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Whoever slays a soul, ... , it is as though he slew all men; and whoever 

keeps it alive, it is as though he kept alive all men 

Quran 5:32 

As afootballer I can't imagine life without the use of one of my legs ... 

Sadly this is exactly what happens to thousands of children every year 

when they accidentally step on a landmine. 

Ryan Giggs 
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ABSTRACT 

A GENERIC FRAMEWORK FOR CONTEXT-DEPENDENT FUSION WITH 

APPLICATION TO LANDMINE DETECTION 

AHMED CHAMSEDDINE BEN ABDALLAH 

NOVEMBER 22, 2010 

For complex detection and classification problems, involving data with large intra­

class variations and noisy inputs, no single source of information can provide a 

satisfactory solution. As a result, combination of multiple classifiers is playing an in­

creasing role in solving these complex pattern recognition problems, and has proven 

to be a viable alternative to using a single classifier. 

Over the past few years, a variety of schemes have been proposed for combining 

multiple classifiers. Most of these were global as they assign a degree of worthiness 

to each classifier, that is averaged over the entire training data. This may not be 

the optimal way to combine the different experts since the behavior of each one 

may not be uniform over the different regions of the feature space. To overcome 

this issue, few local methods have been proposed in the last few years. Local fusion 

methods aim to adapt the classifiers' worthiness to different regions of the feature 

space. First, they partition the input samples. Then, they identify the best classifier 

for each partition and designate it as the expert for that partition. Unfortunately, 

current local methods are either computationally expensive and/or perform these 

two tasks independently of each other. However, feature space partition and algo­

rithm selection are not independent and their optimization should be simultaneous. 
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In this dissertation, we introduce a new local fusion approach, called Context Ex­

traction for Local Fusion (CELF). CELF was designed to adapt the fusion to differ­

ent regions of the feature space. It takes advantage of the strength of the differ­

ent experts and overcome their limitations. First, we describe the baseline CELF 

algorithm. We formulate a novel objective function that combines context identifica­

tion and multi-algorithm fusion criteria into a joint objective function. The context 

identification component thrives to partition the input feature space into different 

clusters (called contexts), while the fusion component thrives to learn the optimal 

fusion parameters within each cluster. Second, we propose several variations of 

CELF to deal with different applications scenario. In particular, we propose an ex­

tension that includes a feature discrimination component (CELF-FD). This version 

is advantageous when dealing with high dimensional feature spaces and/or when 

the number of features extracted by the individual algorithms varies significantly. 

CELF-CA is another extension of CELF that adds a regularization term to the objec­

tive function to introduce competition among the clusters and to find the optimal 

number of clusters in an unsupervised way. CELF-CA starts by partitioning the data 

into a large number of small clusters. As the algorithm progresses, adjacent clusters 

compete for data points, and clusters that lose the competition gradually become 

depleted and vanish. Third, we propose CELF-M that generalizes CELF to support 

multiple classes data sets. 

The baseline CELF and its extensions were formulated to use linear aggregation 

to combine the output of the different algorithms within each context. For some 

applications, this can be too restrictive and non-linear fusion may be needed. To 

address this potential drawback, we propose two other variations of CELF that use 

non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and 

the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desir­

able property of assigning weights to subsets of classifiers to take into account the 

interaction between them. 
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To test a new signature using CELF (or its variants), each algorithm would extract 

its set of features and assigns a confidence value. Then, the features are used to 

identify the best context, and the fusion parameters of this context are used to fuse 

the individual confidence values. 

For each variation of CELF, we formulate an objective function, derive the necessary 

conditions to optimize it, and construct an iterative algorithm. Then we use ex­

amples to illustrate the behavior of the algorithm, compare it to global fusion, and 

highlight its advantages. 

We apply our proposed fusion methods to the problem of landmine detection. We 

use data collected using Ground Penetration Radar (GPR) and Wideband Electro­

Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can 

identify meaningful and coherent contexts (e.g. mines of same type, mines buried 

at the same site, etc.) and that different expert algorithms can be identified for 

the different contexts. In addition to the land mine detection application, we apply 

our approaches to semantic video indexing, image database categorization, and 

phoneme recognition. In all applications, we compare the performance of CELF 

with standard fusion methods, and show that our approach outperforms all these 

methods. 
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~1 
INTRODUCTION 

Traditional machine learning and pattern recognition systems use features to de-

scribe sensor data and a classifier (also called "expert" or "learner") to determine 

the true class of a given pattern. However, for complex detection and classification 

problems involving data with large intra-class variations and noisy inputs, perfect 

solutions are difficult to achieve, and no single source of information can provide 

a satisfactory solution. As a result, combination of multiple classifiers (or multiple 

experts) is playing an increasing role in solving these complex pattern recognition 

problems, and has proven to be a viable alternative to using a single classifier. Clas-

sifier combination is mostly a heuristic approach and is based on the idea that clas­

sifiers with different methodologies or different features can have complementary 

information. Thus, if these classifiers cooperate, group decisions should be able to 

take advantages of the strengths of the individual classifiers, overcome their weak-

nesses, and achieve a higher accuracy than any individual's. 

Over the past few years, a variety of schemes have been proposed for combining 

multiple classifiers. The most representative approaches include majority vote [61], 
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Borda count [56], average [96], weighted average [53], Bayesian [77], prob­

abilistic [67], polling methods [66, 100], logistic regression [56], and combi­

nation by neural networks [16, 57]. Most of the above approaches assume that 

the classifier decisions are independent. However, in practice, the outputs of mul­

tiple classifiers are usually highly correlated. Therefore, in addition to assigning 

fusion weights to the individual classifiers, it is desirable to assign weights to sub­

sets of classifiers to take into account the interaction between them. Fusion methods 

based on the fuzzy integral [1l4, 42] and Dempster-Shafer theory [79] have this 

desirable property. 

Methods for combining multiple classifiers can be classified into two main cate­

gories: global methods and local methods. Global methods assign a degree of worth i­

ness, that is averaged over the entire training data, to each classifier. Local methods, 

on the other hand, adapt the classifiers' worthiness to different data subspaces. In­

tuitively, the use of data-dependent weights, when learned properly, provides higher 

classification accuracy. This approach requires partitioning the input samples into 

regions during the training phase. The partition can be defined from the space of 

individual classifier decisions [83], according to which classifiers agree with each 

other [56], or by features of the input space [74]. Then, the best classifier for 

each region is identified and is designated as the expert for this region [122]. Con­

versely, the partitioning can be defined such that each classifier is an expert in one 

region [104]. This approach may be more efficient, however, its implementation is 

not trivial. In the classification phase, the region of an unknown sample is identi­

fied, and the output of the classifier responsible for this region is used to make the 

final decision. Data partition and classifier selection could also be made dynamic 

during the testing phase [72, 126]. In this case, the accuracy of each classifier 

(with respect to the training samples) is estimated in local regions of the feature 

space in the vicinity of the test sample. The most accurate classifier is selected to 

classify the test sample. 
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Another approach for building mUltiple classifiers is based on bagging and boosting. 

Each classifier is trained using a different subset of the training set. The different 

subsets are obtained from the original using sampling. The final output is obtained 

by voting. Bagging specifically refers to the process of generating training subsets 

by sampling with replacement multiple times. A classifier is trained on each subset. 

All classifiers are used to classify a test sample. The outputs are combined via 

voting. Boosting generally refers to a more sequential process of building multiple 

classifiers on a training set. The general idea is that an initial classifier is trained on 

the training set. Points for which the initial classifier performs poorly are weighted 

more strongly in training a different classifier. The process is repeated multiple 

times in order to try and build a multi-classifier system consisting of classifiers that 

perform well on subsets of the training set. Boosting can cause problems by over­

fitting classifiers on subsets of the training data [41]. 

This thesis was motivated by the development of a generic framework for context­

dependent fusion. Our proposed approach, called Context Extraction for Local Fu­

sion (CELF), is local and thrives to partition the input feature space into different 

clusters (called contexts) and identifies the relevant classifiers for each cluster. Fig­

ure 1.1 displays the architecture of the proposed approach. It is composed of two in­

teractive components: context extraction and decision fusion. The context extraction 

component uses features extracted by the various algorithms (from one or different 

sensors) and their confidences to partition the training input samples into different 

contexts. The decision fusion component uses confidence values, assigned by the 

individual algorithms, to learn the optimal fusion parameters for the different algo­

rithms within each context, based on their relative performance within that context. 

The main contribution of this dissertation consists of the development of a novel 

approach to local fusion that combines context identification and multi-algorithm 
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Figure 1.1: Illustration of the proposed Context Extraction for Local Fusion 
method. 

fusion. Our approach is based On formulating a joint objective function that opti­

mizes both criteria simultaneously. We propose several variations that address dif-

ferent practical scenarios. For each variation, we formulate the objective function, 

derive the necessary conditions to optimize it, and construct an iterative algorithm. 

In particular, we propose: 

1. CELF: This is the baseline algorithm and is based on optimizing an objective 

function that has two components. The first one is used to partition the fea-

ture space into clusters that share similar features and similar response to the 

different classification algorithms. The second component is used to learn 

the optimal cluster-dependent aggregation weights to combine the multiple 

algorithms in a linear way. 

2. CELF-FD: The baseline CELF treats all features equally important. This may 

not be the optimal way especially when working in a high dimensional fea-

ture space, or when the algorithms to be combined extract different number 

of features. To overcome this drawback, we extended the objective function of 

CELF to include a feature discrimination component. The resulting algorithm, 
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called CELF with Features Discrimination (CELF-FD), treats the features ex­

tracted by each algorithm as one set, and assigns a relevance weight to each 

one, within each context. This extension allows finding clusters in subspaces 

of the original sparse and high dimensional feature space. 

3. CELF-CA: The baseline CELF requires the specification of the number of clus­

ters. However, in most applications, this parameter may be hard to fix. In 

fact, the optimal number of clusters depends on the distribution in the feature 

space as well as the performance of the algorithms in the different regions. 

To address this issue, we extended CELF by adding a regularization term to 

the objective function. The resulting algorithm, called CELF with Competitive 

Agglomeration (CELF-CA), starts by partitioning the data into a large number 

of small clusters. As the algorithm progresses, adjacent clusters compete for 

data points, and clusters that lose the competition gradually become depleted 

and vanish. 

4. CELF-M: The baseline CELF was developed for a two class problem. In order 

to apply our approach to different applications that involve multiple classes, 

we generalized CELF to support this aspect. The resulting algorithm, called 

CELF for Multi-class data (CELF-M), is an extension of CELF that can be used 

with any number of classes. 

5. CELF-NN: The baseline CELF algorithm uses a simple linear aggregation to 

assign weights to the individual classifiers. This may not be the optimal way 

to combine the algorithms within each context. To make the fusion of the 

algorithms' decisions more effective, we extended CELF to support non-linear 

fusion using Neural Networks. The resulting algorithm, called CELF with Neu­

ral Networks (CELF-NN), adapts a Neural Network for each context. This is 

done by optimizing a novel joint objective function that combines context 

identification and Neural Networks learning. 
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6. CELF-FI: CELF-FI is another extension of CELF to support non-linear aggrega­

tion using fuzzy integrals. This extension has the additional desirable property 

of assigning weights to subsets of classifiers to take into account the interac­

tion between them. 

7. Application to landmine detection: Recently, a variety of sensors and detec­

tion algorithms have been proposed for land mine detection. Extensive testing 

of these methods has shown that the relative performance of different detec~ 

tors/sensors can vary significantly depending on the mine type, geographical 

site, soil and weather conditions, and burial depth. In this thesis, we report 

results of the application of our proposed fusion methods to data collected 

using GPR and WEMI sensors. We also provide a comparison of the results of 

our algorithms with those obtained using common fusion approaches. 

8. Application to other data sets: Even though our approaches were mainly 

designed and developed for the land mine detection problem, we have applied 

them to the problems of semantic video indexing, image database catego­

rization, and phoneme recognition. For each application, we compared their 

results with other well~known fusion methods. 

The rest of this thesis is organized in three main parts. The first part, consisting 

of Chapters 2, 3, and 4, gives a literature review of related work. Specifically, 

Chapter 2 gives an overview of some relevant fusion methods. Chapter 3 describes 

prototype~based clustering, widely used in local fusion approaches, and enumerates 

some representative clustering algorithms. Chapter 4 provides motivations and the 

background needed to apply the proposed fusion to the problem of land mine de­

tection. The second part of this thesis consists of Chapters 5, and 6. It describes 

the proposed CELF approach and its variations and illustrates them with various 

examples. The last part of this thesis illustrates the experimental results of the pro­

posed fusion methods. Finally, Chapter 9 summarizes the contributions and outlines 

potential future work. 
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~2 
CLASSIFIER FUSION METHODS 

Classification techniques have been successfully applied to many real world prob-

lems. It is generally accepted that there is no one best way to solve the problems 

and it may be futile to debate which type of classification technique is best [93]. 

Therefore, many methods to combine the decisions of several classifiers were ini-

tiated in order to increase the performance of traditional single classifier systems. 

Classifier combination has produced promising results and research in this domain 

has increased significantly [75], partly as a result of advances in the classification 

technology itself. Classifier combination have been applied to various fields of pat­

tern recognition, including character recognition [110], speech recognition [59], 

and text categorization [9], and have been proved to be superior to single classifier 

systems both theoretically and experimentally. 

Motivated by the classifiers' complementary characteristics, classifier combination 

can achieve a higher accuracy than individual algorithms by taking advantages of 

the strengths of the individual classifiers and overcoming their weaknesses. Nonethe­

less, a necessary and sufficient condition for an ensemble of classifiers to be more 

accurate than any individual classifier is that the classifiers are both accurate and 

diverse [52]. An accurate classifier is one that has an error rate better than random 
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guessing on a new sample; two classifiers are diverse if they make different errors 

on new data points. In most applications, these conditions are assumed to be sat­

isfied and the superiority of classifier combination over a single classifier has been 

demonstrated experimentally. 

Fusion of data/information can be carried out on three levels of abstraction closely 

connected with the flow of the classification process: data level fusion, feature level 

fusion, and decision level fusion. Data level fusion, also called low level fusion, 

combines several sources of raw data to produce new raw data that is expected to be 

more informative and synthetic than any of the single sources. Feature level fusion, 

also called intermediate level fusion, combines various features. These features may 

come from different raw data sources (e.g. sensors) or from the same raw data. In 

the latter case, the objective is to find relevant features among available features 

that might come from several feature extraction methods. Decision level fusion, 

also called high level fusion, combines decisions coming from several experts. 

6 0 6 ( 1 ( 2 ••• (K A. Decision Level 
••• 

(ill (il2 (ilK 

Gating net 

Ftl Ft2 ••• F~ B. Feature Level 

C. Data Level 

Figure 2.1: A general architecture for information fusion 

Figure 2.1 shows a generic architecture for the different levels of information fu­

sion. It illustrates three basic ingredients of fusion (fusion level, gating net, and 
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combiner) . Different combinations of these different ingredients lead to different 

specific models for expert combination [127]. 

Methods for combining mUltiple classifiers can be classified into two main cate­

gories: classifier selection and classifier fusion . Classifier selection methods put 

an emphasis on the development of the classifier structure. First, these methods 

identify the single best classifier or a selected group of classifiers and then only 

their outputs are considered for the final decision or for further processing. This 

approach assumes that the classifiers are complementary, and that their expertise 

varies according to the different areas of the feature space. For a given test sam­

ple, these methods attempt to predict which classifiers are more likely to be correct. 

Some of these methods consider the output of only a single classifier to make the 

final decision [104] . Others, combine the output of multiple "local expert" classi­

fiers [60] . Classifier fusion methods operate mainly on the classifiers outputs, and 

strive to combine the classifiers outputs effectively. This approach assumes that the 

classifiers are competitive and equally experienced over the entire feature space. 

For a given test sample, the individual classifiers are applied in parallel, and their 

outputs are combined in some manner to take a group decision. 

Another way to categorize classifier combination methods is based on the way they 

select or assign weights to the individual classifiers. Some methods are global and 

assign a degree of worthiness, that is averaged over the entire training data, to each 

classifier. Other methods are local and adapt the classifiers' worthiness to differ­

ent data subspaces. Intuitively, the use of data-dependent weights, when learned 

properly, provides higher classification accuracy. 

In the rest of this chapter, several classifier fusion methods are briefly overviewed. 

Global fusion method are described first. Then, some local fusion are introduced in 

Section 2.7. 

Let X = {Xj lj = 1, ... ,N} be a set of N training observations to be classified into one 

of the M classes: C1, •• • , CM , and Let e1, ••• , eK denote K classifiers. Each classifier k 
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generates confidence values, q]/k = {y k/j = 1, . .. ,N}. 
) 

2.1 Bayesian Fusion 

The Bayesian methods can be applied to the classifier fusion under the condition 

that the classifiers' outputs are expressed by posterior probabilities. Effective combi­

nation of given likelihoods is also a probability of the same type, which is expected 

to be higher than the probability of the best individual classifier for the correct 

class [106]. 

Let x be an input simple that has been processed by K classifiers: e1 , ... , eK to be 

classified into one of the M classes: C1' .. . 'CM . Let Pk(x E cdx) be the posterior 

probability given by classifier k, k = 1, ... ,K , that x comes from class i. One sim-

ple way to fuse the outputs of the K classifiers is to compute the average of their 

posterior probability. That is, 

i = 1, . . . , M. (2.1) 

Such decision, based on the newly estimated posterior probabilities, is called aver-

age Bayes classifier. This approach can be applied for the Bayes classifiers. For other 

non-Bayesian classifiers, several other methods to estimate the posterior probabil­

ity could be used. For example, for the k- NN classifier the transformation can be 

computed using 

(2.2) 

where ki denotes the number of prototype samples from class Ci out of all kNN 

nearest prototype samples. 

Bayesian fusion methods have been used in various applications [106]. Although 

they have proven to be effective in some cases, Bayesian models cannot handle cor­

related information coming from multiple sources because this approach assumes 
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that the classifier decisions are independent, which is generally not true. 

2.2 Artificial Neural Networks Fusion 

Artificial Neural Networks (ANN) have been applied successfully to many pattern 

classification problems. They have also shown promise to the classifier fusion prob­

lem. A neural network designed for the purpose of classifier fusion should have one 

crisp output or alternatively a number of soft outputs equal to the number of classes 

if there is a need to produce qualitative assignment values to each class. The input of 

such a network should be associated with the individual classifier outputs [16, 57]. 

Given a neural network that performs a mapping of K individual classifiers outputs 

(taken as input) into M outputs corresponding to the level of assignment to each of 

the M classes. If a crisp decision is required, the output with the highest value is 

chosen. The input-output mapping in ANN is determined via an iterative learning 

process. During the learning stage, weights between each pair of connected nodes 

of the network are adapted in such a way as to minimize the difference between the 

actual network output and the desired output. 

It is quite common for the output of a set of ANNs to be combined using another 

ANN. Following this approach neural networks working as a mixture can be ex­

panded to a higher dimension by fusing several neural networks [17] or arranging 

them in an efficient ANN-like structure [62]. 

2.3 Borda Count Fusion 

The Borda Count is a single-winner election method in which voters rank candidates 

in order of preference [19]. The Borda Count determines the winner of an election 

by giving each candidate a certain number of points corresponding to the position 

in which he or she is ranked by each voter. Once all votes have been counted the 
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candidate with the most points is the winner. Because it sometimes elects broadly 

acceptable candidates, rather than those preferred by the majority, the Borda Count 

is often described as a consensus-based electoral system, rather than a majoritarian 

one. 

The Borda Count has been used for fusing the results of classifiers for the task of 

handwriting recognition [56, 43, 120]. In particular, Ho et al. [56] presented a 

weighted Borda Count technique for this application that uses logistic regression to 

identify classifier weights by comparing the ranking results of each classifier with 

a best ranking derived by applying several different independent classification al­

gorithms. Gader et al. [43] employed a method in which the Borda weights are 

determined dynamically based on a match confidence between the object and a lex­

icon string. Van Erp and Schomaker [120] compare the performance of Median 

Borda, a variant of the Borda Count in which the median rank (rather than sum or 

average) is used, and Nanson's [87] election procedure (an iterative Borda scheme 

that deletes the candidate ranked lowest in each successive iteration). 

2.3.1 General Approach 

One approach to combine multiple classifiers with a supervised learning system 

using rank weighting is to consider each discrimination algorithm to be a voter, and 

each observation in the training set to be a candidate. Given K algorithms el , ... , eK 

and N training samples X l , ... , xN , each algorithm maps samples to their confidence 

values, elements of lR. The number of points given to candidates for each ranking is 

determined by the number of candidates standing in the voting. For each algorithm 

ei and for each candidate Xj ' a rank r i(xj ) is assigned to X j if ei(xj ) has a confidence 

value greater than exactly r i (Xj ) - 1 other candidate alarms. In other words, a 

candidate will receive N points for a first preference, N - 1 points for a second 

preference, N - 2 for a third, and so on. Thus, r i is a map from the confidence 

values assigned by algorithm ei into the set {I, ... ,N}. The final result of applying 

13 



the Borda Count to Xj is expressed by the following expression: 

1 K 

r(x .) = - " r ·(x· ) } KN L.J 1 } 

1=1 

(2.3) 

Note that this result is normalized to yield a value in the range [0,1]. 

2.3.2 Weighted Borda Count Approach 

If there are evidences that algorithms ei and ej have differing predictive abilities, 

sayei is more likely to be correct than ej , then one should use this prior information 

and assigns weights Wi and W j to these algorithms, such that W i > W j . In general, a 

weighted Borda scheme assigns a weight Wk to each algorithm ek such that 

K 

L W k=l, 
k=l 

and the weighted Borda Count assigns confidence r to Xj as follows : 

(2.4) 

(2.5) 

Borda fusion has been applied to landmine detection [123], and (in a different 

way) to handwriting recognition [42], and fusion of social choices (voting, evalua-

tion, etc.). 

The main advantages of the Borda based fusion is that it makes no assumptions 

about the underlying distributions of the confidence value assignments. In addition, 

it maps each of the confidence distribution to a uniform distribution, thus providing 

a reasonable method for combining decision statistics. 
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2.4 Dempster-Shafer Fusion 

Dempster-Shafer theory (DST) is a mathematical theory of evidence, based on be-

lief functions and plausible reasoning, and is used to combine separate pieces of 

information (evidence) to calculate the probability of an event [108]. In a finite 

discrete space, DST can be interpreted as a generalization of probability theory 

where probabilities are assigned to sets as opposed to mutually exclusive single-

tons. In traditional probability theory, evidence is associated with only one possible 

event. In DST, evidence can be associated with multiple possible events, e.g., sets of 

events. As a result, evidence in DST can be meaningful at a higher level of abstrac-

tion without having to resort to assumptions about the events within the evidential 

set. One of the most important features of Dempster-Shafer theory is that the model 

is designed to cope with varying levels of precision regarding the information and 

no further assumptions are needed to represent the information. 

Let e = {81, . .. , 8K } be a finite set of possible hypotheses. This set is referred to 

as the frame of discernment, and its power set1 is denoted by JP'C e). There are three 

important functions in Dempster-Shafer theory: the basic belief assignment function 

(BBA or m), the Belief function (Bel) , and the Plausibility function (Pl). 

2.4.1 Basic Probability Assignment 

The basic probability assignment, represented by m, defines a mapping of the power 

set to the interval between 0 and 1, such that 

m : JP'ce) ~ [0,1] 

m(0) = 0 

L mCd)=l 
AeiP(e) 

IThe power set, JP>(8), is the set of all possible sub-sets of 8 , including the empty set. 
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The value of the basic probability assignment for a given set d expresses the pro­

portion of all relevant and available evidence that supports the claim that a partic­

ular element of e belongs to to the set d but to no particular subset of d. Any 

further evidence on the subsets of d would be presented by another basic probabi­

lity assignment. 

From the basic probability assignment, the upper and lower bounds of an interval 

can be defined. This interval contains the precise probability of a set of interest (in 

the classical sense) and is bounded by two nonadditive continuous measures called 

Belief and Plausibility. 

