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A B S T R A C T   

This study investigates the intricacies of animal decision-making in T-maze environments through a synergistic 
approach combining computational modeling and machine learning techniques. Focusing on the binary decision- 
making process in T-mazes, we examine how animals navigate choices between two paths. Our research employs 
a mathematical model tailored to the decision-making behavior of fish, offering analytical insights into their 
complex behavioral patterns. To complement this, we apply advanced machine learning algorithms, specifically 
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and a hybrid approach involving Principal 
Component Analysis (PCA) for dimensionality reduction followed by SVM for classification to analyze behavioral 
data from zebrafish and rats. The above techniques result in high predictive accuracies, approximately 98.07% 
for zebrafish and 98.15% for rats, underscoring the efficacy of computational methods in decoding animal 
behavior in controlled experiments. This study not only deepens our understanding of animal cognitive processes 
but also showcases the pivotal role of computational modeling and machine learning in elucidating the dynamics 
of behavioral science.   

1. Introduction 

The study of animal decision-making has significantly evolved by 
incorporating high-resolution tracking systems and computational tools. 
These innovations have transformed our analysis of spatial navigation 
and decision-making within controlled environments, such as T-mazes, 
which offer a structured setting to scrutinize animal cognitive mecha-
nisms (see (Deacon and Rawlins, 2006a; Deacon and Rawlins, 2006b; 
Sih et al., 2004)). While empirical data provides a foundational under-
standing of behavior, recent research integrates these observations with 
computational models to elucidate the complexities of decision-making 
(see (d’Isa et al., 2021; Ferrarini and Gustin, 2022; Wang, 2019)). The 
current study continues this interdisciplinary approach, combining 
machine learning and mathematical modeling to dissect the decision- 
making processes observed in T-maze experiments. 

Furthermore, in behavioral ecology, animals navigate many de-
cisions related to survival and reproduction, each reflecting the complex 
interaction between their internal states and external pressures. Inves-
tigating these decisions, from binary choices to complex, context- 
dependent ones, has expanded our comprehension of cognitive capac-
ities, challenging preconceived notions of animal behavior (see (John-
son and Redish, 2007; Preuschoff et al., 2013; Tolman, 1948)). The 
fusion of mathematical modeling and machine learning in this research 
offers a dual advantage—enhancing the clarity and specificity of hy-
potheses while leveraging computational power to identify patterns in 
behavior, even in the face of data limitations (for more detail, see 
(Bhattacharjee et al., 2019; Collins and Shenhav, 2022; Valletta et al., 
2017)). 

Mathematical models demand precise hypothesis formulation, aid-
ing in the clear differentiation and comparison of theoretical 
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predictions. In contrast, machine learning, particularly neural networks, 
and deep learning provides powerful tools for pattern recognition, albeit 
with challenges in data requirements and interpretability (see (Barak 
and Tsodyks, 2023; Kliegr et al., 2020; Kuru et al., 2023; Tron and 
Margaliot, 2004; Vos et al., 2006)). By adopting an integrative approach, 
we not only maintain the interpretability of traditional models but also 
benefit from the predictive capabilities of machine learning, advancing 
our ability to predict behavioral outcomes in a wide range of scenarios. 
This methodology propels our investigation forward, opening new av-
enues for anticipating animal behavior in various conditions and 
emphasizing the controlled settings of T-maze experiments. 

The central aim of this research is to demystify the complex decision- 
making processes of animals in controlled settings, with a particular 
focus on the T-maze environment. This study transcends traditional 
observational strategies, employing mathematical modeling as a pivotal 
tool to theoretically elucidate animal behaviors. By complementing this, 
the research harnesses the power of sophisticated machine learning 
techniques to scrutinize empirical data, as demonstrated by studying 
zebrafish and rat behaviors in the T-maze. By synergizing theoretical 
models with empirical analysis, this research endeavors to meld abstract 
mathematical principles with tangible behavioral patterns. This inte-
grative approach provides a holistic perspective on the intricacies of 
animal decision-making, offering valuable insights into their cognitive 
processes. 

This manuscript is meticulously organized to facilitate a coherent 
and progressive exploration of our research. The introductory section 
lays the groundwork, acquainting the reader with the study’s objectives 
and significance. An extensive review of relevant literature follows it, 
situating our investigation within the broader scholarly discourse. The 
paper then progresses to a focused case study on paradise fish behavior 
within T-maze environments, applying our theoretical concepts practi-
cally. Subsequently, we delve into our mathematical model’s theoretical 
underpinnings and analytical rigor, offering a deep dive into its foun-
dational aspects and computational intricacies. The subsequent section 
is dedicated to a detailed examination of zebrafish and rat behaviors in 
T-mazes, employing SVM, KNN, and PCA-SVM methods for detailed 
analysis. The paper culminates with a conclusive section that not only 
encapsulates our key findings but also charts potential directions for 
future research endeavors, thereby extending the scope of our study 
beyond its current horizons. 

