithm
and two case studies have been handled by virtue of proposed methodology. We have given the
advantages and comparison with existing techniques and correlated the results which are achieved on
GIFSSs. The advantages of given framework are to contemplate the prospector’s demands or expert’s
judgments in an incorporated way such that establishing more operators can be constituted the design
concept evaluation mechanism on GGIFSSs. In this way, the results presented in this paper can be
studied in several fields, such as electrical engineering, industrial designs, construction engineering, as
estimation of risk factors in risk management is a complex tasks thus such problem can be considered.
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Abstract: The existing cosine similarity measure for hesitant fuzzy linguistic term sets (HFLTSs) has
an impediment as it does not satisfy the axiom of similarity measure. Due to this disadvantage,
a new similarity measure combining the existing cosine similarity measure and the Euclidean
distance measure of HFLTSs is proposed, which is constructed based on a linguistic scale function;
the related properties are also given. According to the relationship between the distance measure
and the similarity measure, a corresponding distance measure between HFLTSs is obtained.
Furthermore, we generalize the technique for order preference by similarity to an ideal solution
(TOPSIS) method to the obtained distance measure of the HFLTSs. The principal advantages of the
proposed method are that it cannot only effectively transform linguistic information in different
semantic environments, but it can also avoid the shortcomings of existing the cosine similarity
measure. Finally, a case study is conducted to illustrate the feasibility and effectiveness of the
proposed method, which is compared to the existing methods.

Keywords: hesitant fuzzy linguistic term set; similarity measure; linguistic scale function;
distance measure; TOPSIS method

1. Introduction

In many multi-criteria decision making (MCDM) problems, because of the incomplete information
and the complexity of the decision-making environment, crisp numbers cannot describe the relevant
decision information. Thus Zadeh [1] proposed the fuzzy set (FS) A = {

(
xj, μA

(
xj
))∣∣xj ∈ X }(

0 ≤ μA
(

xj
)
≤ 1
)

on X = {x1, x2, · · · , xn}, where μA
(

xj
)

is the membership degree of xj ∈ X. Since it
was put forward, many scholars have generalized it. For example, Atanassov [2,3] introduced the
concepts of the intuitionistic fuzzy set (IFS) and the interval-valued intuitionistic fuzzy set (IVIFS),
and Torra [4] proposed the hesitant fuzzy set (HFS). In the past few years, the FS and its extensions have
been applied in many fields, such as supplier selection, pattern recognition, and medical diagnosis.
As the FS and its extensions mentioned above use crisp numbers to express decision information,
they cannot express qualitative evaluation information. For instance, when one expert evaluates
the performance of a company, he/she thinks that the performance of the company is very good.
Because the evaluation expression is consistent with the human’s cognitive process, it is suitable to
express this in a linguistic term set (LTS). To describe the relevant information, Zadeh [5–7] proposed
the LTS to express the relevant information. A general discrete LTS of seven terms can be represented as
S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 : very good}.
Then, the expert’s evaluation about the performance of the company can be represented as {s6}.
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However, due to the uncertainty of the problem in the decision making process, the decision makers
cannot express their preferences using only one membership degree of a LTS. In order to express the
decision makers’ hesitation about the decision problem, Rodríguez et al. [8] proposed the hesitant fuzzy
linguistic term set (HFLTS), which is based on LTS and HFS. The HFLTS makes the representation
of the decision information more flexible. Since the HFLTS was proposed, a number of relevant
studies and their applications [9–22] have been conducted. For example, Liu et al. [16] presented
the fuzzy envelope for HFLTSs and applied it to choose the best alternative. Xu et al. [17] presented
the hesitant fuzzy linguistic ordered weighted distance operator, and applied it to plan the selection
of enterprise’s large projects. Liao et al. [18] maked a survey on HFLTSs and reviewed the decision
making process with hesitant fuzzy linguistic preference (HFLP) relations. Liao et al. [19] proposed
the hesitant fuzzy linguistic preference utility set (HFLPUS) and applied the HFLP utility TOPSIS
approach to choose the best fire rescue alternative. One thing that they have in common is that
they use the subscript of linguistic terms directly in the process of operations, which may cause a
loss of information. In order to overcome this problem, the linguistic scale function was introduced
by Wang et al. [23], which can assign different numerical values to the linguistic terms set under
different circumstances. The linguistic scale function can reflect the preferences of the decision
makers in different environments. Since it was put forward, many scholars have studied this subject.
For example, Wang et al. [24] presented the Hausdorff distance between the hesitant fuzzy linguistic
numbers (HFLNs), based on the linguistic scale function, and developed the TOPSIS and TODIM
approaches to it. Liu et al. [25] proposed a distance measure of HFLTSs, which also included the
linguistic scale function. Furthermore, Liu et al. [26] proposed the intuitionistic fuzzy linguistic cosine
similarity measure and the interval-valued intuitionistic fuzzy linguistic cosine similarity measure,
they all contain the linguistic scale function. The research on this field has developed rapidly.

From another perspective, the similarity measure is also an important aspect in MCDM problems,
which can measure the similarity degree between two different alternatives. It has been widely studied
in the past few years. For example, Song et al. [27] considered the similarity measure between IFSs,
and proposed the corresponding distance measure between IF belief functions. Liao et al. [9] presented
some similarity measures and distance measures between HFLTSs; Lee et al. [10] proposed a similarity
measure based on likelihood relations. For the other studies about the similarity measure, we can refer
to [11–13]. The cosine similarity measure is also a significant similarity measure; it can be expressed
as the inner product of two vectors divided by the product of their lengths [28]. Some scholars have
studied the cosine similarity measure [29–31]. For instance, Ye [29] introduced a weighted cosine
similarity measure between IFSs and they applied it to rank the alternative. Furthermore, Ye [30]
presented the cosine similarity measure between interval-valued fuzzy sets (IVFSs) with risk preference,
and altered its decision making method depending on decision makers’ preferences. Liao et al. [31]
defined the cosine similarity measure between HFLTSs and extended the TOPSIS approach and VIKOR
approach to the cosine distance measure. It is already known that the cosine similarity measure
proposed by Liao et al. [31] is not a regular similarity measure (because it is not satisfied with the axiom
of the similarity measure; the example can be seen in Section 3). If it is applied in MCDM problems,
it may cause the decision information to be distorted. Furthermore, the cosine similarity measure
defined by Liao et al. [31] used the subscript of linguistic terms directly in process of operations;
they did not consider the semantic decision environment, which may cause a loss of information in the
decision making process.

Therefore, this paper introduces a new method to construct a similarity measure between HFLTSs;
the main motivations and contributions of the paper are given as follows:

(1) In order to overcome the disadvantage of the similarity measure proposed by Liao et al. [31],
a new similarity measure combining the existing cosine similarity measure [31] and the Euclidean
distance measure of HFLTSs is proposed in this paper, which can improve the accuracy of the
calculation to some extent.
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(2) On the basis of the linguistic scale function, the paper proposes a new similarity measure between
two HFLTSs; it is already known that the linguistic scale function can improve the flexibility
of the transformation of the linguistic decision information in different semantic environments.
The proposed method is capable of expressing the fuzzy linguistic information more flexibly and
improving the adaptability of HFLTSs in practice.

(3) According to the relationship between the similarity measure and the distance measure, this paper
proposes a new distance measure of HFLTSs and extends the TOPSIS method to it; it focuses on
the differences between different alternatives, which can improve the effectiveness of solving
MCDM problems.

The reminder of the paper is given as follows: the background on the MCDM problems,
some concepts of LTS and HFLTS, the existing similarity measures of HFLTSs, and the linguistic
scale function are reviewed in Section 2. In Section 3, a new score function of HFLTS based on
the linguistic scale function, and a new approach to construct the similarity measure of HFLTSs,
are presented. The corresponding distance measure is also constructed based on the relationship
between the distance measure and the regular similarity measure. In Section 4, we extend the TOPSIS
method to the proposed distance measure. In Section 5, a numerical example is given to illustrate the
feasibility of the proposed method, and the same numerical example is examined to compare with
other methods. Some conclusions and future research are proposed in Section 6.

2. Preliminaries

In this section, we will explain how the MCDM method works, and we review some basic
knowledge, including LTS, HFLTS, the score function of HFLTS, and the linguistic scale function.
Some existing distance measures and similarity measures of HFLTSs are also introduced. In this paper,
we denote X = {x1, x2, · · · , xn} as the discourse set.

2.1. MCDM

Multi-criteria decision making is an important branch of the decision-making field. There are some
common aspects (alternatives and criteria) in MCDM; the typical MCDM problem can be described
as follows:

Let X = {x1, x72, · · · , xn} be a set of alternatives; let C = {c1, c2, · · · , cm} be a set of criteria
values. The decision matrix D is an n×m matrix, in which element dij indicates the performance of the
alternative xi when it is evaluated according to the decision criterion cj (i = 1, 2, · · · n; j = 1, 2, · · ·m.);
the decision element dij is provided by the expert. It is also assumed that the expert has determined the
weight of the criteria (denoted as ωj, j = 1, 2, · · ·m). There are three steps in utilizing the decision-making
technique to rank the alternatives [32]: (1) Provide the relevant criteria and alternatives; (2) Collective
information calculation; (3) Rank the alternative according to the collective information.

2.2. LTS

LTS is suitable for qualitative description of the decision-making problems, which can be defined
as follows:

Definition 1. Let S = { si|i = 0, 1, · · · , 2t} be a finite and totally ordered discrete linguistic term set, where si
is a possible value for a linguistic variable, and t is a positive integer [33].

(1) The LTS S satisfies the following properties:
(2) The set S is ordered: si ≤ sj if i ≤ j ; max

(
si, sj

)
= si if si ≥ sj ; min

(
si, sj

)
= si if si ≤ sj;

(3) The negation operator is defined: neg(si) = sj. satisfying with i + j = 2t.
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In order to make the description of the given information more accurate, Xu [34] generalized
the discrete linguistic term set S to the continuous linguistic term set S = { si|i ∈ [0, τ]} (τ > 2t),
where si ≤ sj if i ≤ j, and τ is a sufficiently large positive integer.

2.3. HFLTS

The HFLTS permits the membership of an element to be a set of several possible linguistic variable
values. In the following, the concept of HFLTS and some related operations of HFLTS are reviewed.

Definition 2. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, then a HFLTS HS on X is expressed
by [8]:

HS = {
(
xj, hS

(
xj,
))∣∣xj ∈ X }

where hS
(

xj
)

is a subset of linguistic terms in S, it represents the membership degrees of the element xj belongs
to X. For convenience, the element of hS

(
xj
)

is called the hesitant fuzzy linguistic element (HFLE).

Example 1. Let S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 :
very good} be a LTS. Two experts evaluate the performance of a company; one thinks the performance of a company
is not less than good, the other thinks it is between fair and good. According to Definition 2, the above evaluation
information can be represented as H1

S = {s5, s6} and H2
S = {s3, s4, s5}, respectively. The numbers of linguistic

terms in H1
S and H2

S are not equal, which is not convenient for computing the similarity measure between H1
S

and H2
S.

In order to solve this problem, for any two HFLTSs H1
S = {

(
xj, h1

S
(

xj
))∣∣xj ∈ X} and

H2
S = {

(
xj, h2

S
(
xj
))∣∣xj ∈ X}(j = 1, 2, · · · , n) , where hk

S
(
xj
)
= {sδk

l

(
xj
)
|sδk

l

(
xj
)
∈ S, lk = 1, 2, · · · , Lk

j },
if the numbers of hk

S
(

xj
)

are not equal, we can let Lj = max{L1
j , L2

j }. Zhu et al. [35] proposed the rules
of regulation: for the optimists, they extend the set with fewer numbers of elements by adding the

maximum value s+
δk

l

(
xj
)
=

max
l = L1

j or l = L2
j
{sδk

l

(
xj
)
} until the two sets have the same number of

elements; while for the pessimists, they add the minimum value s−
δk

l

(
xj
)
=

min
l = L1

j or l = L2
j
{sδk

l

(
xj
)
}

to the set with fewer numbers of elements. In this paper, we assume that the largest element is added
to the set with fewer elements until they have the same number.

The existing score function of HFLTSs is defined as follows:

Definition 3. Let S = { si|i = 0, 1, · · · , 2t} be a LTS; HS = {sδk
l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S}

(
l = 1, 2, · · · , Lj, j = 1, 2, · · · , n

)
be a HFLTS on X, then the score function of HS is [36]:

F(HS) =
1
n

n

∑
j=1

δ(xj)−
∑n

j=1

(
1
Lj

∑
Lj
l=1

(
δl
(
xj
)
− δ
(

xj
))2
)

Var(2t)

where δ = 1
Lj

∑
Lj
l=1 δl

(
xj
)
, Var(2t) = ∑2t

i=0(i−t)2

2t+1 .

Lemma 1. For two HFLTSs H1
S and H2

S, the comparison rules between them are defined as follows [36]:

(1) H1
S > H2

S if and only if F
(

H1
S
)
> F
(

H2
S
)
;

(2) H1
S = H2

S if and only if F
(

H1
S
)
= F
(

H2
S
)
.
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2.4. Existing Distance and Similarity Measures Between HFLTSs

The Distance and similarity measure are effective tools for describing the deviation and closeness
between different alternatives in MCDM problems; the definitions about the existing distance and
similarity measures between HFLTSs are given as follows:

Definition 4. Given a fixed set X, suppose that S = { si|i = 0, 1, · · · , 2t} be a LTS,
hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(

xj
)
, l(h2

S
(
xj
))
), l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(

xj
)
(k = 1, 2). For any two HFLTSs H1

S = {
(

xj, h1
S
(

xj
))∣∣xj ∈ X}

and H2
S = {

(
xj, h2

S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , assume the weight of different element xj is ωj

(j = 1, 2, · · · , n), then the weighted Euclidean distance measure between H1
S and H2

S can be defined as
follows [9]:

DωHFL

(
H1

S, H2
S

)
=

⎛⎝ n

∑
j=1

ωj

Lj

Lj

∑
l=1

(∣∣δ1
l
(

xj
)
− δ2

l
(

xj
)∣∣

2t + 1

)2
⎞⎠ 1

2

. (1)

Remark 1. For all j = 1, 2, · · · , n, if the weight ωj =
1
n , then the weighted Euclidean distance measure

DωHFL
(

H1
S, H2

S
)

is reduced to the Euclidean distance measure DHFL
(

H1
S, H2

S
)
:

DHFL

(
H1

S, H2
S

)
=

⎛⎝ 1
n

⎛⎝ n

∑
j=1

1
Lj

Lj

∑
l=1

(∣∣δ1
l
(
xj
)
− δ2

l
(
xj
)∣∣

2t + 1

)2
⎞⎠⎞⎠ 1

2

Liao et al. [31] defined a cosine similarity measure between HFLTSs as follows:

Definition 5. Given a fixed set X, suppose that S = { si|i = 0, 1, · · · , 2t} is a LTS,
hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(
xj
)
, l(h2

S
(
xj
))
}, l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(

xj
)
(k = 1, 2). For any two HFLTSs H1

S = {
(

xj, h1
S
(

xj
))∣∣xj ∈ X}

and H2
S = {

(
xj, h2

S
(
xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of different element xj is ωj

(j = 1, 2, · · · , n), then the weighted cosine similarity measure can be defined as [31]:

CosωHFL.

(
H1

S, H2
S

)
=

∑n
j=1

(
ωj
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1 ·

δ2
l (xj)
2t+1

))
(

∑n
j=1

(
ωj
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1

)2
)
·∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
δ2

l (xj)
2t+1

)2
)) 1

2
(2)

Remark 2. For all j = 1, 2, · · · , n, if the weight ωj = 1
n , then the weighted cosine similarity measure

CosωHFL
(

H1
S, H2

S
)

is reduced to the cosine similarity measure CosHFL(H1
S′ , H2

S′):

CosHFL.

(
H1

S, H2
S

)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1 ·

δ2
l (xj)
2t+1

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1

)2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
δ2

l (xj)
2t+1

)2
)) 1

2
(3)

2.5. Linguistic Scale Function

In different semantic decision-making environments, linguistic terms have some differences in
expressing alternatives. Bao et al. [37] thought that the information may be distorted when using
the subscript of the linguistic term set directly in the process of operations. To solve this problem,
Wang et al. [23] put forward the linguistic scale function to calculate the linguistic information.
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According to the decision-making environment, the decision makers choose a different linguistic scale
function, which can express the linguistic information more flexibly in different semantic situations.

Definition 6. Let S = { si|i = 0, 1, · · · , 2t} be a LTS; if θi ∈ R+(R+ = { r|r ≥ 0, r ∈ R}) is a real value,
then the linguistic scale function f can be defined as follows [22]:

f : si → θi (i = 0, 1, · · · , 2t,)

where 0 ≤ θ0 ≤ θ1 ≤ · · · ≤ θ2t ≤ 1. The linguistic scale function f is a strictly monotonically increasing
function on the subscript of si. Actually, the function value θi represents the semantics of the linguistic terms.

Next we introduce three common linguistic scale functions as follows:

(1). f1(si) = θi =
i

2t
(i = 0, 1, · · · , 2t)1).

(2). f2(si) = θi =

{
at−at−i

2at−2 , (i = 0, 1, · · · , t);
at+ai−t−2

2at−2 , (i = t + 1, t + 2, · · · , 2t).

If the LTS is a set of seven terms, then a ∈ [1.36, 1.4] [38]. In this paper, we assume that a = 1.4.

(3). f3(si) = θi =

⎧⎨⎩
tα−(t−i)α

2tα , (i = 0, 1, · · · , t);
tβ−(t−i)β

2tβ , (i = t + 1, t + 2, · · · , 2t),

where α, β ∈ (0, 1]. If the LTS is a set of seven terms, then α = β = 0.8 [39].

Example 2. Assume that S = { si|i = 0, 1, · · · , 2t} be a LTS. When t = 3, the corresponding linguistic scale
functions are f1(si), f2(si) (a = 1.4), f3(si) (α = β = 0.8) respectively, and the characteristics of the three
functions are shown in Figure 1.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

si

f

f
f1
f2
f3

Figure 1. The change of the three linguistic scale functions.

Remark 3. The linguistic scale function f1(si) can be explained as the decision maker’s neutral attitude towards
risk; the linguistic scale function f2(si) indicates that the decision maker’s attitude towards risk is changing
from aversion to appetite; the linguistic scale function f3(si) indicates that the decision maker’s attitude towards
risk is changing from appetite to aversion.
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3. The Score Function, Similarity Measure, and Distance Measure Between HFLTSs Based on a
Linguistic Scale Function

In this section, we first propose the definition of a new score function of HFLTSs based
on a linguistic scale function, then the new similarity measure and its properties are given.
Furthermore, we construct a corresponding distance measure based on the relationship between
the similarity measure and the distance measure.

3.1. The Score Function Between HFLTSs Based on the Linguistic Scale Function

Definition 7. Let S = { si|i = 0, 1, · · · , 2t} be a LTS, HS = {sδk
l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S}(

l = 1, 2, · · · , Lj, j = 1, 2, · · · , n
)

be the HFLTS on X, and f be a linguistic scale function, then the
score function of HS is defined as:

F∗(HS) =
1
n

n

∑
j=1

f
(
sδl

(
xj
))
−

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(
sδl

(
xj
))
− f sδl

(
xj
))2
)

Var∗(2t)
,

where f
(
sδl

(
xj
))

= 1
Lj

∑
Lj
l=1 f

(
sδl

(
xj
))

, Var∗(2t) = ∑2t
i=0( f (si)− f (st))

2.

Theorem 1. For any two HFLTSs H1
S and H2

S, the comparison rules between them are defined as follows:

(1) If F∗
(

H1
S
)
> F∗

(
H2

S
)
, then H1

S > H2
S;

(2) If F∗
(

H1
S
)
= F∗

(
H2

S
)
, then H1

S = H2
S.

Example 3. Let S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 :
good, s6 : very good} be a LTS, three HFLTSs are given as follows: H1

S = {s0, s1, s2}, H2
S = {s2, s3, s4}

and H3
S = {s0, s2}. By Definition 7, if the linguistic scale function f = f1(si) = i

2t (t = 3), we obtain
F∗
(

H1
S
)
= 0.1429, F∗

(
H2

S
)
= 0.4048, F∗

(
H3

S
)
= 0.1310, then the ranking of the HFLTSs is H2

S > H1
S > H3

S.
By Definition 3, we can obtain F

(
H1

S
)
= 0.8323, F

(
H2

S
)
= 2.8333, F

(
H3

S
)
= 0.75, according to Lemma 1,

and it is clearly seen that H2
S > H1

S > H3
S, which is same as the proposed score function in Theorem 1.

3.2. The Similarity Measure Between HFLTSs Based on the Linguistic Scale Function

It is already known the regular similarity measure satisfies the following Lemma 2:

Lemma 2. Let S = { si|i = 0, 1, · · · , 2t} be a LTS, H1
S and H2

S be any two HFLTSs; if the similarity measure
S
(

H1
S, H2

S
)

satisfies the following properties [9]:

(1) 0 ≤ S
(

H1
S, H2

S
)
≤ 1,

(2) S
(

H1
S, H2

S
)
= 1 if and only if H1

S = H2
S,

(3) S
(

H1
S, H2

S
)
= S
(

H2
S, H1

S
)
.

then the similarity measure S
(

H1
S, H2

S
)

is a regular similarity measure, and the corresponding distance measure
D
(

H1
S, H2

S
)
= 1− S

(
H1

S, H2
S
)
.

The cosine similarity measure proposed by Liao et al. [31] is sometimes different from human
intuition in practical decision-making problems, and we can determine this from the following
Example 4.

Example 4. When two experts evaluate the performance of a company, they provide their opinions with
hesitant fuzzy linguistic information; for the given LTS, = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 :
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f air, s4 : slightly good, s5 : good, s6 : very good}, and two experts’ evaluations are represented as HFLTSs
H1

S = {s1, s2} and H2
S = {s2, s4}, respectively.

It is already known H1
S 	= H2

S, but from using Formula (3) to calculate the similarity measure
between H1

S and H2
S, we have CosHFL

(
H1

S, H2
S
)
= 1. That is to say, the property (2) in Lemma 2 is not

satisfied. So, the similarity measure CosHFL proposed by Liao et al. [31] is not a regular similarity
measure. On the other hand, the similarity measure CosHFL as defined by Liao et al. [31] used the
subscript of linguistic terms directly in the process of operations; they did not consider the semantic
environment, which may cause the loss of information in the decision process. In order to overcome its
disadvantages, next we will construct a new similarity measure and derive a corresponding distance
measure. A scheme of this process is shown in Figure 2.

Figure 2. The scheme of the construction of the similarity measure.

At first, we improve the existing distance measure (1) and similarity measure (2) based on a
linguistic scale function, which can be defined as follows:

Definition 8. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(

xj
)
, l(h2

S
(

xj
))
},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of the different element

xj is ωj (j = 1, 2, · · · , n), then the improved weighted distance measure between HFLTSs H1
S and H2

S can be
defined as follows:

D′ωHFL

(
H1

S, H2
S

)
=

⎛⎝ n

∑
j=1

ωj

Lj

Lj

∑
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f
(

sδ2
l

(
xj
))∣∣∣)2

⎞⎠ 1
2

.

Theorem 2. Let H1
S and H2

S be any two HFLTSs, and let f be a linguistic scale function; the distance measure
D′ωHFL between HFLTSs satisfies the following properties:

(1) 0 ≤ D′ωHFL
(

H1
S, H2

S
)
≤ 1;

(2) D′ωHFL
(

H1
S, H2

S
)
= 0 if and only if H1

S = H2
S;

(3) D′ωHFL
(

H1
S, H2

S
)
= D′ωHFL

(
H2

S, H1
S
)
.

Proof. Properties (1), (2), and (3) are obvious, and we omit the proof here. �
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Remark 4. For all j = 1, 2, · · · , n, if the weight ωj = 1
n , then the improved weighted distance measure

D′ωHFL
(

H1
S, H2

S
)

is reduced to the improved Euclidean distance measure D′HFL
(

H1
S, H2

S
)
:

D′HFL

(
H1

S, H2
S

)
=

⎛⎝ 1
n

⎛⎝ n

∑
j=1

1
Lj

Lj

∑
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f
(

sδ2
l

(
xj
))∣∣∣)2

⎞⎠⎞⎠ 1
2

.

Definition 9. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(

xj
)
, l(h2

S
(

xj
))
},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of different element xj

is ωj (j = 1, 2, · · · , n), then the improved weighted cosine similarity measure between H1
S and H2

S can be
defined as:

Cos′ωHFL

(
H1

S, H2
S

)
=

∑n
j=1

(
ωj
Lj

∑
Lj
l=1 f

(
sδ1

l

(
xj
))
· f
(

sδ2
l

(
xj
)))

(
∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
f
(

sδ1
l

(
xj
)))2

)
·∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
f
(

sδ2
l

(
xj
)))2

)) 1
2

.

Remark 5. For all j = 1, 2, · · · , n, if the weight ωj =
1
n , then the improved weighted cosine similarity measure

Cos′ωHFL
(

H1
S, H2

S
)

is reduced to the similarity measure Cos′HFL
(

H1
S, H2

S
)
:

Cos′HFL

(
H1

S, H2
S

)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1 f

(
sδ1

l

(
xj
))
· f
(

sδ2
l

(
xj
)))

(
∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

sδ1
l

(
xj
)))2

)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

sδ2
l

(
xj
)))2

)) 1
2

.

In the following, we go on to propose a similarity measure between the HFLTSs, which combine
the distance measure D′HFL and the cosine similarity measure Cos′HFL.

Definition 10. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(
xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l(h1

S
(

xj
)
, l(h2

S
(

xj
)
)},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(
xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , then the new similarity measure

S∗HFL
(

H1
S, H2

S
)

can be defined as follows:

S∗HFL,

(
H1

S, H2
S

)
=

1
2

(
Cos′HFL

(
H1

S, H2
S

)
+ 1− D′HFL

(
H1

S, H2
S

))

where Cos′HFL
(

H1
S, H2

S
)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ1
l
(xj)

)
· f
(

s
δ2
l
(xj)

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ1
l
(xj)

))2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ2
l
(xj)

))2
)) 1

2
, D′HFL

(
H1

S, H2
S
)
=

(
1
n

(
∑n

j=1
1
Lj

∑
Lj
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f
(

sδ2
l

(
xj
))∣∣∣)2

)) 1
2
.

Theorem 3. The similarity measure S∗
(

H1
S, H2

S
)

is a regular similarity measure.

Proof. According to Lemma 2, we will prove it by three steps as follows:

577



Symmetry 2018, 10, 367

(1) Since 0 ≤ f ≤ 1, Cos′HFL
(

H1
S, H2

S
)

can be considered as the extension of cosine function,
then 0 ≤ Cos′HFL

(
H1

S, H2
S
)
≤ 1. According to Theorem 2, we know that D′HFL

(
H1

S, H2
S
)

is a
distance measure, then 0 ≤ 1− D′HFL

(
H1

S, H2
S
)
≤ 1. Thus, we get 0 ≤ Cos′HFL

(
H1

S, H2
S
)
+ 1−

D′HFL
(

H1
S, H2

S
)
≤ 2, so 0 ≤ S∗HFL

(
H1

S, H2
S
)
≤ 1 is obvious.

(2) If H1
S = H2

S, we have f (sδ1
l

(
xj
)
) = f (sδ2

l

(
xj
)
), Cos′HFL

(
H1

S, H2
S
)

= 1, D′HFL
(

H1
S, H2

S
)

=

0, then S∗HFL
(

H1
S, H2

S
)

= 1. On the other hand, when S∗HFL
(

H1
S, H2

S
)

= 1, we have
Cos′HFL

(
H1

S, H2
S
)
+ 1 − D′HFL

(
H1

S, H2
S
)

= 2; that is, Cos′HFL
(

H1
S, H2

S
)

= 1 + D′HFL
(

H1
S, H2

S
)
.

Because 0 ≤ Cos′HFL
(

H1
S, H2

S
)
≤ 1, D′HFL

(
H1

S, H2
S
)
≥ 0 hold simultaneously, then we have

D′HFL
(

H1
S, H2

S
)
= 0, Cos′HFL

(
H1

S, H2
S
)
= 1. When Cos′HFL

(
H1

S, H2
S
)
= 1, we know that H1

S = kH2
S

and k is a constant; while D′HFL
(

H1
S, H2

S
)
= 0, we know that H1

S = H2
S. That is to say, when

S∗HFL
(

H1
S, H2

S
)
= 1, H1

S = H2
S. Thus, S∗HFL

(
H1

S, H2
S
)
= 1 if and only if H1

S = H2
S.

(3) According to Remark 5, Cos′HFL
(

H1
S, H2

S
)
= Cos′HFL

(
H2

S, H1
S
)

is obvious. From Theorem 2, it is
already known that when D′HFL

(
H1

S, H2
S
)
= D′HFL

(
H2

S, H1
S
)
, then S∗HFL

(
H1

S, H2
S
)
= S∗HFL

(
H2

S, H1
S
)

are proven. �

From Theorem 3, we know that the proposed similarity measure S∗HFL is a regular similarity
measure, which overcomes the disadvantages of the similarity measure as defined by Liao et al. [31].

Remark 6. According to the relation between the distance measure and the regular similarity measure,
we can obtain a new distance measure D∗HFL

(
H1

S, H2
S
)
, which is based on the proposed similarity measure

S∗HFL
(

H1
S, H2

S
)

:

D∗HFL
(

H1
S, H2

S
)
= 1− S∗HFL

(
H1

S, H2
S
)
= 1

2
(
1− Cos′HFL

(
H1

S, H2
S
)
+ D′HFL

(
H1

S, H2
S
))

= 1
2

⎛⎜⎜⎜⎝1−
∑n

j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ1
l
(xj)

)
· f
(

s
δ2
l
(xj)

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ1
l
(xj)

))2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ2
l
(xj)

))2
)) 1

2
+

(
1
n

(
∑n

j=1
1
Lj

∑
Lj
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f (sδ2

l

(
xj
)
)
∣∣∣)2
)) 1

2

⎞⎟⎟⎟⎠.

Theorem 4. The new distance measure D∗HFL
(

H1
S, H2

S
)

satisfies the following properties:

(1) 0 ≤ D∗HFL
(

H1
S, H2

S
)
≤ 1;

(2) D∗HFL
(

H1
S, H2

S
)
= 0 if and only if H1

S = H2
S;

(3) D∗HFL
(

H1
S, H2

S
)
= D∗HFL

(
H2

S, H1
S
)
.

Proof. Properties (1) and (3) are obvious, here we only present the proof of property (2).
If H1

S = H2
S, we have S∗HFL

(
H1

S, H2
S
)
= 1, then D∗HFL

(
H1

S, H2
S
)
= 1− S∗HFL

(
H1

S, H2
S
)
= 0. On the other

hand, when D∗HFL
(

H1
S, H2

S
)
= 0, we have S∗HFL

(
H1

S, H2
S
)
= 1− D∗HFL

(
H1

S, H2
S
)
= 1. Because S∗HFL is a

regular similarity measure, according to Lemma 2, we have H1
S = H2

S.
Thus, we obtain D∗HFL

(
H1

S, H2
S
)
= 0 if and only if H1

S = H2
S. �

Definition 11. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function. hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l(h1

S
(

xj
)
, l(h2

S
(

xj
)
)},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(

xj
)

(k = 1, 2). For any two HFLTSs H1
S =

{(xj, h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(
xj, h2

S
(
xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , the associated weighting vector

ω =
(
ω1, ω2, · · · , ωj

)
satisfying with ∑n

j=1 ωj = 1
(
0 ≤ ωj ≤ 1

)
, then the weighted similarity measure

between H1
S and H2

S can be defined as:

S∗ωHFL

(
H1

S, H2
S

)
=

1
2

(
Cos′ωHFL

(
H1

S, H2
S

)
+ 1− D′ωHFL

(
H1

S, H2
S

))
Theorem 5. The weighted similarity measure S∗ωHFL

(
H1

S, H2
S
)

is also a regular similarity measure.
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Proof. The proof is similar to Theorem 3; we omit it here. �

Remark 7. If the weight of the different element xj is ωj (j = 1, 2, · · · , n), satisfying ∑n
j=1 ωj = 1

(
0 ≤ ωj ≤ 1

)
,

then the weighted distance measure between H1
S and H2

S can be obtained by:

D∗ωHFL

(
H1

S, H2
S

)
= 1− S∗ωHFL

(
H1

S, H2
S

)
Remark 8. If we take the weight ωj = 1

n (j = 1, 2, · · · , n) in S∗ωHFL
(

H1
S, H2

S
)

and D∗ωHFL
(

H1
S, H2

S
)
,

then S∗ωHFL
(

H1
S, H2

S
)

and D∗ωHFL
(

H1
S, H2

S
)

are reduced to S∗HFL
(

H1
S, H2

S
)

and D∗HFL
(

H1
S, H2

S
)
, respectively.

Next, we utilize the medical diagnosis example to illustrate the application of the proposed
similarity measure.

Example 5. In traditional Chinese medical diagnosis, doctors diagnose patients by watching, smelling,
asking and touching, so the doctor always get some imprecise information about patients’ symptoms. Let us
consider a set of diagnoses G = { Viral f ever, Typhoid, Pneumonia, Stomach problem} and a set of
symptoms X = { temperature, headache, cough, stomach pain}. Assume that a patient, with respect to all
symptoms, can be depicted as the following LTS, respectively: S1 = { s0 : very low, s1 : low, s2 : slightly
low, s3 : normal, s4 : slightly high, s5 : high, s6 : very high}, Sj = {s0 : none, s1 : very slight, s2 :
slight, s3 : normal, s4 : slightly terrible, s5 : terrible, s6 : very terrible} (j = 2, 3, 4). Furthermore, let
ωj = (0.25, 0.25, 0.25, 0.25) (j = 1, 2, 3, 4) be the weight vector of symptoms.

Suppose that the patient P = {Richard, Catherine, Nicle, Kevin} has all of the symptoms,
which are represented by a HFLTS and are given in Table 1.

Table 1. Symptoms characteristic for the patients.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard {s5} {s5} {s4,s5} {s0}
Catherine {s3} {s0} {s0} {s4,s5}

Nicle {s6} {s4} {s5} {s0}
Kevin {s4} {s2,s3} {s5} {s0}

According to experience, each patient’s symptoms diagnosis can be viewed as a HFLTS, and these
are shown in Table 2.

Table 2. Symptoms characteristic for the diagnosis.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard {s4,s5,s6} {s3,s4,s5} {s4,s5,s6} {s0}
Catherine {s5,s6} {s1,s2,s3} {s4,s5,s6} {s0,s1}

Nicle {s3,s4} {s2,s3} {s5,s6} {s0}
Kevin {s3} {s0} {s0} {s4,s5,s6}

In order to diagnose what kind of symptoms that the patients belong to, we can calculate the
similarity measure between each patient’s symptoms and the diagnosis. If the linguistic scale function
f = f1(si) =

i
2t (t = 3), we apply the proposed similarity measure S∗ωHFL to calculate the degree of

similarity between each patient’s symptoms and the diagnosis; the results are shown in Table 3.
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Table 3. Hesitant fuzzy linguistic similarity measure.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard 0.9574 0.9702 0.8973 0.8606
Catherine 0.7865 0.7856 0.8323 0.9954

Nicle 0.9558 0.9517 0.8846 0.7741
Kevin 0.9279 0.8728 0.9814 0.8370

It is already known that the larger value of similarity measure, the higher the possibility of
diagnosis for the patient. From the above results of Table 3, the symptoms of Richard, Catherine,
Nicole, and Kevin indicate that they are suffering from typhoid, stomach problems, viral fever,
and pneumonia, respectively.

4. The TOPSIS Method with the Proposed Distance Measure D*
ωHFL

In Section 4, we will present the TOPSIS method [40] to the proposed distance measure D∗ωHFL for
hesitant fuzzy linguistic multi-criteria decision-making problems.

Suppose that a panel of decision makers are invited to evaluate the alternatives
H = {H1, H2, · · · , Hm}with respect to the criteria C = {C1, C2, · · · , Cn}. Let S = { si|i = 0, 1, · · · , 2t}
be a LTS, let ωj (j = 1, 2, · · · , n) be the weight of criteria Cj, where 0 ≤ ωj ≤ 1 (j = 1, 2, · · · , n) and
∑n

j=1 ωj = 1; the hesitant fuzzy linguistic information decision matrix H are given as follows:

H =

⎛⎜⎜⎜⎜⎝
H11

S H12
S · · · H1n

S
H21

S H22
S · · · H2n

S
...

...
. . .

...
Hm1

S Hm2
S · · · Hmn

S

⎞⎟⎟⎟⎟⎠,

where Hij
S = {sij

δl

∣∣∣l = 1, 2, · · · , Lj}(i = 1, 2, · · · , m; j = 1, 2, · · · , n) are HFLTSs, representing the
evaluation about alternative Hi with respect to the criterion Cj.

Next, we present the TOPSIS method with the distance measure D∗ωHFL for MCDM problems.
In general, it includes the following steps:

Step 1. Normalize the hesitant fuzzy linguistic decision matrix H.

If the criteria belong to the benefit-type, we need not do anything; if the criteria belong to the
cost-type, we should use neg(si) = sj(i + j = 2t) to normalize the decision matrix.

Step 2. For i = 1, 2, · · · , m, j = 1, 2, · · · , n, the hesitant fuzzy linguistic positive ideal solution
(HFLPIS) H+ = {H1+

S , H2+
S , · · · , Hn+

S } and hesitant fuzzy linguistic negative ideal solution (HFLNIS)
H− = {H1−

S , H2−
S , · · · , Hn−

S } are given in the following:

Hj+
S = Hij

S , Hj−
S = Hij

S .

For criteria Cj(j = 1, 2, · · · , n), by the score function proposed in Definition 7, we can get the

value of F∗(Hij
S ) (i = 1, 2, · · · , m). According to Theorem 1, the order relationship for HFLTSs can be

given as: if F∗
(

H1
S
)
> F∗

(
H2

S
)
, then H1

S > H2
S, so that Hj+

S and Hj−
S can be obtained.

Step 3. Use the distance measure to calculate the separation of each alternative between the
HFLPIS H+ = {H1+

S , H2+
S , · · · , Hn+

S } and HFLNIS H− = {H1−
S , H2−

S , · · · , Hn−
S }, respectively.

The distance measure between Hi(i = 1, 2, · · · , m) and H+ can be given as: D+
i =

∑n
j=1 D∗ωHFL(Hij

S , H+). Similarly to the distance measure D+
i , the distance measure between the

alternative Hi(i = 1, 2, · · · , m) and H− is obtained as: D−i = ∑n
j=1 D∗ωHFL(Hij

S , H−).
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For the given Hi (i = 1, 2, · · · , m),

D+
i = ∑n

j=1 D∗ωHFL(Hij
S , H+) = ∑n

j=1(1− 1
2 (Cos′ωHFL(Hij

S , H+) + 1− D′ωHFL(Hij
S , H+))) = ∑n

j=1
1
2 (1−

Cos′ωHFL

(
Hij

S , H+
)
+ D′ωHFL

(
Hij

S , H+
) )

= ∑n
j=1

1
2

⎛⎜⎜⎜⎜⎝1−
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j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ
ij
l
(xj)

)
· f
(

s
δ+l
(xj)

))
⎛⎝∑n

j=1

⎛⎝ 1
Lj

∑
Lj
l=1

(
f

(
s

δ
ij
l
(xj)

))2
⎞⎠·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ+l
(xj)

))2
)⎞⎠ 1

2
+

(
∑n

j=1
ωj
Lj

∑
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l=1

(∣∣∣∣ f(s
δ

ij
l

(
xj
))
− f
(

sδ+l

(
xj
))∣∣∣∣)2

) 1
2
⎞⎠;

D−i = ∑n
j=1 D∗ωHFL

(
Hij

S , H−
)
= ∑n

j=1

(
1− 1

2

(
Cos′ωHFL

(
Hij

S , H−
)
+ 1− D′ωHFL

(
Hij
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1
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(∣∣∣∣ f(s
δ

ij
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(
xj
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− f
(
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(
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) 1
2
⎞⎠.

Step 4. Calculate the closeness coefficient Φi of each alternative Hi(i = 1, 2, · · · , m):

Φi =
D−i

D+
i + D−i

.

Step 5. Rank the alternatives by decreasing order of the closeness coefficient Φi; the greater value
Φi is, the better alternative Hi will be.

5. Numerical Example

In this section, we give a numerical example that concerns logistics outsourcing (adapted from
Wang et al. [38]) to illustrate the feasibility of the TOPSIS method with the proposed distance
measure D∗ωHFL.

5.1. Background

The ABC Limited Company is a passenger car manufacturer in China. To improve the
competitiveness of products and reduce production costs, ABC decides to choose a third-party
logistics service provider for logistics outsourcing. Through preliminary selection, five possible
logistics providers H = {H1, H2, H3, H4, H5} are provided for further evaluation with respect to
the following four criteria: service (C1), relationship (C2), quality (C3), and equipment systems (C4).
Furthermore, assume that the weight vector of criteria Cj (j =1, 2, 3, 4) is ω = (0.4, 0.3, 0.2, 0.1).
Three experts with different backgrounds are invited by the company to evaluate the TPLSP. Since these
criteria are all qualitative, it is suitable for the experts to express their views in linguistic term
sets. The ABC Company uses a LTS of seven terms to evaluate the TPLSP, which can be expressed
by S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 : very good}.
The final judgment of the five providers with the hesitant fuzzy linguistic decision matrix H = (Hij

S )5×4
are given in Table 4.

To verify the feasibility and effectiveness of the decision method proposed in Section 4, at first,
we assume f = f1(si) =

i
2t (t = 3).
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Table 4. The hesitant fuzzy linguistic decision matrix provided by experts.

C1 C2 C3 C4

H1 {s2,s3,s4} {s3,s6} {s4,s6} {s0,s1,s2}
H2 {s3,s4} {s4,s6} {s0,s1} {s1,s4}
H3 {s0,s1} {s4} {s0,s1,s3} {s2}
H4 {s5} {s1,s3} {s4,s6} {s0,s1,s4}
H5 {s4,s5} {s2,s3} {s1,s3,s4} {s0,s2}

Step 1. Normalize the hesitant fuzzy linguistic decision matrix.

It is already known the criteria C1, C2, C3, C4 are all benefit-type criteria, and thus we do not need
to do anything.

Step 2. According to the score function in Theorem 1, we can calculate the HFLPIS H+ and the
HFLNIS H−, which are given as follows:

H+ = {{s5 }, {s4, s6}, {s4, s6}, {s1, s4}}

H− = {{s0, s1 }, {s1, s3}, {s0, s1, s3}, {s0, s2}}

Step 3. Calculate the distance measure D∗ωHFL(Hij
S , H+) and D∗ωHFL(Hij

S , H−) for different
alternative Hi(i = 1, 2, 3, 4, 5) respectively, which are given in Table 5.

Table 5. The distance measure of each alternative.

D+
i D−i

H1 0.1524 0.2907
H2 0.2395 0.3169
H3 0.4201 0.1694
H4 0.1753 0.4624
H5 0.1884 0.3740

Step 4. Calculate the closeness coefficient Φi of each alternative Hi; they are obtained in Table 6.

Table 6. The closeness coefficient of each alternative.

H1 H2 H3 H4 H5

Φi 0.6561 0.5695 0.2873 0.7251 0.6650

Step 5. Rank the alternatives Hi and utilize Φi (i = 1, 2, 3, 4, 5).

It is already known that H4 � H5 � H1 � H2 � H3, which means that the best choice is H4.
In order to illustrate the impact of the linguistic scale function f on MCDM, we use the different

linguistic scale functions f = f2(si) (a = 1.4, t = 3) and f = f3(si) (α = β = 0.8) to calculate the
distance measure between HFLTSs, the results are given in Table 7.

Table 7. Results obtained by different linguistic scale functions.

Ranking

f = f1(si) H4 � H5 � H1 � H2 � H3
f = f2(si) H4 � H1 � H5 � H2 � H3
f = f3(si) H4 � H5 � H1 � H2 � H3

The results between the different linguistic scale functions are shown in Figure 3.
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Figure 3. The differences between the different linguistic scale functions.

5.2. Comparison Analysis

To illustrate the feasibility and effectiveness of the proposed method, different approaches are
used to compare with the same numerical example. The comparison is displayed in Table 8.

From Table 8, we know that the optimal alternative obtained by the proposed method is H4; it is
same as Liao et al. [31], Wang et al. [38], and Zhang et al. [41], which illustrates the feasibility and
effectiveness of the proposed decision method.

Table 8. Comparison of different methods.

Ranking

Approach from Liao et al. [9] H2 � H1 � H4 � H5 � H3
Approach from Liao et al. [31] H4 � H5 � H1 � H2 � H3

Approach from Wang et al. [38] H4 � H1 � H2 � H5 � H3
Approach from Zhang et al. [41] H4 � H1 � H2 � H5 � H3

Proposed approach based on D∗ωHFL H4 � H5 � H1 � H2 � H3

In Liao et al. [9], we can see the best alternative is different from other methods. The reason is that
the approach from Liao et al. [9] only considers the algebraic relations of two HFLTSs, and they use
the subscript of the linguistic terms directly in the process of operations, which may cause the loss of
decision information. The method proposed in this paper is superior to the method in Liao et al. [9] for
considering the distance measure, not only from the point of view of algebra, but also from the point
of view of geometry.

Furthermore, in the MCDM method proposed by Liao et al. [31], the cosine similarity measure
defined by them is not a regular similarity measure, as it cannot precisely deal with the hesitant fuzzy
linguistic information that the subscripts of two linguistic terms have in the linear relationship, so that
the result obtained in Liao et al. [31] seems unreliable. The proposed similarity measure combining the
existing cosine similarity measure and the Euclidean distance measure overcomes this disadvantage;
it can improve the accuracy of calculations to some extent, and it appears that the similarity measure
that is proposed in this paper outperforms the existing similarity measure of HFLTSs.

In Wang et al. [38], the ranking results are a little different from the proposed method. Because the
TODIM method in Wang et al. [38] has complicated parameters, the parameters selected by the expert
will affect the ranking results. The proposed approach in this paper is capable of expressing the fuzzy
linguistic information more flexibly; it can improve the adaptability of HFLTSs in practice.

In the method proposed by Zhang et al. [41], the evaluation values of each provider were
aggregated independently. Because the best evaluation information under one criterion were usually
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offset by the worst evaluation information under another criterion in the process of aggregation,
this may cause the decision information to be distorted. Compared with the method in Zhang et al. [41],
the proposed method takes notice of the differences between different alternatives, and it is more
meaningful in representing practical examples.

According to the results of comparative analysis, the benefits and advantages of this approach
can be given in the following:

(1) The distance measure D∗ωHFL is derived from the cosine function and the Euclidean distance
measure; it considers the distance measure not only from the point of view of algebra, but also
from the point of view of geometry. It shows a better performance when the subscripts of the
linguistic term sets in the two HFLTS have the linear relationship.

(2) The similarity measure S∗ωHFL and distance measure D∗ωHFL based on the linguistic scale function
can express information better under different circumstances, and the decision makers can
select the appropriate linguistic scale function f on the basis of their preferences. It also can be
applied more widely in the decision-making field than the existing distance measure and cosine
similarity measure.

(3) The proposed method focuses on the differences of each alternative, which can improve the
effectiveness of solving MCDM problems.

6. Conclusions

The similarity measure and distance measure are widely used in MCMD problems. Considering that
the cosine similarity measure proposed by Liao et al. [31] is not a regular similarity measure, a new
similarity measure combining the existing cosine similarity measure [31] and the Euclidean distance
measure of HFLTSs is proposed, which is constructed based on the linguistic scale function.
The proposed similarity measure in this paper considers the distance measure, not only from the point
of view of algebra, but also from the point of view of geometry, and it also satisfies the axiom of the
similarity measure. As far as we know, the new similarity measure between HFLTSs can express the
fuzzy linguistic information more flexibly, which can improve the adaptability of HFLTSs in practice.
Furthermore, the TOPSIS method with the corresponding distance measure is developed, and it
focuses on the differences for each alternative, which can improve the effectiveness of solving MCDM
problems. Finally, a numerical example is given to demonstrate the feasibility and the effectiveness
of the proposed method, which is compared to the existing methods. In future research, efforts are
continued to find other applications of the proposed similarity measure in the fields of supplier
selection, pattern recognition, and so on.
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Abstract: There are many practical decision-making problems in people’s lives, but the information
given by decision makers (DMs) is often unclear and how to describe this information is of critical
importance. Therefore, we introduce interval neutrosophic linguistic numbers (INLNs) to represent
the less clear and uncertain information and give their operational rules and comparison methods.
In addition, since the Maclaurin symmetric mean (MSM) operator has the special characteristic
of capturing the interrelationships among multi-input arguments, we further propose an MSM
operator for INLNs (INLMSM). Furthermore, considering the weights of attributes are the important
parameters and they can influence the decision results, we also propose a weighted INLMSM
(WINLMSM) operator. Based on the WINLMSM operator, we develop a multiple attribute decision
making (MADM) method with INLNs and some examples are used to show the procedure and
effectiveness of the proposed method. Compared with the existing methods, the proposed method
is more convenient to express the complex and unclear information. At the same time, it is
more scientific and flexible in solving the MADM problems by considering the interrelationships
among multi-attributes.

Keywords: multiple attribute decision making (MADM); neutrosophic number; Maclaurin symmetric
mean; linguistic variables

1. Introduction

The unclear set (FS) theory was put forward by Zadeh [1] in 1965. In this theory, the membership
degree (MD) T(x) is used to describe fuzzy information and it has also been widely used in practice.
However, the inadequacies of FS are evident. For example, it is difficult to express the non-membership
degree (NMD) F(x). In order to fix this problem, Intuitionistic FS (IFS) was proposed by Atanassov [2]
in 1986. It is made up of two parts: MD and NMD. IFS is an extension and development of Zadeh’
FS and Zadeh’ FS is a special case of IFS [3]. IFS needs to meet two conditions: (1) T(x), F(x) ∈ [0, 1];
(2) 0 ≤ T(x) + F(x) ≤ 1 [2]. Subsequently, the IFS theory was further extended such as Zadeh [4]
proposed interval IFS (IIFS). Zwick et al. [5] put forward the triangular IFS while Zeng and Li [6]
defined trapezoidal IFS. However, under some circumstances due to the limited cognitive ability of
the DMs, they may hesitate in the two choices for accuracy and uncertainty. Since they choose both of
them at the same time, this can produce an imprecise or contradictory evaluation result. Therefore,
Smarandache [7,8] introduced a concept called neutrosophic set (NS), which included MD, NMD,
and indeterminacy membership degree (IMD) in a non-standard unit interval [9]. Clearly, the NS
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is the generalization of FS and IFS. Furthermore, Wang [10] proposed the definition of interval NS
(INS) which uses the standard interval to express the function of MD, IMD, and NMD. Broumi and
Smarandache [11] presented the correlation coefficient of INS.

When dealing with the MADM problems with qualitative information, it is difficult for DMs
to describe their own ideas with precise values. Generally, DMs ordinarily uses some linguistic
terms (LTs) like “excellent”, “good”, “bad”, “very bad”, or “general” to indicate their evaluations.
For example, when we look at a person’s height, we usually describe him as “high” or “very high”
by visual inspection, but we will not give the exact value. In order to easily process the qualitative
information, Herrera and Herrera-Viedma [12] proposed the LTs to deal with this kind of information
instead of numerical computation. However, because LT such as “high” is not with MD, or we can
think its MD is 1, which means LTs cannot describe the MD and NMD. Therefore, in order to facilitate
DMs to describe the MD and NMD for one LT, Liu and Chen [13] defined the linguistic intuitionistic
fuzzy number (LIFN), which combined the advantages of intuitionistic fuzzy numbers (IFNs) and
linguistic variables (LVs). Therefore, LIFN can fully express the complex fuzzy information and there is
a good prospect in MADM. After that, Ye [14] came up with the single-valued neutrosophic linguistic
number (SVNLN). The most striking feature of the SVNLN is that it used LTs to describe the MD, IMD,
and NMD. Sometimes, the three degrees are not expressed in a single real number, but is expressed
in intervals [15]. And then, Ye [16] defined an interval neutrosophic linguistic set (INLS) and INLNs.
INLNs is used to represent three values of MD, IMD, and NMD in the form of intervals. Clearly, INLS
is a generalization of FS, IFS, NS, INS, LIFN, and SVNLN. It is general and beneficial for describing
practical problems.

The aggregation operators (AOs) are an efficient way to handle MADM problems [17,18].
Many AOs are proposed for achieving some special functions. Yager [19] employed the ordered
weighted average (OWA) operator for MADM. Bonferroni [20] proposed the Bonferroni mean (BM)
operator, which can capture the correlation between input variables very well. Then BM operators have
been extended to process different uncertain information such as IFS [21,22], interval-valued IFS [23],
q-Rung Orthopai Fuzzy set [24], and Multi-valued Ns [25]. In addition, Beliakov [26] presented
the Heronian mean (HM) operators, which have the same feature as the BM (i.e., they can capture
the interrelationship between input parameters). Some HM operators have been proposed [27–30].
Furthermore, Yu [31] gave the comparison of BM with HM. However, since the BM operator and
the HM operator can only reflect the relationship between any two parameters, they cannot process
the MADM problems, which require the relationship for multiple inputs. In order to solve this
shortcoming, Maclaurin [32] proposed the MSM operator, which has prominent features of capturing
the relationship among multiple input parameters. Afterward, Qin and Liu [33] developed some MSM
operators for uncertain LVs. Liu and Qin [34] developed some MSM for LIFNs. Liu and Zhang [35]
proposed some MSM operators for single valued trapezoidal neutrosophic numbers.

Since the INLNs are superior to other ways of expressing complex uncertain information [16] and
the MSM has good flexibility and adaptability, it can capture the relationship among multiple input
parameters. However, now the MSM cannot deal with INLNs. Therefore, the objectives of this paper
are to extend the MSM and weighted MSM (WMSM) operators to INLNs and to propose the INLMSM
operator and the WINLMSM operator, to prove some properties of them and discuss some special
cases, to propose a MADM approach with INLNs, and show the advantages of the proposed approach
by comparing with other studies.

In Section 2 of this paper, we introduce some basic concepts about NS, INS, INLS, and MSM.
In Section 3, we introduce the INLN and its operations including a new scoring function and
a comparison method of INLN. In Section 4, we introduce an operator of INLMSM. Additionally,
in order to improve flexibility, we propose the INLGMSM operator based on the GMSM operator.
Furthermore, we develop the WINLMSM operator and the WINLGMSM operator to compare with
operators that lack weight. Afterwards, we use examples to prove our theories. In Section 5, we give
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a MADM method for INLNs. In Section 6, we provide an example to demonstrate the effectiveness of
the proposed method. Lastly, we provide the conclusions.

2. Preliminaries

In this section, we will introduce some existing definitions and basic concepts in order to
understand this study.

2.1. The NS and INS

Definition 1 [7–9]. Let X be a space of points (objects) with a generic element in X denoted by x. A NS A in X
is expressed by a MD TA(x), an IMD I(x), and a NMD FA(x).

Then a NS A is denoted below.

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X} (1)

TA(x), I(x), and FA(x) are real standard or non-standard subsets of ]−0, 1+[. That is

TA : X → ]−0, 1+[; IA : X → ]−0, 1+[ ; FA : X → ]−0, 1+[

With the condition −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2 [10,11]. Let X be a space of points (objects) with a generic element in X denoted by x.
For convenience, the lower and upper ends of T, I, F are expressed as TL

A(x), TU
A (x), IL

A(x), IU
A (x), FL

A(x),
and FU

A (x). An INS A in X is defined below.

A =
{

x,
〈[

TL
A(x), TU

A (x)
]
,
[

IL
A(x), IU

A (x)
]
,
[

FL
A(x), FU

A (x)
]〉∣∣∣x ∈ X

}
(2)

For each point x in X, we have that
[
TL

A(x), TU
A (x)

]
⊆ [0, 1],

[
IL
A(x), IU

A (x)
]
⊆ [0, 1],

[
FL

A(x), FU
A (x)

]
⊆

[0, 1], and 0 ≤ TU
A (x) + IU

A (x) + FU
A (x) ≤ 3.

Definition 3 [10,11]. An INS A is contained in the INS B, A ⊆ B, if and only if TL
A(x) ≤ TL

B (x),
TU

A (x) ≤ TU
B (x), IL

A(x) ≥ IL
B(x), IU

A (x) ≥ IU
B (x), FL

A(x) ≥ FL
B (x), and FU

A (x) ≥ FU
B (x). If A ⊆ B

and A ⊇ B, then A = B.

2.2. LVs

Definition 4 [36,37]. Let S = { si|i = 0, 1, . . . , l, l ∈ N∗} be a LT set (LTS) where N∗ is a set of positive
integers and si represents LV.

Because the LTS is convenient and efficient, it is widely used by DMs in decision making.
For instance, when we evaluate the production quality, we can set l = 9, then S is given below.

S = {s0 = extremely bad, s1 = very bad, s2 = bad, s3 = slightly bad, s4 = f air, s5 = slightly good,
s6 = good, s7 = very good, s8 = extremely good}

To relieve the loss of linguistic information in operations, Xu [38,39] extended LTS S to continuous
LTS S = { sθ |0 ≤ θ ≤ l}. About the characteristics of LTS, please refer to References [38–40].

Definition 5 [13]. Let sα and sβ be any two LVs in S. The related operations can be defined below.

sα ⊕ sβ = s
α+β− α·β

l
(3)

λsα = sl−l·(1− α
l )

λ , λ > 0 (4)
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sα ⊗ sβ = s α·β
l

(5)

(sα)
λ = sl·( α

l )
λ , λ > 0 (6)

2.3. MSM Operator

Definition 6 [15,32]. Let xi(i = 1, 2, . . . , n) be the set of the non-negative real number. An MSM operator of
dimension n is a mapping MSM(m) : (R+)

n → R+ and it can be defined below.

MSM(m)(x1, . . . , xn) =

(
∑1≤i1<...<im≤n ∏m

j=1 xij

Cm
n

) 1
m

(7)

where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. In addition, xij refers to ijth element in a particular arrangement.

There are some properties of the MSM(m) operator, which are defined below.

(1) Idempotency. If xi = x for each i, and then MSM(m)(x, x, . . . , x) = x;

(2) Monotonicity. If xi <= yi for all i, MSM(m)(x1, x2, ..., xn) ≤ MSM(m)(y1, y2, ..., yn);

(3) Boundedness. min{ x1, x2, ...xn} ≤ MSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Furthermore, the MSM(m) operator would degrade some particular forms when m takes some
special values, which are shown as follows.

1. When m = 1, the MSM(m) operator would become the average operator.

MSM(1)(x1, x2, ...xn) =

(
∑1≤i1≤n xi1

C1
n

)
=

n
∑

i=1
xi

n
(8)

2. When m = 2, the MSM(m) operator would become the following BM operator (p = q = 1).

MSM(2)(x1, . . . , xn) =

(
∑1≤i1<i2≤n ∏2

j=1 xij

C2
n

) 1
2

= (
2 ∑1≤i1<i2≤n xi1xi2

n(n−1) )
1
2

=

(
∑n

i.j=1,i 	=j xixj
n(n−1)

) 1
2
= BM1,1(x1, ..., xn)

(9)

3. When m = n, the MSM(m) operator would become the geometric mean.

MSM(n)(x1, . . . , xn) = (
n

∏
j=1

xj)

1
n

(10)

Definition 7 [15]. Let xi(i = 1, 2, . . . , n) be the set of non-negative real numbers and p1, p2, . . . , pm ≥ 0.
A generalized MSM operator of dimension n is a mapping GMSM(m,p1,p2,...,pm) : (R+)

n → R+ and it is
defined below.

GMSM(m,p1,p2,...,pm)(x1, . . . , xn) = (
∑1≤i1<...<im≤n ∏m

j=1 x
pj
ij

Cm
n

)

1
p1+p2+...pm

(11)
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where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

There are some properties of the GMSM(m,P1,P2,...,Pm) operator below.

(1) Idempotency. If xi = x for each i, and then GMSM(m,P1,P2,...,Pm)(x, x, ..., x) = x;

(2) Monotonicity. If xi ≤ yi for all i, GMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤
GMSM(m,P1,P2,...,Pm)(y1, y2, . . . , yn);

(3) Boundedness. min{ x1, x2, ...xn} ≤ GMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

In addition, the GMSM(m,P1,P2,...,Pm) operator would degrade to some particular forms when m
takes some special values, which are shown below.

1. When m = 1, we have the formula below.

GMSM(1,P1)(x1, x2, ...xn) = (
∑1≤i1≤n xi1

p1

C1
n

)

1
p1

= (

n
∑

i=1
xi

p1

n
)

1
p1

(12)

2. When m = 2, the GMSM(m,P1,P2,...,Pm) operator would become the following BM operator.

GMSM(2,p1,p2)(x1, . . . , xn) = (
∑1≤i1<i2≤n x

p1
i1

xp2
i2

C2
n

)

1
p1+p2

= (
2∑1≤i<j≤n x

p1
i xp2

j
n(n−1) )

1
p1+p2

= (

n
∑

i.j=1,i 	=j
x

p1
i xp2

j

n(n−1) )

1
p1+p2

= BMp1,p2

(13)

3. When m = n, the MSM(m) operator would become the following formula.

GMSM(n,p1,p2,...,pn)(x1, . . . , xn) = (
n

∏
j=1

x
pj
j )

1
p1+p2+...pn

(14)

4. When p1 = p2 = ... = pm = 1, the GMSM(m,P1,P2,...,Pm) operator would degenerate to the MSM
operator and the parameter is m below.

GMSM(m,1,1,...,1)(x1, . . . , xn) = (
∑1≤i1<...<im≤n ∏m

j=1 x1
ij

Cm
n

)

1
m

= MSM(m)(x1, . . . , xn). (15)

3. INLNs and Operations

Definition 8 [16,41]. Let X be a finite universal set. An INLS in X is defined by the equation below.

A =
{

x,
〈

sθ(x), [TA(x), IA(x), FA(x)]
〉
|x ∈ X

}
(16)

where sθ(x) ∈ S, TA(x) =
[
TL

A(x), TU
A (x)

]
⊆ [0, 1], IA(x) =

[
IL
A(x), IU

A (x)
]
⊆ [0, 1], FA(x) =[

FL
A(x), FU

A (x)
]
⊆ [0, 1] represent the MD, the IMD, and the NMD of the element x in X to the LV sθ(x),

respectively, with the condition 0 ≤ TU
A (x) + IU

A (x) + FU
A (x) ≤ 3 for any x ∈ X.

Then the seven tuple
〈

sθ(x),(
[
TL

A(x), TU
A (x)

]
,
[
IL
A(x), IU

A (x)
]
,
[
FL

A(x), FU
A (x)

]
)
〉

in
A is called an INLN. For convenience, an INLN can be represented as a =〈

sθ(a), (
[
TL(a), TU(a)

]
,
[
IL(a), IU(a)

]
,
[
FL(a), FU(a)

]
)
〉

.

Then we introduced the operational rules of operators of INLNs.

591



Symmetry 2018, 10, 127

Definition 9 [16,37,42]. Let a1 =
〈

sθ(a1)
, (
[
TL(a1), TU(a1)

]
,
[
IL(a1), IU(a1)

]
,
[
FL(a1), FU(a1)

]
)
〉

and

a2 =
〈

sθ(a2)
, (
[
TL(a2), TU(a2)

]
,
[
IL(a2), IU(a2)

]
,
[
FL(a2), FU(a2)

]
)
〉

be two INLNs and λ ≥ 0. Then the
operation of the INLNs can be expressed by the equation below.

a1 ⊕ a2 =
〈

sθ(a1)+θ(a2), (
[
TL(a1) + TL(a2)− TL(a1)× TL(a2), TU(a1) + TU(a2)− TU(a1)× TU(a2)

]
,[

IL(a1)× IL(a2), IU(a1)× IU(a2)
]
,
[
FL(a1)× FL(a2), FU(a1)× FU(a2)

]
)
〉 (17)

IU(a1) + IU(a2)− IU(a1)× IU(a2)
]
,
[
FL(a1) + FL(a2)− FL(a1)× FL(a2),

a1 ⊗ a2 =
〈

sθ(a1)×θ(a2), (
[

TL(a1)× TL(a2), TU(a1)× TU(a2)
]

,
[
IL(a1) + IL(a2)− IL(a1)× IL(a2) ,

FU(a1) + FU(a2)− FU(a1)× FU(a2)
]
)
〉 (18)

λa1 =
〈

sλ×θ(a1)
, (
[
1− (1− TL(a1))

λ, 1− (1− TU(a1))
λ
]
,
[
(IL(a1))

λ, (IU(a1))
λ
]
,[

(FL(a1))
λ, (FU(a1))

λ
]
)
〉
(λ > 0)

(19)

aλ
1 = sθλ(a1)

, (
[
(TL(a1))

λ, (TU(a1))
λ
]
,
[
1− (1− IL(a1))

λ, 1− (1− IU(a1))
λ
]
,[

1− (1− FL(a1))
λ, 1− (1− FU(a1))

λ
]
)
〉

, (λ > 0)
(20)

Example 1. Let a1 = 〈s3, ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5])〉 and a2 = 〈s4, ([0.3, 0.5], [0.3, 0.4], [0.5, 0.6])〉
be two INLNs and S = {s0 = very bad, s1 = bad, s2 = slightly bad, s3 = f air, s4 = slightly good,
s5 = good, s6 = very good}, then we have the equations below.

a1 ⊕ a2 = 〈s3+4, ([0.1 + 0.3− 0.1× 0.3, 0.2 + 0.5− 0.2× 0.5], [0.2× 0.3, 0.3× 0.4], [0.4× 0.5, 0.5× 0.6]〉
= 〈s7, ([0.37, 0.6], [0.06, 0.12], [0.2, 0.3]〉

a1 ⊗ a2 = 〈s3×4, ([0.1× 0.3, 0.2× 0.5] , [0.2 + 0.3− 0.2× 0.3, 0.3 + 0.4− 0.3× 0.4] ,
[0.4 + 0.5− 0.4× 0.5, 0.5 + 0.6− 0.5× 0.6])〉
= 〈s12, ([0.03, 0.1] , [0.44, 0.58], [0.7, 0.8])〉

As seen from the above examples, these results are not reasonable because they exceed the range of LTS.
In order to overcome these limitations, we will improve these operations by Definition 10.