2.4.2 Belief 

The Belief of a set d is defined as the sum of all the basic probability assignments 

of all its subsets. It is interpreted as a measure of the total belief committed to d, 

and is defined by: 

Bel(d) = 1.:: m(gB) (2.9) 
gg r;;..Ji/ 

We can consider a basic belief assignment as a generalization of a probability density 

function whereas a belief function is a generalization of a probability function. It can 

be easily verified that the belief in some hypothesis d and the belief in its negation 

d do not necessarily sum to 1, which is a major difference with probability theory. 

2.4.3 Plausibility 

The Plausibility of a set d is defined as the sum of all the basic probability assign­

ments of the sets that intersect d [69]. It defines the extent one fails to doubt d. 
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Pled) L m(99) (2.10) 

1-Bel(d) (2.11) 

The two measures, Belief and Plausibility are nonadditive. This can be interpreted 

as it is not required for the sum of all the Belief measures to be 1 and similarly for 

the sum of the Plausibility measures. 

2.4.4 Combination Rule 

Dempster's combination rule combines multiple belief functions through their basic 

probability assignments. These belief functions are defined on the same frame of 

discernment, but are based on independent arguments or bodies of evidence. The 

issue of independence is a critical factor when combining evidence and is an impor-

tant research subject in Dempster-Shafer theory. The Dempster rule of combination 

is purely a conjunctive operation (AND). Specifically, the combination (called the 

joint m12 ) is calculated from the aggregation of two basic probability assignment's 

[Jbn'C=d 
m12 = ----l---K---- (2.12) 

where K represents basic probability mass associated with conflict. This is deter­

mined by summing the products of the basic probability assignment's of all sets 

where the intersection is null. That is, 

K = L m1(99)m2 (CC). 
[Jb n'C =0 

(2.13) 

The above rule is commutative, associative, but not idempotent or continuous. 
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The denominator in (2.12) is a normalization factor. It has the effect of completely 

ignoring conflict and attributing any probability mass associated with conflict to the 

null set. Consequently, this operation will yield counterintuitive results in the face 

of significant conflict in certain contexts . 

One of the computational advantages of the Dempster-Shafer framework is that pri­

ors and conditionals need not be specified, unlike Bayesian methods which often use 

a symmetry (minimax error) argument to assign prior probabilities to random vari­

ables. However, any information contained in the missing priors and conditionals 

is not used in the Dempster-Shafer framework unless it can be obtained indirectly 

and arguably is then available for calculation using Bayes equations. Finally, DST 

allows one to specify a degree of ignorance in this situation instead of being forced 

to supply prior probabilities which add to unity. 

2.5 Decision Template Fusion 

Decision Template (DT) [74] is a robust classifier fusion scheme that combines 

classifier outputs by comparing them to a characteristic template for each class. DT 

fusion uses all classifier outputs to calculate the final support for each class, which 

is in sharp contrast to most other fusion methods which use only the support for 

that particular class to make their decision. 

In many cases, the classifier output is a M -dimensional vector with support to the 

M classes, i.e. , 

(2.14) 

where g = {e1, e2 , • •• , eK } is a set of classifiers and 'tl = {Cl> • .. , cM } is a set of class 

labels. Without loss of generality, for i = 1, ... ,K and j = 1, .. . , M, di,j (x) are re­

stricted to the interval [0,1] , and the classifier outputs are called 'soft labels' . Thus, 

di,j (x) is the degree of 'support' given by classifier i to the hypothesis that x comes 

from class cj (most often an estimate of the posterior probability P(Cj Ix)). Classifiers 

18 



combination can be defined as a function of the K classifier outputs e1 (x ), ... , eK(x), 

Le.: 

(2.15) 

DT generates a vector with final degrees of support for the M classes as a soft label 

for x, denoted 

(2.16) 

If a crisp class label is needed, it can use the maximum membership rule; i.e assign 

x to class Cs if J..ts(x ):::: J..t t(x) , for all t = 1, . . . ,M . 

2.5.1 General Model for DT Classifier Fusion 

The DT Classifier fusion assumes that all classifiers are trained over the whole 

feature space, and are thereby considered as competitive rather than complemen­

tary [128]. This approach treats the classifiers' outputs as input to a second-level 

classifier in some intermediate feature space, and designs a new classifier for the 

second (combination) level. In particular, the classifier outputs can be organized in 

a decision profile [76] matrix as 

d· ·(x) l ,} 
(2.17) DP(x) = di,l(X) 

The entries in DP(x) are the intermediate features space. The DT method can build 

a minimum-error classifier by replacing the problem of estimating P(wdx) with one 

of estimating P(wi lel (X), . . . , eK(x)) , or more compactly, P(wi IDP(x)). Thus, the 
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initial feature space with n features, ~n, is transformed into a new space with K x M 

features. This treatment of the combination problem underpins the schemes in [56, 

58, 63]. In a way, this idea is akin to support vector machines approach where the 

initial feature space is transformed in a new (generally higher dimensional) space 

and the classifier is built in that new space [121] . However, in the model here, 

the intermediate feature space has a special context-related structure on which the 

combination model is based [76] . 

2.5.2 Decision Templates CDTs) 

The decision template for class Ci' denoted DTi is the centroid of this class in the 

intermediate feature space. DTi can be regarded as the expected support for class 

Ci. The support for class Ci offered by the combination of the K classifiers, f.1i(X), 

is then found by measuring the similarity between the current DP(x) and DTi. 

In [76], the authors treat DP(x) and DTi as two fuzzy sets, defined over the set 

of intermediate features, and use measures of similarity from fuzzy set theory. The 

following algorithms describes the main steps of the DT training and testing phases. 

Algorithm 2.1 Decision Template(Training) 
1: for i = 1, ... ,M do 
2: Calculate the mean of the decision profiles DP(xj) of all member of Ci from the data 

set X. 
3: Let DTi be the mean of decision template: 

where Ni is the number of elements of X from Ci . 

4: end for 
5: return DT1, . .. , DTM 

(2.18) 

If the classifier outputs are some estimates of the posterior probabilities P(cj lx) , 

j = 1, ... , M, the decision template is an unbiased estimate of the expectation of the 
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Algorithm 2.2 Decision Template(Operation) 
1: Given the input x E ]Rn construct DP(x) as in (2.17) . 
2: Calculate the distance between DP(x) and each DTi, i = 1, .. . , M. 

M K 

dE(DP (x), DTa = LL(dk,j(x ) - dt i(k,j)i, 
j = lk=l 

where dti (k,j) is the (k , j) th entry in decision template 
3: Calculate the components of the soft label of x by: 

1 
Il- i(x) = 1- --dE(DP(x), DTi), M·K 

(2.19) 

(2.20) 

K x M dimensional random variable DP(x) given that the true class is Ci • Therefore, 

assessing the similarity between the actually occurred matrix of outputs DP(x) and 

the expected one for Ci is a reasonable classification strategy. 

Figure 2.2 shows the architecture of the DT approach. The decision templates are 

calculated in advance using (2.18). 

x 

Decision Profile 
DP(x) 

Decision 
Templates 

Cla55 label 
Confidence Value , 

Figure 2.2: Architecture of the decision templates classifier fusion scheme 

21 



2.6 Fuzzy Integral 

The fuzzy integral has been investigated extensively for information fusion [114, 

18, 45, 5]. This integral defines a family of generally nonlinear aggregation opera­

tors on some function of the algorithm confidence values. The aggregation operator 

is defined by the fuzzy integral with respect to a non-additive fuzzy measure. As 

used here, fuzzy measures are real-valued functions defined on sets of algorithms. 

Thus, the fuzzy integral is a mathematical construct that can be used to optimize 

the aggregation operator for a specific fusion application. 

Definition 2.1 (Fuzzy measure). Let d = {aI , ... , ad be a finite set. A fuzzy 

measure, g, is a real valued function defined on the power set of d, lP'(d), with 

range [0,1]' satisfying the following properties: 

1. g(0) = ° and g(d) = 1. 

2. given A, BEd, if A£; B then g(A) :5 g(B). 

For the purpose of fusion, the set d is considered to contain the names of different 

information sources (algorithms), and for a subset A £; d, g(A) is considered to be 

the degree of worthiness of this subset of information. Many fuzzy measures were 

introduced in the literature [80,68,47,20, 103]. In this work, we limit our study 

to the Sugeno measures which are a special class of fuzzy measures [113] . 

Definition 2.2 (Sugeno measure). A fuzzy measure g is called a Sugeno measure if 

it satisfies the following additional property: for allA,B £; d withAnB = 0, there 

exists A > - 1 such that 

g(A U B) = g(A) + g(B) + Ag(A)g(B). (2.21) 

It can be shown that a set function satisfying the conditions in Definition 2.2 is a 

fuzzy measure. In particular, equation (2.21) implicitly imposes the monotonicity 
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constraints on the Sugeno measures. The value of A can be determined for a finite 
K 

set d using (2.21) and the facts that d = u {ad and g(d) = 1, which leads to 
[=1 

solving the following equation for A: 

K 

l+A= n(1+Ag({ad)), andA>-l. (2.22) 
k=1 

Equation (2.22) is a polynomial in A of degree K - 1, and can be easily solved 

numerically [80,68]. 

The discrete Choquet integral [99] has proved to be useful tool to fuse evidence 

supplied by different information sources. 

Definition 2.3 (Choquet integral). Let e : d ---+ [0,1]. Let {aa(1)'" ., aa(K)} denote 

the reordering of the set d such that e(aa(l)) ~ ... ~ e(aa(K))' and let Ak be a col­

lection of subsets defined by Ak = {aa(k)"'" aa(K)}' The discrete Choquet integral 

of e with respect to g on d is defined as 

or 

K 

Cg(e) = L [e(aa(k)) - e(aa(k-l)) ] . g(Ak), 
k=l 

K 

Cg(e) = L [g(Ak) - g(Ak+1 )] • e(aa(k)), 
k=l 

where e(aa(O)) = ° and Ak+1 == 0. 

(2.23) 

(2.24) 

The function e is a particular instance of the partial support (evidence) supplied by 

each information source in determining the confidence in an underlying hypothesis. 

The integral fuses this objective support with the degree of worthiness of the various 

subsets of the information sources. The analysis of the coefficients of the fuzzy 

measure can be performed by the calculation of the Shapley values [97]. 
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Definition 2.4 (Shapley value). The Shapley value of g is a K -dimensional vector 

<pg(ak)= L Y.<I(A) (g(AU {ad)-g(A)) 
A<;.<I\{ad 

(2.25) 

with 
(141-1A1-1)! x 1A1! 

Y.<I(A) = Idl! ' (2.26) 

where IAI indicates the cardinality of A. 

The Shapley value, <pg(ak), with respect to a fuzzy measure g, represents the global 

importance of each source ak with respect to any subset A not containing ak' It is 

confined to the interval [0, 1]. A value close to zero indicates that the kth algorithm 

is not relevant for the given data, while a value close to 1 indicates that the given 
K 

algorithm is highly relevant for the given data. It can be proven that L <pg(ak) = 1. 
k=l 

Another way to analyze the coefficient of the fuzzy measure is to compute the in­

teraction index I g(ak> az) [98,46] between pairs of information sources. 

Definition 2.5 (Interaction index). The mean interaction index between 2 sources 

k and I with respect to g is defined by 

Ig(ak> az) = L ';.<1 (A) (g(AU{ak> azl)-g(AU{ad)-g(AU{az})+g(A)) (2.27) 
A<;.<I\{abad 

with 
(141-1A1- 2)! x 1A1! 

';.<I(A) = (141- I)! . (2.28) 

A positive value of the interaction index (I g (ak> az) > 0) induces a conjunctive be­

havior in aggregation. That is, algorithms k and I have to be both satisfied in order 

to have a good global score. On the other hand, a negative value of the interaction 

index (Ig(ak,aZ) < 0) induces a disjunctive behavior in aggregation. That is, it suf­

fices to satisfy one of the two algorithms, k or I, to have a good global score. A null 
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value of the interaction index (Ig(abaz) = 0) induces no interaction. In this case, a 

linear aggregation is sufficient to have a good global score. 

2.7 Local Fusion methods 

Global fusion methods outlined in the previous sections assign a degree of wor­

thiness, that is averaged over the entire training data, to each classifier. An alter­

native approach, that is local, adapts the classifiers' worthiness to different data 

subspaces. Intuitively, the use of data-dependent weights, when learned properly, 

provides higher classification accuracy. 

In [126], Woods et al. proposed a method called dynamic classifier selection by local 

accuracy. The basic concept of this method is to estimate each classifier's accuracy 

in local regions of the feature space surrounding an unknown test sample, and use 

the decision of the most locally accurate classifier. This method, however, was too 

time-consuming due to the need for an accuracy estimation for each test sample. 

In the clustering-and-selection method [73], Kuncheva presented an algorithm to 

statistically select the best classifier. In this method, the training data are clustered 

to form the decision regions, and one locally best classifier is selected based on local 

accuracy. However, the method was not fully generalized to multiple classifiers for 

one region. Liu and Yuan [81] proposed a modified version of the clustering­

and-selection method, that tried to take advantage of the class labels. For each 

classifier, the training samples are divided into correctly and incorrectly classified 

samples, which are then clustered to form a partition of the feature space. Due to 

the difference between the classifiers' error characteristics, the partitions resulting 

from different classifiers generally are not the same. In the test phase, the most 

accurate classifier in the vicinity of the input sample is appointed to make the final 

decision. The main drawback of this method is that each classifier should maintain 

its own partition, which makes the decision process memory and computational 

time-intensive. 
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Frigui et al. [SO] proposed a local fusion method called Context-Dependent Fusion 

(CDF). CDF attempts to partition the feature space into regions that share common 

attributes and adapts the fusion to the different regions. The training part of CDF 

has two main components: Context Extraction and Algorithm Fusion. In Context 

Extraction, the features used by the different classifiers are combined, and a clus­

tering algorithm is used to partition the training signature into groups of similar 

signatures, or contexts, and learn the relevant features within each context. Here, it 

is assumed that signatures that have similar response to different algorithms share 

some common features, and would be assigned to the same cluster. The Algorithm 

Fusion component assigns an aggregation weight to each detector in each context 

based on its relative performance within the context. To test a new signature us­

ing CDF, each detector would extract its set of features and assigns a confidence 

value. Then, the features are used to identify the best context, and the aggregation 

weights of this context are used to fuse the individual confidence values. Figure 2.3 

displays the architecture of the training and testing phases of the CDF scheme. This 

figure highlights the two main components of the training phase, namely, context 

extraction and algorithm fusion. In context extraction, the features extracted by the 

different algorithms (from different sensors) are combined, and a clustering algo­

rithm is used to partition the training signatures into groups of similar signatures, or 

contexts, and learn the relevant features within each context. The algorithm fusion 

component assigns an aggregation weight to each detector in each context based on 

its relative performance within the context. 

Local fusion method requires partitioning the input samples into regions during 

the training phase. Then, the best classifier for each region is identified and is 

designated as the expert for this region. These two processes are often performed 

independently of each other. However, these two tasks are not independent, and 

their optimization should be combined. 
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~3 
PROTOTYPE-BASED CLUSTERING 

Clustering is an effective technique for exploratory data analysis, and has been 

studied extensively in statistics [64], pattern recognition [21, 35], and machine 

learning [90,22]. Clustering aims at partitioning unlabeled data set into different 

groups or clusters, such that members of the same cluster are as similar as possible, 

while members of different clusters are as dissimilar as possible. In local fusion 

work, clustering methods are needed to partition the input feature space so that the 

multiple classifiers' worthiness could be adapted to different data regions. 

In this chapter, we focus on prototype-based clustering methods (also called ob­

jective function-driven). Prototype-based clustering methods build partitions (clus­

ters) of data sets and extract a prototype for each cluster by optimizing an objective 

function. These methods have the advantage of being able to incorporate knowl­

edge about the global shape or size of clusters by using appropriate prototypes and 

distance measures in the objective function [21,8, 71, 70]. 

In the following, we outline four prototype-based clustering algorithms that are 

highly relevant to our research area; namely, the K-Means [82], the Fuzzy C-

Means (FCM) [8], the Competitive Agglomeration(CA) [30], and the Simultaneous 

Clustering and Attribute Discrimination (SCAD) [32] algorithms. 
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Let X = {Xj E ~nlj = 1, ... ,N} be a set offeature vectors. Let 'tf = (cv ... , cc) 

represents a set of C prototypes; each of which characterizes one of the C clusters. 

3.1 The K-Means Algorithm 

The K - Means [82] algorithm, is one of the oldest and most widely used clustering 

algorithms. It minimizes the following objective function 

C 

JK-Means = L: L: d
2
(xj' Cj), 

i=l XjE.'t:; 

(3.1) 

where d2 (xj' cJ = d5 represents the distance from a feature point Xj to the proto­

type Cj, and X; is the set of points assigned to the i th cluster and is given by 

(3.2) 

oj 
The optimal prototype parameters Cj of the ith cluster are derived by setting ~ = o. 

vCj 

For instance, if d5 is the squared Euclidean distance, d5 = Ilxj - c;l12, then the 

center Cj is given by 

N 
(3.3) 

The K - Means algorithm consists of alternating updates of the centers using (3.3) 

and the partition using (3.2), until convergence or when a maximum number of 

iterations is reached. The K -means is formally described by Algorithm 3.1. 

3.2 The Fuzzy C-Means Algorithm 

Since Zadeh [131] proposed fuzzy sets that produced the idea of partial mem­

bership functions, fuzzy clustering has been widely studied and applied to various 
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Algorithm 3.1 K -means 

Inputs: ~: the features of the data samples. 
c: the number of clusters. 

Outputs: c: the cluster centers. 

1: Select C points as initial centroids. 
2: repeat 
3: Form C clusters by assigning each point to its closest centroid using (3.2). 
4: Recompute the centroid of each cluster using (3.3). 
5: until centroids stabilize 
6: return c 

areas. The Fuzzy C-Means (FCM) [8] is a simple but powerful clustering method 

that uses the concept of fuzzy sets. The FCM optimizes the following objective 

function: 

subject to 

C N 

JFCM = LLU011xj - c;l1 2
, 

1=1 j=l 

C 

Ulj E [0,1] Vi, j and L uij = 1 Vi. 
i=l 

(3.4) 

(3.5) 

In (3.4), N is the number of data points, C is the number of clusters, c1 is the center 

of the i th cluster, Ulj is the membership of the lh point, Xj' in the i th cluster, and m 

is a constant called the fuzzifier. 

Minimization of JFCM with respect to the centers, CI' yields 

N 

Lu0xj 
j=l 

Ci=-N--

LUV 
j=l 

Minimization of JFCM with respect to the membership degree, Uij' yields 

1 
Uij = -c------

L (dij / d
1j 

)1!(m-1) 

1=1 

where 
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The FCM algorithm is formally described by Algorithm 3.2. 

Algorithm 3.2 Fuzzy C-Means 

Inputs: $": the features of the data samples. 
c: the number of clusters. 
m: the fuzzifier, m E (1, +00). 

Outputs: U: the fuzzy membership matrix of the data samples. 
c: the cluster centers. 

1: Initialize U. 
2: repeat 
3: Update c using (3.6). 
4: Update U using (3.7). 
5: until centers stabilize 
6: return c, U. 

3.3 Competitive Agglomeration Algorithm 

The objective function in (3.4), which is essentially the sum of (fuzzy) intra-cluster 

distances, has a monotonic tendency with respect to the number of clusters, C, 

and has the minimum value of zero when C = N. Therefore, it is not useful for 

the automatic determination of the "optimum" number of clusters, and C has to be 

specified a priori. The Competitive Agglomeration (CA) algorithm [30] overcomes 

this drawback by adding a second regularization term to prevent over fitting the 

data set with too many prototypes. The CA algorithm starts by partitioning the data 

set into a large number of small clusters. As the algorithm progresses, adjacent 

clusters compete for data points, and clusters that lose the competition gradually 

vanish. The CA algorithm minimizes the following objective function 

(3.9) 

subject to 
c 

L:Uij = 1, 'V j. (3.10) 
i=l 
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It should be noted that the number of clusters, C, in (3.9) is dynamically updated 

in the CA algorithm. 

The first term in (3.9) controls the shape and size of the clusters and encourages 

partitions with many clusters. The second term, on the other hand, penalizes solu-

tions with a large number of clusters and encourages the agglomeration of clusters. 

When both components are combined and a is chosen properly; the final partition 

will minimize the sum of intra-cluster distances, while partitioning the data set into 

the optimal number of clusters [30]. 

Minimization of lCA with respect to the membership degree, Uij' yields 

where 

and 

In (3.13), 

U .. ::::: UFCM + UBias 
lJ ij ij' 

( 

C d2)-1 
FCM::::: '" ~ 

uij L..J d 2 ' 
k=l kj 

N 

Ni = LU ij 
j=l 

is the cardinality of cluster i, and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

is a weighted average of the cardinalities of all clusters. The first term in (3.11) is 

the membership term in the FCM algorithm (see equation (3.7)) which takes into 

account only the relative distances of the feature point to all clusters. The second 

term is a signed bias term which allows good clusters to agglomerate and spurious 

clusters to disintegrate. 
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Minimization of leA with respect to the prototypes leads to 

(3.16) 

The value of the agglomeration constant a in (3.9) needs to be initially small to 

encourage the formation of small clusters. Then, it should be increased gradually 

to promote agglomeration. After a few iterations, when the number of clusters 

becomes close to the "optimum", the value of a should again decay slowly to allow 

the algorithm to converge. 

The Competitive Agglomeration is formally described by Algorithm 3.3. 

Algorithm 3.3 Competitive Agglomeration 
Inputs: X: the features of the data samples. 

Cmax : the maximum number of clusters. 
to: a given threshold. 

Outputs: c: the cluster centers. 

1: Fix the maximum number of clusters C = Cmax ; 

2: Initialize U. 
3: Compute the initial cardinalities Ni for 1:::: i :::: C using (3.14); 
4: repeat 
5: Update the partition matrix U using (3.11); 
6: Compute the cardinalities Ni for 1:::: i :::: C using (3.14); 
7: if Ni < € then 
8: discard cluster i; 
9: end if 

10: Update the number of clusters C; 
11: Update the centers using (3.16); 
12: until centers stabilize 
13: return c 
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3.4 The Simultaneous Clustering and Attribute 

Discrimination Algorithm 

Feature weighting is useful in clustering high-dimensional data as this can reduce 

the effect of irrelevant features. The Simultaneous Clustering and Attribute Dis­

crimination (SCAD) [32] performs clustering and feature weighting simultaneously 

and has several advantages. First, its continuous feature weighting provides a much 

richer feature relevance representation than binary feature selection. Second, the 

SCAD learns a cluster-dependent feature relevance weight in an unsupervised man­

ner. The objective function of SCAD is defined as 

subject to the constraint in (3.5) and 

n 

L Vik = 1 Vi, and Vik E [0,1] Vi, k. 
k=l 

(3.17) 

(3.18) 

In (3.17), n is the feature dimension, vik is the feature relevance weight for the 

eh feature in the ith cluster, q E (1, +(0) is an exponent that controls the features 

discrimination rate, and dijk = Ilxjk - Cikll is the euclidian distance between the ph 

observation and the ith cluster center taking into account the eh feature only. 

Minimizing J with respect to the centers Ci yields 

(3.19) 
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Minimizing J with respect to the membership degree uij yields 

where 

1 
Uij = -c------

L(Dijl Dlj)1/(m-1) 
1=1 

K 

Dij = L V~d~k' 
k=l 

Minimizing J with respect to the feature weight Vik yields 

1 
Vik = K 

LCDiklDiZ )1/(q-1) 
1=1 

where 
N 

DiZ = LU0d~1' 
j=l 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

The role of the feature weight exponent, q, can be deduced from equation (3.22). 

It can be shown that as q approaches 1, Vik tends to take binary values, i.e., 

~ n ~ 

1 if D-k = minD-z 1 t=l 1 

o otherwise. 