2. Literature review 

Making choices is an integral part of behavior in all animal species. 
Deciding entails pinpointing and opting for a singular physiological, 
behavioral, or cognitive pathway among various possibilities. This 
intricate process requires the amalgamation of varied informational 
inputs and the reconciliation of competing demands. A key character-
istic of decision-making is the inherent uncertainty about the conse-
quences of the selected path. As such, overt or covert decision-making 
necessitates an organism’s ability to forecast the most beneficial course 
of action. The capacity for prediction is vital across all life forms, playing 
a critical role in their survival and evolutionary adaptation. Intriguingly, 
this faculty for anticipatory decision-making is not limited to complex 
organisms; even single-celled microorganisms demonstrate this ability 
in their behavioral patterns and in maintaining internal equilibrium (for 
more detail, see (Balázsi et al., 2011; Bleuven and Landry, 2016; Lyon, 
2015)). 

The spontaneous alternation T-maze stands as a cornerstone in 
assessing spatial working memory. This T-shaped structure offers a 
bifurcation, presenting two divergent paths. Its origins trace back to the 
early 1910s, conceived by Robert Yerkes at Harvard University, initially 
for probing the cognitive capabilities and learning behaviors of in-
vertebrates, particularly earthworms (Yerkes, 1912). In the subsequent 
decade, Edward Tolman adapted this apparatus for exploring rodent 
cognition, thereby pioneering the observation of what is known as 

spontaneous alternation (Tolman, 1925). Further refinement and 
exploration of this phenomenon were undertaken in the 1930s by 
Wayne Dennis (Dennis, 1935; Dennis and Henneman, 1932; Dennis and 
Sollenberger, 1934), who also introduced the term “spontaneous alter-
nation” (Dennis, 1939). 

Fundamentally, the spontaneous alternation T-maze capitalizes on 
rodents’ innate penchant for novelty, prompting them to alternate their 
exploratory choices between the maze’s arms (see (Deacon and Rawlins, 
2006a; Dember and Richman, 2012; Montgomery, 1952; Tolman, 
1925)). Such inclinations, which emerge naturally without needing 
prior training and stem from rodents’ attraction to novel stimuli, have 
been labeled spontaneous. An alternate hypothesis posits that this 
behavior might be an inherent tendency in mice to alternate their 
choices, driven by outcomes such as finding or not finding food, leading 
to win-shift or lose-shift behaviors, respectively. In either scenario, 
whether driven by novelty-seeking or innate shifting tendencies, the 
animal must recall the previously visited arm to successfully alternate 
choices. This makes the spontaneous alternation T-maze a robust tool for 
evaluating spatial working memory. 

Over the last century, the application of spontaneous alternation has 
extended beyond rodents to a diverse array of mammalian species, 
including rats (Tolman, 1925), mice (Henderson, 1970), hamsters 
(Kirkby and Lackey, 1968), guinea pigs (Douglas et al., 1973), rabbits 
(Hughes, 1973), gerbils (Dember and Kleinman, 1973), ferrets (Hughes, 
1965), opossums (Tilley et al., 1966), marmosets (Izumi et al., 2013), 
and cats (Frederickson and Frederickson, 1979). Remarkably, this 
behavior has also been observed in various non-mammalian species, 
such as pill bugs (Shokaku et al., 2020), garden woodlice (Hughes, 
1967), marine crabs (Ramey et al., 2009), fruit flies (Lewis et al., 2017; 
May and Wellman, 1968), goldfish (Fidura and Leberer, 1974), and 
zebrafish (Cognato et al., 2012), underscoring its utility in a broad 
spectrum of cognitive research across different taxa. 

In animal behavior studies, the integration of Machine Learning (ML) 
and Deep Learning (DL) methodologies represents a significant para-
digm shift. Traditionally, these advanced computational techniques, 
renowned for their predictive accuracy in fields such as artificial intel-
ligence (Marar, 2024), image processing (Zhang et al., 2015), neuro-
science (Dixon and Polson, 2020), and genomics (Xiao and Segal, 2009), 
have not been extensively harnessed for modeling or predicting animal 
movement. Such approaches extend the application of these technolo-
gies beyond their conventional domains and aim to transcend the mere 
prediction of behavior. The objective is to craft a methodology that 
utilizes machine learning to forecast behavioral patterns and intricately 
map animals’ actual movement trajectories. 