Definition 10. Let a1 =
〈

sθ(a1)
, (
[
TL(a1), TU(a1)

]
,
[
IL(a1), IU(a1)

]
,
[
FL(a1), FU(a1)

]
)
〉

and a2 =〈
sθ(a2)

, (
[
TL(a2), TU(a2)

]
,
[
IL(a2), IU(a2)

]
,
[
FL(a2), FU(a2)

]
)
〉

be two INLNs and λ ≥ 0. Then the
operations of the INLNs can be defined by the equations below.

a1 ⊕ a2 =

〈
s

θ(a1)+θ(a2)−
θ(a1)·θ(a2)

l
, (
[
TL(a1) + TL(a2)− TL(a1)× TL(a2), TU(a1) + TU(a2)− TU(a1)× TU(a2)

]
,[

IL(a1)× IL(a2), IU(a1)× IU(a2)
]
,
[
FL(a1)× FL(a2), FU(a1)× FU(a2)

]
)
〉 (21)

a1 ⊗ a2 =

〈
s θ(a1)×θ(a2)

l
, (
[

TL(a1)× TL(a2), TU(a1)× TU(a2)
]

,
[
IL(a1) + IL(a2)− IL(a1)× IL(a2) ,

IU(a1) + IU(a2)− IU(a1)× IU(a2)
]
,
[
FL(a1) + FL(a2)− FL(a1)× FL(a2),

FU(a1) + FU(a2)− FU(a1)× FU(a2)
]
)
〉 (22)

λa1 =

〈
s

l−l·(1− θ(a1)
l )

λ , (
[
1− (1− TL(a1))

λ, 1− (1− TU(a1))
λ
]
,[

(IL(a1))
λ, (IU(a1))

λ
]
,
[
(FL(a1))

λ, (FU(a1))
λ
]
)
〉

, (λ > 0)
(23)

aλ
1 = s

l·( θ(a1)
l )

λ , (
[
(TL(a1))

λ, (TU(a1))
λ
]
,
[
1− (1− IL(a1))

λ, 1− (1− IU(a1))
λ
]
,[

1− (1− FL(a1))
λ, 1− (1− FU(a1))

λ
]
)
〉

, (λ > 0).
(24)
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Based on the operational rules above, the above example is recalculated as follow.

Example 2. Let a1 = 〈s3, ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5])〉 and a2 = 〈s4, ([0.3, 0.5], [0.3, 0.4], [0.5, 0.6])〉
be two INLNs and S = {s0 = very bad, s1 = bad, s2 = slightly bad, s3 = f air, s4 = slightly good,
s5 = good, s6 = very good}, then we have the equations below.

a1 ⊕ a2 =
〈

s3+4− 3×4
6

, ([0.1 + 0.3− 0.1× 0.3, 0.2 + 0.5− 0.2× 0.5], [0.2× 0.3, 0.3× 0.4], [0.4× 0.5, 0.5× 0.6]
〉

= 〈s5, ([0.37, 0.6], [0.06, 0.12], [0.2, 0.3]〉

a1 ⊗ a2 =
〈

s 3×4
6

, ([0.1× 0.3, 0.2× 0.5] , [0.2 + 0.3− 0.2× 0.3, 0.3 + 0.4− 0.3× 0.4] ,

[0.4 + 0.5− 0.4× 0.5, 0.5 + 0.6− 0.5× 0.6])〉
= 〈s2, ([0.03, 0.1] , [0.44, 0.58], [0.7, 0.8])〉

From the above example, the results are more reasonable than the previous ones.
In the following definitions, a new scoring function and a comparison method of INLN are described.

Definition 11. [37]. Let a =
〈

sθ(a), (
[
TL(a), TU(a)

]
,
[
IL(a), IU(a)

]
,
[
FL(a), FU(a)

]
)
〉

be an INLN.
Then the score function of a can be expressed by the equation below.

S(a) = α · θ(a)
6

[
0.5(TU(a) + 1− FL(a)) + αIU(a)

]
+ (1− α) · θ(a)

6

[
0.5(TL(a) + 1− FU(a)) + αIL(a)

]
(25)

where the values of α ∈ [0, 1] reflect the attitudes of the decision makers.

Definition 12. [37]. Let a and b be two INLNs. Then the INLN comparison method can be expressed by the
statements below.

If S(a) > S(b), then a � b; (26)

If S(a) = S(b), then a ∼ b; (27)

If S(a)<(b), then a ≺ b; (28)

4. Some Interval Neutrosophic Linguistic MSM Operators

In this section, we will propose INLMSM operators and INLGMSM operators.

4.1. The INLMSM Operators

Definition 13. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set

of INLNs. Then the INLMSM operator: Ωn → Ω is shown below.

INLMSM(m)(a1, . . . , an) = (

⊕
1≤i1<...<im≤n(

m
⊗

j=1
aij)

Cm
n

)

1
m

(29)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the INLMSM

operator shown below.
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Theorem 1. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 13 is still an INLN.

INLMSM(m)(a1, . . . , an) =〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij

(k)

l ))

1
Cm

n
)

1
m

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎝1−∏Cm

n
k=1

(
1−

m
∏
j=1

TL
ij(k)

) 1
Cm

n

⎞⎠
1
m

,

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

TU
ij(k)

) 1
Cm

n

⎞⎠
1
m
⎤⎥⎥⎦ ,

⎡⎢⎢⎣1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IL

ij(k)

)) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IU

ij(k)

)) 1
Cm

n

⎞⎠
1
m
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FL

ij(k)

)) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FU

ij(k)

)) 1
Cm

n

⎞⎠
1
m
⎤⎥⎥⎦
〉

(30)

where k = 1, 2, ...Cm
n , aij(k) is the ijth element of k th permutation.

Proof.

Because

aij(k) =
〈

sθij(k), ((T
Lij(k), TUij(k)), (ILij(k), IUij(k)), (FLij(k), FUij(k)))

〉
(j = 1, 2, ..., m)

⇒
m
⊗

j=1
aij(k) =

〈
s

l·∏m
j=1 (

θij(k)
l )

,

([
m

∏
j=1

TLij(k),
m

∏
j=1

TUij(k)

]
,

[
1−

m

∏
j=1

(
1− IL

ij(k)

)
, 1−

m

∏
j=1

(
1− IU

ij(k)

)]
,

[
1−

m

∏
j=1

(
1− FL

ij(k)

)
, 1−

m

∏
j=1

(
1− FU

ij(k)

)])〉

⇒ ⊕
1≤i1<...<im≤n

(
m
⊗

j=1
aij

)
=

〈
s

l−l·∏Cm
n

k=1 (1−∏m
j=1 (

θij(k)
l ))

,

([
1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TL
ij(k)

)
, 1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TU
ij(k)

)]
,

[
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL

ij(k)

))
,

Cm
n

∏
k=1

(
1−

m

∏
j=1

(
1− IU

ij(k)

))]
,

[
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL

ij(k)

))
,

Cm
n

∏
k=1

(
1−

m

∏
j=1

(
1− FU

ij(k)

))])〉

⇒

⎛⎜⎜⎜⎜⎝
⊕
1≤i1<...<im≤n

(
m
⊗

j=1
aij

)
Cm

n

⎞⎟⎟⎟⎟⎠
1
m

=

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij(k)

l ))

1
Cm

n )

1
m

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎝1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TL
ij(k)

) 1
Cm

n

⎞⎟⎠
1
m

,

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU
ij(k)

) 1
Cm

n

⎞⎟⎠
1
m
⎤⎥⎥⎦ ,

⎡⎢⎢⎣1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL

ij(k)

)) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU

ij(k)

)) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦,
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⎡⎢⎢⎣1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL

ij(k)

)) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU

ij(k)

)) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦
⎞⎟⎟⎠
〉

Therefore, Theorem 1 is kept. �

Property 1. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be sets of INLNs. There are

four properties of INLMSM(m) operator, which is shown below.

(1) Idempotency. If the INLNs xi = x = 〈s θx
, ([TL

x, TU
x], [IL

x, IU
x], [FL

x, FU
x ])〉 for each

i(i = 1, 2, ..., n) and then INLMSM(m) = x = 〈sθx , (Tx, Ix, Fx)〉.
(2) Commutativity. If xi is a permutation of yi for all i (i = 1, 2, ..., n) and then

INLMSM(m)(x1, x2, ..., xn) = INLMSM(m)(y1, y2, ..., yn).
(3) Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
INLMSM(m)(x1, x2, ..., xn) ≤ INLMSM(m)(y1, y2, ..., yn).

(4) Boundedness. min{ x1, x2, ...xn} ≤ INLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} ..

Proof.

1 If each ai = x, then we get the equation below.

INLMSM(m)(x, x, ..., x) =〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θx
l ))

1
Cm

n )

1
m

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎝1−∏Cm

n
k=1

(
1−

m
∏
j=1

TL
x

) 1
Cm

n

⎞⎠
1
m

,

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

TU
x

) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IL

x
)) 1

Cm
n

⎞⎠
1
m

, 1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IU

x
)) 1

Cm
n

⎞⎠
1
m

⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FL

x
)) 1

Cm
n

⎞⎠
1
m

, 1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FU

x
)) 1

Cm
n

⎞⎠
1
m

⎤⎥⎥⎦
〉

= 〈sθx , (Tx, Ix, Fx)〉 = x.

2 This property is clear and it is now omitted.
3 If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥ IU(yi), FL(xi) ≥ FL(yi)

and FU(xi) ≥ FU(yi) for all i, according to Theorem 1. Since

m
∏
j=1

αi ≤
m
∏
j=1

βi,
m
∏
j=1

TL(xi) ≤
m
∏
j=1

TL(yi),
m
∏
j=1

TU(xi) ≤
m
∏
j=1

TU(yi),
m
∏
j=1

IL(xi) ≥
m
∏
j=1

IL(yi),

m
∏
j=1

IU(xi) ≥
m
∏
j=1

IU(yi),
m
∏
j=1

FL(xi) ≥
m
∏
j=1

FL(yi),
m
∏
j=1

FU(xi) ≥
m
∏
j=1

FU(yi)

then l ·

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

αi
l

) 1
Cm

n

⎞⎟⎠
1
m

≤ l ·

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

βi
l

) 1
Cm

n

⎞⎟⎠
1
m

,

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TL(xi)

) 1
Cm

n

⎞⎟⎠
1
m

≤

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TL(yi)

) 1
Cm

n

⎞⎟⎠
1
m

,
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⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU(xi)

) 1
Cm

n

⎞⎟⎠
1
m

≤

⎛⎜⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU(yi)

) 1
Cm

n

⎞⎟⎠
1
m

,

1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL(xi)

)) 1
Cm

n

⎞⎠
1
m

≥ 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL(yi)

)) 1
Cm

n

⎞⎠
1
m

,

1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU(xi)

)) 1
Cm

n

⎞⎠
1
m

≥ 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU(yi)

)) 1
Cm

n

⎞⎠
1
m

,

1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL(xi)

)) 1
Cm

n

⎞⎠
1
m

≥ 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL(yi)

)) 1
Cm

n

⎞⎠
1
m

,

1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU(xi)

)) 1
Cm

n

⎞⎠
1
m

≥ 1−

⎛⎝1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU(yi)) )

1
Cm

n
)

1
m

.

Therefore, we can get the following conclusion.

INLMSM(m)(x1, x2, ..., xn) ≤ INLMSM(m)(y1, y2, ..., yn)

4 According to the idempotency, let min{ x1, x2, ...xn} = xa = INLMSM(m)(xa, xa, ..., xa)

and max{ x1, x2, ...xn} = xb = INLMSM(m)(xb, xb, ..., xb). According to the monotonicity,
if xa ≤ xi and xb ≥ xi for all i, then we have xa = INLMSM(m)(xa, xa, ..., xa) ≤
INLMSM(m)(x1, x2, ..., xn) and

INLMSM(m)(x1, x2, ..., xn) ≤ xb = INLMSM(m)(xb, xb, ..., xb).

Therefore, we can get the conclusion below.

min{ x1, x2, ...xn} ≤ INLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Furthermore, the INLMSM(m) operator would degrade to some particular forms when m takes
some special values.

(1) When m = 1, we have the formula below.

INLMSM(1)(x1, x2, ...xn) =
(⊕n

i=1xi
C1

n

)
=〈

s
l·(1−∏n

k=1 (1− k
l )

1
n )

,
([

1−∏n
k=1 (1− TL

k)
1
n , 1−∏n

k=1 (1− TU
k)

1
n

]
,[

∏n
k=1 (IL

k)
1
n , ∏n

k=1 (IU
k)

1
n

]
,
[

∏n
k=1 (FL

k)
1
n , ∏n

k=1 (FU
k)

1
n

])〉 (31)
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(2) When m = 2, we have the formula below.

INLMSM(2)(x1, x2, ...xn) =〈
s

l·(1−∏
C2

n
k=1 (1−(

θi1 (k)
l )·( θi2 (k)

l ))

1
C2

n )

1
2

,

⎛⎝⎡⎣(1−∏C2
n

k=1

(
1− TL

i1(k) · TL
i2(k)

) 1
C2

n

) 1
2

,

(
1−∏C2

n
k=1

(
1− TU

i1(k) · TU
i2(k)

) 1
C2

n

) 1
2
⎤⎦ ,

[
1−
(

1−∏
C2

n
k=1

(
1−
(
1− ILi1 (k)

)
·
(
1− ILi2 (k)

)) 1
C2

n

) 1
2

, 1−
(

1−∏C2
n

k=1

(
1−
(
1− IUi1 (k)

)
·
(
1− IUi2 (k)

)) 1
C2

n

) 1
2
]

,[
1−
(

1−∏C2
n

k=1

(
1−
(
1− FLi1 (k)

)
·
(
1− FLi2 (k)

)) 1
C2

n

) 1
2

, 1−
(

1−∏C2
n

k=1

(
1−
(
1− FUi1 (k)

)
·
(
1− FUi2 (k)

)) 1
C2

n

) 1
2
]〉

(32)

(3) When m = n, the INLMSM(m) operator would reduce to the following form.

INLMSM(n)(x1, . . . , xn) =〈
s

l·(∏n
j=1 (

θj
l ))

1
n

,
([(

∏n
j=1 TL

j

) 1
n ,
(

∏n
j=1 TU

j

) 1
n
]

,

⎡⎣1−
(

n
∏
j=1

(
1− IL

j
)) 1

n

, 1−
(

n
∏
j=1

(
1− IU

j
)) 1

n
⎤⎦,⎡⎣1−

(
n
∏
j=1

(
1− FL

j
)) 1

n

, 1−
(

n
∏
j=1

(
1− FU

j
)) 1

n
⎤⎦⎞⎠〉

(33)

�

Definition 14. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set

of INLNs. Then the INLGMSM operator: Ωn → Ω is shown below.

INLGMSM(m,p1,p2,...,pm)(a1, . . . , an) =

⎛⎜⎜⎜⎜⎝
⊕
1≤i1<...<im≤n

(
m
⊗

j=1
a

pj
ij

)
Cm

n

⎞⎟⎟⎟⎟⎠
1

p1+p2+...+pm

, (34)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the INLMSM

operator shown below.

Theorem 2. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 14 is still an INLN.

INLGMSM(m,p1,p2,...,pm )(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij (k)

l )

pj
)

1
Cm

n )

1
p1+p2+...+pm

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎝1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
TL

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

,

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
TU

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− IL

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

,

1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− IU

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− FL

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

, 1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− FU

ij (k)

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦
⎞⎟⎟⎠
〉

(35)
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where k = 1, 2, ...Cm
n , aij(k) is the ijth element of kjth permutation. Therefore, Theorem 2 is kept. The process of

proof is similar to Theorem 1 and is now omitted.

Property 2. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be two sets of INLNs.

There are four properties of INLGMSM(m,p1,p2,...,pm) operator shown as follows.

1 Idempotency. If the INLNs xi = x = 〈s θx
, ([TL

x, TU
x], [IL

x, IU
x], [FL

x, FU
x ])〉 for each

i(i = 1, 2, ..., n) and then INLGMSM(m,p1,p2,...,pm) = x = 〈sθx , (Tx, Ix, Fx)〉.
2 Commutativity. If xi is a permutation of yi for all I (i = 1, 2, ..., n), and then

INLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) = INLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).
3 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
INLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤ INLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).

4 Boundedness. min{ x1, x2, ...xn} ≤ INLGMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

The proofs are similar to Property 1, which are now omitted.
Furthermore, the INLGMSM(m,p1,p2,...,pm) operator would degrade to some particular forms when

m takes some special values.
(1) When m = 1, we have the following formula.

INLGMSM(1)(x1, x2, ..., xn) =

(
⊕n

i=1xiP1

C1
n

)
1

P1 =〈
s

l·(1−∏n
k=1 (1−( k

l )
p1 )

1
n )

1
P1

,

⎛⎝⎡⎣(1−∏n
k=1

(
1−
(
TL

k
)p1
) 1

n
) 1

P1
,
(

1−∏n
k=1

(
1−
(
TU

k
)p1
) 1

n
) 1

P1

⎤⎦ ,⎡⎣1−
(

1−∏n
k=1

(
1−
(
1− ILi1 (k)

)p1
) 1

n
) 1

p1
, 1−

(
1−∏n

k=1

(
1−
(
1− IUi1 (k)

)p1
) 1

n
) 1

p1

⎤⎦,⎡⎣1−
(

1−∏n
k=1

(
1−
(
1− FLi1 (k)

)p1
) 1

n
) 1

p1
, 1−

(
1−∏n

k=1

(
1−
(
1− FUi1 (k)

)p1
) 1

n
) 1

p1

⎤⎦⎞⎠〉
(36)

(2) When m = 2, we have the following formula.

INLMSM(2)(x1, x2, ..., xn) =〈
s

l·(1−∏
C2

n
k=1 (1−(

θi1 (k)
l )

p1 ·( θi2 (k)
l )

p2 )

1
C2

n )

1
p1+p2

,⎛⎜⎝
⎡⎢⎣(1−∏C2

n
k=1

(
1−
(

TL
i1(k)

)P1 ·
(

TL
i2(k)

)P2
) 1

C2
n

) 1
p1+p2

,

(
1−∏C2

n
k=1

(
1−
(

TU
i1(k)

)P1 ·
(

TU
i2(k)

)P2
) 1

C2
n

) 1
p1+p2

⎤⎥⎦⎡⎣1−
(

1−∏C2
n

k=1

(
1−
(
1− ILi1 (k)

)P1 ·
(
1− ILi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−
(
1− IUi1 (k)

)P1 ·
(
1− IUi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

⎤⎦,⎡⎣1−
(

1−∏C2
n

k=1

(
1−
(
1− FLi1 (k)

)P1 ·
(
1− FLi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−
(
1− FUi1 (k)

)P1 ·
(
1− FUi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

⎤⎦⎞⎠〉

(37)

When m = 2, the INLGMSM(m,p1,p2,...,pm) operator would reduce to the BM for INLNs
(INLGBM) operator.
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(3) When m = n, the INLMSM(m) operator would reduce to the form below.

INLGMSM(n,p1,p2,...,pm)(a1, . . . , an) =〈
s

l·(∏n
j=1 (

θj (k)

l )
pj
)

1
p1+p2+...+pn

,

⎛⎝⎡⎣( n
∏
j=1

(
TL

ij(k)

)pj

) 1
p1+p2+...+pn

,

(
n
∏
j=1

(
TU

ij(k)

)pj

) 1
p1+p2+...+pn

⎤⎦,⎡⎣1−
(

m
∏
j=1

(
1− IL

ij(k)

)pj

) 1
p1+p2+...+pn

, 1−
(

m
∏
j=1

(
1− IU

ij(k)

)pj

) 1
p1+p2+...+pm

⎤⎦,⎡⎣1−
(

m
∏
j=1

(
1− FL

ij(k)

)pj

) 1
p1+p2+...+pn

, 1−
(

m
∏
j=1

(
1− FU

ij(k)

)pj

) 1
p1+p2+...+pn

⎤⎦⎞⎠〉

(38)

4.2. Some Weighted INLMSM Operators

We will introduce two operators, which are the weighted forms of the INLMSM operator and
INLGMSM operator.

Definition 15. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be

a set of INLNs. Let ω = (ω1, ω2, ..., ωn) T is the weight vector and satisfies ∑n
i=1 ωi = 1 with ωi >

0 (i = 1, 2, ..., n). Each ωi represents the importance of ai. Then the WINLMSM operator: Ωn → Ω is
defined below.

WINLMSM(m)(a1, . . . , an) =

⎛⎜⎜⎜⎜⎝
⊕
1≤i1<...<im≤n

(
m
⊗

j=1

(
nωij

)
aij

)
Cm

n

⎞⎟⎟⎟⎟⎠
1
m

, (39)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the WINLMSM

operator, which is shown below.

Theorem 3. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n, then the value aggregated from Definition 15 is still a WINLMSM operator.

WINLMSM(m)(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij (k)

l )

n·ωij
))

1
Cm

n )

1
m

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎝1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
1−
(

1− TL
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m

,

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

1− TU
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

IL
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m

,

1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

IU
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FL
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m

, 1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FU
ij (k)

)n·ωij
)) 1

Cm
n

⎞⎟⎠
1
m
⎤⎥⎥⎦
⎞⎟⎟⎠
〉

(40)

where k = 1, 2, ..., Cm
n , aij(k) is the ijth element of kth permutation. The process of proof is similar to Theorem 1.

Now it is omitted.
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Property 3. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and yi =

〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be sets of INLNs. There are some

properties of the WINLMSM(m) operator as shown below.

1 Reducibility. When ω = ( 1
n , 1

n , ..., 1
n ) , then WINLMSM(m)(a1, a2, ..., an) =

INLMSM(m)(a1, a2, ..., an).
2 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
WINLMSM(m)(x1, x2, ..., xn) ≤WINLMSM(m)(y1, y2, ..., yn).

3 Boundedness. min{ x1, x2, ...xn} ≤WINLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Proof.

1 If ω = ( 1
n , 1

n , ..., 1
n ) , then WINLMSM(m)(a1, a2, ..., an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij (k)

l )
n· 1

n
))

1
Cm

n
)

1
m

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎝1−∏Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

1− TL
ij(k)

))) 1
Cm

n

⎞⎠
1
m

,

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−
(

1− TU
ij(k)

))) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−
(

IL
ij(k)

))) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−
(

IU
ij(k)

))) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦⎡⎢⎢⎣1−

⎛⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FL
ij(k)

))) 1
Cm

n

⎞⎠
1
m

, 1−

⎛⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FU
ij(k)

))) 1
Cm

n

⎞⎠
1
m

⎤⎥⎥⎦
⎞⎟⎟⎠
〉
= INLMSM(m) (a1, a2, ..., an).

2 The proofs of Monotonicity and Boundedness are similar to Property 1, which are now omitted.

Furthermore, the WINLMSM(m) operator would degrade a particular form when m takes some
special values.

(1) When m = 1, we have the formula below.

WINLMSM(1)(a1, . . . , an) =〈
s
l·(1−∏n

i=1 (1− θi
l )

ωi
)

,
([(

1−∏n
i=1

(
1− TL

i

)ωi
)

,
(

1−∏n
i=1

(
1− TU

i

)ωi
)]

,[
∏n

i=1

(
IL
i

)ωi , ∏n
i=1

(
IU
i

)ωi
]
,
[
∏n

i=1

(
FL

i

)ωi , ∏n
i=1

(
FU

i

)ωi
])〉 (41)

(2) When m = 2, we have the formula below.

WINLMSM(2) (a1, . . . , an ) =

〈
s

l·(1−∏
C2

n
k=1 (1−(1−(1− θi1(k)

l )
n·ωi1 )·(1−(1− θi2(k)

l )
n·ωi2 ))

1
C2

n )

1
2

,

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
⎛⎜⎝1−∏

C2
n

k=1

(
1−
(

1−
(

1− TL
i1(k)

)n·ωi1
)
·
(

1−
(

1− TL
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2

,

⎛⎜⎝1−∏
C2

n
k=1

(
1−
(

1−
(

1− TU
i1(k)

)n·ωi1
)
·
(

1−
(

1− TU
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2
⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1−

⎛⎜⎝1−∏
C2

n
k=1

(
1−
(

1−
(

IL
i1(k)

)n·ωi1
)
·
(

1−
(

IL
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2

,

1−

⎛⎜⎝1−∏
C2

n
k=1

(
1−
(

1−
(

IU
i1(k)

)n·ωi1
)
·
(

1−
(

IU
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2
⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1−

⎛⎜⎝1−∏
C2

n
k=1

(
1−
(

1−
(

FL
i1(k)

)n·ωi1
)
·
(

1−
(

FL
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2

,

1−

⎛⎜⎝1−∏
C2

n
k=1

(
1−
(

1−
(

FU
i1(k)

)n·ωi1
)
·
(

1−
(

FU
i2(k)

)n·ωi2
)) 1

C2
n

⎞⎟⎠
1
2
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
〉

(42)
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(3) When m = n, we have the formula below.

WINLMSM(n)(a1, . . . , an) =

〈
s

l·(∏n
j=1 (1−(1−

θj
l )

n·ωj
))

1
n

,

⎛⎜⎝
⎡⎢⎣( n

∏
j=1

(
1−
(

1− TL
j

)n·ωj
)) 1

n

,

(
n
∏
j=1

(
1−
(

1− TU
j

)n·ωj
)) 1

n
⎤⎥⎦,

⎡⎢⎣1−
(

n
∏
j=1

(
1−
(

IL
j

)n·ωj
)) 1

n

, 1−
(

n
∏
j=1

(
1−
(

IU
j

)n·ωj
)) 1

n
⎤⎥⎦,

⎡⎢⎣1−
(

n
∏
j=1

(
1−
(

FL
j

)n·ωj
)) 1

n

, 1−
(

n
∏
j=1

(
1−
(

FU
j

)n·ωj
)) 1

n
⎤⎥⎦
⎞⎟⎠〉.

(43)

�

Definition 16. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be

a set of INLNs. Let ω = (ω1, ω2, ..., ωn) T is the weight vector and it satisfies ∑n
i=1 ωi = 1 with

ωi > 0 (i = 1, 2, ..., n). Each ωi represents the importance of ai. Then the WINLGMSM operator:
Ωn → Ω is defined below.

WINLGMSM(m,p1,p2,...pm)(a1, . . . , an) =

⎛⎜⎜⎜⎜⎝
⊕
1≤i1<...<im≤n

(
m
⊗

j=1

(
nωij · aij

)pj
)

Cm
n

⎞⎟⎟⎟⎟⎠
1

p1+p2+...+pm

(44)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of WINLMSM

operator shown below.

Theorem 4. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 16 is still an WINLGMSM.

WINLGMSM(m,p1,p2,...,pm )(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij

(k)

l )

n·ωij
)

pj
)

1
Cm

n
)

1
p1+p2+...+pm

,

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎝1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
1−
(

1− TLij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

,

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

1− TU ij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

ILij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

,

1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

IU ij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦,

⎡⎢⎢⎣1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FLij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm

,

1−

⎛⎜⎝1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−
(

FU ij (k)
)n·ωij

)pj
) 1

Cm
n

⎞⎟⎠
1

p1+p2+...+pm
⎤⎥⎥⎦
⎞⎟⎟⎠
〉

(45)

where k = 1, 2, ..., Cm
n , aij(k) is the ijth element of kth permutation. The process of proof is similar to Theorem 1.

It is now omitted.
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Property 4. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be two sets of INLNs.

There are some properties of the WINLGMSM(m,p1,p2,...,pm) operator shown below.

1 Reducibility. When ω = ( 1
n , 1

n , ..., 1
n ) . Additionally, WINLGMSM(m,p1,p2,...,pm)(a1, a2, ..., an) =

INLGMSM(m,p1,p2,...,pm)(a1, a2, ..., an).
2 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
WINLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤WINLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).

3 Boundedness. min{ x1, x2, ...xn} ≤ WINLGMSMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤
max{ x1, x2, ...xn} .

The process of proof is similar to Property 3 and is now omitted.
Furthermore, the WINLGMSM(m,p1,p2,...,pm) operator would degrade some particular forms when

m takes some special values.
(1) When m = 1, we have the following formula.

WINLGMSM(1,p1)(a1, . . . , an) =

〈
s

l·(1−∏n
k=1 (1−(1−(1−

θ1(k)
l )

n·ω1 )
p1

)

1
n
)

1
p1

,

⎛⎜⎝
⎡⎢⎣(1−∏n

k=1

(
1−
(

1−
(

1− TL
ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

,

⎛⎝1−∏n
k=1

(
1−
(

1−
(

1− TU
ij(k)

)n·ω1
)p1
) 1

n
⎞⎠

1
p1

⎤⎥⎥⎦,

⎡⎢⎣1−
(

1−∏n
k=1

(
1−
(

1−
(

IL
ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

, 1−

⎛⎝1−∏n
k=1

(
1−
(

1−
(

IU
ij(k)

)n·ω1
)p1
) 1

n
⎞⎠

1
p1

⎤⎥⎥⎦,

⎡⎢⎣1−
(

1−∏n
k=1

(
1−
(

1−
(

FL
ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

, 1−

⎛⎝1−∏n
k=1

(
1−
(

1−
(

FU
ij(k)

)n·ω1
)p1
) 1

n
⎞⎠

1
p1

⎤⎥⎥⎦
⎞⎟⎟⎠
〉

(46)

(2) When m = 2, we have the formula below.

WINLGMSM(2,p1,p2)(a1, . . . , an) =

〈
s

l·(1−∏
C2

n
k=1 (1−(1−(1−

θi1(k)
l )

n·ωi1 )
p1 ·(1−(1− θi2(k)

l )
n·ωi2 )

p2
)

1
C2

n )

1
p1+p2
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⎛⎜⎝
⎡⎢⎣(1−∏C2

n
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1−
(

1−
(

1− TL
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)n·ωi1
)p1 ·

(
1−
(

1− TL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

(
1−∏C2

n
k=1

(
1−
(

1−
(

1− TU
i1(k)

)n·ωi1
)p1 ·

(
1−
(

1− TU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

⎤⎥⎦,

⎡⎢⎣1−
(

1−∏C2
n

k=1

(
1−
(

1−
(

IL
i1(k)

)n·ωi1
)p1 ·

(
1−
(

IL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−
(

1−
(

IU
i1(k)

)n·ωi1
)p1 ·

(
1−
(

IU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

⎤⎥⎦,

⎡⎢⎣1−
(

1−∏C2
n

k=1

(
1−
(

1−
(

FL
i1(k)

)n·ωi1
)p1 ·

(
1−
(

FL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−
(

1−
(

FU
i1(k)

)n·ωi1
)p1 ·

(
1−
(

FU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

⎤⎥⎦
⎞⎟⎠〉

(47)
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(3) When m = n, we have the formula below.

WINLGMSM(n,p1,p2,...,pn)(a1, . . . , an) =

〈
s

l·(∏n
j=1 (1−(1−

θj
l )

n·ωj
)

pj
)

1
p1+p2+...+pn

,⎛⎝⎡⎣( n
∏
j=1

(
1−
(

1− TL
j

)n·ωj
)pj

) 1
p1+p2+...+pn

,

(
n
∏
j=1

(
1−
(

1− TU
j

)n·ωj
)pj

) 1
p1+p2+...+pn

⎤⎦,⎡⎣1−
(

n
∏
j=1

(
1−
(

IL
j

)n·ωj
)pj

) 1
p1+p2+...+pn

, 1−
(

n
∏
j=1

(
1−
(
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j

)n·ωj
)pj

) 1
p1+p2+...+pn

⎤⎦,⎡⎣1−
(

n
∏
j=1

(
1−
(
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j

)n·ωj
)pj

) 1
p1+p2+...+pn

, 1−
(

n
∏
j=1

(
1−
(

FU
j

)n·ωj
)pj

) 1
p1+p2+...+pn

⎤⎦⎞⎠〉
(48)

5. MADM Method Based on INLMSM Operator

In this section, we introduce the MADM method based on the WINLMSM and WINLGMSM
operators. Let d = {d1, d2, ..., dm} be a collection of alternatives and c = {c1, c2, ..., cn}
is a collection of n criteria. The weight vector is ω = (ω1, ω2, ..., ωn)

T with satisfying
∑n

i=1 ωi = 1(ωi ≥ 0, i = 1, 2, ..., n), and each ωi represents the importance of cj. The performance
of alternative dj in criteria cj is surveyed by INLNs and the decision matrix is A = (aij)m×n,
where aij = 〈s θij

, ([TL(rij), TU(rij)], [IL(rij), IU(rij)], [FL(rij), FU(rij) ])〉. The objective is to rank
the alternatives.

The detailed steps are shown below.

Step 1 Normalize the decision matrix.

We should normalize the decision-making information in the matrix. The benefit (the bigger
the better) and the cost (the smaller the better) are the two possible types. In order to keep the
consistency of the types, it is necessary to convert the decision matrix A into a standardized
matrix R = (rij)m× n.

If cj is cost type, then rij = 〈s θij
, ([FL(rij), FU(rij)], [1− IU(rij), 1− IL(rij)][TL(rij), TU(rij)])

〉
else rij = 〈s θij

, ([TL(rij), TU(rij)], [IL(rij), IU(rij)], [FL(rij), FU(rij) ])〉.
Step 2 Aggregate the criterion values of each alternative. We would use Definition 15 and

Definition 16 to aggregate rij(j = 1, 2, ..., n) of the ith alternative and get the overall value ri.

Step 3 Calculate the score values of ri(i = 1, 2, ..., m) according to Definition 11. If two score values
are equal, then calculate the accuracy values and certainty values.

Step 4 According to Step 3 and Definition 12, rank the alternatives.

6. Illustrative Example

There are many decision-making problems to be solved in the current society, which requires
some decision-making methods.

In this section, we investigate an example (adapted from Ref [43]) about the MADM.
In a MADM problem, there are four possible alternatives for an investment company including
a car company (A1), a food company (A2), a computer company (A3), and an arms company (A4).
The following three attributes can be used to evaluate alternatives by the investment company:
the risk (C1), the growth (C2), and the environmental impact (C3) where C1 and C2 are benefit
types and C3 is cost type. Then the evaluation values of alternatives are shown in Table 1 where
the LTS is S = {s0 = extremely poor(EP), s1 = very poor(VP), s2 = poor(P), s3 = medium(M),
s4 = good(G), s5 = very good(VG), s6 = extremely good(EG)}, and the weight vector of criteria

603



Symmetry 2018, 10, 127

is ω = (0.35, 0.25, 0.4)T . Now we will use the method proposed in this paper, according to the above
LTs and three criteria. Then we evaluate and sort the four options in Table 1.

Table 1. Evaluation values of alternatives.

C1 C2 C3

A1 〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉 〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
A2 〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
A3 〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉 〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
A4 〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉

6.1. The Method Based on the WINLMSM Operator

Generally, we can give m = n
2 , so m = 1 and m = 2. Then, according to Section 5, we have the

statements below.

(1) When m = 1, the steps are shown below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1) and the growth (C2) are benefit types while the environmental
impact (C3) is cost type. We set up the decision matrix as shown below.

R =

⎡⎢⎢⎢⎢⎣
〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉
〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉
〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉
〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉

〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉

⎤⎥⎥⎥⎥⎦
Step 2 Aggregate all attribute values of each alternative and get the overall value of each alternative
ai denoted as ri(i = 1, 2, 3, 4).

r1 = 〈s6, ([0.3268, 0.4590], [0.1275, 0.2305], [0.3325, 0.4704])〉,
r2 = 〈s6, ([0.5271, 0.7000], [0.1320, 0.2000], [0.1516, 0.2551])〉,
r3 = 〈s6, ([0.4375, 0.5675], [0.1000, 0.2603], [0.1933, 0.3565])〉,
r4 = 〈s6, ([0.5216, 0.6565], [0.0000, 0.1569], [0.1189, 0.2213])〉

Step 3 According to Definition 11, we assume α = 0.7 and calculate the score values of
ri(i = 1, 2, 3, 4) below.

S(r1)
= s0.6228, S(r2)

= s0.8306, S(r3)
= s0.7462, S(r4)

= s0.7778

Step 4 According to Step 3 and Definition 12, we would get the ranking of the alternatives, which are
A2 � A4 � A3 � A1.

(2) When m = 2, the steps are shown below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1) and the growth (C2) are benefit types while the environmental
impact (C3) is cost type. We set up the decision matrix as shown below.

R =

⎡⎢⎢⎢⎢⎢⎣
〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉
〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉
〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉
〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉

〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉

⎤⎥⎥⎥⎥⎥⎦
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Step 2 Aggregate all attribute values of each alternative and get the overall value of each alternative
ai denoted as ri(i = 1, 2, 3, 4).

r1 = 〈s5.4841, ([0.3190, 0.4520], [0.1406, 0.2420], [0.3391, 0.4771])〉,
r2 = 〈s5.3016, ([0.5260, 0.6922], [0.1366, 0.2083], [0.1791, 0.2772])〉,
r3 = 〈s4.9567, ([0.4224, 0.5587], [0.1077, 0.2741], [0.2494, 0.3754])〉,
r4 = 〈s4.4896, ([0.4794, 0.6190], [0.0711, 0.1739], [0.1415, 0.2416])〉

Step 3 According to Definition 11, we assume α = 0.7 and calculate the score values of ri(i = 1, 2, 3, 4).
We get the values below.

S(r1)
= s0.5695, S(r2)

= s0.7170, S(r3)
= s0.6004, S(r4)

= s0.5765.

Step 4 According to Step 3 and Definition 12, we get the ranking of the alternatives below.

A2 � A3 � A4 � A1

6.2. The Method Based on the WINLGMSM Operator

When m = 1, p = 1, the WINLGMSM(1) operator is the same as the WINLMSM(1) operator.
The steps are omitted here. When m = 2, the steps are below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1), the growth (C2) are benefit types and the environmental
impact (C3) is cost type, so we set up the matrix as step 1 of Section 6.1.

Step 2 Aggregate all attribute values of each alternative by the WINLMSM(2) operator and get the
overall value of each alternative ai denoted as ri(i = 1, 2, 3, 4)

r1 = 〈s5.4988, ([0.3221, 0.4549], [0.1387, 0.2401], [0.3374, 0.4752])〉,
r2 = 〈s5.3735, ([0.5264, 0.6938], [0.1358, 0.2070], [0.1772, 0.2745])〉,
r3 = 〈s5.0083, ([0.4296, 0.5610], [0.1069, 0.2702], [0.2449, 0.3721])〉,
r4 = 〈s4.5371, ([0.4892, 0.6244], [0.0634, 0.1698], [0.1390, 0.2381])〉

Step 3 According to Definition 11, we assume α = 0.7, calculate the score values of ri(i = 1, 2, 3, 4),
and get the values shown below.

S(r1)
= s0.5722, S(r2)

= s0.7276, S(r3)
= s0.6087, S(r4)

= s0.5839

Step 4 According to Step 3 and Definition 12, we get the rankings of the alternatives, which are
shown below.

A2 � A3 � A4 � A1

6.3. Comparative Analysis and Discussion

(1) Based on the results in Sections 6.1 and 6.2, we can show them by using Table 2. From Table 2,
we know that there are the same ranking results in two methods when m = 1 or m = 2. However,
the result when m = 1 is different from the one when m = 2. It can be explained that, when m = 1,
the interrelationship between the attributes doesn’t need to be considered when m = 2. We can
consider the interrelationship between two attributes.

(2) Furthermore, we get the comparisons for different values of P1 and P2 when m = 2, which are
shown in Table 3. From Table 3, we know when m = 2 and P1 and P2 are not equal to zero, we can
get the same ranking results, i.e., A2 � A4 � A3 � A1. However, when P1 = 0 or P2 = 0,
the ranking results are different from the ones when P1 and P2 are not equal to zero. When P1 = 0
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or P2 = 0, the interrelationship between the attributes doesn’t need to be considered, so it can get
the same ranking results as the ones when m = 1.

Table 2. Comparison of different operator.

Operator m P1 P2 Ranking

WINLMSM(m)
1 - - A2 � A4 � A3 � A1
2 - - A2 � A3 � A4 � A1

WINLGMSM(m,p1,p2)
1 1 - A2 � A4 � A3 � A1
2 1 2 A2 � A3 � A4 � A1

Table 3. Comparisons of different values of P1 and P2 when m = 2.

Operator P1 P2 S(ri)(i = 1, 2, 3, 4) Ranking

WINLGMSM(m,p1,p2)

0 1

S(r1) = s0.6228
S(r2) = s0.8306
S(r3) = s0.7462
S(r4) = s0.7778

A2 � A4 � A3 � A1

1 0

S(r1) = s0.6228
S(r2) = s0.8306
S(r3) = s0.7462
S(r4) = s0.7778

A2 � A4 � A3 � A1

1 1

S(r1) = s0.5695
S(r2) = s0.7170
S(r3) = s0.6004
S(r4) = s0.5765

A2 � A3 � A4 � A1

1 2

S(r1) = s0.5722
S(r2) = s0.7276
S(r3) = s0.6087
S(r4) = s0.5839

A2 � A3 � A4 � A1

1 3

S(r1) = s0.5769
S(r2) = s0.7387
S(r3) = s0.6227
S(r4) = s0.6027

A2 � A3 � A4 � A1

2 1

S(r1) = s0.5745
S(r2) = s0.7199
S(r3) = s0.6116
S(r4) = s0.6004

A2 � A3 � A4 � A1

2 2

S(r1) = s0.5717
S(r2) = s0.7196
S(r3) = s0.6037
S(r4) = s0.5837

A2 � A3 � A4 � A1

2 3

S(r1) = s0.5733
S(r2) = s0.7256
S(r3) = s0.6079
S(r4) = s0.5859

A2 � A3 � A4 � A1

3 1

S(r1) = s0.5806
S(r2) = s0.7276
S(r3) = s0.6269
S(r4) = s0.6280

A2 � A4 � A3 � A1

3 2

S(r1) = s0.5751
S(r2) = s0.7206
S(r3) = s0.6101
S(r4) = s0.5997

A2 � A3 � A4 � A1

3 3

S(r1) = s0.5741
S(r2) = s0.7223
S(r3) = s0.6071
S(r4) = s0.5909

A2 � A3 � A4 � A1
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Furthermore, in order to verify the validity of the methods proposed in this paper, we can compare
them with methods from Ye [16] and the ranking results are shown in Table 4.

From Table 4, we know that the best choice is A2 for all methods, which is the same as the results
produced above. However, the ranking results are different. Compared with the approach proposed
by Ye [16], when m = 1, our ranking results have the same values as that of Ye [16], but when m = 2,
our ranking results are different from the Ye method [16]. When m = 1, all methods don’t consider
the interrelationship. They produce the same results, however, when m = 2. Our methods in this
paper can take into account the interrelationship while the method by Ye [16] doesn’t consider the
interrelationship. Therefore, there are different ranking results. Therefore, our methods are more
suitable for the different applications.

Table 4. Comparison of different methods.

Methods Operator Ranking

Methods in this paper

WINLMSM(m)m = 1 A2 � A4 � A3 � A1

WINLMSM(m)m = 2 A2 � A3 � A4 � A1

WINLGMSM(m,p1,p2) m = 1 A2 � A4 � A3 � A1

WINLGMSM(m,p1,p2) m = 2 A2 � A3 � A4 � A1

Method in [16]
INLWAA A2 � A4 � A3 � A1
INLWGA A2 � A4 � A3 � A1

From the above comparison results, we can obtain that the methods proposed by this paper are
feasible and adaptable for the MADM problems. Additionally, they have better reliability and wider
application space than other existing methods.

7. Conclusions

In this study, we propose the concept of INLMSM, which can not only adapt to the cognitive
situation of decision maker, but also provide convenience for decision making. We introduce the basic
concept of INLMSM and its generalized form, give some operators based on INLMSM, and introduce
the theory of weight to investigate WINLMSM and WINLGMSM. Afterwards, we put forward the
INLMSM operator, the INLGMSM operator, the WINLMSM operator, and the WINLGMSM operator.
In addition, we proved these operators. In addition, we introduce the MADM methods with INLMSM
in detail and illustrate their usefulness and effectiveness by showing examples. Finally, we compare
other methods to demonstrate our approach. From this paper, we can see that WINLGMSM is more
practical and flexible in application and INLMSM can express fuzzy information more conveniently.
In further study, we can use the INLMSM operator to solve practical problems and pattern recognition.
We should develop other aggregation operators for future research.
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Abstract: To address the complex multiple criteria decision-making (MCDM) problems in practice,
this article proposes the picture hesitant fuzzy set (PHFS) theory based on the picture fuzzy set and
the hesitant fuzzy set. First, the concept of PHFS is put forward, and its operations are presented,
simultaneously. Second, the generalized picture hesitant fuzzy weighted aggregation operators are
developed, and some theorems and reduced operators of them are discussed. Third, the generalized
picture hesitant fuzzy prioritized weighted aggregation operators are put forward to solve the
MCDM problems that the related criteria are at different priorities. Fourth, two novel MCDM
methods combined with the proposed operators are constructed to determine the best alternative in
real life. Finally, two numerical examples and an application of web service selection are investigated
to illustrate the effectiveness of the proposed methods. The sensitivity analysis shows that the
different values of the parameter λ affect the ranking of alternatives, and the proposed operators are
compared with several existing MCDM methods to illustrate their advantages.

Keywords: multiple criteria decision-making; picture hesitant fuzzy set; generalized picture hesitant
fuzzy weighted aggregation operator; generalized picture hesitant fuzzy prioritized weighted
aggregation operator

1. Introduction

Multiple criteria decision-making (MCDM) problems occur in numerous practical fields [1–3].
For a specific purpose, several possible plans may be presented as the alternatives; then, decision
makers assess the alternatives concerning the related criteria to determine the best one. Traditionally,
crisp numbers are utilized to express the evaluation information. However, in real life, the data are
inevitably incomplete and complex, and decision makers may be uncertain when evaluating the
alternatives. To deal with the fuzziness of evaluation information, the fuzzy set (FS) [4] was proposed
to improve the information form. During the past decades, many scholars devoted themselves to the
study of the fuzzy MCDM problems [1]. Furthermore, in recent years, along with the complexity of
the MCDM problems, how to improve the FS theory to deal with different specific situations has been
a hot topic.

Although FS is a valid form to express the uncertain evaluation information, it cannot solve
several complex situations in real life. For more effective expression of the evaluation information,
many generalized forms of FS were proposed [5–10]. The purpose of this paper is to propose a new
information form; the picture hesitant fuzzy set (PHFS) theory is put forward combined with the
concepts of picture fuzzy set (PFS) [7] and hesitant fuzzy set (HFS) [8]. As a generalized form of FS,
intuitionistic fuzzy set (IFS) [5], PFS, and HFS, PHFS can express the uncertainty and complexity of
human opinions in practice; furthermore, the positive, neutral, negative, and refusal membership
degrees are represented by several possible values that are given by decision makers.
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In practice, the uncertain and complex evaluation information will be inevitably given by decision
makers. For example, ten business managers discuss an investment project; five suggest agreement,
two present disagreement, and the other business managers choose to abstain. Obviously, FS can only
indicate the membership degree of evaluation information; thus, the opinions of the 10 business
managers cannot be represented by FS. For overcoming the limitation of FS, Atanassov [5] put
forward the non-membership function and developed the IFS. Then, the evaluation information
in the aforementioned example can be expressed by IFS accurately. Later, the interval numbers were
used to substitute the crisp numbers in IFS; then, the interval-valued intuitionistic fuzzy set (IVIFS)
was developed [6]. To convey the indeterminate information of decision makers more effectively,
Ye [9] and Liu and Yuan [11] extended the FS to triangular and trapezoidal intuitionistic fuzzy set,
respectively. However, in some particular situations, it is not convincing to represent the evaluation
information combined with IFS or IVIFS. For instance, there is a vote for a specific matter, the voting
opinions of voters can be divided into four types, namely, vote for, abstain, vote against, and a refusal
of the voting [12]. Therefore, Cuong [7,13] put forward the PFS, which is composed by the positive,
neutral, negative, and refusal membership functions; thus, PFS can express the opinions of decision
makers accurately in the example above. Subsequently, the correlation coefficient, distance measure,
and cross-entropy measure of PFS were investigated in detail [14–16].

On the other hand, sometimes the accurate membership degree of evaluation information
is difficult to be determined, which is also another shortcoming of FS. Therefore, the HFS was
developed [17], in which the membership degrees are represented by several possible crisp numbers.
Next, the interval numbers were introduced to extend the membership function of HFS and the
interval-valued hesitant fuzzy set (IVHFS) theory was proposed [18]. According to the IFS and HFS,
several potential membership and non-membership functions were expressed to put forward the dual
hesitant fuzzy set (DHFS) [10]. Later, Farhadinia [19] constructed the dual interval-valued hesitant
fuzzy set (DIVHFS) combined with DHFS. Nevertheless, HFS in the existing research cannot express
all types of human opinions in the aforementioned example.

According to the evaluation information of the individual decision makers, the collective
evaluation information of each alternative is obtained through the information fusion. Due to
the important role of aggregation tools in MCDM problems, many scholars have investigated the
aggregation operators of different fuzzy information. For example, Xu and Yager [20] developed the
operations of intuitionistic fuzzy numbers (IFNs) and proposed the intuitionistic fuzzy geometric
aggregation operators. Later, Xu [21] put forward the intuitionistic fuzzy weighted averaging
aggregation operators to aggregate the IFNs. Next, several interval-valued intuitionistic fuzzy
aggregation operators were constructed to deal with the MCDM [22–24]. With respect to the picture
fuzzy (PF) evaluation information, Wei [25] defined the operations of picture fuzzy numbers (PFNs)
according to the study of [21] and proposed the picture fuzzy weighted aggregation operators.
In addition, several PF aggregation operators according to different operations were put forward [12,26].
Besides, a great time of hesitant fuzzy aggregation operators and their generalized forms were
constructed [27], and several aggregation operators under dual hesitant fuzzy and dual interval-valued
hesitant fuzzy environment were developed [28–30].

In some practical MCDM problems, the related criteria may be at different priority levels.
For instance, a young couple wants to choose a toy for their child, the criteria of the toy they will
consider are safety and price; obviously, the criteria safety has a higher priority than price. However,
the aforementioned aggregation operators cannot fuse the aggregated arguments that are in different
priority levels. In response to these situations, Yager [31] proposed the prioritized averaging (PA)
operator. Inspired by Yager [31], Yu et al. [32,33] constructed the intuitionistic fuzzy prioritized fuzzy
and interval-valued intuitionistic fuzzy prioritized fuzzy aggregation operators. Besides, the hesitant
fuzzy prioritized aggregation operators were proposed to aggregate the evaluation information that is
at different priorities [34]. Nevertheless, to our best knowledge, few researches have extended the PA
operator to solve the MCDM problems under PF environment.

612



Symmetry 2018, 10, 295

In summary, this paper defines the PHFS based on the PFS and HFS and develops the operations
laws of picture hesitant fuzzy elements (PHFEs) according to the operations of IFNs [21]. Then,
the generalized picture hesitant fuzzy aggregation operators and generalized picture hesitant fuzzy
prioritized aggregation operators are put forward, and the properties and reduced operators of them
are investigated. Furthermore, the proposed operators are utilized to solve diverse situations during
MCDM processes under picture hesitant fuzzy (PHF) environment.

The rest of this paper is structured as follows. Definitions of the PFS, HFS, and PA operator are
presented in Section 2. The concept of PHFS is defined, and the comparison method and operations of
PHFEs are proposed in Section 3. Section 4 constructs the generalized picture hesitant fuzzy weighted
averaging (GPHFWA), generalized picture hesitant fuzzy weighted geometric (GPHFWG), generalized
picture hesitant fuzzy prioritized weighted averaging (GPHFPWA), and generalized picture hesitant
fuzzy prioritized weighted geometric (GPHFPWG) operators. In Section 5, two MCDM methods
are constructed according to the proposed operators. Section 6 applies the proposed methods into
two numerical examples and an application of web service selection to show the effectiveness and
advantages of the proposed methods. Finally, some conclusions are summarized in Section 7.

2. Preliminaries

To make this paper as self-contained as possible, we recall the definitions of the PFS, HFS, and PA
operator, which will be utilized in the subsequent research.

2.1. PFS

Atanassov [5] applied the non-membership degree to extend FS; however, expressing the
evaluation information depend on IFS is unreasonable in practice, at times. Therefore, Cuong [13]
proposed the PFS theory based on FS and IFS, which can represent more information of decision
makers, including yes, abstain, no, and refusal.

Definition 1. Let X be a non-empty and finite set, a PFS P on X is defined by

P = {〈x, μP(x), ηP(x), vP(x)〉|x ∈ X}, (1)

where μP(x), ηP(x), and vP(x) are the positive, neutral, and negative membership functions that are belonging
to [0, 1], respectively, and they meet the condition of 0 ≤ μP(x) + ηP(x) + vP(x) ≤ 1. Furthermore,
πP(x) = 1− μP(x)− ηP(x)− vP(x) is the refusal membership function.

Definition 2. A picture fuzzy number (PFN) is represented by a = (μa, ηa, va), where μa ∈ [0, 1], ηa ∈ [0, 1],
va ∈ [0, 1], and μa + ηa + va ≤ 1 [25].

Wei [25] proposed the operations of PFNs based on the operations of IFNs in [21].

Definition 3. Let a1 = (μ1, η1, v1), a2 = (μ2, η2, v2), and a = (μ, η, v) be three PFNs, λ > 0, and ac is the
complementary set of a, then [25]

ac = (v, η, μ); (2)

a1 ⊕ a2 = (μ1 + μ2 − μ1μ2, η1η2, v1v2); (3)

a1 ⊗ a2 = (μ1μ2, η1 + η2 − η1η2, v1 + v2 − v1v2); (4)

λa =
(

1− (1− μ)λ, ηλ, vλ
)

; (5)

aλ =
(

μλ, 1− (1− η)λ, 1− (1− v)λ
)

. (6)
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2.2. HFS

Due to the complexity of the evaluated object in practice, decision makers may have difficulty
determining an accurate value of the membership level. To deal with this situation, Torra [8] developed
the HFS theory in which the membership degree is expressed by several possible values.

Definition 4. Let ℘([0, 1]) be the set of all subsets of the unitary interval and X be a non- empty set.
Let hA : X → ℘([0, 1]) , then an HFS A on X is defined by

A = {〈x, hA(x)〉|x ∈ X}. (7)

Definition 5. A hesitant fuzzy element (HFE) is a non-empty and finite subset of [0, 1] [27].

Although a HFE can be given by any subset of [0, 1], in practice, HFS is commonly restricted to
finite set in the MCDM problems [27]. Therefore, Bedregal at al. [35] proposed the typical hesitant
fuzzy set (THFS), which is the finite and non-empty HFS. Later, Alcantud and Torra [36] defined
the uniformly typical hesitant fuzzy set (UTHFS) that can simplify many theoretical and practical
arguments, which is a generalized form of THFS. In this paper, the evaluation information of decision
makers is expressed by UTHFS during the MCDM processes under hesitant fuzzy environment.

Definition 6. Let H ⊆ ℘([0, 1]) be the set of all finite and non-empty subsets of [0, 1], and let X be a non-
empty set. Then, a THFS A on X is defined by Equation (7), where hA : X → H . Each h ∈ H is called a typical
hesitant fuzzy element (THFE) [35].

Definition 7. Let A be a THFS on X, if there is N such that the cardinality of the THFS lA(x) ≤ N for each
x ∈ X. Then, the THFS A is an UTHFS. Each h ∈ H is called an uniformly typical hesitant fuzzy element
(UTHFE) [36].

To aggregate the hesitant fuzzy evaluation information, Xia and Xu [27] investigated the
operations of HFEs, which is also valid for fusing UTHFEs.

Definition 8. Let h, h1, and h2 be three UTHFEs, λ > 0, then

h1 ⊕ h2 = ∪
γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2}; (8)

h1 ⊗ h2 = ∪
γ1∈h1,γ2∈h2

{γ1γ2}; (9)

λh = ∪
γ∈h

{
1− (1− γ)λ

}
; (10)

hλ = ∪
γ∈h

{
γλ
}

. (11)

2.3. The PA Operator

Aggregation operator plays a crucial role in the process of information fusion. Sometimes,
the criteria have different priorities according to their important degree; thus, Yager [31] constructed
the PA operator to address these situations.
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Definition 9. Let C = {C1, C2, . . . , Cn} be a set of criteria, which are divided into several priority levels,
i.e., the priority of Cp is higher than Cq when p < q. The Cj(x) ∈ [0, 1] is the evaluation value of the alternative
x concerning the criteria Cj. Thus, the PA operator is expressed by

PA(C1(x), C2(x), . . . , Cn(x)) =
n

∑
j=1

wjCj(x). (12)

where wj = Tj/∑n
j=1 Tj, Tj = ∏

j−1
k=1 Ck(x), and T1 = 1.

3. PHFS

According to the PFS and UTHFS, we can define the PHFS that is composed by four membership
functions, namely, positive, neutral, negative, and refusal membership functions. The four membership
degrees are denoted by several values belonging to [0, 1], respectively, which can convey the hesitancy
of decision makers.

Definition 10. Let X be a non-empty and finite set, a PHFS N on X is defined by

N = {〈x, μ̃(x), η̃(x), ṽ(x)〉|x ∈ X}, (13)

where μ̃(x) = {α|α ∈ μ̃(x)}, η̃(x) = {β|β ∈ η̃(x)}, and ṽ(x) = {γ|γ ∈ ṽ(x)} are three sets of several
values in [0, 1], representing the potential positive, neutral, and negative membership degrees. The degrees
above satisfy the condition of 0 ≤ α+ + β+ + γ+ ≤ 1, where α+ = ∪α∈μ̃(x)max{α}, β+ = ∪β∈η̃(x)max{β},
and γ+ = ∪γ∈ṽ(x)max{γ}. For convenience, we call ñ = {μ̃(x), η̃(x), ṽ(x)} is a PHFE, denoted by
ñ = {μ̃, η̃, ṽ}.

During the process of applying the PHFEs to the practical MCDM problems, it is necessary to
rank the PHFEs; thus, we develop the score and accuracy functions of PHFEs.

Definition 11. Let ñ = {μ̃, η̃, ṽ} be a PHFE, the numbers of values in μ̃, η̃, ṽ are l, p, q, respectively. Thus,
the score function is defined as

s(ñ) =

(
1 +

1
l

l

∑
i=1

αi −
1
p

p

∑
i=1

βi −
1
q

q

∑
i=1

γi

)
/2, s(ñ) ∈ [0, 1]. (14)

the accuracy function is expressed as

h(ñ) =
1
l

l

∑
i=1

αi +
1
p

p

∑
i=1

βi +
1
q

q

∑
i=1

γi, h(ñ) ∈ [0, 1]. (15)

Based on the score and accuracy values of PHFEs, we can determine the order relations between
two PHFEs as in the following.

Definition 12. Let ñ1 = {μ̃1, η̃1, ṽ1} and ñ2 = {μ̃2, η̃2, ṽ2} be two PHFEs, then

(1) If s(ñ1) > s(ñ2), then ñ1 > ñ2;
(2) If s(ñ1) = s(ñ2), then

a. If h(ñ1) > h(ñ2), then ñ1 > ñ2;
b. If h(ñ1) = h(ñ2), then ñ1 = ñ2;
c. If h(ñ1) < h(ñ2), then ñ1 < ñ2
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For example, let ñ1 = {{0.3, 0.4}, {0.2}, {0.2, 0.3}}± and ñ2 = {{0.3}, {0.2, 0.3}, {0.1, 0.2}}
be two PHFEs, according to the Definition 11, we have s(ñ1) = s(ñ2) = 0.45, h(ñ1) = 0.4,
and h(ñ2) = 0.35, then ñ1 > ñ2.

Inspired by the operational laws of PFNs and UTHFEs, i.e., the Definition 3 and 8, we propose
the operational laws of PHFEs as follows.

Definition 13. Let ñ = {μ̃, η̃, ṽ}, ñ1 = {μ̃1, η̃1, ṽ1}, and ñ2 = {μ̃2, η̃2, ṽ2} be three PHFEs, λ > 0, and ñc is
the complementary set of ñ, and the operations of PHFEs are represented as

ñc = ∪
α∈μ̃,β∈η̃,γ∈ṽ

{{γ}, {β}, {α}}; (16)

ñ1 ⊕ ñ2 = {μ̃1 ⊕ μ̃2, η̃1 ⊗ η̃2, ṽ1 ⊗ ṽ2} = ∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1,α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{α1 + α2 − α1α2}, {β1β2}, {γ1γ2}}; (17)

ñ1 ⊗ ñ2 = {μ̃1 ⊗ μ̃2, η̃1 ⊕ η̃2, ṽ1 ⊕ ṽ2} = ∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1,α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{α1α2}, {β1 + β2 − β1β2}, {γ1 + γ2 − γ1γ2}}; (18)

λñ = ∪
α∈μ̃,β∈η̃,γ∈ṽ

{{
1− (1− α)λ

}
,
{

βλ
}

,
{

γλ
}}

; (19)

ñλ = ∪
α∈μ̃,β∈η̃,γ∈ṽ

{{
αλ
}

,
{

1− (1− β)λ
}

,
{

1− (1− γ)λ
}}

. (20)

For example, let ñ1 = {{0.3, 0.4}, {0.2}, {0.2, 0.3}} and ñ2 = {{0.3}, {0.2, 0.3}, {0.1, 0.2}} be two
PHFEs, λ = 2, then

(1) ñ1
c = {{0.2, 0.3}, {0.2}, {0.3, 0.4}}, ñ2

c = {{0.1, 0.2}, {0.2, 0.3}, {0.3}};
(2) ñ1 ⊕ ñ2 = {{0.51, 0.58}, {0.04, 0.06}, {0.02, 0.03, 0.04, 0.06}};
(3) ñ1 ⊗ ñ2 = {{0.09, 0.12}, {0.36, 0.44}, {0.28, 0.36, 0.37, 0.44}};
(4) λñ1 = {{0.51, 0.64}, {0.04}, {0.04, 0.09}}, λñ2 = {{0.51}, {0.04, 0.09}, {0.01, 0.04}};
(5) ñ1

λ = {{0.09, 0.16}, {0.36}, {0.36, 0.51}}, ñ2
λ = {{0.09}, {0.36, 0.51}, {0.19, 0.36}}.

Obviously, the following theorem can be obtained based on the Definition 13.

Theorem 1. Let ñ = {μ̃, η̃, ṽ}, ñ1 = {μ̃1, η̃1, ṽ1}, and ñ2 = {μ̃2, η̃2, ṽ2} be three PHFEs, λ, λ1, λ2 > 0, then

(1) ñ1 ⊕ ñ2 = ñ2 ⊕ ñ1;
(2) ñ1 ⊗ ñ2 = ñ2 ⊗ ñ1;
(3) λ(ñ1 ⊕ ñ2) = λñ1 ⊕ λñ2;

(4) (ñ1 ⊗ ñ2)
λ = ñ1

λ ⊗ ñ2
λ;

(5) λ1ñ⊕ λ2ñ = (λ1 + λ2)ñ;

(6) ñλ1 ⊗ ñλ2 = ñ(λ1+λ2);

(7)
(
ñλ1
)λ2 = ñλ1λ2 .

4. Generalized Picture Hesitant Fuzzy Aggregation Operators

Combined with the concept and operations of PHFS, the GPHFWA, GPHFWG, GPHFPWA,
and GPHFPWG operators are developed. Then, several properties of them are discussed, and some
other aggregation operators under PHF environment that reduced by the proposed operators
are presented.
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4.1. The GPHFWA Operator

Definition 14. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFWA operator is a mapping
Ωn → Ω as

GPHFWAλ(ñ1, ñ2, . . . , ñn) =
(

w1ñ1
λ ⊕ w2ñ2

λ ⊕ · · · ⊕ wnñn
λ
)1/λ

=
n
⊕

j=1

(
wjñj

λ
)1/λ

. (21)

where w = (w1, w2, . . . , wn) is the weight vector of PHFEs ñj, and satisfies the conditions of wj > 0 and
∑n

j=1 wj = 1.

Based on the Definition 13, we can obtain the theorems as follows.