This case is analogous to the winner-take-all situation where the feature along 

which the ith cluster is the most compact gets all the relevancy (Vik = 1), while 

all other attributes get assigned zero relevance, and hence do not contribute to the 

distance or center computations. On the other hand, when q approaches infinity, it 

can easily be shown that 

Vik = lin. 
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This means that all attributes share the relevancy equally. This is equivalent to the 

situation where no feature selection/weighting takes place. As it can be expected, 

for the case where q takes finite values in (1,00), we obtain weights that provide 

a moderate level of feature discrimination. For this reason, q is referred to as a 

"discrimination exponent". 

The SCAD algorithm is summarized by Algorithm 3.1. 

Algorithm 3.4 Simultaneous Clustering and Attribute Discrimination 

Inputs: X: the features of the data samples. 
c: the number of clusters. 
m: the fuzzifier, mE (1,+00). 
q: the exponent of the feature weights, q E (1,+00). 

Outputs: U: the fuzzy membership matrix of the data samples. 
c: the cluster centers. 
V: the feature weights in each cluster. 

1: Initialize U and V. 
2: repeat 
3: Update c using (3.19). 
4: Update V using (3.22). 
5: Update U using (3.20). 
6: until centers stabilize 
7: return c, U, V. 
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~4 
LANDMINE DETECTION 

Detection and removal of landmines is a serious problem affecting human beings 

worldwide. The world is now littered with an estimated 80-110 million landmines 

in 64 countries, which maim or kill an estimated 500 people every week, mostly 

innocent civilians. Since the 1940s, many countries have worked on the solution to 

the problem of detecting nonmetallic landmines. The research has encompassed an 

extremely wide range of technologies and hundreds of millions of dollars have been 

spent. Despite these efforts, there is still no operational satisfactory detection so-

lution. This lack of success is attributable to the extreme difficulty of the problem, 

such as: the large variety of land mine types, differing soil type and compaction, 

temperature, moisture, shadow, time of day, weather conditions, and varying ter-

rain, to name a few. 

A variety of sensors have been proposed or are under investigation for landmine 

detection. The research problem for sensor data analysis is to determine how well 

signatures of landmines can be characterized and distinguished from other objects 

under the ground using returns from one or more sensors. Ground Penetrating 
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Radar (GPR) offers the promise of detecting landmines with little or no metal con­

tent [1, 12]. Unfortunately, land mine detection via GPR has been a difficult prob­

lem [124, 40]. Although systems can achieve high detection rates, they have done 

so at the expense of high false alarm rates. The detection problem is compounded 

by the large variety of explosive object types, differing soil conditions, temperature, 

weather conditions, and varying terrain. In particular, many systems can be signifi­

cantly affected by rapidly changing environmental conditions. Therefore, detection 

algorithms which can adopt to changing conditions are needed for detecting buried 

landmines. 

The rest of this chapter gives a brief overview of several sensors that have been used 

to detect land mines and outlines the main land mine detection algorithms that will 

be used later in our fusion approach. 

4.1 Sensors for Landmine Detection 

4.1.1 Ground Penetrating Radar (GPR) 

Ground penetrating radar (GPR) sensors have been used in a variety of land mine 

detection systems for quite some time [1, 12] and various algorithms for precessing 

GPR data to detect mines and discriminate between landmines and non-mine clutter 

objects have been employed [39,38,40,36,34,29,50, 117]. 

GPR works by emitting an electromagnetic wave covering a large frequency band 

into the ground through a wide-band antenna. Reflections from the soil caused by 

dielectric variations such as the presence of an object are measured. By moving the 

antenna it is possible to reconstruct an image representing a vertical slice of the soil 

(refer to Figure 4.2). GPR is sensitive to discontinuities in the electrical properties 

of the interrogated medium, rather than to the presence of metal. Consequently, 

nonmetallic objects, such as wood, plastic, stone, as well as metallic objects, can be 
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seen by the radar. Therefore, GPR offers the promise of detecting land mines with 

little or no metal content. This technology has been used for more than 20 years in 

civil engineering, geology and archeology for detecting buried objects and studying 

soil [1]. However these systems usually lack automatic recognition algorithms. 

An example of GPR system that has been developed to detect land mines include the 

Wichmann/Niitek GPR System [54]. This radar is a very-wide bandwidth (200 Mhz 

- 7 Ghz) bi-static GPR with very low radar cross-section that implicitly solves many 

of the problems typically associated with shallow-buried object detection utilizing 

ground penetrating radar phenomenology. This system, shown in Figure 4.1, con­

sists of a vehicle-mounted wide-bandwidth impulse radar integrated with a marking 

and GPS system. The radar is 1.2 m wide and contains 24 antennae or channels, 

spaced approximately 5 cm apart. A5 the vehicle moves in the down-track direction 

all 24 of the radars channels are sampled once every 5 cm and at each down-track 

position each channel measures one 416-element time-domain vector. 

Figure 4.1: Wichmann/Niitek vehicle-mounted GPR. 

The collected input data is represented by a 3-dimensional matrix of sample values, 

S(z, x , y ), Z = 1, .. . , 416, x = 1, ... , 24, Y = 1, ... ,Ns, where Ns is the total number 

of collected scans, and the indices z, x , and y represent depth, cross-track position, 

and down-track positions respectively. A sample of unprocessed data is shown in 
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Figure 4.2. This image shows 600 down-track GPR responses from a central antenna 

channel. Clearly the largest source of GPR response energy is the dielectric discon-

tinuity between the air and ground, seen near time sample 150 in all down-track 

scans. Despite the ground response, one can still visually identify two subsurface 

anomalies at scans 90 and 460. 

1 00 200 300 4000 50 0 6()O 
Down --Track Sam ples 

Figure 4.2: Sample of GPR responses. The x-axis represents down-track scan num­
ber, y-axis represents time sample. Two anomalies are visible in this data slice one 
at approximately sample 90, and another near sample 460. Also note the high en­
ergy of ground bounce visible in all down-track scans near time sample 150. This 
data has been clipped to enhance contrast. 

4.1.2 Metal Detectors (MD) 

Some interesting studies have been and are being carried out to see if it is feasible 

to discriminate mines from metallic clutter with metal detectors, to reduce the false 

alarm rate. For example, in [112], the author reported results on using an impulse 

MD looking for a characteristic decay curve and comparing it to the ones stored in 

a library. Problems arise from the fact that the response curve depends on several 

factors, such as the orientation of the metallic object, and the exact metal type. 

Also, the matching is done only with objects that are known a priori. Nevertheless, 

this approach could be promising in specific situations. 
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Somewhat along the same line, in [118], the author studied the possibility of 

characterizing objects/mines by measuring the frequency response over a large fre­

quency range. 

Another interesting and unconventional application is represented by the Meander­

ing Winding Magnetometer (MWM) described in [119]. The device has the char­

acteristic of using a square wave winding conductor in order to generate a spatially 

periodic electromagnetic field, whose spatial wavelength depends only on the pri­

mary winding spatial periodicity. It can, in principle, detect several characteristics 

of a buried metallic object (size, shape, etc.), and its application to humanitarian 

demining is currently being investigated. 

The idea of using metal detectors to actually locate nonconducting targets, or more 

generally "cavities" in the soil, is also not new, as a (large) nonconducting target 

does indeed alter locally the natural ground conductivity; and has led for example 

to the patent ("cavity detector") described in [92]. The system should probably 

work best for large objects in soils with high natural conductivity ("background" 

signal). 

Arrays of metal detectors, to quickly scan a large path for example, have also been 

built, such as the Schiebel VAMIDS system [10]. 

4.1.3 Electromagnetic Induction (EMI) 

Another widely deployed metal detector (MD) for land mine detection is the electro­

magnetic induction (EMI) device that operates by sensing the metal present in land 

mines. The metal parts present in a land mine are detected by sensing the secondary 

magnetic field produced by eddy currents induced in the metal by a time-varying 

primary magnetic field. The frequency range employed is usually limited to a few 

tens of kHz. EMI sensors usually consist of a pair of coils, one of which is used to 
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transmit either a broadband pulse or a continuous wide band electromagnetic wave­

form. The transmitted field induces a secondary current in the earth as well as in 

any buried conducting objects. In the case of pulsed excitation, the transmit wave­

form is quenched quickly and the receiving coil measures the decaying secondary 

field that has been induced in the earth and subsurface objects [15]. In the case 

of wide band excitation, the receiving coil is placed within the magnetic cavity so 

that it senses only the weak secondary field radiated by the earth and buried ob­

jects [125]. Present research is investigating replacement of the receive coil with 

magnetoresistive devices. 

The most obvious and serious limitation of metal detectors used to detect landmines 

is the fact that they are metal detectors. A modern metal detector is very sensitive 

and can detect tiny metal fragments as small as a couple of millimeters in length and 

less than a gram in weight. An area to be demined is usually littered with a large 

number of such metal fragments and other metallic debris of various sizes. This 

results in a high rate of "nuisance" alarms since a metal detector cannot currently 

distinguish between the metal in a land mine and that in a harmless fragment. The 

more sensitive a detector is, the higher the number of nuisance alarms it is likely to 

produce in a given location. Operating a detector at a lower sensitivity to reduce the 

number of such nuisance alarms may render it useless for detecting the very targets 

it was designed to detect, that is, the minimum metal-content landmines buried up 

to a few centimeters. Electromagnetic properties of certain soils can also limit the 

performance of metal detectors. 

Figure 4.3 shows a cart based EMI sensor. This cart holds two EMI detectors, one 

with a dipole head and one with a quadrapole head. 
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Figure 4.3: Measurement cart based EM! sensor. 

4.1.4 Infrared Imaging OR) 

Mines retain or release heat at a different rate than their surrounding, and during 

natural temperature variations of the environment it is possible, using IR cameras, 

to measure the thermal contrast between the soil over a buried mine and the soil 

close to it. When this contrast is due solely to the presence of the buried mine 

(alteration of the heat flow), one speaks of a volume effect. When it is due primarily 

to the disturbed soil layer above and around the mine (resulting from the burying 

operation), one speaks of a surface effect, which can be detectable for some time 

(say weeks) after burial and enhances the mine's signature. A good explanation of 

the various thermal mechanisms affecting the surface temperature contrast can be 

found in [109]. 

Landmine detection with passive infrared images can depend quite heavily on the 

environmental conditions [105], and there are cross over periods (in the evening 

and in the morning) when the thermal contrast is negligible and the mines may be 

undetectable. Foliage is also an additional problem. 
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4.1.5 Bulk Explosive Detection 

Other interesting studies are growing towards techniques that can detect the ex­

plosive itself, in bulk form as opposed to trace explosive detection, and which 

have found application in security (airport luggage [101] or mail screening) or 

Non Destructive Testing applications. What makes the landmine detection prob­

lem formidable are, among others, the need for one-sided sensor configurations, 

operator security and equipment portability, and the limited soil penetration of par­

ticles / radiation. 

In addition to the above sensors, there exists several other promising techniques for 

land mine detection. Examples include neutron activation, X-ray backscatter [44], 

Nuclear Magnetic or Quadrupole Resonance(NMR/NQR) [94, 95, 86], and Ther­

mal Neutron Activation(TNA) [7]. 

4.2 Landmine Detection Algorithms 

Generally, automated land mine discrimination algorithms consist of three phases: 

Preprocessing, feature extraction, and confidence assignment. Preprocessing per­

forms tasks such as normalizing data, correcting for variations in height and speed, 

and removing stationary effects due to the system response. Previous methods in­

clude wavelets and Kalman filters [13, 14], subspace methods and polynomial 

matching [49], and subtracting optimally shifted and scaled reference vectors [11]. 

Feature extraction reduces the Preprocessed data to a lower-dimensional, salient set 

of values that represent the data. The principal component transform is a common 

feature extraction tool [129], as are wavelets [13], image processing based differ­

entiation [38], and Hough and Radon transforms [116]. Confidence assignment 
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can be performed using methods such as Bayesian [116], hidden Markov Mod­

els [38,29]' fuzzy logic [39], rules and order statistics [37], neural networks, or 

nearest neighbor classifiers [28]. 

In the following, we outline four distinct feature-based algorithms for land mine 

detection. Using GPR and WEMI collected data, these algorithms have been applied 

to the landmine data with promising results. 

4.2.1 Landmine Detection using GPR 

In this section, we briefly highlight the GPR data preprocessing phase. Then we 

highlight three algorithms that have performed well in extensive field testing, and 

are being considered for real-time implementation in hand-held and vehicle-mounted 

GPR systems. 

4.2.1.1 Data Preprocessing 

Preprocessing is an important step to enhance the mine signatures for detection. In 

general, preprocessing includes ground-level alignment and signal and noise back­

ground removal. First, we identify the location of the ground bounce as the signal's 

peak and align the multiple signals with respect to their peaks. This alignment is 

necessary because the vehicle-mounted system cannot maintain the radar antenna 

at a fixed distance above the ground. The early time samples of each signal, up to 

few samples beyond the ground bounce are discarded. The remaining signal sam­

ples are divided into N depth bins, and each bin would be processed independently. 

The reason for this segmentation is to compensate for the high contrast between the 

responses from deeply buried and shallow anomalies. 

Next, the adaptive least mean squares eLMS) pre-screener proposed by Torrione et 

al. [117] is used to focus attention and identify regions with subsurface anomalies. 

The goal of a pre-screener algorithm in the framework of vehicle-mounted realtime 
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landmine detection is to flag locations of interest utilizing a computationally in­

expensive algorithm so that more advanced feature-processing approaches can be 

applied only on the small subsets of data flagged by the pre-screener. The LMS 

is applied to the energy at each depth bin and assigns a confidence value to each 

point in the cross-track, down-track plane based on its contrast with a neighboring 

region. The components that satisfy empirically pre-determined conditions are con­

sidered as potential targets. Their cross· track xp and down-track Ys positions of the 

connected component center are reported as alarm positions for further processing 

by the feature-based discrimination algorithm to attempt to separate mine targets 

from naturally occurring clutter. 

4.2.1.2 The Edge Histogram Descriptor (EHD) Algorithm 

The Edge Histogram Descriptor (EHD) algorithm uses translation invariant features, 

that are based on the Edge Histogram Descriptor (EHD) of the 3-D GPR signa­

tures, and a possibilistic k-Nearest Neighbors (k-NN) rule for confidence assign­

ment [51]. The EHD is an adaptation of the MPEG-7 EHD feature [85] which 

captures the signature's texture as feature for recognition. For a generic image, the 

EHD represents the frequency and the directionality of the brightness changes in 

the image. Simple edge detector operators are used to identify edges and group 

them into five categories: vertical, horizontal, 45° diagonal, 135° diagonal, and 

isotropic (non-edges). The EHD would include five bins corresponding to the above 

categories. 

For the GPR data, the EHD has been adapted to capture the spatial distribution of 

the edges within a 3-D GPR data volume. To keep the computation simple, 2-D 

edge operators are used, and two types of edge histograms are computed. The 

first one is obtained by fixing the cross-track dimension and extracting edges in the 

(depth, down-track) plane. The second edge histogram is obtained by fixing the 

down-track dimension and extracting edges in the (depth, cross-track) plane. 
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Let Sex) be the xth plane of the 3-D signature S(x,y,z). First, for each Sex), four zy zy 

categories of edge strengths are computed: vertical, horizontal, 45° diagonal, and 

1350 anti-diagonal. If the maximum of the edge strengths exceeds a certain preset 

threshold, T/, the corresponding pixels is considered to be an edge pixel. Otherwise, 

it is considered a non edge pixel. A global histogram that captures the frequency 

of the different edge orientations cannot take into account the relative position of 

the different edges. For instance, it cannot discriminate between mine signatures 

with a concave down hyperbolas and background signatures with a concave up 

hyperbolas. To overcome this limitation, each S;~) image is vertically subdivided into 

7 overlapping sub-images S;~;, i = 1, ... ,7. For each S~~;, a 5 bin edge histogram, 

H;~;, is computed. The bins correspond to the 4 edge categories, and the non­

edge pixels. The overlap is needed to make the sub-images large enough to include 

sufficient edges, and to reduce the sensitivity of the feature representation to the 

width and shift variations of the signatures. 

The down-track component of the EHD, or EHDY, is defined as the concatenation of 

the 7 five-bin histograms. That is, 

(4.1) 

where H zy . is the cross-track average of the edge histograms of sub-image Sex) over 
I ZYI 

Nc channels, i.e., 
I Nc - 2:-ex) H =- H 

ZYi N zYi' 
C x=l 

(4.2) 

To compute the cross-track component of the EHD, or EHDx , the scans are fixed, 

and the 4 edge strengths on the S;~) are computed, y = 1, ... , Ns (depth,cross­

track) planes. Since these planes do not have enough columns (typically <7) where 

the signature is present, they are not divided into sub-images, and only one global 

47 



histogram per plane, H~~l, is computed. That is , EHDX is computed as the down­

track average of the edge histograms over Ns scans 

1 Ns 

EHDX(S ) = - ~ H (Y) 
xyz N L..J zx 

S y =l 

(4.3) 

The EHD of each 3-D GPR alarm is a 40-dimensional histogram that concatenates 

the down-track and cross-track EHD components, i.e., 

(4.4) 

The extraction of the EHD is illustrated in Figure 4.4. 

Channel 

Figure 4.4: Extraction of the EHD for a 3-D mine signature. For clarity, only 4 of 
the 7 sub-images in the (depth, down-track) plane are shown. 

A set of alarms with known ground truth is used to train the decision-making pro­

cess. These labeled alarms are clustered to identify a small number of representative 
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prototypes that capture signature variations due to differing soil conditions, mine 

types, weather conditions, and so forth. 

For a given test signature, the EHD histograms is extracted. Then, a possibilistic 

k-Nearest Neighbors (k-NN) rule is used to assign a confidence value [51]. 

4.2.1.3 Hidden Markov Model (HMM) Algorithm 

Hidden Markov Model (HMM) is a model of a doubly stochastic process that pro­

duces a sequence of random observation vectors at discrete times according to an 

underlying Markov chain. At each observation time, the Markov chain may be in 

one of Ns states {Sl, . .. , SN} and, given that the chain is in a certain state, there are 

probabilities of moving to other states. These probabilities are called the transition 

probabilities. An HMM is characterized by three sets of probability density func­

tions, the transition probabilities (d), the state probability density functions (911), 

and the initial probabilities (n). Let T be the length of the observation sequence 

(Le.,number of time steps), let ° = {0l>.", 0T} be the observation sequence, and 

let Q = {q1, ... , qT} be the state sequence. The compact notation is generally used 

to indicate the complete parameter set of the HMM model. 

A = (d,.s¥J, n) (4.5) 

In Equation (4.5), A = [aij] is the state transition probability matrix, where aij = 

Pr(qt = jlqt-1 = i) for i,j = 1, ... ,Ns ; n = {nJ, where n i = Pr(q1 = sJ are the 

initial state probabilities; and B = {bi(Ot), i = 1, ... ,N}, where bi(Ot) = Pr(Otlqt = 

i) is the set of observation probability distribution in state i. 

The HMM algorithm for land mine detection using GPR [38, 29] treats the down­

track dimension as the time variable and produces a confidence that a mine is 

present at various positions, ex, y), on the surface being traversed. In particular, 

a sequence of observation vectors is produced for each point. These observation 
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vectors encode the degree to which edges occur in the diagonal and anti-diagonal 

directions. In particular, for every point (xs, Ys), the strengths for the positive/neg­

ative diagonal/anti-diagonal edges is computed. Then, the observation vector at a 

point (xSJ yJ consists of a set of features that encode the maximum edge magnitude 

over multiple depth values around (xs, Ys)' Figure 4.5 displays a hyperbolic curve 

superimposed on a preprocessed metal mine signature to illustrate the features of a 

typical mine signature. 

Diagonal edge l\J)tidiagonai edge 

Flat edge 

Figure 4.5: HMM Feature of a mine signature 

The HMM classifier for land mine detection consists of two HMM models, one for 

mine and one for background. Each model has three states and produces a proba­

bility value by backtracking through model states using the Viterbi algorithm [24] . 

The mine model, Am' is designed to capture the hyperbolic spatial distribution of the 

features. Am has 3 states which correspond to the rising edge, flat, and decreasing 

edge. Each state is represented by 3 Gaussian components. The mine model is left 

to right model in that states are ordered and the transition probabilities for moving 

to a lower numbered state are zero. The background model is needed to capture 

the background characteristics and to reject false alarms. Each of the 24 channels 

is treated independently from the others, and has its own background model, A be . 

In addition to allowing each channel to have a model that reflects its own data, this 
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decoupling allows the channels to be processed in parallel, and thus facilitating real­

time operation. All A be (for c = 1, ... , 24) have 3 states and 3 Gaussian components 

per state. The probability value produced by the mine (background) model can be 

thought of as an estimate of the probability of the observation sequence given that 

there is a mine (background) present. The model architecture of the HMM classifier 

is illustrated in Figure 4.6. 

Gradient 
Feature 

Extraction 

~0 
HMM mine model 

HMM background 
model 

Figure 4.6: Illustration of the HMM-based model architecture. 

4.2.1.4 Spectral Correlation Feature (SCF) Algorithm 

Spectral feature (SPECT) algorithm aims at capturing the characteristics of a target 

in the frequency domain. It extracts the alarm Spectral Correlation Feature (SCF) , 

and formulates a confidence value based on similarity to prototypes that character-

ize mine objects [55]. 

The spectral features are derived from the Energy Density Spectrum (EDS) of an 

alarm declared by the pre-screener. The estimation of EDS involves three main 

steps: pre-processing, whitening, and averaging. Pre-processing estimates the ground 

level, aligns the data from each scan with respect to ground level, and removes the 

60 data above and near the ground surface. This step is needed to avoid an EDS that 

is dominated by the response of the ground bounce. The whitening step performs 
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equalization on the spectrum from the background so that the estimated EDS re­

flects the actual spectral characteristics of an alarm. Averaging reduces the variance 

in the EDS. 

4.2.2 Landmine Detection using WEMI 

The Wideband Electro-Magnetic Induction (WEMI) sensor was developed by w. 

Scott [107]. The sensor measures the response of an object at 21 logarithmically 

spaced frequencies over the range 330 Hz to 90 KHz. The goal is to obtain char-

acteristic spectral shapes that can help discriminate objects of interest from false 

alarms. 

The response of the system can be modeled as 

SeW) =A[l(w) + iQ(w)]; (4.6) 

where w is the frequency, A is the magnitude and l(w) + iQ(w) describes the shape 

of the response as a function of frequency. An input data point is composed of 21 

complex responses at the following measured frequencies (in Hz.): 330, 390, 510, 

690,930,1230, 1650,2190,2910,3930,5190,6930,9210, 12210, 16230,21630, 

28770, 38250, 50850, 67650, and 90030. 

Before feature extraction, the land Q values are normalized between ° and 1. This 

eliminates variation in magnitude due several factors - such as the depth of the 

buried object to be detected as well as metal mass and content - that do not affect 

the shape of the response curve. The magnitude can always be measured separately. 

After normalization, the response models proposed by Miller et al. [91] are used 

to fit the curve. The 3-parameter model is given by 

. ((iW'r)1/2_ 2 ) 
I + zQ = q s + (. )1/2 

lWT + 1 
(4.7) 
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where q, s, and 'r are the three parameters describing the shape of the response 

curve. The value q represents the magnitude of the response curve after normaliza­

tion, s does the shift in the frequency axis, and 'r controls the rate of shape change. 
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Figure 4.7: Response curves (sequences of dots) and their curve fits (smooth 
curves) from (a) blank, (b) non-metallic clutter item, (c) metallic clutter item, 
and (d) low-metal mine 

The parameters resulting from this curve fit plus the error in the fit provide 4 fea­

tures. Figure 4.7 displays the response curves and their curve fits of metallic and 

non-metallic objects . We note that other researchers, such as Torrione [117] and 

Yuksel [130] have also used these model parameters as features. In addition to 

the 4 features provided by the model, 3 spread features [91] are used. These 

are defined by the following equations in which I and Q represent the In-phase 

CReal) and Quadrature (Imaginary) values at each frequency and N is the number 
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of frequencies. 