This endeavor necessitates a departure from traditional parametric 
models commonly used in animal movement studies, which have pre-
dominantly focused on deciphering patterns and timings of animal 
movements through state space models like Hidden Markov Models 
(HMMs), step selection function models, and resource selection models. 
These conventional models, while effective, often rely on deterministic 
or stochastic approaches, limiting their scope in capturing the full 
complexity of animal behavior. In contrast, integrating ML and DL offers 
a more comprehensive understanding, bridging the gap between pre-
dictive modeling and the intricate dynamics of animal behavior in nat-
ural habitats. The strength of this integrated approach lies in its ability to 
encapsulate the known properties of a system through mathematical or 
physical representations, thereby reducing reliance on teleological ex-
planations. By differentiating between rational, mathematical models, 
which are grounded in fundamental theories, and empirical models, 
which fit specific data without a theoretical basis, this study aims to 
enhance scientific understanding significantly. The rational models, 
whether deterministic or stochastic, provide a robust framework for 
understanding the nature of animal behavior, whether governed by 
chance or predictability, thus offering a more profound insight into the 
behavioral dynamics of animals in their environments (for more detail, 
see (Browning et al., 2018; Calenge et al., 2009; Nazir and Kaleem, 
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2021)). 
On the other hand, Epstein introduced a model (Epstein, 1966) to 

describe the learning behaviors of animals across multiple events, arti-
culated as follows 

P(x+ α) − P(x) = e− x{P(x) − P(x − β) } (2.1)  

where a and b represent positive constants, while P(x) signifies the 
probability of absorption for each value of x, necessitating that the in-
equalities 0 ≤ P(x) ≤ 1 are satisfied. The defined boundary conditions 
are P( − ∞) = 0 and P( + ∞) = 1. It is important to note that P is not 
considered a cumulative distribution function, and thus, its mono-
tonicity is not a prerequisite. Nonetheless, it was demonstrated that a 
unique bounded function fulfilling eq. (2.1) with the specified boundary 
conditions at ±∞ exists. The solution exhibits monotonicity, ensuring 
compliance with the inequalities 0 ≤ P(x) ≤ 1. 

Later on, Istrăţescu discussed the existence of a unique solution for a 
functional Eq. (Istrăţescu, 1976) designed to model the decision-making 
process of predatory animals when presented with multiple choices 

P(x) = xP((1 − α)x+ α )+ (1 − x)P((1 − β)x ) (2.2)  

where 0 < α ≤ β < 1 and P denote a continuous function defined over 
the interval [0,1]. On the other hand, Lubič and Shapiro, leveraging the 
profound Schauder fixed point theorem, established the existence of a 
solution for the above eq. (2.2) under the following conditions (see 
(Istrăţescu, 1976)) 

P0(x) =
∑∞

i=1
aixi, ai⩾0,

P0(0) = 0, P0(1) = 1.
(2.3) 

In (Turab and Sintunavarat, 2019), the authors investigated the 
decision-making behavior of paradise fish within a T-maze configuration 
formulating the subsequent functional equation to model this process 

P(x) = xP(α1x+1 − α1)+ (1 − x)P(α2x) (2.4)  

for all x ∈ [0,1], where P : [0,1]→ℝ is an unknown function such that 
P(0) = 0, P(1) = 1 and 0 < α1 ≤ α2 < 1. They used the fixed point re-
sults to obtain the existence and uniqueness of a solution to the func-
tional eq. (2.4). 

Turab and Sintunavarat expanded the previous work by introducing 
the following novel functional equation to model a specific type of 
learning behavior (see (Turab and Sintunavarat, 2020)) 

P(x) = xP(α1x+(1 − α1)λ1 )+ (1 − x)P(α2x+(1 − α2)λ2 ) (2.5)  

for every x ∈ [0, 1], where P : [0, 1]→ℝ represents an unknown function, 
0 < α1 ≤ α2 < 1, and both λ1, λ2 lie within the interval [0,1]. The func-
tional eq. (2.5) models the phenomenon of emotional resilience 
observed in a controlled experimental setup, involving a small enclosure 
with a steel grid floor, designed to study learning behaviors in dogs. 

Subsequent research into human and animal behavior within the 
context of probabilistic learning theory has yielded numerous results in 
this area of study (see (Debnath, 2021; George et al., 2022; Schein, 1954; 
Turab et al., 2022a; Turab et al., 2022b; Turab et al., 2023; Turab and 
Sintunavarat, 2023)). 

3. Movement of a paradise fish in a T-maze: A case study 

Reflecting on the seminal work of Bush and Wilson (Bush and Wil-
son, 1956), this section delves into the intricacies of paradise fish 
behavior within a T-maze setup, a pivotal study in animal behavior 
research. The experiment presented paradise fish with a binary navi-
gational choice in a T-maze: to swim either towards the right or left at 
the tank’s far end. Notably, one path, designated as the beneficial side, 
consistently offered a reward of caviar 75% of the time, in contrast to the 
alternative path’s 25% reward frequency. This experimental design 

yielded four distinct outcomes: right reward, left reward, right non- 
reward, and left non-reward. 