Theorem 2. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the GPHFWA
operator is also a PHFE, and

GPHFWAλ(ñ1, ñ2, . . . , ñn) = ∪
α1∈μ̃1,α2∈μ̃2,...,αn∈μ̃n ,β1∈η̃1,β2∈η̃2,...,βn∈η̃n ,γ1∈ṽ1,γ2∈ṽ2,...,γn∈ṽn

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
j=1

(
1− αj

λ
)wj

)1/λ
⎫⎬⎭ ,⎧⎨⎩1−

(
1−

n
∏
j=1

(
1−
(
1− β j

)λ
)wj

)1/λ
⎫⎬⎭,

⎧⎨⎩1−
(

1−
n
∏
j=1

(
1−
(
1− γj

)λ
)wj

)1/λ
⎫⎬⎭
⎫⎬⎭.

(22)

Proof. See Appendix A. �

Theorem 3. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal, i.e.,
ñj = ñ = {μ̃, η̃, ṽ}, μ̃ = α, η̃ = β, ṽ = γ, then

GPHFWAλ(ñ1, ñ2, . . . , ñn) = ñ = {μ̃, η̃, ṽ}. (23)

Proof. See Appendix B. �

Theorem 4. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈μ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min
{

β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈μ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min
{

γj
}

, thus

ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (24)

Proof. See Appendix C. �

Theorem 5. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ GPHFWAλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (25)

Proof. Theorem 5 can be obtained by the Theorem 4. �

Under some specific situations, we can obtain the reduced operators of the GPHFWA operator.

Case 1. If λ = 1, then the GPHFWA operator is reduced to the picture hesitant fuzzy weighted
averaging (PHFWA) operator

PHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn) =
n
⊕

j=1

(
wjñj

)
. (26)
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Case 2. If λ = 1 and w = (1/n, 1/n, . . . , 1/n), then the GPHFWA operator is reduced to the picture
hesitant fuzzy arithmetic averaging (PHFAA) operator

PHFAA(ñ1, ñ2, . . . , ñn) =

(
1
n

ñ1 ⊕
1
n

ñ2 ⊕ · · · ⊕
1
n

ñn

)
. (27)

4.2. The GPHFWG Operator

Similarly, the GPHFWG operator can be defined as in the following.

Definition 15. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFWG operator is a mapping
Ωn → Ω as

GPHFWGλ(ñ1, ñ2, . . . , ñn) =
1
λ
(λñ1

w1 ⊗ λñ2
w2 ⊗ · · · ⊗ λñn

wn) =
1
λ

n
⊗

j=1

(
λñj

wj
)
. (28)

where w = (w1, w2, . . . , wn) is the weight vector of PHFEs ñj, and satisfies the conditions of wj > 0 and
∑n

j=1 wj = 1.

According to the operational laws of PHFEs, the theorem can be obtained as follows.

Theorem 6. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the GPHFWG
operator is also a PHFE, and

GPHFWGλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈μ̃1,α2∈μ̃2,...,αn∈μ̃n ,β1∈η̃1,β2∈η̃2,...,βn∈η̃n ,γ1∈ṽ1,γ2∈ṽ2,...,γn∈ṽn

⎧⎨⎩
⎧⎨⎩1−

(
1−

n
∏
j=1

(
1−
(
1− αj

)λ
)wj

)1/λ
⎫⎬⎭,

⎧⎨⎩
(

1−
n
∏
j=1

(
1− β j

λ
)wj

)1/λ
⎫⎬⎭ ,⎧⎨⎩

(
1−

n
∏
j=1

(
1− γj

λ
)wj

)1/λ
⎫⎬⎭.

(29)

It can be proven by the same process as Theorem 3–5 that the GPHFWG operator also has
several properties.

Theorem 7. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal,
i.e., ñj = ñ = {μ̃, η̃, ṽ}, μ̃ = α, η̃ = β, ṽ = γ, then

GPHFWGλ(ñ1, ñ2, . . . , ñn) = ñ = {μ̃, η̃, ṽ}. (30)

Theorem 8. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈μ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min
{

β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈μ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min
{

γj
}

, thus

ñ− ≤ GPHFWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (31)

Theorem 9. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFWGλ(ñ1, ñ2, . . . , ñn) ≤ GPHFWGλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (32)

Several reduced operators of the GPHFWG operator are presented as:
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Case 3. If λ = 1, then the GPHFWG operator is reduced to the picture hesitant fuzzy weighted
geometric (PHFWG) operator

PHFWG(ñ1, ñ2, . . . , ñn) = (ñ1
w1 ⊗ ñ2

w2 ⊗ · · · ⊗ ñn
wn) =

n
⊗

j=1

(
ñj

wj
)
. (33)

Case 4. If λ = 1 and w = (1/n, 1/n, . . . , 1/n), then the GPHFWG operator is reduced to the picture
hesitant fuzzy geometric averaging (PHFGA) operator

PHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (34)

4.3. The GPHFPWA Operator

In real life, the criteria sometimes have different priority levels. For example, safety has a higher
priority than price when a couple chooses a toy for their child. Obviously, the GPHFWA and GPHFWG
operators cannot deal with this situation; then, the GPHFPWA and GPHFPWG operators are developed
according to the PA operator proposed by Yager [31].

Definition 16. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFPWA operator is a mapping
Ωn → Ω as

GPHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1
λ ⊕ T2

∑n
j=1 Tj

ñ2
λ ⊕ · · · ⊕ Tn

∑n
j=1 Tj

ñn
λ

)1/λ

. (35)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of PHFE ñk.

Similarly, the following theorem can be put forward.

Theorem 10. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the
GPHFPWA operator is also a PHFE, and

GPHFPWAλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈μ̃1 ,α2∈μ̃2 ,...,αn∈μ̃n ,β1∈η̃1,β2∈η̃2 ,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2,...,γn∈ṽn

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩
⎛⎝1−

n
∏
j=1

(
1− αj

λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(
1− β j

)λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭,⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(
1− γj

)λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭.

(36)

The GPHFPWA operator also has the properties as follows.

Theorem 12. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal, i.e.,
ñj = ñ = {μ̃, η̃, ṽ}, μ̃ = α, η̃ = β, ṽ = γ, then

GPHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ = {μ̃, η̃, ṽ}. (37)

Theorem 13. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, ñ− = {{α−}, {β+}, {γ+}} and
ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈μ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min
{

β j
}

, γ− = ∪γj∈ṽj
min
{

γj
}

,
α+ = ∪αj∈μ̃j

max
{

αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min
{

γj
}

, thus
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ñ− ≤ GPHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (38)

Theorem 14. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ GPHFPWAλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (39)

Then, the reduced operators of the GPHFPWA operator can be obtained.

Case 5. If λ = 1, then the GPHFPWA operator is reduced to the picture hesitant fuzzy prioritized
weighted averaging (PHFPWA) operator

PHFPWA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1 ⊕
T2

∑n
j=1 Tj

ñ2 ⊕ · · · ⊕
Tn

∑n
j=1 Tj

ñn

)
. (40)

Case 6. If λ = 1 and the criteria are at the same priority, then the GPHFPWA operator is reduced to the
PHFWA operator

PHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn) =
n
⊕

j=1

(
wjñj

)
. (41)

Case 7. If λ = 1, w = (1/n, 1/n, . . . , 1/n), and the criteria are at the same priority, then the GPHFPWA
operator is reduced to the PHFAA operator

PHFAA(ñ1, ñ2, . . . , ñn) =

(
1
n

ñ1 ⊕
1
n

ñ2 ⊕ · · · ⊕
1
n

ñn

)
. (42)

4.4. The GPHFPWG Operator

Similarly, the GPHFPWG operator is constructed as below.

Definition 17. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFPWG operator is a mapping
Ωn → Ω as

GPHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(
(λñ1)

T1
∑n

j=1 Tj ⊗ (λñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (λñn)
Tn

∑n
j=1 Tj

)
. (43)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of PHFE ñk.

Combined with the operations of PHFEs, the following theorems are obtained.
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Theorem 15. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the
GPHFPWG operator is also a PHFE, and

GPHFPWGλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈μ̃1,α2∈μ̃2 ,...,αn∈μ̃n ,β1∈η̃1 ,β2∈η̃2,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γn∈ṽn

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(
1− αj

)λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭,

⎧⎪⎨⎪⎩
⎛⎝1−

n
∏
j=1

(
1− β j

λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭ ,⎧⎪⎨⎪⎩

⎛⎝1−
n
∏
j=1

(
1− γj

λ
) Tj

∑n
j=1 Tj

⎞⎠1/λ
⎫⎪⎬⎪⎭.

(44)

Theorem 16. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal,

i.e., ñj = ñ = {μ̃, η̃, ṽ}, μ̃ = α, η̃ = β, ṽ = γ, then

GPHFPWGλ(ñ1, ñ2, . . . , ñn) = ñ = {μ̃, η̃, ṽ}. (45)

Theorem 17. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈μ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min
{

β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈μ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min
{

γj
}

, thus

ñ− ≤ GPHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (46)

Theorem 18. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ GPHFPWGλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (47)

Several reduced operators of the GPHFPWG operator are presented as below:

Case 8. If λ = 1, then the GPHFPWG operator is reduced to the picture hesitant fuzzy prioritized
weighted geometric (PHFPWG) operator

PHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (48)

Case 9. If λ = 1 and the criteria are at the same priority, then the GPHFPWG operator is reduced to
the PHFWG operator

PHFWG(ñ1, ñ2, . . . , ñn) = (ñ1
w1 ⊗ ñ2

w2 ⊗ · · · ⊗ ñn
wn) =

n
⊗

j=1

(
ñj

wj
)
. (49)

Case 10. If λ = 1, w = (1/n, 1/n, . . . , 1/n) and the criteria are at the same priority, then the GPHFPWG
operator is reduced to the PHFGA operator

PHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (50)
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5. MCDM Methods under PHF Environment

We utilize the proposed operators to deal the different MCDM problems under PHF environment
in this section. Let A = {A1, A2, . . . , Am} be a collection of alternatives and C = {C1, C2, . . . , Cn} be
a set of criteria; decision maker evaluates the m alternatives concerning the n criteria by using the
PHFEs. Thus, suppose that N =

(
ñij
)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the PHF evaluation matrix,

and ñij =
{

μ̃ij, η̃ij, ṽij
}

is the evaluation information when the alternative Ai is evaluated concerning
the criteria Cj. In general, the criteria can be divided into two types in practice, namely, the cost
criteria and benefit criteria; therefore, the evaluation information concerning the cost criteria should be
transformed into the evaluation information concerning the benefit criteria to obtain the standardized
PHF evaluation matrix N =

(
nij
)

as

nij =

{
ñij, for the benefit criteria;(
ñij
)c, for the cost criteria.

(51)

According to the aforementioned assumptions, when the criteria of a specific MCDM problem
are in same priority level, and let w = (w1, w2, . . . , wn) be the weight vector of the criteria. We can
construct a novel approach, i.e., Algorithm 1 to solve it based on the GPHFWA or the GPHFWG
operator. The flow diagram of the Algorithm 1 is presented in Figure 1, and the ranking result can be
obtained by the following steps.

( )ijN n=

( )ijN n=

{ }, ,i i i in vμ η=

( )is n
( )ih n

 

Figure 1. Flow diagram of the Algorithm 1.

Algorithm 1. MCDM method based on the GPHFWA or the GPHFWG operator.

1: Normalize the PHF evaluation matrix N to obtain the standardized PHF evaluation matrix N combined
with Equation (51).
2: Utilize the GPHFWA operator

GPHFWAλ(ni1, ni2, . . . , nin) =
(

w1ni1
λ ⊕ w2ni2

λ ⊕ · · · ⊕ wnnin
λ
)1/λ

=
n
⊕

j=1

(
wjnij

λ
)1/λ

=

∪
αi1∈μ̃i1,αi2∈μ̃i2,...,αin∈μ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
j=1

(
1− αij

λ
)wj

)1/λ
⎫⎬⎭ ,

⎧⎨⎩1−
(

1−
n
∏
j=1

(
1−
(

1− βij

)λ
)wj
)1/λ

⎫⎬⎭,⎧⎨⎩1−
(

1−
n
∏
j=1

(
1−
(

1− γij

)λ
)wj
)1/λ

⎫⎬⎭
⎫⎬⎭

(52)
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or the GPHFWG operator

GPHFWGλ(ni1, ni2, . . . , nin) =
1
λ (λni1

w1 ⊗ λni2
w2 ⊗ · · · ⊗ λnin

wn ) = 1
λ

n
⊗

j=1

(
λnij

wj
)
=

∪
αi1∈μ̃i1,αi2∈μ̃i2,...,αin∈μ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin

⎧⎨⎩
⎧⎨⎩1−

(
1−

n
∏
j=1

(
1−
(

1− αij

)λ
)wj
)1/λ

⎫⎬⎭,

⎧⎨⎩
(

1−
n
∏
j=1

(
1− βij

λ
)wj

)1/λ
⎫⎬⎭ ,⎧⎨⎩

(
1−

n
∏
j=1

(
1− γij

λ
)wj

)1/λ
⎫⎬⎭

(53)

to aggregate the standardized PHF evaluation matrix N to obtain the collective evaluation information of each
alternative, i.e., ñi = {μ̃i, η̃i, ṽi}.
3: Compute the score and accuracy values of each alternative using Equation (14) and (15).
4: Based on the comparison method of PHFEs, rank the alternatives.

When the criteria are in different priorities, we can solve the MCDM problem combined with the
Algorithm 2 based on the GPHFPWA or the GPHFPWG operator. The flow diagram of Algorithm 2 is
presented in Figure 2, and the ranking result can be obtained by the following steps.

Picture hesitant fuzzy evaluation matrix ( )ijN n=

Standardized picture hesitant fuzzy evaluation
matrix ( )ijN n=

Information fusion using the GPHFPWA 
operator or GPHFPWG operator 

Collective evaluation information of each
alternative { }, ,i i i in vμ η=

Score function value          and accuracy function 
value           of each alternative 

( )is n
( )ih n

Ranking of the alternatives

A MCDM problem that the criteria are at 
different priorities

The 
values of 

ijT

 

Figure 2. Flow diagram of the Algorithm 2.

Algorithm 2. MCDM method based on the GPHFPWA or the GPHFPWG operator.

1: Normalize the PHF evaluation matrix N to obtain the standardized PHF evaluation matrix combined with
Equation (51).
2: Compute the values of Tij using the equations as

Tij =
j−1

∏
k=1

s(ñik), Ti1 = 1. (54)

3: Utilize the GPHFPWA operator
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GPHFPWAλ(ni1, ni2, . . . , nin) =

(
Ti1

∑n
j=1 Tij

ni1
λ ⊕ Ti2

∑n
j=1 Tij

ni2
λ ⊕ · · · ⊕ Tin

∑n
j=1 Tij

nin
λ

)1/λ

= ∪
αi1∈μ̃i1,αi2∈μ̃i2,...,αin∈μ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
j=1

(
1− αij

λ
) Tij

∑n
j=1 Tij

)1/λ
⎫⎬⎭ ,

⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(

1− βij

)λ
) Tij

∑n
j=1 Tij

⎞⎠1/λ
⎫⎪⎬⎪⎭,

⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(

1− γij

)λ
) Tij

∑n
j=1 Tij

⎞⎠1/λ
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

(55)

or the GPHFPWG operator

GPHFPWGλ(ni1, ni2, . . . , nin) =
1
λ

(
(λni1)

Ti1
∑n

j=1 Tij ⊗ (λni2)

Ti2
∑n

j=1 Tij ⊗ · · · ⊗ (λnin)

Tin
∑n

j=1 Tij

)
=

∪
αi1∈μ̃i1,αi2∈μ̃i2,...,αin∈μ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩1−

⎛⎝1−
n
∏
j=1

(
1−
(

1− αij

)λ
) Tij

∑n
j=1 Tij

⎞⎠1/λ
⎫⎪⎬⎪⎭,

⎧⎨⎩
(

1−
n
∏
j=1

(
1− βij

λ
) Tij

∑n
j=1 Tij

)1/λ
⎫⎬⎭ ,

⎧⎨⎩
(

1−
n
∏
j=1

(
1− γij

λ
) Tij

∑n
j=1 Tij

)1/λ
⎫⎬⎭

(56)

to aggregate the standardized PHF evaluation matrix N to obtain the collective evaluation information of each
alternative, i.e., ñi = {μ̃i, η̃i, ṽi}.
4: Compute the score and accuracy values of each alternative using Equation (14) and (15).
5: Based on the comparison method of PHFEs, rank the alternatives.

6. Numerical Examples

We adopt two numerical examples of MCDM problems from the study of [25] and [34]
and an application of web service selection [37] to show the feasibility and advantages of the
proposed methods.

6.1. Implementation

Example 1. Suppose that an organization wants to construct the enterprise resource planning (ERP) system [25].
After investigating the existing vendors of ERP systems on the market, five potential ERP systems are primary
determined to be chosen from, i.e., Ai (i = 1, 2, 3, 4, 5). Decision makers utilize the PHFEs to evaluate the five
alternatives with respect to four criteria, namely, function and technology (C1), strategic fitness (C2), ability
of vendor (C3), and reputation of vendor (C4), and the weight vector of the criteria is w = (0.2, 0.1, 0.3, 0.4).
Subsequently, the PHF evaluation matrix N =

(
ñij
)

is obtained as shown in Table 1.

Table 1. PHF evaluation matrix of Example 1.

Alternatives C1 C2 C3 C4

A1
{{0.43,0.53},{0.33},

{0.06,0.09}}
{{0.76,0.89},

{0.05,0.08},{0.03}}
{{0.42},{0.35},
{0.12,0.18}}

{{0.08},{0.75,0.89},
{0.02}}

A2
{{0.53,0.65,0.73},

{0.10,0.12},{0.08}}
{{0.13},{0.53,0.64},

{0.12,0.21}}
{{0.03},{0.77,0.82},

{0.10,0.13}}
{{0.58,0.73},{0.15},

{0.08}}

A3
{{0.72,0.86,0.91},

{0.03},{0.02}}
{{0.07},{0.05,0.09},

{0.05}} {{0.04},{0.65,0.72,0.85},{0.05,0.10}} {{0.45,0.68},{0.18,0.26},{0.06}}

A4
{{0.77,0.85},{0.09},

{0.05}} {{0.65,0.74},{0.10,0.16},{0.10}} {{0.02},{0.78,0.89},{0.05}} {{0.08},{0.65,0.84},
{0.06}}

A5
{{0.70,0.81,0.90},

{0.05},{0.02}}
{{0.68},{0.08},
{0.13,0.21}} {{0.05},{0.77,0.87},{0.06}} {{0.13},{0.65,0.75},

{0.09}}

Then, we can determine the ranking of the five potential ERP systems using the Algorithm 1,
which are presented as below.

Step 1: Because of all the criteria are the benefit type, the standardized PHF evaluation matrix N is as
same as the PHF evaluation matrix N.
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Step 2: Use the GPHFWA (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.3636, 0.3877, 0.4113, 0.4336} , {0.3862, 0.4048, 0.4136, 0.4335}, {0.0444, 0.0482, 0.0502, 0.0544}};
ñ2 = {{0.4061, 0.4401, 0.4684, 0.5023, 0.5308, 0.5545} , {0.2563, 0.2612, 0.2612, 0.2659, 0.2662, 0.2709, 0.2709, 0.2761},

{0.0891, 0.0942, 0.0964, 0.1019}};
ñ3 = {{0.4014, 0.4789, 0.5180, 0.5230, 0.5804, 0.6159} , {0.1627, 0.1677, 0.1725, 0.1763, 0.1779, 0.1870, 0.1884, 0.1943,

0.1999, 0.2042, 0.2061, 0.2166}, {0.0448, 0.0551}};
ñ4 = {{0.3549, 0.3738, 0.4077, 0.4251} , {0.3834, 0.3989, 0.4018, 0.4181, 0.4248, 0.4420, 0.4452, 0.5632}, {0.0576}};

ñ5 = {{0.3468, 0.4038, 0.4756} , {0.3321, 0.3444, 0.3516, 0.3647}, {0.0612, 0.0642}}.

Step 3: Compute the score values of each alternative combined with Equation (14):

s(ñ1) = 0.4701, s(ñ2) = 0.5611, s(ñ3) = 0.6409, s(ñ4) = 0.4553, s(ñ5) = 0.4989.

Step 4: According to the score values, the ranking result of the five ERP systems is determined as
A3 � A2 � A5 � A1 � A4.

If the GPHFWG operator is utilized in the steps above to complete the information fusion, the
ranking procedures are presented as follows.

Step 1′: See Step 1.
Step 2′: Use the GPHFWG (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.2307, 0.2343, 0.2405, 0.2443} , {0.5365, 0.6663, 0.5380, 0.6673}, {0.0600, 0.0797, 0.0661, 0.0856}};
ñ2 = {{0.2017, 0.2101, 0.2151, 0.2212, 0.2304, 0.2358} , {0.4526, 0.4550, 0.4670, 0.4693, 0.4914, 0.4936, 0.5047, 0.5070},

{0.0901, 0.0993, 0.0999, 0.1090}};
ñ3 = {{0.1986, 0.2057, 0.2081, 0.2342, 0.2427, 0.2454} , {0.3334, 0.3363, 0.3602, 0.3630, 0.3766, 0.3792, 0.4016, 0.4042,

0.4830, 0.4852, 0.5038, 0.5059}, {0.0481, 0.0634}};
ñ4 = {{0.1024, 0.1037, 0.1044, 0.1058} , {0.5949, 0.5977, 0.6709, 0.6732, 0.7038, 0.7058, 0.7594, 0.7611}, {0.0591}};

ñ5 = {{0.1613, 0.1660, 0.1696} , {0.5850, 0.6372, 0.6503, 0.6943}, {0.0716, 0.0805}}.

Step 3′: Compute the score values of each alternative combined with Equation (14):

s(ñ1) = 0.2813, s(ñ2) = 0.3197, s(ñ3) = 0.3778, s(ñ4) = 0.1808, s(ñ5) = 0.2240.

Step 4′: According to the score values, the ranking result of the five ERP systems is determined as
A3 � A2 � A1 � A5 � A4.

Example 2. Suppose a university wants to introduce excellent foreign professors to improve the level of teaching
and scientific research [34]. There are five foreign professors who are selected by the University’s human resources
department. Based on the priority level, the criteria of investigation is successively morality (C1), research ability
(C2), teaching capacity (C3), and educational experience (C4); a priority relationship C1 � C2 � C3 � C4 exists
between the criteria. Then, the PHF evaluation matrix N =

(
ñij
)

is presented in Table 2.
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Table 2. PHF evaluation matrix in Example 2.

Alternatives C1 C2 C3 C4

A1 {{0.40,0.50,0.70},{0.05},{0.10,0.20}} {{0.65},{0.05,0.08},
{0.15}} {{0.40,0.50,0.60},{0.03},{0.10,0.20}} {{0.55},{0.10,0.15},

{0.15}}

A2 {{0.65,0.75},{0.02,0.04},{0.15}} {{0.60},{0.05,0.10},
{0.10,0.20}}

{{0.75,0.80},{0.06},
{0.05,0.08}}

{{0.40,0.50},{0.20},
{0.15,0.25}}

A3
{{0.70},{0.06,0.10},

{0.10,0.15}} {{0.20,0.30,0.50},{0.04},{0.30,0.40}} {{0.50},{0.03,0.06},
{0.30,0.35}}

{{0.50,0.70},{0.10},
{0.10}}

A4 {{0.50,0.60,0.70},{0.08},{0.10}} {{0.40,0.50},{0.20},
{0.10,0.20}}

{{0.85},{0.03,0.07},
{0.05}}

{{0.45},{0.10,0.20},
{0.15,0.30}}

A5
{{0.65},{0.05,0.10},

{0.15,0.20}}
{{0.50,0.70},{0.08},

{0.20}}
{{0.70,0.80},{0.04},

{0.10}} {{0.35},{0.10,0.20},{0.30,0.40}}

Subsequently, we can determine the ranking of the five foreign professors using the Algorithm 2,
which are presented as follows.

Step 1: Because of all the criteria are the benefit type, the standardized PHF evaluation matrix N is as
same as the PHF evaluation matrix N.
Step 2: Compute the values of Tij using the Equation (54)

Tij =

⎡⎢⎢⎢⎢⎢⎣
1.000 0.6667 0.4783 0.3157
1.000 0.7600 0.5225 0.4311
1.000 0.7475 0.3526 0.1992
1.000 0.7100 0.3905 0.3417
1.000 0.7000 0.4620 0.3719

⎤⎥⎥⎥⎥⎥⎦.

Step 3: Use the GPHFPWA (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.5003, 0.5177, 0.5360, 0.5382, 0.5522, 0.6230, 0.6361, 0.6516, 0.6516} , {0.0495, 0.0521, 0.0562, 0.0592},
{0.1176, 0.1345, 0.1558, 0.1783}};

ñ2 = {{0.6290, 0.6396, 0.6446, 0.6548, 0.6723, 0.6816, 0.6861, 0.6950} , {0.0460, 0.0559, 0.0594, 0.0722},
{0.1084, 0.1175, 0.1186, 0.1287, 0.1316, 0.1427, 0.1441, 0.1562}};

ñ3 = {{0.5335, 0.5533, 0.5537, 0.5727, 0.5996, 0.6169} , {0.0494, 0.0550, 0.0617, 0.0686} ,

{0.1692, 0.1732, 0.1857, 0.1902, 0.2018, 0.2066, 0.2216, 0.2269}};
ñ4 = {{0.5593, 0.5820, 0.5978, 0.6185, 0.6425, 0.6609} , {0.0921, 0.1015, 0.1055, 0.1162}, {0.0947, 0.1044, 0.1159, 0.1277}};

ñ5 = {{0.5888, 0.6181, 0.6429, 0.6683} , {0.0605, 0.0670, 0.0796, 0.0881}, {0.1670, 0.1742, 0.1871, 0.1951}}.

Step 4: Compute the score values of each alternative combined with Equation (14)

s(ñ1) = 0.6888, s(ñ2) = 0.7368, s(ñ3) = 0.6580, s(ñ4) = 0.6978, s(ñ5) = 0.6874.

Step 5: According to the score values, the ranking result of the five foreign professors is determined as
A2 � A4 � A1 � A5 � A3.

If the GPHFPWG operator is utilized in the steps above to complete the information fusion,
the ranking procedures are presented as follows.

Step 1′: See Step 1.
Step 2′: See Step 2.
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Step 3′: Use the GPHFPWG (λ = 1) operator to aggregate standardized the PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.4753, 0.4963, 0.5142, 0.5204, 0.5434, 0.5966, 0.6231, 0.6455, 0.6455} , {0.0527, 0.0597, 0.0609, 0.0678},
{0.1203, 0.1402, 0.1614, 0.1804}};

ñ2 = {{0.6049, 0.6124, 0.6267, 0.6345, 0.6376, 0.6456, 0.6606, 0.6689} , {0.0668, 0.0739, 0.0809, 0.0878},
{0.1176, 0.1230, 0.1350, 0.1403, 0.1462, 0.1515, 0.1630, 0.1682}};

ñ3 = {{0.4297, 0.4424, 0.4902, 0.5047, 0.5788, 0.5959} , {0.0526, 0.0571, 0.0703, 0.0748},
{0.2020, 0.2110, 0.2216, 0.2304, 0.2410, 0.2495, 0.2596, 0.2680}};

ñ4 = {{0.5026, 0.5363, 0.5416, 0.5769, 0.5779, 0.6155} , {0.1119, 0.1178, 0.1264, 0.1322}, {0.0994, 0.1236, 0.1297, 0.1531}};
ñ5 = {{0.5596, 0.5733, 0.6141, 0.6292} , {0.0640, 0.0801, 0.0838, 0.0995}, {0.1791, 0.1975, 0.1985, 0.2164}}.

Step 4′: Compute the score values of each alternative combined with Equation (14)

s(ñ1) = 0.6757, s(ñ2) = 0.7080, s(ñ3) = 0.6040, s(ñ4) = 0.6550, s(ñ5) = 0.6572.

Step 5′: According to the score values, the ranking result of the five foreign professors is obtained as
A2 � A1 � A5 � A4 � A3.

6.2. Sensitivity Analysis

To explore the impact of the parameter λ on the ranking results, different possible values of λ

are used in the algorithms of two aforementioned numerical examples, such as 0.001, 0.5, 1, 2, 3, 5,
10, 20, and 50. Then, combined with the proposed methods, the different rankings of alternatives are
presented in Tables 3–6. From Tables 3 and 4, we can find that the best potential ERP system in Example
1 is always A3 using both the GPHFWA operator and GPHFWG operator; however, some differences
exist between the ranking results concerning different values of λ. Tables 5 and 6 show that when we
utilize the GPHFPWA operator to complete the information fusion, the best foreign professor is A2

for 0.001 ≤ λ ≤ 10, but the best alternative is A4 for 20 ≤ λ ≤ 50. In addition, when the GPHFPWG
operator is used in Algorithm 2, the best foreign professor is A2 for 0.001 ≤ λ ≤ 3, but the best
alternative is A1 for 5 ≤ λ ≤ 50. On the other hand, the score values of all the alternatives vary with
different values of λ; the reason is that the aggregation processes of the proposed operators have
changed. For instance, when λ = 2, the GPHFWA operator can be reduced to the picture hesitant
fuzzy weighted quadratic averaging (PHFWQA) operator as

PHFWQA(ni1, ni2, . . . , nin) =
(

w1ni1
2 ⊕ w2ni2

2 ⊕ · · · ⊕ wnnin
2
)1/2

.

when λ = 3, the GPHFWA operator can be reduced to the picture hesitant fuzzy weighted cubic
averaging (PHFWCA) operator as

PHFWCA(ni1, ni2, . . . , nin) =
(

w1ni1
3 ⊕ w2ni2

3 ⊕ · · · ⊕ wnnin
3
)1/3

.

Besides, the following results can be obtained from Tables 3–6:

(1) In Example 1, the score values of each alternative obtained by the GPHFWA operator are bigger
than those obtained by the GPHFWG operator, and the difference between them increases along
with the increasing of λ. It means that the GPHFWA operator is more suitable to aggregate the
PHFEs of optimistic decision makers, while the GPHFWG operator can reflect the opinion of
pessimistic decision makers. Furthermore, the level of optimism and pessimism are greater with
the bigger value of λ.

(2) In Example 2, the score values of each alternative obtained by the GPHFPWA and GPHFPWG
operators are relatively stable when the different values of λ are used; the parameter λ cannot
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reflect the attitude of decision makers. In addition, the best alternative varies when the value
of λ is relatively high, while the best alternative is always the same in Example 1. It means that
the rankings obtained by the GPHFPWA and GPHFPWG operators are more affected by the
parameter λ than those obtained by the GPHFWA and GPHFWG operators.

The aforementioned sensitivity analysis results show that the value of λ plays a very important
role in MCDM problems, especially when the value of λ is relatively high. The value of λ can be
determined based on the personal preference of decision makers to obtain different ranking results;
thus, the proposed methods are highly flexible to deal with different situations in practice.

Table 3. Sensitivity analysis results obtained by the GPHFWA operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.4117 0.4988 0.5787 0.3388 0.4058 A3 � A2 � A1 � A5 � A4
λ = 0.5 0.4412 0.5328 0.6124 0.3977 0.4526 A3 � A2 � A5 � A1 � A4
λ = 1 0.4701 0.5611 0.6409 0.4553 0.4989 A3 � A2 � A5 � A1 � A4
λ = 2 0.5197 0.6001 0.6812 0.5426 0.5743 A3 � A2 � A5 � A4 � A1
λ = 3 0.5578 0.6242 0.7074 0.5981 0.6255 A3 � A5 � A2 � A4 � A1
λ = 5 0.6133 0.6522 0.7406 0.6613 0.6852 A3 � A5 � A4 � A2 � A1

λ = 10 0.6965 0.6831 0.7837 0.7274 0.7481 A3 � A5 � A4 � A1 � A2
λ = 20 0.7679 0.7062 0.8197 0.7722 0.7916 A3 � A5 � A4 � A1 � A2
λ = 50 0.8243 0.7274 0.8527 0.8063 0.8280 A3 � A5 � A1 � A4 � A2

Table 4. Sensitivity analysis results obtained by the GPHFWG operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.3227 0.3791 0.4486 0.2142 0.2720 A3 � A2 � A1 � A5 � A4
λ = 0.5 0.3019 0.3492 0.4120 0.1960 0.2457 A3 � A2 � A1 � A5 � A4
λ = 1 0.2813 0.3197 0.3778 0.1808 0.2240 A3 � A2 � A1 � A5 � A4
λ = 2 0.2451 0.2690 0.3237 0.1587 0.1926 A3 � A2 � A1 � A5 � A4
λ = 3 0.2168 0.2314 0.2858 0.1439 0.1716 A3 � A2 � A1 � A5 � A4
λ = 5 0.1780 0.1829 0.2389 0.1249 0.1441 A3 � A2 � A1 � A5 � A4

λ = 10 0.1301 0.1265 0.1878 0.0991 0.1093 A3 � A1 � A2 � A5 � A4
λ = 20 0.1252 0.1158 0.1923 0.1216 0.1095 A3 � A1 � A4 � A2 � A5
λ = 50 0.1458 0.1377 0.1692 0.1041 0.1351 A3 � A1 � A2 � A5 � A4

Table 5. Sensitivity analysis results obtained by the GPHFPWA operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.6866 0.7337 0.6477 0.6911 0.6829 A2 � A4 � A1 � A5 � A3
λ = 0.5 0.6877 0.7352 0.6529 0.6944 0.6852 A2 � A4 � A1 � A5 � A3
λ = 1 0.6888 0.7368 0.6580 0.6978 0.6874 A2 � A4 � A1 � A5 � A3
λ = 2 0.6913 0.7399 0.6680 0.7054 0.6920 A2 � A4 � A5 � A1 � A3
λ = 3 0.6940 0.7432 0.6769 0.7135 0.6964 A2 � A4 � A5 � A1 � A3
λ = 5 0.6994 0.7495 0.6915 0.7298 0.7045 A2 � A4 � A5 � A1 � A3

λ = 10 0.7108 0.7634 0.7151 0.7628 0.7203 A2 � A4 � A5 � A3 � A1
λ = 20 0.7243 0.7831 0.7369 0.7976 0.7407 A4 � A2 � A5 � A3 � A1
λ = 50 0.7408 0.8092 0.7570 0.8332 0.7693 A4 � A2 � A5 � A3 � A1
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Table 6. Sensitivity analysis results obtained by the GPHFPWG operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.6814 0.7230 0.6242 0.6733 0.6706 A2 � A1 � A4 � A5 � A3
λ = 0.5 0.6789 0.7163 0.6147 0.6647 0.6646 A2 � A1 � A4 � A5 � A3
λ = 1 0.6757 0.7080 0.6040 0.6550 0.6572 A2 � A1 � A5 � A4 � A3
λ = 2 0.6680 0.6885 0.5815 0.6344 0.6393 A2 � A1 � A5 � A4 � A3
λ = 3 0.6597 0.6692 0.5611 0.6155 0.6194 A2 � A1 � A5 � A4 � A3
λ = 5 0.6442 0.6378 0.5306 0.5873 0.5815 A1 � A2 � A4 � A5 � A3

λ = 10 0.6190 0.5931 0.4921 0.5524 0.5213 A1 � A2 � A4 � A5 � A3
λ = 20 0.6727 0.5774 0.5122 0.5451 0.5002 A1 � A2 � A4 � A3 � A5
λ = 50 0.7825 0.7355 0.6732 0.7214 0.6872 A1 � A2 � A4 � A5 � A3

6.3. Comparative Analysis

To prove the feasibility of the proposed MCDM methods, the rankings of Example 1 in this paper
are compared with the rankings obtained by the existing MCDM methods as presented in Table 7;
including the PFWA and PFWG operators [25], and the picture fuzzy cross-entropy method [16].
Similarly, a comparison of Example 2 between the GPHFPWA and GPHFPWG operators and the
HFPWA and HFPWG operators [34] is presented in Table 8.

Table 7. Comparison result of Example 1.

MCDM method Ranking

The GPHFWA operator (λ = 1) A3 � A2 � A5 � A1 � A4
The GPHFWG operator (λ = 1) A3 � A2 � A1 � A5 � A4

The PFWA operator A3 � A2 � A1 � A5 � A4
The PFWG operator A3 � A1 � A2 � A5 � A4

The picture fuzzy cross-entropy method A3 � A1 � A2 � A5 � A4

Table 8. Comparison result of Example 2.

MCDM method Ranking

The GPHFPWA operator (λ = 1) A2 � A4 � A1 � A5 � A3
The GPHFPWG operator (λ = 1) A2 � A1 � A5 � A4 � A3

The HFPWA operator A5 � A2 � A1 � A4 � A3
The HFPWG operator A2 � A5 � A1 � A4 � A3

Table 7 shows that the best alternative of Example 2 obtained by the MCDM methods based on
the GPHFWA and GPHFWG operators is always A3, which is consistent with the existing methods;
the results can demonstrate the feasibility of the proposed method. Compared with the PFS that
is used in the study of [25] and [16], PHFS proposed in this paper can convey the human opinions
more effectively, including yes, abstain, no, and refusal. For instance, the evaluation information
of the alternative A1 concerning the criteria C1 that are given by decision maker is expressed as a
PFN (0.53,0.33,0.09) [16,25]. In practice, decision maker may feel doubtful to determine an exact
value of each membership level. Obviously, PFS cannot deal with this situation; however, we can use
PHFS to represent the evaluation information as a PHFE {{0.43,0.53}, {0.33}, {0.06,0.09}} as shown in
Table 1. Consequently, the proposed method can solve the MCDM problems when decision makers
feel difficulty to determine the accurate value of each membership level. On the other hand, when the
numbers of the criteria are relatively large, the aggregation process of the proposed operators will
be more complicated than the existing methods and the data size will be relatively large; it is the
limitation of the proposed method. Table 8 shows that the best alternative of Example 2 obtained
by the HFPWA operator is A5, but the result of other MCDM methods is A2. The main reason of
the difference is that the MCDM methods combined with the HFPWA and HFPWG operators ignore
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some complex evaluation information of decision makers in practice. UTHFS allows the decision
makers to give several values of positive membership level, for instance, the evaluation information
of the alternative A1 concerning the criteria C1 that are given by decision maker is expressed as a
UTHFE (0.4,0.5,0.7) [34]. Nevertheless, in some particular situations, it is not convincing to express
the evaluation information that only considers the positive membership level of decision makers;
many scholars have focused on this problem and made some improvements to UTHFS [10,19]. Thus,
we can overcome the limitation of UTHFS combined with the proposed method. It is worth noting
that the GPHFPWA and GPHFPWG operators also have the same disadvantage as the GPHFWA and
GPHFWG operators.

According to the aforementioned comparison results, we can summarize the advantages and
disadvantages of the different MCDM methods (see Table 9), as well as their respective fields of
application (see Table 10). In addition, the benefits of the aggregation process by using the proposed
operators are presented as in the following.

(1) The Expansion of the Evaluation Information

The GPHFWA, GPHFWG, GPHFPWA, and GPHFPWG operators can solve the MCDM problems
under PHF environment. PHFS proposed in this paper can express the different human opinions in
real life and allow the decision makers to give several possible values of the different membership
levels; thus, it can simultaneously depict the uncertainty and hesitancy of decision makers’ evaluation
information, which cannot be achieved by PFS and UTHFS. Therefore, when decision makers are not
fully aware of the evaluation target and feel doubtful about each membership level, it is reasonable to
deal with these MCDM problems combined with the proposed methods. Furthermore, as a generalized
form of FS, IFS, PFS, and UTHFS, we can transform the proposed methods into the existing MCDM
methods if necessary.

(2) The Flexibility of Information Aggregation with Different Values of λ

Recall the sensitivity analysis in Section 6.2, the proposed operators can be reduced to other
specific PHF aggregation operators by varying the value of λ; thus, the proposed methods are highly
flexible to deal with different situations. Furthermore, the parameter λ can also be regarded as a
measure of the optimism and pessimism level of decision makers in the information fusion of the
GPHFWA and GPHFWG operators; and the value of λ can be determined by decision makers according
to their preferences in practice.

(3) The Simplicity of Dealing with Different Types of Criteria

During the MCDM process, the weight values of criteria play an important role and will affect
the final ranking results. The criteria can be divided into two categories: one is in the same priority,
the other is in different priorities. On the one hand, when the criteria have the same priority level,
we can utilize the proposed method based on the GPHFWA and GPHFWG operators combined with
the weight vector of criteria to solve the MCDM problem. On the other hand, when the criteria have
different priority levels, the GPHFPWA and GPHFPWG operators can be introduced to determine the
ranking of alternatives. In practice, we can use different aggregation operators in this paper to deal
with different situations.

6.4. Application of Web Service Selection

To investigate the applications of the proposed methods in a more realistic scenario, we use the
proposed methods to solve the Quality of Service (QoS) based web service selection problem [37].
According to the study of [37], the evaluation information of QoS is measured by a crisp number scale
of 1–9, and the related criteria are availability (C1), throughput (C2), successability (C3), reliability
(C4), compliance (C5), best practices (C6), documentation (C7), latency (C8), and response time (C9).
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Due to the criteria latency and response time are the cost type criteria, the closer the evaluation values
concerning these two criteria are to 1, the better the alternative.

Table 9. Comparison of each MCDM methods.

Methods Advantages Disadvantages

The GPHFWA/
GPHFWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed, and each
membership functions can be represented by
several possible values.
• The operators can be reduced to other forms
by varying the value of λ.
• The PHFS can be transformed into its special
cases, i.e., FS, IFS, PFS, and UTHFS.

• The calculating process is complex when
the numbers of criteria are relatively large.
• The size of data is relatively large.

The PFWA/
PFWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed.
• The PFS can be transformed into IFS and FS.

• It cannot express the evaluation
information when decision makers have
difficulty determining an accurate value of
each membership level.

Picture fuzzy
cross-entropy

• The human opinions including yes, abstain,
no, and refusal can be expressed.
• The PFS can be transformed into IFS and FS.
• The ranking is obtained without aggregating
the evaluation information; it can avoid the loss
of information.
• The step of normalizing the evaluation
information can be omitted.

• It cannot express the evaluation
information when decision makers have
difficulty determining an accurate value of
each membership level.
• It cannot solve the multiple criteria group
decision-making problems.

The GPHFPWA/
GPHFPWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed, and each
membership functions can be represented by
several possible values.
• The operators can be reduced to other forms
by varying the value of the λ.
• The PHFS can be transformed into its special
cases, i.e., FS, IFS, PFS, and UTHFS.
• It can solve the MCDM problem that the
criteria are in different priorities.

• The calculating process is complex when
the numbers of criteria are relatively large.
• The size of data is relatively large.

The HFPWA/
HFPWG operator

• The positive membership function can be
expressed by several possible values.
• It can solve the MCDM problem that the
criteria are in different priorities.

• It cannot express the human opinions
including abstain, no, and refusal.

Table 10. MCDM application fields of each MCDM method.

Methods MCDM Application Fields

The GPHFWA/GPHFWG operator

• The evaluation information of decision makers is diverse.
• Decision makers feel doubtful to determine the accurate
value of each membership level.
• The numbers of the criteria are relatively small.

The PFWA/PFWG operator • The evaluation information of decision makers is diverse.

Picture fuzzy cross entropy
• The evaluation information of decision maker is diverse.
• The alternatives are evaluated by an individual decision
maker.

The GPHFPWA/GPHFPWG operator

• The evaluation information of decision makers is diverse.
• Decision makers feel doubtful to determine the accurate
value of each membership level.
• The numbers of the criteria are relatively small.
• The criteria are in different priorities.

The HFPWA/HFPWG operator
• Decision makers feel doubtful to determine the accurate
value of positive membership level.
• The criteria are in different priorities.
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Suppose there are 20 web services to be evaluated concerning the aforementioned nine criteria,
i.e., WSi(i = 1, 2, . . . , 20); the evaluation information of each web service is presented in Table 11.
As each evaluation value in [37] is expressed by an exact crisp number, the PHFS can be reduced to the
PFS to represent the evaluation information of each web service. Based on the relationship between the
linguistic variables and IFNs [38], we develop the transformation relationship between the linguistic
variables and PFNs as presented in Table 12. Then, the evaluation information in Table 11 can be
transformed into a PF evaluation matrix A =

(
aij
)
(i = 1, 2, . . . , 20; j = 1, 2, . . . , 9), and the ranking of

the 20 web services can be obtained by the Algorithm 1 in this paper. Subsequently, the ranking result
will be compared with the rankings determined by AHP, TOPSIS, COPRAS, VIKOR, and SAW methods
in [37]. It is worth noting that, in order to compare different MCDM methods, more effectively we
suppose each criteria is considered equally important, i.e., wj = 1/9(j = 1, 2, . . . , 9). Then, the ranking
of the 20 web services can be determined by the following steps.

Step 1: According to the Definition 3, normalize the PF evaluation matrix A =
(
aij
)

to the standardized
PF evaluation matrix A =

(
aij
)

as

aij =

{
aij, for the benefit criteria;(
aij
)c, for the cost criteria.

(57)

Step 2: Utilize the GPFWA (λ = 1) operator

GPFWAλ=1(ai1, ai2, . . . , ai9) = ai =

(
1−

9

∏
j=1

(
1− μij

)wj
,

9

∏
j=1

(
ηij

)wj
,

9

∏
j=1

(
vij
)wj

)

to aggregated the PF evaluation matrix A =
(
aij
)
, and the collective PFNs of each web service are

obtained.
Step 3: Compute the score values of each web service using the equation

s(ai) = (1 + μi − ηi − vi)/2. (58)

Table 11. Evaluation information of each web service.

Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9

WS1 3 4 2 5 6 7 6 2 8
WS2 4 5 2 3 4 6 8 3 4
WS3 3 5 6 8 3 2 2 4 5
WS4 4 4 5 5 6 2 6 7 8
WS5 5 6 2 4 7 7 8 8 3
WS6 4 4 3 7 6 8 6 8 6
WS7 4 4 5 7 8 7 7 4 3
WS8 6 7 6 6 5 7 8 6 3
WS9 5 3 2 2 6 5 2 4 7
WS10 8 8 7 6 2 2 3 4 3
WS11 5 8 4 4 5 7 4 5 8
WS12 4 5 5 5 6 8 7 6 6
WS13 6 4 7 6 4 5 4 4 5
WS14 4 6 5 4 5 4 6 7 4
WS15 7 5 6 2 7 6 5 5 2
WS16 3 6 4 7 2 3 8 2 4
WS17 4 4 8 4 4 5 2 4 8
WS18 4 3 5 3 5 4 4 6 6
WS19 5 4 4 6 6 7 6 7 2
WS20 6 2 3 5 4 6 5 5 5
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Table 12. Transformation between linguistic variables and PFNs.

Crisp numbers Linguistic variables PFNs

1 Extremely low (EL) (0.05,0.05,0.85)
2 Very low (VL) (0.15,0.05,0.75)
3 Low (L) (0.25,0.05,0.65)
4 Medium low (ML) (0.35,0.05,0.55)
5 Medium (M) (0.45,0.05,0.45)
6 Medium high (MH) (0.55,0.05,0.35)
7 High (H) (0.65,0.05,0.25)
8 Very high (VH) (0.75,0.05,0.15)
9 Extremely high (EH) (0.85,0.05,0.05)

Then, the ranking of the 20 web services can be determined; the lager the score value, the better
the web service. The related data of the ranking are presented in Table 13.

Table 13. Ranking results obtained by the proposed method.

Alternatives Collective Evaluation Information Score Values Ranking

WS1 (0.4677,0.0500,0.4210) 0.4983 12
WS2 (0.4833,0.0500,0.4068) 0.5133 9
WS3 (0.4313,0.0500,0.4579) 0.4617 15
WS4 (0.3776,0.0500,0.5192) 0.4042 18
WS5 (0.5244,0.0500,0.3647) 0.5548 5
WS6 (0.4736,0.0500,0.4159) 0.5038 11
WS7 (0.5817,0.0500,0.3119) 0.6099 2
WS8 (0.5871,0.0500,0.3079) 0.6146 1
WS9 (0.3485,0.0500,0.5475) 0.3755 20
WS10 (0.5447,0.0500,0.3414) 0.5767 3
WS11 (0.4683,0.0500,0.4222) 0.4980 13
WS12 (0.5045,0.0500,0.3879) 0.5333 8
WS13 (0.4828,0.0500,0.4145) 0.5091 10
WS14 (0.4371,0.0500,0.4609) 0.4631 14
WS15 (0.5426,0.0500,0.3498) 0.5714 4
WS16 (0.5191,0.0500,0.3668) 0.5511 6
WS17 (0.4154,0.0500,0.4744) 0.4455 16
WS18 (0.3535,0.0500,0.5459) 0.3788 19
WS19 (0.5186,0.0500,0.3737) 0.5474 7
WS20 (0.4179,0.0500,0.4798) 0.4440 17

To verify the accuracy of the ranking obtained by the proposed method, we use AHP, TOPSIS,
COPRAS, VIKOR, and SAW methods to solve the web service selection problem combined with the
evaluation information in Table 11. Subsequently, the ranking results of different MCDM methods are
presented in Table 14. The Spearman’s rank correlation coefficient is a powerful tool for measuring the
similarity between two MCDM methods [39]. Then, we can calculate the Spearman’s rank correlation
coefficients between the proposed method and the other five MCDM methods as shown in Table 15.
Table 15 shows that the Spearman’s rank correlation coefficients between the proposed method and
AHP and TOPSIS are 0.9722 and 0.9549, respectively, which demonstrate that the proposed method is
highly correlated with these two methods. AHP and TOPSIS methods have been approved to be the
most suitable two methods to solve web service selection problems [39]; thus, the comparison results
above illustrate the feasibility of the proposed method.
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Table 14. Ranking of web services of different MCDM methods.

Alternatives The Proposed Method AHP TOPSIS COPRAS VIKOR SAW

WS1 12 13 14 12 15 14
WS2 9 10 11 6 12 12
WS3 15 16 15 11 17 19
WS4 18 18 18 20 19 18
WS5 5 6 8 9 9 9
WS6 11 11 12 16 14 13
WS7 2 2 2 1 3 2
WS8 1 1 1 5 1 1
WS9 20 20 20 19 20 20
WS10 3 4 4 4 8 10
WS11 13 11 10 15 13 8
WS12 8 6 7 10 4 6
WS13 10 8 6 8 2 5
WS14 14 13 13 13 6 7
WS15 4 3 3 3 7 3
WS16 6 8 9 2 11 11
WS17 16 17 16 17 18 16
WS18 19 19 19 18 10 17
WS19 7 4 5 7 5 4
WS20 17 15 17 14 16 15

Table 15. Spearman’s rank correlation coefficients between the proposed method and the other
MCDM methods.

Existing MCDM Methods Spearman’s Rank Correlation Coefficients

AHP 0.9722
TOPSIS 0.9549

COPRAS 0.9023
VIKOR 0.7429

SAW 0.8165

From the information aggregation of the proposed method, we can find that the calculating
procedure of the proposed method is more complicated than AHP and TOPSIS methods. In addition,
TOPSIS method does not require the transformation of the evaluation information concerning cost and
benefit type criteria. However, when decision makers are not sure if it is 3 or 4 about the evaluation
information of the web service WS1 concerning the criteria C1, AHP and TOPSIS methods cannot
deal with this situation in practice; we can use PHFS to express the evaluation information above,
i.e., {{0.25,0.35},{0.05},{0.55,0.65}}. On the other hand, when the criteria are in different priorities,
the GPHFPWA and GPHFPWG operators can be used to aggregation the evaluation information. Thus,
the AHP, TOPSIS, and proposed methods have their own advantages and disadvantages; in real life,
decision makers can determine to utilize which MCDM methods to solve problems according to the
actual situations.

7. Conclusions

Combined with the picture fuzzy set and uniformly typical hesitant fuzzy set, this paper develops
the picture hesitant fuzzy set, in which the positive, neutral, negative, and refusal membership
degrees are expressed by several possible values. Then, the operations and comparison method
of picture hesitant fuzzy elements are developed. To solve the multiple criteria decision-making
problems under picture hesitant fuzzy environment, the generalized picture hesitant fuzzy weighted
averaging and generalized picture hesitant fuzzy weighted geometric operators are put forward
to aggregate the picture hesitant elements given by decision maker. Furthermore, considering the
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different priorities between the related criteria in practice, the generalized picture hesitant fuzzy
prioritized weighted averaging and generalized picture hesitant fuzzy prioritized weighted geometric
operators are proposed. Meanwhile, some desirable properties and the reduced operators of them are
investigated in detail. Finally, two kinds of multiple criteria decision-making methods combined with
the proposed operators are constructed to solve the multiple criteria decision-making problems in
different situations. Subsequently, two numerical examples and an application of web service selection
are provided to indicate the applications and advantages of the proposed methods.

In future research, we will investigate other operations of picture hesitant fuzzy elements and
develop different aggregation operators to aggregate picture hesitant fuzzy elements. In addition,
we will propose the consensus model to improve the proposed methods; then, the non-consensus
evaluation information of decision makers will be revised to obtain a more accurate ranking result.
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Appendix A

Proof.

a. For n = 1, according to Theorem 1, since

GPHFWAλ(ñ1) =
(

w1ñ1
λ
)1/λ

=
(

ñ1
λ
)1/λ

= ñ1.

Obviously, Equation (22) holds for n = 1.
b. For n = 2, since

ñ1 = ∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1

{{
α1

λ
}

,
{

1− (1− β1)
λ
}

,
{

1− (1− γ1)
λ
}}

,

ñ2 = ∪
α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{
α2

λ
}

,
{

1− (1− β2)
λ
}

,
{

1− (1− γ2)
λ
}}

.

we have

w1ñ1
λ = ∪

α1∈μ̃1,β1∈η̃1,γ1∈ṽ1

{{
1−
(
1− α1

λ
)w1
}

,
{(

1− (1− β1)
λ
)w1
}

,
{(

1− (1− γ1)
λ
)w1
}}

,

w2ñ2
λ = ∪

α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{
1−
(
1− α2

λ
)w2
}

,
{(

1− (1− β2)
λ
)w2
}

,
{(

1− (1− γ2)
λ
)w2
}}

.

then,

w1ñ1
λ ⊕ w2ñ2

λ = ∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1,α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{
1−
(
1− α1

λ
)w1 + 1−

(
1− α2

λ
)w2 −

(
1−
(
1− α1

λ
)w1
)(

1−
(
1− α2

λ
)w2
)}

,{(
1− (1− β1)

λ
)w1
(

1− (1− β2)
λ
)w2
}

,
{(

1− (1− γ1)
λ
)w1
(

1− (1− γ2)
λ
)w2
}}

.

w1ñ1
λ ⊕ w2ñ2

λ = ∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1,α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{
1−
(
1− α1

λ
)w1 (1− α2

λ
)w2
}

,{(
1− (1− β1)

λ
)w1
(

1− (1− β2)
λ
)w2
}

,
{(

1− (1− γ1)
λ
)w1
(

1− (1− γ2)
λ
)w2
}}

.
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and

GPHFWAλ(ñ1, ñ2) =
(
w1ñ1

λ ⊕ w2ñ2
λ
)1/λ

=

∪
α1∈μ̃1,β1∈η̃1,γ1∈ṽ1,α2∈μ̃2,β2∈η̃2,γ2∈ṽ2

{{(
1−
(
1− α1

λ
)w1 (1− α2

λ
)w2
)1/λ

}
,
{

1−
(

1−
(

1− (1− β1)
λ
)w1
(

1− (1− β2)
λ
)w2
)1/λ

}
,{

1−
(

1−
(

1− (1− γ1)
λ
)w1
(

1− (1− γ2)
λ
)w2
)1/λ

}}
.

i.e., Equation (22) holds for n = 2.
c. If Equation (22) holds for n = k, we have

GPHFWAλ(ñ1, ñ2, . . . , ñk) = ∪
α1∈μ̃1,α2∈μ̃2,...,αk∈μ̃k ,β1∈η̃1,β2∈η̃2,...,βk∈η̃k ,γ1∈ṽ1,γ2∈ṽ2,...,γk∈ṽk

⎧⎨⎩
⎧⎨⎩
(

1−
k

∏
j=1

(
1− αj

λ
)wj

)1/λ
⎫⎬⎭ ,⎧⎨⎩1−

(
1−

k
∏
j=1

(
1−
(
1− β j

)λ
)wj

)1/λ
⎫⎬⎭,

⎧⎨⎩1−
(

1−
k

∏
j=1

(
1−
(
1− γj

)λ
)wj

)1/λ
⎫⎬⎭
⎫⎬⎭,

when n = k + 1, according to the operations of PHFEs, we have

w1 ñ1
λ ⊕ w2 ñ2

λ ⊕ · · · ⊕ wkñk
λ ⊕ wk+1 ñk+1

λ =

∪
α1∈μ̃1 ,α2∈μ̃2 ,...,αk∈μ̃k ,β1∈η̃1 ,β2∈η̃2 ,...,βk∈η̃k ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γk∈ṽk

{{
1−

k
∏
j=1

(
1− αj

λ
)wj

}
,

{
k

∏
j=1

(
1−
(
1− β j

)λ
)wj

}
,{

k
∏
j=1

(
1−
(
1− γj

)λ
)wj

}}
⊕ ∪

αk+1∈μ̃k+1 ,βk+1∈η̃k+1 ,γk+1∈ṽk+1

{{
1−
(
1− αk+1

λ
)wk+1

}
,
{(

1− (1− βk+1)
λ
)wk+1

}
,
{(

1− (1− γk+1)
λ
)wk+1

}}
= ∪

α1∈μ̃1 ,α2∈μ̃2 ,...,αk+1∈μ̃k+1 ,β1∈η̃1 ,β2∈η̃2 ,...,βk+1∈η̃k+1 ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γk+1∈ṽk+1

{{
1−

k+1
∏
j=1

(
1− αj

λ
)wj

}
,

{
k+1
∏
j=1

(
1−
(
1− β j

)λ
)wj

}
,

{
k+1
∏
j=1

(
1−
(
1− γj

)λ
)wj

}}
.

then,

GPHFWAλ(ñ1, ñ2, . . . , ñk) =
(
w1 ñ1

λ ⊕ w2 ñ2
λ ⊕ · · · ⊕ wkñk

λ ⊕ wk+1 ñk+1
λ
)1/λ

=

∪
α1∈μ̃1,α2∈μ̃2,...,αk+1∈μ̃k+1,β1∈η̃1,β2∈η̃2,...,βk+1∈η̃k+1,γ1∈ṽ1,γ2∈ṽ2,...,γk+1∈ṽk+1

⎧⎨⎩
⎧⎨⎩
(

1−
k+1
∏
j=1

(
1− αj

λ
)wj

)1/λ
⎫⎬⎭ ,

⎧⎨⎩1−
(

1−
k+1
∏
j=1

(
1−
(
1− β j

)λ
)wj
)1/λ

⎫⎬⎭,⎧⎨⎩1−
(

1−
k+1
∏
j=1

(
1−
(
1− γj

)λ
)wj
)1/λ

⎫⎬⎭
⎫⎬⎭.

i.e., Equation (22) holds for n = k + 1; we can demonstrate that Equation (22) holds for all values of n.
�

Appendix B

Proof. According to Theorem 2, since ñj = ñ = {μ̃, η̃, ṽ}, we have

GPHFWAλ(ñ1, ñ2, . . . , ñn) =
(
w1ñλ ⊕ w2ñλ ⊕ · · · ⊕ wnñλ

)1/λ
=

∪
α∈μ̃,β∈η̃,γ∈ṽ

⎧⎨⎩
⎧⎨⎩
(

1−
n
∏
j=1

(
1− αλ

)wj

)1/λ
⎫⎬⎭ ,

⎧⎨⎩1−
(

1−
n
∏
j=1

(
1− (1− β)λ

)wj

)1/λ
⎫⎬⎭,

⎧⎨⎩1−
(

1−
n
∏
j=1

(
1− (1− γ)λ

)wj

)1/λ
⎫⎬⎭
⎫⎬⎭

= ∪
α∈μ̃,β∈η̃,γ∈ṽ

{{(
1−
(
1− αλ

))1/λ
}

,
{

1−
(

1−
(

1− (1− β)λ
))1/λ

}
,
{

1−
(

1−
(

1− (1− γ)λ
))1/λ

}}
= ∪

α∈μ̃,β∈η̃,γ∈ṽ

{{(
αλ
)1/λ

}
,
{

1−
(
(1− β)λ

)1/λ
}

,
{

1−
(
(1− γ)λ

)1/λ
}}

= ∪
α∈μ̃,β∈η̃,γ∈ṽ

{{α} , {β}, {γ}} = ñ.

�

636



Symmetry 2018, 10, 295

Appendix C

Proof. For λ ∈ (0, ∞), since α− ≤ αj ≤ α+, then

αj
λ ≥ (α−)λ, 1− αj

λ ≤ 1− (α−)λ,
(
1− αj

λ
)wj ≤

(
1− (α−)λ

)wj
,

n
∏
j=1

(
1− αj

λ
)wj ≤

n
∏
j=1

(
1− (α−)λ

)wj
,

1−
n
∏
j=1

(
1− αj

λ
)wj ≥ 1−

n
∏
j=1

(
1− (α−)λ

)wj
,(

1−
n
∏
j=1

(
1− αj

λ
)wj

)1/λ

≥
(

1−
n
∏
j=1

(
1− (α−)λ

)wj

)1/λ

= α−.

similarly, we have(
1−

n

∏
j=1

(
1− αj

λ
)wj

)1/λ

≤
(

1−
n

∏
j=1

(
1−
(
α+
)λ
)wj

)1/λ

= α+.

As β− ≤ β j ≤ β+, then

1− β j ≤ 1− β−,
(
1− β j

)λ ≤ (1− β−)λ, 1−
(
1− β j

)λ ≥ 1− (1− β−)λ,(
1−
(
1− β j

)λ
)wj ≥

(
1− (1− β−)λ

)wj
,

n
∏
j=1

(
1−
(
1− β j

)λ
)wj ≥

n
∏
j=1

(
1− (1− β−)λ

)wj
,

1−
n
∏
j=1

(
1−
(
1− β j

)λ
)wj ≤ 1−

n
∏
j=1

(
1− (1− β−)λ

)wj
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1−
n
∏
j=1

(
1−
(
1− β j

)λ
)wj

)1/λ

≤
(

1−
n
∏
j=1

(
1− (1− β−)λ

)wj

)1/λ

,

1−
(

1−
n
∏
j=1

(
1−
(
1− β j

)λ
)wj

)1/λ

≥ 1−
(

1−
n
∏
j=1

(
1− (1− β−)λ

)wj

)1/λ

= β−.

similarly, we have

1−
(

1−
n

∏
j=1

(
1−
(
1− β j

)λ
)wj

)1/λ

≤ 1−
(

1−
n

∏
j=1

(
1−
(
1− β+

)λ
)wj

)1/λ

= β+.

and, as γ− ≤ γj ≤ γ+, we have

γ− ≤ 1−
(

1−
n

∏
j=1

(
1−
(
1− γj

)λ
)wj

)1/λ

≤ γ+.

let GPHFWAλ(ñ1, ñ2, . . . , ñn) = ñ = {{α}, {β}, {γ}}, then

s(ñ) =
1 + 1

l ∑l
i=1 αi − 1

p ∑
p
i=1 βi − 1

q ∑
q
i=1 γi

2
≥

1 + 1
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i=1 α− − 1
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i=1 β+ − 1
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q−

i=1 γ+

2
= s
(
ñ−
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,

and

s(ñ) =
1 + 1
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i=1 αi − 1

p ∑
p
i=1 βi − 1

q ∑
q
i=1 γi

2
≤

1 + 1
l+ ∑l+

i=1 α+ − 1
p+ ∑

p+

i=1 β− − 1
q+ ∑

q+

i=1 γ−

2
= s
(
ñ+
)
.
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we obtain
ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+, λ ∈ (0, ∞).

Similarly, we have

ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+, λ ∈ (−∞, 0).

�
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Abstract: Ventilation systems are amongst the most essential components of a mine. As the indicators
of ventilation systems are in general of ambiguity or uncertainty, the selection of ventilation systems
can therefore be regarded as a complex fuzzy decision making problem. In order to solve such
problems, a decision making framework based on a new concept, the hesitant linguistic preference
relation (HLPR), is constructed. The basic elements in the HLPR are hesitant fuzzy linguistic numbers
(HFLNs). At first, new operational laws and aggregation operators of HFLNs are defined to overcome
the limitations in existing literature. Subsequently, a novel comparison method based on likelihood is
proposed to obtain the order relationship of two HFLNs. Then, a likelihood-based consistency index
is introduced to represent the difference between two hesitant linguistic preference relations (HLPRs).
It is a new way to express the consistency degree for the reason that the traditional consistency indices
are almost exclusively based on distance measures. Meanwhile, a consistency-improving model is
suggested to attain acceptable consistent HLPRs. In addition, a method to receive reasonable ranking
results from HLPRs with acceptable consistency is presented. At last, this method is used to pick out
the best mine ventilation system under uncertain linguistic decision conditions. A comparison and a
discussion are conducted to demonstrate the validity of the presented approach. The results show
that the proposed method is effective for selecting the optimal mine ventilation system, and provides
references for the construction and management of mines.

