291 research outputs found

    Full Issue

    Get PDF

    Fuzzy Sets, Fuzzy Logic and Their Applications 2020

    Get PDF
    The present book contains the 24 total articles accepted and published in the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2020” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of fuzzy sets and systems of fuzzy logic and their extensions/generalizations. These topics include, among others, elements from fuzzy graphs; fuzzy numbers; fuzzy equations; fuzzy linear spaces; intuitionistic fuzzy sets; soft sets; type-2 fuzzy sets, bipolar fuzzy sets, plithogenic sets, fuzzy decision making, fuzzy governance, fuzzy models in mathematics of finance, a philosophical treatise on the connection of the scientific reasoning with fuzzy logic, etc. It is hoped that the book will be interesting and useful for those working in the area of fuzzy sets, fuzzy systems and fuzzy logic, as well as for those with the proper mathematical background and willing to become familiar with recent advances in fuzzy mathematics, which has become prevalent in almost all sectors of the human life and activity

    Approximation Theory and Related Applications

    Get PDF
    In recent years, we have seen a growing interest in various aspects of approximation theory. This happened due to the increasing complexity of mathematical models that require computer calculations and the development of the theoretical foundations of the approximation theory. Approximation theory has broad and important applications in many areas of mathematics, including functional analysis, differential equations, dynamical systems theory, mathematical physics, control theory, probability theory and mathematical statistics, and others. Approximation theory is also of great practical importance, as approximate methods and estimation of approximation errors are used in physics, economics, chemistry, signal theory, neural networks and many other areas. This book presents the works published in the Special Issue "Approximation Theory and Related Applications". The research of the world’s leading scientists presented in this book reflect new trends in approximation theory and related topics

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Computational modeling of animal behavior in T-mazes: Insights from machine learning

    Get PDF
    This study investigates the intricacies of animal decision-making in T-maze environments through a synergistic approach combining computational modeling and machine learning techniques. Focusing on the binary decision-making process in T-mazes, we examine how animals navigate choices between two paths. Our research employs a mathematical model tailored to the decision-making behavior of fish, offering analytical insights into their complex behavioral patterns. To complement this, we apply advanced machine learning algorithms, specifically Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and a hybrid approach involving Principal Component Analysis (PCA) for dimensionality reduction followed by SVM for classification to analyze behavioral data from zebrafish and rats. The above techniques result in high predictive accuracies, approximately 98.07% for zebrafish and 98.15% for rats, underscoring the efficacy of computational methods in decoding animal behavior in controlled experiments. This study not only deepens our understanding of animal cognitive processes but also showcases the pivotal role of computational modeling and machine learning in elucidating the dynamics of behavioral science

    An Introduction to Nonassociative Physics

    Full text link
    We give a pedagogical introduction to the nonassociative structures arising from recent developments in quantum mechanics with magnetic monopoles, in string theory and M-theory with non-geometric fluxes, and in M-theory with non-geometric Kaluza-Klein monopoles. After a brief overview of the main historical appearences of nonassociativity in quantum mechanics, string theory and M-theory, we provide a detailed account of the classical and quantum dynamics of electric charges in the backgrounds of various distributions of magnetic charge. We apply Born reciprocity to map this system to the phase space of closed strings propagating in R-flux backgrounds of string theory, and then describe the lift to the phase space of M2-branes in R-flux backgrounds of M-theory. Applying Born reciprocity maps this M-theory configuration to the phase space of M-waves probing a non-geometric Kaluza-Klein monopole background. These four perspective systems are unified by a covariant 3-algebra structure on the M-theory phase space.Comment: 41 pages, 4 figures; v2: minor corrections; Based on Lectures at the Workshop "Dualities and Generalized Geometries", Corfu Summer Institute on Elementary Particle Physics and Gravity, 31 August-28 September 2018, Corfu, Greece; Final version to be published in Proceedings of Scienc

    Transversality, regularity and error bounds in variational analysis and optimisation