They hypothesized that receiving a reward on one side would likely 
increase the fish’s preference for that side in subsequent trials. However, 
the response to non-rewarded trials introduced a theoretical divergence. 
While information or extinction theory suggested a decreased proba-
bility of selecting the non-rewarded side again, habit formation or sec-
ondary reinforcement theory proposed that any visit to a side would 
increase its selection likelihood in the future. Their mathematical model 
encapsulated this theoretical dichotomy, adjusting the probability of 
side selection based on trial outcomes. 

Assuming p represents the probability of a fish selecting the right- 
hand side of a tank if rewarded for such a choice, the likelihood of 
choosing the right side in subsequent trials increases. Bush and Wilson 
suggested that the updated probability for opting for the right side fol-
lows the formula α1p+ 1 − α1, where α1, a learning parameter, falls 
between 0 and 1. For instance, with p = 0.4 and α1 = 0.8, the updated 
probability calculates to 0.52. Similarly, it is hypothesized that rewards 
for selecting the left side would also adjust the probability of future 
right-side choices, albeit more modestly. 

Consistency within the experiment presupposes identical learning 
rates for choices on both sides. The model posits that the probability of 
choosing the right decreases by α1p in the face of non-reinforcement, 
embodying a theory of extinction. Conversely, the model predicts a 
minor increase in probability, α2p + 1 − α2 (where α2 is a learning 
parameter), for rewarded behavior, illustrating the concept of habit 
formation or secondary reinforcement. These theoretical predictions are 
delineated in Table 1, emphasizing the algebraic distinction between α1p 
and α1p + 1 − α1 based on the perspective of right-turn probability 
rather than the direct influence of the last choice made. 

Furthering their investigation, Bush and Wilson examined the impact 
of different divider conditions in the T-maze: an opaque divider 
obscuring the unrewarded goal box and a transparent one allowing 
visibility of the reward in the alternate box. This aspect of the experi-
ment added a layer of complexity to the fish’s decision-making process, 
mainly when the fish were aware of but unable to access a visible 
reward. The analysis of data from the last 49 trials across two groups of 
fish and the 22 simulated fish (referred to as ‘stat-fish’, a method for 
comparing model predictions with empirical data through Monte Carlo 
simulations, as described in (Alvarez, 2021)), as depicted in Fig. 1, re-
veals a marked preference for one side. This observation contests the 
reinforcement-extinction model’s expectation of a balanced distribution 
around a median, suggesting the real fish behavior diverges significantly 
from the model’s predictions. This finding underscores the efficacy of 
stochastic models in differentiating theoretical positions and enriching 
our understanding of animal behavior in controlled settings. 

3.1. Statistical insights from the paradise fish experiment 

In (Bush and Wilson, 1956), Bush and Wilson presented a statistical 
comparison between an experimental group of 22 real fish and a cor-
responding group of 22 stat-fish. The analysis includes the mean and 
standard deviation (SD) of the total number of runs, the frequency of 
runs of varying lengths, and the number of successful outcomes per 
subject (S). 

Table 1 
Operators for choice experiments.   

Left Right 

For reinforcement-extinction model (p = Prob)    
• Reinforcement α1p α1p+ 1 − α1  

• Non-reinforcement α2p+ 1 − α2 α2p 
For habit formation model    
• Reinforcement α1p α1p+ 1 − α1  

• Non-reinforcement α2p α2p+ 1 − α2  
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In comparing the mean behaviors between the experimental group 
and stat-fish, it is observed that both groups exhibit similar trends across 
various run lengths, though stat-fish often show slightly higher means, 
particularly in the total number of runs and runs of length 1 (see Fig. 2). 
This pattern suggests that stat-fish might engage in shorter runs more 
frequently than the experimental group. Furthermore, the standard de-
viation values, indicative of behavioral variability, are consistently 
higher for stat-fish across most metrics (see Fig. 3 below). This increased 
variability hints at a less consistent behavioral pattern among stat-fish, 
possibly reflecting broader individual differences or varied responses 
to the experimental conditions. 

The observed discrepancies likely stem from the behavior of certain 
stat-fish that rarely chose the unfavorable side. This contrasted with the 
real fish, where the minimum number of failures was five, suggesting 

that a less extreme initial probability distribution might have yielded 
closer alignment between the two groups. The symmetric beta distri-
bution used in the stat-fish computations, serving as an approximation, 
might have yet to fully capture the initial variability in the real fish’s 
behavior. The learning process during the initial trials suggests that the 
actual initial distribution of response probabilities for the real fish was 
likely broader than that used for the stat-fish. 