Keywords: mine ventilation systems; hesitant linguistic environment; likelihood; preference relations

1. Introduction

The ventilation system is one of the most important technologies to ensure the safety of mines [1].
In the process of mining, it is necessary to provide enough fresh air and exclude harmful gases,
heat and dust [2]. Then, a good working environment can be created to guarantee the health and
safety of underground workers. Therefore, choosing an applicable mine ventilation system is essential
and important for mines. Since there is much ambiguity and uncertainty in the evaluation process,
the selection of mine ventilation systems can be deemed as a fuzzy decision making problem.

In the process of decision making, experts or decision makers (DMs) may prefer to do comparisons
among each pair of systems or construct a preference matrix when expressing their opinions [3,4].
On the other hand, because of the complexity of alternatives and the fuzziness of human cognitions,
many people may tend to give preference information in the form of language phrases, such as
“good”, “bad” and so on [5–7]. Thereafter, the decision making problems based on linguistic preference
relations (LPRs) have attracted extensive attention [8–10]. However, there is a hypothesis that the
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membership degree of each element in LPRs is a certain number “one”. It is unable to accurately depict
the professionals’ supporting or hesitant degrees of linguistic assessment information.

Accordingly, Rodriguez et al. [11] put forward the concept of hesitant fuzzy linguistic term set
(HFLTS) to express the experts’ hesitation or inconsistency. HFLTS is an orderly limited subset of
linguistic terms. Different varieties of aggregation operators [12–14], measures [15,16] and decision
making approaches [17–19] based on HFLTS and its extensions were proposed. For instance,
Liu et al. [20] defined the distance measures for HFLTS to deal with hesitant fuzzy linguistic
multi-criteria decision making problems; Adem et al. [21] proposed an integrated model using SWOT
analysis and HFLTS for evaluating occupational safety risks in the life cycle of wind turbines. Besides,
Zhu and Xu [22] came up with the concept of hesitant fuzzy linguistic preference relations (HFLPRs),
where the basic elements are in the form of HFLTS.

Subsequently, numerous researchers had great interest in studying preference matrices under
hesitant fuzzy linguistic conditions. Zhang and Wu [23] introduced the multiplicative consistency of
HFLPRs based on distance measures. Wang and Xu [24] defined the additive and weak consistency
of extended HFLPRs on the basis of graph theory. Wu and Xu [25] discussed the consistency and
consensus of HFLPRs in a group decision environment. Gou et al. [26] proposed the compatibility
measures and weights determination approach for HFLPRs, and then applied them in selecting a
desirable aspect in the medical and health system reform process. Li et al. [27] recommended an
approach of obtaining the interval consistency degree of HFLPRs. Xu et al. [28] constructed a group
decision support model for HFLPRs to reach consistency and consensus.

Nevertheless, HFLTS cannot reflect the membership degree of an element that belongs to a specific
concept [29], such as a certain ventilation system in this paper. It is only a collection of several linguistic
evaluation values, and it has strong subjectivity and fuzziness [30]. In order to overcome the inherent
defects of linguistic variables and HFLTS, hesitant fuzzy linguistic sets (HFLSs) were introduced by
Lin et al. [31]. They can describe hesitant degrees of DMs with some membership degrees based on a
given linguistic term. Compared with uncertain linguistic variables, they have the edge on describing
the fuzziness [29]. HFLSs combine linguistic term sets with hesitant fuzzy sets (HFSs), which include
both the quantitative and qualitative evaluation information [32]. Each element in the HFLSs can
be called a hesitant fuzzy linguistic number (HFLN). For instance, half of the specialists in Group A
think that vs1 is a good ventilation system, and 80 percent in Group B think so. In this case, it can be
expressed with a HFLN < good, {0.5, 0.8} >.

The motivations of this paper are mainly two-fold. (1) The mine ventilation systems selection
context requires dealing with fuzzy evaluation information and building appropriate decision making
models. Hesitant fuzzy linguistic numbers (HFLNs) have advantages in describing the fuzziness and
hesitancy of experts [29]. Moreover, preference relations are among the most powerful tools to select
the best system. (2) Currently, researches on HFLNs are relatively insufficient compared with other
fuzzy sets. Wang et al. [29] developed a decision making method based on the Hausdorff distance of
HFLNs. In addition, Wang et al. [30] put forward the concept of interval-valued HFLNs to deal with
complex decision making issues. Yet, there are still some limitations with existent operational laws
and comparison methods of HFLNs [29,31].

Taking the aforementioned motivations into account, this paper concentrates on selecting the
optimal mine ventilation system under a hesitant linguistic environment.

The novelty and contributions of this paper are listed as follows.

(1) New operational laws and aggregation operators of HFLNs are presented. These new operations
can reflect the relationship of the linguistic term and its corresponding membership degrees.
Furthermore, a hesitant fuzzy linguistic likelihood is presented to compare two arbitrary HFLNs.
It can effectively overcome the limitations of the existing comparison method based on score
function and accuracy function.

(2) The concept of HLPRs is proposed to tackle decision making issues under hesitant fuzzy linguistic
circumstances. A consistency index using likelihood is defined to check the consistency degree of

642



Symmetry 2018, 10, 283

HLPRs and a consistency-improving model is introduced to get acceptable consistency. Besides,
a likelihood-based method is adopted to obtain the final ranking result.

(3) The proposed method is applied in the engineering field of choosing appropriate mine ventilation
systems. Thereafter, an in-depth comparison analysis is conducted to demonstrate the validity
and merits of the presented method.

The remainder of this paper is arranged as follows: Introductory knowledge about HFLSs
and preferences relations are briefly reviewed in Section 2. Section 3 proposes new operations and
comparison method of HFLNs. A consistency index is put forward for checking the consistency level of
HLPRs in Section 4. A consistency-improving process may be carried out when a HLPR’s consistency
is unacceptable. And a likelihood-based approach is presented to get the ranking results subsequently.
Section 5 illustrates an example of ventilation systems selection and makes a comparative analysis
to express the effectiveness of the proposed method. Necessary discussions and brief comments are
informed in Section 6.

2. General Concepts

In this section, general concepts related to linguistic variables, HFSs, HFPRs and HFLSs
are recalled.

2.1. Linguistic Variables

Assume lvi stands for a possible linguistic value in a finite and entirely ordered separate term set
LV = {lvi |i = −t, . . . ,−1, 0, 1, . . . , t} [33,34]. It is usually required to meet the following conditions:

(1) There is an order: lvi > lvj, when i > j;
(2) A negation operator exists: ne(lvi) = lv−i.

When the aggregated information is used in the process of decision making, it usually does not
go with the values in the predefined evaluation scope. To reserve all the obtained values, Xu [33]
changed the preceding term set LV into a continuous one LV = {lvi|i ∈ [−p, p]}, where p(p > t) is a
adequately great positive integer.

Taking two linguistic terms lvi, lvj ∈ LV into account, some operations are proposed in
the following:

(1) lvi ⊕Xu lvj = lvi+j;

(2) lvi ⊕Xu lvj = lvj ⊕Xu lvi;

(3) ρlvi = lvρi, ρ ∈ [0, 1].

2.2. Hesitant Fuzzy Sets

Since Zadeh [35] proposed fuzzy sets, it has been widely applied in various fields [36–40] and
many extensions based on fuzzy set have been developed [41,42]. HFSs, as extensions of fuzzy sets,
were firstly presented by Torra [32]. They are defined in coping with several numerical values permitted
to indicate an element’s membership degree [43–45]. The definition of HFSs is given as follows.

Definition 1 [32]. If X is a fixed set, then a hesitant fuzzy set (HFS) on X is in relation to the function, which
can go back a set of numbers between zero and one. It is described as the mathematical sign in the following:

F = {< x, hF(x) > |x ∈ X} (1)

where hF(x) is a subset of several values between zero and one, which represents the probable membership degrees
of an element x ∈ X to a certain set F. Xia and Xu [46] believe that it is convenient to call hF(x) a hesitant
fuzzy element (HFE).
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Preference relations are impactful tools in respect to modeling the decision making process.
On the basis of HFSs, Zhu [47] came up with the concept of hesitant fuzzy preference relations
(HFPRs), which is given as follows.

Definition 2 [47]. Let X = {x1, x2, . . . , xn} be a reference set, then a HFPR G on X is denoted by a matrix
G = (gij)n×n ⊂ X × X, where gij = {[qσ(l)

ij |l = 1, . . . , |lij|]} is a HFE expressing whole possible preference
degree(s) of the object xi over xj. Furthermore, gij (i, j = 1, 2, . . . , n; i < j) should meet the following
requirements:

qσ(l)
ij + qσ(l)

ji = 1, qσ(l)
ii = 0.5, |lij| = |lji| (2)

qσ(l)
ij < qσ(l+1)

ij , qσ(l+1)
ji < qσ(l)

ji (3)

where qσ(l)
ij is the l-th largest element in gij, and |lij| is the number of elements in gij.

2.3. Hesitant Fuzzy Linguistic Sets

The concept, operational laws and comparison method of HFLNs are recalled in this section.
Moreover, the limitations of them are discussed in the corresponding places.

Definition 3 [31]. Let X = {x1, x2, . . . , xn} be a fixed set, and lvθ(x) ∈ LV. Then, the hesitant fuzzy linguistic
set (HFLS) U in X can be described as the subsequent object:

U =
{
< x, lvθ(x), hU(x) > |x ∈ X

}
(4)

where hU(x) is a set of finite numbers in [0,1] and signifies the possible degrees of membership that x belongs
to lvθ(x).

There are two special cases of HFLNs: (1) A hesitant fuzzy linguistic number (HFLN): There is
only one element in the set X = {x1, x2, . . . , xn}, and HFLS U is reduced to < lvθ(x), hU(x) >; (2) A
fuzzy linguistic number: There is only one element in hB(x), like hU(x) = {u}, and HFLS U is reduced
to < lvθ(x), u >. For example, < lv3, 0.5 > shows that the membership degree of x belongs to lv3 is 0.5.

The operational laws about HFLNs are introduced in literature [31] as follows. Based on them,
many aggregation operators are also presented in this paper.

Definition 4 [31]. Given two HFLNs a =< lvθ(a), ha > and b =< lvθ(b), hb > arbitrarily, and λ ∈ [0, 1] , then

(1) a⊕Lin b =< lvθ(a)+θ(b), ∪
r1∈ha ,r2∈hb

{r1 + r2 − r1 · r2} >;

(2) λa =< lvλ·θ(a), ∪r∈ha
{1− (1− r)λ} >.

It is clear that the operations mentioned above are not very reasonable as the linguistic values and
the membership degrees are operated separately. In fact, the membership degrees should be related to
the homologous linguistic values in the operation process.

Definition 5 [29]. If a =< lvθ(a), ha > is a HFLN, then the score function E(a) of a can be described
as follows:

E(a) = s(ha)× f ∗(lvθ(a)) (5)

where s(ha) =
1

#ha
∑r∈ha r, s(ha) is the score function of ha, #ha is the number of values in ha, f ∗(lvi) =

1
2 +

i
2t

is one of the three different expressions of the linguistic scale function defined by Wang et al. [29], and it can be
replaced by another expressions under different semantics. For more details please refer to literature [29].
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Definition 6 [29]. Let a =< lvθ(a), ha >=< lvθ(a),∪r∈ha{r} > be a HFLN, and the variance function
is represented as V∗(ha) = 1

#ha
∑r∈ha [r− s(ha)]

2. Hence, the accuracy function V(a) of a can be shown
as follows:

V(a) = f ∗(lvθ(a)) · [1−V∗(ha)] (6)

where #hα is the number of the values in ha.

The accuracy function V(α) is analogous to the sample variance statistically and can display the
fluctuation of assessment values of ha. The greater the volatility is, the larger the hesitation will be.
Then, the ranking order of HFLNs can be derived by using the score function and accuracy function
as follows.

Definition 7 [29]. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two arbitrary HFLNs, rσ(l)
a and rσ(l)

b are
regarded as the lth number in ha and hb respectively, and all membership degrees are arranged in ascending
order. Then the comparison method is

(1) If lvθ(a) ≤ lvθ(b), rσ(l)
a ≤σ(l)

b and rσ(#ha)
a ≤ rσ(#hb)

b , then a < b, where at least one of “<” exists,

rσ(l)
a ∈ ha, rσ(l)

b ∈ hb, l = 1, 2, . . . , min(#ha, #hb), #ha and #hb are the numbers of values in ha and hb
respectively;

(2) If E(a) < E(b) but a < b, then a ≺ b;
(3) If E(a) = E(b) and V(a) < V(b), then a ≺ b;
(4) If E(a) = E(b) and V(a) = V(b), then a = b.

Example 1. Suppose a =< lv0, {0.1, 0.4} >, b =< lv−3, {0.1, 0.4} > and c =< lv0, {0.2, 0.3} > are three
HFLNs. Let f ∗(lvi) =

1
2 + i

2t and t = 3, then:

(1) lvθ(b) = lv−3 < lvθ(a) = lv0, rσ(1)
b = rσ(1)

a = 0.1, rσ(2)
b = rσ(2)

a = 0.4, thus b < a;

(2) E(b) = 0, E(c) = 0.125, i.e., E(b) < E(c), thus b ≺ c;
(3) E(a) = E(c) = 0.125, V(a) = 0.48875, V(c) = 0.49875, i.e., V(a) < V(c), thus a ≺ c.

There is no doubt that the amounts of calculations are increased when the score function or
even the accuracy function needs to be calculated. Besides, according to this comparison method,
if E(a) = E(b) and V(a) = V(b) are true simultaneously, a conclusion is that a = b. It is reasonable in
most conditions. However, it is not well tenable when the linguistic scale function f ∗(lvi) = 0 and the
possible memberships in a certain HFLN are not strictly superior to the memberships in another HFLN.
For instance, assume α =< lv−3, {0.1, 0.7} >, β =< lv−3, {0.1, 0.9} > and η =< lv−3, {0.5, 0.6} >
are three HFLNs. Let f ∗(lvi) = 1

2 + i
2t and t = 3, then E(α) = E(β) = E(η) = 0 and

V(α) = V(β) = V(η) = 0 are true, a decision is that α < β according to part (1) of the comparison
method, and a decision is that α = η and β = η according to part (3) of this method. It is clear that
these conclusions are self-contradictory and counterintuitive.

3. New Operations and Comparison Method

As mentioned in Section 2.3, there are some weaknesses in the existent operational laws and
comparison method with HFLNs. Thus, new operations and comparison methods are presented in
this section.

3.1. New Operational Laws and Aggregation Operators

To overcome the limitations of operations proposed in Section 2.3, some new operational laws
on the HFLNs are raised in this section. Afterwards, the hesitant fuzzy linguistic weighted average
(HFLWA) operator and hesitant fuzzy linguistic average (HFLA) operator based on them are presented.
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Definition 8. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are HFLNs, and λ ∈ [0, 1], then

(1) a⊕ b =< lvθ(a)+θ(b), ∪
r1∈ha ,r2∈hb

{
(θ(a)+t)·r1+(θ(b)+t)·r2

(θ(a)+t)+(θ(b)+t)

}
>;

(2) λa =< lvλ·θ(a), ha >.

It is easily verified that all operational results mentioned above are still HFLNs. Although there
are no practical meanings with the operational results, the basic operations are necessary to be defined
in practice. When these operations are used together, the actual significance can be reflected in reality.

In view of Definition 8, the equivalent relations can be further acquired as follows.

(1) Commutativity: a⊕ b = b⊕ a;
(2) Associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c);
(3) Distributivity: λ(a⊕ b) = λa⊕ λb, λ ∈ [0, 1];
(4) Distributivity: λ1a⊕ λ2a = (λ1 + λ2)a, λ1, λ2 ∈ [0, 1].

Definition 9. Let ai =< lvθ(ai)
, hai > be a group of HFLNs with i = 1, 2, . . . , n. The HFLWA operator can be

denoted as follows:
HFLWA(a1, a2, . . . , an) = ω1a1 ⊕ω2a2 ⊕ · · · ⊕ωnan (7)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of ai (i = 1, 2, . . . , n), ωi ∈ [0, 1] and ∑n

i=1 ωi = 1.

Particularly, if ω = ( 1
n , 1

n , . . . , 1
n )

T
, then the HFLWA operator is degenerated to the HFLA operator

as follows:
HFLA(a1, a2, . . . , an) =

1
n
(a1 ⊕ a2 ⊕ · · · ⊕ an) (8)

Theorem 1. Assume ai =< lvθ(ai)
, hai > are a set of HFLNs, and ω = (ω1, ω2, . . . , ωn)

T is the weight vector
of ai (i = 1, 2, . . . , n), ωi ∈ [0, 1] and ∑n

i=1 ωi = 1, then the aggregated result through applying the HFLWA
operator is still a HFLN, and

HFLWA(a1, a2, . . . , an) =< lv n
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rn∈han

⎧⎪⎪⎨⎪⎪⎩
n
∑

i=1
Di · ri

n
∑

i=1
Di

⎫⎪⎪⎬⎪⎪⎭ > (9)

where Ci = ωiθ(ai) and Di = ωi(θ(ai) + t) for all i = 1, 2, . . . , n.

Proof. Clearly, by Definition 8, the aggregated data by exploiting the HFLWA operator remains a
HFLN. Next, Equation (9) is proved through utilizing mathematical induction on n.

(1) When n = 2: we have ω1a1 =< lvC1 , ha1 > and ω2a2 =< lvC2 , ha2 >, then HFLWA(a1, a2) =

ω1a1 ⊕ω2a2 = < lvC1+C2 , ∪
r1∈ha1 ,r2∈ha2

{
D1·r1+D2·r2

D1+D2

}
> = < lv 2

∑
i=1

Ci

, ∪
r1∈ha1 ,r2∈ha2

⎧⎪⎨⎪⎩
2
∑

i=1
Di ·ri

2
∑

i=1
Di

⎫⎪⎬⎪⎭ >.

(2) For n = k: If Equation (9) holds, then HFLA(a1, a2, . . . , ak) =<

lv k
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk∈hak

⎧⎪⎨⎪⎩
k
∑

i=1
Di ·ri

k
∑

i=1
Di

⎫⎪⎬⎪⎭ >. Hence, for n = k + 1, from Definition

8, that is HFLA(a1, a2, . . . , ak+1) = < lv k
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk∈hak

⎧⎪⎨⎪⎩
k
∑

i=1
Di ·ri

k
∑

i=1
Di

⎫⎪⎬⎪⎭ >
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⊕(ωk+1 · ak+1), = < lv k
∑

i=1
Ci+Ck+1

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk+1∈hak+1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k
∑

i=1
Di ·

k
∑

i=1
Di ·ri

k
∑

i=1
Di

+Dk+1·rk+1

k
∑

i=1
Di+Dk+1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
> =

< lvk+1
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk+1∈hak+1

⎧⎪⎨⎪⎩
k+1
∑

i=1
Di ·ri

k+1
∑

i=1
Di

⎫⎪⎬⎪⎭ >.

i.e., for n = k + 1, Equation (9) follows.
Therefore, combined (1) with (2), Equation (9) follows for all n ∈ N, then the proof of Theorem 1

is completed. �

3.2. Likelihood of Hesitant Fuzzy Linguistic Numbers

The likelihood-based comparison method is an effective way to compare fuzzy numbers.
Inspired by literature [48,49], a new method based on likelihood to compare HFLNs is proposed.
From an example, it can be seen that the limitations of the comparison method mentioned in Section 2.3
have been overcome when the proposed likelihood-based comparison method is adopted.

The likelihood between two HFLNs is described in the following:

Definition 10. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two optional HFLNs, then the likelihood
between a and b can be demonstrated as follows:

L(a ≥ b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0vθ(a) > lvθ(b) , h+a > h−b
1

#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

, lvθ(α) = lvθ(β)

1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

f ∗(lvθ(a))·r
σ(i)
a

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

, lvθ(a) 	= lvθ(b)

1, lvθ(a) < lvθ(a), h−a < h+b

(10)

where γ
σ(i)
a and γ

σ(j)
b are the i-th and j-th largest value, #ha and #hb are the numbers of element in ha and hb

respectively.

Property 1. Suppose Ω is a set with all HFLNs, ∀a,b,c ∈ Ω, the likelihood satisfies the following properties:

(1) 0 ≤ L(a ≥ b) ≤ 1;
(2) If lvθ(a) ≤ lvθ(b), h+a < h−b , then L(a ≥ b) = 0;

(3) If lvθ(a) ≥ lvθ(b), h−a > h+b , then L(a ≥ b) = 1;

(4) L(a ≥ b) + L(b ≥ a) = 1;
(5) If L(a ≥ b) = L(b ≥ a), then L(a ≥ b) = L(b ≥ a) = 0.5;
(6) If L(a ≥ c) ≥ 0.5, and L(c ≥ b) ≥ 0.5, then L(a ≥ b) ≥ 0.5.

Proof. We only prove (4) of Property 1 in the paper, as the other properties can be easily proven.

(1) If lvθ(a) < lvθ(b), h+a < h−b or lvθ(a) > lvθ(b), h−a < h+b , according to Definition 10, it is true that
L(a ≥ b) + L(b ≥ a) = 1.
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(2) If lvθ(a) = lvθ(b), the following deduction can be derived: L(a ≥ b) = 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

and

L(a ≤ b) = L(b ≥ a) = 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

, then L(a ≥ b) + L(a ≤ b)= 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

+

1
#ha#hb

#hb
∑

j=1

#ha
∑

i=1

rσ(j)
b

rσ(i)
a +rσ(j)

b

= 1
#ha#hb

#hb
∑

j=1

#ha
∑

i=1

rσ(i)
a +rσ(j)

b

rσ(i)
a +rσ(j)

b

= 1.

(3) If lvθ(a) 	= lvθ(b), similar to proof (2), we can obtain the following:

L(a ≤ b) = L(b ≥ a) = 1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(b))·r
σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

, L(a ≥ b) + L(a ≤ b) =

1
#ha#hβ

#ha
∑

i=1

#hb
∑

j=1

f ∗(lvθ(a))·r
σ(j)
a

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

+ 1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(b))·r
σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

=

1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

= 1.

Therefore, L(a ≥ b) + L(a ≤ b) = 1.
Now, the proof is completed. �

Definition 11. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two HFLNs. The new comparison method for
HFLNs can be defined as follows:

(1) If L(a ≥ b) > 0.5, then a is superior to b, expressed by a > b;
(2) If L(a ≥ b) < 0.5, then a is inferior to b, expressed by a < b;
(3) If L(a ≥ b) = 0.5, then a is indifferent to b, expressed by a = b.

Example 2. Suppose that three HFLNs are the same as Example 1, the comparison results with new proposed
comparison method are given as follows.

(1) L(a ≥ b) = 1, L(b ≥ a) = 0, then b < a.
(2) L(b ≥ c) = 0, L(c ≥ b) = 1, then b < c.
(3) L(a ≥ c) = 0.455, L(c ≥ a) = 0.5446, then a < c.

It is true that the results in Examples 1 and 2 are the same, which verifies the validity of the
presented comparison method. Moreover, assume α =< lv−3, {0.1, 0.7} >, β =< lv−3, {0.1, 0.9} >
and η =< lv−3, {0.5, 0.6} > are three HFLNs, f ∗(lvi) =

1
2 + i

2t and t = 3, then L(α ≥ β) = 0.4781,
L(α ≥ η) = 0.3578 and L(β ≥ η) = 0.3881. So we get a conclusion that α < β < η, which is more
reasonable than the results obtained by using the previous comparison method.

4. Decision Making Framework

In this section, a decision making framework is proposed to handle decision making problems
under a hesitant linguistic environment. Original preference information is expressed by HLPRs and
the consistency level is checked and improved. Then, a likelihood-based model is suggested to derive
a ranking from HLPRs with acceptable consistency.

4.1. Original Preference Information

When making evaluations for some alternatives under a hesitant linguistic environment,
DMs can provide original preference information with HLPRs. To facilitate the following discussions,
the concepts of HLPRs and consistent HLPRs are defined as follows.

Definition 12. If X = {x1, x2, . . . , xn} is a set of alternatives, then the HLPR K on X can be described as a
matrix K = (kij)n×n ⊂ X × X. Each element kij =< lvij, rij > is a HFLN, where lvij and rij demonstrate
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respectively, the degree of xi preferred to xj and the possible membership degrees that x belongs to lvij. Then,
for kij (i, j = 1, 2, . . . , n, i < j), the following requirements should be met:

lvij ⊕ lvji = lv0, lvii = lv0, rσ(l)
ij = rσ(l)

ji , rσ(l)
ii = 1, |kij| = |kji| (11)

where rσ(l)
ij is the l-th element in rij, and |kij| is the number of values in kij.

Definition 13. Let K = (kij)n×n be a HLPR, if

rσ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj = rσ(l)
ij · lvij (i, j, k = 1, 2, . . . n) (12)

then K is a consistent HLPR.

Example 3. Given a HLPR K1 =

⎡⎢⎣ < lv0, {1} > < lv1, {0.3, 0.9} > < lv−2, {0.1, 0.6} >
< lv−1, {0.3, 0.9} > < lv0, {1} > < lv2, {0.4, 0.9} >
< lv2, {0.1, 0.6} > < lv−2, {0.4, 0.9} > < lv0, {1} >

⎤⎥⎦.

Since rσ(1)
13 · lv13 = lv−0.2, rσ(1)

12 · lv12 ⊕ rσ(1)
23 · lv23 = lv1.1, rσ(1)

13 · lv13 	= rσ(1)
12 · lv12 ⊕ rσ(1)

23 · lv23, then K1

is not a consistent HLPR.

Theorem 2. Assume a HLPR K = (kij)n×n, if

max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
< lv0 or min

{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0

(i, j, k = 1, 2, . . . n)
(13)

then K = (kij)n×n has a corresponding consistent HLPR.

Proof. The proof is straightforward. According to Equation (11), if min
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}

< lv0 and max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0, some calculated membership degrees will be less

than zero. Clearly, it is unreasonable. Therefore, when max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
< lv0 or,

min
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0, the corresponding consistent HLPR of K = (kij)n×n exists.

�

Example 4. Given a HLPR K2 =

⎡⎢⎣ < lv0, {1} > < lv1, {0.3, 0.5} > < lv−1, {0.1, 0.7} >
< lv−1, {0.3, 0.5} > < lv0, {1} > < lv1, {0.4, 0.8} >
< lv1, {0.1, 0.7} > < lv−1, {0.4, 0.8} > < lv0, {1} >

⎤⎥⎦.

Since⊕3
k=1(r

σ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3) = lv0.5 > lv0 and ⊕ n
k=1(r

σ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3) = lv−0.1 < lv0,
then K2 does not have a consistent HLPR.

Note that: when a HLPR K = (kij)n×n does not have the corresponding consistent HLPR, it should
be adjusted based on Equation (14) until a consistent HLPR exists.

Theorem 3. Assume a HLPR K = (kij)n×n has the consistent HLPR, for all i, j, k = 1, 2, . . . n, if

r∗σ(l)ij · lv∗ij =
1
n
⊕n

k=1 (r
σ(l)
ik · lvik ⊕Xu rσ(l)

kj · lvkj), (14)

lv∗ij = max
{

rσ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3

}
(i f ⊕n

k=1 (r
σ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3) > lv0) (15)

lv∗ij = min
{

rσ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3

}
(i f ⊕ n

k=1(r
σ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3) < lv0) (16)
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then K∗ = (k∗ij)n×n
= (lv∗ij, r∗ij)n×n

is a consistent HLPR.

Proof. Since r∗σ(l)ik · lv∗ik ⊕ r∗σ(l) · lv∗kj = 1
n (⊕n

e=1(r
σ(l)
ie · lvie ⊕ rσ(l)

ek · lvek))⊕ 1
n (⊕ n

e=1(r
σ(l)
ke · lvke ⊕ rσ(l)

ej ·
lvej)) = 1

n (⊕ n
e=1(r

σ(l)
ie · lvie⊕ rσ(l)

ek · lvek⊕ rσ(l)
ke · lvke⊕ rσ(l)

ej · lvej)) = 1
n (⊕ n

e=1(r
σ(l)
ie · lvie⊕ rσ(l)

ej · lvej⊕ rσ(l)
ek ·

lv0)) = 1
n (⊕n

e=1(r
σ(l)
ie · lvie⊕ rσ(l)

ej · lvej)) = rσ(l)
ij · lv∗ij based on Definition 13, K∗ = (k∗ij)n×n

= (lv∗ij, r∗ij)n×n
is a consistent HLPR. �

Example 5. Assume a HLPR is the same in Example 3. Based on Equation (14), the consistent HLPR K∗1 is obtained

as follows: K∗1 =

⎡⎢⎣ < lv0, {1} > < lv−1, {2/15, 7/15} > < lv1.1, {7/33, 1/11} >
< lv1, {2/15, 7/15} > < lv0, {1} > < lv0.8, {11/24, 5/8} >

< lv−1.1, {7/33, 1/11} > < lv−0.8, {11/24, 5/8} > < lv0, {1} >

⎤⎥⎦.

4.2. Consistency Checking and Improving Models

When an initial preference matrix is constructed, checking and improving its consistency is
necessary and vital [50–52]. The consistency of preference relations reflects the rationality of DMs’
judgments, and inconsistent preference matrices may generate undesirable or improper conclusions.
In this section, a likelihood-based consistency index is defined to test the consistency degree and a
consistency-improving process is presented to modify the consistency level.

Definition 14. Given two arbitrary HLPRs A = (aij)n×n and B = (bij)n×n, then

L(A ≥ B) =
2

n(n− 1)

n

∑
i<j

L(aij ≥ bij) (17)

is called the likelihood between two HLPRs.

The likelihood L(A ≥ B) satisfies Theorem 4 as follows.

Theorem 4. Assume A and B are two HLPRs, the likelihood between them can be represented as L(A ≥ B),
then

(1) 0 ≤ L(A ≥ B) ≤ 1;
(2) L(A ≥ B) + L(B ≥ A) = 1;
(3) If L(A ≥ B) = L(B ≥ A), then L(A ≥ B) = L(B ≥ A) = 0.5.

Definition 15. Suppose a HLPR K and its corresponding consistent HLPR K∗; a consistency index is used to
calculate the deviation between K and K∗, which is defined as

CI(K) =
1

n(n− 1)

n

∑
i 	=j
|L(kij ≥ k∗ij)−

1
2
| (18)

It is true that 0 ≤ CI(K) ≤ 1
2 . Based on Definition 15, a smaller value of CI(K) means a more

consistent HLPR K. As the DMs would be often influenced by many uncertainties when they make
decisions, HLPRs provided by the DMs are not always perfectly consistent.

Definition 16. Given a HLPR K and the corresponding threshold value CI, when the consistency index meets:

CI(K) < CI (19)

then K is regarded as a HLPR whose consistency is acceptable.
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Note: There is an attractive subject about how to determine the value of CI. It may be confirmed
in accordance with the DMs’ knowledge, experience and other conditions.

In some circumstances, the HLPR K constructed by the DMs is always with unacceptable
consistency due to the lack of knowledge or other reasons. Hence, a consistency-improving model is
built to acquire a reasonable solution. Some critical steps in Algorithm 1 can be taken repeatedly until
the predefined consistency threshold is satisfied.

The main steps of this consistency-improving process are shown as follows.

Algorithm 1. Consistency improving model of HLPRs

Input: The original HLPR K = (kij)n×n, the threshold value CI = CI0 and the maximum number of iterative
times smax ≥ 1.
Output: The adjusted HLPR Ka and its consistency index CI(Ka).

Step 1: Let the iterative times s = 0, and the original HLPR K = K(0) = (k(0)ij )
n×n

.
Step 2: According to Equation (14), obtain the corresponding consistent HLPR

K∗(s) = (k∗(s)ij )
n×n

= (< lv∗(s)ij , r∗(s)ij >)
n×n

of HLPR K(s) = (k(s)ij )
n×n

.

Step 3: Based on Equation (10), calculate the likelihood L(k(s)ij ≥ k∗(s)ij ) of the corresponding elements (e.g., k(s)ij

and k∗(s)ij ) in the HLPR K(s) = (k(s)ij )
n×n

and its consistent HLPR K∗(s) = (k∗(s)ij )
n×n

. Then, construct the

likelihood matrix L(s) = (l(s)ij )
n×n

= (L(k(s)ij ≥ k∗(s)ij ))
n×n

of HLPR K(s).

Step 4: Calculate the consistency index CI(K(s)) of HLPR K(s) by Equation (18).
Step 5: If the consistency level of K(s) is acceptable, namely CI(K(s)) < CI0 or the iterative times is maximum,
namely s > smax, then go to Step 7; or else, go to the next step.

Step 6: Find an element l(s)ij in the likelihood matrix L(s) = (l(s)ij )
n×n

, which has the maximum deviation on the

diagonal, namely max
{
|l(s)ij − 1

2 |+ |l
(s)
ji − 1

2 |
}

. If l(s)ij + l(s)ij − 1 < 0, then the DMs may increase their

preference of k(s)ij ; if l(s)ij + l(s)ij − 1 > 0, then the DMs can decrease their values of k(s)ij . And the modified HLPR

is denoted as K(s+1) = (k(s+1)
ij )

n×n
= (< lv(s+1)

ij , r(s+1)
ij >)

n×n
. Let s = s + 1, then return to Step 2.

Step 7: Let the final adjusted HLPR K(s) = Ka, Output Ka and its consistency index CI(Ka).

Theorem 5. Given a HFPR K, which is unacceptably consistent. If CI = CI0 is the consistency threshold,{
K(s)
}

is a HFPR sequence, and CI(K(s)) is the consistency index of K(s). Therefore, we can obtain that for

any s: CI(K(s+1)) < CI(K(s)) and lim
s→∞

CI(K(s)) = 0.

The proof is straightforward. There is no less than one position where |l(s)i j1
− 1

2 | < |l
(s+1)
i j1

− 1
2 | can

be obtained. It follows that CI(K(s+1)) < CI(K(s)).
Theorem 5 guarantees that any HLPR with insupportable consistency can be converted into an

acceptable HLPR. The speed and times may be influenced by the values of the adjusted elements,
which are recommended by the DMs or specialists according to the practical situation. How to
determine the value of adjusted elements more reasonably is also a controversial issue and deserves to
be further investigated.

Example 6. Given an original HLPR K =

⎡⎢⎣ < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.8, 0.9} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.8, 0.9} > < lv−1, {0.2, 0.3} > < lv0, {1} >

⎤⎥⎦.

Suppose the threshold CI0 = 0.25 and the maximum number of iterative times smax = 3, check and improve its
consistency. The detailed procedures are listed as follows.

Step 1: Let s = 0 and K(0) = K.
Step 2: Based on Equation (14), obtain the consistent HLPR
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K∗(0) =

⎡⎢⎣ < lv0, {1} > < lv2.1, {2/7, 1/3} > < lv−1.8, {2/9, 2/9} >
< lv−2.1, {2/7, 1/3} > < lv0, {1} > < lv−3.9, {10/39, 11/39} >
< lv1.8, {2/9, 2/9} > < lv3.9, {10/39, 11/39} > < lv0, {1} >

⎤⎥⎦.

Step 3: Based on Equation (10), the likelihood matrix is L(0) =

⎡⎢⎣ 0.5 1 0.7762
0.5249 0.5 0.9781

1 0.2590 0.5

⎤⎥⎦.

Step 4: Based on Equation (18), calculate the consistency index CI(K(0)) ≈ 0.2534.
Step 5: Since CI(K(0)) > CI0, then go to the next step.
Step 6: Since l(0)13 = max

{
|l(0)ij − 1

2 |+ |l
(0)
ji − 1

2 |
}

and l(0)13 + l(0)31 − 1 > 0, then the DMs decrease their

preference. The modified HLPR is K(1) =

⎡⎢⎣ < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.1, 0.2} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.1, 0.2} > < lv−1, {0.2, 0.3} > < lv0, {1} >

⎤⎥⎦ and

CI(K(1)) ≈ 0.2230 < CI0.

Step 7: Let Ka = K(1), Output Ka =

⎡⎢⎣ < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.1, 0.2} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.1, 0.2} > < lv−1, {0.2, 0.3} > < lv0, {1} >

⎤⎥⎦
and CI(Ka) ≈ 0.2230.

4.3. Likelihood-Based Ranking Method

As the likelihood between two HFLNs is a useful tool to make comparisons, a likelihood-based
method is introduced to derive a ranking from the consistent HLPRs in this section.

Pondering over the decision making problem within the hesitant fuzzy linguistic context, assume
that the DMs’ plan to select the optimal alternative or get a ranking order from n objects. Let X =

{x1, x2, . . . , xn} be a discrete set of alternatives being chosen and K = (kij)n×n (i, j = 1, 2, . . . , n) is the
preference matrix, where kij is the preference value in the form of HFLNs. The entire procedures of
earning the ideal order of alternatives are shown in Algorithm 2.

Algorithm 2. Likelihood-based ranking method

Input: The initial HLPR K = (kij)n×n.
Output: The optimal alternative x∗.
Step 1: Obtain the acceptable HLPR Ka by Algorithm 1.
Step 2: Utilize the HFLA operator based on Equation (8) to aggregate each row of the HLPR Ka, then
determine the overall preference degree pi of each alternative xi (i = 1, 2, . . . , n).
Step 3: According to Equation (10), calculate the likelihood lij = L(pi ≥ pj) between pi and pj (i = 1, 2, . . . , n,
j = 1, 2, . . . , n), then construct a likelihood matrix L = (lij)n×n.

Step 4: Calculate the dominance degree ϕ(xi) =
1
n ∑n

j=1 lij of alternative xi(i = 1, 2, . . . , n), where ϕ(xi)

represents the degree of xi preferred to other alternatives. Obviously, the greater the value of ϕ(xi), the better
the alternative xi.
Step 5: Rank all the alternatives on the basis of the dominance degree ϕ(xi) of each alternative
xi(i = 1, 2, . . . , n). Then obtain the ranking results and the optimal alternative(s) is denoted as x∗.

5. Selection of Mine Ventilation Systems

In this section, an example of mine ventilation systems selection is afforded for voicing the
application of the suggested method.

Sanshandao gold mine is the first subsea hard rock mine in China, which lies in Sanshandao
Town, Laizhou City, Shandong Province, China [53]. As the mine is going into the stage of deep
exploitation, the distance of ventilation becomes longer and the temperature also rises severely.
Therefore, some problems are beginning to appear after using the traditional ventilation systems,
for instance, the temperature is so high that laborers find it hard to work efficiently; exhaust gas
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emitted by diesel equipment pollutes underground air seriously; and the concentration of dust exceeds
the national standard. Accordingly, a better ventilation system needs to be adopted.

After a thorough survey, four ventilation systems, i.e., {vs1, vs2, vs3, vs4}, are under consideration,
and a group of professionals are invited to select the optimal ventilation system. The linguistic term set
lv = {lv−4 = tremendously worse, lv−3 = a lot worse, lv−2 = worse, lv−1 = a little worse, v0 = f air,
lv1 = a little better, lv2 = better, lv3 = a lot better, lv4 = tremendously better} is used. The preference
values are shown in the form of HFLNs. Suppose all DMs have a consensus on the selected linguistic
term, and all teams provided their membership degrees (preference) in line with the researches of
the above four systems and their preference simultaneously. Then, all of the probable membership
degrees are gathered with the previous linguistic set. When a team does not give a membership degree,
we consider it as 0.5. And when the same membership degrees about identical linguistic terms are
given, we may regard them as different data in a HFLN.

Consequently, after a heated discussion, experts decided the threshold value CI0 = 0.18 and the
maximum number of iterative times smax = 3. Then, the preference information was given in Table 1.

Table 1. Original HLPR VS.

VS vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv3, {0.2, 0.3, 0.6} > < lv1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.8} >
vs2 < lv−3, {0.2, 0.3, 0.6} > < lv0, {1} > < lv−2, {0.3, 0.4, 0.7} > < lv3, {0.2, 0.5, 0.6} >
vs3 < lv−1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.7} > < lv0, {1} > < lv−1, {0.4, 0.5, 0.9} >
vs4 < lv−2, {0.3, 0.4, 0.8} > < lv−3, {0.2, 0.5, 0.6} > < lv1, {0.4, 0.5, 0.9} > < lv0, {1} >

5.1. Illustrative Example

Steps outlined in Section 4.3 are completed to get satisfied ventilation system(s) in this section.
Step 1: Obtain the acceptable HLPR VSa by Algorithm 1.
Based on Equation (14), the consistent HLPR VS∗ is shown in Table 2. And the likelihood

matrix L(0) is calculated based on Equation (10), as shown in Table 3. Then, calculate the consistency
index CI(VS(0)) ≈ 0.1956 > 0.18 by Equation (18). Since l(0)34 = max

{
|l(0)ij − 1

2 |+ |l
(s)
ji − 1

2 |
}

and

l(0)34 + l(0)43 − 1 > 0, then the DMs decrease their preference, and the modified HLPR VS(1) is in Table 4.
Since CI(VS(1)) ≈ 0.1754 < 0.18, let VSa = VS(1).

Table 2. Consistent HLPR VS∗.

VS∗ vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv2.2,
{

1
4 , 25

88 , 7
11 , 7

11

}
> < lv2.5,

{
9
50 , 13

50 , 9
20

}
> < lv3.6,

{
1
6 , 41

159 , 67
159

}
>

vs2 < lv−2.2,
{

1
4 , 25

88 , 7
11

}
> < lv0, {1} > < lv−1.4,

{
3

14 , 9
56 , 29

56

}
> < lv1.8,

{
1
36 , 2

9 , 11
72

}
>

vs3 < lv−2.5,
{

9
50 , 13

50 , 9
20

}
> < lv1.4,

{
3
14 , 9

56 , 29
56

}
> < lv0, {1} > < lv3.2,

{
3
64 , 15

128 , 11
64

}
>

vs4 < lv−3.6,
{

1
6 , 41

159 , 67
159

}
> < lv−1.8,

{
1
36 , 2

9 , 11
72

}
> < lv−3.2,

{
3
64 , 15

128 , 11
64

}
> < lv0, {1} >

Table 3. Likelihood matrix L(0).

L(0) vs1 vs2 vs3 vs4

vs1 0.5000 0.5076 0.6078 0.5693
vs2 0.3656 0.5000 0.5642 0.7844
vs3 0.8069 0.6378 0.5000 0.6862
vs4 0.9287 0.6195 1.0000 0.5000
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Table 4. Modified HLPR VS(1).

VS(1) vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv3, {0.2, 0.3, 0.6} > < lv1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.8} >
vs2 < lv−3, {0.2, 0.3, 0.6} > < lv0, {1} > < lv−2, {0.3, 0.4, 0.7} > < lv3, {0.2, 0.5, 0.6} >
vs3 < lv−1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.7} > < lv0, {1} > < lv−1, {0.1, 0.2, 0.3} >
vs4 < lv−2, {0.3, 0.4, 0.8} > < lv−3, {0.2, 0.5, 0.6} > < lv1, {0.1, 0.2, 0.3} > < lv0, {1} >

Step 2: Utilize the HFLA operator based on Equation (8) to aggregate each row of the HLPR VSa,
then the overall preference degree pi of each alternative is acquired as follows:

p1 = (lv1.5, 0.4182, 0.4455, 0.4500, 0.4636, 0.4773, 0.4909, 0.4955, 0.5091, , 0.5227,
0.5364, 0.5409, 0.5455, 0.5545, 0.5682, 0.5727, 0.5864, 0.5909, 0.6000,
0.6182, 0.6318, 0.6364, 0.6455, 0.6636, 0.6773, 0.6818, 0.7273, 0.7727)

,

p2 = (lv−0.5, 0.4429, 0.4500, 0.4571, 0.4643, 0.4714, 0.4857, 0.5000, 0.5071, 0.5286,
0.5929, 0.6000, 0.6071, 0.6143, 0.6214, 0.6357, 0.6429, 0.6500, 0.6500,
0.6571, 0.6571, 0.6643, 0.6714, 0.6786, 0.6857, 0.7000, 0.7071, 0.7286)

,

p3 = (lv0, 0.4563, 0.4750, 0.4938, 0.4938, 0.4938, 0.5125, 0.5125, 0.5313, 0.5313,
0.5313, 0.5313, 0.5500, 0.5500, 0.5688, 0.5688, 0.5688, 0.5875, 0.6063,
0.6063, 0.6250, 0.6438, 0.6438, 0.6625, 0.6813, 0.6813, 0.7000, 0.7188)

,

and
p4 = (lv−1, 0.4417, 0.4583, 0.4667, 0.4750, 0.4833, 0.4833, 0.4917, 0.5000, 0.5083,

0.5167, 0.5250, 0.5250, 0.5250, 0.5333, 0.5417, 0.5500, 0.5500, 0.5583,
0.5583, 0.5667, 0.5667, 0.5750, 0.5917, 0.6000, 0.6083, 0.6333, 0.6417)

.

Step 3: According to Equation (10), calculate the likelihood between pi and pj (i = 1, 2, 3, 4,
j = 1, 2, 3, 4), then the likelihood matrix L = (lij)4×4 is constructed in Table 5.

Table 5. Likelihood matrix L.

L p1 p2 p3 p4

p1 0.5000 0.6001 0.5756 0.6586
p2 0.3999 0.5000 0.4745 0.5620
p3 0.4244 0.5255 0.5000 0.5872
p4 0.3414 0.4380 0.4128 0.5000

Step 4: Calculate the dominance degree of each alternative with ϕ(vsi) =
1
4 ∑4

j=1 lij(i = 1, 2, 3, 4)
as: ϕ(vs1) ≈ 0.5836, ϕ(vs2) ≈ 0.4841, ϕ(vs3) ≈ 0.5093, ϕ(vs4) ≈ 0.4231.

Step 5: Since ϕ(vs1) > ϕ(vs3) > ϕ(vs2) > ϕ(vs4), then the ranking is vs1 � vs3 � vs2 � vs4 and
the optimal system is vs∗ = vs1.

5.2. Comparative Analysis

Since the HLPR presented in this paper is a new type of preference relation, no related researches
have been conducted so far. To testify the validity and advantages of the proposed method,
several methods for HFLPRs [23–28] can be made for comparisons.

Note: The definitions of HLPRs and HFLPRs are not the same. The basic elements in HLPRs
are HFLNs, whereas those in HFLPRs are HFLTS. As a result, each HFLN in the HLPR should be
transformed into the corresponding HFLTS by using the linguistic term multiplies the corresponding
membership degrees successively. For example, < lv2, {0.3, 0.5} > can be converted into {lv0.6, lv1}.
Then, a same illustration is applied in these methods and detailed comparisons are provided in Table 6.
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Table 6. Comparisons with different methods.

Methods Consistency Checking Consistency Improving Ranking Approaches Ranking Results

Zhang and Wu [23] Distance measure Iterative algorithm Score functions vs1 � vs3 � vs4 � vs2

Wang and Xu [24] Graph theory Not given Not given Unavailable

Wu and Xu [25] Distance measure Feedback mechanism Score functions Uncertain

Gou et al. [26] Compatibility measure Not given Complementary matrix vs1 � vs2 � vs3 � vs4

Li et al. [27] Linear programing model Not given Not given Unavailable

Xu et al. [28] Distance measure Iterative algorithm Score functions vs1 � vs3 � vs2 � vs4

The proposed method likelihood Feedback mechanism Likelihood matrix vs1 � vs3 � vs2 � vs4

(1) Comparison with literature [24,25,27]
In literature [24], Wang and Xu provided a visible interpretation of additive consistency and

weak consistency of extended HFLPRs based on graph theory. In literature [27], Li et al. defined an
interval consistency index of HFLPRs based on the linear programming model. However, the methods
of improving consistency degrees and getting ranking orders are not mentioned in literature [24,27].
Thus, the rankings are unavailable in these cases. In literature [25], Wu and Xu discussed some issues
of HFLPRs on consistency and consensus, and defined a consistency index based on distance measure.
Nevertheless, dissimilar ranking results may occur with different adjust preference when the feedback
mechanism was adopted to improve the consistency level in this literature [25]. Note: Feedback
mechanisms are presented to improve the consistency level of preference relations in both literature [25]
and this paper. Different from existing feedback approaches [25], people can directly adjust their
preference with our method according to the values of elements in the likelihood matrix.
(2) Comparison with literature [23,26,28]

From Table 6, it is clear that the best alternative in different methods is always vs1, which reveals
the effectiveness of the proposed method. In literature [26], Gou et al. defined the consistency index
on the basis of compatibility measure and then got the ranking result based on a complementary
matrix; however, the approach of improving consistency level of HFLPRs was not given. Even though
the rankings obtained in literature [28] and this paper are the same, there are still some differences
between these two methods. First, in literature [23,28], a consistency index based on distance measure
was defined to check consistency level of HFLPRs, while a likelihood-based index is suggested in this
paper. Compared with compatibility or distance measure, the largest advantage of the likelihood is
that not only the deviation degree, but also that the order relationship of two elements can be directly
indicated. Second, compared with automatic iterative algorithms [23,28], the feedback mechanism
proposed in this paper reduces the loss of original information, and DMs can understand their current
status in each round. Besides, an approach of using aggregation operators and then calculating score
functions was adopted to get the ranking order in both literature [23,28]. By contrast, a likelihood
matrix is constructed in this paper to avoid the second calculations and information distortions.

The advantages of the proposed approach are summarized as follows:

(1) The HFLNs can closely depict the experts’ preferences as the membership degrees of a certain
linguistic value are given. And they can reserve the completeness of initial information in some
extents, which is the guarantee for obtaining ideal results.

(2) Only one element which greatly affects the consistency needs to be adjusted by professionals.
The revised alternatives may be diverse according to the reality. Specialists make a decision in
the light of a recommended direction as they are acquainted with their current positions.

(3) The experts may change the linguistic scale function under different semantics on the basis of
their preferences and reality. Then different ranking results may be achieved if another linguistic
scale function is applied. The flexibility and practicability of the method can be reflected.

Overall, the proposed method brings up a new and useful way to resolve complex fuzzy
decision making issues under a hesitant linguistic environment, especially when experts or decision
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makers (DMs) readily make comparisons among each pair of alternatives but hardly provide direct
evaluation information.

6. Conclusions

Ventilation systems selection is an essential decision for a mining project. However, the influence
characteristics of a ventilation system are complex and of strong fuzziness or uncertainty. Since preference
relations play a significant role in the decision making process, HLPRs were proposed to deal with mine
ventilation systems selection problems. HLPRs can be regarded as extensions of LPRs. They provide
not only the priority intensity of alternatives, but also the possible membership degrees of this priority
intensity. The likelihood-based index was defined to test the consistency of experts and the improving
model was constructed to modify consistency level of HLPRs. Preference information in HFPRs
is in the form of HFLNs. For the accuracy of HFLNs’ computation, new operational laws and the
comparison method were presented after reviewing the relevant literature. Furthermore, the decision
making framework based on HLPRs was built to select a proper ventilation system for mines. Finally,
an illustration and some comparisons with other methods were drawn to highlight the applicability
and advantages of the developed approach. In the future, more engineering applications with this
proposed method could be researched or more decision making methods can be developed to address
complex decision making problems in mines.
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Abstract: This paper investigates an intuitionistic fuzzy multiple attribute decision-making method
based on weighted induced distance and its application to investment selection. Specifically,
an intuitionistic fuzzy weighted induced ordered weighted averaging operator is proposed to
eliminate the drawbacks of existing methods by extending the functions of the order-induced
variables. The main advantage of the proposed operator is its dual roles of the order-inducing
variables that can simultaneously induce arguments and moderate associated weights. A further
extension of the proposed operator is its adaptation towards measuring intuitionistic fuzzy
information more effectively. In addition, a multiple attribute decision-making model based on
the proposed distance operators is proposed. Finally, the practicability and validity of the proposed
model are illustrated by using a numerical example related to investment selection.

Keywords: intuitionistic fuzzy set; multiple attribute decision-making; weighted induced distance;
investment selection

1. Introduction

The multiple attribute decision-making (MADM) technique is a widely used method in solving
real-world problems, in which a variety of attributes are involved to consider from finite feasible
alternatives according to the evaluated attributes’ evaluation or preference information given by
multiple decision-makers. Clearly, fuzziness and vagueness are inevitably integrated into the MADM
process due to the vagueness and uncertainty of evaluated objects and the ambiguous nature of
human thinking. Intuitionistic fuzzy set (IFS), initially developed by Atanassov [1], has proven to
be a powerful and useful tool for processing complex-type information in day-to-day life. The IFS
is described by a membership degree (0 ≤ μ ≤ 1) and a non-membership degree (0 ≤ v ≤ 1) that
satisfies the condition μ2 + v2 ≤ 1. To date, various MADM methods related to IFS have appeared
in well-known publications and conferences. Several authors have conducted valuable scientific
investigations and literature reviews on the development of IFS from different viewpoints [2–4].

As one of the important aspects of fuzzy theory, the distance measured between IFSs has received
continuous attention for decades in both the theory and application areas. Existing IFS distance
measures are mostly investigated from the weighted averaging perspective [5–8]. Recently, Zeng and
Su [9] proposed a new intuitionistic fuzzy distance measure from the ordered weighted viewpoint,
namely the intuitionistic fuzzy ordered weighted distance (IFOWD) operator, whose prominent
feature is that it can incorporate a decision-maker’s attitudinal characters into the MADM process.
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Later, by combining the weighted average and IFOWD methods, Zeng and Xiao [10] developed the
intuitionistic ordered weighted averaging-weighted average distance (IFOWAWAD) operator and
explored its usefulness in solving MADM problems. More recently, motivated by the induced ordered
weighted averaging distance (IOWAD) measure [11], Zeng et al. [12] proposed the intuitionistic fuzzy
induced ordered weighted averaging distance (IFIOWAD) measure that enables us to consider the
complex attitude of decision-makers using order-induced variables. The essence of the IFIOWAD as
well as the IOWAD operator is to enable the decision-makers to incorporate their complex attitude
into the aggregation process, using the order-induced variables on the ordered arguments. Thus,
the interests of the decision-makers are taken into account during the decision-making process.
Although it is a relatively new MADM approach, the induced aggregation distance operator has been
successfully applied in various fields of research. Recent literature contains a number of extensions
and subsequent applications in MADM problems, as listed in Table 1.

Table 1. Induced aggregation distance methodology in multiple attribute decision-making
(MADM) problems.

Author, Year Induced Aggregation Distance Methodology

Merigó and Casanovas, 2011 [13],
Casanovas et al., 2016 [14] Induced Minkowski ordered weighted averaging distance (IMOWAD)

Merigó and Casanovas, 2011 [15] Induced Euclidean ordered weighted averaging distance (IEOWAD)
Zeng et al., 2013 [16] Uncertain IOWAD (UIOWAD) operator, Fuzzy IOWAD (FIOWAD)

Su et al., 2013 [17] Uncertain IEOWAD (UIEOWAD)
Zeng et al., 2014 [18] Induced heavy ordered weighted averaging distance (IHOWAD)

Li et al., 2014 [19] 2-tuple linguistic IOWAD (2TLIOWAD) operator
Xian and Sun, 2014 [20] Fuzzy linguistic IOWAD (FLIOWAD)

Su et al., 2015 [21] Uncertain IHOWAD (UIHOWAD)
Zeng et al., 2017 [12] Intuitionistic fuzzy IOWA weighted averaging distance (IFIOWAWAD)
Xian et al., 2016 [22] Fuzzy linguistic IMOWAD (FLIMOWAD)
Xian et al., 2017 [23] Novel intuitionistic fuzzy IEOWAD distance (NIFIEOWAD)

It is clearly shown in previous reviews that the existing induced aggregation distance methods,
such as the IFIOWAD operator, are popular techniques that have been applied successfully in many
real-world problems. However, one can observe that the above-mentioned induced aggregated distances
share a similar problem that must be solved: their order-inducing variables are not involved in the
actual aggregation of results. As a consequence of this, the results obtained by these distance operators
cannot account for the variation derived from a change of the order-inducing variables. The latter
issue is especially important whenever variation degrees of property regarding alternative-attribution
pairs, such as confidence, consistency or importance, are represented in terms of order-inducing
variables and need to be considered. To circumvent this defect, this paper develops a revised induced
aggregated distance measure between IFSs, termed as an intuitionistic fuzzy weighted induced ordered
weighted averaging distance (IFWIOWAD) operator that takes into account the intrinsic variations
in the order-inducing variables during the aggregation process. Further, to enrich the theory and
application of the developed IFWIOWAD operator, we propose an intuitionistic weighted induced
ordered weighted averaging weighted average distance (IFWIOWAWAD) operator that can integrate
the weighted average approach with the IFWIOWAD measure. Therefore, it can address the complex
attitude of experts and the importance of attributes in the decision-making framework.

The rest of this paper is structured as follows. In Section 2, some definitions of the IFS and induced
aggregation distance operators are reviewed. Section 3 presents the IFWIOWAD operator and explores
its main properties. Section 4 develops the IFWIOWAWAD operator, based on which a MADM model
is represented in Section 5. An example concerning investment selection is presented in Section 6.
In the final section, we summarize the paper’s main results.
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2. Preliminaries

This section reviews several basic concepts concerning the IFS and the induced aggregated
distance methods.

Definition 1. An IFS P in a set Z = {z1, z2, . . . , zn} is defined as in (1) [1]:

P = {〈z, (μP(z), vP(z))〉|z ∈ Z} (1)

where the function 0 ≤ μP(z) ≤ 1 and 0 ≤ vP(z) ≤ 1 denote as the degree of membership and the
non-membership, respectively, and satisfy 0 ≤ μP(z) + vP(z) ≤ 1. For convenient calculation, the pair
α = (μα, vα) is signed as an intuitionistic fuzzy number (IFN) [24], where μα, vα ∈ [0, 1] and μα + vα ≤ 1.

Definition 2. The intuitionistic fuzzy distance (IFD) between IFNs α1 and α2 is given by the following
formula [9]:

dIFD(α1, α2) = |α1 − α2| =
1
2
(|μα1 − μα2 |+ |vα1 − vα2 |) (2)

As one of the most widely used and effective extensions of the ordered weighted averaging
(OWA) methods [25], the IOWA operator [26] aggregates information by its reordering rule, performed
with the order-inducing variables to accommodate a more complicated attitude of decision-makers.

Definition 3. An IOWA is defined as follows:

IOWA(〈u1, a1〉, . . . , 〈un, an〉) =
n

∑
j=1

wjbj (3)

where W = (w1, w2, . . . , wn)
T is the weight vector satisfying w1 + . . . + wn = 1 and wj ∈ [0, 1]. bj is the

reordered value of ai in the argument 〈ui, ai〉 having the jth largest order-inducing variable ui.

Based on the work of IOWAD proposed by Merigó and Casanovas [11], Zeng and Su [12]
introduced the IFIOWAD operator by combining the advantages of the induced aggregation and the
IFD. For IFSs A = (α1, . . . , αn) and B = (β1, . . . , βn), it is formulated as follows:

Definition 4. An IFIOWAD operator is defined by a weight vector W with 0 ≤ wj ≤ 1 and w1 + . . .+wn = 1;
and an order-inducing vector U = (u1, . . . , un), such that:

IFIOWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) =
n

∑
j=1

wjdIFD(ασ(j), βσ(j)) (4)

where dIFD(ασ(j), βσ(j)) is the reordering of dIFD(αj, β j) induced by the decreasing the order of uj, and
dIFD(αj, β j) is the IF distance between IFNs αj and β j.

Although the IFIOWAD operator is considered a useful and powerful measure tool, its inherent
defect often leads to the loss of information and biased results that can be observed from the
following example.

Example 1. Let A = {(0.3, 0.5), (0.5, 0.2), (0.7, 0.1), (0.4, 0.5)} and B = {(0.4, 0.6), (0.7, 0.4),
(0.2, 0.7), (0.6, 0.2)} be two sections of IFNs, and let the order-inducing variables be U = (7, 8, 3, 5). The main
steps for the aggregation of the above arguments based on the IFIOWAD operator are shown as follows:
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1. Calculate the distances dIFD(αj, β j) (j = 1, 2, 3, 4) using Equation (2):

dIFD(α1, β1) =
1
2
(|0.3− 0.4|+ |0.5− 0.6|) = 0.1,

Similarly, we have

dIFD(α2, β2) = 0.2, dIFD(α3, β3) = 0.55, dIFD(α4, β4) = 0.25.

2. Reordering the dIFD(αj, β j) (j = 1, 2, 3, 4) according to the decreasing values of the variable
uj yields:

dIFD(ασ(1), βσ(1)) = dIFD(α2, β2) = 0.2, dIFD(ασ(2), βσ(2)) = dIFD(α1, β1) = 0.1,

dIFD(ασ(3), βσ(3)) = dIFD(α4, β4) = 0.25, dIFD(ασ(4), βσ(4)) = dIFD(α3, β3) = 0.55.

3. Let the associated weighting vector be W = (0.3, 0.4, 0.1, 0.2)T , then the aggregation result yields:

IFIOWAD(U, A, B) = 0.3× 0.2 + 0.4× 0.1 + 0.1× 0.25 + 0.2× 0.55 = 0.225.

If we adjust the values of the order-inducing variables to U′ = (8, 10, 1, 6), then the aggregation
result would be:

IFIOWAD(U′, A, B) = 0.3× 0.2 + 0.4× 0.1 + 0.1× 0.25 + 0.2× 0.55 = 0.225.

One can be observed that we get the same aggregated results for different values of the
order-inducing variables. The reason is that the order-inducing variables in the IFIOWAD operator only
play the induced role and are not integrated into the actual aggregation results, thus corresponding
aggregation results cannot embody the variation caused by a change of order-inducing variables.
In the next section we will develop a new method to overcome this drawback.

3. The IFWIOWAD Operator

To solve the feedback problem of the existing IFIOWAD operator, we propose an improved
aggregation method, named the intuitionistic fuzzy weighted IOWA distance (IFWIOWAD) operator.
It can be formulated as follows:

Definition 5. Let A = (α1, . . . , αn) and B = (β1, . . . , βn) be two sets of IFNs. An IFWIOWAD operator
is defined by W with 0 ≤ wj ≤ 1 and w1 + . . . + wn = 1, and an order-inducing vector U = (u1, . . . , un),
such that:

IFWIOWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) =
n

∑
j=1

�jdIFD(ασ(j), βσ(j)) (5)

where �j (j = 1, . . . , n) is a moderated weight that relatively depends on weight wj ∈ W and order-inducing
variable uj ∈ U, defined as:

�j =
wjuσ(j)

n
∑

j=1
wjuσ(j)

(6)

where (σ(1), . . . , σ(n)) is any possible permutation of (1, . . . , n), and clearly satisfies uσ(j−1) ≥ uσ(j) for j > 1.
The distance dIFD(ασ(j), βσ(j)) (j = 1, . . . , n) is the reordering of dIFD(αj, β j) induced by uσ(j).

Example 2. Assume the same collections of IFNS and order-inducing variables as defined in Example 1.
Then the aggregation process by the IFWIOWAD is illustrated as follows:

662



Symmetry 2018, 10, 261

1. Record the order-inducing variables:

uσ(1) = u3 = 8, uσ(2) = u1 = 7, uσ(3) = u4 = 5, uσ(4) = u2 = 3.

2. Calculate the moderated weight �j using Equation (6):

�1 =
w1uσ(1)
4
∑

j=1
wjuσ(j)

=
0.3× 8

0.3× 8 + 0.4× 7 + 0.1× 5 + 0.2× 3
= 0.381.

Similarly,
�2 = 0.445, �3 = 0.079, �4 = 0.095.

3. Compute the distance between αi and βi using Equation (2) (note that we can get these distances
directly from Example 1:

dIFD(α1, β1) = 0.1, dIFD(α2, β2) = 0.2, dIFD(α3, β3) = 0.55, dIFD(α4, β4) = 0.25.

4. Rank dIFD(αj, β j) (j = 1, 2, 3, 4) according to associated value of uσ(j):

dIFD(ασ(1), βσ(1)) = dIFD(α2, β2) = 0.2, dIFD(ασ(2), βσ(2)) = dIFD(α1, β1) = 0.1,

dIFD(ασ(3), βσ(3)) = dIFD(α4, β4) = 0.25,dIFD(ασ(4), βσ(4)) = dIFD(α3, β3) = 0.55.

Employ the IFWIOWAD operator defined in Equation (5) to obtain the aggregation result:

IFWIOWAD(U, A, B)= 0.381× 0.2 + 0.445× 0.1 + 0.079× 0.25 + 0.095× 0.55= 0.1927.

It is easy to see that we get a different aggregation value compared to the IFIOWAD operator.
In addition, the variables uj(j = 1, . . . , n) in the IFWIOWAD operator play dual functions, one is
to induce the collection of arguments while the other moderates the weights that can overcome the
drawback of the IFIOWAD operator caused by the limited role of the order-inducing variables.

Moreover, if the values of the order-inducing variables are changed to U′ = (8, 10, 1, 6), then we
can recalculate the moderated weights:

�1 =
w1uσ(1)
4
∑

j=1
wjuσ(j)

=
0.3× 10

0.3× 10 + 0.4× 8 + 0.1× 6 + 0.2× 1
= 0.429.

Similarly,
�2 = 0.456, �3 = 0.086, �4 = 0.029.

Thus, the aggregation of the IFWIOWAD operator will yield the following result:

IFWIOWAD(U′, A, B)= 0.429× 0.2 + 0.456× 0.1 + 0.086× 0.25 + 0.029× 0.55= 0.16885.