(4.8) 
i=l 

Qspread (4.9) 
i=l j=i+l 

Tspread = (4.10) 
i=l j=i+l i=l j=i+l 

Together, these make up the 7 features used to describe a WEMI signal. Feature 

selection was performed using the well-known divergence measure. Four features 

were selected: 'r, the fitting error, Qspread, and Tspread. A Multi-Layer Perceptron 

(MLP) classifier was built from these features. We will refer to this classifier as the 

Model Fitting (MFIT) detector. 
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5 
CONTEXT EXTRACTION FOR LOCAL FUSION 

In this Chapter, we present our novel fusion method, called Context Extraction for 

Local Fusion (CELF). CELF is a local approach that adapts the fusion process to 

different regions of the feature space, referred to as contexts. It takes advantages of 

the strengths of few algorithms in different contexts without being affected by the 

weaknesses of the other algorithms. 

Existing local classifier fusion methods treat the partitioning of the feature space 

and the selection/fusion of local expert classifiers as two independent processes 

that are performed sequentially (refer to section 2.7). However, these two tasks 

are not independent, and their optimization should be combined. CELF is a generic 

framework that optimizes these two tasks simultaneously. It is based on a novel ob­

jective function that combines context identification and multi-algorithm fusion cri­

teria into a joint objective function. This objective function is defined and optimized 

to produce contexts as compact clusters via unsupervised clustering. Optimization 

of the objective function also provide optimal fusion parameters for each context. 

CELF has mainly two advantages over the existing local fusion methods. First, the 

extraction of the different contexts and the optimization of the decision fusion are 

done in parallel. In that way, we can obtain more robust contexts where the different 
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experts behave consistently. As a result, the fuser is able to make more robust 

decisions. Second, rather than dealing with hard clusters like most of the other local 

fusion methods, CELF generates fuzzy clusters, which makes it robust to noise. A test 

point can be assigned to one cluster or several clusters with different membership 

degrees. These membership degrees are used to combine the local decisions and 

generate the final decision. 

In this chapter, we present several variants of the proposed approach. First, in 

Section 5.1, the basic form of CELF is fully developed. Extensions of CELF are 

introduced in Sections 5.2, 5.3, and 5.4. To explain the behavior of our approach, 

experimental results on synthetic data are given within each section. 

5.1 Context Extraction for Local Fusion (CELF) 

In the following, we assume that we have N training observations with desired out-

put f!l = {tjlj = 1, .. . ,N} that were processed by K algorithms. These algorithms 

could process data from different sensors, and/or use different feature extraction, 

and/ or classification algorithms. Each algorithm k extracts its own feature set, 

X k = {xkjlj = 1, ... ,N}, and generates confidence values, C!!ik = {Ykjlj = 1, ... ,N}. 

The K feature sets are then concatenated to generate one global descriptor for each 

observation: 
K 

X = U X k = {xj = [Xlj'·· .,xKjJlj = 1, .. . ,N}. 
k=l 

The Context Extraction for Local Fusion (CELF) is designed to 

(i) to partition the feature space into groups of homogeneous samples; and 

(ii) to learn the optimal classification method within each group. 

(5.1) 

The first task can be achieved by an unsupervised learning or clustering of the ob-

servations in the aggregate feature space. The second task is a supervised learning 
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problem that uses the observation labels to minimize the overall classification error. 

CELF achieves these two tasks by minimizing the following objective function: 

subject to 

C 

Uij E [0,1] Vi,j, LUij = 1 Vj, 
i=l 

K 

and LWik = 1 Vi. 
k=l 

(5.3) 

The first term in (5.2) is the unsupervised learning component. It is the sum of intra-

cluster distances and is the objective function used in the Fuzzy C-Means (FCM) 

algorithm [8]. It seeks to partition the N samples into C clusters, and represent 

each cluster by a center ci • Each sample Xj will be assigned to each cluster i with 

a membership degree uij. In this term, mE (1,00) is a constant called thefuzzifier 

and is used to control the degree of fuzziness [8]. The second term in (5.2) is the 

supervised learning component. It attempts to learn cluster-dependent aggregation 

weights of the K algorithm outputs. In this term, wik is the aggregation weight as-

signed to algorithm k within cluster i. This term is minimized when the aggregated 

partial output values match the desired output. When both terms are combined and 

a is chosen properly, the algorithm seeks to partition the data into compact and ho-

mogeneous clusters while learning optimal aggregation weights for each algorithm 

within each cluster. 

To optimize J1 with respect to W = [Wik], we incorporate the constraints using 

Lagrange multipliers and obtain 

where A = P"l" .. , Ac] t is a vector of Lagrange multipliers corresponding to the C 

constraints on W in (5.3). Since the set of weights within each cluster are indepen-

dent of each other, the optimization problem in (504) could be reduced to C simpler 
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independent problems. In particular, for i = 1, ... , C, we minimize 

To obtain the optimal W, we compute the derivative of L~ with respect to Wik and 

set it to 0, i.e, 

(5.6) 

Solving (5.6), we obtain 

K 

The Lagrange constant Ai could be solved using the constraint that L Wi! 1. 
1=1 

Doing so, we obtain 

(5.8) 

From equation (5.7), we can see that algorithm k will be assigned the highest 

weight, Wib in cluster i if it is the most relevant classifier within this cluster. That 

is, its exclusion (in the K summation in the numerator) will result in the largest de-

viation from the desired output for samples with high memberships in this cluster. 

To derive the update equation of the cluster centers, we set the derivative of J1 with 

respect to Ci to zero and solve 

(5.9) 
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We obtain 

(5.10) 

That is, Ci is the centroid of each cluster in the aggregated feature space. 

To optimize J1 with respect to the memberships U = [u ij ], we incorporate the con­

straints using Lagrange multipliers and obtain 

where S = [';l, ... ,';N] t is a vector of Lagrange multipliers corresponding to the 

N constraints in (5.3). Since the memberships of the different observations are 

independent of each other, the above optimization problem can be reduced to N 

simpler independent problems. In particular, for j = 1, ... ,N, we minimize 

(5.12) 

To derive the necessary condition to optimize uij ' we compute the derivative of V; 
with respect to Uij and set it to zero, i.e., 

(5.13) 

where 

(5.14) 

Solving (5.13) for uij ' we obtain 

(
';j) 1/Cm-1) 

Uij = m -(D-,-)-l-/C'-m--"""l) . 
1 

(5.15) 

c 
The Lagrange constant ';j could be solved using the constraint that L Ulj = 1. We 

1=1 

obtain 

( 
';mJ') 1/Cm-1) [C ]-1 

~(1/Dlj)l/cm-l) (5.16) 
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Substituting (5.16) into (5.15), we obtain the following update equation for the 

membership degree of observation j in cluster i. 

(5.17) 

In (5.14), Dij can be viewed as the total cost when considering point Xj in cluster 

i. This cost depends on: (i) the distance between the considered point and the 

cluster's centroid Ci; and (ii) the deviation of the combined algorithms' decision 

from the desired output (weighted by a). In other words, in (5.17), points will be 

assigned high membership degree in the same cluster, i.e., clustered together if: 

(i) they are close to each other in the feature space, i.e. smallllxj - ci ll 2, and 

(ii) their confidence values could be combined linearly with the same coefficients 
K 2 

to match the desired output, i.e. small ( L WikYkj - t j ) • 
k=l 

The CELF algorithm is an iterative process involving successive updates of the clus­

ters' prototypes ('C), the partition matrix (U), and the aggregation weights (W). It 

is summarized in Algorithm 5.1. 

Algorithm 5.1 Context Extraction for Local Fusion (CELF) 
Inputs: X: the features of the training data samples. 

q]/: the confidences given to the data samples by the different classifiers. 
f7: the labels of the data samples. 
c: the number of clusters. 
m: the fuzzifier, m E (1, +00). 
a, the weight of the second term in the objective function. 

Outputs: U: the fuzzy membership matrix of the data samples. 
«f: the cluster centers. 
W: the confidence weights within each cluster. 

1: Initialize U and W. 
2: repeat 
3: Update «f using (5.10). 
4: Update W using (5.7). 
5: Update U using (5.17). 
6: until parameters do not change significantly 
7: return «f, U, W 
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We should note here that using (5.l4) to compute the membership of a given sample 

j to cluster i, its desired output tj needs to be given. This information is available 

and is necessary to build the clusters in the training phase. However, during test­

ing, for an unlabeled test sample, it is not possible to assign it to a cluster using 

(5.l4). Instead, we identify the nearest training sample and use its label. Given an 

unlabeled test sample j, we apply the following steps to generate the final fusion 

decision. 

1. Process the sample by the different algorithms to generate a set of features, 

Xj' and decision values, Yj = [Ylj'"'' YKj]' 

2. Identify the nearest training sample and use its label to assign a temporary 

label to the test sample. 

3. Assign a membership degree to sample j in each cluster i, uij ' using (5.14). 

4. Combine the output of the different classifiers within each cluster using 

K 

Yij = LWikYkj' 
k=l 

5. Generate the final fusion decision confidence using 

(5.18) 

(5.19) 

Figure 5.1 displays the architecture of the training and the testing phases of our 

approach. The training phase is composed of two interactive components: context 

extraction and decision fusion. The context extraction step uses both the features 

extracted by various algorithms (indicated by solid lines in the figure) and their 

confidences (indicated by dotted lines) to partition the training input samples into 

different contexts. The decision fusion step uses the confidence values assigned by 

the individual algorithms (indicated by dotted lines in the figure) to assign aggrega-

tion weights to the different algorithms within each context based on their relative 
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performance within that context. To test a new alarm, each algorithm extracts its 

set of features and assigns a confidence value. Then, as shown in the right part of 

Figure 5.1, the features are used to assign the test sample to the closest context. The 

aggregation weights of this context are then used to fuse the individual confidence 

values. 

Illustrative example 

To illustrate the behavior of the proposed dynamic fusion approach, we use it to 

partition and fuse a toy data with 30 samples that belong to two classes. Suppose 

that each sample has been processed by two algorithms. Each algorithm, k, extracts 

one feature, Xb and assigns one output value, Yk' Figure 5.2(a) displays these sam­

ples in the 2-D feature space. For each sample point, we display the output of the 

two algorithms on the top of each sample. Figures 5.2(b) and 5.2(c) display the cu­

mulative histograms of the confidences assigned by algorithm 1 and 2 respectively. 

As it can be seen, none of the two algorithms can separate the two classes perfectly. 

In particular, by examining the labels of the samples in Figure 5.2(a), we notice that 

for the 10 samples on the right side (last 2 columns) of the feature space, the second 

algorithm performs better than the first one (lower confidence and desired output 

is 0). However, for the 4 samples on the bottom left comer ofthe feature space, the 

first algorithm outperforms the second one. Thus, to take advantage of the comple­

mentary nature of these algorithms, we need a local fusion approach that partitions 

the feature space into coherent contexts and adapts the fusion to each context. 

Figure 5.3 displays the result of applying CELF when the number of clusters C is 

set to 5 and the coefficient a is set to 10. In this figure, for visualization purposes, 

we map the fuzzy partition generated by CELF into a crisp one using the maxi­

mum membership assignment. First, we note that the 5 clusters include points that 

are spatially close to each other. Second, each cluster includes samples that have 

consistent algorithm outputs. For instance, the first cluster (blue circles) includes 
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Figure 5.2: Feature and confidence distribution of a sample data. (a) 30 samples 
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(b) Cumulative histogram of the confidences assigned by the first algorithm. (c) 
Cumulative histogram of the confidences assigned by the second algorithm. 

samples where algorithm 2 outputs are more reliable in predicting the desired out-

put. On the other hand, the second cluster (green squares) includes samples where 

algorithm 1 outputs are more reliable in predicting the desired output, 

0.96 0.62 ala °i9 0.34 0 .19 • Cluster t 

• • y y • Cluster 2 
C1 C3 C4 • Cluster 3 

0.99 0 .88 0.84 0 .19 0.07 0 .14 Y Cluster 4 • • • • y y 
<4 Cluster 5 

-1' 
0.57 0 .84 Of or O.SS 0.11 • • y y 

0.19 0.11 0.15 o~s -0.03 0:.r • • • -4 
C2 CS 

0.10 0.12 0.21 0.10 0.07 -0.02 • • • -4 <4 <4 

Xl 

Figure 5.3: Clustered samples in the feature space using CELE The fused confi-
dences are shown above each sample. 
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The cumulative histograms of the two algorithms and the algorithm fusion weights 

assigned by CELF to each algorithm within each cluster are displayed in Table 5.1. 

As it can be seen, CELF assigns the highest weight to the most reliable classifier in 

each cluster. For instance, for samples assigned to cluster 3, algorithm 1 can eas­

ily discriminate between the two classes (non-overlapping confidence distribution), 

while algorithm 2 confuses the two classes (large overlap) . Consequently, CELF as­

signs a high aggregation weight to algorithm 1 (1.26) and low weight to algorithm 

2 (-0.26). In the proposed approach, no constraint was imposed on the range of 

values of the classifier weights, W, as long as they add up to 1. Thus, the weights of 

the classifiers can take any real values, including negative ones . In fact, as shown 

in Table 5.1, the weights of the classifiers in the 4th cluster are -1.5 for the first 

algorithm and 2.5 for the second algorithm. The cumulative histogram of the two 

algorithms within this cluster shows that the second algorithm is better than the 

first one. However, the assigned confidences are far from the desired output. CELF 

tries to assign the appropriate aggregation weights to have a confidence as close as 

possible to the desired output (which is 0 in this case). 

Table 5.1: Performance of the two classifiers (dashed line for class 0 and solid line 
for class 1) and assigned aggregation weights to each classifier within each cluster 

Cluster # 1 2 3 4 5 

Cumulative Histogram 

"It] ':0 1 • 1 • 1 • 
0.8 • 0.8 ". 0.8 ". • • • 0.6 0.6 0.6 • 0.6 • 0.6 • 

0.4 : 
• • • 0 .4 0.4 • 0.4 • 0.4 • • I -. -. 

0.2 0.2 I 0.2 • 0.2 0.2 • • ': ': • Algorithm 1 0 0 0 0 0 
0 0.6 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.6 1 

• 

0J 
• "0 0.8 • 0.8 : 0.8 • "0 • • 

0.6 0.6 • 06 : 0.6 -. 0.6 ... I 
0.4 : 0.4 0.4 • 0.4 ... 0.4 • I -. 

0.2 0.2 ... , 0.2 : 0.2 • 0.2 • 

• • 
Algorithm 2 0 0 0 0 0 o 0.5 1 0 0.5 1 0 0.5 1 0 0 .6 1 0 0.5 1 

Assigned Weights 

WI -0.05 1.04 1.26 -1.5 -0.06 

w 2 1.05 -0.04 -0.26 2.5 1.06 
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Using the learned context dependent aggregation weights, the final decision is com-

puted using equation (5.19). Figure 5.4 displays the cumulative histogram of the 

assigned confidences. As it can be seen, the two distributions become separable and 

any threshold between 0.4 and 0.6 would result in an accuracy of 100%. 

• - Glasg1 .. --- GlasgO 
0 .8 • .. 

I 
0 .6 I , 

... ... 
0 .4 

I ., , 
I 

0 .2 I_t.. 
1 
1 

0 
0 0.2 0 .4 0.6 0 .8 

Figure 5.4: Cumulative histograms of the confidence values fused using CELE 

5.2 CELF with Feature Discrimination 

For complex classification problems, mUltiple sources of information and multiple 

classifiers for each source may be needed to obtain satisfactory results. In this case, 

the composite feature space can be high dimensional and standard clustering al­

gorithms may not generate meaningful partitions. This is because clusters tend to 

form in sub-spaces of the original feature space, and the influence of the features 

is generally not equally important for the different clusters. Moreover, the num-

ber of features extracted by each algorithm can vary significantly. This could lead 

to a partition that is biased by the algorithm that has the largest number of fea-

tures. To alleviate this drawback, we propose generalizing the objective function 

in (5.2) to allow finding clusters in subspaces of the original feature space. In par-

ticular, instead of treating all individual features equally, we treat them as subsets 

(one subset per algorithm) and learn one optimal feature relevance weight for each 

subset within each cluster. The resulting algorithm, called Context Extraction for 

Local Fusion with Feature Discrimination (CELF-FD), combines clustering, feature 
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discrimination, and multi-algorithm fusion. It minimizes 

(5.20) 

subject to the constraints in (5.3) and 

K 

L: Vik = 1 Vi, and Vik E [0,1] Vi, k. (5.21) 
k=l 

In (5.20), Vik is the feature relevance weight for feature subset k (extracted by 

algorithm k) in cluster i, q E (1, +00) is an exponent that controls the features 

discrimination rate, and dijk = Ilxjk - Cikll is the Euclidian distance between the 

/h observation and the fh cluster center taking into account feature subset k only. 

Rather than using a constant value for a as in (5.2), we use a cluster dependent a i 
K 

to balance the feature relevance weights. In particular, we let a i = f3 L v~ where f3 
1=1 

is a constant. 

Minimizing J2 with respect to U = [Uij] yields 

(5.22) 

where 

(5.23) 

Minimizing J2 with respect to V = [Vik] yields 

(5.24) 

where 

(5.25) 

Minimization of J2 with respect to Wand 'tJ yields the same equations as in CELF 
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(i.e. (5.7) and (5.10) respectively). The CELF-FD algorithm is summarized in Algo­

rithm 5.2. 

Algorithm 5.2 CELF with Feature Discrimination (CELF-FD) 
Inputs: X: the features of the data samples. 

W: the confidences given to the data samples by the different classifiers. 
f/: the labels of the data samples. 
c: the number of clusters. 
m: the fuzzifier, mE (1, +(0). 
{3: the weight of the second term in the objective function. 
q: the exponent of the feature weights, q E (1, +(0). 

Outputs: U: the fuzzy membership matrix of the data samples. 
"{/: the cluster centers. 
W: the confidence weights in each cluster. 
V: the feature weights in each cluster. 

1: Initialize U, Wand V. 
2: repeat 
3: Update "{/ using (5.10). 
4: Update V using (5.24). 
5: Update W using (5.7). 
6: Update U using (5.22). 
7: until parameters do not change significatively 
8: return "(/, U, V, W 

Illustrative example 

To illustrate the behavior of CELF-FD, we use it to partition a synthetic data. This 

data set has two classes and is designed to illustrate the need for local fusion. Sup­

pose that each sample has been processed by two algorithms. Each algorithm, k, 

extracts one feature (Xk) and assigns one output value (Yk)' Figure S.S(a) displays 

this data in the combined 2-D feature space; samples from class 0 are represented 

by blue dots and samples from class 1 are represented by black dots. 

As it can be seen, the data form 4 clusters in the aggregate feature space, and 

each cluster has samples from both classes. Figure S.S(b) displays the clustering 

result of these samples using SCAD [33]. We should emphasize here that the 

ground truth labels of the samples are not used in the clustering step. As it can be 

seen, SCAD (like most other clustering algorithms) succeeds in identifying the four 
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Figure 5.5: Synthetic data in the combined 2-D feature space. (a) Class 0 samples 
are shown as blue dots and class 1 samples are shown as black dots. (b)Typical 
clustering results when the problem is treated as unsupervised learning and the 
true labels are not used. 

intuitive clusters. If the objective of this task is clustering, this would be the optimal 

solution. However, our objective in this fusion application is to identify compact 

clusters where the classifiers have similar behavior. To illustrate this, we display the 

classification results of the two classifiers in Figure 5.6. As it can be seen, none of the 

two classifiers classify this data perfectly as both figures include many misclassified 

samples. In fact, the accuracy of classifier 1 is 69% and for classifier 2 is 81%. 

More importantly, the performance of each classifier varies in different regions of 

the feature space. For instance, in Figure 5.6(a), we observe that classifier one 

classifies all samples located on the top right ellipsoidal cluster correctly, but has 

only a 50% correct classification rate for the two spherical clusters. On the other 
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hand, classifier two, in Figure 5.6(b), has a 100% correct classification rate for the 

two spherical clusters and 50% classification rate for the top right ellipsoidal cluster. 

This synthetic example illustrates the need for local fusion to take advantages of the 

strengths of the classifiers in different regions of the feature space. 

• True Positive 
• True Negative 
• MI • .oh, .. lfled 

Ca) 

• True Positive 
• True Negative 
• MIS$Qla .. 1fIed 

(b) 

Figure 5.6: Classification result of (a) the first algorithm (based on feature Xl), 

and (b) the second algorithm (based on feature x2) . 

Classification results with global fusion The two classifiers could be fused in 

many different ways. Similarly, several fusion methods could be integrated into 

CELF-FD objective function. However, in this example, the goal is to illustrate the 

local fusion approach with a simple linear aggregation. Thus, we compare the re-

sults of CELF-FD with global fusion that uses the same aggregation method. We do 

this by simply setting the number of clusters to 1. In the subsequent experiments, 
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we will compare the performance of CELF to other state-of-the-art fusion methods. 

Using this setting, the global fusion assigns a 0.38 weight to classifier 1 and a 0.62 

weight to classifier 2. This result seems to be logical since the overall accuracy of 

the second classifier is higher than that of the first one. Figure 5.7(a) displays the 

cumulative histogram of the confidences assigned by the global fusion algorithm. As 

it can be seen, the fusion cannot achieve perfect classification as the distribution of 

the two classes overlap. In fact, for a threshold of 0.5, the accuracy of the fusion is 

81 % which is not any better than the best individual classifier. These results, shown 

in Figure 5.7(b) , are similar to those obtained by classifier 2 only. 

• TrlMPool!lw 
• TrIM Neg_lve 
• Mloocl_1f1ed 

Figure 5.7: Fusion results using a global approach. (a) Cumulative histograms 
of the confidences assigned by the global fusion. (b) Assigned label when the 
threshold is fixed to 0.5. 

Classification results with local fusion For this experiment, we report the results 

using CELF-FD with the number of clusters set to 4 and (3 set to 10. The four clusters 

are displayed in Figure 5.8(a). Initially, these clusters may appear incorrect as the 

ellipsoidal cluster in the left is split into two groups (clusters 2 and 4), and the 

two spherical clusters are merged into one. However, careful investigation of the 

classifiers performance in Figure 5.6 would explain this behavior. For instance, for 

the samples in the top part of the left cluster, classifier 1 has several misclassified 

samples while classifier 2 has none . For the bottom part, we have the opposite 

behavior. Thus, for the purpose of fusion, these two regions should be fused in 
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different ways. On the other hand, for the two spherical clusters, classifier 1 has 

a 50% correct classification rate; and classifier 2 has a 100% correct classification 

rate. Since the behavior of the two classifiers is consistent across this region, these 

two clusters are sufficiently close to each other, and the number of clusters was 

limited to 4, CELF-FD merges the two clusters. 
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Figure 5.8: Local fusion results using CELF-FD. (a) Clustered samples in the feature 
space. A different color is used for each of the 4 clusters. (b) Cumulative histogram 
of the confidences assigned by the fusion algorithm. (c) fusion results (using 0.5 
as threshold) . 

Table 5.2 displays the feature weights assigned by CELF-FD to each cluster. As it 

can be seen, the second feature is more reliable than the first one for cluster 1 and 

cluster 3. This can be explained by the shape of these two clusters; they are more 

stretched on the first feature space. 

Table 5.3 shows the accuracy and the aggregation weights assigned to the two clas-

sifiers in each cluster. As it can be seen, algorithm 1 is more reliable for clusters 3 
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Table 5.2: Feature Weights assigned by CELF-FD 

Clusters 1 2 3 4 

Feature 1 0.31 0.50 0.33 0.49 

Feature 2 0.69 0.50 0.67 0.51 

and 4 and is selected as the dominant algorithm for these regions. Similarly, algo­

rithm 2 is more reliable for the other two clusters, and is selected as the dominant 

algorithm. 

Table 5.3: Accuracy of each classifier in each cluster and assigned weights by 
CELF-FD 

Clusters 1 2 3 4 

Algorithm 1 50.78% 59.81% 99.78% 85.90% 
Accuracy 

Algorithm 2 99.01% 90.37% 54.17% 64.75% 

Algorithm 1 0.0026 0.0002 0.9942 0.9978 
Weights 

Algorithm 2 0.9974 0.9998 0.0058 0.0022 

Figure 5.8(b) displays the histograms of the confidences generated by CELF-FD. As 

it can be seen, the two distributions are almost separable and any threshold in the 

[0.3,0.7] range would result in an accuracy of 99.7%. The classification results, 

using a 0.5 threshold, is shown in Figure 5.8(c) . 