3.2. Conceptualizing decision-making processes in T-maze experiments 

Building upon Bush and Wilson’s experimental design, Fig. 4 pre-
sents a conceptual representation of the decision-making process of 
animals in a T-maze experiment. The figure illustrates the initial position 
of the animal at the entrance of the T-maze, leading to a critical decision 

Fig. 1. Comparative analysis of paradise fish choices in T-maze trials.  

Fig. 2. Comparison of mean between experimental group and stat-fish.  
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point where the animal must choose between turning left or right. Each 
path leads to a separate compartment – the left or right compartment – 
where the presence or absence of food is a crucial variable. The decision- 

making process is depicted as a series of binary choices, reflecting the 
animal’s innate behavior in response to the environmental cues pro-
vided within the maze. 

Fig. 3. Comparison of standard deviation between experimental group and stat-fish.  

Fig. 4. Animal decision-making in T-maze: food location impact.  
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Upon reaching a compartment, the animal engages in a search 
behavior, represented by the decision node ‘check for food.’ If food is 
discovered, the outcome is denoted as ‘animal eats,’ indicating a suc-
cessful foraging behavior. Conversely, if no food is present, the animal 
exhibits exploratory behavior, labeled ‘animal explores further.’ This 
exploration suggests the animal’s adaptive response to the absence of an 
expected reward. This framework effectively encapsulates the essence of 
spatial decision-making in animals subjected to a T-maze setup. It 
highlights the influence of environmental factors, such as food place-
ment, on their behavioral choices. The simplicity of the T-maze design, 
coupled with the complexity of the decision-making process, offers 
valuable insights into the cognitive mechanisms underlying animal 
behavior in controlled experimental settings. 

4. Theoretical analysis and analytical investigations 

4.1. Foundational mathematical concepts 

Certain foundational results and mathematical structures are essen-
tial for developing our model. We begin by defining key properties of 
mappings within a metric space, as these properties are crucial for un-
derstanding our model’s dynamics. 

Definition 4.1 (Berinde and Takens, 2007). Let (X, d) be a metric 
space. An operator P : X→X is characterized as follows:  

1. An θ-Lipschitzian mapping if it satisfies the inequality 

d(Pμ,Pν) ≤ θd(μ, ν), ∀μ, ν ∈ X, where θ > 0; (4.1)    

2. An κ-contraction mapping if P is κ-Lipschitzian, with κ ∈ [0, 1);  
3. A nonexpansive mapping if P is 1-Lipschitzian;  
4. A contractive mapping if it fulfills the condition 

d(Pμ,Pν) < d(μ, ν), ∀μ, ν ∈ X with μ ∕= ν. (4.2) 

Building upon these definitions, we invoke a fundamental theorem in 
fixed-point theory, which is pivotal for our model’s convergence 
analysis. 

Theorem 4.1 (Banach, 1922). Consider (X, d) as a complete metric 
space where an operator P : X→X satisfies condition (2) of Definition 4.1. It 
is established that P possesses a unique fixed point y⋆, and for any y ∈ X, the 
iterates of P converge to y⋆, i.e., 

Pn(y)→y⋆ (as n→∞).

These preliminary concepts and results lay the groundwork for our 
subsequent analysis, providing the mathematical underpinning for the 
rigorous study of decision-making processes in a T-maze setup. 

4.2. Model formulation 

In the formulation of our model, we define the state space as X =

[0, 1] and denote C as the collection of all real-valued continuous 
functions P : X→ℝ that satisfy the following conditions: 

sup
μ∕=ν

|P(μ) − P(ν) |
|μ − ν| < ∞, and P(0) = 0.

Here, (C , ‖⋅‖) constitutes a normed space, where the norm ‖⋅‖ is 
defined as: 

‖P‖ = sup
μ∕=ν

|P(μ) − P(ν) |
|μ − ν| , ∀P ∈ C . (4.3) 

To encapsulate the decision-making process of an animal in a T- 
maze, we consider the following functional equation: 

P(x) = f(x)P(V 1(x) ) + (1 − f(x) )P(V 2(x) ), (4.4)  

where V 1,V 2 : X→X, ∀x ∈ X, are mappings that satisfy the contrac-

tion condition with parameters ℓ1 and ℓ2, respectively, and V 2(0) = 0 
and P : X→ℝ is an unknown function. Moreover, f : X→X is a non-
expansive mapping with f(0) = 0 and ∣f(x)∣ ≤ ℓ4 (ℓ4 ≥ 0), for all x ∈ X. 

In the context of analyzing the movement of paradise fish within a T- 
maze setup, as discussed in (Bush and Wilson, 1956), the parameters 
delineated in the functional eq. (4.4) are elucidated as follows:  

1. State space X = [0, 1]: This denotes the continuum of states, where 
each state x ∈ X symbolizes a probabilistic inclination towards 
choosing a specific direction (either left or right) within the T-maze.  