As can be seen, in comparison to the IFIOWAD operator, the aggregation result of the IFWIOWAD
is changed based on the adjustment of the values of uj(j = 1, . . . , n), thus it can accommodate the
variation caused by a change of order-inducing variables and yield better results.

Depending on the operational laws defined for the IFNs, one can drive some properties of the
IFWIOWAD operator that are illustrated by the following theorems.
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Theorem 1. (Commutativity—distance measures). Let F̃ be the IFWIOWAD operator, then

F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = F̃(〈u1, β1, α1〉, . . . , 〈un, βn, αn〉) (7)

Theorem 2. (Commutativity—IOWA aggregation). Let (〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) is any possible
permutation of argument vector (〈u1, α1, β1〉, . . . , 〈un, αn, βn〉), then

F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = F̃(〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) (8)

Theorem 3. (Monotonicity). If |αi − βi| ≤
∣∣α′i − β′i

∣∣ for all i, then

F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) ≤ F̃(〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) (9)

Theorem 4. (Boundedness). Let min
i
(|αi − βi|) = d and max

i
((|αi − βi|)) = D, then

d ≤ F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) ≤ D (10)

Theorem 5. (Idempotency). If all d̃i = |αi − βi| = d̃ for all i, then

F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = d̃ (11)

It is straightforward to prove these theorems and therefore omitted for sake of brevity. Moreover,
some particular cases of the IFWIOWAD operator can be explored by analyzing the order-inducing
values and the weight vector. For example,

• If U = (u, 0, · · · , 0) (u 	= 0), then

IFWIOWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = dIFD(ασ(1), βσ(1)) (12)

• If U = (0, · · · , 0, u) (u 	= 0), then

IFWIOWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = dIFD(ασ(n), βσ(n)) (13)

• If wj = 0 and wk = 1, for all j 	= k, then

WIEOWD(〈u1, p1, q1〉, . . . , 〈un, pn, qn〉) = dIFD(ασ(k), βσ(k)) (14)

Especially, if Dk = max
i
{|αi − βi|}, then we get the intuitionistic fuzzy maximum distance;

if Dk = min
i
{|αi − βi|}, the intuitionistic fuzzy minimum distance.

Other a parameterized family of the IFWIOWAD operator can be described by similar methods,
as applied in references [27–31].

4. The IFWIOWAWAD Operator

From the examples illustrated in the Section 3, we can see that the proposed IFWIOWAD operator
can effectively eliminate the defects of the existing methods. However, further analysis indicates
that the IFWIOWAD operator also has some shortcomings; i.e., it cannot integrate the weight of
integrated arguments—and thus the importance of the integrated date cannot be reflected in the
aggregation process. Recently, Merigó [32] presented a unification of the OWA and the IOWA
operators, and termed it the induced ordered weighted averaging–weighted average (IOWAWA)
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operator. The prominent feature of the IOWAWA operator is that it unifies the IOWA operator and
weighted average (WA) in the same formula, and allows each of the two concepts to be assigned a
degree of importance in the aggregation. The IOWAWA operator has been receiving increasing attention
to date. For example, Zeng et al. [33] explored the usefulness of the IOWAWA in the intuitionistic
fuzzy situation. Merigó et al. [34] studied the application of the IOWAWA in entrepreneurial fuzzy
group decision-making problems. Merigó et al. [35] presented some new IOWAWA–based methods to
compute variance and covariance. Zeng et al. [36] proposed some aggregation operators based on the
IOWAWA method in Pythagorean fuzzy environment. Motivated the idea of the IOWAWA operator,
in this section we present the IFWIOWAWAD operator that comprises a unified model that employs
the main advantages of IFWIOWAD operator and the weighted average (WA) methods. Thus, it can
perform the importance of attributes and complex attitude of experts in the decision-making framework.

Definition 6. Let A = (α1, . . . , αn) and B = (β1, . . . , βn) be two sets of IFNs defined in set
Z = {z1, z2, . . . , zn} and δi be the weight of the element zi(i = 1, . . . , n), satisfying δ1 + . . . + δn = 1
and δi ∈ [0, 1]. Then, the IFWIOWAWAD is termed intuitionistic fuzzy weighted IOWA weighted average
distance operator and defined as

IFWIOWAWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) =
n

∑
j=1

w̃jdIFD(ασ(j), βσ(j)) (15)

where dIFD(ασ(j), βσ(j)) is the argument value of dIFD(αj, β j) reordered by the order-inducing variable uσ(j)
such that uσ(j−1) ≥ uσ(j) for 1 < j ≤ n. The combined weight of w̃ is defined as follows:

w̃j = λ�j + (1− λ)δσ(j) (16)

where λ ∈ [0, 1], W = (w1, . . . , wn)
T is the associated weighting vector that simply satisfies the condition

0 ≤ wj ≤ 1 and w1 + . . . + wn = 1. �j is defined by Equation (6), that is

�j =
wjuσ(j)

n
∑

j=1
wjuσ(j)

(17)

The IFWIOWAWAD operator can also be explicitly illustrated in terms of the two underlying
rules of aggregation (i.e., WA and IOWA). Thus, the IFWIOWAWAD can be separated into a linear
combination of the IF weighted distance (IFWD) [15] and the IFWIOWAD:

IFWIOWAWAD(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) =

λ
n
∑

j=1
�jdIFD(ασ(j), βσ(j)) + (1− λ)

n
∑

i=1
δidIFD(αi, βi)

(18)

Example 3. (Continuing from Example 2). Let the weighting vector δ = (δ1, δ2, δ3, δ4)
T =

(0.2, 0.3, 0.15, 0.35)T and λ = 0.6, then with the help of Example 2, the rest steps using the IFWIOWAWAD
operator are given as follows:

1. Compute the combined weight w̃j (j = 1, 2, 3, 4) using Equation (16):

w̃1 = λ�1 + (1− λ)δσ(1) = 0.6× 0.429 + (1− 0.6)× 0.3 = 0.3774,
w̃2 = λ�2 + (1− λ)δσ(2) = 0.6× 0.456 + (1− 0.6)× 0.2 = 0.3536,

w̃3 = λ�3 + (1− λ)δσ(3) = 0.6× 0.086 + (1− 0.6)× 0.35 = 0.1916,
w̃4 = λ�4 + (1− λ)δσ(4) = 0.6× 0.029 + (1− 0.6)× 0.15 = 0.0774.
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2. Employ the IFWIOWAWAD operator defined in Equation (15) to perform the aggregation
as follows:

IFWIOWAWAD(U, A, B)= 0.3774× 0.2 + 0.3536× 0.1 + 0.1916× 0.25 + 0.0774× 0.55= 0.20131

The aggregation of IFWIOWAWAD can also be performed using Equation (19) as following:

IFWIOWAWAD(U, A, B) = 0.6× IFWIOWAD + 0.4× IFWD
= 0.6× 0.16885 + 0.4× (0.2× 0.1 + 0.3× 0.2 + 0.15× 0.55 + 0.35× 0.25)= 0.20131

Evidently, we get the same aggregate values for both methods. Moreover, we can see that,
contrary to the IFWIOWAD operator, the IFWIOWAWAD operator cannot only consider the attitudinal
character represented by the order induced variable, but also take into account the importance of the
argument based on the weighted average method.

In the following results, we show some of the most important properties of the
IFWIOWAWAD operator.

Proposition 1. The IFWIOWAWAD is commutative if it follows (let ϕ be the IFWIOWAWAD operator for a
simple notation):

ϕ(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = ϕ(〈u1, β1, α1〉, . . . , 〈un, βn, αn〉) (19)

or
ϕ(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = ϕ(〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) (20)

where (〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) is a possible permutation of the argument vector
(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉).

Proposition 2. If |αi − βi| ≤ |s1 − t1| for all i, it follows that:

ϕ(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) ≤ ϕ(〈u1, s1, t1〉, . . . , 〈un, sn, tn〉) (21)

Then the IFWIOWAWAD is monotonic.

Proposition 3. The IFWIOWAWAD is bounded if it follows that:

min
i
(|αi − βi|) ≤ ϕ(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) ≤ max

i
(|αi − βi|) (22)

Proposition 4. If all d̃i = |αi − βi| = d̃ for i ∈ [1, n], it follows that:

F̃(〈u1, α1, β1〉, . . . , 〈un, αn, βn〉) = d̃ (23)

Then the IFWIOWAWAD operator is idempotent.
By selecting different values for the weights and parameters in the IFWIOWAWAD operator,

we can derive some special intuitionistic fuzzy distance operators. For example:

• When λ = 1, the IFWIOWAWAD reduces to the IFWIOWAD operator.
• When λ = 0, we get the IFWD operator.

Equivalently, many other special cases can be derived by analyzing the weighting vectors W, V
and the order inducing variable vector U in a similar way (see [33–36]).
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5. A MADM Model Based on the IFWIOWAWAD Operator

A framework of the MADM model based on the IFWIOWAWAD is presented in this section.
The main process for the model is structured as follows:

Step 1. Each decision maker ek provides their opinions and thus forms the individual decision
matrix, constructed as in (24):

C1 · · · Cn

Dk =

A1
...

An

⎛⎜⎜⎝
α
(k)
11 · · · α

(k)
1n

...
. . .

...

α
(k)
m1 · · · α

(k)
mn

⎞⎟⎟⎠ (24)

where Ai and Cj indicate the alternative i(i = 1, . . . , m) and the attribute j(j = 1, . . . , n), respectively.

Meanwhile the IFNs α
(k)
ij = (μ

(k)
ij , v(k)ij ) represents the preference for Ai with respect to the attribute Cj.

Step 2. Employ the IF weighted average (IFWA) operator [24] to convert individual opinions of
each decision makers into a group decision matrix D =

(
αij
)

m×n, where

αi j = IFWA
(

α(1)
ij

, . . . , α(t)
ij

)
i = 1, . . . , m, j = 1, . . . , n. (25)

Step 3. Construct the ideal alternative I and determine the order-inducing variables and weights
used for the IFWIOWAWAD operator.

Step 4. Compute the weighted distance between the ideal alternative I and each Ai(i = 1, . . . , 5)
using the IFWIOWAWAD operator.

Step 5. Establish a ranking for the alternative Ai(i = 1, . . . , 5) in accordance with the
IFWIOWAWAD(I, Ai) obtained in step 4. The alternative with the smallest distance will be selected as
the best.

6. An Example of Investment Selection

Decision-making related to the selection of a suitable investment from finite feasible alternatives
constitutes one of the most common and important activities in various business fields. The complexity
of the assessment and selection process for investment projects necessitates a complex method: i.e.,
the multiple attribute decision-making (MADM) technique provides an efficient tool for decision
makers to solve problems based on an evaluation or preference information given by multiple experts.
In the past, many authors have proposed different MADM approaches for solving the selection of
investment problems [37–41]. Previous findings have shown that the applications of the induced
aggregation distance operators are very heartening and widely used in the decision-making process.
This paper presents the application of the proposed model in the process of selecting investments
in which a group of decision makers (or experts) are invited for the selection of a suitable strategy
(adapted from Ref. [32]). Based on the market research and preliminary screening, there are five
companies (alternatives) to be considered as potential investment options, namely a chemical company
(A1), a food company (A2), a car company (A3), a furniture company (A4) and a computer company
(A5). The main situations of company for investment are evaluated by the world economic growth
rate: C1 = High growth rate, C2 = Medium growth rate, C3 = Low growth rate, C4 = Growth rate near 0
and C5 = Negative growth rate. The assessment of the alternatives with respect to each attribute given
by three decision makers, are given in Tables 2–4. For example, the decision maker e1 called ten experts
together to assess the situations (attributes) for these five companies. As for the C1 of the company
A1, if six experts consider C1 strong while three experts consider C1 low and one expert do not judge
whether C1 is strong or not, then the evaluation of company A1 relative to C1 can be represented by
IFN (0.6,0.3) by using the statistical approach.
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Table 2. Decision matrix D1 .

Alternatives C1 C2 C3 C4 C5

A1 (0.2,0.6) (0.5,0.3) (0.4,0.4) (0.5,0.4) (0.3,0.5)
A2 (0.6,0.2) (0.7,0.3) (0.6.0.2) (0.7,0.2) (0.4,0.5)
A3 (0.6,0.2) (0.6,0.4) (0.5,0.3) (0.6,0.3) (0.4,0.4)
A4 (0.4,0.2) (0.7,0.2) (0.5,0.2) (0.4,0.4) (0.6,0.3)
A5 (0.7,0.3) (0.4,0.3) (0.6,0.3) (0.5,0.4) (0.6,0.2)

Table 3. Decision matrix D2 .

Alternatives C1 C2 C3 C4 C5

A1 (0.5,0.3) (0.7,0.2) (0.5,0.4) (0.7,0.3) (0.4,0.3)
A2 (0.7,0.2) (0.6,0.2) (0.8,0.1) (0.5,0.4) (0.6,0.2)
A3 (0.4,0.4) (0.4,0.4) (0.4,0.2) (0.6,0.3) (0.4,0.4)
A4 (0.6,0.2) (0.6,0.2) (0.7,0.2) (0.6,0.2) (0.5,0.3)
A5 (0.8,0.2) (0.5,0.3) (0.6,0.1) (0.6,0.2) (0.6,0.2)

Table 4. Decision matrix D3 .

Alternatives C1 C2 C3 C4 C5

A1 (0.6,0.2) (0.8,0.2) (0.7,0.2) (0.6,0.3) (0.5,0.4)
A2 (0.7,0.3) (0.6,0.2) (0.3,0.4) (0.7,0.1) (0.8,0.2)
A3 (0.8,0.1) (0.7,0.2) (0.7,0.1) (0.3,0.4) (0.6,0.3)
A4 (0.5,0.5) (0.3,0.4) (0.6,0.2) (0.4,0.5) (0.5,0.2)
A5 (0.6,0.3) (0.8,0.2) (0.6,0.2) (0.5,0.3) (0.7,0.2)

In this problem, the weighting vector of the three experts is assumed to V = (0.3, 0.4, 0.3)T while,
the collective results performed by the IFWA operator are listed in Table 5.

Table 5. Collective decision matrix D .

Alternatives C1 C2 C3 C4 C5

A1 (0.46,0.33) (0.69,0.26) (0.55,0.32) (0.62,0.33) (0.41,0.38)
A2 (0.67,0.23) (0.63,0.23) (0.64,0.19) (0.63,0.21) (0.63,0.26)
A3 (0.68,0.20) (0.59,0.23) (0.54,0.18) (0.53,0.33) (0.47,0.37)
A4 (0.43,0.26) (0.57,0.25) (0.62,0.20) (0.49,0.32) (0.53,0.27)
A5 (0.72,0.26) (0.60,0.27) (0.60,0.17) (0.54,0.22) (0.63,0.20)

The order-inducing variables and the ideal alternative determined by the group of experts are
shown in Tables 6 and 7, respectively.

Table 6. Order-inducing variables.

Varaible C1 C2 C3 C4 C5

U 0.8 0.9 0.4 0.7 0.6

Table 7. Ideal alternative.

Ideal Alternative C1 C2 C3 C4 C5

I (0.8,0.1) (0.9,0.1) (0.9,0) (0.8,0.1) (0.9,0.1)
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The weights δi for the attributes are given as 0.1, 0.25, 0.2, 0.35, 0.1 while the ordered weights,
wj are assumed to be 0.15, 0.25, 0.2, 0.1, 0.3. Table 8 shows the aggregated results performed by the
IFWIOWAWAD operator (λ = 0.4).

Table 8. Aggregate results and ranking rendered by the IFWIOWAWAD operator.

Results A1 A2 A3 A4 A5

IFWIOWAWAD(Ai, I) 0.25745 0.187427 0.231064 0.25484 0.195926
Ranking 5 1 3 4 2

Thus, A2 appears to be the best choice as it is closest to the ideal alternative while, the ranking of
the five alternatives is A2 � A5 � A3 � A4 � A1.

To conduct a comparative analysis, we employ the IFIOWAWAD and IFOWAWAD operators in
identical decision information to further explore the effectiveness of the order-inducing variables on
the aggregation results. The results are shown in Table 9.

Thus, the rankings of the alternatives obtained by the IFIOWAWAD and IFOWAWAD operators
are A2 � A5 � A3 � A1 � A4 and A5 � A2 � A3 � A4 � A1, respectively. From Tables 8 and 9,
it is clear that the orderings of the alternatives may change if a different distance operator is used.
It should be pointed out that the order-inducing variables in the IFIOWAWAD operator only perform
a single induced function during the aggregation process. The IFOWAWAD operator integrates the
importance of attributes and ordered weights into the formula to evaluate the IFS information, but
fails to account for the attitudinal characters as it cannot infuse the order-inducing variables. However,
the IFWIOWAWAD not only integrates both of the weights, but also captures the variation in the
order-inducing variables, and thus achieves a more scientific and accurate result in comparison with
other approaches.

Table 9. Aggregate results driven by the IFIOWAWAD and the IFOWAWAD operators.

Results A1 A2 A3 A4 A5

IFIOWAWAD(Ai, I) 0.265624 0.182068 0.213909 0.275726 0.185689
IFOWAWAD(Ai, I) 0.261 0.1975 0.2355 0.25085 0.19625

Moreover, it is possible to conduct a sensitive analysis to explore the robustness of the ranking of
the alternative with regards to the parameter λ, λ ∈ [0, 1]. The computation results are illustrated in
Table 10.

Table 10. Ranking rendered by the IFWIOWAWAD operator with different values of λ .

λ Ranking of Alternative

λ = 0 A2 � A5 � A3 � A1 � A4
λ = 0.1 A2 � A5 � A3 � A1 � A4
λ = 0.2 A2 � A5 � A3 � A4 � A1
λ = 0.3 A2 � A5 � A3 � A4 � A1
λ = 0.4 A2 � A5 � A3 � A4 � A1
λ = 0.5 A2 � A5 � A3 � A4 � A1
λ = 0.6 A2 � A5 � A3 � A4 � A1
λ = 0.7 A2 � A5 � A3 � A4 � A1
λ = 0.8 A2 � A5 � A3 � A4 � A1
λ = 0.9 A2 � A5 � A3 � A4 � A1
λ = 1 A5 � A2 � A3 � A4 � A1

As can be seen, the ranking of alternatives may be different based on the different values of λ.
Thus, the decision maker can select suitable values of λ to meet their interests or actual needs at hand.
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Therefore, this model is rather flexible as it provides more choices to decision makers for the selection
of aggregation schemes by adjusting different values of the parameters.

7. Conclusions

To effectively deal with and process intuitionistic fuzzy information, in this study we have
proposed the intuitionistic fuzzy weighted induced ordered weighted averaging distance operator,
which improves the existing aggregation operators by extending the role of the order-inducing
variables. In the proposed operator, the order-inducing variables induce the order of arguments
and moderate the associated weights simultaneously. Thus, it enables us to capture the variations in
the final aggregation results caused by the order-inducing variables. A generation of intuitionistic
fuzzy weighted induced ordered weighted averaging distance operator has been further developed,
based on which, a novel model for intuitionistic fuzzy multiple attribute decision making problems
was developed. This model presents a useful and adaptable way to integrate subjective opinions and
complex attitudinal characters in real situations. The comparative analysis illustrates that this model is
expected to lead to more realistic and accurate results in intuitionistic fuzzy situations. Thus, this paper
offers a significant contribution in regards to the development of MADM frameworks for investment
selection problems.

In future research efforts, we will consider extending the approach with probabilities or other
kinds of distance measures. We may also consider other situations based on the presented procedures
and tools, such as the Pythagorean fuzzy set [36,42] and Neutrosophic set [43,44].
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Abstract: In the market economy, competition is typically due to the difficulty in selecting the
most suitable supplier, one that is capable to help a business to develop a profit to the highest
value threshold and capable to meet sustainable development features. In addition, this research
discusses a wide range of consequences from choosing an effective supplier, including reducing
production cost, improving product quality, delivering the product on time, and responding flexibly
to customer requirements. Therefore, the activities noted above are able to increase an enterprise’s
competitiveness. It can be seen that selecting a supplier is complex in that decision-makers must have
an understanding of the qualitative and quantitative features for assessing the symmetrical impact of
the criteria to reach the most accurate result. In this research, the multi-criteria group decision-making
(MCGDM) approach was proposed to solve supplier selection problems. The authors collected data
from 25 potential suppliers, and the four main criteria within contain 15 sub-criteria to define the
most effective supplier, which has viewed factors, including financial efficiency guarantee, quality of
materials, ability to deliver on time, and the conditioned response to the environment to improve the
efficiency of the industry supply chain. Initially, fuzzy analytic network process (ANP) is used to
evaluate and rank these criteria, which are able to be utilized to clarify important criteria that directly
affect the profitability of the business. Subsequently, data envelopment analysis (DEA) models,
including the Charnes Cooper Rhodes model (CCR model), Banker Charnes Cooper model (BCC
model), and slacks-based measure model (SBM model), were proposed to rank suppliers. The result
of the model has proposed 7/25 suppliers, which have a condition response to the enterprises’
supply requirements.

Keywords: fuzzy analytic network process (FANP); data envelopment analysis (DEA); supplier
selection; multi-criteria group decision-making (MCGDM)

1. Introduction

The task of selecting suppliers becomes more important in today’s competitive and global
environment when it is impractical or virtually impossible to create high-quality, low-cost, successful
products without a vendor. For businesses today, vendor selection is one of the most important
and indispensable components of the supply chain function of Florez–Lopez [1]. The enterprises’
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expected goal of selecting a vendor is necessary to reduce the risk in buying, making an optimum
decision, and establishing a sustainable alliance between buyers and suppliers [2]. Basically, choosing
suppliers is a decision-making process because a business expects to obtain a supplier [3]. Additionally,
it requires a powerful analytical approach, via utilizing decision-support tools, which is capable
of addressing multiple criteria [4]. Incidentally, the supplier’s price includes many qualitative and
qualitative conflicts.

The author represents two techniques, i.e., DEA and the FANP, which are used to design a
method for evaluating suppliers. In order to obtain the accurate result as the chosen supplier
based on the frontier point of the DEA model from input and output decision-makers (DMUs) [5].
The drawback of DEA, related to this study, is the requirement of data for various inputs and
outputs to be in a quantitative format. This DEA limitation is addressed by analyzing the qualitative
factors/attributes associated with the supplier using FANP. FANP is a more general form of the
decentralized process, which includes the feedback and interdependencies of decision attributes and
alternatives. This additional feature provides a more accurate and robust approach when modeling a
complex decision-making environment [6].

The decision-making process is designed to provide a holistic approach in which the relevant
factors and criteria are integrated into the FANP’s decentralized network. Different relationships
are combined in these structures and then both judgment and logic are used to estimate the relative
effect from which the overall response is derived [7]. The FANP model used here provides a unique
quantitative value for vendor-specific qualitative factors and is based on buyers’ preferences and
perceptions. This quantitative value from FANP for each supplier is used as a qualitative benefit in the
DEA model to obtain the ranking or performance of different suppliers.

This research proposed hybrid FANP and DEA approaches for supplier selection in the rice
supply chain, which also considers green issues under uncertain environment conditions. The aim
of this research is to provide a useful guideline for supplier selection based on qualitative and
quantitative factors (including the main criteria, such as financial, delivery services, qualitative factors,
and environmental management systems) to improve the efficiency of supplier selection in the rice
supply chain and other industries.

In the remainder of this paper, this research provides the platform data to further support the
need of the development of a decision approach. Then, the synthetic supplier evaluation approach
was applied to a case study of a company, which could be used for the explanation of the findings.
Finally, this paper ends with a summary, and conclusions are made.

2. Literature Review

2.1. Supplier Selection Methods

Aissaoui et al. [8] presented a literature review that covers the entire purchasing process,
considered both parts and services outsourcing activities, and covers Internet-based procurement
environments, such as electronic marketplace auctions. Govindan et al. [9] presented a literature
review for multi-criteria decision-making approaches for green supplier evaluation and selection.
Chai et al. [10] provided a systematic literature review on articles published from 2008 to 2012 on the
application of DM techniques for supplier selection.

Wu and Blackhurst [11] proposed a methodology termed augmented DEA, which has enhanced
discriminatory power over basic DEA models to rank suppliers. Amirteimoori and Khoshandam [12]
developed a DEA model for evaluating the performance of suppliers and manufacturers in supply
chain operations. Lin et al. [13] provided a MCDM model by combining the Delphi method and the
ANP method for evaluating and selecting suppliers for the sustainable operation and development of
enterprises in the aerospace industry. Galankashi et al. [14] proposed an integrated balanced scorecard
(BSC) and fuzzy analytic hierarchical process (FAHP) model to select suppliers in the automotive
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industry. Kilincci and Onal [15] used a fuzzy AHP approach for supplier selection in a washing
machine company.

Tyagi et al. [16] proposed fuzzy AHP and AHP methods to prioritize the alternatives of the supply
chain performance system. Karsak and Dursun [17] proposed a fuzzy MCDM model including the
quality function deployment (QFD), fusion of fuzzy information, and 2-tuple linguistic representation
for supplier evaluation and selection. Chen et al. [18] proposed a hybrid AHP and TOPSIS for
evaluating and ranking the potential suppliers. Guo et al. [19] used fuzzy MCDM approaches for
green supplier selection in apparel manufacturing. Wu et al. [20] constructed a multiple criteria
decision-making model for the selection of fishmeal suppliers. Hu et al. [21] proposed a hybrid fuzzy
DEA/AHP methodology for ranking units in a fuzzy environment. He and Zhang [22] used a hybrid
evaluation model based on factor analysis (FA), data envelopment analysis (DEA), with analytic
hierarchy process (AHP) for a supplier selection from the perspective of a low-carbon supply chain.

Parkouhi et al. [23] used the fuzzy analytic network process and VlseKriterijuska Optimizacija I
Komoromisno Resenje (VIKOR) techniques for supplier selection. Wan et al. [24] proposed a hybrid
DEA and Grey Model (1,1) approach for partner selection in the supply chain of Vietnam’s textile and
apparel industry. Wu et al. [25] used the fuzzy Delphi method, ANP, and TOPSIS for supplier selection.
Rezaeisaray et al. [26] proposed a hybrid DEMATLE, FANP, and DEA model for outsourcing supplier
selection in pipe and fittings manufacturing. Rouyendegh and Erol [27] applied the DEA-fuzzy ANP
for department ranking at Iran Amirkabir University. Fuzzy set theory formalized by Zadeh [28] is
an effective tool, which has been widely used in the supplier selection decision process because it
provides a suitable language to transform imprecise criteria to precise criteria.

Junior et al. [29] presented a comparison between fuzzy AHP and fuzzy TOPSIS methods to
supplier selection. The linear programming of data envelopment analysis (DEA), which is proposed
by Charnes et al. [30], and is able to produce the result of measured efficiency without having specific
weights for inputs and outputs or specify the form of the production function, is a nonparametric
technique used to measure the relative efficiency of peer decision-making units with multiple
inputs and outputs [31,32]. In the supplier’s evaluation and selection process, many researchers
calculated the supplier’s performance by using the ratio of weighted outputs to weighted inputs [32].
Thus, the integrated FANP and DEA method is used to determine supplier selection criteria and select
supplier in this paper.

Talluri et al. [33] provided vendor evaluation models by presenting a chance-constrained
data envelopment analysis (CCDEA) approach in the presence of multiple performance measures
that are uncertain. Saen [34] applied a DEA model for ranking suppliers in the presence of
nondiscretionary factors. Saen [35] also proposed a new AR-IDEA model for supplier selection.
Saen and Zohrehbandian [36] proposed a DEA approach for supplier selection. Saen [37] proposed
an innovative method, which is based on imprecise data envelopment analysis (IDEA) to select the
best suppliers in the presence of both cardinal and ordinal data. Lo Storto [38] proposed a double
DEA framework to support decision making in the choice of advanced manufacturing technologies.
Adler et al. [39] reviewed of ranking method in the data envelopment analysis context. Lo Storto [40]
presented a peeling DEA-game cross efficiency procedure to classify suppliers.

Kuo et al. [41] developed a supplier selection system through integrating fuzzy AHP and fuzzy
DEA on an auto lighting System Company in Taiwan. Kuo and Lin [42] used ANP and DEA for
supplier selection.

Taibi and Atmani [43] proposed a MCDM model combining fuzzy AHP with GIS and decision
rules for industrial site selection. Molinera et al. [44] used fuzzy ontologies and multi-granular
linguistic modelling methods for solving MCGDM problems under environments with a high number
of alternatives. Adrian et al. [45] proposed a conceptual model development of big data analytics
implementation assessment effect on decision making.
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Staníčková and Melecký used DEA models to evaluate the performances of Visegrad Four (V4)
countries and regions [46]. Schaar and Sherry have been shown to contribute to the overall performance
efficiency of the air transportation network by used three DEA models (CCR, BCC and SBM) [47].

2.2. Criteria and Sub-Criteria for Supplier Selection

The initial criteria for the supplier set are developed based on a literature study.
Financial: The firm should require its suppliers to have a sound financial position. Financial

strength can be a good indicator of the supplier’s long-term stability. A solid financial position also
helps ensure that performance standards can be maintained and that products and services will
continue to be available [48].

Delivery and service: A firm can use service performance criteria to evaluate the benefits provided
by supplier services. When considering services, a firm needs to clearly define its expectations since
there are few uniform, established service standards to draw upon. Since any purchase involves
some degree of service, such as order processing, delivery, and support, a firm should always include
some service criteria in its evaluation. If the supplier provides a solution combining products and
services, the firm should be sure to adequately represent its service needs in the selection criteria [48].
The suppliers have to follow the predefined delivery schedule for achieving on-time delivery. All the
manufacturers want to work with the supplier who can manage the supply chain system on time and
has the ability for following the exact delivery schedule table [49].

Qualitative: Qualitative criteria are developed to measure important aspects of the supplier’s
business: business experience and position among competitors, expert labor, technical capabilities and
facilities, operational control, and quality [50].

Environmental management system: Due to increasing awareness about environmental
degradation manufacturing companies and customers are both becoming alert of environmental
protection [51]. This has led stakeholders of companies to ensure safe practices, like pollution control,
reuse, recovery, etc. It includes criteria like pollution control: resource consumption of raw materials,
use of environmentally friendly technology and materials, design capability for reduced consumption
of materials/energy, reuse, and recycling of materials. To reduce the harm to the environment,
organizations should also consider factors like permit requirements, compliance requirements, strategic
considerations, climatic considerations, and government policy [52,53].

There are four main criteria and some sub-criteria, as shown in Table 1.
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3. Material and Methodology

3.1. Research Development

Figure 1 illustrates the selection process, which is sequentially presented in three steps. In the
first step, the decision-maker examines the material, interviews the experts, and surveys managers to
determine the criteria and sub-criteria affecting to decision making. In the second step data are then
processed using the FANP method to rank the criteria. Results from the FANP method are used for the
input and output of the DEA model. The DEA model is implemented in the final stage.

Figure 1. Research process.

Step 1: Determining evaluation criteria and sub-criteria

Determine the key criteria and sub-criteria for a comprehensive assessment of the potential
supplier. At this stage, the identification of key criteria and sub-criteria is based on a review of the
literature and scientific reports related to the content of the research to determine the necessary criteria
for the topic [50]. After identifying the groups of criteria required, the decision-maker should select
the potential supplier that matches the set criteria. Here, the criteria are defined as four main criteria
and 15 sub-criteria, as shown in Figure 2.

Step 2: Implementing the FANP technique

Incorporating hybrid fuzzy set theory into the ANP model is the most effective tool for addressing
complex problems of decision-making, which has a connection with various qualitative criteria [37].
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As can be seen from the solution algorithm in this technique, as presented in Figure 3, at first,
the decision-making hierarchical structure is determined to assist the selection [71].

Step 3: Implementation of the DEA model

In this study, the FANP and DEA techniques for efficiency measurement have advantages over
other fuzzy ANP approaches. In this step, several DEA models, including the Charnes–Cooper–Rhodes
model (CCR model), Banker–Charnes–Cooper model (BCC model), Slacks-Based Measure model (SBM
model), and Super Slacks-Based Measure model (Super SBM model) are applied to rank suppliers and
potential suppliers.

 

Figure 2. A triangular fuzzy number (TFN).

Figure 3. Triangular fuzzy number (TFN).

3.2. Methodology

3.2.1. Fuzzy Set Theory

Fuzzy set was proposed by Zadeh to solve problems existing in uncertain environments.
Fuzzy sets are functions that show the dependence degree of one fuzzy number on a set number.
A tilde (~) is placed above any symbol representing a fuzzy set number. If Ã is a TFN, each value of
the membership function is between [0, 1] and can be explained, as shown in Equation (1):

μÃ(x) =

⎧⎪⎪⎨⎪⎪⎩
(x−l)
(m−l) l ≤ x ≤ m
(u−x)
(u−m)

m ≤ x ≤ u

0 0.W

(1)

Each degree of membership includes a left- and right-side representation of a TFN, as shown here:

Ñ = (N1(y), Nr(y)) = (1 − (m − l)y, u + (m − u)y), y ∈ [0, 1].

A TFN is shown in Figure 2.
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3.2.2. Fuzzy Analytic Network Process

ANP does not require a strict hierarchical structure, such as AHP. It allows elements to control,
and be controlled, by different levels or clusters of attributes. Several control elements are also present
at the same level. Interdependence between factors and their level is defined as a systematic approach
to feedback or interactions between elements.

During the ANP process, the elements will be compared pairwise using the expert rating scale,
from which the weighting matrix is established. The weights are then adjusted by defining the product
of the super matrix.

The AHP method provides a structured framework to set priorities for each level of the hierarchy
by using pairwise comparisons quantitated with a priority scale of 1–9, as shown. In contrast, the ANP
approach allows for more complex relationships between the elements and their ranks. The 1–9 scale
for AHP is shown in Table 2.

Table 2. The 1–9 scale for AHP [6].

Importance Intensity Definition

1 Equally importance
3 Moderate importance
5 Strongly more importance
7 Very strong more importance
9 Extremely importance

2, 4, 6, 8 Intermediate values

It is clear that the disadvantage of ANP in dealing with the impression and objectiveness in the
pairwise comparison process has been improved in the fuzzy analytic network process. The FANP
applies a range of values to incorporate the decision-makers’ uncertainly [38], whereas the ANP model
shows a crisp value. The author assigns the fuzzy conversion scale of this formula, which will be used
in the Saaty [72] fuzzy prioritization approach, as shown in Table 2, where Oab = (Ox

ab, Oo
ab, Ov

ab) is a
triangular fuzzy number with the core Oo

ab, the support [Ox
ab, Ov

ab], and the triangular fuzzy number,
as shown in Figure 3.

The 1–9 fuzzy conversion scale is shown in Table 3:

Table 3. The 1–9 fuzzy conversion scale [72].

Importance Intensity Triangular Fuzzy Scale

1 (1, 1, 1)
2 (1, 1, 2)
3 (1, 2, 3)
4 (2, 3, 4)
5 (3, 4, 5)
6 (4, 5, 6)
7 (5, 6, 7)
8 (7, 8, 9)
9 (9, 9, 9)

The reversed degree to Oab expressing the non-preference is also expressed by a triangular fuzzy
number: (1/Ov

ab, 1/Oo
ab, 1/Ox

ab. ). By the way, the weights of criteria from the fuzzy Saaty’s matrix can
be divided into four steps [73]:

1. Fuzzy synthetic extension calculation will transformed into TNT, called fuzzy synthetic extensions
Ka(kx

a , ko
a, kuv

a ). using Equations (2)–(4) [74]:

Ka = ∑n
b=1 Oab

⊗
(∑n

a=1 ∑n
b=1 Oab)

−1
(2)
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n

∑
j=1

Oab =

(
n

∑
b=1

Mx
ab,

n

∑
j=1

Oo
ab,

n

∑
b=1

Ov
ab

)
(3)

O−1
ab = 1/Ov

ab, 1/Oo
ab, 1/Ox

ab (4)

O
⊗

N = (Ox . Nx, O0. N0, Ov.Nv) (5)

Assign a = 1, 2, . . . , n, in which a and b specifically are triangular fuzzy number (Ox, Oo, Ov) and
(Nx, N0, Nv).

2. Weights of criteria are addressed by using relations of the fuzzy-valued. In this step, fuzzy
synthetic extensions are blurred by using the min fuzzy extension of the valued relation ≤ given
by Equation (5), and weights Wi are calculated (for more detail, see [75]):

Qa = minb

{
kb

b − kv
a

(ko
a − kv

a)− (ko
b − kx

b)

}
(6)

For a, b = 1, 2, . . . ., n.
3. The standardization of the weights. If we expect to obtain the sum of weights within one matrix

equal to 1, final weights wi are solved using Equation (7):

qi = Qi/ ∑n
a=1 Qa (7)

For a, b = 1, 2, . . . , n.
4. An assessment of a Saaty’s matrix consistency. In the line with [74], a consistency of the matrix is

sufficient if inequality from Equation (8) holds:

RT =
CT
RR

=
λ− n

(n− 1).RR
≤ 0.1 (8)

where λ is a symbol for the arithmetic mean of the maximum real eigenvalues of the matrices
(aξ

ab)1≤a,b≤n, ξ ∈ {x, o, v} for a, b = 1, 2, ..., n is the size of the Saaty’s matrix, and RR represents a
random index whose value depends on [74].

3.3. Data Envelopment Analysis

3.3.1. Charnes-Cooper-Rhodes Model (CCR Model)

Charnes, Cooper, and Rhodes (1978) [30] proposed a basic DEA model, called the CCR model:

max
f .g

γ = f V y0
gV x0

S.t.
f Vyb − gV xb ≤ 0, b = 1, 2, . . . , n

f ≥ 0
g ≥ 0

(9)

Due to constraints, the optimal value γ* is a maximum of 1.
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DMU0 is efficient if γ∗ = 1 and have at least one optimal f * > 0 and g* > 0. In addition, the fractional
program can be presented as follows [76]:

min
g. f

γ = gvy0

St.
gvx0 − 1 = 0

f vyj − gvxj ≤ 0, j = 1, 2, · · · , n
g ≥ 0
f ≥ 0

(10)

The Farrell [77] model of Equation (10) with variable γ and a nonnegative vector
β = β1, β2, β3, . . . , βn is expressed as [76].

max
m
∑

i=1
d−i +

s
∑

r=1
d+r

S.t
n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

β j ≥ 0, j = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(11)

Equation (11) has a feasible solution, γ∗ = 1, β∗0 = 1, β∗j = 0, (j 	= 0), which effects the optimal
value γ∗ not greater than 1. The process will be repeated for each DMUj, j = 1, 2, . . . , n. DMUs are
inefficient when γ∗ < 1, while DMUs are boundary points if γ∗ = 1. We avoid the weakly efficient
frontier point by invoking a linear program as follows [76]:

max
m
∑

i=1
d−i +

d
∑

r=1
d+r

S.t
n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

β j ≥ 0, j = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(12)

In this case, note that the choices the d−i and d+r do not affect the optimal γ∗. The performance of
DMU0 achieves 100% efficiency if, and only if, both (1) γ∗ = 1 and (2) d−∗i = d+r = 0. The performance
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of DMU0 is weakly efficient if, and only if, both (1) γ∗ = 1 and (2) d−∗i 	= 0 and d+r 	= 0 for i or r in
optimal alternatives. Thus, the preceding development amounts to solving the problem as follows [76]:

minθ − α

(
m
∑

i=1
d−i +

d
∑

r=1
d+r

)
S.t

n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

β j ≥ 0, j = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(13)

In this case, d−i and d+r variables will be used to convert the inequalities into equivalent equations.
This is similar to solving Equation (11) in two stages by first minimizing γ and then fixing γ = γ∗ as in
Equation (12). This would reset the objective from max to min, as in Equation (9), to obtain [76]:

max
g. f

γ = gV x0
f V yj

S.t
gV x0 ≤ gVyj, j = 1, 2, . . . , n

g ≥ ε > 0
f ≥ ε > 0

(14)

If the α > 0 and the non-Archimedean element is defined, the input models are similar to
Equations (10) and (13), as follows [76]:

max
g. f

γ = gV x0

S.t
f Vy0 = 1

gV xo − f Vyj ≥ 0, j = 1, 2, . . . , n
g ≥ ε > 0
f ≥ ε > 0

(15)

and:

maxφ− ε

(
m
∑

i=1
d−i +

d
∑

r=1
d+r

)
S.t

n
∑

j=1
xijβ j + d−i = xi0, i = 1, 2, . . . , p

∑n
j=1 yrjβ j − d+r = ∅yr0, r = 1, 2, . . . , q

β j ≥ 0, j = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(16)
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The input-oriented CCR (CCR-I) has the dual multiplier model, expressed as [76]:

maxz =
q
∑

r=1
gryr0

S.t
q
∑

r=1
gryrj −

q
∑

r=1
fryrj ≤ 0

p
∑

i=1
fixi0 = 1

gr, fi ≥ ε > 0

(17)

The output-oriented CCR (CCR-O) has the dual multiplier model, expressed as [76]:

minq =
p
∑

i=1
fixi0

S.t
p
∑

i=1
fixij −

q
∑

r=1
gryrj ≤ 0

q
∑

r=1
gryr0 = 1

gr, fi ≥ ε > 0

(18)

3.3.2. Banker–Charnes–Cooper Model (BCC Model)

Banker et al. proposed the input-oriented BBC model (BCC-I) [30], which is able to assess the
efficiency of DMU0 by solving the following linear program [76]:

γB = minγ

S.t
n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

n
∑

k=1
βk = 1

βk ≥ 0, k = 1, 2, . . . , n

(19)

We avoid the weakly efficient frontier point by invoking the linear program as follows [76]:

max
m
∑

i=1
d−i +

d
∑

r=1
d+r

S.t
n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

n
∑

k=1
βk = 1

βk ≥ 0, k = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(20)
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Therefore, this is the first multiplier form to solve the problem as follows [76]:

minγ− ε

(
m
∑

i=1
d−i +

d
∑

r=1
d+r

)
S.t

n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = yr0, r = 1, 2, . . . , q

n
∑

k=1
βk = 1

βk ≥ 0, k = 1, 2, . . . , n
d−i ≥ 0, i = 1, 2, . . . , p
d+r ≥ 0, r = 1, 2, . . . , q

(21)

The linear program in Equation (17) gives us the second multiplier form, which is expressed
as [76]:

max
g. f , f0

γB = f Vy0 − f0

S.t
gV x0 = 1

f Vyj − gV xj − f0 ≤ 0, j = 1, 2, . . . , n
g ≥ 0
f ≥ 0

(22)

If g and f, which are mentioned in Equation (22), are vectors, the scalar v0 may be positive or
negative (or zero). Thus, the equivalent BCC fractional program is obtained from the dual program in
Equation (22) as [76]:

max
g. f

γ = f V y0− f0
gV x0

S.t
f V yj− f0

gV xj
≤ 1, j = 1, 2, . . . , n

g ≥ 0
f ≥ 0

(23)

The DMU0 can be called BCC-efficient if an optimal solution (γ∗B, d−∗, d+∗) is claimed in
this two-phase process for Equation (17) satisfies γ∗B = 1 and has no slack d−∗ = d+∗ = 0, then.
The improved activity (γ∗x− d−∗, y + d+∗) also can be illustrated as BCC-efficient [76].

The output-oriented BCC model (BCC–O) is:

maxη

S.t
n
∑

j=1
xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n
∑

j=1
yrjβ j − d+r = ηyr0, r = 1, 2, . . . , q

n
∑

k=1
βk = 1

βk ≥ 0, k = 1, 2, . . . , n

(24)
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From Equation (24), we have the associate multiplier form, which is expressed as [76]:

min
g. f ,g0

f Vy0 − f0

S.t
f Vy0 = 1

gV xj − f Vyj − f0 ≤ 0, j = 1, 2, . . . , n
g ≥ 0
f ≥ 0

(25)

f 0 is the scalar associated with ∑n
k=1 βk = 1. In conclusion, the authors achieve the equivalent

(BCC) fractional programming formulation for Equation (25) [76]:

min
g. f ,g0

gV x0− f0
f V y0

S.t
f V xj− f0

f V yj
≤ 1, j = 1, 2, . . . , n

g ≥ 0
f ≥ 0

(26)

3.3.3. Slacks-Based Measure Model (SBM Model)

The SBM model was introduced by Tone [78] (see also Pastor et al. [79]).

Input-Oriented SBM (SBM-I-C)

The input-oriented SBM under a constant-returns-to-scale assumption [76] is described as follows:

ρ∗I = min
β, d− ,d+

1− 1
m

m
∑

i=1

d−i
xih

S.t

xic =
m
∑

j=1
xicβi + d−i , i = 1, 2, . . . m

yrc =
m
∑

j=1
yrcβi − d+r , i = 1, 2, . . . d

β j ≥ 0, k (∀j), d−i ≥ 0 (∀j), d+r ≥ 0 (∀j)

(27)

The DMUs in the reference set R of (xc, yc) are SBM-input-efficient. In addition,
the SBM-input-efficiency score must is lower than the CCR efficiency score.

Output-Oriented SBM (SBM-O-C)

The output-oriented SBM efficiency ρ∗O of DMUc = (xc, yc) is defined by [SBM-O-C] [76]:

1/ρ∗O = max
λ,s− ,s+

1 + 1
s ∑s

r=1
s+r
yrh

S.t.

xic =
n
∑

j=1
xijβ j + d−j (i = 1, ..m)

yic = ∑n
j=1 yijβ j + d+i (i = 1, . . . m)

β j ≥ 0(∀j), d−i ≥ 0(∀i), d+i ≥ 0 (∀r)

The optimal solution of [SBM−O−C]β∗, d−∗, d+∗).

(28)
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3.3.4. Super-Slacks-Based Measure Model (Super SBM Model)

Tone’s super SBM model [78] has proposed a slacks-based measure of efficiency (SBM model) that
measures the efficiency of the units under evaluation using slack variables only. The super efficiency
SBM model removes the evaluated unit DMUq from the set of units and looks for a DMU* with inputs
xi*, i = 1, ..., m, and outputs yk*, k = 1, ..., r, being SBM (and CCR) efficient after this removal. The super
SBM model is formulated as follow:

minimize θSBM
q =

1
p ∑m

i=1 x∗i /xi0
1
q ∑r

k=1 y∗k /yk0

S.t
(29)

n

∑
j=1

xijβ j + d−i = γxi0, i = 1, 2, . . . , p

n

∑
j=1

yrjβ j − d+r = yr0, r = 1, 2, . . . , q

x∗i ≥ xi0, i = 1, 2, . . . , n

y∗k ≤ yk0, k = 1, 2, . . . , n

βk ≥ 0, k = 1, 2, . . . , n

d−i ≥ 0, i = 1, 2, . . . , p

d+r ≥ 0, r = 1, 2, . . . , q

(30)

The numerator in the ratio in Equation (29) can be explained as the distance of units DMUq and
DMU* in input space and the average reduction rate of inputs of DMU* to inputs of DMUq.

4. Case Study

In this research, the authors collected 25 suppliers (DMU) in Vietnam. Information about the
suppliers is shown in Table 4.
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The data collection of the FANP and hierarchical structure are introduced in Figure 4.

 

Figure 4. Hierarchical structure to select best suppliers.

A fuzzy comparison matrix for all criteria is shown in Table 5.

Table 5. Fuzzy comparison matrix for criteria.

Criteria FS EMS FI QU

FS (1, 1, 1) (1/8, 1/7, 1/6) (1/9, 1/8, 1/7) (1/3, 1/2, 1)
EMS (6, 7, 8) (1, 1, 1) (1/6, 1/5, 1/4) (1, 2, 3)

FI (7, 8, 9) (4, 5, 6) (1, 1, 1) (4, 5, 6)
QU (1, 2, 3) (1/3, 1/2, 1) (1/6, 1/5, 1/4) (1, 1, 1)
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During the defuzzification, we obtain the coefficients α = 0.5 and β = 0.5 (Tang and Beynon) [80].
In it, α represents the uncertain environment conditions, and β represents the attitude of the evaluator
is fair.

g0.5,0.5(aEMS,FS) = [(0.5 × 6.5) + (1 − 0.5) × 7.5] = 7

f0.5(LEMS,FS) = (7 − 6) × 0.5 + 6 = 6.5

f0.5(UEMS,FS) = 8 − (8 − 7) × 0.5 = 7.5

g0.5,0.5(aEMS,FS) = 1/7

The remaining calculations are similar to the above, as well as the fuzzy number priority points.
The real number priorities when comparing the main criteria pairs are presented in Table 6.

Table 6. Real number priority.

Criteria FS EMS FI QU

FS 1 1/7 1/8 1/2
EMS 7 1 1/6 2

FI 8 6 1 5
QU 2 1/2 1/5 1

We calculate the maximum individual values as follows:

GM1 = (1× 1/7× 1/8× 1/2)1/4 = 0.03073

GM2 = (7× 1× 1/6× 2)1/4 = 1.2359

GM3 = (8× 6× 1× 5)1/4 = 3.9359

GM4 = (2× 1/2× 1/5× 1)1/4 = 0.6687

∑ GM = GM1 + GM2 + GM3 + GM4 = 6.1478

ω1 =
0.3073
6.1478

= 0.0499

ω2 =
1.2359
6.1478

= 0.2010

ω3 =
3.9359
6.1478

= 0.6402

ω4 =
0.6687
6.1478

= 0.1087⎡⎢⎢⎢⎣
1 1/7 1/8 1/2

7 1 1/6 2
8 6 1 5

2 1/2 1/5 1

⎤⎥⎥⎥⎦×
⎡⎢⎢⎢⎣

0.0499
0.2010
0.6402
0.1087

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.2129
0.8744
2.7889
0.4370

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.2129
0.8744
2.7889
0.4370

⎤⎥⎥⎥⎦/

⎡⎢⎢⎢⎣
0.0499
0.2010
0.6402
0.1087

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
4.2665
4.3502
4.3562
4.0202

⎤⎥⎥⎥⎦
with the number of criteria is 4, we obtain n = 4, and λmax and CI are calculated as follows:

λmax =
4.2665 + 4.3502 + 4.3562 + 4.0202

4
= 4.2482

CI =
4.2482− 4

4− 1
= 0.0827

For CR, with n = 4 we obtain RI = 0.9:

CR =
0.0827

1.12
= 0.0919
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We have CR = 0.0919 ≤ 0.1, so the pairwise comparison data is consistent and does not need to be
re-evaluated. The results of the pair comparison between the main criteria are presented in Tables 7–11.

Table 7. Fuzzy comparison matrices for the criteria.

Criteria FS EMS FI QU Weight

FS (1, 1, 1) (1/8, 1/7, 1/6) (1/9, 1/8, 1/7) (1/3, 1/2, 1) 0.04929
EMS (6, 7, 8) (1, 1, 1) (1/7, 1/6, 1/5) (1, 2, 3) 0.20144

FI (7, 8, 9) (5, 6, 7) (1, 1, 1) (4, 5, 6) 0.64816
QU (1, 2, 3) (1/3, 1/2, 1/1) (1/6, 1/5, 1/4) (1, 1, 1) 0.10111

Total 1

CR = 0.09480

Table 8. Comparison matrix for the financial criteria.

Criteria CFB RPMP TCOOL Weight

CFB (1, 1, 1) (1/5, 1/4, 1/3) (3, 4, 5) 0.2290
RPMP (3, 4, 5) (1, 1, 1) (6, 7, 8) 0.6955

TCOOL (1/5, 1/4, 1/3) (1/8, 1/7, 1/6) (1, 1, 1) 0.0754

Total 1

CR = 0.07348

Table 9. Comparison matrix for the delivery and service criteria.

Criteria CS LT PC ASS Weight

CS (1, 1, 1) (1/9, 1/8, 1/7) (1/5, 1/4, 1/3) (2, 3, 4) 0.0924
LT (7, 8, 9) (1, 1, 1) (1/3, 1/2, 1) (6, 7, 8) 0.3956
PC (3, 4, 5) (1, 2, 3) (1, 1, 1) (7, 8, 9) 0.4672

ASS (1/4, 1/3, 1/2) (1/8, 1/7, 1/6) (1/9, 1/8, 1/7) (1, 1, 1) 0.0448

Total 1

CR = 0.09456

Table 10. Comparison matrix for the qualitative criteria.

Criteria PEP ETCT OC QA Weight

PEP (1, 1, 1) (2, 3, 4) (4, 5, 6) (1/5, 1/4, 1/3) 0.2136
ETCT (1/4, 1/3, 1/2) (1, 1, 1) (1/4, 1/3, 1/2) (1, 1, 1) 0.0436

OC (1/6, 1/5, 1/4) (2, 3, 4) (1, 1, 1) (1/9, 1/8, 1/7) 0.0791
QA (3, 4, 5) (1, 1, 1) (7, 8, 9) (1, 1, 1) 0.6638

Total 1

CR = 0.09005

Table 11. Comparison matrix for the environmental management systems criteria.

Criteria EFT EP EFM ENR Weight

EFT (1, 1, 1) (1/9, 1/9, 1/9) (1/6, 1/5, 1/4) (1/6, 1/5, 1/4) 0.0445
EP (9, 9, 9) (1, 1, 1) (1, 2, 3) (5, 6, 7) 0.5345

EFM (4, 5, 6) (1/3, 1/2, 1) (1, 1, 1) (3, 4, 5) 0.3009
ENR (4, 5, 6) (1/7, 1/6, 1/5) (1/5, 1/4, 1/3) (1, 1, 1) 0.1201

Total 1

CR = 0.0838
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Based on how the hierarchical structure was built, the pairwise comparison matrix was built
through completing a questionnaire. Then, the received data to calculate the weight of supplier’s
indices and to ensure the accuracy of judged inconsistency rate and other constraints are presented.

In summary, a graphic of the DEA model for analysis of DMUs (suppliers) along with three
inputs and three outputs is shown in Figure 4. The results of the FANP model for the ranking of
various suppliers on qualitative attributes are utilized in the output qualitative benefits of the DEA
model [71,81]. In our situation, inputs are those factors that organizations would consider as an
improvement if they were decreased in value (i.e., smaller values are better), whereas outputs are those
factors that organizations would consider as improvements if they were increased in value (i.e., larger
is better). This is a standard approach when seeking to use DEA as a discrete alternative multiple
criteria decision-making tool [71]. There are three inputs and three outputs, as shown in Figure 5.

Figure 5. Data envelopment analysis model.

To aid in reducing scaling errors associated with the mathematical programming software
packages, the dataset is mean normalized for each factor, i.e., each value in each column is divided by
that column’s mean score. This normalization procedure does not change the efficiency scores of the
ratio-based DEA models. As previously mentioned, to help model the analysis as inputs and outputs,
instead of the standard productivity efficiency measurement approach, assume that the inputs are
those factors that improve as their values decrease and the outputs are those values that improve as
their values increase [71]. Raw data are provided by the case organization, as shown in Table 12.

Table 12. Raw data provided by case organization used to assess the relative efficiency of various suppliers.

A Supplier (DMU)

Input Output

LT
(Days)

UP
(USD)

PC
(Tons)

QB
(%)

NI
(USD)

RE
(USD)

DMU 1 3 347.3 50 3.7221 44.03 58.71
DMU 2 5 391.45 70 1.3459 25.20 33.60
DMU 3 4 332.4 50 0.8243 26.03 34.70
DMU 4 4 321.5 40 1.7611 22.95 30.60
DMU 5 4 213.5 50 1.0023 40.05 53.40
DMU 6 4 312.6 50 1.6047 30.45 40.60
DMU 7 5 345.3 40 2.5748 48.00 68.20
DMU 8 5 342.9 70 2.0095 44.03 58.71
DMU 9 3 343.6 50 3.2401 32.70 43.60
DMU 10 3 354.1 30 3.0687 44.29 59.05
DMU 11 5 320.10 30 4.0040 32.78 43.70
DMU 12 3 346.30 70 2.9141 44.02 58.70
DMU 13 4 340.60 50 4.0194 44.12 58.83
DMU 14 4 315.05 40 5.1484 34.88 46.50
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Table 12. Cont.

A Supplier (DMU)

Input Output

LT
(Days)

UP
(USD)

PC
(Tons)

QB
(%)

NI
(USD)

RE
(USD)

DMU 15 5 332.40 60 4.6604 43.02 57.36
DMU 16 4 350.90 40 5.4623 50.00 74.30
DMU 17 4 320.00 71 6.1238 44.01 58.68
DMU 18 5 344.60 50 4.7115 44.12 58.82
DMU 19 5 314.03 50 7.4178 44.15 58.86
DMU 20 4 342.30 40 4.7039 44.06 58.75
DMU 21 5 310.80 50 3.2497 44.15 58.86
DMU 22 4 312.40 50 6.8631 43.93 58.57
DMU 23 5 342.00 50 7.4577 43.92 58.56
DMU 24 5 337.60 70 6.5602 43.11 57.48
DMU 25 5 340.10 50 5.5501 43.02 57.36

4.1. Isotonicity Test

The variables of input and output for the correlation coefficient matrix should comply with the
isotonicity premise. In other words, the increase of an input will not cause the decreasing output of
another item. The results of the Pearson correlation coefficient test are shown in Table 13.

Table 13. The results of the Pearson correlation coefficient.

Inputs/Outputs LT UP PC QB NI RE

LT 1 0.02484 0.16149 0.24257 0.0776 0.07681
UP 0.02484 1 0.14105 0.09301 0.00725 0.03435
PC 0.16149 0.14105 1 0.01713 0.04728 0.00201
QB 0.24257 0.09301 0.01713 1 0.54664 0.51879
NI 0.0776 0.00725 0.04728 0.54664 1 0.98863
RE 0.07681 0.03435 0.00201 0.51879 0.98863 1

Based on the results of Pearson correlation test, the results of all correlation coefficients are
positive, thus meeting a basic assumption of the DEA model. Hence, we do not to change the input
and output.

4.2. Results and Discussion

Supplier evaluation and selection have been identified as important issues that could affect
the efficiency of a supply chain. It can be seen that selecting a supplier is complicated in that
decision-makers must understand qualitative and quantitative features for assessing the symmetrical
impact of the criteria to reach the most accurate result.

For the performance in an empirical study, the authors collected data from 25 suppliers in
Vietnam. A hierarchical structure to select the best suppliers is built with four main criteria (including
15 sub-criteria). Completion of a questionnaire for analyzing the FANP model is done by interviewing
experts, and surveying the managers and company’s databases. The ANP model is combined with
a fuzzy set, to evaluate the supplier selection criteria and define the priorities of each supplier,
which are able to be utilized to clarify important criteria that directly affect the profitability of the
business. Then, several DEA models are proposed for ranking suppliers. As a result, DMU 1, DMU
5, DMU 10, DMU 16, DMU 19, DMU 22, and DMU 23 are identified as efficient in all nine models,
as shown in Table 7 [78], which have a conditioned response to the enterprises’ supply requirements.
Whereas for other DMUs, there were differences in the results, so the next research should include
an improvement or review of data inputs to produce appropriate outputs, so that suppliers remain
efficient. This integration model supports a great deal of corporate decision-making because of the
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effectiveness and the complication of this model, for exactly choosing the most suitable supplier.
The ranking list of 25 DMUs as shown in Table 14.

Table 14. Ranking list of suppliers by using nine DEA models (CCR, BCC, and SBM, Super SBM).

Supplier CCR-I CCR-O BCC-I BCC-O SBM-I-C SBM-O-C Super SBM-I-C Super SBM-AR-C Super SBM-AR-V

DMU 1 1 1 1 1 1 1 1 1 1
DMU 2 25 25 25 24 25 24 25 24 24
DMU 3 23 23 22 23 23 25 23 25 25
DMU 4 24 24 15 25 24 23 24 23 21
DMU 5 1 1 1 1 1 1 1 1 1
DMU 6 22 22 20 22 22 22 22 22 23
DMU 7 9 9 12 12 9 20 9 19 20
DMU 8 21 21 24 20 20 21 20 21 22
DMU 9 20 20 1 11 21 18 21 20 11

DMU 10 1 1 1 1 1 1 1 1 1
DMU 11 11 11 1 1 18 11 18 16 1
DMU 12 1 1 1 1 8 1 8 1 1
DMU 13 13 13 16 18 13 14 13 14 16
DMU 14 16 16 1 1 12 15 12 12 1
DMU 15 19 19 23 20 19 17 19 17 18
DMU 16 1 1 1 1 1 1 1 1 1
DMU 17 10 10 13 13 11 9 11 10 13
DMU 18 18 18 21 19 17 16 17 15 17
DMU 19 1 1 1 1 1 1 1 1 1
DMU 20 12 12 14 16 10 12 10 9 12
DMU 21 14 14 18 15 15 19 15 18 19
DMU 22 1 1 1 1 1 1 1 1 1
DMU 23 1 1 1 1 1 1 1 1 1
DMU 24 15 15 19 14 16 10 16 13 15
DMU 25 17 17 17 17 14 13 14 11 14

The optimal weights and the slacks for each DMU using nine DEA models (CCR, BCC, and SBM,
Super SBM) are shown from Tables A1–A18 in appendix section.

5. Conclusions

Many studies have applied the MCDM approach to various fields of science and engineering,
and their numbers have been increasing over the past years. The fuzzy MCDM model has been applied
to supplier selection problems. Although some studies have considered a review of applications of
MCDM approaches in this field, little work has focused on this problem in a fuzzy environment. This is
a reason why hybrid ANP with fuzzy logic and DEA is proposed in this study.

Initially, we proposed the ANP model combined with a fuzzy set, to evaluate supplier selection
criteria and define a priority of each supplier, which are able to be utilized to clarify important criteria
that directly affect the profitability of the business. The FANP can be used for ranking suppliers but
the number of supplier selections is practically limited because of the number of pairwise comparisons
that need to be made, and a disadvantage of the FANP approach is that input data, expressed in
linguistic terms, depend on the experience of decision-makers and, thus, involves subjectivity. This is
a reason why several DEA models are proposed for ranking suppliers in the final stage. The DEA
model can handle hundreds of suppliers with multiple inputs and outputs for the best supplier rating.
The FANP-DEA integration model supports a great deal of corporate decision-making because of the
effectiveness and complication of this model, for exactly choosing the most suitable supplier. Finally,
this research will provide a potential suppliers list, which has a conditioned response to the enterprises’
supply requirements.

The main contribution of this research is to develop complete approaches for supplier evaluation
and selection of the rice supply chain as a typical example. This is a useful proposed model on an
academic and practical front. The FANP-DEA method not only provides reasonable results but also
allows the decision-maker to visualize the impact of different criteria in the final result. Furthermore,
this integrated model may offer valuable insights, as well as provide methods for other sectors to
select and evaluate suppliers. This model can also be applied to many different industries for future
research directions.
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For improving these MCDM model, outlier detection and the curse of dimensionality of the DEA
model will be considered in future research. Moreover, different methodologies, such as the preference
ranking organization method for enrichment of evaluations (PROMETHEE), fuzzy data envelopment
analysis (FDEA), etc., can also been combined for different scenarios.
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Appendix A

Table A1. The optimal weights for each DMU using the CCR-I model.

DMU Score Rank V (1) V (2) V (3) U (1) U (2) U (3)

DMU 1 1 1 0.312446 0 1.25 × 10−3 4.57 × 10−2 0 1.41 × 10−2

DMU 2 0.4245 25 9.96 × 10−2 1.25 × 10−3 2.05 × 10−3 0 1.68 × 10−2 0
DMU 3 0.5329 23 0.121082 1.51 × 10−3 2.49 × 10−4 0 2.05 × 10−2 0
DMU 4 0.4876 24 0 2.12 × 10−3 7.97 × 10−3 0 0.021246 0
DMU 5 1 1 7.31 × 10−3 4.55 × 10−3 0 5.74 × 10−2 0 1.76 × 10−2

DMU 6 0.6428 22 0.124062 1.57 × 10−3 2.79 × 10−4 6.24 × 10−4 2.11 × 10−2 0
DMU 7 0.9708 9 0 2.02 × 10−3 7.59 × 10−3 0 2.02 × 10−2 0
DMU 8 0.79 21 0.105865 1.37 × 10−3 0 2.51 × 10−3 1.78 × 10−2 0
DMU 9 0.7934 20 0.333333 0 0 0.10656 1.37 × 10−2 0
DMU 10 1 1 0.303641 0 2.97 × 10−3 0.097177 1.41 × 10−2 1.34 × 10−3

DMU 11 0.9529 11 0 0 3.33 × 10−2 0.186293 6.31 × 10−3 0
DMU 12 1 1 0.136388 1.71 × 10−3 0 0 2.27 × 10−2 0
DMU 13 0.8941 13 0.118819 1.54 × 10−3 0 2.82 × 10−3 2.00 × 10−2 0
DMU 14 0.8845 16 8.30 × 10−2 0 1.67 × 10−2 0.139719 4.74 × 10−3 0
DMU 15 0.8357 19 1.53 × 10−2 2.29 × 10−3 2.72 × 10−3 2.77 × 10−2 1.64 × 10−2 0
DMU 16 1 1 0.112767 1.49 × 10−3 6.21 × 10−4 0 2.00 × 10−2 0
DMU 17 0.9683 10 8.09 × 10−2 2.11 × 10−3 0 2.32 × 10−2 1.88 × 10−2 0
DMU 18 0.858 18 0 2.33 × 10−3 3.91 × 10−3 2.59 × 10−2 1.67 × 10−2 0
DMU 19 1 1 0 3.18 × 10−3 0 0.134811 0 0
DMU 20 0.8967 12 0 2.44 × 10−3 4.10 × 10−3 2.71 × 10−2 1.75 × 10−2 0
DMU 21 0.8909 14 0 2.53 × 10−3 4.25 × 10−3 2.81 × 10−2 0.018109 0
DMU 22 1 1 0.25 0 0 0.145707 0 0
DMU 23 1 1 0 1.20 × 10−4 1.92 × 10−2 0.10872 4.31 × 10−3 0
DMU 24 0.8906 15 1.85 × 10−3 2.69 × 10−3 0 3.52 × 10−2 4.82 × 10−3 7.86 × 10−3

DMU 25 0.8705 17 0 2.36 × 10−3 3.96 × 10−3 2.62 × 10−2 1.69 × 10−2 0

Table A2. The slacks for each DMU using the CCR-I model.