Effect of the parameter f3 The performance of CELF depends on the chosen value 

of f3. In the following, we investigate this dependency by varying the value of f3 

and checking the effect on the fusion results. First, we pick a small value of f3 

(f3 = 5). Figure 5.9(a) shows the obtained clusters. Comparing these results to 

those shown in Figure 5.5(b), we can see that we obtain almost the same clusters 

as those obtained by SCAD. In fact, when f3 is too small, the multi-algorithm fusion 

criteria (term 2 in (5.20)) is negligible compared to the clustering criteria (term 1 

in (5.20)) . As result, the optimal solution was not reached, and the fusion results, 

shown in Figures 5.9(b) and 5.9(c), confirm that using a small value of f3, CELF is 

not able to achieve the optimal classification results. 
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Figure 5.9: Local fusion results using a small value of f3 (f3 = 5) . (a) Clustered 
samples in the feature space. (b) Cumulative histogram of the confidences assigned 
by CELE (c) fusion results when the threshold is fixed to 0.5. 

Figure 5.10 shows the results when a larger value of {3 ({3 = 40) is used. As it can 

be seen in Figure 5.10 (a), some of the clusters become scattered. For instance, clus-

ter 1 (black) becomes spatially split into 3 different regions. Even if the cumulative 

histogram and the fusion result shown in Figures S.10(b) and S.10(c) are correct, 

these results may not be reasonable. This is because the clusters do not share many 

common features (not similar in feature space) and our concept of context becomes 

not well defined. Moreover, during testing, the context identification step becomes 

almost random. 
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Figure 5.10: Local fusion result using a big value of f3 (f3 = 40) . (a) Clustered 
samples in the feature space. (b) Cumulative histogram of the confidences assigned 
by the fusion algorithm. (c) fusion results when the threshold is fixed to 0.5. 

5.3 CELF with Competitive Agglomeration 

CELF and CELF-FD require the specification of the number of clusters. However 

in most applications, this information may not be known a priori. This problem 

has been addressed in unsupervised learning and several approaches have been de-

veloped [30, 31, 3, 115]. This problem is more acute in the proposed context 

extraction application. This is because the optimal number of clusters depends on 

the distribution of the data in the feature space as well as the behavior of the algo-

rithms in the different regions. Thus, even if the data can be visualized in a lower 

dimensional space, the specification of the number of clusters is still a nontrivial 

task. 
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To address this issue, we propose extending the objective function in (5.20) to inte-

grate a regularization term. The resulting algorithm, called Context Extraction for 

Local Fusion with Competitive Agglomeration (CELF-CA), starts by partitioning the 

data into a large number of small clusters. As the algorithm progresses, adjacent 

clusters compete for data points, and clusters that lose the competition gradually 

become depleted and vanish. Thus, as the iterations proceed, we obtain a sequence 

of partitions with a progressively diminishing number of clusters. The final partition 

is taken to have the "optimal" number of clusters. 

The CELF-CA algorithm minimizes 

C N KeN K 2 C (N )2 
J3 = ~#U~j~V~d~k + ~#aiU~j(~WikYkj - t j) -Y ~ #Uij , 

(5.26) 
K 

subject to the constraints in (5.3) and (5.21). As in (5.20), we let ai = f3 L V~ 
1=1 

where f3 is a constant. We should note here that in (5.26), the number of clusters 

C is not fixed. 

The objective function in (5.26) has three components. The first two component, 

which are similar to those in the CELF-FD objective function (with m = 2), combine 

clustering, feature discrimination, and multi-algorithm fusion. The global minimum 

of this component is achieved when the number of clusters C is equal to the number 

of samples N, i.e. each cluster contains a single data point. The last component in 

(5.26) is the sum of squares of the cardinalities of the clusters which allows us 

to control the number of clusters. The global minimum of this term (including 

the negative sign) is achieved when all points are lumped in one cluster, and all 

other clusters are empty. When both components are combined and y is chosen 

properly, the final partition will minimize the sum of intra-cluster distances, while 

partitioning the data set into the smallest number of clusters possible. The clusters 

which are depleted as the algorithm proceeds will be discarded, as explained later. 
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To optimize J3 with respect to U = [uij], we incorporate the constraints with the aid 

of Lagrange multipliers. We obtain 

L 

(5.27) 

where A = [;\"1, ... , AN] t is a vector of Lagrange multipliers corresponding to the N 

constraints on U in (5.21). Computing the derivative of L with respect to Uij and 

setting it to 0, we obtain 

where 

and 

In (5.29) and (5.30), 

In (5.30), 

U - _ = U CELF + UBias 
lJ ij ij' 

N 

Ni = LUij 

j=l 

is the fuzzy cardinality of cluster i, and 

Nj~ [t,~Jj[t,;J 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

is simply a weighted average of the cluster cardinalities, where the weight of each 

cluster reflects its proximity to the feature point Xj in question. 
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The first component of Uij in (5.28), U5ELF
, is the membership term in the CELF­

FD algorithm (refer to (5.22)). The second component, u~ias, is a signed bias term 

which depends on the difference between the cardinality of the cluster of inter­

est, and the weighted average of cardinalities with respect to feature point Xj. For 

clusters with cardinality higher than average, the bias term is positive, thus appre­

ciating the membership value. On the other hand, for low cardinality clusters, the 

bias term is negative, thus depreciating the membership value. Moreover, this bias 

term is also inversely proportional to the distance of feature point Xj to the cluster 

of interest Ci> which serves as an amplification factor. This leads to a gradual reduc­

tion of the cardinality of spurious clusters. When the cardinality of a cluster drops 

below a threshold, we discard the cluster, and update the number of clusters. Since 

the initial partition has an over-specified number of clusters, each cluster is initially 

approximated by many small clusters in the beginning. As the algorithm proceeds, 

adjacent clusters compete. As a result, only few clusters will survive, while others 

will shrink and eventually become extinct. 

Optimization of J3 with respect to V, W, and '(f yields the same equations (5.24), 

(5.7), and (5.10) as those derived for CELF-FD. The CELF-CA algorithm is summa­

rized in Algorithm 5.3. 

Illustrative example 

To illustrate the behavior of CELF-CA, we use it to partition the same synthetic data 

shown in Figure s.s(a). We fix the max number of clusters Cmax to 10, and let 

these clusters compete. After 30 iterations, CELF-CA converged and the number of 

clusters reduced to 5. The final partition is shown in Figure 5.11. As it can be seen, 

CELF-CA succeeds in partitioning the data into compact and homogeneous clusters 

where the different algorithms behave consistently within each cluster. Compared 

to CELF-FD, CELF-CA split cluster 1 (in Figure s.8(a)) into 2 different clusters (the 
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Algorithm 5.3 CELF with Competitive Agglomeration (CELF-CA) 

Inputs: X: the features of the data samples. 
'!]I : the confidences given to the data samples by the different classifiers. 
f/: the labels of the data samples. 
Cmax : the maximum number of clusters. 
(3: the weight of the second term in the objective function. 
q: the exponent of the feature weights, q E (1 ,+00). 
€ : a given threshold. 

Outputs: U: the fuzzy membership matrix of the data samples. 
c: the cluster centers. 
W: the confidence weights in each cluster. 
V: the feature weights in each cluster. 

1: Fix the maximum number of clusters C = Cmax ; 

2: Initialize U, W and V. 
3: Compute the initial cardinalities N; for 1 :s i :s C using (5.32) ; 
4: repeat 
5: Update the partition matrix U using (5.28) ; 
6: Compute the cardinalities N; for 1 :s i :s C using (5.32) ; 
7: if N; < € then 
8: discard cluster i; 
9: end if 

10: Update the number of clusters C; 
11: Update the centers using (5.10); 
12: Update V using (5.24) . 
13: Update W using (5.7) . 
14: until centers stabilize 
15: return c, U, V, W 

black and the cyan); these two spherical clusters, even if they are close, should be 

separated. 

• Cluster 1 
• Cluster 2 
• Cluster 3 
• Cluster 4 
• ClusterS 

Figure 5.11: Clustered samples in the feature space using CELF-CA. The initial 
number of clusters was set to 10 and the algorithm converged to 5 distinct clusters. 
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Table 5.4 shows the accuracy and the aggregation weights assigned to the two clas-

sifiers in each cluster. As it can be seen, algorithm 1 is more reliable for clusters 3 

and 4 and is selected as the dominant algorithm for these regions. Similarly, algo-

rithm 2 is more reliable for the other two clusters, and is selected as the dominant 

algorithm. 

Table 5.4: Accuracy of each classifier in each cluster and assigned weights by 
CELF-CA 

Clusters 1 2 3 4 5 

Algorithm 1 59.81% 85.90% 99.78% 50.92% 50.63% 
Accuracy 

Algorithm 2 90.37% 64.75% 54.17% 99.02% 99.02% 

Algorithm 1 0 1 1 0 0 
Weights 

Algorithm 2 1 0 0 1 1 

For this example, the fusion results of CELF-CA are similar to those obtained in 

Section 5.2. Figure 5.12(a) displays the histograms of the confidences generated 

by CELF-CA. As it can be seen, the two distributions are almost separable and any 

threshold in the [0.3, 0.7] range would result in an accuracy of 99.7%. The classifi­

cation results, using a 0.5 threshold, is shown in Figure 5.12(b). 
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Figure 5.12: Local fusion results using CELF-CA. (a) Cumulative histogram of 
the confidences assigned by the fusion algorithm. (b) fusion results (using 0.5 
as threshold). 
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5.4 CELF for Multi-Class Data 

CELF was designed and developed to support two-class data. In the following, we 

propose generalizing the algorithm to cover data with multiple classes (CELF-M). 

Given L classes, we assume that we have N training observations with desired out-

puts f'7 = {tj = [tj1, ... ,tjL]Jj = 1, ... ,N}. tjl is equal to 1 if the sample j is from 

the [th class and 0 otherwise. These samples are processed by K algorithms. Each 

algorithm k extracts its own feature set, X k = {xkjlj = 1, ... ,N}, and generates 

confidence values, <8ik = {Ykj = [Yklj, .. ·, YkLj]lj = 1, ... , N} where Yklj is the confi­

dence assigned by classifier k to input j to be in the zth class. The K feature sets are 

then concatenated to generate one global descriptor as in(5.1). 

For simplicity; we formulate CELF-M objective function and optimize it for the case 

where no feature discrimination is used and the number of clusters is known. Ex-

tensions to find the optimal number of clusters and learn feature relevance weights 

are straightforward following steps similar to those used for CELF-CA and CELF-FD. 

CELF-M partitions the feature space and learns the aggregation weights simultane­

ously by optimizing the following objective function. 

(5.34) 

subject to the constraints in (5.3). 

To optimize JM with respect to U = [uij]' We incorporate the constraints with the 

aid of Lagrange multipliers. We obtain 

where A = [)"l"'" AN] t is a vector of Lagrange multipliers corresponding to the 

N constraints on U in (5.3). Since the memberships of the different observations 
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are independent of each other, the above optimization problem can be reduced to 

N simpler independent problems. For each pattern j = 1, ... ,N, we formulate the 

augmented functional 

(5.36) 

Computing the derivative of L'j with respect to uij and making it equal to 0, we 

obtain 
aL~ 

J m-1D 1 0 -;-- = mUij ij + Aj = , 
uUij 

where 

Solving (5.37) for uij ' we obtain 

(

Ao)1/cm-1) 1 

uij = ~ CDij)1/Cm-1). 

c 
Taking into account the constraint L Upj = 1, we obtain 

p=l 

(

Ao)l!Cm-l) c 1 
~ =1 
m L CD Y/Cm-1) . 

p=l PJ 

(
A 0) 1!Cm-1) 

Solving (5.40) for -; and substituting this in (5.39), we obtain 

1 
Uij = c 

L(Dij/Dlj)m~l 
/=1 

where Dij is as defined in (5.38). 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

Derivation of the update equations for the cluster centers are straightforward, as no 

constraints are imposed on them. As for CELF, we fix U = [Uij], and W = [wid, and 
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set the gradient to zero: 

oj N 

-;- = 2 Lu;j(Xj - cJ = O. 
vCi j=1 

(5.42) 

We obtain 

N 
(5.43) 

LUV 
j=1 

To optimize JM with respect to W = [wid, we incorporate the constraints using 

Lagrange multipliers and obtain 

where A = [..A-I" •• , Ac] t is a vector of Lagrange multipliers corresponding to the C 

constraints on Win (5.3). Since the set of weights within each cluster are indepen-

dent of each other, the above optimization problem could be reduced to C simpler 

independent problems. In particular, For i = 1, ... , C, we formulate the augmented 

functional 

To obtain the optimal W, we compute the derivative of L~ with respect to Wik and 

set it to 0, i.e, 

oL~ N L ( K ) 
ow', = 2a L u;j LYklj L WikYklj - tjl + Ai = O. 

,k j=1 1=1 k=l 

(5.46) 
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Solving (5.46), we obtain 

£ U~ ± Yklj (t jl - ± WiPYP/j) 
j=1 1=1 p=l 

P# 
Wik = ------N---L------- (5.47) 

LUV LY~lj 
j=1 1=1 

K 

The Lagrange constant Ai could be solved using the constraint that L Wi! l. 

Doing so, we obtain 

K 

L N L 

p=l ~ u~ ~y21 
j=! ] l=! PJ 

1=1 

(5.48) 

From equation (5.47), we can see that algorithm k will be assigned the highest 

weight, Wib in cluster i if it is the most relevant classifier within this cluster. That 

is, its exclusion (in the K summation in the numerator) will result in the largest 

deviation from the desired output for samples with high memberships in this cluster. 

The resulting algorithm is summarized in Algorithm 5.4. 

Algorithm 5.4 CELF for Multi-class data (CELF-M) 
Inputs: X: the features of the data samples. 

'!!i: the confidences given to the data samples by the different classifiers. 
f7": the labels of the data samples. 
c: the number of clusters. 
m: the fuzzifier, m E (1, +(0). 
a: the weight of the second term in the objective function. 

Outputs: U: the fuzzy membership matrix of the data samples. 
«f: the cluster centers. 
W: the confidence weights in each cluster. 

1: Initialize U and W. 
2: repeat 
3: Update «f using (5.43). 
4: Update W using (5.47). 
5: Update U using (5.41). 
6: until parameters do not change significatively 
7: return «f, U, W 
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Illustrative Example 

To illustrate the behavior of CELF-M, we use it to partition and fuse a simple syn­

thetic data. This data set is designed to illustrate the need for local fusion, and 

consists of 2,000 samples that belong to three classes: 500 samples from class 

1, 1,000 samples from class 2, and 1,000 samples from class 3. Suppose that 

each sample has been processed by two different algorithms. Each algorithm, k, 

extracts one feature (Xk) and assigns one output value (Yk)' Figure 5.13 displays 

this data in the 2-D feature space (Xl' X 2 ) where samples from class 1 are repre­

sented by red dots, and samples from class 2 are represented by green dots, and 

samples from class 3 are represented by black dots. As it can be seen, the data 

form 2 distinct clusters in the feature space. 

• Class 1 
• Class 2 
• Class 3 

Figure 5.13: Synthetic data of a 3-class problem in the 2·0 feature space. 

In Figure 5.14, we display the classification results of the two classifiers. As it can 

be seen, none of the two classifiers classify this data perfectly as both figures include 

many misclassified samples. In fact, the accuracy of both classifiers is 75%. More 

importantly, the performance of each classifier varies in different regions of the 

feature space. For instance, in the left cluster, classifier 1 has an accuracy of 100%, 

and classifier 2 has an accuracy of 50%. On the other hand, for the right cluster, the 

accuracy of classifier 1 is 50%, and of classifier 2 is 100%. 

Figure S.lS(a) illustrates the clustering result using CELF-M when the number of 

clusters C is set to 2. As it can be seen, our approach identifies the two clusters and 
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• Misclassified 
• • Correctly classified 

Ca) 

• Misc lassified 
• • Correctly class ified 

(b) 

Figure 5.14: Classification results of (a) the first classifier and (b) the second 
classifier. 

assigns the highest weight to the most reliable classifier in each context. Within the 

left cluster, CELF-M assigns a weight of 1 to the the first classifier and a weight of 

o to the second one. Referring to Figure 5.14, we can see that, within this cluster, 

classifier 1 has an accuracy of 100% and classifier 2 has an accuracy of 50%. On 

the other hand, within the right cluster, CELF-M assigns a weight of 0 to the the 

first classifier and 1 to the second one. In fact, within this cluster, classifier 1 has 

an accuracy of 50% and classifier 2 has an accuracy of 100%. The fusion result is 

shown in Figure 5.15(b)where CELF-M has an accuracy of 100%. 
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• Cluster 1 

• Cluster 2 

Xl 

Ca) 

• Misclassified 

• • Correctly classified 

(b) 

Figure 5.15: Local fusion results using CELF-M. (a) Clustered samples in the fea­
ture space. A different color is used for each cluster. (b) fusion results (using 0.5 
as threshold). 
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NON-LINEAR LOCAL FUSION 

In the previous chapter, we introduced our local fusion approach using a simple 

linear aggregation to assign weights to the individual classifiers. This may not be 

the optimal way to combine the algorithms within each context. To make the fusion 

of the algorithms' decisions for each context more effective, in this chapter, we 

propose extensions to CELF that use non-linear fusion approaches. In particular, we 

introduce two variants of CELE The first one uses Neural Networks fusion, and the 

second one is based on Fuzzy Integrals fusion. 

6.1 Local Fusion with Neural Networks 

The proposed approach, called CELF with Neural Networks (CELF-NN), aims to 

partition the feature space into different contexts and, simultaneously, adapt a two­

layers Neural Network to each context to fuse the individual confidence values. Each 

network has K inputs (the K classifiers' decision), H hidden neurons in the hidden 

layer, and L outputs (the L classes). Let f be the activation function, Pkhi be the 

weight that connects the kth input to the hth neuron (of the hidden layer) of the ith 

Neural Network, 't/Jhli be the weight that connects the hth neuron to the zth output of 
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Data sample j 

Algorithm 1 Algorithm 2 AlgorithmK 

Individual algorithms 

ContextAtsi&nrne,nt 

Figure 6.1: Architecture of the proposed CELF-NN 

the ith Neural Network, Zhij be the output of the hth neuron (of the hidden layer) in 

the i th Neural network for the sample j , and 0li j be the z th output of the ith Neural 

network for the sample j . Figure 6.1 displays the architecture of the proposed 

approach. For clarity, we display only the Z th output of each Neural Network. This 

figure highlights the two main components of the training phase, namely; context 

extraction and decision fusion. As in CELF, the context extraction step uses both the 

features extracted by various algorithms to partition the training input samples into 

C different contexts, i.e, each training sample j is assigned to each context j with a 

fuzzy membership u ij ' The decision fusion step uses the confidence values assigned 

by the individual algorithms to adapt a two-layers Neural Network to each context. 

The final output 0 lj ' for the sample j, is the weighted aggregation of the C Neural 

Networks' output, i.e., 
C 

0l j = ~ u ij Oli j . 

i= l 
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CELF-NN partitions the feature space and learns the weights of the different Neural 

Networks simultaneously by optimizing the following objective function. 

N C N C L 

JNN = .LI>Vllxj - cdl 2 + a .LL>V.L (Qlij - tjl)2. (6.2) 
j=l i=l j=l i=l 1=1 

subject to 
C 

.LUij = 1 "ij, and Uij E [0,1] "ii,j. (6.3) 
i=l 

To optimize JNN with respect to U = [uij). We incorporate the constraints with the 

aid of Lagrange multipliers. We obtain 

(6.4) 

where A = P"l"'" AN Y is a vector of Lagrange multipliers corresponding to the 

N constraints on U in (5.3). Since the memberships of the different observations 

are independent of each other, the above optimization problem can be reduced to N 

simpler independent problems. For each pattern j = 1,2,." ,N, we formulate the 

augmented functional 

(6.5) 

Computing the derivative of L j with respect to uij and making it equal to 0, we 

obtain 

(6.6) 

where 

(6.7) 

Solving (6.24) for uij' we obtain 

(6.8) 
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c 
Taking into account the constraint L Ulj = 1, we obtain 

1=1 

(
AO) l/(m-l) C 1 

~ L: (D)1/(m-1) = l. 
1=1 lJ 

(
A) 1/(m-1) 

Solving (6.27) for -; and substituting this in (6.8), we obtain 

1 
Uij = -c-----

L(Dij/Dlj)m~l 
1=1 

where Dij is as defined in (6.7). 

(6.9) 

(6.10) 

The computations of the cluster centers are straightforward, as no constraints are 

imposed on them. To minimize JNN with respect to the centers Cik> we fix U = [uij], 

T = [Pkhi], and 'l1 = ['tf'hli], and set the gradient to zero: 

oj N 

-;- = 2 I>;j(Xj - cJ = O. 
u Ci j=l 

(6.11) 

We obtain 

(6.12) 

To adjust a weights of different layers of the neural network, we fix C = [cid, and 

U = [uij], and optimize JNN with respect to 0ij using gradient descent methods. 

Given a constant 1], It can be shown that the weights need to be adjusted using: 

OJNN 001ij 
1]--x--

OOlij o'tf'hli 
(6.13) 

1]0 OlijZhij, (6.14) 
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and 

OJNN OOlij OZhij 
'r}--X--X--

OOZij OZhij 0Pkhi 
(6.15) 

'r}°ZhijYkj, (6.16) 

where 

o = 2au~(tz' - oz,,)f' 
0Uj 1)) 1) 0Uj' 

(6.17) 

and 
L 

o = f' '" 0 ol'hZ" Zhij Zhij L.J Qlij tt' I 
(6.18) 

Z=l 

In (6.17) and (6.18), f' is the derivative of the activation function f. In this thesis, 

we use the bipolar sigmoidal and f; = (1- 0
2 )/2. 

Notice that, in (6.17), given a sample j and duster i, the weight adjustment depends 

on the membership of the sample to the correspondent duster. In fact, if sample j 

is typical of duster i, its membership uij is dose to 1. In this case, the weights of 

the neural network i are adjusted to minimize the error JNN • On the other hand, if 

sample j is not likely to belong to duster i, its membership uij would be dose to O. 

In this case, the weights of network i are not adjusted even if network i misclassifies 

the sample. 

Inspired by the diagram presented in [132]' Figure 6.2 illustrates the update pro­

cess of the neural network designed for duster i for a given a sample j and explains 

both the flow of the signal, and the flow of the error within the network. Using the 

gradient descent technique, The back propagation of the error 2au;j(ozij - t jz ) is 

divided into functional steps such as calculation of the error signal vector 0
01

" and 
I) 

calculation of the weight matrix adjustment ..6..1jJhli of the output layer. The diagram 

also illustrates the calculation of the internal error signal 0 XI" and of the resulting 
I) 

weight adjustment f'...Pkhi of the input layer. 

The resulting algorithm is summarized in Algorithm 6.1. 
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--- l " Ltyer --- --- 2°' Ltyer ---

Unear Block Sigmoidal Sigmoidal 

y 

+ 77 

Figure 6.2: Block diagram illustrating signal flow for the error back-propagation 
algorithm. 

Algorithm 6.1 CELF with Neural Networks (CELF-NN) 
Inputs : f£: the features of the training data samples. 

'Y: the confidences given to the data samples by the different classifiers . 
f1 : the labels of the data samples. 
c: the number of clusters . 
m: the fuzzifier, mE (1, +00). 
a, the weight of the second term in the objective function. 
7] , the update coefficient of the NN. 
L , the size of the hidden Layer. 

Outputs: U: the fuzzy membership matrix of the data samples . 
Cff : the cluster centers . 
'11, T: The weights of C Neural Networks . 