2. Learning rate functions V 1(x) and V 2(x): These functions 
articulate the algebraic expressions for the learning rate parameters 
associated with the choices of left and right directions, respectively, 
by the paradise fish. They model the evolution of preference as the 
fish learns from its environment.  

3. Decision probability function f(x): The function f(x), alongside its 
complement (1 − f(x) ), quantifies the probability distribution be-
tween the two available choices (left or right). This probabilistic 
behavior is encapsulated within a Markov process framework, where 
the state space X = [0, 1] represents all possible decision probabili-
ties. The transition probabilities from any given state x to the sub-
sequent states V 1(x) and V 2(x) are defined as: 

Prob(x→V 1(x) ) = f(x),
Prob(x→V 2(x) ) = 1 − f(x),

respectively, delineating the likelihood of transitioning towards each 
choice based on the current state. 

4. Outcome probability function P: This function signifies the even-
tual probability of the fish consistently opting for a particular choice, 
predicated on the initial probability x of that choice being selected. It 
essentially models the culmination of the decision-making process, 
reflecting the fish’s final preference after a series of choices. 

4.3. Analytical solution 

In this subsection, we delve into the analytical resolution of the 
decision-making model as delineated in eq. (4.4). The ensuing theorems 
and corollaries are instrumental in establishing the existence and 
uniqueness of solutions within the confines of our model framework. 
These results hinge on the intricate interplay between the mappings V 1 
and V 2, and the probabilistic function f(x), which collectively orches-
trate the decision-making process in our T-maze setup. 

Theorem 4.2. Consider the model (4.4). Let 

|V 1(μ) − V 2(ν) | ≤ ℓ3|μ − ν|, (4.5)  

where ℓ3 ∈ [0,1), ∀μ, ν ∈ X with μ ∕= ν, such that Ξ1 := [(1 + ℓ4)ℓ1 + ℓ2 
+ℓ3 ] < 1, and there exists a subset ℰ ∕= 0 of S := {P ∈ C |P(1) ≤ 1 } with 
the structure (ℰ, ‖ ⋅ ‖) of a Banach space (given in (4.3)). Then, a singular 
solution exists for the model (4.4). Additionally, the sequence {Pn} converges 
to a unique solution of (4.4), where P0 ∈ ℰ and 

Pn(x) = f(x)Pn− 1(V 1(x) ) + (1 − f(x) )Pn− 1(V 2(x) ), ∀n ∈ ℕ.

Proof. Consider the complete metric space (ℰ, d) induced by ‖⋅‖. 
Define an operator Φ on ℰ as follows: 

(ΦP)(x) = f(x)P(V 1(x) ) + (1 − f(x) )P(V 2(x) ), ∀x ∈ X, ∀P ∈ E .

For each P ∈ ℰ, it is evident that (ΦP)(0) = 0. Since ΦP is continuous 
and ‖ΦP‖ < ∞ for all P ∈ ℰ, the operator Φ : ℰ→ℰ is well-defined. 
Moreover, the fixed point of Φ corresponds to the solution of (4.4). 

Given that Φ : ℰ→ℰ is linear, for P1,P2 ∈ ℰ, we have 

‖ΦP1 − ΦP2‖ = ‖Φ(P1 − P2) ‖.
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To evaluate ‖ΦP1 − ΦP2‖, consider: 

Θι,ς :=
Φ(P1 − P2)(ι) − Φ(P1 − P2)(ς)

ι − ς ,∀ι, ς ∈ X, ι ∕= ς.

For ι, ς ∈ X with ι ∕= ς, we derive 

Ωι,ς =
1

ι − ς

[

f(ι)(P1 − P2)(V1(ι) ) + (1 − f(ι) )(P1 − P2)(V2(ι) )

− f(ς)(P1 − P2)(V1(ς) ) − (1 − f(ς) )(P1 − P2)(V2(ς) )]

=
1

ι − ς

[

f(ι)(P1 − P2)(V1(ι) ) − f(ι)(P1 − P2)(V1(ς) )

+(1 − f(ι) )(P1 − P2)(V2(ι) ) − (1 − f(ι) )(P1 − P2)(V2(ς) )

+f(ι)(P1 − P2)(V1(ς) ) − f(ς)(P1 − P2)(V1(ς) )

+(1 − f(ι) )(P1 − P2)(V2(ς) ) − (1 − f(ς) )(P1 − P2)(V2(ς) )].