DMU Score Rank LT UP PC QB NI RE

DMU 1 1 1 0 0 0 0 0 0
DMU 2 0.4245 25 0 0 0 0.012 0 0.001
DMU 3 0.5329 23 0 0 0 0.558 0 0.006
DMU 4 0.4876 24 0.064 0 0 0.531 0 3.114
DMU 5 1 1 0 0 0 0 0 0
DMU 6 0.6428 22 0 0 0 0 0 0.275
DMU 7 0.9708 9 0.995 0 0 2.588 0 2.98
DMU 8 0.79 21 0 0 2.474 0 0 0.221
DMU 9 0.7934 20 0 19.826 2.518 0 0 0.001

DMU 10 1 1 0 0 0 0 0 0
DMU 11 0.9529 11 1.906 69.61 0 0 0 3.945
DMU 12 1 1 0 0 0 0 0 0
DMU 13 0.8941 13 0 0 3.512 0 0 4.416
DMU 14 0.8845 16 0 16.896 0 0 0 1.959
DMU 15 0.8357 19 0 0 0 0 0 0.231
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Table A2. Cont.

DMU Score Rank LT UP PC QB NI RE

DMU 16 1 1 0 0 0 0 0 0
DMU 17 0.9683 10 0 0 22.934 0 0 1.983
DMU 18 0.858 18 0.222 0 0 0 0 3.722
DMU 19 1 1 0 0 0 0 0 0
DMU 20 0.8967 12 0.034 0 0 0 0 6.509
DMU 21 0.8909 14 0.489 0 0 0 0 3.554
DMU 22 1 1 0 0 0 0 0 0
DMU 23 1 1 0 0 0 0 0 0
DMU 24 0.8906 15 0 0 13.043 0 0 0
DMU 25 0.8705 17 0.116 0 0 0 0 2.629

Table A3. The optimal weights for each DMU using the CCR-O model.

DMU Score Rank V (1) V (2) V (3) U (1) U (2) U (3)

DMU 1 1 1 0.219376 9.79 × 10−4 3.76 × 10−5 0 2.27 × 10−2 0
DMU 2 0.4245 25 0.234678 2.93 × 10−3 4.82 × 10−4 0 3.97 × 10−2 0
DMU 3 0.5329 23 0.227195 2.84 × 10−3 4.66 × 10−4 0 3.84 × 10−2 0
DMU 4 0.4876 24 0 4.35 × 10−3 1.63 × 10−2 0 4.36 × 10−2 0
DMU 5 1 1 9.80 × 10−2 2.85 × 10−3 0 0 0 1.87 × 10−2

DMU 6 0.6428 22 0.193011 2.44 × 10−3 4.34 × 10−4 9.71 × 10−4 3.28 × 10−2 0
DMU 7 0.9708 9 0 2.08 × 10−3 7.82 × 10−3 0 2.08 × 10−2 0
DMU 8 0.79 21 0.134006 1.74 × 10−3 0 3.18 × 10−3 2.26 × 10−2 0
DMU 9 0.7934 20 0.420146 0 0 0.134312 1.73 × 10−2 0
DMU 10 1 1 0.333333 0 0 0 0 1.69 × 10−2

DMU 11 0.9529 11 0 0 3.50 × 10−2 0.195497 6.63 × 10−3 0
DMU 12 1 1 0.136388 1.71 × 10−3 0 0 2.27 × 10−2 0
DMU 13 0.8941 13 0.132886 1.72 × 10−3 0 3.16 × 10−3 2.24 × 10−2 0
DMU 14 0.8845 16 0 0 2.83 × 10−2 0.157959 5.35 × 10−3 0
DMU 15 0.8357 19 1.83 × 10−2 2.74 × 10−3 3.26 × 10−3 0.033178 1.97 × 10−2 0
DMU 16 1 1 0.116963 1.52 × 10−3 0 2.78 × 10−3 1.97 × 10−2 0
DMU 17 0.9683 10 8.36 × 10−2 2.18 × 10−3 0 2.40 × 10−2 1.94 × 10−2 0
DMU 18 0.858 18 0 2.72 × 10−3 4.56 × 10−3 3.02 × 10−2 1.94 × 10−2 0
DMU 19 1 1 0 3.18 × 10−3 0 0.134811 0 0
DMU 20 0.8967 12 0 2.72 × 10−3 4.57 × 10−3 3.02 × 10−2 0.019468 0
DMU 21 0.8909 14 0 2.84 × 10−3 4.77 × 10−3 3.16 × 10−2 2.03 × 10−2 0
DMU 22 1 1 8.23 × 10−2 2.15 × 10−3 0 2.36 × 10−2 1.91 × 10−2 0
DMU 23 1 1 6.40 × 10−2 1.37 × 10−4 1.27 × 10−2 0.114556 0 2.49 × 10−3

DMU 24 0.8906 15 2.08 × 10−2 3.02 × 10−3 0 3.96 × 10−2 5.41 × 10−3 8.82 × 10−3

DMU 25 0.8705 17 0 2.71 × 10−3 4.54 × 10−3 3.01 × 10−2 1.94 × 10−2 0

Table A4. The slacks for each DMU using the CCR-O model.

No. DMU Score Rank LT UP PC QB NI RE

1 DMU 1 1 1 0 0 0 0 0 0
2 DMU 2 0.4245 25 0 0 0 0.029 0 0.002
3 DMU 3 0.5329 23 0 0 0 1.047 0 0.012
4 DMU 4 0.4876 24 0.131 0 0 1.09 0 6.387
5 DMU 5 1 1 0 0 0 0 0 0
6 DMU 6 0.6428 22 0 0 0 0 0 0.428
7 DMU 7 0.9708 9 1.025 0 0 2.665 0 3.07
8 DMU 8 0.79 21 0 0 3.132 0 0 0.279
9 DMU 9 0.7934 20 0 24.989 3.174 0 0 0.002
10 DMU 10 1 1 0 0 0 0 0 0
11 DMU 11 0.9529 11 2 73.049 0 0 0 4.14
12 DMU 12 1 1 0 0 0 0 0 0
13 DMU 13 0.8941 13 0 0 3.928 0 0 4.939
14 DMU 14 0.8845 16 0 19.102 0 0 0 2.214
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Table A4. Cont.

No. DMU Score Rank LT UP PC QB NI RE

15 DMU 15 0.8357 19 0 0 0 0 0 0.277
16 DMU 16 1 1 0 0 0 0 0 0
17 DMU 17 0.9683 10 0 0 23.686 0 0 2.048
18 DMU 18 0.858 18 0.259 0 0 0 0 4.338
19 DMU 19 1 1 0 0 0 0 0 0
20 DMU 20 0.8967 12 0.037 0 0 0 0 7.259
21 DMU 21 0.8909 14 0.549 0 0 0 0 3.989
22 DMU 22 1 1 0 0 0 0 0 0
23 DMU 23 1 1 0 0 0 0 0 0
24 DMU 24 0.8906 15 0 0 14.645 0 0 0
25 DMU 25 0.8705 17 0.133 0 0 0 0 3.019

Table A5. The optimal weights for each DMU using the BBC-I model.

DMU Score Rank V (1) V (2) V (3) U (0) U (1) U (2) U (3)

DMU 1 1 1 0.333333 0 0 0 9.02 × 10−2 0 1.13 × 10−2

DMU 2 0.7047 25 0.120608 9.27 × 10−4 4.87 × 10−4 0.7047 0 0 0
DMU 3 0.8647 22 0.148001 1.14 × 10−3 5.97 × 10−4 0.8647 0 0 0
DMU 4 0.9274 15 2.67 × 10−2 1.57 × 10−3 9.71 × 10−3 0.9274 0 0 0
DMU 5 1 1 0 4.68 × 10−3 0 0 5.84 × 10−2 0 1.76 × 10−2

DMU 6 0.8847 20 0.151411 1.16 × 10−3 6.11 × 10−4 0.8847 0 0 0
DMU 7 0.9792 12 0 1.81 × 10−3 9.41 × 10−3 0.2364 0 1.55 × 10−2 0
DMU 8 0.792 24 0.106413 1.36 × 10−3 0 0.03772 0 1.88 × 10−2 0
DMU 9 1 1 0.165486 1.47 × 10−3 0 0.9636 1.12 × 10−2 0 0
DMU 10 1 1 0.132633 1.68 × 10−3 2.98 × 10−4 0 6.68 × 10−4 2.25 × 10−2 0
DMU 11 1 1 0 0 3.33 × 10−2 0.1448 0.179671 4.14 × 10−3 0
DMU 12 1 1 0.244753 7.67 × 10−4 0 0 0 3.06 × 10−3 1.47 × 10−2

DMU 13 0.9087 16 0.10788 1.53 × 10−3 9.40 × 10−4 0.297 1.77 × 10−2 1.23 × 10−2 0
DMU 14 1 1 4.61 × 10−2 7.35 × 10−4 1.46 × 10−2 0.5676 8.40 × 10−2 0 0
DMU 15 0.8389 23 0.017621 2.74 × 10−3 0 0.34973 3.02 × 10−2 2.44 × 10−2 0
DMU 16 1 1 7.04 × 10−2 2.05 × 10−3 0 0 0 0 1.35 × 10−2

DMU 17 0.9747 13 0.115365 1.68 × 10−3 0 0.2037 1.85 × 10−2 1.49 × 10−2 0
DMU 18 0.8811 21 0 1.76 × 10−3 7.86 × 10−3 0.5174 2.40 × 10−2 5.68 × 10−3 0
DMU 19 1 1 0 3.18 × 10−3 0 0 0.134811 0 0
DMU 20 0.9679 14 1.71 × 10−2 1.79 × 10−3 7.96 × 10−3 0.6404 0.027225 4.53 × 10−3 0
DMU 21 0.8998 18 0 1.87 × 10−3 0.008356 0.5501 2.55 × 10−2 6.04 × 10−3 0
DMU 22 1 1 7.72 × 10−2 2.21 × 10−3 0 0 0.145707 0 0
DMU 23 1 1 0 0 2.00 × 10−2 0 0.117199 0 2.15 × 10−3

DMU 24 0.8989 19 2.05 × 10−2 2.66 × 10−3 0 0.6047 0.04485 0 0
DMU 25 0.9038 17 1.23 × 10−2 1.68 × 10−3 7.35 × 10−3 0.5734 2.54 × 10−2 4.40 × 10−3 0

Table A6. The slacks for each DMU using the BCC-I model.

DMU Score Rank LT UP PC QB NI RE

DMU 1 1 1 0 0 0 0 0 0
DMU 2 0.7047 25 0 0 0 0.717 11.736 15.648
DMU 3 0.8647 22 0 0 0 1.331 13.962 18.622
DMU 4 0.9274 15 0 0 0 0.74 17.793 23.721
DMU 5 1 1 0 0 0 0 0 0
DMU 6 0.8847 20 0 0 0 0.381 9.551 12.733
DMU 7 0.9792 12 1.076 0 0 2.021 0 1.311
DMU 8 0.792 24 0 0 8.479 0.782 0 2.928
DMU 9 1 1 0 0 0 0 0.001 0.001

DMU 10 1 1 0 0 0 0 0 0
DMU 11 1 1 0 0.002 0 0 0 0
DMU 12 1 1 0 0 0 0 0 0
DMU 13 0.9087 16 0 0 0 0 0 1.281
DMU 14 1 1 0 0 0 0 0.001 0.001
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Table A6. Cont.

DMU Score Rank LT UP PC QB NI RE

DMU 15 0.8389 23 0 0 1.157 0 0 0.626
DMU 16 1 1 0 0 0 0 0 0
DMU 17 0.9747 13 0 0 19.705 0 0 0.379
DMU 18 0.8811 21 0.033 0 0 0 0 2.897
DMU 19 1 1 0 0 0 0 0 0
DMU 20 0.9679 14 0 0 0 0 0 2.287
DMU 21 0.8998 18 0.424 0 0 0 0 3.248
DMU 22 1 1 0 0 0 0 0 0
DMU 23 1 1 0 0 0 0 0 0
DMU 24 0.8989 19 0 0 12.923 0 0.546 0.724
DMU 25 0.9038 17 0 0 0 0 0 1.467

Table A7. The optimal weights for each DMU using the BBC-O model.

DMU Score Rank V (0) V (1) V (2) V (3) U (1) U (2) U (3)

DMU 1 1 1 0 0.333333 0 0 0.106578 2.16 × 10−3 8.66 × 10−3

DMU 2 0.504 24 1.98413 0 0 0 0 3.97 × 10−2 0
DMU 3 0.5349 23 0.0769 0.216938 2.78 × 10−3 0 0 3.84 × 10−2 0
DMU 4 0.4928 25 -0.6658 0 5.08 × 10−3 2.65 × 10−2 0 4.36 × 10−2 0
DMU 5 1 1 0 0 2.49 × 10−3 9.37 × 10−3 0 2.50 × 10−2 0
DMU 6 0.6448 22 0.06573 0.185448 2.38 × 10−3 0 0 3.28 × 10−2 0
DMU 7 0.9727 12 -0.3183 0 2.43 × 10−3 1.27 × 10−2 0 2.08 × 10−2 0
DMU 8 0.8909 20 0.55846 0 1.64 × 10−3 0 0 2.27 × 10−2 0
DMU 9 0.9997 11 -26.435 4.540095 4.02 × 10−2 0 0.308632 0 0
DMU 10 1 1 0 0.133527 1.67 × 10−3 2.74 × 10−4 0 2.26 × 10−2 0
DMU 11 1 1 -0.1694 0 0 3.90 × 10−2 0.2101 4.84 × 10−3 0
DMU 12 1 1 0 0.242562 7.86 × 10−4 0 0 2.27 × 10−2 0
DMU 13 0.8958 18 0.04537 0.127989 1.64 × 10−3 0 0 2.27 × 10−2 0
DMU 14 1 1 -1.3128 0.106691 1.70 × 10−3 3.38 × 10−2 0.194235 0 0
DMU 15 0.8909 20 0.38995 0 2.20 × 10−3 0 2.11 × 10−2 2.10 × 10−2 0
DMU 16 1 1 0 0 2.81 × 10−3 3.35 × 10−4 3.48 × 10−2 0 1.09 × 10−2

DMU 17 0.9683 13 0 0.083582 2.18 × 10−3 0 2.40 × 10−2 1.94 × 10−2 0
DMU 18 0.8911 19 0.38077 0 2.15 × 10−3 0 2.06 × 10−2 2.05 × 10−2 0
DMU 19 1 1 0 0 1.92 × 10−4 0.018792 0.134811 0 0
DMU 20 0.9106 16 -1.9554 5.23 × 10−2 5.47 × 10−3 0.02431 8.31 × 10−2 1.38 × 10−2 0
DMU 21 0.9374 15 0.55694 0 1.64 × 10−3 0 0 2.27 × 10−2 0
DMU 22 1 1 0 7.72 × 10−2 2.21 × 10−3 0 0.145707 0 0
DMU 23 1 1 0 6.11 × 10−2 1.20 × 10−4 1.31 × 10−2 0.10872 4.31 × 10−3 0
DMU 24 0.9456 14 1.05747 0 0 0 4.77 × 10−2 1.59 × 10−2 0
DMU 25 0.8987 17 1.11266 0 0 0 5.02 × 10−2 1.68 × 10−2 0

Table A8. The slacks for each DMU using the BCC-O model.

DMU Score Rank LT UP PC QB NI RE

DMU 1 1 1 0 0 0 0 0 0
DMU 2 0.504 24 1 40.546 30 2.792 0 7.633
DMU 3 0.5349 23 0 0 8.652 3.321 0 6.618
DMU 4 0.4928 25 0.219 0 0 0.387 0 4.289
DMU 5 1 1 0 0 0 0 0 0
DMU 6 0.6448 22 0 0 7.211 1.73 0 5.505
DMU 7 0.9727 12 1.042 0 0 2.529 0 2.679
DMU 8 0.8909 20 1 0 29.417 2.947 0 7.185
DMU 9 0.9997 11 0 0 0 0 0.014 0.018

DMU 10 1 1 0 0 0 0 0 0
DMU 11 1 1 0 0.003 0 0 0 0
DMU 12 1 1 0 0 0 0 0 0
DMU 13 0.8958 18 0 0 9.249 0.641 0 7.057
DMU 14 1 1 0 0 0 0 0.001 0.002
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Table A8. Cont.

DMU Score Rank LT UP PC QB NI RE

DMU 15 0.8909 20 0.883 0 17.796 0 0 5.95
DMU 16 1 1 0 0 0 0 0 0
DMU 17 0.9683 13 0 0 23.686 0 0 2.048
DMU 18 0.8911 19 0.991 0 9.472 0 0 7.238
DMU 19 1 1 0 0 0 0 0 0
DMU 20 0.9106 16 0 0 0 0 0 6.369
DMU 21 0.9374 15 1 0 7.081 0.694 0 5.413
DMU 22 1 1 0 0 0 0 0 0
DMU 23 1 1 0 0 0 0 0 0
DMU 24 0.9456 14 0.246 14.506 22.457 0 0 1.871
DMU 25 0.8987 17 0.635 2.642 6.353 0 0 4.847

Table A9. The optimal weights for each DMU using the SBM-I-C model.

DMU Score Rank V (1) V (2) V (3) U (1) U (2) U (3)

DMU 1 1 1 15.13416 9.60 × 10−4 6.67 × 10−3 0.583152 0 0.747719
DMU 2 0.3666 25 6.67 × 10−2 8.52 × 10−4 4.76 × 10−3 0 9.58 × 10−3 3.73 × 10−3

DMU 3 0.4732 23 8.33 × 10−2 1.00 × 10−3 6.67 × 10−3 0 1.82 × 10−2 0
DMU 4 0.4537 24 8.33 × 10−2 1.04 × 10−3 8.33 × 10−3 2.58 × 10−2 1.78 × 10−2 0
DMU 5 1 1 8.33 × 10−2 6.08 × 10−3 6.67 × 10−3 0 0 3.68 × 10−2

DMU 6 0.569 22 8.33 × 10−2 1.07 × 10−3 6.67 × 10−3 0 1.17 × 10−2 5.22 × 10−3

DMU 7 0.8934 9 6.67 × 10−2 1.88 × 10−3 8.33 × 10−3 0 2.52 × 10−2 0
DMU 8 0.6873 20 6.67 × 10−2 1.43 × 10−3 4.76 × 10−3 0 1.92 × 10−2 0
DMU 9 0.6775 21 0.111111 9.70 × 10−4 6.67 × 10−3 3.08 × 10−2 1.77 × 10−2 0

DMU 10 1 1 0.111111 9.41 × 10−4 5.479046 10.57818 1.577778 1.061762
DMU 11 0.7471 18 6.67 × 10−2 1.04 × 10−3 1.11 × 10−2 9.77 × 10−2 1.09 × 10−2 0
DMU 12 0.9036 8 17.93597 0.111646 4.76 × 10−3 0 1.111111 0.747719
DMU 13 0.8148 13 8.33 × 10−2 9.79 × 10−4 6.67 × 10−3 2.21 × 10−2 1.65 × 10−2 0
DMU 14 0.8334 12 8.33 × 10−2 1.06 × 10−3 8.33 × 10−3 0.081691 1.18 × 10−2 0
DMU 15 0.7229 19 6.67 × 10−2 1.00 × 10−3 5.56 × 10−3 1.30 × 10−2 1.54 × 10−2 0
DMU 16 1 1 8.33 × 10−2 9.50 × 10−4 3.575827 7.933635 0.823944 0.796321
DMU 17 0.8534 11 8.33 × 10−2 1.04 × 10−3 4.69 × 10−3 5.55 × 10−2 0.011673 0
DMU 18 0.7683 17 6.67 × 10−2 9.67 × 10−4 6.67 × 10−3 1.7 × 10−2 1.56 × 10−2 0
DMU 19 1 1 6.67 × 10−2 0.280893 6.67 × 10−3 6.346908 0.946667 0
DMU 20 0.8856 10 8.33 × 10−2 9.74 × 10−4 8.33 × 10−3 2.73 × 10−2 1.72 × 10−2 0
DMU 21 0.8027 15 6.67 × 10−2 1.67 × 10−3 6.67 × 10−3 0 2.24 × 10−2 0
DMU 22 1 1 3.741093 1.07 × 10−3 0.705214 6.346908 0 0.119497
DMU 23 1 1 6.67 × 10−2 9.75 × 10−4 8.86 × 10−2 0.683238 0 0
DMU 24 0.789 16 6.67 × 10−2 9.87 × 10−4 4.76 × 10−3 5.19 × 10−2 0.0104 0
DMU 25 0.8106 14 6.67 × 10−2 9.80 × 10−4 6.67 × 10−3 6.56 × 10−2 1.04 × 10−2 0

Table A10. The slacks for each DMU using the SBM-I-C model.

DMU Score Rank LT UP PC QB NI RE

DMU 1 1 1 0 0 0 0 0 0
DMU 2 0.3666 25 3.293 189.987 52.929 0.401 0 0
DMU 3 0.4732 23 2.237 124.289 32.368 0.979 0 0.005
DMU 4 0.4537 24 2.393 142.194 23.93 0 0 0.652
DMU 5 1 1 0 0 0 0 0 0
DMU 6 0.569 22 1.937 69.166 29.373 0.506 0 0
DMU 7 0.8934 9 1.266 0 2.659 2.324 0 1.809
DMU 8 0.6873 20 1.903 0 39.031 1.414 0 1.419
DMU 9 0.6775 21 0.486 105.988 24.86 0 0 3.722

DMU 10 1 1 0 0 0 0 0 0
DMU 11 0.7471 18 2.278 89.21 0.732 0 0 3.636
DMU 12 0.9036 8 0 0 20.238 0.812 0 0
DMU 13 0.8148 13 0.716 11.392 17.161 0 0 3.672
DMU 14 0.8334 12 0.895 67.605 2.466 0 0 0.982
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Table A10. Cont.

DMU Score Rank LT UP PC QB NI RE

DMU 15 0.7229 19 1.57 29.523 25.705 0 0 6.417
DMU 16 1 1 0 0 0 0 0 0
DMU 17 0.8534 11 0.17 8.524 26.32 0 0 2.441
DMU 18 0.7683 17 1.504 32.315 15.037 0 0 6.328
DMU 19 1 1 0 0 0 0 0 0
DMU 20 0.8856 10 0.509 30.41 5.088 0 0 6.305
DMU 21 0.8027 15 1.48 0 14.8 1.534 0 6.598
DMU 22 1 1 0 0 0 0 0 0
DMU 23 1 1 0 0 0 0 0 0
DMU 24 0.789 16 1.116 31.378 22.191 0 0 0.565
DMU 25 0.8106 14 1.358 36.497 9.463 0 0 3.803

Table A11. The optimal weights for each DMU using the SBM-O-C model.

DMU Score Rank V (1) V (2) V (3) U (1) U (2) U (3)

DMU 1 1 1 272.1957 0 0 7.006445 7.57 × 10−3 13.45895
DMU 2 0.2795 24 0.715473 0 0 0.247666 1.32 × 10−2 9.92 × 10−3

DMU 3 0.2564 25 0.975128 0 0 0.404384 1.28 × 10−2 9.61 × 10−3

DMU 4 0.4089 23 0 4.22 × 10−3 2.72 × 10−2 0.189276 1.45 × 10−2 1.09 × 10−2

DMU 5 1 1 0 2.67 × 10−2 0 0.332568 8.32 × 10−3 9.42 × 10−2

DMU 6 0.4189 22 0.477617 0 9.54 × 10−3 0.207723 1.09 × 10−2 8.21 × 10−3

DMU 7 0.7104 20 0 1.74 × 10−3 2.01 × 10−2 0.12946 6.94 × 10−3 4.89 × 10−3

DMU 8 0.4919 21 0.087746 4.65 × 10−3 0 0.165879 7.57 × 10−3 5.68 × 10−3

DMU 9 0.7822 18 0.356897 6.04 × 10−4 0 0.102877 1.02 × 10−2 7.65 × 10−3

DMU 10 1 1 0 0 69.73439 134.0896 20 13.45895
DMU 11 0.8709 11 0 0 3.94 × 10−2 9.18 × 10−2 1.02 × 10−2 7.63 × 10−3

DMU 12 1 1 405.5784 1.320418 0 1.220084 20 13.45895
DMU 13 0.8021 14 0.27006 4.89 × 10−4 0 0.082931 7.56 × 10−3 5.67 × 10−3

DMU 14 0.7971 15 3.51 × 10−2 3.06 × 10−3 3.77 × 10−3 6.47 × 10−2 9.56 × 10−3 7.17 × 10−3

DMU 15 0.7845 17 3.77 × 10−2 3.27 × 10−3 0 7.15 × 10−2 7.75 × 10−3 5.81 × 10−3

DMU 16 1 1 0 0 60.44946 134.0896 13.71082 13.45895
DMU 17 0.9518 9 0.139904 1.53 × 10−3 0 0.054432 7.57 × 10−3 5.68 × 10−3

DMU 18 0.7918 16 3.88 × 10−2 2.32 × 10−3 5.36 × 10−3 7.07 × 10−2 7.56 × 10−3 5.67 × 10−3

DMU 19 1 1 0 5.980267 0 134.0896 20 5.66 × 10−3

DMU 20 0.857 12 3.88 × 10−2 2.33 × 10−3 5.37 × 10−3 7.09 × 10−2 7.57 × 10−3 5.67 × 10−3

DMU 21 0.7152 19 0 9.07 × 10−3 1.29 × 10−2 0.102574 5.44 × 10−2 5.66 × 10−3

DMU 22 1 1 79.70503 0 14.9138 134.0896 7.59 × 10−3 2.457001
DMU 23 1 1 0 5.24 × 10−4 7.74 × 10−2 0.453676 7.59 × 10−3 5.69 × 10−3

DMU 24 0.8857 10 2.68 × 10−2 2.95 × 10−3 0 5.08 × 10−2 7.73 × 10−3 5.80 × 10−3

DMU 25 0.838 13 3.27 × 10−2 2.44 × 10−3 3.98 × 10−3 6.01 × 10−2 7.75 × 10−3 5.81 × 10−3

Table A12. The slacks for each DMU using the SBM-O-C model.

DMU Score Rank LT UP PC QB NI RE

DMU 1 1 1 0 0 0 0 0 0
DMU 2 0.2795 24 0 0.95 7.5 7.233 29.712 39.612
DMU 3 0.2564 25 0 20 0 6.039 17.9 23.87
DMU 4 0.4089 23 0 0 0 3.84 22.72 35.674
DMU 5 1 1 0 0 0 0 0 0
DMU 6 0.4189 22 0 0.2 0 5.258 13.48 17.97
DMU 7 0.7104 20 1 0 0 2.914 1.175 4.571
DMU 8 0.4919 21 0 0 15.281 5.847 4.183 5.569
DMU 9 0.7822 18 0 0 0.88 0.498 11.043 14.979

DMU 10 1 1 0 0 0 0 0 0
DMU 11 0.8709 11 2 48.724 0 0 5.332 12.325
DMU 12 1 1 0 0 0 0 0 0
DMU 13 0.8021 14 0 0 7.325 1.818 4.256 11.262
DMU 14 0.7971 15 0 0 0 0.484 9.84 18.013
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Table A12. Cont.

DMU Score Rank LT UP PC QB NI RE

DMU 15 0.7845 17 0 0 6.997 3.036 3.715 4.948
DMU 16 1 1 0 0 0 0 0 0
DMU 17 0.9518 9 0 0 22.974 0.463 1.118 2.995
DMU 18 0.7918 16 0 0 0 2.562 4.532 8.386
DMU 19 1 1 0 0 0 0 0 0
DMU 20 0.857 12 0 0 0 0.799 4.673 13.202
DMU 21 0.7152 19 0.044 0 0 3.877 0 0.095
DMU 22 1 1 0 0 0 0 0 0
DMU 23 1 1 0 0 0 0 0 0
DMU 24 0.8857 10 0 0 16.147 1.215 4.357 5.804
DMU 25 0.838 13 0 0 0 1.744 4.97 8.617

Table A13. The optimal weights for each DMU using the Super SBM-I-C model.

No. DMU Score Rank V (1) V (2) V (3) U (1) U (2) U (3)

1 DMU 1 1 1 15.13416 9.60 x 10−4 6.67 x 10−3 0.583152 0 0.747719
2 DMU 2 0.3666 25 6.67 × 10−2 8.52 × 10−4 4.76 × 10−3 0 9.58 × 10−3 3.73 × 10−3

3 DMU 3 0.4732 23 8.33 × 10−2 1.00 × 10−3 6.67 × 10−3 0 1.82 × 10−2 0
4 DMU 4 0.4537 24 8.33 × 10−2 1.04 × 10−3 8.33 × 10−3 2.58 × 10−2 1.78 × 10−2 0
5 DMU 5 1 1 8.33 × 10−2 6.08 × 10−3 6.67 × 10−3 0 0 3.68 × 10−2

6 DMU 6 0.569 22 8.33 × 10−2 1.07 × 10−3 6.67 × 10−3 0 1.17 × 10−2 5.22 × 10−3

7 DMU 7 0.8934 9 6.67 × 10−2 1.88 × 10−3 8.33 × 10−3 0 2.52 × 10−2 0
8 DMU 8 0.6873 20 6.67 × 10−2 1.43 × 10−3 4.76 × 10−3 0 1.92 × 10−2 0
9 DMU 9 0.6775 21 0.111111 9.70 × 10−4 6.67 × 10−3 3.08 × 10−2 1.77 × 10−2 0
10 DMU 10 1 1 0.111111 9.41 × 10−4 5.479046 10.57818 1.577778 1.061762
11 DMU 11 0.7471 18 6.67 × 10−2 1.04 × 10−3 1.11 × 10−2 9.77 × 10−2 1.09 × 10−2 0
12 DMU 12 0.9036 8 17.93597 0.111646 4.76 × 10−3 0 1.111111 0.747719
13 DMU 13 0.8148 13 8.33 × 10−2 9.79 × 10−4 6.67 × 10−3 2.21 × 10−2 1.65 × 10−2 0
14 DMU 14 0.8334 12 8.33 × 10−2 1.06 × 10−3 8.33 × 10−3 0.081691 1.18 × 10−2 0
15 DMU 15 0.7229 19 6.67 × 10−2 1.00 × 10−3 5.56 × 10−3 1.30 × 10−2 1.54 × 10−2 0
16 DMU 16 1 1 8.33 × 10−2 9.50 × 10−4 3.575827 7.933635 0.823944 0.796321
17 DMU 17 0.8534 11 8.33 × 10−2 1.04 × 10−3 4.69 × 10−3 5.55 × 10−2 0.011673 0
18 DMU 18 0.7683 17 6.67 × 10−2 9.67 × 10−4 6.67 × 10−3 1.73 × 10−2 1.56 × 10−2 0
19 DMU 19 1 1 6.67 × 10−2 0.280893 6.67 × 10−3 6.346908 0.946667 0
20 DMU 20 0.8856 10 8.33 × 10−2 9.74 × 10−4 8.33 × 10−3 2.73 × 10−2 1.72 × 10−2 0
21 DMU 21 0.8027 15 6.67 × 10−2 1.67 × 10−3 6.67 × 10−3 0 2.24 × 10−2 0
22 DMU 22 1 1 3.741093 1.07 × 10−3 0.705214 6.346908 0 0.119497
23 DMU 23 1 1 6.67 × 10−2 9.75 × 10−4 8.86 × 10−2 0.683238 0 0
24 DMU 24 0.789 16 6.67 × 10−2 9.87 × 10−4 4.76 × 10−3 5.19 × 10−2 0.0104 0
25 DMU 25 0.8106 14 6.67 × 10−2 9.80 × 10−4 6.67 × 10−3 6.56 × 10−2 1.04 × 10−2 0

Table A14. The slacks for each DMU using the Super SBM-I-C model.

No. DMU Score Rank LT UP PC QB NI RE

1 DMU 1 1 1 0 0 0 0 0 0
2 DMU 2 0.3666 25 3.293 189.987 52.929 0.401 0 0
3 DMU 3 0.4732 23 2.237 124.289 32.368 0.979 0 0.005
4 DMU 4 0.4537 24 2.393 142.194 23.93 0 0 0.652
5 DMU 5 1 1 0 0 0 0 0 0
6 DMU 6 0.569 22 1.937 69.166 29.373 0.506 0 0
7 DMU 7 0.8934 9 1.266 0 2.659 2.324 0 1.809
8 DMU 8 0.6873 20 1.903 0 39.031 1.414 0 1.419
9 DMU 9 0.6775 21 0.486 105.988 24.86 0 0 3.722

10 DMU 10 1 1 0 0 0 0 0 0
11 DMU 11 0.7471 18 2.278 89.21 0.732 0 0 3.636
12 DMU 12 0.9036 8 0 0 20.238 0.812 0 0
13 DMU 13 0.8148 13 0.716 11.392 17.161 0 0 3.672
14 DMU 14 0.8334 12 0.895 67.605 2.466 0 0 0.982
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Table A14. Cont.

No. DMU Score Rank LT UP PC QB NI RE

15 DMU 15 0.7229 19 1.57 29.523 25.705 0 0 6.417
16 DMU 16 1 1 0 0 0 0 0 0
17 DMU 17 0.8534 11 0.17 8.524 26.32 0 0 2.441
18 DMU 18 0.7683 17 1.504 32.315 15.037 0 0 6.328
19 DMU 19 1 1 0 0 0 0 0 0
20 DMU 20 0.8856 10 0.509 30.41 5.088 0 0 6.305
21 DMU 21 0.8027 15 1.48 0 14.8 1.534 0 6.598
22 DMU 22 1 1 0 0 0 0 0 0
23 DMU 23 1 1 0 0 0 0 0 0
24 DMU 24 0.789 16 1.116 31.378 22.191 0 0 0.565
25 DMU 25 0.8106 14 1.358 36.497 9.463 0 0 3.803

Table A15. The optimal weights for each DMU using the SBM-AR-C model.

No. DMU Score V (1) LT V (2) UP V (3) PC U (1) QB U (2) NI U (3) RE

1 DMU 1 1 0.7774838 9.60 × 10−4 6.67 × 10−3 0.2139225 4.25 × 10−2 5.68 × 10−3

2 DMU 2 0.269326 6.67× 10−2 8.52 × 10−4 4.76 × 10−3 6.67 × 10−2 3.56 × 10−3 2.67 × 10−3

3 DMU 3 0.251235 8.33 × 10−2 1.00 × 10−3 6.67 × 10−3 0.1015951 3.22 × 10−3 2.41 × 10−3

4 DMU 4 0.401049 8.33 × 10−2 1.04 × 10−3 8.33 × 10−3 7.59 × 10−2 5.82 × 10−3 4.37 × 10−3

5 DMU 5 1 8.33 × 10−2 9.26 × 10−2 6.67 × 10−3 1.1563198 8.32 × 10−3 0.3546177
6 DMU 6 0.418778 8.33 × 10−2 1.07 × 10−3 6.67 × 10−3 8.70 × 10−2 4.58 × 10−3 3.44 × 10−3

7 DMU 7 0.662241 6.67 × 10−2 9.65 × 10−4 8.33 × 10−3 8.57 × 10−2 4.60 × 10−3 3.24 × 10−3

8 DMU 8 0.448251 6.67 × 10−2 9.72 × 10−4 4.76 × 10−3 7.44 × 10−2 3.39 × 10−3 2.55 × 10−3

9 DMU 9 0.641302 0.1111111 9.70 × 10−4 6.67 × 10−3 6.60 × 10−2 6.54 × 10−3 4.90 × 10−3

10 DMU 10 1 1.2031017 9.41 × 10−4 1.11 × 10−2 0.3587726 6.42 × 10−2 5.64 × 10−3

11 DMU 11 0.703643 6.67 × 10−2 1.04 × 10−3 1.11 × 10−2 0.0585784 7.16 × 10−3 5.37 × 10−3

12 DMU 12 1 66.742332 0.2530347 4.76 × 10−3 0.1143864 6.5315673 5.68 × 10−3

13 DMU 13 0.753682 8.33 × 10−2 9.79 × 10−4 6.67 × 10−3 6.25 × 10−2 5.69 × 10−3 4.27 × 10−3

14 DMU 14 0.771137 8.33 × 10−2 1.90 × 10−3 8.33 × 10−3 0.1013309 7.37 × 10−3 5.53 × 10−3

15 DMU 15 0.694923 6.67 × 10−2 1.00 × 10−3 5.56 × 10−3 4.97 × 10−2 5.38 × 10−3 4.04 × 10−3

16 DMU 16 1 8.33 × 10−2 9.50 × 10−4 8.33 × 10−3 6.10 × 10−2 6.67 × 10−3 4.49 × 10−3

17 DMU 17 0.837507 8.33 × 10−2 1.55 × 10−3 4.69 × 10−3 7.19 × 10−2 6.34 × 10−3 4.76 × 10−3

18 DMU 18 0.73634 6.67 × 10−2 9.67 × 10−4 6.67 × 10−3 5.21 × 10−2 5.56 × 10−3 4.17 × 10−3

19 DMU 19 1 6.67 × 10−2 4.73 × 10−3 6.67 × 10−3 0.1230422 7.55 × 10−3 1.54 × 10−2

20 DMU 20 0.849581 8.33 × 10−2 9.74 × 10−4 8.33 × 10−3 6.02 × 10−2 6.43 × 10−3 4.82 × 10−3

21 DMU 21 0.669586 6.67 × 10−2 1.07 × 10−3 6.67 × 10−3 6.87 × 10−2 5.06 × 10−3 3.79 × 10−3

22 DMU 22 1 8.33 × 10−2 1.98 × 10−3 6.67 × 10−3 9.00 × 10−2 7.59 × 10−3 0.0056912
23 DMU 23 1 0.428732 9.75E-04 7.86 × 10−2 0.7697859 7.59 × 10−3 5.69 × 10−3

24 DMU 24 0.769097 6.67 × 10−2 1.54 × 10−3 4.76 × 10−3 6.75 × 10−2 5.95 × 10−3 4.46 × 10−3

25 DMU 25 0.772696 6.67 × 10−2 1.55 × 10−3 6.67 × 10−3 8.13 × 10−2 5.99 × 10−3 4.49 × 10−3

Table A16. The slacks for each DMU using the SBM-AR-C model.

No. DMU Score

Excess Excess Excess Shortage Shortage Shortage

LT UP PC QB NI RE

S−(1) S−(2) S−(3) S+(1) S+(2) S+(3)

1 DMU 1 1 0 0 0 0 0 0
2 DMU 2 0.269326 0 0.95 7.5 7.232975 29.7125 39.6125
3 DMU 3 0.251235 0 20 0 6.0388 17.9 23.87
4 DMU 4 0.401049 0.3351382 0 3.351382 3.2435436 22.86077 37.47481
5 DMU 5 1 0 0 0 0 0 0
6 DMU 6 0.418778 0 0.2 0 5.2584 13.48 17.97
7 DMU 7 0.662241 1.16 8.436 1.6 2.669008 0 3.128
8 DMU 8 0.448251 0.609475 0 15.11844 5.523653 4.18894 5.578262
9 DMU 9 0.641302 0.384 114.1114 23.84 0.3322442 0 4.9922

10 DMU 10 1 0 0 0 0 0 0
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Table A16. Cont.

No. DMU Score

Excess Excess Excess Shortage Shortage Shortage

LT UP PC QB NI RE

S−(1) S−(2) S−(3) S+(1) S+(2) S+(3)

11 DMU 11 0.703643 2 56.925 0 9.27x10−2 4.72 12.025
12 DMU 12 1 0 0 0 0 0 0
13 DMU 13 0.753682 0.4704 30.96584 14.704 0.8005335 0 6.73232
14 DMU 14 0.771137 0.3550889 0 2.330154 0 9.940403 19.28401
15 DMU 15 0.694923 1.2108863 0 22.10886 0.513919 4.343921 13.02279
16 DMU 16 1 0 0 0 0 0 0
17 DMU 17 0.837507 0.1015444 0 26.30323 0 1.253382 4.748504
18 DMU 18 0.73634 1.4704 34.96584 14.704 0.1084335 0 6.74232
19 DMU 19 1 0 0 0 0 0 0
20 DMU 20 0.849581 9.80E-02 0 0.980336 0.6245277 4.71458 13.72903
21 DMU 21 0.669586 1.4571103 0 14.5711 1.5883816 0.136121 6.949176
22 DMU 22 1 0 0 0 0 0 0
23 DMU 23 1 0 0 0 0 0 0
24 DMU 24 0.769097 0.8652768 0 22.12846 0 4.613784 9.059744
25 DMU 25 0.772696 1.0669574 0 9.390053 0 5.366362 13.68358

Table A17. The optimal weights for each DMU using the SBM-AR-V model.

No. DMU Score V (1) LT V (2) UP V (3) PC U (1) QB U (2) NI U (3) RE

1 DMU 1 1 2.2055847 2.40 × 10−2 6.67 × 10−3 8.96 × 10−2 0.3318029 5.68E-03
2 DMU 2 0.269326 6.67 × 10−2 8.52 × 10−4 4.76 × 10−3 6.67 × 10−2 3.56 × 10−3 2.67 × 10−3

3 DMU 3 0.251235 8.33 × 10−2 1.00 × 10−3 6.67 × 10−3 0.1015951 3.22 × 10−3 2.41 × 10−3

4 DMU 4 0.45679 8.33 × 10−2 5.91 × 10−3 2.56 × 10−2 8.65 × 10−2 6.63 × 10−3 4.98 × 10−3

5 DMU 5 1 0.1763621 2.58 × 10−2 6.67 × 10−3 0.3325684 7.64 × 10−2 5.90 × 10−2

6 DMU 6 0.418778 8.33 × 10−2 1.07 × 10−3 6.67 × 10−3 8.70 × 10−2 4.58 × 10−3 3.44 × 10−3

7 DMU 7 0.677494 6.67 × 10−2 4.83 × 10−3 2.28 × 10−2 8.77 × 10−2 4.70 × 10−3 3.31 × 10−3

8 DMU 8 0.448556 6.67 × 10−2 9.72 × 10−4 4.76 × 10−3 7.44 × 10−2 8.89 × 10−3 2.55 × 10−3

9 DMU 9 0.999453 9.7808186 7.58 × 10−2 6.67 × 10−3 0.1028212 1.02 × 10−2 7.64 × 10−3

10 DMU 10 1 0.1111111 9.41 × 10−4 8.65 × 10−2 0.1086236 7.53 × 10−3 4.40 × 10−2

11 DMU 11 1 6.67 × 10−2 1.04 × 10−3 9.61 × 10−2 0.3550234 1.02 × 10−2 7.63 × 10−3

12 DMU 12 1 17.038047 0.2170056 4.76 × 10−3 0.1143864 2.9286539 5.68 × 10−3

13 DMU 13 0.762943 8.33 × 10−2 2.10 × 10−3 6.67 × 10−3 6.33 × 10−2 5.76 × 10−3 4.32 × 10−3

14 DMU 14 1 0.2244187 1.37 × 10−2 5.83 × 10−2 0.2180815 9.56 × 10−3 7.17 × 10−3

15 DMU 15 0.712474 6.67 × 10−2 2.15 × 10−3 5.56 × 10−3 5.10 × 10−2 5.52 × 10−3 4.14 × 10−3

16 DMU 16 1 8.33 × 10−2 9.50 × 10−4 8.33 × 10−3 6.10 × 10−2 6.67 × 10−3 4.49 × 10−3

17 DMU 17 0.849109 8.33 × 10−2 2.52 × 10−3 4.69 × 10−3 4.62 × 10−2 6.43 × 10−3 4.82 × 10−3

18 DMU 18 0.744086 6.67 × 10−2 2.43 × 10−3 6.67 × 10−3 5.26 × 10−2 5.62 × 10−3 4.22 × 10−3

19 DMU 19 1 6.67 × 10−2 4.73 × 10−3 6.67 × 10−3 0.1230422 7.55 × 10−3 1.54 × 10−2

20 DMU 20 0.876299 8.33 × 10−2 4.66 × 10−3 1.94 × 10−2 6.21 × 10−2 6.63 × 10−3 4.97 × 10−3

21 DMU 21 0.693331 6.67 × 10−2 5.64 × 10−3 6.67 × 10−3 0.0711174 3.10 × 10−2 3.93 × 10−3

22 DMU 22 1 8.33 × 10−2 1.98 × 10−3 6.67 × 10−3 9.00 × 10−2 7.59 × 10−3 0.0056912
23 DMU 23 1 0.428732 9.75 × 10−4 7.86 × 10−2 0.7697859 7.59 × 10−3 5.69 × 10−3

24 DMU 24 0.778043 6.67 × 10−2 9.87 × 10−4 4.76 × 10−3 0.0835919 6.02 × 10−3 4.51 × 10−3

25 DMU 25 0.78211 6.67 × 10−2 2.83 × 10−3 6.67 × 10−3 4.70 × 10−2 6.06 × 10−3 4.55 × 10−3

Table A18. The slacks for each DMU using the SBM-AR-V model.

No. DMU Score

Excess Excess Excess Shortage Shortage Shortage

LT UP PC QB NI RE

S−(1) S−(2) S−(3) S+(1) S+(2) S+(3)

1 DMU 1 1 0 0 0 0 0 0
2 DMU 2 0.269326 1 79.05 20 5.5172 18.73 24.97
3 DMU 3 0.251235 0 20 0 6.0388 17.9 23.87
4 DMU 4 0.45679 0.2190489 0 0 2.1999675 23.619423 35.781249
5 DMU 5 1 0 0 0 0 0 0
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Table A18. Cont.

No. DMU Score

Excess Excess Excess Shortage Shortage Shortage

LT UP PC QB NI RE

S−(1) S−(2) S−(3) S+(1) S+(2) S+(3)

6 DMU 6 0.418778 0 0.2 0 5.2584 13.48 17.97
7 DMU 7 0.677494 0.9193048 0 0 2.8828591 0.1189338 2.3581649
8 DMU 8 0.448556 1 29.86573 20.16474 4.8305226 0 0.1191433
9 DMU 9 0.999453 0 0 0 8.57 x10−4 2.24 x10−2 2.98 x10−2

10 DMU 10 1 0 0 0 0 0 0
11 DMU 11 1 8.79 x10−5 0 0 0 0 5.42 x10−4

12 DMU 12 1 0 0 0 0 0 0
13 DMU 13 0.762943 4.00 x10−5 0 7.325987 1.8174772 4.2561312 11.262405
14 DMU 14 1 0 0 0 0 3.01 x10−3 4.01 x10−3

15 DMU 15 0.712474 1.00004 0 15.19612 1.4748294 4.0633 9.3821192
16 DMU 16 1 0 0 0 0 0 0
17 DMU 17 0.849109 0 0 22.97534 0.4625961 1.118287 2.9958335
18 DMU 18 0.744086 1.00004 0 8.364948 0.9798395 4.8867805 12.906691
19 DMU 19 1 0 0 0 0 0 0
20 DMU 20 0.876299 6.41x10−2 0 0 0.3194245 4.9366059 13.23423
21 DMU 21 0.693331 1.00004 0 0.621362 3.2900805 0 0.4775992
22 DMU 22 1 0 0 0 0 0 0
23 DMU 23 1 0 0 0 0 0 0
24 DMU 24 0.778043 1 16.87501 22.16234 0 2.1325378 4.4913542
25 DMU 25 0.78211 1.00004 0 7.196117 0.3049694 5.2773 12.528119
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Abstract: Hesitant fuzzy linguistic (HFL) term set, as a very flexible tool to represent the judgments
of decision makers, has attracted the attention of many researchers. In recent years, some HFL
aggregation operators have been developed to aggregate the HFL information. However, most of
these operators are proposed based on the Algebraic product and Algebraic sum. In this paper,
we presented some HFL aggregation operators to handle HFL information based on Hamacher
triangle norms. We first define new operational laws on the HFL element according to Hamacher
triangle norms. Then we present a family of HFL Hamacher aggregation operators, including
the HFL Hamacher weighted averaging, HFL Hamacher weighted geometric, HFL Hamacher
power weighted averaging and HFL Hamacher power weighted geometric operators and their
generalized forms. We also investigate some special cases and properties of these operators in
detail. Furthermore, we develop two approaches based on the proposed operators to deal with
the multi-criteria decision-making problem with HFL information. Finally, a numerical example
with regard to choosing a suitable city to release sharing car is provided to illustrate the feasibility
of the proposed method, and the advantages of the proposed methods are shown by conducting
a sensitivity and comparative analysis.

Keywords: hesitant fuzzy linguistic term set; Hamacher t-norm and t-conorm; power aggregation
operator; multi-criteria decision-making

1. Introduction

Multi-criteria decision-making (MCDM) problems with different kinds of fuzzy information is
handled by utilizing Zadeh’s fuzzy set [1] and their various extensions, including the interval-valued
fuzzy set [2], intuitionistic fuzzy set [3,4], Pythagorean fuzzy set [5,6], Type-2 fuzzy set [7,8], fuzzy multi
set [9], and hesitant fuzzy set (HFS) [10,11]. However, these fuzzy tools are only suitable to deal with
quantitative situations rather than qualitative situations. The Fuzzy linguistic method (FLM) [2,12,13],
which decision makers prefer to provide an evaluation for using a linguistic term, is a more suitable
approach than the above fuzzy set to handle qualitative situations and has been extensively applied in
various fields and applications [14–18]. In some cases, the modeling capacity of fuzzy linguistic is also
quite limited because simple linguistic terms find it hard to express the hesitation of decision makers.
For instance, a customer is invited to evaluate the satisfying degree of a service product with respect to
a given criterion. Suppose S = {s−2 = very low, s−1 = low, s0 = medium, s1 = high, s2 = very high}
is a linguistic term set (LTS). The customer regards s0 or s1 as the evaluation value of the satisfying
degree for a service product, but he/she quietly finds it difficult to choose one of them as the final
evaluation value. In this situation, an effective method is that the evaluation value of the satisfying
degree provided by the customer should consist of the two possible values. To handle this situation,
Rodríguez et al. [19] proposed the concept of hesitant fuzzy linguistic term set (HFLTS), which uses
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a linguistic term to replace the numerical elements of HFS. Subsequently, Liao et al. [20] gave the
mathematical form of the HFLTS according to the concept of HFLTS and utilized the hesitant fuzzy
linguistic element (HFLE) to represent the elements of HFLTS. For the above example, the customer’s
evaluation can be expressed by an HFLE {s0, s1}. The HFLTS, which is a combination of HFS and FLM,
has the advantages of HFS and FLM at the same time. Therefore, it is a useful tool for a decision maker
to express his/her judgment under the hesitation and fuzziness environment.

Recently, HFLTS has been used by more and more researchers to handle MCDM problems with
uncertain information [21]. In this situation, the hesitant fuzzy linguistic (HFL) aggregation operator
that is applied to aggregate the criteria’s value into a comprehensive value of the alternative is one of the
core issues. Therefore, the investigation of HFL aggregation operator is one of the hot topics. Various
HFL aggregation operators have been developed from four respects as follows (1) Rodríguez et al. [19]
defined the operational rules on HFLTS and proposed the min_upper and max_lower operators to
select the worst of the superior values and the best of the inferior values, respectively; (2) based
on the likelihood-based comparison relation between two HFLEs, Wei et al. [22] proposed the HFL
weighted averaging (HFLWA) and HFL order weighted averaging (HFLOWA) operators, and Lee and
Chen [23] presented the HFLWA, HFLOWA, and HFL weighted geometric (HFLWG), and HFL order
weighted geometric operators; (3) according to the operational laws defined on HFLTS in [24,25], Zhang
and Wu [24] proposed a family of operators for HFLEs, such as HFLWA, HFLWG, and generalized
HFLWA operators. Wang [25] developed an extending HFLTS according to the definition of HFLTS,
and defined the extending HFLWA, extending HFLWG and their ordered weighted forms. Shi and
Xiao [26] presented the HFL reducible weighted Bonferroni mean, HFL generalized the reducible
weighted Bonferroni mean, and HFL weighted power Bonferroni mean operators. Xu et al. [27]
proposed an HFL order weighted distance operator and utilized to deal with multi-attribute group
decision-making (MAGDM) problems. Liu et al. [28] developed the HFLWA, HFLWG, and HFL
harmonic operators and their order weighted and hybrid weighted forms; (4) Based on the equivalent
transformation function between HFLE and hesitant fuzzy element (HFE), Zhang and Qi [29] presented
the HFLWA and HFLWG operators, and applied to solve a production strategy decision-making
problem; Gou et al. [30] introduced the Bonferroni mean operator into the HFLTS environment and
defined the HFL Bonferroni mean and HFL weighted Bonferroni mean operators.

It’s worth noting that these existing HFL aggregation operators are constructed by the algebraic
product and algebraic sum operational laws of HFLEs, which are a pair of special t-norm and t-conorm.
A generalized intersection and union on HFLEs can be constructed by a generalized t-norm and
t-conorm. For an intersection and union, a good alternative and approximation to the algebraic product
and algebraic sum are the Einstein product and Einstein sum, respectively [31,32]. Recently, Wang
and Liu [31,32] proposed the intuitionistic fuzzy Einstein weighted averaging and intuitionistic fuzzy
Einstein weighted geometric operators. Further, Zhang [33] presented the intuitionistic fuzzy Einstein
hybrid weighted averaging and intuitionistic fuzzy Einstein hybrid weighted geometric operators and
their quasi-forms. Yu [34] introduced the Einstein operations into the HFS and developed the hesitant
fuzzy Einstein weighted averaging and hesitant fuzzy Einstein weighted geometric operators and their
ordered forms. Jin et al. [35] derived some interval-valued hesitant fuzzy Einstein prioritized operators
and applied to solve MAGDM problems. On the other hand, Hamacher [36] presented a Hamacher
t-norm and Hamacher t-conorm, which can be transformed into the algebraic and Einstein t-norms
and t-conorms when the parameter υ = 1 and υ = 2 in Hamacher t-norm and t-conorm, respectively.
Therefore, as general and flexible continuous triangular norms, Hamacher t-norm and t-conorm have
been explored by many researchers in various fuzzy environments. Tan et al. [37] defined some
hesitant fuzzy operational laws based on Hamacher operations and presented a family of hesitant
fuzzy Hamacher aggregation operators, such as hesitant fuzzy Hamacher weighted averaging and
hesitant fuzzy Hamacher weighted geometric operators. Ju et al. [38] proposed the dual hesitant fuzzy
Hamacher weighted averaging and dual hesitant fuzzy Hamacher weighted geometric operators,
and their order and hybrid forms. Liu et al. [39] proposed the improved interval-valued hesitant
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fuzzy Hamacher ordered weighted averaging and improved interval-valued hesitant fuzzy Hamacher
ordered weighted geometric operators. Moreover, Hamacher operations are also introduced to other
fuzzy environments, such as the intuitionistic fuzzy set [40], interval-valued intuitionistic fuzzy set [41],
Pythagorean fuzzy set [42], and single-valued neutrosophic 2-tuple linguistic set [43]. From the above
analysis, we can see that it is of important theoretical significance to explore the aggregation operators
of HFLTS based on Hamacher operational laws and their application to MCDM problems, which is
justly the first focus of this paper.

In practical MCDM process, it is extensively important to employ a suitable aggregation operator
to drive the comprehensive preference value of each alternative. Various aggregation operators have
been developed by many researchers to perform this process in MCDM problems. In these operators,
the power average (PA) operator was originally presented by Yager [44], which allows the input data
to support and strengthen one another, and the weight vectors in PA operator are associated with
the input arguments. Inspired by the PA operator, Xu and Yager [45] presented a power geometric
(PG) operator and a power ordered weighted geometric operator. The prominent characteristic of
PA and PG operators is that they consider the relationships between the input arguments. Based
on this advantages, many extending forms of PA and PG operators have been proposed, such as
Xu [46] developing the intuitionistic fuzzy power weighted averaging and intuitionistic fuzzy power
weighted geometric operators and their ordered forms. Further, Wei and Liu [47] introduced the PA
and PG operators into a Pythagorean fuzzy environment and proposed a family of Pythagorean fuzzy
power aggregation operators, including the Pythagorean fuzzy power averaging and Pythagorean
fuzzy power geometric operators and their weighted, ordered weighted, and hybrid weighted forms.
Zhang [48] presented a series of hesitant fuzzy power aggregation operators, such as hesitant fuzzy
power averaging and hesitant fuzzy power geometric operators, and their ordered, weighted, and
generalized forms. Furthermore, PA and PG operators have also been extended to other fuzzy
environments to propose some new operators, such as intuitionistic fuzzy power aggregation
operators based on entropy [49], linguistic hesitant fuzzy power aggregation operators [50], linguistic
intuitionistic fuzzy power aggregation operators [51], dual hesitant fuzzy power aggregation operators
based on Archimedean t-norm and t-conorm [52], and simplified neutrosophic power aggregation
operators [53]. However, there is no one has explored the power aggregation operators on HFLTS,
especially based on the Hamacher operations. Therefore, extending the power aggregation operators
to HFLTS environments, especially based on Hamacher operational laws, is also very meaningful work
and another focus of this paper.

According to the analysis above, this paper extends the Hamacher t-norm and t-conorm to an HFL
environment and presents several new HFL aggregation operators to handle MCDM problem with
HFL information. The main advantage of these operators is that they provide a good compensation to
the existing HFL aggregation operators, and the HFL power aggregation operators can capture the
relationships between the input arguments. The organization of this paper is arranged as follows.
In Section 2, we briefly introduce the Hamacher t-norm and t-conorm and review some basic concepts
of an HFL term set. We develop some HFL Hamacher aggregation operators and some HFL Hamacher
power aggregation operators in Sections 3 and 4, respectively, and also discuss their special cases
and investigate their basic properties. Section 5 utilizes these proposed operators to present two
methods to handle MCDM problems with HFL information. We perform the developed methods on
a numerical example and compare them with some existing HFL MCDM approaches in Section 6.
Section 7 provides the conclusions of this paper.

2. Preliminaries

In this section, we briefly introduce the Hamacher t-norm and t-conorm and some basic concepts
of HFLTS.
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2.1. Hamacher Operations

There is an important concept in fuzzy set theory, that is, t-norm and t-conorm, which are utilized
to define a generalized intersection and union of fuzzy sets [54]. A number of t-norm and t-conorm
have been proposed, including Algebraic product TA and Algebraic sum SA [1], Einstein product TE
and Einstein sum SE [55], and drastic product TD and drastic sum SD [56]. Further, Hamacher [36]
developed a more generalized t-norm and t-conorm, that is, the Hamacher product (Hamacher t-norm)
and Hamacher sum (Hamacher t-conorm), which are calculated as follows:

Tυ
H(a, b) = a⊗ b =

ab
υ + (1− υ)(a + b− ab)

, υ > 0

Sυ
H(a, b) = a⊕ b =

a + b− ab− (1− υ)ab
1− (1− υ)ab

, υ > 0

In particular, when υ = 1, then the Hamacher t-norm and t-conorm are transformed into the
Algebraic product TA and Algebraic sum SA [1].

TA(a, b) = a · b

SA(a, b) = a + b− a · b

When υ = 2, then the Hamacher t-norm and t-conorm are transformed into the Einstein product
TE and Einstein sum SE [55].

TE(a, b) = a⊗ b =
ab

1 + (1− a)(1− b)

SE(a, b) = a⊕ b =
ab

1 + ab

2.2. Hesitant Fuzzy Linguistic Term Set

Motivated by the HFS and fuzzy linguistic method, Rodríguez et al. [19] introduced the notion
of HFLTS.

Definition 1. [19]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS. An HFLTS, HS, is constructed by
a finite subset of the continuous linguistic terms of S.

In order to help understand the concept of HFLTS, Liao et al. [20] gave the mathematical expression
of HFLTS.

Definition 2. [20]. Let X = {x1, x2, · · · , xn} be a fixed set and S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be
an LTS. An HFLST on X, HS, is defined as the following

HS = {< x, hS(xi) >|xi ∈ X}, i = 1, 2, · · · , n. (1)

where hS(xi) is a collection of some linguistic terms in S and can be defined as
hS(xi) = {si

t
∣∣si

t ∈ S, i = 1, 2, · · · , L} with L being the number of linguistic term in hS(xi). For convenience,
hS(xi) is referred to as the HFLE.

To perform the equivalent conversion between HFLE and HFE, Gou [30] defined two equivalent
conversion functions.

712



Symmetry 2018, 10, 189

Definition 3. [30]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, hS = {st|t ∈ [−τ, τ]} be
an HFLE, and hσ = {σ|σ ∈ [0, 1]} be an HFE. The equivalent transformation from HFLE hS to HFE hσ

is performed by the following function g

g : [−τ, τ]→ [0, 1], hσ = g(hS) = {σ = g(st) =
t

2τ
+

1
2
}

Similarly, the equivalent transformation from HFE hσ to HFLE hS is performed by the following
inverse function g−1.

g−1 : [0, 1]→ [−τ, τ], hS = g−1(hσ) = {st = g−1(σ) = s(2σ−1)τ}

Definition 4. [57]. For any three HFLEs, hS, hS1 , and hS2 , g and g−1 are the equivalent conversion functions
between HFLE and HFE, and λ > 0; the operational rules on HFLEs are defined as follows:

(1) hS1 ⊕ hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )
{g−1(σ1 + σ2 − σ1σ2)};

(2) hS1 ⊗ hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )
{g−1(σ1σ2)};

(3) λhS = ∪
σ∈g(hS)

{g−1(1− (1− σ)λ)};

(4) (hS)
λ = ∪

σ∈g(hS)
{g−1(σλ)}.

In the following, we introduce the Hamacher t-norm and t-conorm to the HFLTS environment
and define some new operational rules on HFLEs.

Definition 5. For any three HFLEs, hS, hS1 , and hS2 , g and g−1 are the equivalent conversion functions
between HFLE and HFE, and υ > 0. According to the Hamacher t-norm and t-conorm, some operational rules
on HFLEs are defined as follows:

(1) hS1 ⊕H hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1
(

σ1+σ2−σ1σ2−(1−υ)σ1σ2
1−(1−υ)σ1σ2

)}
;

(2) hS1 ⊗H hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1
(

σ1σ2
υ+(1−υ)(σ1+σ2−σ1σ2)

)}
;

(3) λhS = ∪
σ∈g(hS)

{
g−1
(

(1+(υ−1)σ)λ−(1−σ)λ

(1+(υ−1)σ)λ+(υ−1)(1−σ)λ

)}
, λ > 0;

(4) (hS)
λ = ∪

σ∈g(hS)

{
g−1
(

υσλ

(1+(υ−1)(1−σ))λ+(υ−1)σλ

)}
, λ > 0.

Remark 1. When υ = 1, we can see that these operations of HFLEs in Definition 5 are transformed into those
in Definition 4. In other words, the operations in Definition 4 are a special case of Definition 5 by comparing
Definition 4 with Definition 5.

In addition, when υ = 2, these basic operations of HFLEs in Definition 5 are transformed into the Einstein
operations on HFLEs.

(1) hS1 ⊕E hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1
(

σ1+σ2
1+σ1σ2

)}
;

(2) hS1 ⊗E hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1
(

σ1σ2
1−(1−σ1)(1−σ2)

)}
;

(3) λhS = ∪
σ∈g(hS)

{
g−1
(

(1+σ)λ−(1−σ)λ

(1+σ)λ+(1−σ)λ

)}
, λ > 0;
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(4) (hS)
λ = ∪

σ∈g(hS)

{
g−1
(

2σλ

(2−σ)λ+σλ

)}
, λ > 0.

To compare the two HFLEs, Gou [30] defined the score function of HFLE as follows.

Definition 6. [30]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and hS = {st|t ∈ [−τ, τ]} be
an HFLE, then the score function of hS is defined as the following

s(hS) = ∑L
i=1 g(si)/L (2)

where L is the number of the elements of hS. Therefore, the comparative relation for two HFLEs is determined
as follows:

(1) If s(hS1) > s(hS2), then hS1 is superior hS2 , denoted by hS1 > hS2 ;
(2) If s(hS1) = s(hS2), then hS1 is equal to hS2 , denoted by hS1 = hS2 .

Definition 7. [58]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, and
hS1 = {sl

1t

∣∣∣sl
1t ∈ S, l = 1, 2, · · · , L1} , and hS2 = {sl

2t

∣∣∣sl
2t ∈ S, l = 1, 2, · · · , L2} be the two HFLEs.

If L1 = L2 and λ > 0, then the generalized hesitant fuzzy linguistic distance between hS1 and hS2 is defined
as follows

d(hS1 , hS2) =

(
1
L∑L

i=1

(∣∣∣g(si
1t)− g(si

2t)
∣∣∣)λ
) 1

λ

(3)

where g is the equivalent conversion function gave in Definition 3. When λ = 2, d(hS1 , hS2) is called the HFL
Euclidean distance between hS1 and hS2 .