    Get PDF
    Transversality properties of collections of sets, regularity properties of set-valued mappings, and error bounds of extended-real-valued functions lie at the core of variational analysis because of their importance for stability analysis, constraint qualifications, qualification conditions in coderivative and subdifferential calculus, and convergence analysis of numerical algorithms. The thesis is devoted to investigation of several research questions related to the aforementioned properties. We develop a general framework for quantitative analysis of nonlinear transversality properties by establishing primal and dual characterizations of the properties in both convex and nonconvex settings. The H¨older case is given special attention. Quantitative relations between transversality properties and the corresponding regularity properties of set-valued mappings as well as nonlinear extensions of the new transversality properties of a set-valued mapping to a set in the range space are also discussed. We study a new property so called semitransversality of collections of set-valued mappings on metric (in particular, normed) spaces. The property is a generalization of the semitransversality of collections of sets and the negation of the corresponding stationarity, a weaker property than the extremality of collections of set-valued mappings. Primal and dual characterizations of the property as well as quantitative relations between the property and semiregularity of set-valued mappings are formulated. As a consequence, we establish dual necessary and sufficient conditions for stationarity of collections of set-valued mappings as well as optimality conditions for efficient solutions with respect to variable ordering structures in multiobjective optimization. We examine a comprehensive (i.e. not assuming the mapping to have any particular structure) view on the regularity theory of set-valued mappings and clarify the relationships between the existing primal and dual quantitative sufficient and necessary conditions including their hierarchy. The typical sequence of regularity assertions, often hidden in the proofs, and the roles of the assumptions involved in the assertions, in particular, on the underlying space: general metric, normed, Banach or Asplund are exposed. As a consequence, we formulate primal and dual conditions for the stability properties of solution mappings to inclusions. We propose a unifying general framework of quantitative primal and dual sufficient and necessary error bound conditions covering linear and nonlinear, local and global settings. The function is not assumed to possess any particular structure apart from the standard assumptions of lower semicontinuity in the case of sufficient conditions and (in some cases) convexity in the case of necessary conditions. We expose the roles of the assumptions involved in the error bound assertions, in particular, on the underlying space: general metric, normed, Banach or Asplund. As a consequence, the error bound theory is applied to characterize subregularity of set-valued mappings, and calmness of the solution mapping in convex semi-infinite optimization problems.Doctor of Philosoph

    Normas e estabilidade para modelos estocásticos cuja variação do controle e do estado aumentam a incerteza

    Get PDF
    Orientador: João Bosco Ribeiro do ValDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Essa dissertação de mestrado gira em torno da discussão sobre controle de sistemas incertos. Modelos matemáticos utilizados como base para o design de controladores automáticos são naturalmente uma representação aproximada do sistema real, o que, em conjunto com perturbações externas e dinâmica não modelada, gera incertezas a respeito dos sistemas estudados. Na literatura de controle, este tema vêm sendo discutido frequentemente, em particular nas sub-áreas de controle estocástico e controle robusto. Dentre as técnicas desenvolvidas dentro da teoria de controle estocástico, uma proposta recente se diferencia das demais por basear-se na idéia de que variações abruptas na política de controle possam acarretar em maiores incertezas a respeito do sistema. Matematicamente, essa noção é representada pelo uso de um ruído estocástico dependente do módulo da ação de controle, e a técnica foi apelidada de VCAI - acrônimo para variação do controle aumenta a incerteza. A definição da política de controle ótima correspondente, obtida por meio do método de programação dinâmica, mostra a existência de uma região ao redor do ponto de equilíbrio para a qual a política ótima é manter a ação de controle do equilíbrio inalterada, um resultado que parece particular à abordagem VCAI, mas que pode ser relacionado a políticas de gerenciamento cautelosas em áreas como economia e biologia. O problema de controle ótimo VCAI foi anteriormente resolvido ao adotar-se um critério de custo quadrático descontado e um horizonte de otimização infinito, e nessa dissertação nós utilizamos essa solução para atacar o problema de custo médio a longo prazo. Dada certa semelhança entre a estrutura do ruído estocástico na abordavem VCAI e modelos utilizados na teoria de controle robusto, discutimos ainda possíveis relações entre a abordagem proposta e controladores robustos. Discutimos ainda algumas possíveis aplicações do modelo propostoAbstract: This work discusses a new approach to the control of uncertain systems. Uncertain systems and their representation is a recurrent theme in control theory: approximate mathematical models, unmodeled dynamics and external disturbances are all sources of uncertainties in automated systems, and the topic has been extensively studied in the control literature, particularly within the stochastic and robust control research areas. Within the stochastic framework, a recent approach, named CVIU - control variation increases uncertainty, for short -, was recently proposed. The approach differs from previous models for assuming that a control action might actually increase the uncertainty about an unknown system, a notion represented by the use of stochastic noise depending on the absolute value of the control input. Moreover, the solution of the corresponding stochastic optimal control problem shows the existence of a region around the equilibrium point in which the optimal action is to keep the equilibrium control action unchanged. The CVIU control problem was previously solved by adopting a discounted quadratic cost formulation, and in this work we extend this previous result and study the corresponding long run average control problem. We also discuss possible relations between the CVIU approach and models from robust control theory, and present some potential applications of the theory presented hereMestradoAutomaçãoMestre em Engenharia Elétrica2016/02208-6, 2017/10340-4FAPES
    corecore