1 : Initialize U, '11, and T. 
2: repeat 
3: Update Cff using (6.12) . 
4: Update U using (6.10). 
5: Update '11 and Tusing (6.14) and (6.16) . 
6: until parameters do not change significantly 
7: return Cff, U, '11, and T 

illustrative Example To illustrate the behavior of CELF-NN, we use it to partition 

and fuse a simple synthetic data. This data set is designed to illustrate the need for 

local fusion, and consists of 2, 000 samples that belong to two classes: 1, 266 sam­

ples from class a (negative) and 734 samples from class 1 (pos itive) . Suppose 

that each sample has been processed by two different algorithms. Each algorithm, 

k, extracts one feature (Xk) and assigns one output value (Yk )' Figure 6.3 displays 
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this data in the 2-D feature space (Xl' x 2 ) where samples from class 0 are repre­

sented by red dots and samples from class 1 are represented by green dots. As it 

can be seen, the data form 2 distinct clusters in the feature space, and each cluster 

has samples from both classes. 

+ ... ! .. .. + ..... ... ~ +.'1.- .. .. .... :. ... ........ 
...-:, +.{ •••• 

• Class 0 

• Class 1 

Figure 6.3: Synthetic data in the 2-D feature space. Class 1 samples are shown as 
red dots, class 2 samples are shown as green dots, and class 3 samples are shown 
as black dots. 

In Figure 6.4, we display the classification results of the two classifiers. As it can be 

seen, none of the two classifiers classify this data perfectly as both figures include 

many misclassified samples. In fact, the accuracy of classifier 1 is 63.3%, and of 

classifier 2 is 61.5%. 

To illustrate the performance of the local fusion approach, we compare the results 

of CELF-NN with the global Neural Network fusion and the baseline CELF approach 

(with linear aggregation). Figure 6.5(a) displays the cumulative histogram of the 

confidences assigned by the global fusion algorithm. As it can be seen, the fusion 

cannot achieve perfect classification as the distribution of the two classes overlap. 

In fact, for a threshold of 0.5, the accuracy of the fusion is 86.7% . The fusion result 

is shown in Figure 6.5(b) . The cumulative histogram of the confidences assigned by 

the baseline CELF is displayed in Figure 6.6(a). For a threshold of 0.6, the accuracy 

of the fusion is 87.4%, which is almost similar to the accuracy obtained by the global 

Neural Networks fusion. 

Figure 6.7(a) illustrates the clustering result using CELF-NN with the number of 

clusters C set to 2 and with the same parameters used in the global Neural Network 
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• True Negative 
• True Positive 
• Misclassified 

Ca) 

• True Negative 
• True Positive 
• Misclass ified 

(b) 

Figure 6.4: Classification result of (a) the first classifier and (b) the second classi­
fier. 

- Posit ive • True Negative 
- Ne!Ji;lINe • True Positive 

• Misolass ilied 

I 

ConftdencH 

Ca) (b) 

Figure 6.5: Fusion results using a global Neural Network approach. (a) Cumula­
tive histograms of the confidences assigned by the global Neural Network fusion. 
(b) Assigned label when the threshold is fixed to 0.5. 

fusion. As it can be seen, our approach identifies the two clusters. Figure 6.7(b) 

displays the histograms of the confidences generated by CELF-NN. As it can be seen, 

the two distributions are separable and any threshold in the [0.3, 0.7] range would 

result in an accuracy of 100%. The classification results, using a 0.5 threshold, are 

shown in Figure 6.7(c) . 
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Figure 6.6: Fusion results using the baseline CELF approach. (a) Cumulative his­
tograms of the confidences assigned by CELE (b) Assigned label when the threshold 
is fixed to 0.6. 
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• Cluster 2 
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Figure 6.7: Local fusion results using CELF-NN. (a) Clustered samples in the fea­
ture space. A different color is used for each cluster. (b) Cumulative histogram of 
the confidences assigned by the fusion algorithm. (c) fusion results (using 0.5 as 
threshold) . 
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6.2 Local Fusion with Fuzzy Integrals 

Fusion methods based on the fuzzy integral [114] have the desirable property 

of assigning weights to subsets of classifiers to take into account the interaction 

between them. In the following, we propose generalizing CELF by replacing the 

linear fusion component with the fuzzy integral. 

The proposed approach, called CELF with Fuzzy Integrals (CELF-FI), partitions the 

feature space and learns the fuzzy measures simultaneously by optimizing the fol­

lowing objective function. 

subject to 

N C N C 

JFI = L:L:u~lIxj - ci ll 2 + a L:Lu~ (Cgj(Y) - t j)2, 
j=l i=l j=l i=l 

C 

LUij = 1 Vj, and uij E [0,1] Vi,j. 
i=l 

(6.19) 

(6.20) 

In (6.19), Yj = [Y1j' ... SKj] is the set of confidence values assigned by the K algo­

rithms to sample j sorted in ascending order, gi is the Sugeno measure associated 

with cluster i, and, Cgj is the Choquet integral with respect to gi. For each gi' we 

associate a coefficient Ai that satisfies (2.21) and (2.22). The objective function in 

(6.19) can be rewritten as 

where Ak = {k, ... ,K} and YOj = o. 

To optimize JFI with respect to U = [Uij]. We incorporate the constraints with the 

aid of Lagrange multipliers. We obtain 
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where A = [,A. I , ... , AN Y is a vector of Lagrange multipliers corresponding to the 

N constraints on U in (5.3). Since the memberships of the different observations 

are independent of each other, the above optimization problem can be reduced to N 

simpler independent problems. For each pattern j = 1,2, ... ,N, we formulate the 

augmented functional 

(6.23) 

Computing the derivative of L'j with respect to uij and making it equal to 0, we 

obtain 

where 

Solving (6.24) for uij ' we obtain 

(
A') l!(m-l) 1 

uij = ~ (Dij)l/(m-l)' 

c 
Taking into account the constraint I: Ulj = 1, we obtain 

1=1 

....l.. = 1 (k) 1/(m-1) C 1 

m L CD y!(m-l) . 
1=1 1) 

(
A) l/(m-l) 

Solving (6.27) for ~ and substituting this in (6.26), we obtain 

1 
Uij = -c-----

I:CDij/Dlj)m~l 
1=1 

where Dij is as defined in (6.25). 
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To minimize JFI with respect to the centers cik> we fix U = [Uij], and G = [gik], and 

set the gradient to zero: 

oj N 

- = 2 ~u~(x. -c·) = 0 oc L...J I) ) ! • 

! j=l 

(6.29) 

We obtain 

(6.30) 

Differentiation of (6.19) with respect to the Sugeno measure, gi' does not have 

a closed-form solution. Thus, we use a gradient descent approach and update it 

in every iteration. As a convention, the measure of a singleton set {I} is called a 

density and is denoted by gil = gi({I}). Given a learning rate 1], the density gil is 

updated using 

(6.31) 

where 

oJFI 2 f, m (~[- - ] (A) .) (~[- - ] Ogi(Ak)) ~ = a L...J uij L...J Ykj - YCk-l)j . gi k - tJ L...J Ykj - YCk-l)j • o. . 
gIl j=l k=l k=l gtl 

(6.32) 

Notice that, in (6.32), given a sample j and cluster i, the weight adjustment depends 

on the membership of the sample to the correspondent cluster. In fact, if the sample 

j is typical of cluster i, its membership Uij is close to 1. In this case, gi is adjusted to 

minimize the error J Fl. On the other hand, if the sample j is not typical of cluster 

i, its membership uij is close to o. Therefore, gi is not adjusted even if the fuser 

misclassifies this sample. 

To calculate the partial derivative 0 gi(Ak )/ 0 gil> we use an approach similar to the 

one in [88], and obtain the following cases: 

Case 1: k :j:. K and k = I 

100 



(6.33) 

Case 2: k :f. K and k :f.l 

(6.34) 

Case 3: k = K and k = l 

(6.35) 

Case 4: k = K and k:f.l 

(6.36) 

In (6.33) and (6.34), 

if A ¥= O. 

(6.37) 

K if A = O. 

The resulting algorithm is summarized below in Algorithm 6.2. 

Illustrative Example To illustrate the behavior of the proposed fusion approach, 

we first use it to partition and fuse a simple synthetic data. This data set is designed 

to illustrate the need for local fusion, and consists of 2, 000 samples that belong 

to two classes: 1, 000 samples from class 0 (negative) and 1, 000 samples from 

class 1 (positive). Suppose that each sample has been processed by three different 

algorithms. Each algorithm, k, extracts one feature (Xk) and assigns one output 

value (Yk)' Figure 6.8 displays this data in the 2-D feature space (Xl> x2) where 
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Algorithm 6.2 CELF with Fuzzy Integrals (CELF-FI) 

Inputs: X: the features of the training data samples. 
'!!I: the confidences given by the different classifiers. 
fl: the labels of the data samples. 
c: the number of clusters. 
m: the fuzzifier, mE (1, +00). 
a, the weight of the second term in the objective function. 
yt, the learning rate. 

Outputs: U: the fuzzy membership matrix of the data samples. 
«1: the cluster centers. 
G = [gikJ: Sugeno measures. 

1: Initialize U and G. 
2: repeat 
3: Update cg using (6.30). 
4: Update U using (6.28). 
5: Update G using (6.31) for few iterations. 
6: until parameters do not change significantly 
7: return cg, U, and G 

samples from class 0 are represented by red dots and samples from class 1 are 

represented by green dots. As it can be seen, the data form 2 distinct clusters in the 

feature space, and each cluster has samples from both classes . 

• Class 0 

• Class 1 

• 

• • 

Figure 6.8: Synthetic data in the 2-D feature space. Class 0 samples are shown as 
red dots and class 1 samples are shown as green dots. 

In Figure 6.9, we display the classification results of the three classifiers. As it can 

be seen, none of the three classifiers classify this data perfectly as all three figures 

include many misclassified samples. In fact, the accuracy of classifier 1 is 63.2%, of 

classifier 2 is 74.9%, and of classifier 3 is 61.7%. More importantly, the performance 

of each classifier varies in different regions of the feature space. For instance, in the 

left cluster, classifier 1 has an accuracy of 75.4%, and classifier 3 has an accuracy 
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of 49%. On the other hand, for the right cluster, the accuracy of classifier 1 is 51 %, 

and of classifier 3 is 74.4%. 

• True Negative 

• True Positive 
• Misclassified 

x, 
Ca) 

• True Negative 
• True Positive 
• M isolass if ied 

x, 
(b) 

• True Negative 
• True Positive 
• Misclass ified 

• 

(e) 

Figure 6.9: Classification result of (a) the first classifier, (b) the second classifier, 
and (c) the third classifier. 

To illustrate the performance of CELF-FI, we compare the results of CELF-FI with 

the fusion using global fuzzy integral and and the baseline CELF approach. Fig­

ure 6.10(a) displays the cumulative histogram of the confidences assigned by the 

global fusion. As it can be seen, the fusion cannot achieve perfect classification as 

the distribution of the two classes overlap. In fact, for a threshold of 0.5, the accu-

racy of the fusion is 74.9% which is not any better than the best individual classifier. 

These results, shown in Figure 6.10(b), are similar to those obtained by classifier 2 
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only. The cumulative histogram of the confidences assigned by the baseline CELF 

is displayed in Figure 6.11 (a). For a threshold of 0.5, the accuracy of the fusion is 

77.7%, which is almost similar to the accuracy obtained by the global fuzzy integral 

fusion. 

- Positll.'S • True Negat ive 
~ 0.8 

- Negative 
• True Pos~lve 

~ • M isclass ~led 
! O.6 
! 
!J! 0.4 

~ 
0 0.2 

0.4 0.6 0 .8 
Canridlnon 

(a) (b) 

Figure 6.10: Fusion results using a global fuzzy integral approach. (a) Cumulative 
histograms of the confidences assigned by the global fuzzy integral fusion . (b) 
Assigned label when the threshold is fixed to 0.5 . 
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Figure 6.11: Fusion results using CELE (a) Cumulative histograms of the confi­
dences assigned by CELE (b) Assigned label when the threshold is fixed to 0.5. 

Figure 6.12(a) illustrates the clustering result using CELF-FI with the number of 

clusters C set to 2, the fuzzifier m set to 2, the parameter a set to 10, and the 

learning rate 'Y/ set to 0.1 (same as the one used in the global fuzzy integral) . Fig-

ure 6.12(b) displays the histograms of the confidences generated by CELF-FI. As it 

can be seen, the two distributions are separable and any threshold in the [0.3, 0.7] 

range would result in an accuracy of 100%. The classification results, using a 0.5 

threshold, are shown in Figure 6.12(c) . 
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Figure 6.12: Local fusion results using CELF-FI. (a) Clustered samples in the fea­
ture space. A different color is used for each cluster. (b) Cumulative histogram of 
the confidences assigned by the fusion algorithm. (c) fusion results (using 0.5 as 
threshold) . 

In order to gain further insight into the behavior of the local and the global ap­

proach, in Figure 6.13, we display the Shapley index of each classifier, and in Fig-

ure 6.14, we display the interaction indices between each pair of classifiers assigned 

by the global fuzzy integral and CELF-FI (within each cluster). 

In Figure 6.13, we can see that the global fusion assigned roughly the same Shapley 

score to each algorithm; which means that all the classifiers contribute in the fusion 

result with approximately the same part. This is expected since the 3 classifiers 

have comparable overall performance. The proposed CELF-FI, on the other hand, 

assigns cluster dependent values to the Shapley indices. In particular, for cluster 1 

a high Shapley index is assigned to the first two classifiers, and a low Shapley index 

is assigned to the third classifier. However for cluster 2, CELF-FI assigns a high 

Shapley index to the last two classifiers, and assigns a low Shapley index to the first 

one. In fact, in order to obtain better fusion results, CELF-FI learned to discard the 

third classifier in cluster 1, and to discard the first classifier in cluster 2. Referring 
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to Figure 6.9, we can see that the third classifier has the worst accuracy (49%) in 

cluster 1, and the first classifier has the worst accuracy (51%) in cluster 2. 

0.6 ........ .. . .. . . 
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Figure 6.13: Shapley values of the different classifiers assigned by the global fusion 
and the local fusion (within each cluster). 

In Figure 6.14, we can see that, the global fusion with fuzzy integral assigns null 

interaction indexes to all classifiers' pairs. Thus, a linear aggregation was used to 

fuse the three classifiers. On the other hand, the local approach assigns a positive 

interaction index to (classifier 1, classifier 2) within cluster 1, and a negative inter-

action index to (classifier 2, classifier 3) within cluster 2. In fact, when we refer 

to Figure 6.9, we can see that within cluster 1, classifiers 1 and 2 have to be both 

satisfied in order to detect samples from Class 1. However, within cluster 2, it is 

sufficient to satisfy classifier 2 or 3. 
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Figure 6.14: Interactions indices of the different pair of classifiers assigned by the 
global fusion and the local fusion (within each cluster). 
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ApPLICATION TO LANDMINE DETECTION 

In this chapter, we apply the proposed fusion method to the problem of land mine 

detection. We fuse the output of several land mine detection algorithms that have 

different preprocessing, different features, and different classification approaches in 

order to improve the detection performance. In particular, CELF was applied to two 

different data collections. The first dataset was collected using the NIITEK vehicle 

mounted Ground Penetration Radar(GPR) system, and CELF was used to fuse the 

results of four detection algorithms. The second one contains data collected using 

the Autonomous Mine Detection System (AMDS). The latter system has two sensors: 

GPR and Wideband ElectroMagnetic Induction (WEMI). Different algorithms were 

used for each sensor. In this case, CELF was used for multi-sensor multi-algorithm 

fusion to combine the outputs of four different algorithms. 

For this application, since it involves high dimensional feature spaces, where the 

samples are highly sparse, we use CELF with the feature relevance weighting option, 

and a low fuzzifier value em = 1.2) in order to obtain consistent clusters. As a result, 

we could not find the optimal number of cluster using CELF-CA. This is because 

CELF-CA requires that m = 2. Consequently, we fix the number of clusters, C, and 
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we assume that this number is sufficient to cover the different regions of the feature 

space. 

7.1 Landmine Detection Using a Vehicle Mounted 

GPR System 

7.1.1 Data Collection 

Ca) 

x 
(c ro ss-Lrac k ) 

o (dow ll - track ) 

y 

z (d e pth ) 

Cb) 

Figure 7.1: GPR data collection. (a) Vehicle-mounted GPR system. (b) An example 
of GPR scans. 

The data used in this experiment consist of a sequence of raw GPR measurements 

collected by a vehicle-mounted GPR array [54] (see Figure 7.1(a)). The GPR 

collects 24 channels of data. Adjacent channels are spaced approximately 5 cen-

timeters apart in the cross-track direction, and sequences (or scans) are taken at 

approximately 5 centimeter down-track intervals. The system uses an antenna that 

generates a wide-band pulse from 200 MHz to 7GHz. Each A-scan, that is, the mea-

sured waveform collected in one channel at one down-track position, contains 416 

time samples, each corresponding to roughly 8 picoseconds. We often refer to the 

time index as depth although, since the radar wave travels through different media, 

this index does not represent a uniform sampling of depth. Thus, we model GPR in-

put data as a three-dimensional matrix of sample values, S(z, x, y), z = 1, ... ,416, 
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x = 1, .. . ,24, Y = 1, ... , Ns, where Ns is the total number of collected scans, and the 

indices z, x, and y represent depth, cross-track position, and down-track positions 

respectively. A sample volume of GPR input data is illustrated in Figure 7.l(b). Fig­

ure 7.2 displays down-track B-scans (sequences of A-scans from a single channel) 

and cross-track B-scans (sequences of A-scans from a single scan). The surveyed ob­

ject position is highlighted in each figure. The objects scanned are a) a high-metal 

content antitank mine, b) a low-metal antitank mine, and d) a wood block. 

j 

do wntraek 
$ 1 0 15 ::0 
c(o~tr3ck 

(a) Metal mine 

i ... 

d o wntrack cross-traok 

(b) Low-metal mine 

J J 

<.I Q wn l rftck cros~trHC" 

(c) Wood block 

Figure 7.2: NIITEK Radar down-track and cross-track B-scans pairs for (a) a high­
metal mine, (b) a low-metal mine, and (c) a wood block. 

In our experiments, we use data collected between November 2002 and July 2006 

from 4 geographically distinct test sites (A, B, C and D). Sites A, B, and Dare tem-

perate climate test facilities with prepared soil and gravel lanes. Site C is an arid 

climate test facility with prepared soil lanes. The statistics of the data are shown 

in Table 7.1. Site B has the largest number of collections and the largest number 

of alarms. The data collected from Sites Band D have emplaced buried clutter. 

Although the lanes at Sites A and C are prepared, they still contain non-emplaced 

clutter objects. Both metal and non-metal non-emplaced clutter objects such as 

ploughshares, shell casings, and large rocks have been excavated from these sites. 

The emplaced clutter objects include steel scraps, bolts, sort-drink cans, concrete 

blocks, plastic bottles, wood blocks, and rocks. In all, there are 12 collections 
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having 19 distinct mine types that can be classified into 3 categories: anti-tank 

metal(ATM), anti-tank with low metal content (ATLM), and simulated mines (SIM). 

The targets were buried up to 6 inches deep. Many of these mine types are present 

at several sites. The data include 1,560 mine encounters in a sample ground area 

of 41, 807.57Im2
• 

Table 7.1: Statistics of dataset 1 

I Site Site A Site B I Site C Site D II Total 

# Lanes 3 6 2 1 12 

# Mine 1YPes 9 15 9 5 19 

# Mine Alarms 183 821 62 494 1560 

# Clutter encounters 0 15 0 196 211 

# Clutter Alarms post prescreen 0 4 0 46 50 

Area (m2 ) 14,812.83 15,630.62 4,054.39 7,309.73 41,807.57 

The distribution of mine targets at different depths is shown in Table 7.2. As it can 

be seen, mines buried at 1" through 6" occupy 87.5% of the total targets encoun­

tered vs. 12.5% surface-laid or flush-buried mines. 

Table 7.2: Burial depth of mines in dataset 1 

Depth Surface 0" 1" 2" 3" 4" 5" 6" Total 

ATLM 12 92 90 204 122 134 47 76 777 

ATM 6 37 124 68 151 34 119 77 616 

SIM 48 0 20 47 23 29 0 0 167 

1 Total 66 1129123413191296119711661153111560 1 

7.1.2 Evaluation Method 

The individual algorithms and the fusion approach were implemented for use within 

the Testing/training Unified Framework (TUF) System with lane-based cross-validation 

(in which each mine lane is in tum treated as a test set with the rest of the lanes 
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used for training). The results of this process are scored using the MIne Detec­

tion Assessment and Scoring (Midas) system developed by the institute for Defense 

Analysis [6]. 

Since the set of potential false alarm locations is infinite (limited only by the preci­

sion of the marking system), we cannot consider typical receiver operating character­

istic (ROC) curves comparing probability of detection (PD) vs. probability of false 

alarm (PFA) because the denominator in the PFA calculation is not well defined. 

For this reason, The scoring is performed in terms of Probability of Detection (PD) 

vs. False Alarm Rate (FAR). Confidence values are threshold at different levels to 

produce Free-Response Receiver Operating Characteristic (FROC) curve. 

During data collection, a global positioning system (GPS) was used with known 

locations of buried landmines to generate ground truth files that indicate the ap­

proximate locations of the landmine signatures in the GPR data files. For scoring 

purposes, alarms within a certain radial distance of 25 cm from the edge of a mine 

are considered detections and alarms more than 25 cm from landmine edges are 

considered false alarms. Then, given a threshold, the PD is defined to be the num­

ber of mines detected divided by the number of mines. The FAR is defined as the 

number of false alarms per square meter. 

It is often the case that a single dominating classifier (one producing statistically 

lower FAR at every PD value), does not exist. Furthermore, in many practical cases 

such as humanitarian de mining, the best algorithm may be the one at which 100% 

detection is achieved with the lowest false alarm rate, no matter what other prop­

erties the FROC may display. For other time-critical de mining applications where 

some level of missed mines may be tolerated, the best FRoe may be the one at 

which the probability of detection is highest at a giver constant false alarm rate. 

Our application falls in the second category. 
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7.1.3 Motivation for Multi-Algorithm Fusion 

In the following, we consider four land mine discrimination algorithms of distinct 

character; namely, the prescreener [117], the EHD [51], the HMM [38,29] and 

the SCF [55]. These algorithms were described in details in Section 4.2.1. 

In this section, we compare the performance of the individual detectors and justify 

the need to fuse their results to improve the overall performance of the system. Fig-

ure 7.3 displays the FROCs obtained by applying three detection algorithms (EHD, 

SCF and HMM) and the prescreener to the entire data collection. As it can be seen, 

the EHD and the SCF detectors have the best overall performance. However, this 

does not necessarily mean that they are consistently the best algorithms. For in-

stance, Figure 7.4(a) displays the results averaged over site A of the collection only. 

For this subset, the SCF is the best algorithm and the EHD is the second best one. 

However, in Figure 7.4(b), which displays the results averaged over site D only, the 

EHD is the best algorithm and the HMM is the second best one. 

- Presoreener 
- HMM 

O. 95 ·L-~_~_H_~-:--_.....( ····· "· .~ ......... r' .................... . 
0,9 .......... ,. 

~ 0.85 ....... ; ... ...... :- .. ... ' ..... _-""'l 
0 .8 . 

0 .75 

0 . 7 ~-LL-~~---L--~~--~~~--~--~----~--~ 
o 0.5 1.5 2 2.5 3 35 4 45 5 

FAR (fA/m2) x 10.3 

Figure 7.3: Performance of the different detectors on the entire data collection 
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Ca) Site A only (b) Site D only 

Figure 7.4: Perfonnance of the detectors on two different sites 

From the results displayed in Figure 7.4, one can reach the conclusion that there is 

no single algorithm that can consistently outperform all others detectors. In fact, the 

relative performance of different detectors can vary depending on the geographical 

site and soil and weather conditions. Moreover, even within the same site, the 

relative performance of the different algorithms can vary significantly depending 

on the mine type, burial depth, and other unknown factors. Figure 7.5 displays the 

performance of the detectors on mines buried at different depths. As it can be seen 

in Figure 7.S(a), the EHD is the best algorithm on shallow mines. However, as it 

appears in Figure 7.S(b), the same algorithm has the worse performance for deep 

mines. 