When applying Equation (3), if L1 	= L2, then the shorter one (L1 < L2) needs to be extended by
adding the linguistic terms given as s1 =

(
s1

1t + sL1
1t

)
/2, where s1

1t and sL1
1t are the smallest and biggest

linguistic terms in hS1 , respectively.

3. Hesitant Fuzzy Linguistic Hamacher Aggregation Operators

In this part, we present a hesitant fuzzy linguistic Hamacher weighted averaging (HFLHWA) and
a hesitant fuzzy linguistic Hamacher weighted geometric (HFLHWG), a generalized hesitant fuzzy
linguistic Hamacher weighted averaging (GHFLHWA) and a generalized hesitant fuzzy linguistic
Hamacher weighted geometric (GHFLHWG) operators. Furthermore, we also discuss some special
cases of these operators and explore some properties of these operators.

3.1. HFLHWA and HFLHWG Operators

Definition 8. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = w1hS1 ⊕H w2hS2 ⊕H · · · ⊕H wnhSn =

n
⊕H
i=1

(
wihSi

)
(4)

Then, HFLHWAυ
w is designated as the HFL Hamacher weighted averaging (HFLHWA) operator.
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Theorem 1. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs. Then the aggregated value by the HFLHWA operator is also an HFLE, and

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σi)

wi−∏n
i=1 (1−σi)

wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
(5)

Proof. According to mathematical induction method, Equation (5) can be proved as follows.
For n = 1, the result of Equation (5) clearly holds. Suppose Equation (5) hold for n = k, namely

HFLHWAυ
w(hS1 , hS2 , · · · , hSk ) = ∪

σi∈g(hSi
)

{
g−1
(

∏k
i=1 (1+(υ−1)σi)

wi−∏k
i=1 (1−σi)

wi

∏k
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k
i=1 (1−σi)

wi

)}

Then, for n = k + 1, by Equation (4), we can get

HFLHWAυ
w(hS1 , hS2 , · · · , hSk , hSk+1) = w1hS1 ⊕H w2hS2 ⊕H · · · ⊕H wk+1hSk+1 =

k
⊕H
i=1

(wihSi )⊕H wk+1hSk+1

= ∪
σi∈g(hSi

)

{
g−1
(

∏k
i=1 (1+(υ−1)σi)

wi−∏k
i=1 (1−σi)

wi

∏k
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k
i=1 (1−σi)

wi

)}
⊕H ∪

σk+1∈g(hSk+1
)

{
g−1
(

(1+(υ−1)σk+1)
wk+1−(1−σk+1)

wk+1

(1+(υ−1)σk+1)
wk+1+(υ−1)(1−σk+1)

wk+1

)}

Let ∏k
i=1 (1 + (υ− 1)σi)

wi = α1, ∏k
i=1 (1− σi)

wi = β1, (1 + (υ− 1)σk+1)
wk+1 = α2, and

(1− σk+1)
wk+1 = β2, then

k
⊕H
i=1

(wihSi ) = ∪
σi∈g(hSi

)

{
g−1
(

α1−β1
α1+(υ−1)β1

)}
and wk+1hSk+1 = ∪

σk+1∈g(hSk+1
)

{
g−1
(

α2−β2
α2+(υ−1)β2

)}

Further, the operational law (1) in Definition 5 yields

k
⊕H
i=1

(wihSi )⊕H wk+1hSk+1 = ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk∈g(hSk
)

{
g−1
(

α1−β1
α1+(υ−1)β1

)}
⊕H ∪

σk+1∈g(hSk+1
)

{
g−1
(

α2−β2
α2+(υ−1)β2

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1
(
(α1−β1)(α2+(υ−1)β2)+(α2−β2)(α1+(υ−1)β1)−(2−υ)(α1−β1)(α2−β2)

(α1+(υ−1)β1)(α2+(υ−1)β2)−(1−υ)(α1−β1)(α2−β2)

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),····,σk+1∈g(hSk+1

)

{
g−1
(

α1α2−β1β2
α1α2+(υ−1)β1β2

)}
= ∪

σi∈g(hSi
)

{
g−1
(

∏k+1
i=1 (1+(υ−1)σi)

wi−∏k+1
i=1 (1−σi)

wi

∏k+1
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k=1
i=1 (1−σi)

wi

)}

That is, Equation (5) holds for n = k + 1. Therefore, Equation (5) holds for all n. �

Remark 2. When υ = 1, then the HFLHWA operator is transformed into the following:

HFLWAw(hS1 , hS2 , · · · , hSk ) =
n
⊕H
i=1

(wihSi ) = ∪
σi∈g(hSi

)

{
g−1

(
1−

k

∏
i=1

(1− σi)
wi

)}

where HFLWAw is called the HFLWA operator by Zhang and Qi [29]. When υ = 2, the HFLHWA operator is
transformed into to the following:

HFLEWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

∏n
i=1 (1 + σi)

wi −∏n
i=1 (1− σi)

wi

∏n
i=1 (1 + σi)

wi + ∏n
i=1 (1− σi)

wi

)}

715



Symmetry 2018, 10, 189

Here, HFLEWAw is called the HFLEWA operator. Especially when wi = 1/n, then the HFLHWA operator is
transformed into the hesitant fuzzy Hamacher averaging (HFLHA) operator.

HFLHAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1 + (υ− 1)σi)
1
n −∏n

i=1 (1− σi)
1
n

∏n
i=1 (1 + (υ− 1)σi)

1
n + (υ− 1)∏n

i=1 (1− σi)
1
n

)}

Example 1. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and τ = 3. hS1 = {s−1, s1} and hS2 =

{s−2, s0} are two HFLEs; w = (0.4, 0.6) are the weights of hS1 and hS2 , respectively. Then we can aggregate
them by employing the HFLHWA (υ = 3) operator.

HFLHWA3
w(hS1 , hS2) = ∪

σ1∈g(hS1
),σ2∈g(hS2 )

{
g−1
(

∏2
i=1 (1+(3−1)σi)

wi−∏2
i=1 (1−σi)

wi

∏2
i=1 (1+(3−1)σi)

wi+(3−1)∏2
i=1 (1−σi)

wi

)}

= ∪
σ1∈g(hS1

),σ2∈g(hS2 )

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
(1+2× 1

3 )
0.4

(1+2× 1
6 )

0.6−( 2
3 )

0.4
( 5

6 )
0.6

(1+2× 1
3 )

0.4
(1+2× 1

6 )
0.6

+2×( 2
3 )

0.4
( 5

6 )
0.6 , 3×( 1

3 )
0.4×( 1

2 )
0.6

(1+2× 2
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 1

3 )
0.4×( 1

2 )
0.6

3×( 2
3 )

0.4×( 1
6 )

0.6

(1+2× 1
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 2

3 )
0.4×( 1

6 )
0.6 , 3×( 2

3 )
0.4×( 1

2 )
0.6

(1+2× 1
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 2

3 )
0.4×( 1

2 )
0.6

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

= {g−1(0.2333, 0.3862, 0.4355, 0.5716)}
= {s−1.6004, s−0.6829, s−0.3870, s0.4299}

Idempotent 1. Let hSi (i = 1, 2, · · · , n) be equal and each hSi which have only one value, namely, hSi = hS =

{st} for any i, then
HFLHWAυ

w(hS1 , hS2 , · · · , hSn) = hS (6)

Proof. According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g(st) =

{
t

2τ
+

1
2
= σ

∣∣∣∣t ∈ [−τ, τ]

}
= hσ

Then, HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σ∈g(hS)

{
g−1
(

∏n
i=1 (1+(υ−1)σ)wi−∏n

i=1 (1−σ)wi

∏n
i=1 (1+(υ−1)σ)wi+(υ−1)∏n

i=1 (1−σ)wi

)}
=

∪
σ∈g(hS)

{
g−1
(

(1+(υ−1)σ)∑n
i=1 wi−(1−σ)∑n

i=1 wi

(1+(υ−1)σ)∑n
i=1 wi+(υ−1)(1−σ)∑n

i=1 wi

)}
= ∪

σ∈g(hS)
{g−1(σ)} = {st} = hS.

Therefore, we have HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = hS. �

Remark 3. Note that the HFLHWA operator is not idempotent in general; the following example is provided to
demonstrate this case.

Example 2. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = hS2 = hS =

{s−1, s1} and w = (0.4, 0.6)T. Then HFLHWA3
w(hS1 , hS2) = {0.3333, 0.4804, 0.5480, 0.6667},

s(HFLHWA3
w(hS1 , hS2)) = 0.5071 and s(hS) = 0.5. Therefore, HFLHWA3

w(hS1 , hS2) > hS.

Monotonic 1. Let ha
S = {ha1

S , ha2
S , · · · , han

S } and hb
S = {hb1

S , hb2
S , · · · , hbn

S } be two any collection of HFLEs.
If for any sai

t ∈ hai
S and sbi

t ∈ hbi
S , and sai

t ≤ sbi
t for any i, then

HFLHWAυ
w(h

a1
S , ha2

S , · · · , han
S ) ≤ HFLHWAυ

w(h
b1
S , hb2

S , · · · , hbn
S ) (7)

Proof. Let f (x) = 1+(υ−1)x
1−x , x ∈ [0, 1) and υ > 0. Since f ′(x) = υ

(1−x)2 > 0, f (x) is

an increasing function.
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According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

sρi
t

)
=

t
2τ

+
1
2
= σρi , g

(
hρi

S

)
=

{
t

2τ
+

1
2
= σρi

∣∣∣∣t ∈ [−τ, τ]

}
= hρi

where i = 1, 2, · · · , n and ρ = a or ρ = b. Then for any sai
t ≤ sbi

t , we have σai ≤ σbi
, further,

f (σai ) ≤ f (σbi
).

Suppose wi(i = 1, 2, · · · , n) be the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the above condition, we can get

∪
σai∈g(h

ai
S )

{
g−1
(

∏n
i=1

( 1+(υ−1)σai
1−σai

)wi
)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1
(

∏n
i=1

(
1+(υ−1)σbi

1−σbi

)wi
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1
(

∏n
i=1

( 1+(υ−1)σai
1−σai

)wi
+ (υ− 1)

)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1
(

∏n
i=1

(
1+(υ−1)σbi

1−σbi

)wi

+ (υ− 1)
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1
(

1− υ∏n
i=1 (1−σai )

wi

∏n
i=1 (1+(υ−1)σai )

wi+(υ−1)∏n
i=1 (1−σai )

wi

)}

≤ ∪
σbi
∈g(h

bi
S )

{
g−1
(

1− υ∏n
i=1 (1−σbi

)wi

∏n
i=1 (1+(υ−1)σbi

)wi+(υ−1)∏n
i=1 (1−σbi

)wi

)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1
(

∏n
i=1 (1+(υ−1)σai )

wi−∏n
i=1 (1−σai )

wi

∏n
i=1 (1+(υ−1)σai )

wi+(υ−1)∏n
i=1 (1−σai )

wi

)}

≤ ∪
σbi
∈g(h

bi
S )

{
g−1
(

∏n
i=1 (1+(υ−1)σbi

)wi−∏n
i=1 (1−σbi

)wi

∏n
i=1 (1+(υ−1)σbi

)wi+(υ−1)∏n
i=1 (1−σbi

)wi

)}

Therefore, based on Theorem 1, we have HFLHWAυ
w
(
ha1

S , ha2
S , · · · , han

S
)

≤
HFLHWAυ

w

(
hb1

S , hb2
S , · · · , hbn

S

)
. �

Bounded 1. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, if h+S = {s+} = max

(
∪

si
t∈hSi

max{si
t}
)

and

h−S = {s−} =
(
∪

si
t∈hSi

min{si
t}
)

, then

h−S ≤ HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S (8)

Proof. According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

si
t

)
=

t
2τ

+
1
2
= σi, g

(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

where i = 1, 2, · · · , n. Then, s− ≤ si
t ≤ s+ for any i, we have σ− ≤ σi ≤ σ+.

Suppose wi(i = 1, 2, · · · , n) be the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the monotonic of HFLHWA, we can get

HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
= ∪

σi∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σi)

wi−∏n
i=1 (1−σi)

wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
≥ ∪

σ−∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σ−)wi−∏n

i=1 (1−σ−)wi

∏n
i=1 (1+(υ−1)σ−)wi+(υ−1)∏n

i=1 (1−σ−)wi

)}
= ∪

σ−∈g(hSi
)

{
g−1
(

(1+(υ−1)σ−)∑n
i=1 wi−(1−σ−)∑n

i=1 wi

(1+(υ−1)σ−)∑n
i=1 wi+(υ−1)(1−σ−)∑n

i=1 wi

)}
= ∪

σ−∈g(hSi
)
{g−1(σ−)} = h−S
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Similarly, HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S . Therefore, h−S ≤ HFLHWAυ

w
(
hS1 , hS2 , · · · , hSn

)
≤

h+S . �

Commutative 1. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, and (hS1 , hS2 , · · · , hSn) be any permutation of
(hS1 , hS2 , · · · , hSn), then

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = HFLHWAυ

w(hS1 , hS2 , · · · , hSn) (9)

Proof. Equation (9) clearly holds and the proof is omitted here. �

Lemma 1. [59]. Let yi > 0 (i = 1, 2, · · · , n) and wi be the weight of yi, satisfying wi ∈ [0, 1] and
∑n

i=1 wi = 1, then

∏n
i=1 (yi)

wi ≤∑n
i=1 (wiyi) (10)

with equality if and only if y1 = y2 = · · · = yn.

Theorem 2. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion functions
between HFLEs and HFEs, and υ > 0. Then

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) ≤ HFLWAw(hS1 , hS2 , · · · , hSn) (11)

Proof. For any si
t ∈ hSi , based on Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

Further, according to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

wi + (υ− 1)∏n
i=1 (1− σi)

wi ≤ ∑n
i=1 wi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 wi(1− σi) = υ

then,

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σi)

wi−∏n
i=1 (1−σi)

wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
= ∪

σi∈g(hSi
)

{
g−1
(

1− υ∏n
i=1 (1−σi)

wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
≤ ∪

σi∈g(hSi
)

{
g−1
(

1− υ∏n
i=1 (1−σi)

wi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(1−∏n

i=1 (1− σi)
wi
)}

= HFLWAw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (11) holds. �

Definition 9. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) be the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = (hS1)

w1 ⊗H (hS2)
w2 ⊗H · · · ⊗H (hSn)

wn =
n
⊗H
i=1

(hSi )
wi (12)

then HFLHWGυ
w is designated as the HFL Hamacher weighted geometric (HFLHWG) operator.

Theorem 3. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
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functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the HFLHWG operator is also
an HFLE, and

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

υ∏n
i=1 (σi)

wi

∏n
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏n
i=1 (σi)

wi

)}
(13)

Proof. According to the mathematical induction method, Equation (13) can be proved as follows.
For n = 1, the result of Equation (13) clearly holds. Suppose Equation (13) holds for n = k, namely

HFLHWGυ
w(hS1 , hS2 , · · · , hSk ) = ∪

σi∈g(hSi
)

{
g−1
(

υ∏k
i=1 (σi)

wi

∏k
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k
i=1 (σi)

wi

)}

Then, for n = k + 1, by Equation (12), we can get

HFLHWGυ
w(hS1 , hS2 , · · · , hSk , hSk+1) = (hS1)

w1 ⊗H (hS2)
w2 ⊗H · · · ⊗H (hSn)

wn ⊗H (hSk+1)
wk+1 =

n
⊗H
i=1

(hSi )
wi ⊗H (hSk+1)

wk+1

= ∪
σi∈g(hSi

)

{
g−1
(

υ∏k
i=1 (σi)

wi

∏k
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k
i=1 (σi)

wi

)}
⊗H ∪

σk+1∈g(hSk+1
)

{
g−1
(

υσ
wk+1
k+1

(1+(υ−1)(1−σk+1))
wk+1+(υ−1)σ

wk+1
k+1

)}

Let ∏k
i=1 (1 + (υ− 1)(1− σi))

wi = α1, ∏k
i=1 (σi)

wi = β1, (1 + (υ− 1)(1− σk+1))
wk+1 = α2 and

σ
wk+1
k+1 = β2, then

k
⊗H
i=1

(hSi )
wi = ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk∈g(hSk

)

{
g−1
(

υβ1
α1+(υ−1)β1

)}
and (hSk+1)

wk+1 = ∪
σk+1∈g(hSk+1

)

{
g−1
(

υβ2
α2+(υ−1)β2

)}

Further, the operational law (2) in Definition 5 yields

k
⊗H
i=1

(hSi )
wi ⊗H (hSk+1)

wk+1

= ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1
)

⎧⎨⎩g−1

⎛⎝ υ2β1β2
(α1+(υ−1)β1)(α2+(υ−1)β2)

υ+(1−υ)

(
υβ1(α2+(υ−1)β2)+υβ2(α1+(υ−1)β1)−υ2β1β2

(α1+(υ−1)β1)(α2+(υ−1)β2)

)
⎞⎠⎫⎬⎭

= ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1
)

{
g−1
(

υβ1β2
(α1+(υ−1)β1)(α2+(υ−1)β2)−(υ−1)(α2β1+α1β2+(υ−2)β1β2)

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1
(

υβ1β2
α1α2+(υ−1)β1β2

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1
(

υ∏k+1
i=1 (σi)

wi

∏k+1
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k+1
i=1 (σi)

wi

)}

That is, Equation (13) holds for n = k + 1. Therefore, Equation (13) holds for all n. �

Remark 4. When υ = 1, then the HFLHWG operator transforms into the following:

HFLWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(
∏n

i=1 (σi)
wi
)}

where HFLWGw is called the HFLWG operator [29]. When υ = 2, then the HFLHWG operator transforms into
the following:

HFLEWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

2∏n
i=1 (σi)

wi

∏n
i=1 (2− σi)

wi + ∏n
i=1 (σi)

wi

)}
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where HFLEWGw is called the HFL Einstein weighted geometric (HFLEWG) operator. Especially when wi =

1/n, then the HFLHWG operator is transformed into the hesitant fuzzy Hamacher geometric (HFLHG) operator.

HFLHGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
1
n

∏n
i=1 (1 + (υ− 1)(1− σi))

1
n + (υ− 1)∏n

i=1 (σi)
1
n

)}

Example 3. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and τ = 3. hS1 = {s−1, s1} and hS2 =

{s−2, s0} are two HFLEs, and w = (0.4, 0.6) is the weight of hS1 and hS2 , respectively. Then we can aggregate
them by employing the HFLHWG (υ = 3) operator.

HFLHWG3
w(hS1 , hS2) = ∪

σ1∈hS1
,σ2∈hS2

{
g−1
(

3∏2
i=1 (σi)

wi

∏2
i=1 (1+(3−1)(1−σi))

wi+(3−1)∏2
i=1 (σi)

wi

)}

= ∪
σ1∈g(hS1

),σ2∈g(hS2 )

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
3×( 1

3 )
0.4×( 1

6 )
0.6

(1+2× 2
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 1

3 )
0.4×( 1

6 )
0.6 , 3×( 1

3 )
0.4×( 1

2 )
0.6

(1+2× 2
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 1

3 )
0.4×( 1

2 )
0.6

3×( 2
3 )

0.4×( 1
6 )

0.6

(1+2× 1
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 2

3 )
0.4×( 1

6 )
0.6 , 3×( 2

3 )
0.4×( 1

2 )
0.6

(1+2× 1
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 2

3 )
0.4×( 1

2 )
0.6

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

= {g−1(0.2223, 0.3120, 0.4284, 0.5645)}
= {s−1.6662, s−1.1279, s−0.4299, s0.3870}

Idempotent 2. Let hSi (i = 1, 2, · · · , n) be equal with each hSi having only one value, namely, hSi = hS = {st}
for any i, then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = hS (14)

Proof. The proof of Equation (14) is similar to Equation (6) and is omitted here. �

Remark 5. Note that the HFLHWG operator is not idempotent when hSi includes more than one value;
the following example is provided to demonstrate this case.

Example 4. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = hS1 = hS =

{s−1, s1} and w = (0.4, 0.6)T . Then HFLHWG3
w(hS1 , hS2) = {0.3333, 0.4520, 0.5196, 0.6667},

s(HFLHWG3
w(hS1 , hS2)) = 0.4929, and s(hS) = 0.5. Therefore, HFLHWG3

w(hS1 , hS2) < hS.

Monotonic 2. Let ha
S = {ha1

S , ha2
S , · · · , han

S } and hb
S = {hb1

S , hb2
S , · · · , hbn

S } be two of any collection of HFLEs.
If for any sai

t ∈ hai
S and sbi

t ∈ hbi
S , and sai

t ≤ sbi
t for any i, then

HFLHWGυ
w(h

a1
S , ha2

S , · · · , han
S ) ≤ HFLHWGυ

w(h
b1
S , hb2

S , · · · , hbn
S ) (15)

Proof. Let f (x) = 1+(υ−1)(1−x)
x , x ∈ (0, 1] and υ > 0. Since f ′(x) = −υ

x2 < 0, hence f (x) is
a decreasing function.

According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

sρi
t

)
=

t
2τ

+
1
2
= σρi , g

(
hρi

S

)
= { t

2τ
+

1
2
= σρi

∣∣∣∣t ∈ [−τ, τ]} = hρi

where i = 1, 2, · · · , n and ρ = a or ρ = b. Then for any sai
t ≤ sbi

t , we have σai ≤ σbi
, further,

f (σai ) ≥ f (σbi
).
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Suppose wi(i = 1, 2, · · · , n) is the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the above condition, we have

∪
σai∈g(h

ai
S )

{
g−1
(

∏n
i=1

( 1+(υ−1)(1−σai )

σai

)wi
)}
≥ ∪

σbi
∈g(h

bi
S )

{
g−1
(

∏n
i=1

(
1+(υ−1)(1−σbi

)

σbi

)wi
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1
(

∏n
i=1

( 1+(υ−1)(1−σai )

σai

)wi
+ (υ− 1)

)}
≥ ∪

σbi
∈g(h

bi
S )

{
g−1
(

∏n
i=1

( 1+(υ−1)(1−σai )

σai

)wi
+ (υ− 1)

)}
⇒ ∪

σai∈g(h
ai
S )

{
g−1
(

υ∏n
i=1 (σai )

wi

∏n
i=1 (1+(υ−1)(1−σai ))

wi+(υ−1)∏n
i=1 (σai )

wi

)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1
(

υ∏n
i=1 (σbi

)wi

∏n
i=1 (1+(υ−1)(1−σbi

))wi+(υ−1)∏n
i=1 (σbi

)wi

)}

Therefore, based on Theorem 3, we have HFLHWGυ
w
(
ha1

S , ha2
S , · · · , han

S
)

≤
HFLHWGυ

w

(
hb1

S , hb2
S , · · · , hbn

S

)
. �

Bounded 2. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, if h+S = {s+} = max

(
∪

si
t∈hSi

max{si
t}
)

and

h−S = {s−} =
(
∪

si
t∈hSi

min{si
t}
)

, then

h−S ≤ HFLHWGυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S (16)

Proof. The proof of Equation (16) is similar to Equation (8) and is omitted here. �

Commutative 2. Let hSi (i = 1, 2, · · · , n) be a collection of HFLEs, and (hS1 , hS2 , · · · , hSn) be any permutation
of (hS1 , hS2 , · · · , hSn), then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = HFLHWGυ

w(hS1 , hS2 , · · · , hSn) (17)

Proof. Equation (17) clearly holds and the proof of Equation (17) is omitted here. �

Theorem 4. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion functions
between HFLEs and HFEs, and υ > 0. Then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) ≥ HFLWGw(hS1 , hS2 , · · · , hSn) (18)

Proof. For any si
t ∈ hSi , based on Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

Further, according to Equation (10), we have

∏n
i=1 (1 + (υ− 1)(1− σi))

wi + (υ− 1)∏n
i=1 (σi)

wi ≤ ∑n
i=1 wi(1 + (υ− 1)(1− σi)) + (υ− 1)∑n

i=1 wi(σi) = υ

then
HFLHWGυ

w(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

υ∏n
i=1 (σi)

wi

∏n
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏n
i=1 (σi)

wi

)}
≥ ∪

σi∈g(hSi
)

{
g−1
(

υ∏n
i=1 (σi)

wi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(∏n

i=1 (σi)
wi
)}

= HFLWGw(hS1 , hS2 , · · · , hSn)
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Therefore, Equation (18) holds. �

3.2. GHFLHWA and GHFLHWG Operators

Definition 10. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs, υ > 0 and λ > 0. wi(i = 1, 2, · · · , n)
is the weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

GHFLHWAυ,λ
w (hS1 , hS2 , · · · , hSn) = w1(hλ

S1
)⊕H w2(hλ

S2
)⊕H · · · ⊕H wn(hλ

Sn
) =

(
n
⊕H
i=1

(
wi(hλ

Si
)
)) 1

λ

(19)

then GHFLHWAυ,λ
w is designated as the generalized HFL Hamacher weighted averaging (GHFLHWA) operator.

Theorem 5. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the GHFLHWA operator is also
an HFLE and

GHFLHWAυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
⎛⎜⎝ ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

wi
+(υ−1)∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi

⎞⎟⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

(20)

Proof. According to the mathematical induction method, the proof of Equation (20) is similar to that of
Theorem 1 and is omitted here. �

Remark 6. When λ = 1, the GHFLHWA operator is reduced to the HFLHWA operator; when λ→ 0 ,
GHFLHWA operator is reduced to the HFLHWG operator.

When υ = 1, the GHFLHWA operator is reduced to the following:

GHFLWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
((

1−∏n
i=1 (1− σλ

i )
wi
) 1

λ

)}

where GHFLWAλ
w is called the generalized HFL weighted averaging (GHFLWA) operator. Particularly, when

λ = 1, the GHFLHWA operator is further transformed into the HFLWA operator; when λ→ 0 , the GHFLHWA
operator is further transformed into the HFLWG operator.

When υ = 2, the GHFLHWA operator is transformed into the following:

GHFLEWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
⎛⎜⎝∏n

i=1 (1+
2σλ

i
(2−σi)

λ+σλ
i
)

wi
−∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

wi

∏n
i=1 (1+

2σλ
i

(2−σi)
λ+σλ

i
)

wi
+∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

wi

⎞⎟⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

where GHFLEWAλ
w is designated as the generalized HFL Einstein weighted averaging (GHFLEWA) operator.

Particularly, when λ = 1, the GHFLHWA operator is further transformed into the HFLEWA operator; when
λ→ 0 , GHFLHWA is further transformed into the HFLEWG operator.

Definition 11. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

GHFLHWGυ,λ
w (hS1 , hS2 , · · · , hSn) =

1
λ (λhS1)

w1 ⊗H (λhS2)
w2 ⊗H · · · ⊗H (λhSn)

wn = 1
λ

(
n
⊗H
i=1

(λhSi )
wi

)
(21)
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then GHFLHWGυ,λ
w is designated as the generalized HFL Hamacher weighted geometric (GHFLHWG) operator.

Theorem 6. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the GHFLHWG operator is also
an HFLE, and

GHFLHWGυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝1−

⎛⎝1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi

⎞⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

(22)

Proof. According to mathematical induction method, the proof of Equation (21) is similar to that of
Theorem 3 and is omitted here. �

Remark 7. When λ = 1, the GHFLHWG operator is transformed into the HFLHWG operator; when λ→ 0 ;
the GHFLHWG operator is transformed into the HFLHWA operator.

When υ = 1, GHFLHWG operator is transformed into the following:

GHFLWGλ
w = ∪

σi∈g(hSi
)

{
g−1
(

1−
(

1−∏n
i=1 (1− (1− σi)

λ)
wi
) 1

λ

)}

where GHFLWGλ
w is designated as the generalized HFL weighted geometric (GHFLWG) operator. Particularly,

when λ = 1, the GHFLHWG operator is further transformed into the HFLWG operator; when λ→ 0 ,
GHFLHWG operator is further transformed into the HFLWA operator.

When υ = 2, the GHFLHWG operator is transformed into the following:

GHFLEWGλ
w = ∪

σi∈g(hSi
)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝1−

⎛⎝1−
2∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
wi

∏n
i=1 (2−

(1+σi)
λ−(1−σi)

λ

(1+σi)
λ+(1−σi)

λ )
wi
+∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
wi

⎞⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

where GHFLWGλ
w is designated as the generalized HFL Einstein weighted geometric (GHFLEWG) operator.

Particularly, when λ = 1, the GHFLHWG operator is transformed into the HFLEWG operator; when λ→ 0 ,
GHFLHWG operator is reduced to the HFLEWA operator.

4. Hesitant Fuzzy Linguistic Hamacher Power Aggregation Operators

This section defines an HFL Hamacher power weighted averaging (HFLHPWA) operator, an HFL
Hamacher power weighted geometric (HFLHPWG) operator, a generalized HFL Hamacher power
weighted averaging (GHFLHPWA) operator, and a generalized HFL Hamacher power weighted
geometric (GHFLHPWG) operator. In addition, we discuss some special cases withthese operators.

4.1. The HFLHPWA and HFLHPWG Operators

Definition 12. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the hesitant fuzzy linguistic Hamacher
power weighted averaging (HFLHPWA) operator is defined as follows:

HFLHPWAw(hS1 , hS2 , · · · , hSn) =
n
⊕

i=1

(
wi(1 + T(hSi ))hSi /∑n

i=1 wi(1 + T(hSi ))
)

(23)
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where T(hSi ) = ∑n
i=1,j 	=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the following three properties.

(1) 0 ≤ Sup(hSi , hSj) ≤ 1;

(2) Sup(hSi , hSj) = Sup(hSj , hSi );

(3) Sup(hSi , hSj) ≥ Sup(hSx , hSy), if d(hSi , hSj) ≤ d(hSx , hSy).

Theorem 7. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the HFLHPWA
operator is also an HFLE, and

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σi)

pi−∏n
i=1 (1−σi)

pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
(24)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to mathematical induction method, the proof of Equation (24) is similar to Theorem
1 and is omitted here. �

Remark 8. If Sup(hSi , hSj) = c, for all i 	= j, then HFLHPWA operator is transformed into the following:

HFLHAυ(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (1 + (υ− 1)σi)
1
n −∏n

i=1 (1− σi)
1
n

∏n
i=1 (1 + (υ− 1)σi)

1
n + (υ− 1)∏n

i=1 (1− σi)
1
n

)}

where HFLHAυ is called the HFLHA operator.
When υ = 1, then the HFLHPWA operator is transformed into the following:

HFLPWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

1−∏n
i=1 (1− σi)

pi
)}

where HFLPWAw is called the HFL power weighted averaging (HFLPWA) operator.
When υ = 2, then the HFLHPWA operator is transformed into the following:

HFLEPWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

∏n
i=1 (1 + σi)

pi −∏n
i=1 (1− σi)

pi

∏n
i=1 (1 + σi)

pi + ∏n
i=1 (1− σi)

pi

)}
where HFLEPWAw is designated as the HFL Einstein power weighted averaging (HFLEPWA) operator.

Remark 9. The HFLHPWA operator is neither idempotent, monotonic, bounded, nor commutative with regard
to the input arguments, which are shown in Example 5.

Example 5. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = {s1, s2}, hS2 = {s0, s3},
hS3 = {s0, s2}, and hS4 = {s0, s1} be four HFLEs. Let w = (0.3, 0.5, 0.2)T and υ = 3.

Based on Definition 3, according to Equation (2), we have s(hS1) = s(hS2) = 0.75, s(hS3) = 0.6667
and s(hS4) = 0.5833. Then, by employing HFLHPWA operator yields

s(HFLHPWA3(hS1 , hS1 , hS1)) = 0.7572

s(HFLHPWA3(hS1 , hS3 , hS4)) = 0.6903

s(HFLHPWA3(hS1 , hS4 , hS3)) = 0.6657
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s(HFLHPWA3(hS1 , hS1 , hS3)) = 0.7452

s(HFLHPWA3(hS2 , hS2 , hS4)) = 0.8793

Since s(HFLHPWA3(hS1 , hS1 , hS1)) 	= s(hS1), the HFLHPWA operator is not idempotent.
It is obvious that s(HFLHPWA3(hS2 , hS2 , hS4)) > s(HFLHPWA3(hS1 , hS1 , hS3)), therefore,

the HFLHPWA operator is not monotonic. On the other hand, since s(HFLHPWA3(hS2 , hS2 , hS4)) >

s(hS2) > s(hS4), the HFLHPWA operator is not bounded.
Furthermore, s(HFLHPWA3(hS1 , hS3 , hS4)) 	= s(HFLHPWA3(hS1 , hS4 , hS3)), the HFLHPWA

operator is not commutative.

Theorem 8. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs, and υ > 0. Then

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) ≤ HFLPWAw(hS1 , hS2 , · · · , hSn) (25)

Proof. According to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

pi + (υ− 1)∏n
i=1 (1− σi)

pi ≤ ∑n
i=1 pi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 pi(1− σi) = υ

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

∏n
i=1 (1+(υ−1)σi)

pi−∏n
i=1 (1−σi)

pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
= ∪

σi∈g(hSi
)

{
g−1
(

1− υ∏n
i=1 (1−σi)

pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
≤= ∪

σi∈g(hSi
)

{
g−1
(

1− υ∏n
i=1 (1−σi)

pi

υ

)}
= ∪

σi∈g(hSi
)
{g−1(1−∏n

i=1 (1− σi)
pi
)
} = HFLPWAw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (25) holds. �

Definition 13. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs, and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the HFL Hamacher power weighted
geometric (HFLHPWG) operator is defined as follows:

HFLHPWGw(hS1 , hS2 , · · · , hSn) =
n
⊗

i=1
(hSi )

wi(1+T(hSi
))/∑n

i=1 wi(1+T(hSi
)) (26)

where T(hSi ) = ∑n
i=1,j 	=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

is also satisfy the three properties in Definition 12.

Theorem 9. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the
HFLHPWG operator is also an HFLE, and

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈hSi

{
g−1
(

υ∏n
i=1 (σi)

pi

∏n
i=1 (1+(υ−1)(1−σi))

pi+(υ−1)∏n
i=1 (σi)

pi

)}
(27)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to mathematical induction method, the proof of Equation (27) is similar to Theorem 3
and is omitted here. �
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Remark 10. If Sup(hSi , hSj) = c, for all i 	= j, then the HFLHPWG operator is transformed into the following:

HFLHGυ(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
υ∏n

i=1 (σi)
1
n

∏n
i=1 (1+(υ−1)(1−σi))

1
n +(υ−1)∏n

i=1 (σi)
1
n

)}

where HFLHGυ is called the HFL Hamacher geometric (HFLHG) operator.
When υ = 1, then the HFLHPWG operator is transformed into the following:

HFLPWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(
∏n

i=1 (σi)
pi
)}

where HFLPWGw is called the HFL power weighted geometric (HFLPWG) operator.
When υ = 2, then the HFLHPWG operator is transformed into the following:

HFLEPWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1
(

2∏n
i=1 (σi)

pi

∏n
i=1 (2− σi)

pi + ∏n
i=1 (σi)

pi

)}
where HFLEPWGw is designated as the HFL Einstein power geometric (HFLEPWG) operator.

Remark 11. Similar to the HFLHPWA operator, the HFLHPWG operator is neither idempotent, monotonic,
bounded, nor commutative with regard to the input arguments.

Theorem 10. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs, and υ > 0. Then

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) ≥ HFLPWGw(hS1 , hS2 , · · · , hSn) (28)

Proof. According to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

pi + (υ− 1)∏n
i=1 (1− σi)

pi ≤ ∑n
i=1 pi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 pi(1− σi) = υ

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

υ∏n
i=1 (σi)

pi

∏n
i=1 (1+(υ−1)(1−σi))

pi+(υ−1)∏n
i=1 (σi)

pi

)}
≥ ∪

σi∈g(hSi
)

{
g−1
(

υ∏n
i=1 (σi)

pi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(∏n

i=1 (σi)
pi
)}

= HFLPWGw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (28) holds. �

4.2. The GHFLHPWA and GHFLHPWG Operators

Definition 14. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the generalized hesitant fuzzy linguistic
Hamacher power weighted averaging (GHFLHPWA) operator is defined as follows:

GHFLHPWAλ
w(hS1 , hS2 , · · · , hSn) =

(
n
⊕

i=1

((
wi(1 + T(hSi ))(hSi )

λ
)

/∑n
i=1 wi(1 + T(hSi ))

)) 1
λ

(29)

where T(hSi ) = ∑n
i=1,j 	=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the three properties in Definition 12.
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Theorem 11. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the
GHFLHPWA operator is also an HFLE, and

GHFLHPWAυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
⎛⎜⎝ ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

pi
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

pi

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

pi
+(υ−1)∏n

i=1 (1− υσλ

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

pi

⎞⎟⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

(30)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to the mathematical induction method, the proof of Equation (30) is similar to
Theorem 1 and is omitted here. �

Remark 12. Sup(hSi , hSj) = c, for all i 	= j, then GHFLHPWA operator is transformed into the following:

GHFLHAυ,λ(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩g−1

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝ ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

1
n
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

1
n

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

1
n

+(υ−1)∏n
i=1 (1− υσλ

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

1
n

⎞⎟⎟⎟⎠
1
λ
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

where GHFLHAυ,λ is designated as the generalized HFL Hamacher averaging (GHFLHA) operator.
When υ = 1, then the GHFLHPWA operator is transformed into the following:

GHFLPWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
((

1−∏n
i=1 (1− σλ

i )
pi
) 1

λ

)}

where GHFLPWAλ
w is designated as the generalized HFL power weighted averaging (GHFLPWA) operator.

Particularly, when λ = 1, the GHFLHPWA operator is further transformed into the HFLPWA operator; when
λ→ 0 , GHFLHPWA operator is further transformed into the HFLPWG operator.

When υ = 2, then GHFLHPWA operator is transformed to the following:

GHFLEPWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝
⎛⎜⎝∏n

i=1 (1+
2σλ

i
(2−σi)

λ+σλ
i
)

pi
−∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

pi

∏n
i=1 (1+

2σλ
i

(2−σi)
λ+σλ

i
)

pi
+∏n

i=1 (1− 2σλ

(2−σi)
λ+σλ

i
)

pi

⎞⎟⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

where GHFLEPWAλ
w is designated as the generalized HFL Einstein power weighted averaging (GHFLEPWA)

operator. Particularly, when λ = 1, the GHFLHPWA operator is further transformed into the HFLEPWA
operator; when λ→ 0 , GHFLHPWA operator is further transformed into the HFLEPWG operator.

Remark 13. Similar to the HFLHPWA operator, the GHFLHPWA operator is neither idempotent,
monotonic, bounded, nor commutative with regard to the input arguments.

Definition 15. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the generalized hesitant fuzzy linguistic
Hamacher power weighted geometric (GHFLHPWG) operator is defined as follows:

GHFLHPWGλ
w(hS1 , hS2 , · · · , hSn) =

1
λ

(
n
⊗

i=1
(λhSi )

wi(1+T(hSi
))/∑n

i=1 wi(1+T(hSi
))
)

(31)
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where T(hSi ) = ∑n
i=1,j 	=i Sup(hSi , hSj), and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the three properties in Definition 12.

Theorem 12. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the GHFLHPWG
operator is also an HFLE, and

GHFLHPWGυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝1−

⎛⎝1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi

⎞⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

(32)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to the mathematical induction method, the proof of Equation (32) is similar to
Theorem 3 and is omitted here. �

Remark 14. Sup(hSi , hSj) = c, for all i 	= j, then the GHFLHPWG operator is transformed into the following:

GHFLHGυ,λ(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎪⎨⎪⎪⎪⎩g−1

⎛⎜⎜⎜⎝1−

⎛⎜⎜⎝1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n

⎞⎟⎟⎠
1
λ

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where GHFLHGυ,λ is designated as the generalized HFL Hamacher geometric (GHFLHG) operator.
When υ = 1, then the GHFLHPWG operator is transformed into the following:

GHFLPWGλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1
(

1−
(

1−∏n
i=1 (1− (1− σi)

λ)
pi
) 1

λ

)}

where GHFLPWGλ
w is designated as the generalized HFL power weighted geometric (GHFLPWG) operator.

Particularly, when λ = 1, the GHFLHPWG operator is further transformed into the HFLPWG operator; when
λ→ 0 , the GHFLHPWG operator is further transformed into the HFLPWA operator.

When υ = 2, then the GHFLHPWG operator is transformed into the following:

GHFLEPWGλ
w(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

⎧⎪⎪⎨⎪⎪⎩g−1

⎛⎜⎜⎝1−

⎛⎝1−
2∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
pi

∏n
i=1 (2−

(1+σi)
λ−(1−σi)

λ

(1+σi)
λ+(1−σi)

λ )
pi
+(υ−1)∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
pi

⎞⎠
1
λ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

where GHFLEPWGλ
w is designated as the generalized HFL Einstein power weighted geometric (GHFLEPWG)

operator. Particularly, when λ = 1, the GHFLHPWG operator is further transformed into the HFLEPWG
operator; when λ→ 0 , the GHFLHPWG operator is further transformed into the HFLPWA operator.

Remark 15. Similar to the HFLHPWA operator, the GHFLHPWG operator is neither idempotent, monotonic,
bounded, nor commutative with regard to the input arguments.

5. Methods for MCDM Based on the Hesitant Fuzzy Linguistic Hamacher Operators

In this part, we develop two methods based on the presented operators to handle an MCDM
problem with hesitant fuzzy linguistic information.
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A general MCDM problem under the hesitant fuzzy linguistic environment can be depicted
as follows.

Let A = {A1, A2, · · · , Am} be the set of m candidates alternatives, and C = {C1, C2, · · · , Cn}
be the set of n evaluation criteria, which have the weight vector w = (w1, w2, · · · , wn)

T satisfying
wj ∈ [0, 1] and ∑n

j=1 wj = 1. Suppose that ĤS = (ĥSij)m×n
be the hesitant fuzzy linguistic evaluation

matrix, where ĥSij is an HFLE and expresses the evaluation value of alternative Ai with respect to the
criterion Cj.

Generally, there are two types of criteria, the benefit criterion and cost criterion, in an MCDM
problem. When all the criteria are not of the same types, the values of the cost criterion need
to be transformed into the values of the benefit criterion to construct a decision-making matrix
HS = (hSij)m×n

by employing Equation (33).

hSij = {
ĥSij , for benefit criterion

(ĥSij)
C

, for cost criterion
,(i = 1, 2, · · · , m; j = 1, 2, · · · , n) (33)

In order to yield the best alternative, the GHFLHWA operator or the GHFLHWG operator, which
was developed based on the Hamacher operations, is utilized for the proposed MCDM approach
under the hesitant fuzzy linguistic environment. The proposed method includes the following steps.

Method 1. (The flowchart of Method 1 is shown in Figure 1.)

Step 1. Determine the linguistic term set that is applied to evaluate each alternative with respect to
each criterion; then the hesitant fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is obtained.

Step 2. Normalized the evaluation matrix ĤS = (ĥSij)m×n
according to Equation (33).

Step 3. Aggregate the criteria values by the GHFLHWA or GHFLHWG operator as follow:

hSi = GHFLHWA(hSi1 , hSi2 , · · · , hSin) or hSi = GHFLHWG(hSi1 , hSi2 , · · · , hSin) (34)

Step 4. Compute the score value of each alternative by Equation (2).
Step 5. Obtained the ranking order of alternatives by the decreasing of the score value.

To reflect the correlation between the input arguments in MCDM problem, we use the
GHFLHPWA or GHFLHPWG operator for the proposed MCDM approach. The steps involved
are depicted as follows.

Method 2. (The flowchart of Method 2 is shown in Figure 1.)

Step 1. Determine the linguistic term set that is applied to evaluate each alternative with respect to
each criterion; then the hesitant fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is obtained.

Step 2. Normalize the evaluation matrix ĤS = (ĥSij)m×n
according to Equation (33).

Step 3. Calculate the support degree of hSi using the following formula.

T(hSij) = ∑n
j=1,k 	=j Sup(hSij , hSik ) (35)

Sup(hSij , hSik ) = 1− d(hSij , hSik ) (36)

Step 4. Obtained the power weight vector p by the following formula.

pij = wj(1 + T(hSij))/∑n
j=1 wj(1 + T(hSij)) (37)
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Step 5. Aggregate the criteria values by the GHFLHPWA or GHFLHPWG operators.

hSi = GHFLHPWA(hSi1 , hSi2 , · · · , hSin) or hSi = GHFLHPWG(hSi1 , hSi2 , · · · , hSin) (38)

Step 6. Compute the score value of each alternative by Equation (2).
Step 7. Determined the priority order of alternatives by the decreasing of score value.
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Figure 1. The flowcharts of the Method 1 and Method 2.

6. An Application of the Proposed Operators to MCDM

6.1. Numeric Example

A board of directors of a venture capital company is planning to choose a suitable city to invest
in a project of sharing cars in the next three years. The venture capital company determined four
alternative cities Ai(i = 1, 2, 3, 4) through preliminary market research. In order to evaluate and
rank these cities, four criteria (all of them are benefit criteria) are identified by the board of directors
including the economic development level (C1), the public transportation development level (C2),
the number of public parking lots (C3), and the urban road resources (C4). Assume that the weight
vector of these criteria is w = (0.3, 0.1, 0.4, 0.2)T.
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In what follows, we employ Method 1 to determine the most suitable city without considering
the correlations of the input arguments.

Step 1. The board of directors constructs a nine-point linguistic term set to evaluate the ratings
of cities, that is, S = {s−4 = worst, s−3 = very bad, s−2 = bad, s−1 = slightly bad, s0 =

medium, s1 = slightly good, s2 = good, s3 = very good, s4 = best}. Then the decision
makers utilize the linguistic term to evaluate the ratings of the cities and the obtained hesitant
fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is presented in Table 1.

Step 2. Since these criteria are all benefit criterions, the evaluate matrix ĤS = (ĥSij)m×n
is not

necessary to be normalized.
Step 3. Let λ = 2 and υ = 3, aggregate all of the criteria evaluation values according to

the GHFLHWA operator into the total evaluation value hSi (i = 1, 2, 3, 4) of alternative
Ai(i = 1, 2, 3, 4).

Step 4. Calculate the score values s(hSi ) of hSi by Definition 6.The obtained results are as follows:

s(hS1) = 0.5080, s(hS2) = 0.6534, s(hS3) = 0.5685, s(hS4) = 0.7340

Step 5. Based on the decreasing order of score values, we have hS4 > hS2 > hS3 > hS1 . Therefore,
the best city is A4.

Table 1. The hesitant fuzzy linguistic evaluation matrix.

Cities C1 C2 C3 C4

A1 {s0, s1} {s0} {s1, s2} {s−2, s−1}
A2 {s1, s2} {s2, s3} {s2} {s−1, s1}
A3 {s1} {s0, s1} {s1, s2} {s0, s1}
A4 {s2, s3} {s0, s2} {s1, s3} {s2}

The parameter υ in the GHFLHWA operator indicates the experts’ preference over the alternative
with respect to each criterion. In order to explore how the different preference parameter υ in the
GHFLHWA operator influences the score values of the alternatives, we utilized different values of
υ ∈ (0, 10], which are commonly determined by decision makers. The relative results are shown in
Figure 2. It is easy to observe from Figure 2 that the score values of the alternatives become smaller
with the increasing values of parameter υ. In addition, for the GHFLHWA operator, we can also
ascertain from Figure 2 that the final ranking of alternatives for the different parameter υ values does
not change. Therefore, the value of parameter υ can be chosen by the decision maker according to
their preference.

If we use the GHFLHWG operator instead of the GHFLHWA operator to aggregate the criteria
values, the variation of score values of the alternatives is shown in Figure 3. From Figure 3, for the
GHFLHWG operator, we can see that the score values of the alternatives become greater with the
increase of parameter υ, which is just the opposite of the GHFLHWA operator. Furthermore, the priority
order of alternatives is also not influenced by the different values of parameter υ.
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Figure 2. The variation of score values of alternatives with regard to υ in the GHFLHWA operator.

Figure 3. The variation of score values of alternatives with regard to υ in the GHFLHWG operator.

When the relationships of the input data are taken into account, we apply Method 2 to resolve the
above numerical example.

The first two steps are the same as Method 1.

Step 3. Compute the support degree Sup(hSj , hSk )(j = 1, 2, 3, 4; j 	= k).

Sup1j =

⎡⎢⎢⎢⎣
0 0.9116 0.8750 0.7500

0.9116 0 0.8024 0.8024
0.8750 0.8024 0 0.6250
0.7500 0.8024 0.6250 0

⎤⎥⎥⎥⎦, Sup2j =

⎡⎢⎢⎢⎣
0 0.8750 0.9116 0.8024

0.8750 0 0.9116 0.6813
0.9116 0.9116 0 0.7205
0.8024 0.6813 0.7205 0

⎤⎥⎥⎥⎦

Sup3j =

⎡⎢⎢⎢⎣
0 0.9116 0.9116 0.9116

0.9116 0 0.8750 1
0.9116 0.8750 0 0.8750
0.9116 1 0.8750 0

,

⎤⎥⎥⎥⎦ Sup4j =

⎡⎢⎢⎢⎣
0 0.8024 0.9116 0.9116

0.8024 0 0.8750 0.8232
0.9116 0.8750 0 0.8750
0.9116 0.8232 0.8750 0

⎤⎥⎥⎥⎦
then

T =

⎡⎢⎢⎢⎣
2.5366 2.5163 2.3024 2.1774
2.5890 2.4679 2.5437 2.2042
2.7348 2.7866 2.6616 2.7866
2.6256 2.5006 2.6616 2.6908

⎤⎥⎥⎥⎦
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Step 4. Calculate the power weight matrix.

P =

⎡⎢⎢⎢⎣
0.3149 0.1044 0.3921 0.1886
0.3092 0.0996 0.4071 0.1841
0.3011 0.1018 0.3936 0.2035
0.3001 0.0966 0.4041 0.1992

⎤⎥⎥⎥⎦
Step 5. Let λ = 2 and υ = 3, aggregate all of the criteria values into the total evaluation value

hSi (i = 1, 2, 3, 4) of alternative Ai(i = 1, 2, 3, 4) by the GHFLHPWA operator.
Step 6. Calculate the score values s(hSi ) of hSi by Definition 6; the obtained results are as follows:

s(hS1) = 0.5085, s(hS2) = 0.6563, s(hS3) = 0.5677, s(hS4) = 0.7344.
Step 7. Based on the decreasing order of score values, we have hS4 > hS2 > hS3 > hS1 . Therefore, the

best city is A4.

When λ = 2, let υ = 0.1, 0.7, 2, 5, 9, respectively. From one hand, the score values and priority
orders of all alternatives determined by the GHFLHPWA operator are shown in Table 2. When the
value of parameter υ becomes greater, we can obtain a smaller score value of the alternative. We can
also see that the ranking order of alternatives is not affected by the different values of parameter υ.

Table 2. The score values and rankings of alternatives obtained by the GHFLHPWA operator.

GHFLHPWA A1 A2 A3 A4 Ranking

GHFLHPWA0.1
w 0.6464 0.7480 0.6832 0.8034 A4 > A2 > A3 > A1

GHFLHPWA0.7
w 0.6066 0.7231 0.6529 0.7843 A4 > A2 > A3 > A1

GHFLHPWA2
w 0.5441 0.6816 0.6005 0.7542 A4 > A2 > A3 > A1

GHFLHPWA5
w 0.4550 0.6118 0.5173 0.7016 A4 > A2 > A3 > A1

GHFLHPWA9
w 0.3856 0.5467 0.4470 0.6493 A4 > A2 > A3 > A1

On the other hand, if the GHFLHPWG operator is employed to replace the GHFLHPWA operator
in the above calculation, Table 3 gives the score values and the final ranking of the alternatives.
In Table 3, we can observe that the score values of alternatives become greater when the value of
parameter υ increases. In addition, the priority order of alternatives does not change when the
value of parameter υ changes. Hence, the ranking order of alternatives is robust for the parameters
υ = 0.1, 0.7, 2, 5, 9 in this example.

Table 3. The score values and rankings of alternatives obtained by the GHFLHPWG operator.

GHFLHPWG A1 A2 A3 A4 Ranking

GHFLHPWG0.1
w 0.4409 0.5693 0.5328 0.6400 A4 > A2 > A3 > A1

GHFLHPWG0.7
w 0.4969 0.6400 0.5985 0.7143 A4 > A2 > A3 > A1

GHFLHPWG2
w 0.5727 0.7162 0.6779 0.7836 A4 > A2 > A3 > A1

GHFLHPWG5
w 0.6638 0.7909 0.7608 0.8454 A4 > A2 > A3 > A1

GHFLHPWG9
w 0.7253 0.8347 0.8107 0.8796 A4 > A2 > A3 > A1

Based on the above analysis, we can conclude that the priority order of alternatives obtained by
the GHFLHWA and GHFLHWG operators are the same as that obtained by the GHFLHPWA and
GHFLHPWG operators, that is, the ranking order of alternatives is A4 > A2 > A3 > A1. Further,
the results also indicate that the correlations between the input arguments are not enough to affect the
ranking order of alternatives in this example.
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6.2. Comparison with Existing Methods of Hesitant Fuzzy Linguistic MCDM

In this section, we use the proposed methods comparison with the previously developed HFL
MCDM approaches. The previous methods include the proposed approach with Zhang and Wu [24],
where the HFL weighted averaging and HFL weighted geometric operators were employed to
aggregate the HFL evaluation information, and the HFL TOPSIS method [22].

The linguistic term set in these two methods is subscript-asymmetric, however, the linguistic term
set used in this paper is subscript-symmetric. Therefore, we need to transform the evaluation matrix
into another form for the use of these two approaches. The transformed HFL evaluation matrix is
shown in Table 4.

Table 4. The transformed hesitant fuzzy linguistic evaluation matrix.

Cities C1 C2 C3 C4

A1 {s4, s5} {s4} {s5, s6} {s2, s3}
A2 {s5, s6} {s6, s7} {s6} {s3, s5}
A3 {s5} {s4, s5} {s5, s6} {s4, s5}
A4 {s6, s7} {s4, s6} {s5, s7} {s6}

In the following, we utilize the HFLWA operator [24] instead of the GHFLHWA operator in
Method 1 based on the operational laws in Definition 4 to solve the numerical example. That is

hSi = HFLWA(hSi1 , hSi2 , hSi3 , hSi4) =
4
⊕

j=1
(wjhSij) = ∪

σij∈g(hSij
)

{
g−1

(
1−

4

∏
j=1

(1− σij)
wj

)}

then, we can obtain the score values of the alternatives as follows:

s(hS1) = 0.5790, s(hS2) = 0.7060, s(hS3) = 0.6376, s(hS4) = 0.7731

In this situation, the priority order of alternatives is A4 > A2 > A3 > A1, and the best city is A4.
If we use the HFLWG operator [24] instead of the GHFLHWA operator in Method 1, we get

hSi = HFLWG(hSi1 , hSi2 , hSi3 , hSi4) =
4
⊗

j=1
(hSij)

wj = ∪
σij∈g(hSij

)

{
g−1

(
n

∏
j=1

(σij)
wj

)}

Then, we can obtain the score values of the alternatives as follows:

s(hS1) = 0.5326, s(hS2) = 0.6749, s(hS3) = 0.6275, s(hS4) = 0.7094

In this situation, the priority order of alternatives is A4 > A2 > A3 > A1, and the best city is A4.
Based on the above analyses, we can see that the best city and the ranking order of alternatives

obtained by the HFLWA and HFLWG operators are the same for Methods 1 and 2, which illustrate
the validity of Methods 1 and 2. In addition, we should note that the GHFLHWA and GHFLHWG
operators reduce to the HFLWA and HFLWG operator, respectively, when λ = 1 and υ = 1. It indicates
that the method based on the GHFLHWA or GHFLHWG operators is more general and flexible than
the HFLWA or HFLWG operators.

In the following, we apply the HFL TOPSIS method [22] to solve the numerical example. First,
we review the HFL TOPSIS approach as follows:

Step 1. For an MCDM problem with HFL information, let X = {x1, x2, · · · , xm} be a collection
of m alternatives and C = {c1, c2, · · · , cn} be a collection of n criteria with weight vector
w = (w1, w2, · · · , wn)

T satisfying wj ∈ [0, 1] and ∑n
j=1 wj = 1. Suppose R = (hSij)m×n

is
an HFL evaluation matrix provided by the decision makers, where hSij is an HFLE.
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Step 2. Based on the evaluation matrix R, an HFL positive ideal solution (HFLPIS) and an HFL
negative ideal solution (HFLNIS) can be determined by

H+
S = (h+S1

, h+S2
, · · · , h+Sn

) (39)

where h+Sj
= hS1j ∨ hS2j ∨ · · · ∨ hSmj if cj is a benefit criterion and h+Sj

= hS1j ∧ hS2j ∧ · · · ∧ hSmj

if cj is a cost criterion.
H−S = (h−S1

, h−S2
, · · · , h−Sn

) (40)

where h−Sj
= hS1j ∧ hS2j ∧ · · · ∧ hSmj if cj is a benefit criterion and h−Sj

= hS1j ∨ hS2j ∨ · · · ∨ hSmj

if cj is a cost criterion. Where ∨ and ∧ are defined by Definition 3 [22].

Step 3. The distance from each alternative to HFLPIS and HFLNIS are calculated as follows:

d+i = ∑n
j=1 wjd(hSij , h+Sj

) (41)

d−i = ∑n
j=1 wjd(hSij , h−Sj

) (42)

where d(hSij , h+Sj
) and d(hSij , h−Sj

) are determined by Definition 7.

Step 4. The closeness coefficients di of alternatives xi can be calculated by

cci =
d−i

d+i + d−i
(43)

Step 5. Determine the priority orders of all alternatives in the light of the decrease of the closeness
coefficient di.

In what follows, we utilize the HFL TOPSIS approach to resolve the numerical example.
The detailed steps are described as follows:

Step 1. The hesitant fuzzy linguistic evaluation matrix R is shown in Table 4.
Step 2. Based on the hesitant fuzzy linguistic evaluation matrix R, the HFLPIS and the HFLNIS are

determined as
H+

S = ({s6, s7}, {s6, s7}, {s6, s7}, {s6})

H−S = ({s4, s5}, {s4}, {s5, s6}, {s2, s3})

Step 3. The distance from each alternative to HFLPIS and HFLNIS are obtained as

d+1 = 0.2453, d+2 = 0.1288, d+3 = 0.1738, d+4 = 0.0551

d−1 = 0.0000, d−2 = 0.1443, d−3 = 0.0854, d−4 = 0.2164

Step 4. Employ Equation (43) to compute the closeness coefficient of alternative xi.

cc1 = 0.0000, cc2 = 0.5284, cc3 = 0.3293, cc4 = 0.7970

Step 5. The final priority order of all alternatives obtained as follows: A4 > A2 > A3 > A1.

Based on the above calculation, we can see that the best city is A4.
From the obtained results above, we can ascertain that the results determined by the HFL

TOPSIS are the same as that of the proposed methods, which also validates the effectiveness of the
presented methods in this paper. Furthermore, the GHFLHPWA or GHFLHPWG operators in Method
2 consider the relationships between the input arguments through the weight vector determined by
the support degree.
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Compared with the HFLWA or HFLWG operators and the HFL TOPSIS method, the presented
Methods in this paper have the following two advantages. First, decision makers can determine
the parameter value υ in the operators of Methods1 and 2 according to their subjective preferences,
which increases the flexibility of the proposed methods to handle practical decision-making problems.
Second, Method 2 reduces the influences of unreasonable input arguments by using the support
measure assigning a lower weight to them and reflects the correlations between the input arguments
by applying the weight vector allowing the input arguments to support and reinforce each other, both
of which rendering the decision result more reasonable.

7. Conclusions

This paper investigates the information aggregation problem of MCDM problems in which
the value of the criterion is expressed with HFLEs. Inspired by the idea of Hamacher t-norm and
t-conorm, we defined some new basic operational laws on HFLEs based on the Hamacher t-norm
and t-conorm. Then, based on these operational laws, we present several hesitant fuzzy linguistic
Hamacher aggregation operators which are more general and flexible aggregation operators, including
the HFLHWA, HFLHWG, GHFLHWA, GHFLHWG, HFLHPWA, HFLHPWG, GHFLHPWA, and
GHFLHPWG operators. We also discuss some special cases of these operators and explore some of
their desirable properties. Further, we propose two methods based on the GHFLHWA, GHFLHWG,
GHFLHPWA, and GHFLHPWG operators to deal with the MCDM problem with HFLE information.
Ultimately, a numerical example is provided to demonstrate the process of the developed methodology,
and the influence of distinct parameters υ on the score function of the alternative is discussed.
In the future, we will extend the presented operators to other uncertain environments and apply
these operators to other fields, such as supply chain management, risk management, and fuzzy
cluster analysis.
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Abstract: The proposed q-rung orthopair fuzzy set (q-ROFS) and picture fuzzy set (PIFS) are two
powerful tools for depicting fuzziness and uncertainty. This paper proposes a new tool, called
q-rung picture linguistic set (q-RPLS) to deal with vagueness and impreciseness in multi-attribute
group decision-making (MAGDM). The proposed q-RPLS takes full advantages of q-ROFS and PIFS
and reflects decision-makers’ quantitative and qualitative assessments. To effectively aggregate
q-rung picture linguistic information, we extend the classic Heronian mean (HM) to q-RPLSs and
propose a family of q-rung picture linguistic Heronian mean operators, such as the q-rung picture
linguistic Heronian mean (q-RPLHM) operator, the q-rung picture linguistic weighted Heronian
mean (q-RPLWHM) operator, the q-rung picture linguistic geometric Heronian mean (q-RPLGHM)
operator, and the q-rung picture linguistic weighted geometric Heronian mean (q-RPLWGHM)
operator. The prominent advantage of the proposed operators is that the interrelationship between
q-rung picture linguistic numbers (q-RPLNs) can be considered. Further, we put forward a novel
approach to MAGDM based on the proposed operators. We also provide a numerical example to
demonstrate the validity and superiorities of the proposed method.

Keywords: q-rung picture linguistic set; Heronian mean; q-rung picture linguistic Heronian mean;
multi-attribute group decision-making

1. Introduction

Decision-making is a common activity in daily life, aiming to select the best alternative from
several candidates. As one of the most important branches of modern decision-making theory,
multi-attribute group decision-making (MAGDM) has been widely investigated and successfully
applied to economics and management due to its high capacity to model the fuzziness and uncertainty
of information [1–15]. In actual decision-making problems, decision-makers usually rely on their
intuition and prior expertise to make decisions. Owing to the complicacy of decision-making problems,
the precondition is to represent the fuzzy and vague information appropriately in the process of
MAGDM. Atanassov [16] originally proposed the concept of intuitionistic fuzzy set (IFS), characterized
by a membership degree and a non-membership degree. Since its appearance, IFS has received
substantial attention and has been studied by thousands of scientists worldwide in theoretical and
practical aspects [17–20]. Thereafter, Yager [21] proposed the concept of Pythagorean fuzzy set (PYFS).
The constraint of PYFS is that the square sum of membership and non-membership degrees is less than
or equal to one, making PYFS more effective and powerful than IFS. Due to its merits and advantages,
PYFS has been widely applied to decision-making [22–25].
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PYFSs can effectively address some real MAGDM problems. However, there are quite a few cases
that PYFSs cannot deal with. For instance, the membership and non-membership degrees provided
by a decision-maker are 0.7 and 0.8 respectively. Evidently, the ordered pair (0.7, 0.8) cannot be
represented by Pythagorean fuzzy numbers (PYFNs), as 0.72 + 0.82 = 1.13 > 1. In other words, PYFSs
do not work for some circumstances in which the square sum of membership and non-membership
degrees is greater than one. To effectively deal with these cases, Yager [26] proposed the concept
of q-ROFS, whose constraint is the sum of qth power of membership degree and qth power of the
degree of non-membership is less than or equal to one. Thus, q-ROFSs relax the constraint of PYFSs
and widen the information range. In other words, all intuitionistic fuzzy membership degrees and
Pythagorean fuzzy membership degrees are a part of q-rung orthopair fuzzy membership degrees.
This characteristic makes q-ROFSs more powerful and general than IFSs and PYFSs. Subsequently, Liu
and Wang [27] developed some simple weighted averaging operators to aggregate q-rung orthopair
fuzzy numbers (q-ROFNs) and applied these operators to MAGDM. Considering these operators
cannot capture the interrelationship among aggregated q-ROFNs, Liu P.D. and Liu J.L. [28] proposed a
family of q-rung orthopair fuzzy Bonferroni mean operators.