Thus by (4.3), for ι, ς ∈ X with ι ∕= ς, we have 

⃒
⃒Ωι,ς

⃒
⃒ ≤ ∣f(ι)∣|(P1 − P2)(V1(ι) ) − (P1 − P2)(V1(ς) ) |

|V1(ι) − V1(ς) |
|V1(ι) − V1(ς) |

|ι − ς|

+∣1 − f(ι)∣|(P1 − P2)(V2(ι) ) − (P1 − P2)(V2(ς) ) |
|V2(ι) − V2(ς) |

|V2(ι) − V2(ς) |
|ι − ς|

+
|(P1 − P2)(V1(ς) ) − (P1 − P2)(V1(ι) ) |

|V1(ς) − V1(ι) |
|V1(ς) − V1(ι) |

+
|(P1 − P2)(V1(ι) ) − (P1 − P2)(V2(ς) ) |

|V1(ι) − V2(ς) |
|V1(ι) − V2(ς) |.

This yields that 
⃒
⃒Ωι,ς

⃒
⃒ ≤ (ℓ1|f(ι) |+ℓ2|1 − f(ι) | + ℓ1|ς − ι| + ℓ3|ι − ς| )‖V1(ι) − V2(ς) ‖

≤ Ξ1‖V1(ι) − V2(ς) ‖

implying that 

d(ΦP1,ΦP2) = ‖ΦP1 − ΦP2‖

≤ Ξ1‖P1 − P2‖

= Ξ1d(P1,P2).

Since Ξ1 < 1, Theorem 4.1 ensures the existence of a singular solu-
tion for the model (4.4). 

Now, we focus on a particular application of the previously estab-
lished theorem. Specifically, we consider the scenario where the map-
pings V 1 and V 2 from X to X satisfy the condition (2) of Definition 4.1 
with parameters ℓ1 and ℓ2, respectively, and where ℓ1 ≤ ℓ2. Under 
these conditions, the following result, derived from Theorem 4.2, elu-
cidates the existence and convergence of solutions within our decision- 
making model (4.4). 

Corollary 4.1. Consider the decision-making model as defined in (4.4). 
Let the inequality 

|V 1(μ) − V 2(ν) | ≤ ℓ3|μ − ν|, (4.6)  

hold, where ℓ3 ∈ [0, 1), ∀μ, ν ∈ X with μ ∕= ν. Assume that 
Ξ⋆

1 := [(2 + ℓ4)ℓ2 + ℓ3 ] < 1. Furthermore, let there exist a non-empty 
subset ℰ of S := {P ∈ C |P(1) ≤ 1 } that forms a Banach space with the 
structure (ℰ, ‖ ⋅ ‖) as defined in (4.3). Under these conditions, a singular 
solution exists for the model (4.4). Moreover, the sequence {Pn}, where 
P0 ∈ ℰ, converges to a unique solution of (4.4), defined for each n ∈ ℕ as 

Pn(x) = f(x)Pn− 1(V 1(x) ) + (1 − f(x) )Pn− 1(V 2(x) ).

The model (4.4) is now examined under diverse scenarios to ascer-
tain the existence and convergence of a unique solution. 

Theorem 4.3. Consider the decision-making model as defined in (4.4). 
Assume that Ξ2 := [(1 + ℓ4)ℓ1 + 2ℓ2 ] < 1, and there exists a point ξ ∈

[0, 1] for which V 1(ξ) = V 2(ξ). Additionally, let there be a non-empty 

subset ℰ of S := {P ∈ C |P(1) ≤ 1 } that forms a Banach space with the 
structure (ℰ, ‖ ⋅ ‖) as specified in (4.3). Under these conditions, a singular 
solution exists for the model (4.4). Moreover, the sequence {Pn}, where 
P0 ∈ ℰ, converges to a singular solution of (4.4), defined for each n ∈ ℕ as 

Pn(x) = f(x)Pn− 1(V 1(x) )+ (1 − f(x) )Pn− 1(V 2(x) ).

Proof. The proof of Theorem 4.3 parallels that of Theorem 4.2, with 
emphasis on the differing elements. For each pair ι, ς ∈ X, where ι ∕= ς, 
the following expression is derived 

Ωι,ς =
1

ι − ς

[

f(ι)(P1 − P2)(V1(ι) ) + (1 − f(ι) )(P1 − P2)(V2(ι) )

− f(ς)(P1 − P2)(V1(ς) ) − (1 − f(ς) )(P1 − P2)(V2(ς) )]

=
1

ι − ς

[

f(ι)(P1 − P2)(V1(ι) ) − f(ι)(P1 − P2)(V1(ς) )

+(1 − f(ι) )(P1 − P2)(V2(ι) ) − (1 − f(ι) )(P1 − P2)(V2(ς) )

+f(ι)(P1 − P2)(V1(ς) ) − f(ς)(P1 − P2)(V1(ς) )

+(1 − f(ι) )(P1 − P2)(V2(ς) ) − (1 − f(ς) )(P1 − P2)(V2(ς) )].