Ca) Shallow mines vs. FA (b) Deep mines vs. FA 

Figure 7.5: Perfonnance of the detectors on mines buried at different depths 

114 



7.1.4 Multi-Algorithm Fusion 

In this section, we apply the proposed CELF, CELF-FI, and CELF-NN methods to 

the land mine data set described in Section 7.2.1. Then, we compare their per­

formance with standard fusion methods; namely, fuzzy integrals [114], bayesian 

fusion [106], and global linear fusion. The global fusion approach uses the same 

aggregation method as the CELF approach. We do this by simply setting the number 

of clusters to 1. The fusion algorithms were trained and tested using 12 lane-based 

cross-validation. 

For each cross validation, the training data consists of a set of GPR alarms. Each 

alarm is processed by three discrimination algorithms (EHD, HMM, and SCF) and 

the prescreener outlined in Section 4.2. The features extracted from these alarms 

are then fed to CELF to partition the aggregate feature space into C = 10 clusters. 

Table 7.3 displays the content of the 10 identified clusters. As it can be seen, most 

clusters include alarms of similar types, and thus may be considered as homoge­

neous contexts. For instance, some clusters are dominated by low metal mines (e.g. 

cluster 1). Also, some clusters include mainly mine (e.g. cluster 10), others include 

mainly false alarms (e.g. cluster 2), and others include a mixture of both. 

Table 7.4 shows the aggregation weights assigned by CELF to each classifier in each 

cluster. As it can be seen, the performance of the different algorithms can vary 

significantly from one context to another. For instance, in context 2, the EHD has 

the highest performance and gets the highest weight. This context includes only FA 

(refer to Table 7.3). Figure 7.6 shows the histograms of the confidences assigned 

to the alarms in context 2 by the different detectors. Notice that this cluster does 

not include mines, and thus we cannot generate ROC for this context. As it can 

be seen, the distribution of the EHD confidence values is shifted to the left more 

than all others indicating low confidence values for all false alarms. The highest 

confidence assigned by the EHD algorithm in this context is 0.3134, which is lower 
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Table 7.3: Distribution of the alarms among the 10 clusters for one cross validation 
set 

AT Mines False Alarms 
Cluster 

Metal Low Metal Blank Clutter 

1 30 148 44 17 

2 0 0 193 6 

3 0 12 180 6 

4 0 3 188 6 

5 1 25 89 14 

6 55 61 15 21 

7 0 2 247 3 

8 37 85 5 10 

9 13 35 97 17 

10 47 100 0 0 

Table 7.4: Weights assigned to each classifier in each cluster 

Cluster 1 2 3 4 5 6 7 8 9 

SCF 0.39 0.00 0.05 0.31 0.50 0.21 0.00 0.26 0.56 

EHD 0.61 1.00 0.95 0.34 0.30 0.66 1.00 0.57 0.39 

HMM 0.00 0.00 0.00 0.35 0.07 0.13 0.00 0.17 0.00 

Prescreener 0.00 0.00 0.00 0.01 0.13 0.00 0.00 0.01 0.04 

10 

0.00 

0.28 

0.72 

0.09 

than the highest confidences assigned by the other detectors : 0.6512, 0.3908, and 

0.8824 assigned by the SCF, HMM, and the prescreener algorithms respectively. For 

this context, CELF identified the EHD algorithm as best detector. Table 7.5 shows 

some representatives alarms from this context and the confidence values assigned 

to them by the different detectors. As it can be seen, most of the FA may be caused 

by sub-layers in the soil. These sub-layers appear to be affecting the SCF and HMM 

detectors more than the EHD as this algorithm assigns the lowest confidences for 

most of these alarms. 

Unlike context 2, context 9 includes a mixture of different alarms. For this context, 
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Figure 7.6: Distribution of the confidence values assigned by the different detec-
tors for alanns assigned to context 2 

Table 7.5: Representative alanns from context 2 

Alarm 

EHD 0.15 0.15 0.09 0.12 0.17 0.13 

SCF 0.24 0.22 0.22 0.13 0.12 0.11 

HMM 0.20 0.20 0.20 0.20 0.20 0.20 

Pre screener 0.23 0.S7 0.17 0.16 0.45 0.21 

as it can be seen in Figure 7.7, the SCF and the EHD have the best performances. 

Table 7.6 shows some representatives mines and false alarms from this context and 

the confidence values assigned to them by the different detectors. The EHD algo­

rithm has the best performance for mine alarms, and the SCF has the second best 

performance. However for FA, the EHD assigns high confidence values; and the 

confidences assigned by the SCF algorithm have generally lower values. These FA 

appear to be different from those shown in Table 7.5 and may be caused by clutter 

objects or simply by disturbed soil. For this context, CELF combines the confidences 
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assigned by the EHD and the SCF by assigning comparable weights to these algo­

rithms to get better performance. 
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Figure 7.7: Performance of the different detectors for alarms assigned to context 9 

Table 7.6: Representative mines and false alarms from context 9 

Mines FA 

Alarm 

EHD 0.81 0.74 0.80 0.25 0.47 0.62 

SCF 0.46 0.50 0.57 0.40 0.25 0.24 

HMM 0.38 0.20 0.20 0.20 0.52 0.200 

Prescreener 0.08 0.37 0.12 0.30 0.27 0.09 

Another interesting context is number 10. This context includes only Mines (refer 

to Table 7.3). Figure 7.8 shows the histograms of the confidences assigned to the 

alarms assigned to context 10 by the different detectors. Table 7.7 shows some 

representatives mines from this context and the confidence values assigned to them 

by the different detectors. As it can be seen, the HMM algorithm assigns generally 
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higher confidences than those assigned by the other detectors. That explains why, 

for this context, CELF assigns the highest weight to the HMM. 
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Figure 7.8: Distribution of the confidence values assigned by the different detec­
tors for alarms assigned to context 10 

Table 7.7: Representative alarms from context 10 

Alarm 

EHD 0.97 0.99 0.57 0.97 0.96 

SCF 0.65 0.67 0.96 0.65 0.80 

HMM 0.83 0.99 0.97 0.99 0.80 

Prescreener 0.92 0.85 0.89 0.95 0.69 

0.98 

0.99 

0.99 

0.94 

To illustrate the advantage of CELF over global fusion, and the benefits of parti-

tioning the feature space into clusters, we fuse the 4 algorithms using the same 

approach but without clustering, i.e. , we let C = 1. Table 7.8 shows the aggrega­

tion weights assigned by the global fusion approach to each classifier. The highest 

weight was assigned to the EHD detector since it has the best overall performance 
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(refer to Figure 7.3), and the lowest weight was assigned to the prescreener since it 

has the worse overall performance (refer to Figure 7.3). 

Table 7.8: Weights assigned by the global fusion approach 

EHD SCF HMM Pre screener 

Weights 0.67 0.21 0.12 0.00 

The ROCs resulting from the individual detectors, the global fusion, the bayesian 

fusion [106], the fuzzy integrals [114] (refer to Chapter 2) and the proposed CELF 

approach on sites A, B, C, and D are shown in Figures 7.9(a), 7.9(b) , 7.9(c), and 

7.9(d) respectively. We note that the proposed context-extraction for local fusion 

approach outperforms all individual detectors and the other fusion approaches on 

site A, site B and site C significantly. However, the performance of CELF on site D is 

comparable to the other fusion approach. In fact, on this site, the EHD has the best 

performance. And since EHD has the highest overall performance on all sites, The 

global fusion approach assigns a high weight to this detector(refer to Table 7.8). 

Figure 7.10 displays the ROCs resulting from the individual detectors, the global 

fusion approaches, and the proposed CELF, CELF-FI, and CELF-NN approaches using 

all data with lane-based cross-validation. We note that our proposed approaches 

outperforms all individual detectors and the other fusion approaches significantly. 

Also, we note that CELF-FI and CELF-NN slightly outperform the linear CELF ap­

proach. This is due to the non-linear aspect of CELF-FI and CELF-NN. 

7.2 Landmine Detection Using AMOS System 

7.2.1 Data Collection 

In this section, we report results using data collected with the NIITEK Inc. Au­

tonomous Mine Detection System (AMDS). This system includes a Ground Pene­

trating Radar (GPR) and a Wideband Electro-Magnetic Induction (WEMI) sensor 
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Figure 7.9: Performance of the individual detectors and the different fusion meth­
ods on (a) site A, (b) site B, (c) site C, (d) site D. 

and is shown in Figure 7.11. It was used to acquire large sets of co-located GPR and 

WEMI data from 2 geographically distinct test sites (site A and site B). The two sites 

are partitioned into grids with known mine locations. Over all, there are 28 distinct 

mine types that can be classified into 4 categories : anti-tank metal (ATM), anti-tank 

with low metal content (ATLM), anti-personnel metal (APM), and anti-personnel with 

low metal content (APLM). The targets were buried up to 5 inches deep. Multi-

pIe data sets at different times were collected at each site resulting in a large and 

diverse collection of mine and clutter signatures. 

In this data collection, clutter arises from two different processes. One type of 

clutter is emplaced and surveyed. Objects used for this clutter can be classifier 

into 2 categories: High Metal Clutter (HMC) and Non-Metal Clutter (NMC). High 

metal clutter such as steel scraps, bolts, soft-drink cans, is emplaced and surveyed 
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Figure 7.10: Performance of the individual detectors and the different fusion meth­
ods on the entire collection using lane-based cross-validation 

in an effort to test the robustness of the detection algorithms, and in particular 

those using the WEMI sensor. Non-metal clutter such as concrete blocks and wood 

blocks is emplaced and surveyed in an effort to test the robustness of the GPR based 

detection algorithms. The other type of clutter, referred to as blank, is caused by 

disturbing the soil. 

The AMDS data collection includes a total of 311 mine signatures and 564 clutter 

signatures. The statistics of this collection is shown in Table 7.9, and the depth 

distribution for all objects is shown in Table 7.10. 

7.2.2 Motivation for Multi-Sensor Multi-Algorithm Fusion 

Our extensive experiments have lead us to the conclusion that the performance of 

most detection systems can be significandy effected by various factors, and there is 
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WEMI Sensor GPR Sensor 

Figure 7.11: NIITEK Autonomous Mine Detection System. 

Table 7.9: Statistics of the data collection used in our experiment 

I Type II Site A I Site B II Total / Category II Total / Type I 
HM 16 40 S6 

AP 187 
LM 38 93 131 

HM 6 20 26 
AT 124 

LM 28 70 98 

HMC 224 68 292 

FA NMC 72 68 l40 S64 

Blank S2 80 132 

I Total II 436 I 439 II 87S II 87S 

no single sensor or algorithm that can consistently outperform all others. In fact, 

the relative performance of different sensors and detectors can vary significantly 

depending on the mine type, geographical site, soil and weather conditions, and 

burial depth. 
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Table 7.10: Burial depth of all objects in the data collection 

Mine Clutter 

Depth Site A Site B Total Site A Site B Total 

Surface 0 27 27 52 80 132 

1" 12 104 116 70 46 116 

2" 36 48 84 78 44 122 

3" 28 34 62 88 18 106 

4" 12 0 12 60 20 80 

5" 0 10 10 0 8 8 

I Total II 88 I 223 I 311 II 348 I 216 I 564 I 

To illustrate the above point, in Figure 7.12, we show the Receiver Operating Char­

acteristic (ROC) curves of the four discrimination algorithms on subsets of the data 

collection outlined in section 7.2.1. The different ROCs display the performance 

of the algorithms when different types of mines are scored. For instance, in Fig­

ure 7.12(a), only anti-tank (AT) mines are considered. In this case, the HMM 

and EHD detectors have the best performance. This is because AT mines are large 

enough to have good GPR signatures and many of them have low metal content. 

This explains the relatively lower performance of the MFIT algorithm. However, 

for anti-personal (AP) mines, the MFIT detector has the best performance at high 

probability of detection as shown in Figure 7.12(b). In this case, several AP mines 

have weak GPR signatures and cannot be easily detected by any of the GPR algo­

rithms. Figures 7.12(c) and 7.12(d) display the ROC curves when only high metal 

mines or low metal mines are considered. Besides the mine type, the relative per­

formance of the different algorithms depend on other factors, such as burial depth, 

soil properties, and weather conditions. 

The above examples suggest using different sensors, algorithms and/or features 

to accommodate for the different conditions. However, this task may not be as 

simple as it sounds since it is not possible to characterize the performance of each 

algorithm on all possible variations. Moreover, it may not be possible to know the 
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Figure 7.12: Performance of the individual detectors for different types of mines 
when: (a) only anti-tank (AT) mines are considered, (b) only anti-personal (AP) 
mines are considered, (c) only high-metal (HM) mines are considered, (d) only 
low-metal (LM) mines are considered. 

characteristics of the test site. Thus, the selection of the optimal subset of algorithms 

is not a trivial task and needs to be learned in an unsupervised way. 

7.2.3 Multi-sensor Multi-algorithm Fusion 

We apply the proposed CELF, CELF-FI, and CELF-NN methods to the land mine data 

set described in Section 7.2.1. We compare its performance with other commonly 

used fusion methods, and global linear fusion. The global fusion approach uses 

the same aggregation method as CELR We do this by simply setting the number 

of clusters to 1. The fusion algorithms were trained and tested using 6 fold cross-

validation. For each cross validation, the training data consists of a set of co-located 
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GPR and WEMI alarms. Each alarm is processed by the four discrimination algo­

rithms (EHD, HMM, SCF, and MFIT). The features extracted from these alarms and 

their confidence values are then fed to CELF to partition the aggregated feature 

space into contexts. 

Table 7.11 displays the content of the 13 identified contexts. As it can be seen, most 

clusters include alarms of similar types, and thus, each one may be considered as a 

homogeneous context. For instance, some contexts (e.g. 2 and 11) are dominated 

by high metal mines. Others are dominated by AT mines (e.g. 3 and 9) or AP 

mines (e.g. 4 and 12). Also, some contexts include mainly mine or clutter alarms. 

Others include a mixture of both. Alarms that are grouped into the same context 

share common GPR and/or WEMI features. However, some contexts do not always 

correspond to alarms of the same type. In this case, other factors such as burial 

depth and soil properties can affect the grouping of the signatures. For instance, for 

the GPR sensor, some shallowly buried AP mines can have signatures as strong as 

the deeply buried AT mines. 

Table 7.12 shows the aggregation weights assigned by CELF to each classifier within 

each context. As it can be seen, the performance of the different algorithms can 

vary significantly from one context to another. For instance, in contexts 1, 6, 7 and 

13, the highest weight is assigned to the MFIT detector. These contexts contains 

mainly blank and Non-Metal Clutter (NMC) (refer to Table 7.11), and MFIT assigns 

low confidence values to theses alarms since they have low (or no) metal content. 

Consequently, since the desired output is 0, CELF assigns the highest aggregation 

weight to MFIT. Figure 7.13 shows the cumulative histograms of the confidences 

assigned by the different detectors in context 1. As it can be seen, the maximum 

confidence assigned by MFIT is 0.3 which is lower than those assigned by EHD, SCF 

and HMM (0.9, 1, and 0.8 respectively). 

Another interesting context is number 3. This context includes mainly AT mines 

with low-metal content and clutter with high metal content. Figure 7.14 displays 
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Table 7.11: Distribution of the alarms among the 13 contexts identified by CELF 

Mines Clutters 
Context 

ATM ATLM APM APLM Blank HMC NMC 

1 0 0 0 0 25 3 44 

2 12 0 14 0 0 4 0 

3 0 25 8 1 0 25 0 

4 0 5 5 52 0 56 0 

5 0 33 0 26 1 12 0 

6 0 1 0 0 31 7 26 

7 0 0 0 0 22 3 24 

8 5 3 5 4 0 63 0 

9 1 26 0 2 2 6 5 

10 0 4 0 2 14 15 14 

11 8 0 21 9 0 33 0 

12 0 0 1 32 0 49 0 

13 0 0 0 3 37 8 27 

Table 7.12: Weights assigned to each classifier in each context for the entire train-
ing data 

Context 1 2 3 4 5 6 7 8 9 10 11 12 13 

EHD 0.10 0 .53 0 .63 0.36 0.42 0.14 0.00 0.55 0 .84 0.43 0.42 0.47 0.22 

SCF 0.00 0.00 0.03 0.00 0.00 0 .00 0 .00 0.11 0.13 0 .00 0.00 0 .00 0 .00 

HMM 0.00 0.37 0.32 0.19 0.36 0.00 0.00 0.00 0.00 0 .00 0.15 0.12 0 .00 

MFlT 0.90 0.10 0.Q2 0.46 0.22 0 .86 1.00 0.33 0.03 0 .57 0.42 0.41 0 .78 

EHD SCF HMM MFIT 

O.B O.B O.B O.B 

t:- t:- t:- t:-Iii 0.6 Iii 0.6 Iii 0 6 Iii 0.6 

= = ::l = 
~ ~ ~ ~ 
... 0.4 ... 0 .4 ... 0.4 ... 0 .4 

0 .2 0 .2 0 .2 0 .2 

0 0 0 0 
0 0 .5 0 0.5 0 0 .5 0 0 .5 

Conf Conf Conf Conf 

Figure 7.13: Cumulative histograms of the confidence values assigned by the dif-
ferent detectors to samples within context 1. 
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the ROC curves of the different detectors in this context. As it can be seen, HMM 

and EHD have the best performance in this context. This explains the high weights 

assigned to these detectors (refer to Table 7.12). This is because the AT mines have 

a relatively large size, and thus a strong GPR response. The MFIT detector, on the 

other hand, is not a good discriminator for this type of alarms and gets assigned a 

weight close to zero. In particular, MFIT tends to assign low confidence values to 

ATLM mines and higher confidence values to most HM clutters. 
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Figure 7.14: ROC curves generated by the different detectors for samples assigned 
to context 3. 

To take into account the effect of initialization and local minima, we ran CELF 

100 times using different random initializations. Figure 7.15(a) shows the results 

where we display the mean of all ROC curves along with the standard deviation. 

As it can be seen, the deviation are small indicating that CELF is not very sensitive 

to initialization. This can be attributed in part to the fuzzy nature of the algorithm 

where each alarm gets assigned to each context with a different membership degree 

and that the overall fusion is averaged over all clusters (refer to equation (5.19)) . 

For comparison purposes, we fuse the 4 algorithms (HMM, EHD, SCF, and MFIT) 

using other commonly used fusion methods including the fuzzy integrals [114, 18, 
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Figure 7.15: Probability of detection (PD) vs. probability of false alanns (PFA) 
of (a) average and standard deviation of CELF over 100 runs, (b) the individual 
detectors and the different fusion methods on the entire collection using 6 fold 
cross-validation. 
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45,65,5]' bayesian fusion [106], Borda count [19], and Dempster Shafer [108]. 

To emphasize the benefits of local fusion and partitioning the feature space into 

contexts, we also fuse the 4 algorithms using the same linear aggregation used in 

CELF but without partitioning the feature space, i.e., we use C = 1. We will refer to 

this method simply global fusion. The ROC curves resulting from all fusion methods 

(including the proposed CELF, CELF-FI, and CELF-NN approaches) are shown in 

Figure 7.15(b). First, we note that even with a simple global fusion, we obtain 

results that outperform all individual detectors. This is because these detectors 

operate on different sensor data, use different preprocessing, feature extraction, 

and classification methods. This diversity allows the fusion to take advantages of 

the strengths of the individual detectors, overcome their weakness, and achieve 

a higher accuracy. Second, the proposed approaches outperforms all individual 

detectors and the other fusion methods. For instance, for a 90% probability of 

detection (PD), CELF reduces the probability of false alarm (PFA) by 100% when 

compared to the global fusion and by 40% when compared to the next best fusion 

method (Borda count). Also, we note that the results of CELF-FI and CELF-NN are 

slightly better than the CELF result. This can be explained by the non-linear aspect 

of CELF-FI and CELF-NN. 

130 



8 
OTHER ApPLICATIONS OF CELF 

CELF was designed and implemented mainly for land mine detection. However, our 

approach can be applied to many other problems. In this chapter, we apply the 

proposed fusion method to 3 different problems; namely, semantic video indexing, 

image database categorization, and phoneme recognition. 

8.1 Semantic Video Indexing 

In this section, we use CELF to label MPEG-1 movies from the TRECVID-2002 data 

collection 1 [111] . 

8.1.1 Data Collection 

This collection consists mainly of Internet Archive of advertising, educational, indus-

trial, amateur films produced between 1930 and 1970 by corporations, non-profit 

organizations, and trade groups. This collection included a total of 73.3 hours of 

video data partitioned into a search test set (40.12 hours); a feature development 

IThis is the latest TRECVID data collection that is publicly available with no copyright issues. 
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set (training and validation; 23.26 hours); a feature test set (5.07 hours); and a 

shot boundary test set (4.85 hours). For our experiment, we used the feature devel­

opment set for training and the feature test set for testing and evaluation. Each shot 

in this collection can belong to one (or more) of the 10 semantic concepts: 'Out-

doors', 'Indoors', 'Face', 'People', 'Cityscape', 'Landscape', 'Text Overlay', 'Speech', 

'Instrumental Sound', and'Monologue'. For all data, we used the shot boundaries 

provided by NIST [111]. Table 8.1 summarizes the data used in our experiment. 

The number of shots used to train and test each of the 10 semantic concepts is 

shown in Table 8.2. 

Table 8.1: Feature development and test sets of the TRECVID-2002 collection used 
in our experiment 

'~----~--------~------~------------~ 
II # of movies I # of shots I Running time (h) I 

Training 80 6,330 23.26 

Testing 23 1,848 5.07 

Table 8.2: Number of shots per semantic concept used in our experiment 

II Training I Testing I 
Outdoors 3,290 1,277 

Indoors 1,425 494 

Face 626 589 

People 2,158 681 

Cityscape 1,895 699 

Landscape 654 184 

Text Overlay 811 144 

Speech 4,387 1,815 

Instrumental Sound 3,498 1,568 

Monologue 54 57 
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8.1.2 Low-Level Descriptors and Classifiers 

The goal of our experiment is to illustrate that the proposed context dependent fu­

sion is a framework that can improve the performance by partitioning the feature 

space into disjoint regions and identifying local expert algorithms for each region. 

Thus, we did not attempt to optimize the feature extraction nor the classifier design 

components. We simply use a set of generic MPEG-7 descriptors [84, 85] and a 

simple k-NN classifier [23]. Other descriptors and classifiers can be easily inte­

grated into our approach. In particular, the following set oflow-Ievel descriptors are 

extracted and used to construct the low-level feature space for context extraction. 

1. Color Structure Descriptor (CSD): This descriptor expresses local color struc­

ture in an image using an 8x8-structuring element. It counts the number of 

times a particular color is contained within the structuring element as the 

structuring element scans the image. The HMMD color space is used in this 

descriptor. 

2. Scalable Color Descriptor (SCD): This descriptor addresses the inter-operability 

issue by fixing the color space to HSV, with a uniform quantization of the HSV 

space to 256 bins. The SeD is a color histogram in the HSV color space, which 

is encoded by a Haar transform. Its binary representation is scalable in terms 

of bin numbers and bit representation accuracy over a broad range of data 

rates. Among 256 bins, only the highest 32 frequency components are used 

in our experiment. 

3. Edge Histogram Descriptor (EHD): This descriptor is designed to represent 

the spatial distribution, frequency, and directionality of the edges. First, sim­

ple edge detector operators are used to identify edges and group them into 

five categories: vertical, horizontal, 45° diagonal, 1350 diagonal, and isotropic 

(non-edge). Then, local, global, and semi-local edge histograms are gener­

ated. [27]. 
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4. Homogeneous Texture Descriptor (HTD): This descriptor is based on the 

Gabor descriptors proposed by Manjunath et al. [85] to represent the texture. 

Each image is filtered by 30 Gabor filters that are generated with 5 different 

scales and 6 different orientations. The texture feature is represented by the 

average and standard deviation of each filtered image. 

8.1.3 Results 

CELF, CELF-FI, and CELF-NN were used to partition the feature space into 50 clus­

ters, and fuse the result of the different classifiers presented in the previous section. 

Since we are using only visual features, we only use the first 7 semantic concepts as 

the last 3 concepts require textual and audio features. 