As real decision-making problems are too complicated, we may face the following issues. The first
issue is that although IFSs, PYFSs and q-ROFSs have been successfully applied in decision-making,
there are situations that cannot be addressed by IFSs, PYFSs and q-ROFSs. For example, human
voters may be divided into groups of those who: vote for, abstain, refusal of in a voting. In other
words, in a voting we have to deal with more answers of the type: yes, abstain, no, refusal. Evidently,
IFSs, PYFSs and q-ROFSs do not work in this case. Recently, Cuong [29] proposed the concept of
PIFS, characterized by a positive membership degree, a neutral membership degree, and a negative
membership degree. Since its introduction, PIFSs have drawn much scholars’ attention and have
been widely investigated [30–37]. Therefore, motivated by the ideas of q-ROFS and PIFS, we propose
the concept of q-rung picture fuzzy set (q-RPFS), which takes the advantages of both q-ROFS and
PIFS. The proposed q-RPFS can not only express the degree of neutral membership, but also relax the
constraint of PIFS that the sum of the three degrees must not exceed 1. The lax constraint of q-RPFS is
that the sum of qth power of the positive membership, neutral membership and negative membership
degrees is equal to or less than 1. In other words, the proposed q-RPFS enhances Yager’s [26] q-ROFS
by taking the neutral membership degree into consideration. For instance, if a decision-maker provides
the degrees of positive membership, neutral membership and negative membership as 0.6, 0.3, and
0.5 respectively. Then the ordered pair (0.6, 0.3, 0.5) is not valid for q-ROFSs or PIFSs, whereas valid
for the proposed q-RPFSs. This instance reveals that q-RPFS has a higher capacity to model fuzziness
than q-ROFSs and PIFSs. The second issue is that, in some situations, decision-makers prefer to
make qualitative decisions instead of quantitative decisions due to time shortage and a lack of prior
expertise. Zadeh’s [38] linguistic variables are powerful tools to model these circumstances. However,
Wang and Li [39] pointed out that linguistic variables can only express decision-makers’ qualitative
preference but cannot consider the membership and non-membership degrees of an element to a
particular concept. And subsequently, they proposed the concept of intuitionistic linguistic set. Other
extensions are interval-valued Pythagorean fuzzy linguistic set proposed by Du et al. [40] and picture
fuzzy linguistic set proposed by Liu and Zhang [41]. Therefore, this paper proposes the concept of
q-RPLS by combining linguistic variables with q-RPFSs. The third issue is that in most real MAGDM
problems, attributes are dependent, meaning that the interrelationship among aggregated values
should be considered. The Bonferroni mean (BM) [42] and Heronian mean (HM) [43] are two effective
aggregation technologies which can capture the interrelationship among fused arguments. However,
Yu and Wu [44] pointed out that HM has some advantages over BM. Therefore, we utilize HM to
aggregate q-rung picture linguistic information.

The main contribution of this paper is that a novel decision-making model is proposed. In the
proposed model, attribute values take the form q-RPLNs, and weights of attributes take the form of
crisp numbers. The motivations and aims of this paper are: (1) to provide the definition of q-RPLS and
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operations for q-RPLNs; (2) to develop a family of q-rung picture linguistic Heronian mean operators;
(3) to put forward a novel approach to MAGDM with q-rung picture linguistic information on the basis
of the proposed operators. In order to do this, the rest of this paper is organized as follows. Section 2
briefly recalls some basic concepts. In Section 3, we develop some q-rung picture linguistic aggregation
operators. In addition, we present and discuss some desirable properties of the proposed operators.
In Section 4, we introduce a novel method to MAGDM problems based on the proposed operators.
In Section 5, a numerical instance is provided to show the validity and superiority of the proposed
method. The conclusions are given in Section 6.

2. Preliminaries

In this section, we briefly review concepts about q-ROFS, PIFS, linguistic term sets and HM.
Meanwhile, we provide the definitions of q-PRFS and q-RPLS.

2.1. q-Rung Orthopair Fuzzy Set (q-ROFS) and q-Rung Picture Fuzzy Set (q-RPFS)

Definition 1 [26]. Let X be an ordinary fixed set, a q-ROFS A defined on X is given by

A = {〈x, uA(x), vA(x)〉 |x ∈ X }, (1)

where uA(x) and vA(x) represent the membership degree and non-membership degree respectively, satisfying
uA(x) ∈ [0, 1], vA(x) ∈ [0, 1] and 0 ≤ uA(x)q + vA(x)q ≤ 1, (q ≥ 1). The indeterminacy degree is defined
as πA(x) =

(
uA(x)q + vA(x)q − uA(x)qvA(x)q)1/q. For convenience, (uA(x), vA(x)) is called a q-ROFN

by Liu and Wang [27], which can be denoted by ã = (u, v).

Liu and Wang [27] also proposed some operations for q-ROFNs.

Definition 2 [27]. Let ã1 = (u1, v1), ã2 = (u2, v2) be two q-ROFNs, and λ be a positive real number, then

1. ã1 ⊕ ã2 =

((
uq

1 + uq
2 − uq

1uq
2

)1/q
, v1v2

)
,

2. ã1 ⊗ ã2 =

(
u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)

,

3. λã1 =

((
1−
(

1− uq
1

)λ
)1/q

, vλ
1

)
,

4. ãλ
1 =

(
uλ

1 ,
(

1−
(

1− vq
1

)λ
)1/q

)
.

To compare two q-ROFNs, Liu and Wang [27] proposed a comparison method for q-ROFNs.

Definition 3 [27]. Let ã = (ua, va) be a q-ROFN, then the score of ã is defined as S(ã) = uq
a − vq

a, the accuracy
of ã is defined as H(ã) = uq

a + vq
a. For any two q-ROFNs, ã1 = (u1, v1) and ã2 = (u2, v2). Then

1. If S(ã1) > S(ã2), then ã1 > ã2;
2. If S(ã1) = S(ã2), then

(1) If H(ã1) > H(ã2), then ã1 > ã2;
(2) If H(ã1) = H(ã2), then ã1 = ã2.

The PIFS, constructed by a positive membership degree, a neutral membership degree as well as
a negative membership degree, was originally proposed by Cuong [29].
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Definition 4 [29]. Let X be an ordinary fixed set, a picture fuzzy set (PIFS) B defined on X is given as follows

B = {〈x, uB(x), ηB(x), vB(x)〉|x ∈ X }, (2)

where uB(x) ∈ [0, 1] is called the degree of positive membership of B, ηB(x) ∈ [0, 1] is called the degree of neutral
membership of B and vB(x) ∈ [0, 1] is called the degree of negative membership of B, and uB(x), ηB(x), vB(x)
satisfy the following condition: 0 ≤ uB(x) + ηB(x) + vB(x) ≤ 1, ∀x ∈ X. Then for x ∈ X, πB(x) =

1− (uB(x) + ηB(x) + vB(x)) is called the degree of refusal membership of x in B.

Motivated by the concepts of q-ROFS and PIFS, we give the definition of q-RPFS.

Definition 5. Let X be an ordinary fixed set, a q-rung picture fuzzy set (q-RPFS) C defined on X is given
as follows

C = {〈x, uC(x), ηC(x), vC(x)〉|x ∈ X }, (3)

where uC(x), ηC(x) and vC(x) represent degree of positive membership, degree of neutral membership and degree
of negative membership respectively, satisfying uC(x) ∈ [0, 1], ηC(x) ∈ [0, 1], vC(x) ∈ [0, 1] and 0 ≤ uC(x)

q +

ηC(x)
q + vC(x)

q ≤ 1 (q ≥ 1), ∀x ∈ X. Then for x ∈ X, πC(x) =
(
1−
(
uC(x)

q + ηC(x)
q + vC(x)

q))1/q is
called the degree of refusal membership of x in C.

2.2. Linguistic Term Sets and q-Rung Picture Linguistic Set (q-RPLS)

Let S = {si|i = 1, 2, ..., t} be a linguistic term set with odd cardinality and t is the cardinality of S.
The label si represents a possible value for a linguistic variable. For instance, a possible linguistic term
set can be defined as follows:

S = (s1, s2, s3, s4, s5, s6, s7) = {verypoor, poor, slightly poor, fair, slightly good, good, very good}.

Motivated by the concept of picture linguistic set [41], we shall define the concept of q-RPLS by
combining the linguistic term set with q-RPFS.

Definition 6. Let X be an ordinary fixed set, S be a continuous linguistic term set of S = {si|i = 1, 2, ..., t},
then a q-rung picture linguistic set (q-RPLS) D defined on X is given as follows

D =
{〈

sθ(x), uD(x), ηD(x), vD(x)
〉
|x ∈ X

}
, (4)

where sθ(x) ∈ S,uD(x) ∈ [0, 1] is called the degree of positive membership of D, ηD(x) ∈ [0, 1] is called the
degree of neutral membership of D and vD(x) ∈ [0, 1] is called the degree of negative membership of D, and
uD(x), ηD(x), vD(x) satisfy the following condition: 0 ≤ uD(x)q + ηD(x)q + vD(x)q ≤ 1(q ≥ 1), ∀x ∈ X.
Then

〈
sθ(x), (uD(x), ηD(x), vD(x))

〉
is called a q-RPLN, which can be simply denoted by α = 〈sθ , (u, η, v)〉.

When q = 1, then D is reduced to the picture linguistic set (PFLS) proposed by Liu and Zhang [41].

In the following, we provide some operations for q-RPLNs.

Definition 7. Let α = 〈sθ , (u, η, v)〉, α1 =
〈
sθ1 , (u1, η1, v1)

〉
and α2 =

〈
sθ2 , (u2, η2, v2)

〉
be three q-RPLNs

and λ be a positive real number, then

1. α1 ⊕ α2 =

〈
sθ1+θ2 ,

((
uq

1 + uq
2 − uq

1uq
2

)1/q
, η1η2, v1v2

)〉
,

2. α1 ⊗ α2 =

〈
sθ1×θ2 ,

(
u1u2,

(
η

q
1 + η

q
2 − η

q
1η

q
2

)1/q
,
(

vq
1 + vq

2 − vq
1vq

2

)1/q
)〉

,

3. λα =

〈
sλ×θ ,

((
1− (1− uq)λ

)1/q
, ηλ, vλ

)〉
,
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4. αλ =

〈
sθλ ,
(

uλ,
(

1− (1− ηq)λ
)1/q

,
(

1− (1− vq)λ
)1/q

)〉
.

To compare two q-RPLNs, we first propose the concepts of score function and accuracy function
of a q-RPLN and based on which we propose a comparison law for q-RPLNs.

Definition 8. Let α = 〈sθ , (u, η, v)〉 be a q-RPLN, then the score function of α is defined as

S(α) = (uq + 1− vq)× θ (5)

Definition 9. Let α = 〈sθ , (u, η, v)〉 be a q-RPLN, then the accuracy function of α is defined as

H(α) = (uq + ηq + vq)× θ (6)

Definition 10. Let α1 =
〈
sθ1 , (u1, η1, v1)

〉
and α2 =

〈
sθ2 , (u2, η2, v2)

〉
be two q-RPLNs, S(α1) and

S(α2) be score functions of α1 and α2 respectively, H(α1) and H(α2) be the accuracy functions of α1 and
α2 respectively, then

1. if S(α1) > S(α2), then α1 > α2;
2. if S(α1) = S(α2), then

(1) if H(α1) > H(α2), then α1 > α2;
(2) if H(α1) > H(α2), then α1 = α2.

2.3. Heronian Mean

Definition 11 [43,45]. Let ai(i = 1, 2, ..., n) be a collection of crisp numbers, and s, t ≥ 0, then the Heronian
mean (HM) is defined as follows:

HMs,t(a1, a2, ..., an) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

as
i at

j

)1/(s+t)

(7)

Definition 12 [46]. Let ai(i = 1, 2, ..., n) be a collection of crisp numbers, and s, t ≥ 0, then the geometric
Heronian mean (GHM) is defined as follows:

GHMs,t(a1, a2, ..., an) =
1

s + t

n

∏
i=1

n

∏
j=i

(
sai + taj

) 1
n(n+2) (8)

3. The q-Rung Picture Linguistic Heronian Mean Operators

In this section, we extend the HM to q-rung picture linguistic environment and propose a family
of q-rung picture linguistic Heronian mean operators. Moreover, some desirable properties of the
proposed aggregation operators are presented and discussed.

3.1. The q-Rung Picture Linguistic Heronian Mean (q-RPLHM) Operator

Definition 13. Let αi =
〈
sθi , (μi, ηi, vi)

〉
(i = 1, 2, ..., n) be a collection of q-RPLNs, and s, t > 0. If

q− RPLHMs,t(α1, α2, ..., αn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

αs
i αt

j

)1/(s+t)

, (9)
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then q− RPLHMs,t is called the q-rung picture linguistic Heronian mean (q-RPLHM) operator.

According to the operations for q-RPLNs, the following theorem can be obtained.

Theorem 1. Let αi =
〈
sθi , (μi, ηi, vi)

〉
(i = 1, 2, ..., n) be a collection of q-RPLNs, then the aggregated value by

using q-RPLHM operator is also a q-RPLN and

q− RPLHMs,t(α1, α2, ..., αn) =

〈
S
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

θs
i θt

j )

1/(s+t),

((
1−

n
∏
i=1

n
∏
j=1

(
1− usq

i utq
j

) 2
n(n+1)

) 1/q(s+t)

,

⎛⎜⎝1−

⎛⎝1−
n
∏
i=1

n
∏
j=1

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 2q

n(n+1)

⎞⎠1/(s+t)
⎞⎟⎠

1/q

,

⎛⎜⎝1−

⎛⎝1−
n
∏
i=1

n
∏
j=1

(
1−
(

1− vq
i

)s(
1− vq

j

)t
) 2q

n(n+1)

⎞⎠1/(s+t)
⎞⎟⎠

1/q
⎞⎟⎟⎠
〉

.

(10)

Proof. According to the operations for q-RPLNs, we can obtain the followings

αs
i =

〈
sθs

i
,
(

us
i ,
(

1−
(

1− η
q
i

)s)1/q
,
(

1−
(

1− vq
i

)s)1/q
)〉

,

αt
j =

〈
sθt

j
,

(
ut

j,
(

1−
(

1− η
q
j

)t
)1/q

,
(

1−
(

1− vq
j

)t
)1/q

)〉
.

Therefore,

αs
i αt

j =

〈
sθs

i θt
j
,
(

us
i ut

j,
(

1−
(

1− η
q
i

)s(
1− η

q
j

)t
)

,
(

1−
(

1− vq
i

)s(
1− vq

j

)t
))〉

.

Further,

n
∑
j=i

as
i at

j =

〈
s n

∑
j=i

θs
i θt

j

,

⎛⎝(1−
n
∏
j=i

(
1− usq

i utq
j

))1/q

,

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
)

,
n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
))〉

.

In addition,
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n
∑

i=1

n
∑
j=i

as
i at

j =

〈
s n

∑
i=1

n
∑
j=i

θs
i θt

j

,

⎛⎝(1−
n
∏
i=1

(
n
∏
j=i

(
1− usq

i utq
j

)))1/q

,

n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
)

,
n
∏
i=1

n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
))〉

.

Thus,

2
n(n+1)

n
∑

i=1

n
∑
j=i

as
i at

j =

〈
s

2
n(n+1)

n
∑

i=1

n
∑
j=i

θs
i θt

j

,

⎛⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=i

(
1− usq

i utq
j

)) 2
n(n+1)

⎞⎠1/q

,

(
n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
)) 2

n(n+1)

,

(
n
∏
i=1

n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
)) 2

n(n+1)
⎞⎠〉.

So,

q− RPLHMs,t(α1, α2, ..., αn) =

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

as
i at

j

)1/(s+t)

=

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

θs
i θt

j )

1/(s+t) ,

⎛⎝(1−
n
∏
i=1

n
∏
j=1

(
1− usq

i utq
j

) 2
n(n+1)

)1/q(s+t)

,

⎛⎜⎝1−

⎛⎝1−
n
∏
i=1

n
∏
j=1

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
) 2q

n(n+1)

⎞⎠1/(s+t)
⎞⎟⎠

1/q

,

⎛⎜⎝1−

⎛⎝1−
n
∏
i=1

n
∏
j=1

(
1−
(

1− vq
i

)s(
1− vq

j

)t
) 2q

n(n+1)

⎞⎠1/(s+t)
⎞⎟⎠

1/q
⎞⎟⎟⎠
〉

.

�

In addition, the q-RPLHM operator has the following properties.

Theorem 2 (Monotonicity). Let αi and βi (i = 1, 2, ..., n) be two collections of q-RPLNs, if αi ≤ βi for all
i = 1, 2, · · · , n, then

q− RPLHMs,t(α1, α2, ..., αn) ≤ q− RPLHMs,t(β1, β2, ..., βn). (11)

Proof. As αi = α for all i, we can obtain
Since αi ≤ βi and αj ≤ β j for i = 1, 2, · · · , n and j = i, i + 1, · · · , n, we have αs

i αt
j ≤ βs

i βt
j.

Then
2

n(n + 1)

n

∑
i=1

n

∑
j=i

αs
i αt

j ≤
2

n(n + 1)

n

∑
i=1

n

∑
j=i

βs
i βt

j.

So, (
2

n(n + 1)

n

∑
i=1

n

∑
j=i

αs
i αt

j

)1/(s+t)

≤
(

2
n(n + 1)

n

∑
i=1

n

∑
j=i

βs
i βt

j

)1/(s+t)

,

i.e.,
q− RPLHMs,t(α1, α2, ..., αn) ≤ q− RPLHMs,t(β1, β2, ..., βn).

�

745



Symmetry 2018, 10, 172

Theorem 3 (Idempotency). Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, if αi = α, for all
i = 1, 2, ..., n, then

q− RPLHMs,t(α1, α2, ..., αn) = α. (12)

Proof. Since αi = α, for all i, we have

q− RPLHMs,t(α1, α2, ..., αn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

αs
i αt

j

)1/(s+t)

=

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

αs
i αt

j

)1/(s+t)

=
(
αs+t)1/(s+t)

= α.

�

Theorem 4 (Boundedness). The q-RPLHM operator lies between the max and min operators

min(α1, α2, ..., αn) ≤ q− RPLHMs,t(α1, α2, ..., αn) ≤ max(α1, α2, ..., αn). (13)

Proof. Let a = min(α1, α2, ..., αn), b = max(α1, α2, ..., αn) according to Theorem 2, we have

q− RPLHMs,t(a, a, ..., a) ≤ q− RPLHMs,t(α1, α2, ..., αn) ≤ q− RPLHMs,t(b, b, ..., b).

Further, q− RPLHMs,t(a, a, ..., a) = a and q− RPLHMs,t(b, b, ..., b) = b.
So,

a ≤ q− RPLHMs,t(α1, α2, ..., αn) ≤ b,

i.e.,
min(α1, α2, ..., αn) ≤ q− RPLHMs,t(α1, α2, ..., αn) ≤ max(α1, α2, ..., αn).

�

The parameters s and t play a very important role in the aggregated results. In the followings,
we discuss some special cases of the q-RPLHM operator with respect to the parameters s and t.

Case 1: When t→ 0 , then the q-RPLHM operator reduces to the followings,

q− RPLHMs,0(α1, α2, ..., αn) = lim
t→0

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

θs
i θt

j )

1/(s+t) ,

⎛⎜⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=i

(
1− usq

i utq
j

)) 2
n(n+1)

⎞⎠
1/q(s+t)

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(

1− η
q
i

)s(
1− η

q
j

)t
)) 2q

n(n+1)

⎞⎟⎠
1/(s+t)

⎞⎟⎟⎠
1/q

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
)) 2q

n(n+1)

⎞⎟⎠
1/(s+t)

⎞⎟⎟⎠
1/q
⎞⎟⎟⎟⎠
〉

=

〈
s
( 2

n(n+1)

n
∑

i=1
(n+1−i)θs

i )

1/s,

⎛⎜⎝(1−
(

n
∏
i=1

(
1− usq

i

)n+1−i
) 2

n(n+1)
)1/qs

,

⎛⎜⎝1−

⎛⎝1−
(

n
∏
i=1

(
1−
(

1− η
q
i

)s)n+1−i
) 2q

n(n+1)

⎞⎠1/s
⎞⎟⎠

1/q

,

⎛⎜⎝1−

⎛⎝1−
(

n
∏
i=1

(
1−
(

1− vq
i

)s)n+1−i
) 2q

n(n+1)

⎞⎠1/s
⎞⎟⎠

1/q
⎞⎟⎟⎠
〉

.

(14)
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which is a q-rung picture linguistic generalized linear descending weighted mean operator. Evidently,
it is equivalent to weight the information

(
αs

1, αs
2, ..., αs

n
)

with (n, n− 1, ..., 1).
Case 2: When s→ 0 , then the q-RPLHM operator reduces to the followings,

q− RPLHM0,t(α1, α2, ..., αn) = lim
s→0

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

θs
i θt

j )

1/(s+t) ,

⎛⎜⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=i

(
1− usq

i utq
j

)) 2
n(n+1)

⎞⎠
1/q(s+t)

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
)) 2q

n(n+1)

⎞⎟⎠
1/(s+t)

⎞⎟⎟⎠
1/q

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(

1− vq
i

)s(
1− vq

j

)t
)) 2q

n(n+1)

⎞⎟⎠
1/(s+t)

⎞⎟⎟⎠
1/q
⎞⎟⎟⎟⎠
〉

=

〈
s
( 2

n(n+1)

n
∑

i=1
iθt

i )

1/t ,

⎛⎝(1−
(

n
∏
i=1

(
1− utq

i

)i
) 2

n(n+1)
)1/qt

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

(
1−
(

1− vq
i

)t
)i
) 2q

n(n+1)

⎞⎟⎠
1/t
⎞⎟⎟⎠

1/q

,

⎛⎜⎜⎝1−

⎛⎜⎝1−
(

n
∏
i=1

(
1−
(

1− vq
i

)t
)i
) 2q

n(n+1)

⎞⎟⎠
1/t
⎞⎟⎟⎠

1/q
⎞⎟⎟⎟⎠
〉

(15)

which is a q-rung picture linguistic generalized linear ascending weighted mean operator. Obviously,
it is equivalent to weight the information

(
αt

1, αt
2, ..., αt

n
)

with (1, 2, ..., n), i.e., when t→ 0 or s→ 0 ,
the q-RPLHM operator has the linear weighted function for input data.

Case 3: When s = t = 1, then the q-RPLHM operator reduces to the followings,

q− RPLHM1,1(α1, α2, ..., αn) =

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

θiθj)

1/(s+t),

((
1−
(

n
∏
i=1

n
∏
j=1

(
1−
(
uiuj
)q
)) 2

n(n+1)

) 1/2q

,

⎛⎝1−
(

1−
(

n
∏
i=1

n
∏
j=1

(
1−
(

1− η
q
i

)(
1− η

q
j

)) 2q
n(n+1)

)1/2⎞⎠1/q

,

⎛⎝1−
(

1−
(

n
∏
i=1

n
∏
j=1

(
1−
(

1− vq
i

)(
1− vq

j

)) 2q
n(n+1)

)1/2⎞⎠1/q⎞⎟⎠〉.

(16)

which is a q-rung picture linguistic line Heronian mean operator.
Case 4: When s = t = 1/2, then the q-RPLHM operator reduces to the followings

q− RPLHM
1
2 , 1

2 (α1, α2, ..., αn) =

〈
s

2
n(n+1)

n
∑

i=1

n
∑
j=i

√
θiθj

,

⎛⎜⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=i

(
1−
√

uq
i uq

j

)) 2
n(n+1)

⎞⎠
1/q

,

(
n
∏
i=1

n
∏
j=i

(
1−
√(

1− η
q
i

)(
1− η

q
j

))) 2
n(n+1)

,

(
n
∏
i=1

n
∏
j=i

(
1−
√(

1− vq
i

)(
1− vq

j

))) 2
n(n+1)

⎞⎠〉,

(17)

which is a q-rung picture linguistic basic Heronian mean operator.
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Case 5: When q = 2, then the q-RPLHM operator reduces to the followings,

q− RPLHMs,t(α1, α2, ..., αn) =

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑

j=1
θs

i θt
j )

1
s+t

,

⎛⎜⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=i

(
1− u2s

i u2t
j

)) 2
n(n+1)

⎞⎠
1/2(s+t)

,

⎛⎜⎝1−

⎛⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(
1− η2

i
)s
(

1− η2
j

)t
)) 4

n(n+1)
⎞⎠1/(s+t)⎞⎟⎠

1/2

,

⎛⎜⎝1−

⎛⎝1−
(

n
∏
i=1

n
∏
j=i

(
1−
(
1− v2

i
)s
(

1− v2
j

)t
)) 4

n(n+1)
⎞⎠1/(s+t)⎞⎟⎠

1/2⎞⎟⎟⎠
〉

,

(18)

which is the Pythagorean picture linguistic Heronian mean operator.
Case 6: When q = 1, then the q-ROLHM operator reduces to the followings,

q− RPLHMs,t(α1, α2, ..., αn) =

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑

j=1
θs

i θt
j )

1
s+t

,

⎛⎜⎜⎝
⎛⎝1−

(
n
∏
i=1

n
∏
j=1

(
1− us

i ut
j

)) 2
n(n+1)

⎞⎠
1

s+t

,

1−

⎛⎝1−
(

n
∏
i=1

n
∏
j=1

(
1− (1− ηi)

s(1− ηj
)t
)) 2

n(n+1)
⎞⎠

1
s+t

,

1−

⎛⎝1−
(

n
∏
i=1

n
∏
j=1

(
1− (1− vi)

s(1− vj
)t
)) 2

n(n+1)
⎞⎠

1
s+t

⎞⎟⎟⎠
〉

,

(19)

which is the picture linguistic Heronian mean operator.

3.2. The q-Rung Picture Linguistic Weighted Heronian Mean (q-RPLWHM) Operator

It is noted that the proposed q-RPLHM operator does not consider the self-importance of the
aggregated arguments. Therefore, we put forward the weighted Heronian mean for q-RPLNs, which
also considers the weights of aggregated arguments.

Definition 14. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, and s, t > 0, w = (w1, w2, ..., wn)
T be the

weight vector, satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. If

q− RPLWHMs,t(α1, α2, ..., αn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

(nwiαi)
s(nwjαj

)t
)1/(s+t)

, (20)

then q− RPLWHMs,t(α1, α2, ..., αn) is called the q-RPLWHM.

According to the operations for q-RPLNs, the following theorems can be obtained.
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Theorem 5. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, w = (w1, w2, ..., wn)
T be the weight vector,

satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1, then the aggregated value by using q-RPLWHM is also a q-RPLN and

q− RPLWHMs,t(α1, α2, ..., αn) =

〈
s
( 2

n(n+1)

n
∑

i=1

n
∑
j=i

(nwiθi)
s×(nwjθj)

t)
1/(s+t) ,

⎛⎝(1−
n
∏
i=1

n
∏
j=i

(
1−
(

1−
(

1− uq
i

)nwi
) 2s

n(n+1)
(

1−
(

1− uq
j

)nwj
) 2t

n(n+1)

))1/(s+t)q

,

⎛⎝1−
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

1− η
nwiq
i

)s(
1− η

nwjq
j

)t
) 2

n(n+1)
)1/(s+t)⎞⎠1/q

,

⎛⎝1−
(

1−
n
∏
i=1

n
∏
j=i

(
1−
(

1− vnwiq
i

)s(
1− v

nwjq
j

)t
) 2

n(n+1)
)1/(s+t)⎞⎠1/q⎞⎟⎠〉.

(21)

The proof of Theorem 5 is similar to that of Theorem 1, which is omitted here.
Similarly, q-RPLWHM has the following properties.

Theorem 6 (Monotonicity). Let αi and βi(i = 1, 2, ..., n) be two collections of q-RPLNs, if αi ≤ βi for
all i, then

q− RPLWHMs,t(α1, α2, ..., αn) ≤ q− RPLWHMs,t(β1, β2, ..., βn). (22)

Theorem 7 (Boundedness). The q-RPLWHM operator lies between the max and min operators

min(α1, α2, ..., αn) ≤ q− RPLWHMs,t(α1, α2, ..., αn) ≤ max(α1, α2, ..., αn). (23)

3.3. The q-Rung Picture Linguistic Geometric Heronian Mean (q-RPLGHM) Operator

Definition 15. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, and s, t > 0. If

q− RPLGHMs,t(α1, α2, ..., αn) =
1

s + t

n

∏
i=1

n

∏
j=i

(
sαi + tαj

) 2
n(n+1) , (24)

then q− RPLGHMs,t is called the q-rung picture linguistic geometric Heronian mean (q-RPLGHM) operator.

Similarly, the following theorem can be obtained according to Definition 7.

Theorem 8. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, then the aggregated value by using q-RPLGHM
is also a q-RPLN and

q− RPLGHMs,t(α1, α2, ..., αn) =〈
s

1
s+t

n
∏

i=1

n
∏
j=i

(sθi+tθj)
2

n(n+1)
,

⎛⎜⎜⎝
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− uq
i

)s(
1− uq

j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1/q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− vsq

i vtq
j

) 2
n(n+1)

) 1
(s+t)q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− vsq

i vtq
j

) 2
n(n+1)

) 1
(s+t)q

⎞⎠〉.

(25)

749



Symmetry 2018, 10, 172

The proof of Theorem 8 is similar to that of Theorem 1. In the following, we present some desirable
properties of the q-RPLGHM operator.

Theorem 9 (Idempotency). Let αi =
〈
sθi , (μi, ηi, vi)

〉
(i = 1, 2, ..., n) be a collection of q-RPLNs, if all the

q-RPLNs are equal, i.e., αi = α for all i, then

q− RPLGHMs,t(α1, α2, ..., αn) = α. (26)

The proof of Theorem 9 is similar to that of Theorem 2.

Theorem 10 (Monotonicity). Let αi and βi(i = 1, 2, ..., n) be two collections of q-RPLNs, if αi ≤ βi for
all i, then

q− RPLGHMs,t(α1, α2, ..., αn) ≤ q− RPLGHMs,t(β1, β2, ..., βn). (27)

The proof of Theorem 10 is similar to that of Theorem 3.

Theorem 11 (Boundedness). Let αi =
〈
sθi , (μi, ηi, vi)

〉
(i = 1, 2, ..., n) be a collection of q-RPLNs, then

min(α1, α2, ..., αn) ≤ q− RPLGHMs,t(α1, α2, ..., αn) ≤ max(α1, α2, ..., αn). (28)

The proof of Theorem 11 is similar to that of Theorem 4. In the followings, we discuss some
special cases of the q-RPLGHM operator.

Case 1: When t→ 0 , then the q-RPLGHM operator reduces to the followings,

q− RPLGHMs,0(α1, α2, ..., αn) = lim
t→0

〈
s

1
s+t

n
∏

i=1

n
∏
j=i

(sθi+tθj)
2

n(n+1)
,

⎛⎜⎜⎝
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− uq
i

)s(
1− uq

j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1/q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− η

sq
i η

tq
j

) 2
n(n+1)

) 1
(s+t)q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− vsq

i vtq
j

) 2
n(n+1)

) 1
(s+t)q

⎞⎠〉

=

〈
s

1
s (

n
∏

i=1
(sθi)

n+1−i)

2
n(n+1)

,

⎛⎜⎜⎝
⎛⎜⎝1−

(
1−
(

n
∏
i=1

(
1−
(

1− uq
i

)s)n+1−i
) 2

n(n+1)
) 1

s

⎞⎟⎠
1/q

,

(
1−
(

n
∏
i=1

(
1− η

sq
i

)n+1−i
) 2

n(n+1)
) 1

sq

,

(
1−
(

n
∏
i=1

(
1− vsq

i

)n+1−i
) 2

n(n+1)
) 1

sq

⎞⎟⎠〉,

(29)

which is a q-rung picture linguistic generalized geometric linear descending weighted mean operator.
Case 2: When s→ 0 , then the q-RPLGHM operator reduces to the followings,
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q− RPLGHM0,t(α1, α2, ..., αn) = lim
s→0

〈
s

1
s+t

n
∏

i=1

n
∏
j=i

(sθi+tθj)
2

n(n+1)
,

⎛⎜⎜⎝
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− uq
i

)s(
1− uq

j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1/q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− η

sq
i η

tq
j

) 2
n(n+1)

) 1
(s+t)q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− vsq

i vtq
j

) 2
n(n+1)

) 1
(s+t)q

⎞⎠〉

=

〈
s

1
t (

n
∏

i=1
(tθj)

i)

2
n(n+1)

,

⎛⎜⎜⎜⎝
⎛⎜⎜⎝1−

⎛⎝1−
(

n
∏
i=1

(
1−
(

1− uq
j

)t
)i
) 2

n(n+1)
⎞⎠

1
t

⎞⎟⎟⎠
1/q

,

(
1−
(

n
∏
i=1

(
1− η

tq
j

)i
) 2

n(n+1)
) 1

tq

,

(
1−
(

n
∏
i=1

(
1− vtq

j

)i
) 2

n(n+1)
) 1

tq

⎞⎟⎠〉,

(30)

which is a q-rung picture linguistic generalized geometric linear ascending weighted mean operator.
Case 3: When s = t = 1, then the q-RPLGHM operator reduces to the followings,

q− RPLGHM1,1(α1, α2, ..., αn) =

〈
s

1
2

n
∏

i=1

n
∏
j=i

(θi+θj)
2

n(n+1)
,

⎛⎜⎝
⎛⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− uq
i

)(
1− uq

j

)) 2
n(n+1)

) 1
2
⎞⎠1/q

,

⎛⎝1−
(

n
∏
i=1

n
∏
j=i

(
1− η

q
i η

q
j

)) 2
n(n+1)

⎞⎠
1
2q

,

⎛⎝1−
(

n
∏
i=1

n
∏
j=i

(
1− vq

i vq
j

)) 2
n(n+1)

⎞⎠
1
2q

⎞⎟⎟⎠
〉

,

(31)

which is a q-rung picture linguistic geometric line Heronian mean operator.
Case 4: When s = t = 1/2, then the q-RPLGHM operator reduces to the followings,

q− RPLGHM
1
2 , 1

2 (α1, α2, ..., αn) =

〈
s
(

n
∏

i=1

n
∏
j=i

( 1
2 θi+

1
2 θj))

2
n(n+1)

,

⎛⎜⎝
⎛⎝ n

∏
i=1

n
∏
j=i

(
1−
√(

1− uq
i

)(
1− uq

j

)) 2
n(n+1)

⎞⎠1/q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1−
√

η
q
i η

q
j

) 2
n(n+1)

) 1
q

,

(
1−

n
∏
i=1

n
∏
j=i

(
1−
√

vq
i vq

j

) 2
n(n+1)

) 1
q
⎞⎠〉,

(32)

which is a q-rung picture linguistic basic geometric Heronian mean operator.
Case 5: When q = 2, then the q-RPLGHM operator reduces to the followings

751



Symmetry 2018, 10, 172

q− RPLGHMs,t(α1, α2, ..., αn) =

〈
s

1
s+t (

n
∏

i=1

n
∏
j=1

(sθi+tθj))

2
n(n+1)

,

⎛⎜⎜⎝
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(
1− u2

i
)s
(

1− u2
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1/2

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− η2s

i η2t
j

) 2
n(n+1)

) 1
2(s+t)

,

(
1−

n
∏
i=1

n
∏
j=i

(
1− v2s

i v2t
j

) 2
n(n+1)

) 1
2(s+t)

⎞⎠〉,

(33)

which is the Pythagorean picture linguistic geometric Heronian mean operator.
Case 6: When q = 1, then the q-RPLGHM operator reduces to the followings

q− RPLGHMs,t(α1, α2, ..., αn) =

〈
s

1
s+t (

n
∏

i=1

n
∏
j=1

(sθi+tθj))

2
n(n+1)

,

⎛⎝1−
(

1−
(

n
∏
i=1

n
∏
j=i

(
1− (1− ui)

s(1− uj
)t
) 2

n(n+1)

) 1
s+t

,

(
1−
(

n
∏
i=1

n
∏
j=i

(
1− ηs

i ηt
j

)
)

2
n(n+1)

) 1
s+t

,

(
1−
(

n
∏
i=1

n
∏
j=i

(
1− vs

i vt
j

)
)

2
n(n+1)

) 1
s+t
⎞⎠〉,

(34)

which is the picture linguistic geometric Heronian mean operator.

3.4. The q-Rung Picture Linguistic Weighted Geometric Heronian Mean (q-RPLWGHM) Operator

Definition 16. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, and s, t > 0, w = (w1, w2, ..., wn)
T be the

weight vector, satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. If

q− RPLWGHMs,t(α1, α2, ..., αn) =
1

s + t

n

∏
i=1

n

∏
j=i

(
sanwi

i + ta
nwj
j

) 2
n(n+1) , (35)

then q− RPLWGHMs,t is called the q-RPLWGHM.

Additionally, q- RPLWGHM has the following theorem.

Theorem 12. Let αi(i = 1, 2, ..., n) be a collection of q-RPLNs, w = (w1, w2, ..., wn)
T be the weight vector,

satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1, then the aggregated value by using q-RPLWGHM is also a q-RPLN and
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q− RPLWGHMs,t(α1, α2, ..., αn) =

〈
s

1
s+t

n
∏

i=1

n
∏
j=i

(θ
nwi
i +tθ

nwj
j )

2
n(n+1)

,

⎛⎜⎝
⎛⎜⎝1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−
(

1− unwiq
i

)s(
1− u

nwjq
j

)t
) 2

n(n+1)
) 1

s+t

⎞⎟⎠
1/q

,

⎛⎜⎝1−
n
∏
i=1

n
∏
i=i

(
1−
(

1−
(

1− η
q
i

)nwi
)s(

1−
(

1− η
q
j

)nwj
)t
) 2

n(n+1)
⎞⎟⎠

1
(s+t)q

,

⎛⎜⎝1−
n
∏
i=1

n
∏
i=i

(
1−
(

1−
(

1− vq
i

)nwi
)s(

1−
(

1− vq
j

)nwj
)t
) 2

n(n+1)
⎞⎟⎠

1
(s+t)q

⎞⎟⎟⎠
〉

.

(36)

The proof of Theorem 12 is similar to that of Theorem 1, which is omitted here.
In addition, the q-RPLWGHM operator has the following properties.

Theorem 13 (Monotonicity). Let αi and βi(i = 1, 2, ..., n) be two collections of q-RPLNs, if αi ≤ βi for
all i, then

q− RPLWGHMs,t(α1, α2, ..., αn) ≤ q− RPLWGHMs,t(β1, β2, ..., βn). (37)

Theorem 14 (Boundedness). The q-RPLWGHM operator lies between the max and min operators

min(α1, α2, ..., αn) ≤ q− RPLWGHMs,t(α1, α2, ..., αn) ≤ max(α1, α2, ..., αn). (38)

4. A Novel Approach to MAGDM Based on the Proposed Operators

In this section, we shall apply the proposed aggregation operators to solving MAGDM problems
in q-rung picture linguistic environment. Considering a MAGDM process in which the attribute value
take the form of q-RPLNs.: let A = {A1, A2, ..., Am} be a set of all alternatives, and C = {c1, c2, ..., cn}
be a set of attributes with the weight vector being w = (w1, w2, ..., wn)

T , satisfying wi ∈ [0, 1] and
∑n

i=1 wi = 1. A set of decision-makers Dk are organized to make the assessment for every attribute

cj(j = 1, 2, ..., n) of all alternatives by q-RPLNs αk
ij =

〈
sk

θij
,
(

uk
ij, ηk

ij, vk
ij

)〉
, and λ = (λ1, λ2, . . . , λk) is the

weight vector of decision-makers Dk(k = 1, 2, ..., p). Therefore, the q-rung picture linguistic decision
matrices can be denoted by Ak =

(
αk

ij

)
m×n

. The main steps to solve MAGDM problems based on the

proposed operators are given as follows.
Step 1. Standardize the original decision matrices. There are two types of attributes, benefit and

cost attributes. Therefore, the original decision matrix should be normalized by

αk
ij =

⎧⎨⎩
〈

sk
θij

,
(

uk
ij, ηk

ij, vk
ij

)〉
yj ∈ I1〈

sk
θij

,
(

vk
ij, ηk

ij, uk
ij

)〉
yj ∈ I2

, (39)

where I1 and I2 represent the benefit attributes and cost attributes respectively.
Step 2. Utilize the q-RPLWHM operator

αij = q− RPLWHMs,t
(

α1
ij, α2

ij, ..., α
p
ij

)
, (40)
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or the q-RPLWGHM operator

αij = q− RPLWGHMs,t
(

α1
ij, α2

ij, ..., α
p
ij

)
, (41)

to aggregate all the decision matrices Ak(k = 1, 2, . . . p) into a collective decision matrix A =
(
αij
)

m×n.
Step 3. Utilize the q-RPLWHM operator

αi = q− RPLWHMs,t(αi1, αi2, ..., αin), (42)

or the q-RPLWGHM operator

αi = q− RPLWGHMs,t(αi1, αi2, ..., αin), (43)

to aggregate the assessments αij(j = 1, 2, ..., n) for each Ai so that the overall preference values
αi(i = 1, 2, ..., m) of alternatives can be obtained.

Step 4. Calculate the score functions of the overall values αi(i = 1, 2, ..., m).
Step 5. Rank all alternatives according to the score functions of the corresponding overall values

and select the best one(s).
Step 6. End.

5. Numerical Instance

In this part, to validate the proposed method, we provide a numerical instance about choosing an
Enterprise resource planning (ERP) system adopted from Liu and Zhang [41]. After primary evaluation,
there are four possible systems provided by different companies remained on the candidates list and
they are {A1, A2, A3, A4}. Four experts Dk(k = 1, 2, 3, 4) are invited to evaluate the candidates
under four attributes, they are (1) technology C1; (2) strategic adaptability C2; (3) supplier’s ability
C3; (4) supplier’s reputation C4. Weight vector of the four attributes is w = (0.25, 0.3, 0.25, 0.2)T .
The decision-makers are required to use picture fuzzy linguistic numbers (PFLNs) on the basic of the
linguistic term set S = {s0 = terrible, s1 = bad, s2 = poor, s3 = neutral, s4 = good, s5 = well, s6 = excellent}
to express their preference information. Decision-makers’ weight vector is λ = (0.3, 0.2, 0.2, 0.3)T .
After evaluation, the individual picture fuzzy linguistic decision matrix Ak =

(
αk

ij

)
4×4

can be obtained,

which are shown in Tables 1–4.

Table 1. Decision matrix A1 provided by D1.

C1 C2 C3 C4

A1 〈s4, (0.53, 0.33, 0.09)〉 〈s2, (0.89, 0.08, 0.03)〉 〈s1, (0.42, 0.35, 0.18)〉 〈s3, (0.08, 0.89, 0.02)〉
A2 〈s2, (0.73, 0.12, 0.08)〉 〈s4, (0.13, 0.64, 0.21)〉 〈s2, (0.03, 0.82, 0.13)〉 〈s4, (0.73, 0.15, 0.08)〉
A3 〈s5, (0.91, 0.03, 0.02)〉 〈s1, (0.07, 0.79, 0.05)〉 〈s4, (0.04, 0.85, 0.10)〉 〈s2, (0.68, 0.26, 0.06)〉
A4 〈s5, (0.85, 0.09, 0.05)〉 〈s3, (0.74, 0.16, 0.10)〉 〈s6, (0.02, 0.89, 0.05)〉 〈s1, (0.08, 0.84, 0.06)〉

Table 2. Decision matrix A2 provided by D2.

C1 C2 C3 C4

A1 〈s3, (0.53, 0.33, 0.09)〉 〈s3, (0.73, 0.12, 0.08)〉 〈s2, (0.91, 0.03, 0.02)〉 〈s4, (0.85, 0.09, 0.05)〉
A2 〈s1, (0.89, 0.08, 0.03)〉 〈s3, (0.13, 0.64, 0.21)〉 〈s3, (0.77, 0.09, 0.05)〉 〈s4, (0.74, 0.16, 0.10)〉
A3 〈s4, (0.42, 0.35, 0.18)〉 〈s2, (0.03, 0.82, 0.13)〉 〈s4, (0.04, 0.85, 0.10)〉 〈s3, (0.02, 0.89, 0.05)〉
A4 〈s5, (0.33, 0.51, 0.12)〉 〈s2, (0.53, 0.31, 0.16)〉 〈s6, (0.68, 0.26, 0.06)〉 〈s3, (0.08, 0.84, 0.06)〉
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Table 3. Decision matrix A3 provided by D3.

C1 C2 C3 C4

A1 〈s4, (0.33, 0.52, 0.12)〉 〈s2, (0.52, 0.31, 0.16)〉 〈s4, (0.31, 0.39, 0.25)〉 〈s5, (0.64, 0.16, 0.10)〉
A2 〈s4, (0.17, 0.53, 0.13)〉 〈s3, (0.51, 0.24, 0.21)〉 〈s4, (0.31, 0.39, 0.25)〉 〈s5, (0.64, 0.16, 0.10)〉
A3 〈s2, (0.90, 0.05, 0.02)〉 〈s1, (0.68, 0.08, 0.21)〉 〈s5, (0.05, 0.87, 0.06)〉 〈s3, (0.13, 0.75, 0.09)〉
A4 〈s3, (0.15, 0.73, 0.08)〉 〈s3, (0.70, 0.20, 0.10)〉 〈s5, (0.91, 0.03, 0.05)〉 〈s3, (0.18, 0.64, 0.06)〉

Table 4. Decision matrix A4 provided by D4.

C1 C2 C3 C4

A1 〈s3, (0.90, 0.05, 0.02)〉 〈s1, (0.68, 0.08, 0.21)〉 〈s3, (0.05, 0.87, 0.06)〉 〈s1, (0.13, 0.75, 0.09)〉
A2 〈s6, (0.77, 0.13, 0.10)〉 〈s2, (0.62, 0.24, 0.11)〉 〈s2, (0.10, 0.75, 0.10)〉 〈s4, (0.64, 0.16, 0.10)〉
A3 〈s3, (0.80, 0.15, 0.02)〉 〈s4, (0.68, 0.18, 0.05)〉 〈s5, (0.05, 0.87, 0.06)〉 〈s1, (0.12, 0.65, 0.20)〉
A4 〈s6, (0.15, 0.73, 0.08)〉 〈s3, (0.61, 0.25, 0.10)〉 〈s5, (0.91, 0.03, 0.05)〉 〈s4, (0.28, 0.44, 0.16)〉

5.1. The Decision-Making Process

Step 1. As the four attributes are benefit types, the original decision matrices do not
need normalization.

Step 2. Utilize Equation (40) to calculate the comprehensive value αij of each attribute for every
alternative. The collective decision matrix A =

(
αij
)

4×4 is shown in Table 5 (suppose s = t = 1, q = 3):

Table 5. Collective picture fuzzy linguistic decision matrix (by q-rung Picture Linguistic Weighted
Geometric Heronian Mean (q-RPLWHM) operator).

C1 C2 C3 C4

A1 〈s3.52, (0.71, 0.29, 0.18)〉 〈s1.91, (0.76, 0.15, 0.14)〉 〈s2.44, (0.63, 0.45, 0.39)〉 〈s2.83, (0.57, 0.61, 0.44)〉
A2 〈s3.56, (0.75, 0.19, 0.15)〉 〈s3.04, (0.48, 0.44, 0.30)〉 〈s2.60, (0.51, 0.52, 0.38)〉 〈s4.21, (0.69, 0.17, 0.14)〉
A3 〈s3.67, (0.83, 0.13, 0.11)〉 〈s2.22, (0.56, 0.42, 0.23)〉 〈s4.52, (0.05, 0.86, 0.74)〉 〈s2.11, (0.49, 0.62, 0.52)〉
A4 〈s4.97, (0.63, 0.49, 0.43)〉 〈s2.83, (0.66, 0.24, 0.20)〉 〈s5.53, (0.80, 0.22, 0.09)〉 〈s2.76, (0.21, 0.69, 0.47)〉

Step 3. Utilize Equation (42) to obtain the overall values of each alternative, we can get

α1 = 〈s3.86, (0.75, 0.27, 0.24)〉 α2 = 〈s2.53, (0.63, 0.32, 0.29)〉
α3 = 〈s3.65, (0.61, 0.51, 0.47)〉 α4 = 〈s3.10, (0.57, 0.51, 0.47)〉.

Step 4. Compute the score functions of the overall values, which are shown as follows:

S(α1) = 5.42, S(α2) = 3.11, S(α3) = 4.11, S(α4) = 3.35.

Step 5. Then the rank of the four alternatives is obtained

A1 � A3 � A4 � A2.

Therefore, the optimal alternative is A1.
In step 2, if we utilize Equation (41) to aggregate the assessments, then we can derive the following

collective decision matrix in Table 6 (suppose s = t = 1, q = 3).
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Table 6. Collective picture fuzzy linguistic decision matrix (by q-RPLWGHM operator).

C1 C2 C3 C4

A1 〈s3.52, (0.59, 0.37, 0.36)〉 〈s1.80, (0.72, 0.20, 0.20)〉 〈s2.22, (0.32, 0.70, 0.70)〉 〈s2.55, (0.24, 0.76, 0.70)〉
A2 〈s3.09, (0.64, 0.34, 0.34)〉 〈s2.96, (0.34, 0.53, 0.49)〉 〈s2.50, (0.23, 0.69, 0.64)〉 〈s4.23, (0.69, 0.16, 0.15)〉
A3 〈s3.58, (0.77, 0.23, 0.23)〉 〈s1.89, (0.28, 0.67, 0.62)〉 〈s4.56, (0.05, 0.86, 0.87)〉 〈s1.96, (0.20, 0.71, 0.71)〉
A4 〈s5.01, (0.37, 0.62, 0.62)〉 〈s2.82, (0.65, 0.24, 0.24)〉 〈s5.61, (0.48, 0.67, 0.32)〉 〈s2.51, (0.16, 0.74, 0.70)〉

Then we utilize Equation (43) to obtain the following overall values of alternatives:

α1 = 〈s3.65, (0.60, 0.44, 0.44)〉 α2 = 〈s2.36, (0.49, 0.52, 0.52)〉
α3 = 〈s3.36, (0.26, 0.75, 0.75)〉 α4 = 〈s2.87, (0.32, 0.67, 0.66)〉.

In addition, we calculate the score functions of the overall assessments and we can get

S(α1) = 4.13, S(α2) = 2.31, S(α3) = 2.01, S(α4) = 2.14.

Therefore, the rank of the four alternatives is A1 � A2 � A4 � A3 and the best alternative is A1.

5.2. The Influence of the Parameters on the Results

The parameters q, s and t play significant roles in the final ranking results. In the following,
we shall investigate the influence of the parameters on the overall assessments of alternatives and the
final ranking results. First, we discuss the effects of the parameter q on the ranking results (suppose
s = t = 1). Details are presented in Figures 1 and 2.

 

Figure 1. Score values of the alternatives when q ∈ [1, 10], s = t = 1 based on q-RPLWHM operator.

As seen in Figures 1 and 2, the score values of the overall assessments are different with different
value of q, leading to different ranking results based the q-RFLWHM operator and the q-RFLWGHM
operator. However, the best alternative is always A1. The decision-makers can choose the appropriate
parameter value q according to their preferences. From Figure 1, we can find that when q ∈ [1, 1.71] the
ranking order is A1 � A3 � A2 � A4 and when q ∈ [1.71, 10] the ranking order is A1 � A3 � A4 � A2

by the q-RFLWHM operator. In addition, from Figure 2 we know when q ∈ [1, 4.12] the ranking order
is A1 � A2 � A4 � A3; when q ∈ [4.12, 4.34] the ranking order is A1 � A4 � A2 � A3; when
q ∈ [4.34, 4.66] the ranking order is A1 � A4 � A3 � A2, and when q ∈ [4.66, 10] the ranking order is
A1 � A3 � A4 � A2 by the q-RFLWGHM operator.
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Figure 2. Score values of the alternatives when q ∈ [1, 10], s = t = 1 using q-RPLWGHM operator.

In the followings, we investigate influence of the parameters s and t on the score functions and
ranking orders respectively (suppose q = 3). Details are presented in Tables 7 and 8.

Table 7. Ranking orders by utilizing different values of s and t in the q-RPLWHM operator.

s, t Score Functions of S(αi)(i = 1, 2, 3, 4) Ranking Results

s→ 0, t = 1 S(α1) = 5.37, S(α2) = 3.03, S(α3) = 5.21, S(α4) = 2.95 A1 � A3 � A2 � A4
s = 1, t→ 0 S(α1) = 5.11, S(α2) = 3.42, S(α3) = 3.67, S(α4) = 4.24 A1 � A4 � A3 � A2
s = t = 1/2 S(α1) = 4.75, S(α2) = 2.74, S(α3) = 3.53, S(α4) = 2.85 A1 � A3 � A4 � A2

s = t = 1 S(α1) = 5.42, S(α2) = 3.11, S(α3) = 4.11, S(α4) = 3.35 A1 � A3 � A4 � A2
s = t = 2 S(α1) = 6.55, S(α2) = 3.81, S(α3) = 4.95, S(α4) = 4.15 A1 � A3 � A4 � A2
s = t = 5 S(α1) = 9.15, S(α2) = 5.68, S(α3) = 6.48, S(α4) = 5.65 A1 � A3 � A2 � A4

s = 1, t = 2 S(α1) = 6.13, S(α2) = 3.40, S(α3) = 4.83, S(α4) = 3.86 A1 � A3 � A4 � A2
s = 2, t = 1 S(α1) = 6.02, S(α2) = 3.67, S(α3) = 4.48, S(α4) = 4.13 A1 � A3 � A4 � A2
s = 1, t = 5 S(α1) = 8.02, S(α2) = 4.50, S(α3) = 6.18, S(α4) = 5.00 A1 � A3 � A4 � A2
s = 5, t = 1 S(α1) = 7.89, S(α2) = 5.36, S(α3) = 5.55, S(α4) = 5.42 A1 � A3 � A4 � A2

Table 8. Ranking orders by utilizing different values of s and t in the q-RPLWGHM operator.

s, t Score Functions of S(αi)(i = 1, 2, 3, 4) Ranking Results

s→ 0, t = 1 S(α1) = 3.43, S(α2) = 2.32, S(α3) = 2.40, S(α4) = 1.92 A1 � A3 � A2 � A4
s = 1, t→ 0 S(α1) = 3.72, S(α2) = 2.02, S(α3) = 1.71, S(α4) = 2.23 A1 � A4 � A2 � A3
s = t = 1/2 S(α1) = 4.35, S(α2) = 2.50, S(α3) = 2.44, S(α4) = 2.48 A1 � A2 � A4 � A3

s = t = 1 S(α1) = 4.13, S(α2) = 2.31, S(α3) = 2.07, S(α4) = 2.24 A1 � A2 � A4 � A3
s = t = 2 S(α1) = 3.79, S(α2) = 2.03, S(α3) = 1.74, S(α4) = 1.95 A1 � A2 � A4 � A3
s = t = 5 S(α1) = 3.24, S(α2) = 1.64, S(α3) = 1.41, S(α4) = 1.57 A1 � A2 � A4 � A3

s = 1, t = 2 S(α1) = 3.86, S(α2) = 2.13, S(α3) = 1.93, S(α4) = 2.03 A1 � A2 � A4 � A3
s = 2, t = 1 S(α1) = 3.91, S(α2) = 2.15, S(α3) = 1.76, S(α4) = 2.09 A1 � A2 � A4 � A3
s = 1, t = 5 S(α1) = 3.30, S(α2) = 1.78, S(α3) = 1.64, S(α4) = 1.70 A1 � A2 � A4 � A3
s = 5, t = 1 S(α1) = 3.38, S(α2) = 1.81, S(α3) = 1.35, S(α4) = 1.73 A1 � A2 � A4 � A3

As seen in Tables 7 and 8, when different values are assigned to the parameters s and t, different
scores and corresponding ranking results can be obtained. However, the best alternative is always A1.
Especially, in the q-RPLWHM operator, the increase of the parameters s and t leads to increase of the
score functions, whereas a decrease of the score functions is witnessed using q-RPLWGHM operator.
Furthermore, there is a difference in the ranking orders of A2, A3 and A4 when s→ 0 , t = 1 or s = 1,
t→ 0 for the linear weighting by q-RPLWHM or q-RPLWGHM operator. Therefore, the parameters
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s and t can be also viewed a decision-makers’ optimistic or pessimistic attitude to their assessments.
This demonstrates the flexibility in the aggregation processes using the proposed operators.

5.3. Comparative Analysis

To further demonstrate the merits and superiorities of the proposed methods, we conduct the
following comparative analysis.

5.3.1. Compared with the Method Proposed by Liu and Zhang [41]

We utilize Liu and Zhang’s [41] method to solve the above problem and results can be found
in Table 9. From Table 9, we can find out that the results by using Liu and Zhang’s [41] method
and the proposed method in this paper are quite different. The reasons can be explained as follows:
(1) Our method is based on the HM, which considers the interrelationship among attribute values,
whereas the method based Archimedean picture fuzzy linguistic weighted arithmetic averaging
(A-PFLWAA) operator proposed by Liu and Zhang [41] can only provide the arithmetic weighting
function. In other words, Liu and Zhang’s [41] method assumes that attributes are independent.
In most real decision-making problems, attributes are correlated so that the interrelationship among
attributes should be taken into consideration. Therefore, our proposed method is more reasonable
than Liu and Zhang’s [41] method. (2) Liu and Zhang’s [41] method is based on PFLS, which is only a
special case of q-RPLS (when q = 1). Therefore, our method is more general, flexible and reasonable
than that proposed by Liu and Zhang [41].

Table 9. Score values and ranking results using our methods and the method in Liu and Zhang [41].

Method Score Values Ranking Result

Liu and Zhang’s [41] method based on
the A-PFLWAA operator

S(α1) = 1.74, S(α2) = 1.86,
S(α3) = 1.79, S(α4) = 2.62 A4 � A2 � A3 � A1

The proposed method based on
q-RPLWHM operator in this paper

S(α1) = 5.42, S(α2) = 3.11,
S(α3) = 4.11, S(α4) = 3.35 A1 � A3 � A4 � A2

The proposed method based on
q-RPLWGHM operator in this paper

S(α1) = 4.13, S(α2) = 2.31,
S(α3) = 2.01, S(α4) = 2.14 A1 � A2 � A4 � A3

5.3.2. Compared with the Methods Proposed by Wang et al. [47], Liu et al. [48], and Ju et al. [49]

To further demonstrate the effectiveness and validity of the proposed methods in this paper, we
will deal with the problems in Wang et al. [47], Liu et al. [48], and Ju et al. [49] by using our methods
respectively. Given that there is no method to aggregate q-rung picture linguistic information and
there are various methods based on the intuitionistic linguistic numbers (ILNs), which are special
cases of q-RPLNs when q equals to one and the neutral membership degree η equals to zero, we use
the following three cases described by intuitionistic fuzzy numbers (ILNs) to verify our methods.
For instance, when an ILN is 〈s1, (0.6, 0.4)〉, it can be transformed into a q-RPLN 〈s1, (0.6, 0, 0.4)〉.
The score values and ranking results by different methods are shown in Tables 10–12.

Table 10. Score values and ranking results using our method and the method in Wang et al. [47].

Method Score Values Ranking Result

Wang et al.’s [47] method based on the
ILHA operator

S(β1) = 2.35, S(β2) = 2.72,
S(β3) = 3.35, S(β4) = 3.09 A3 � A4 � A2 � A1

The proposed method based on
q-RPLWHM operator in this paper

S(β1) = 6.98, S(β2) = 6.61,
S(β3) = 8.07, S(β4) = 7.31 A3 � A4 � A1 � A2

The proposed method based on
q-RPLWGHM operator in this paper

S(β1) = 6.80, S(β2) = 6.43,
S(β3) = 7.88, S(β4) = 7.19 A3 � A4 � A1 � A2
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Table 11. Score values and ranking results using our method and the method in Liu et al. [48].

Method Score Values Ranking Result

Liu et al.’s [48] method based on
ILWBM operator

S(r̃1) = 0.483, S(r̃2) = 0.412,
S(r̃3) = 0.383, S(r̃4) = 0.381 A1 � A2 � A3 � A4

The proposed method based on
q-RPLWHM operator in this paper

S(r̃1) = 5.42, S(r̃2) = 4.75,
S(r̃3) = 4.40, S(r̃4) = 4.12 A1 � A2 � A3 � A4

The proposed method based on
q-RPLWGHM operator in this paper

S(r̃1) = 5.42, S(r̃2) = 4.64,
S(r̃3) = 4.04, S(r̃4) = 4.05 A1 � A2 � A4 � A3

Table 12. Score values and ranking results using our method and the method in Ju et al. [49].

Method Score Values Ranking Result

Ju et al.’s [49] method based on
WILMSM operator

S(r1) = 0.18, S(r2) = 0.20,
S(r3) = 0.14, S(r4) = 0.19 A2 � A4 � A1 � A3

The proposed method based on
q-RPLWHM operator in this paper

S(r1) = 3.98, S(r2) = 4.05,
S(r3) = 3.68, S(r4) = 3.94 A2 � A1 � A4 � A3

The proposed method based on
q-RPLWGHM operator in this paper

S(r1) = 3.74, S(r2) = 3.92,
S(r3) = 3.52, S(r4) = 3.82 A2 � A4 � A1 � A3

From Tables 10–12, it is obvious to find that the ranking results produced by our method are little
different to those produced by other methods. However, their optimal selections are the same, which
can prove the effectiveness of our methods very well. As mentioned above, the q-RPLN contains more
information than ILN, and it is a generalization of the ILN. Thus, our method based on q-RPLNs can
be utilized in a wider range of environments.

Wang et al.’s [47] method is based on intuitionistic linguistic hybrid averaging (ILHA) operator,
which cannot consider the interrelationship among attribute values. Because our proposed method
can make up for this disadvantage, our method is more reasonable than Wang et al.’s [47] method.

Liu et al.’s [48] method is based on intuitionistic linguistic weighted Bonferroni mean (ILWBM)
operator. It can cope with the interrelationship between augments, which is same as our method.
However, as Yu and Wu [44] pointed out that HM has some advantages over BM, our method is better
than Liu et al.’s [48] method.

Ju et al.’s [49] method is based on weighted intuitionistic linguistic Maclaurin symmetric mean
(WILMSM) operator and when k = 2, the interrelationship between any two arguments can be
considered, which is the same as our proposed method. However, our methods are based on the
q-RPLWHM and q-RPLWGHM operators, which have two parameters (s and t). The prominent
advantage of our methods is that we can control the degree of the interactions of attribute values that
are emphasized. The increase of values of the parameters means the interactions of attribute values
are more emphasized. Therefore, the decision-making committee can properly select the desirable
alternative according to their interests and the actual needs by determining the values of parameters.
Moreover, in the WILMSM operator proposed by Ju et al. [49], the balancing coefficient n is not
considered, leading to some unreasonable results. In our proposed operators, the coefficient n is
considered so that our methods are more reliable and reasonable.

From above analysis, we can find out that our proposed methods can be successfully applied
to actual decision-making problems. Compared with other methods, our methods are more flexible
and suitable for addressing MAGDM problems. The advantages and merits of the proposed methods
can be concluded as followings. Firstly, the proposed methods are based on q-RPLSs. The prominent
characteristic of q-RPLS is that it allows the sum and square sum of positive membership degree,
neutral membership degree, and negative membership degree to be greater than one, providing more
freedom for decision-makers to express their evaluations, and further leading to less information loss in
the process of MAGDM. Secondly, considering the fact that decision-makers prefer to make qualitative
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decisions due to lack of time and expertise, the proposed q-RPLSs not only express decision-makers’
qualitative assessments, but also reflect decision-makers’ quantitative ideas. Therefore, q-RPLSs
are suitable and sufficient for modeling decision-makers’ evaluations on alternatives. Thirdly, in
most real decision-making problems, attributes are correlated, so that the interrelationship between
attribute values should be taken into account when fusing them. Our method to MAGDM is based
on q-RPLWHM or q-RPLWGHM operators, which consider the interrelationship between arguments.
Therefore, our method can effectively actual MAGDM problems. In a word, the proposed method not
only provides a new tool for decision-makers to express their assessments, but also effectively model
the process of real MAGDM problems. Therefore, our method is more general, powerful and flexible
than other methods.

6. Conclusions

The main contribution of this paper is that a novel MAGDM model is proposed. In the proposed
model, q-RPLNs are utilized to represent decision-makers’ assessments of alternatives and weights of
attributes and decision-makers take the form of crisp numbers. In addition, q-RPLHM, q-RPLWHM,
q-RPLGHM, and q-RPLWGHM operators are proposed to aggregate attribute values to obtain overall
assessments of alternatives. In order to do this, we proposed the q-RPFS and q-RPLS, which are
powerful and effective tools for coping with uncertainty and vagueness. Subsequently, the operations
and comparison law for q-RPLNs were introduced. We also proposed some aggregation operators
for fusing q-rung picture linguistic information. The prominent characteristic of these operators
is that they can capture the interrelationship between q-RPLNs. Moreover, we have studied some
desirable properties and special cases of the proposed operators. Thereafter, we utilized the proposed
operators to establish a novel method to solve MAGDM problems. To illustrate the validity of
the proposed method, we used the proposed method to solve an ERP system selection problem.
In addition, we conducted comparative analysis to demonstrate the effectiveness and superiorities
of the proposed method. Due to the high ability of q-RPLSs for describing fuzziness and expressing
decision-makers’ assessments over alternatives, and the powerfulness of q-rung picture linguistic
Heronian mean operators, the proposed method can be applied to solving real decision-making
problems, such as supplier selection, low carbon supplier selection, hospital-based post-acute care,
risk management, medical diagnosis, and resource evaluation, etc. In future works, considering the
advantages of q-RPLSs, we should investigate more aggregation operators for fusing q-rung picture
linguistic information such as the q-rung picture linguistic Bonferroni mean, q-rung picture linguistic
Maclaurin symmetric mean, q-rung picture linguistic Hamy mean, and q-rung picture linguistic
Muirhead mean. Additionally, we should investigate more methods of MAGDM with q-rung picture
linguistic information.
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