Figure 8.1 displays some representative keyframe images from 6 typical clusters 

obtained by one run of CELE As expected, these images appear similar, and thus 

may be considered as a homogeneous context. In fact, each cluster is dominated by 

images from few concepts. Context 3 includes mainly images from the 'Text Over­

lay' concept. Context 11 is dominated by images from the 'Outdoors' and 'People' 

concepts. Context 12 is dominated by images from the 'People' and 'Face' concepts. 

Context 27 is dominated by images from the 'Outdoors' and 'Cityscape' concepts. 

Context 33 is dominated by images from the 'Indoors' and 'People' concepts. And, 

context 39 is dominated by images from the 'Outdoors' and 'Landscape' concepts. 

For comparison purposes, we fuse the 4 classifiers (k-NN based on CSD, SCD, EHD, 

and HTD) using global Neural Network. The performance of the different classi­

fiers and fusion algorithms is measured in terms of the 'Mean Averaged Precision 

(MAP)' [2]. Basically, MAP is a non-interpolated average precision. It corresponds 

to the area under an ideal (non-interpolated) recall/precision curve. To compute 

MAP, the average precision for each semantic concept is first calculated. Average 
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(a) Context 3 (b) Context 11 

(e) Context 12 (d) Context 27 

(e) Context 33 (f) Context 39 

Figure 8.1: Sample keyframes from 6 of the contexts identified by CELF 

precision favors highly ranked relevant documents and allows comparison of re­

sults with different sizes. The averages are then combined (averaged) across all 

semantic concepts in the appropriate set to create the non-interpolated MAP for 

that set. Table 8.3 displays the MAP of the individual algorithms, the global Neural 

Network fusion, and the proposed approaches (CELF, CELF-FI, and CELF-NN). 
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Table 8.3: MAP values for the individual classifier and the fusion algorithms aver­
aged over the test data 

CSD SCD EHD HTD Global NN CELF CELF-FI CELF-NN 

Outdoors 0.58 0.64 0.72 0.58 0.74 0.75 0.72 0.81 

Indoors 0.22 0.23 0.31 0.29 0.25 0.36 0.36 0.37 

Face 0.21 0.23 0.33 0.32 0.33 0.33 0.39 0.41 

People 0.28 0.35 0.40 0.37 0.38 0.41 0.46 0.46 

Cityscape 0.40 0.48 0.49 0.39 0.52 0.50 0.51 0.54 

Landscape 0.08 0.08 0.16 0.12 0.15 0.18 0.22 0.21 

Text Overlay 0.57 0.58 0.62 0.59 0.70 0.72 0.78 0.80 

We note that, for all concepts, the CELF-NN approach outperform all individual clas­

sifiers and the global fuser. CELF, and CELF-FI improve the result of the individual 

classifiers for most of the concept (6 concepts over 7). But, for some concepts, they 

are not able to do so (e.g. 'outdoors' concept for CELF-FI, and 'Face' concept for 

CELF) . In the other side, the global Neural Network is not able to improve the re-

sults of the individual classifiers for 3 of the 7 concepts. However, we can conclude 

that, in average, the proposed adaptive approaches proves better performance than 

the global fusion approach (Neural Networks). 

8.2 Image Database Categorization 

In this section, CELF is used to label a subset of 3000 color images from the COREL 

image collection. This subset includes 30 categories. Each category contains 100 

images. To generate the test dataset, 25 images from each category were randomly 

selected. The remaining images were used for training. 
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8.2.1 Features Descriptors 

The goal of our experiment is to illustrate that the proposed context dependent fu­

sion is a framework that can improve the performance by partitioning the feature 

space into disjoint regions and identifying local expert algorithms for each region. 

Thus, we did not attempt to optimize the feature extraction nor the classifier de­

sign components. We simply use a set of generic MPEG-7 descriptors [85] and few 

other commonly used features, and a simple k - NN classifier [23]. The features are 

selected to balance the color, texture, structure, and textual properties of an image. 

Other descriptors and classifiers can be easily integrated into our approach. In par­

ticular, we use the CSD, SCD, EHD, and HTD features (described in Section 8.1.2). 

In addition, we extract: 

• Wavelet Texture Descriptor (WTD): Each image is analyzed at different fre­

quencies with different resolutions. We use the Haar filter bank to decompose 

the image into three scales. This would result in a total of 10 components (ap­

proximation at scale three, and horizontal, vertical, and diagonal components 

at the three scales). Then, for each image, the mean and standard deviation 

of the components are computed . 

• Thesaurus Text Descriptor (TTD): The TTD is used to represent the seman­

tic knowledge contained within an image. We use the approach proposed 

in [26, 25] to automatically annotate images using a multi-modal thesaurus 

developed through unsupervised clustering. The annotating words are rep­

resented in a vector form where each component indicates the presence or 

absence of particular word. 
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8.2.2 Results 

To illustrate the performance of the proposed adaptive fusion approaches, we use 

them to fuse the result of the different classifiers presented in the previous section. 

Here, CELF-NN and CELF-M were used to partition the feature space into C clusters. 

We let C = 20 as we assume that this is sufficient to cover the variations in the given 

data. For comparison purpose, we fuse the 6 classifiers (k-NN based on WTD, CSD, 

EHD, HTD, SCD, and TTD with k = 20) using global Neural Network. 

Table 8.4: Distribution of the images among the 20 contexts 
Clusti!:t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Sailing 3 1 0 3 2 5 4 13 1 1 3 0 3 1 4 16 2 6 6 1 

Antelope 0 0 0 2 2 0 3 1 0 0 1 2 0 29 8 1 19 4 2 1 

Gardens 2 1 0 0 0 1 1 0 8 13 0 2 0 7 26 0 4 2 8 0 

Horses 0 0 2 1 0 0 10 3 3 0 0 0 0 38 5 4 8 0 1 0 

Auto Racing 1 0 2 25 2 2 0 7 0 0 1 0 20 1 0 6 5 1 0 2 

Aviation 0 1 0 2 1 30 0 9 0 0 1 4 1 0 0 0 1 0 0 25 

Eagles 0 0 0 1 6 34 0 5 5 0 2 2 1 2 1 3 8 1 2 2 

Beaches 4 0 0 0 0 0 0 0 28 1 1 18 0 0 5 3 0 1 14 0 

Buttcrfhcs 1 0 0 2 52 3 0 2 0 0 3 2 4 0 0 3 2 1 0 0 

Cougars 0 3 0 3 0 0 33 1 0 0 0 0 0 11 0 3 0 4 0 17 

Desens 3 0 0 0 0 1 2 1 14 4 0 1 0 7 6 6 14 1 13 2 

Diving 14 1 0 1 0 0 1 0 12 5 0 1 5 3 11 1 1 5 14 0 

\'Vhales 0 0 1 13 1 3 0 27 0 0 9 1 2 0 1 10 0 2 1 4 

Elephants 0 0 0 0 0 0 12 0 0 0 0 0 0 16 7 1 33 4 0 2 

Flowers 2 1 0 4 4 6 3 4 0 0 2 0 0 5 1 2 9 0 4 28 

Fungi 19 6 5 2 0 0 2 0 2 3 0 1 3 2 2 1 2 14 11 0 

Mountains 3 1 8 8 0 1 14 3 0 4 0 0 2 1 1 2 0 14 1 12 

lions 1 0 0 3 1 0 1 6 5 0 42 9 0 0 0 1 1 0 1 4 

Bcars 5 0 0 2 0 0 4 1 2 10 0 0 1 18 12 1 1 13 4 1 

Rome 11 0 1 1 0 0 4 2 11 5 0 0 3 4 8 8 0 6 11 0 

Skiing 1 0 53 1 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 

Sunrises 7 0 3 1 0 0 0 0 0 0 0 0 59 0 2 3 0 0 0 0 

Tigers 7 2 0 4 1 0 6 3 0 4 0 1 6 5 10 9 0 10 7 0 

Waterfalls 1 2 0 5 0 0 0 6 10 0 24 10 3 1 0 4 2 1 4 2 

Wolves 15 1 0 3 2 0 0 1 0 1 0 0 10 1 15 9 0 11 6 0 

Building 8 0 0 1 0 0 0 0 11 23 0 2 0 5 10 2 0 5 8 0 

Buses 2 67 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 3 0 0 

Cars 2 0 3 25 2 0 0 7 1 0 0 0 12 1 2 18 1 1 0 0 

Castles 0 0 1 5 5 0 0 13 9 1 2 18 2 2 6 7 0 0 3 1 

Colorado 0 0 0 6 14 1 0 27 1 0 8 0 2 0 0 8 2 1 5 0 

Table 8.4 displays the content of the 20 contexts identified by CELF. As it can be 

seen, most contexts include images of "similar" categories, and thus, each one may 

be considered as a homogeneous context. For instance, some contexts (e.g. 2, 3 

and 5) are dominated by images from only one category. Others are dominated by 
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images from 2 categories (e.g. 6 and 11). Few others include a mixture of different 

categories (e.g. 16, 18 and 19). 

Figure 8.2 shows the aggregation weights assigned by CELF-M to each classifier 

within each context. As it can be seen, the performance of the different algorithms 

can vary significantly from one context to another. For instance, in context 2, the 

highest weight was assigned to the WTD classifier. This context contains mainly 

images of buses (see Figure 8.3). Since these images have similar structures, the 

highest weight was assigned to a texture descriptor (WTD). On the other hand, 

in context 6, the highest weight was assigned to the SCD classifier. This context 

contains mainly images form aviation and eagles categories. Figure 8.4 shows some 

representative images from this context. These images have blue sky as a common 

background. Thus, a color descriptor, such SCD, is more efficient to distinguish 

them from the other images. 
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Figure 8.2: Weights assigned to each classifier in each context 

20 
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The performance of the different classifiers and fusion algorithms is reported in 

Table 8.5. First, we note that even though the CSD based classifier has the best 

overall accuracy (61 %), it doesn't have the best performance for some categories. 

For instance, it has the worst performance on the aviation category. For this cate-

gory, the best performance is obtained by the TTD based classifier, which has the 

second worst overall accuracy. Second, we note that all fusion algorithms (Neu-

ral Networks, CELF-M, and CELF-NN) outperform all individual classifiers. In fact, 
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Table 8.5: Accuracy of the individual classifiers and the fusion algorithms 

Category WTD CSD EHD HTD SCD TID Global NN CELF-M CELF-NN 

Sailing 0.36 0.68 0.44 0.04 0048 0.28 0.80 0.80 0.84 

Antelope 0.08 0.84 0.04 0.04 0.68 0.24 0.84 0.88 0.88 

Gardens 0.64 0.68 0.68 0.32 0040 0.36 0.80 0.80 0.80 

Horses 0.68 0.96 0.72 0.52 0.84 0.92 0.96 0.96 0.96 

Auto Racing 0.52 0.56 0.64 0040 0048 0.60 0.80 0.88 0.92 

Aviation 0048 0.32 0044 0044 0044 0.72 0.52 0.60 0.72 

Eagles 0.52 0.80 0048 0.28 0.72 0040 0.80 0.80 0.84 

Beaches 0.76 0.84 0.52 0.12 0.68 0.52 0.84 0.88 0.88 

Butterflies 0044 0.68 0.64 0.52 0.64 0.36 0.80 0.80 0.80 

Cougars 0.60 0.68 0.36 0.24 0.52 0.12 0.76 0.84 0.84 

Deserts 0.04 0.64 0.56 0.20 0.60 0.52 0.68 0.76 0.80 

Diving 0.16 0040 0.04 0.08 0040 0.16 0.64 0.68 0.80 

Whales 0.24 0.80 0048 0.20 0.68 0.44 0.84 0.84 0.84 

Elephants 0.28 0.60 0.24 0.20 0048 0.68 0.64 0.72 0.80 

Flowers 0.12 0.56 0.08 0 0048 0.16 0.56 0.60 0.68 

Fungi 0.24 0.76 0.16 0.04 0.80 0.04 0.76 0.80 0.84 

Mountains 0.12 0.28 0.04 0 0.32 0.04 0.32 0.36 0.44 

Lions 0.20 0.68 0.24 0.28 0048 0040 0.88 0.88 0.88 

Bears 0.32 0.60 0.28 0.20 0.80 0.20 0.84 0.88 0.92 

Rome 0.16 0.36 0.04 0.20 0044 0.04 0.56 0.60 0.68 

Skiing 0.76 0.72 0.68 0.76 0.72 0.60 0.84 0.96 0.96 

Sunrises 0.76 0.72 0.80 0048 0048 0.68 0.92 0.92 0.96 

Tigers 0.08 0.52 0.04 0.16 0.12 0.04 0.28 0048 0.56 

Waterfalls 0.24 0.36 0.08 0.12 0.36 0.04 0.32 0.36 0.48 

Wolves 0.08 0.36 0.12 0.12 0.24 0.28 0.56 0.60 0.68 

Building 0.32 0.56 0.16 0.12 0.60 0.12 0.60 0.64 0.72 

Buses 0.92 0.88 0.80 0.56 0.80 0044 1.00 1.00 1.00 

Cars 0.24 0.56 0.44 0.08 0.48 0.48 0.72 0.76 0.80 

Castles 0 0044 0.08 0.36 0.36 0.12 0044 0.56 0.64 

Colorado 0.44 0.52 0.32 0.20 0.32 0.40 0.64 0.68 0.72 

Overall Accuracy 0.36 0.61 0.35 0.24 0.53 0.35 0.70 0.74 0.79 
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these classifiers operate on different properties of the images; namely color, texture, 

structure, and textual properties. This diversity allows the fusion to take advantages 

of the strengths of the individual classifiers, overcome their weakness, and achieve 

a higher accuracy. Third, the proposed CELF-NN approach outperforms CELF-M and 

the global Neural Network fusion. In fact, the non-linear fusion used in CELF-NN 

has a better performance than the linear aggregation used in CELF-M. Besides, the 

global Neural Network fusion tends to neglect the classifiers with low overall accu­

racy, even though these classifiers may have good performance for some categories. 

For instance, the HTD based classifier, which has the worst overall accuracy, has the 

best performance on the skiing category; and, as we mention before, the TTD based 

classifier, which has the second worst overall accuracy, has the best performance on 

the aviation category (72%). For this category, the global Neural Network fusion 

has a bad performance (52% which is lower than the accuracy obtained by TTD). 

On the other side, even if CELF-NN couldn't have better performance than TTD, it 

didn't degrade the accuracy of the best classifier (72%). 

8.3 Phoneme Recognition 

In this experiment, we illustrate the performance of the proposed local fusion using 

the phoneme data which was used in the European ROARS ESPRIT project [ 4]. The 

aim of this project was the development and implementation of a real time ana­

lytical system for French and Spanish speech recognition. The data include 5404 

samples and are composed of two classes: class 1 corresponds to nasal vowels, 

and has 3818 samples, and class 2 corresponds to oral vowels, and includes 1586 

samples. Each data sample is represented by 5 features. 

The phoneme data was not generated from multiple sources of information and is 

not intended to test fusion algorithms. To adapt this data to our application, we 

assume that we have 3 sets of features and a different classifier is trained for each 

set. These sets are extracted as subsets from the original 5 features. The first set 
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includes features 1, 2, and 3, the second one includes features 1, 2, and 4, and 

the third one includes features 2, 3, and 5. For each set, we use a simple k-NN 

classifier to generate a confidence value. 

To validate the results, we use a five fold cross-validation. For each fold, we classify 

the training data using the 3 k-NN classifiers with their appropriate feature subsets. 

Then, we use CELF, CELF-NN, and CELF-FI, with the Feature Discrimination (FD) 

and the Competitive Agglomeration (GA) aspects, to partition the training data into 

different clusters. Starting with 20 clusters, our approaches reduced the number of 

clusters to 4. For each cluster, our approaches learned the optimal fusion model. 

Figure 8.5 displays Receiver Operating Characteristic (ROC) curves that compare 

the performance of the individual classifiers, the global fusion (that uses all features 

in one classifier) , and the proposed local fusion approaches. As it can be seen, the 

proposed approaches have the best overall performance. We notice too that, for this 

problem, CELF-NN and CELF-FI have bad performance compared to the baseline 

CELF. In fact, this is due to overfitting problems. 

0.9 

0.8 .... . 
- - - Classifier 1 

Q 
- - - Classifier 2 c.. 

0.7 .... . .. .... .. - - - Class ifier 3 
- S-D KNN 
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0.6 ..... .. , . . . . . . . . . . . - CELF-NN 
- CELF-FI 
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Figure 8-5: Comparison of the three individual classifiers that use subsets of the 
features , with the global and local fusion for the phoneme data set. 
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Figure 8.6: Performance of the three individual k-NN classifiers within each of 
the 4 contexts generated by CELF-CA. 

To gain some insight of the behavior of CELF, in Figure 8.6, we display the per­

formance of the three individual k-NN classifiers for the four different contexts. 

These curves are obtained by hardening the fuzzy partition generated by CELF, and 

testing the samples within each cluster independently. As it can be seen, the relative 

performances of the individual classifiers (i.e. the different features here) varies sig­

nificantly from one context to another. For instance for context 1, classifier 1 (which 

uses features 1, 2 and 3) has the best overall performance. Consequently; this clas-

sifier is considered the most reliable one for this cluster and is assigned the highest 

aggregation weight as shown in Table 8.6. Similarly; for context 2, classifier 2 is 

assigned the highest weight. 

Table 8 .6: Assigned weights to each classifier in each cluster. 

Context # 

Classifier 1 

Classifier 2 

Classifier 3 

1 

0.52 

0.41 

0.07 

2 

0.08 

0.62 

0.30 
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3 

0.41 

0.17 

0.42 

4 

0.58 

0.41 

0.01 



~9 
CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

We have presented a new fusion approach, called Context Extraction for Local Fu-

sion (CELF). This approach thrives to adapt the fusion method to different regions 

of the feature space. It is based on a novel objective function that combines context 

identification and multi-algorithm fusion criteria into a joint objective function. The 

context identification component was designed to partition the input feature space 

into different contexts that share similar features and similar response to the dif­

ferent classification algorithms. The fusion component was designed to learns the 

optimal fusion parameters within each context. 

In order to deal with different applications scenario, we proposed several varia-

tions of CELF. First, we proposed CELF-FD, an extension that includes a feature 

discrimination component. This version is advantageous when dealing with high 

dimensional feature spaces and/or when the number of features extracted by the 

individual algorithms varies significantly. Then, we proposed CELF-CA, an extension 

that adds a regularization term to the objective function to introduce competition 

among the clusters and to find the optimal number of clusters in an unsupervised 
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way. We have also generalized CELF to support classification with multiple classes 

(CELF-M). Finally, we proposed two variations that use non-linear fusion. The first 

one, CELF-NN, is based on Neural Networks, and the second one, CELF-FI, is based 

on Fuzzy Integrals. The latter variation assigns weights to subsets of classifiers to 

take into account the interaction between them. 

We applied our proposed approaches to fuse multiple land mine detection algorithms 

that use different sensors, features, and different classification methods. We have 

shown that the proposed methods can identify meaningful and coherent contexts 

where different expert algorithms can be identified. Our extensive experiments have 

also indicated that CELF and its variants outperform the individual classifiers and 

several standard global fusion methods. We have shown also that our approaches 

offer good results on other applications as well. In particular, semantic video index­

ing, image database categorization, and phoneme recognition. 

The performance of the different variations of CELF depend mainly on the applica­

tion and the data set. According to our experiments, CELF-CA showed a degraded 

performance when dealing with high dimensional feature spaces. This is because it 

requires the fuzzifier m to be equal to 2, which is not a good choice for high dimen­

sional data. Generally, the non-linear extensions of CELF (CELF-NN and CELF-FI) 

offer better results than the baseline algorithm. However, in some cases, their per­

formance can degrade due to over fitting problems. 

9.2 Future Work 

Although our approaches have shown promising results, there is still room for im­

provement. For instance, CELF-CA requires a fixed value of the fuzzifier (m = 2) 

and proved to be not a good choice for high dimensional data. Future research 

may include investigating other approaches to find the optimal number of clusters. 
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Potential methods include the AlC (Akaike's Information Criterion) [3, 115] and 

MDL (Minimum Description Length) [48]. 

The first term in the objective function of CELF is based on minimizing the sum 

of squared error and requires the sum of the fuzzy membership to be 1. This may 

be not be robust in the presence of noisy data. One possible approach to robustify 

CELF is to convert it to a possibilistic approach [102] .This modification can reduce 

the effect of the outliers and would generate more meaningful contexts. 

Another interesting modification to CELF is to replace the sum of squared error in 

the second term of the objective function of CELF by a Minimum Classification Error 

(MCE) term [89]. This modification can improve the results when the outputs of 

the individual algorithms are distant from the desired ones. 

CELF is designed to partition the feature space, learn feature relevance weights and 

fusion parameters for each context, and possibly learn the optimal number of clus­

ters. This can be a complex optimization problem and is prone to local minima. 

One possible solution to alleviate this problem is to replace the first term in the ob­

jective function (unsupervised learning) with a semi-supervised learning term [78] 

In fact for several applications, partial supervision information may be available 

and may be explored in partitioning the high-dimensional feature space to obtain 

semantically meaningful contexts. 

Finally, the quality of the obtained clusters may need to be assessed and used in the 

fusion. For instance, a context with good validity measure should be more reliable 

than a context with worse validity. 
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;A 
ABBREVIATIONS 

AMDS Autonomous Mine Detection System 

ANN Artificial Neural Network 

APLM Anti-Personal with Low Metal content 

APM Anti-Personal Metal 

ATLM Anti-Tank with Low Metal content 

ATM Anti-Tank Metal 

CDF Context-Dependent Fusion 

CELF Context Extraction for Local Fusion 

CELF-CA CELF using Competitive Agglomeration 

CELF-FD CELF with Feature Discrimination 

CELF-FI CELF with Fuzzy Integrals fusion 

CELF-M CELF for Multiple classes 
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CELF-NN CELF with Neural Networks fusion 

DST 

DT 

EHD 

EDS 

EMI 

FA 

FAR 

FCM 

FROC 

GPR 

HM 

HMC 

HMM 

k-NN 

LM 

MD 

MFIT 

MIDAS 

Dempster-Shafer Theory 

Decision Template 

Edge Histogram Descriptor 

Energy Density Spectrum 

Electro-Magnetic Induction 

False Alarm 

False Alarm Rate 

Fuzzy C-Mean 

Free-Response Receiver Operating Characteristic 

Ground Penetration Radar 

High Metal 

High Metal Clutter 

Hidden Markov Models 

k-Nearest Neighbors 

Low Metal 

Metal Detactor 

Model FITting detector 

MIne Detection Assessment and Scoring 
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MLP 

NMC 

PD 

PFA 

ROC 

SCAD 

SCF 

SIM 

TUF 

WEMI 

Multi-Layer Perceptron 

Non-Metal Clutter 

Probability of Detection 

Probability of False Alarm 

Receiver Operating Characteristic 

Simultaneous Clustering and Attribute Discrimination 

Spectral Correlation Feature 

SIMulated mines 

Testing/training Unified Framework 

Wideband Electro-Magnetic Induction 
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SYMBOLS 

11·11 Euclidian distance 

C Number of clusters 

N Number of samples 

K Number of classifiers 

L Number of classes 

Index of the clusters 

j Index of the samples 

k Index of the classifiers 

Index of the classes 

H Hidden layer size 

h Index of the neurones in the hidden layer 

Xj Feature descriptor of the lh sample 
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:Y" = {tJ 

:Y" = {t j /} 

'?!Ik = {Ykj} 

~ = {Ykj} 

U = [Uij] 

W= [Wik] 

V= [Vik] 

Y = [Pdki] 

g 

Desired output 

Desired output (Multi-class data) 

Confidence generated by the kth classifier 

Confidence generated by the Fh classifier (Multi-class data) 

Center of the i th cluster 

Euclidian distance in the kth sub-space 

Membership degree matrix 

Aggregation weight matrix 

Feature relevance weight matrix 

Connection weights between the inputs and the hidden layer 

Connection weights between the hidden layer and the outputs 

Fuzzy measure 

Fuzzy measure for context i 

Choquet integral with respect to g 

Interaction Index of g 

Shapley Value of g 
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