Thus by (4.3), for ι, ς ∈ X with ι ∕= ς, we have 

⃒
⃒Ωι,ς

⃒
⃒ ≤ ∣f(ι)∣|(P1 − P2)(V1(ι) ) − (P1 − P2)(V1(ς) ) |

|V1(ι) − V1(ς) |
|V1(ι) − V1(ς) |

|ι − ς|

+∣1 − f(ι)∣|(P1 − P2)(V2(ι) ) − (P1 − P2)(V2(ς) ) |
|V2(ι) − V2(ς) |

|V2(ι) − V2(ς) |
|ι − ς|

+
|(P1 − P2)(V1(ς) ) − (P1 − P2)(V1(ξ) ) |

|V1(ς) − V1(ξ) |
|V1(ς) − V1(ξ) |

+
|(P1 − P2)(V2(ξ) ) − (P1 − P2)(V2(ς) ) |

|V2(ξ) − V2(ς) |
|V2(ξ) − V2(ς) |.

(4.7) 

The proof then considers two distinct cases: 

Case 1. If ξ = ς, the following inequality is established 
⃒
⃒Θι,ς

⃒
⃒ ≤ (ℓ1|f(ι) |+ℓ2|1 − f(ι) |)‖V 1(ι) − V 2(ς) ‖

≤ Ξ2‖P1 − P2‖.

Case 2. If ξ ∕= ς, the inequality (4.7) becomes 
⃒
⃒Θι,ς

⃒
⃒ ≤ (ℓ1|f(ι) |+ℓ2|1 − f(ι) | + ℓ1|ς − ι| + ℓ2|ι − ς| )‖V1(ι) − V2(ς) ‖

= Ξ2‖V1(ι) − V2(ς) ‖.

This leads to the conclusion that the operator P is a contraction, and 
by Theorem 4.1, a unique solution exists for the model (4.4). 

Corollary 4.2. Consider the decision-making model as defined in eq. 
(4.4). Let the mappings V 1,V 2 : X→X satisfy the condition (2) of Defi-
nition 4.1 with parameters ℓ1 and ℓ2, respectively, ensuring that ℓ1 ≤ ℓ2. 
Furthermore, assume that Ξ⋆

2 := (3 + ℓ4)ℓ2 < 1, and there exists a point ξ ∈

[0, 1] for which V 1(ξ) = V 2(ξ). Additionally, let there be a non-empty 
subset ℰ of the space S := {P ∈ C |P(1) ≤ 1 }, which forms a Banach space 
with the structure (ℰ, ‖ ⋅ ‖) as defined in (4.3)). Under these conditions, a 
singular solution exists for the model (4.4). Moreover, the sequence {Pn}, 
starting from any P0 in ℰ, converges to a unique solution of the model (4.4). 
The iterative process for this convergence is given by: 

Pn(x) = f(x)Pn− 1(V 1(x) ) + (1 − f(x) )Pn− 1(V 2(x) ), ∀n ∈ ℕ.

4.4. Convergence analysis 

The study of convergence in iterative systems is pivotal across 
various fields, such as computer science and mathematics, where it 
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ensures system stability and solution reliability, signifying an algo-
rithm’s capacity to reach a solution consistently. In mathematical psy-
chology, convergence takes on a unique meaning, relating to stabilizing 
learning or decision-making processes, and is crucial for understanding 
evolving learning patterns and cognitive processes. Within our study, 
convergence analysis of various iterative processes, detailed in Table 2, 
plays a crucial role in understanding decision-making dynamics in ani-
mals within the T-maze setup, highlighting these methods’ unique 
characteristics and applications in our mathematical model. 

The iteration processes detailed in the Table 2 are driven by terms 
like κn and ξn, and parameters such as λ, all chosen within the (0, 1)
range, and for the sequences {μn}n∈ℕ, {νn}n∈ℕ, {ωn}n∈ℕ, {z̃n}n∈ℕ, and 
{τn}n∈ℕ, respectively. 

In our investigation, we discuss the Picard–Krasnoselskii hybrid 
iterative process, which demonstrates a more rapid convergence rate as 
compared to traditional methods such as the Picard iterative process, 
Mann iterative process, Krasnoselskii iterative process, and Ishikawa 
iterative process. This enhanced efficiency in reaching convergence 
underscores the effectiveness of the hybrid approach in complex 
decision-making models like the one explored in our study. 

Theorem 4.4 (Okeke and Abbas, 2017). Let C be a normed space and 
A be a nonempty closed convex subset of C and W : C →C be a 
contraction mapping (defined in Definition 4.1). Assume that each of the 
iteration processes defined in Table 2 converges to the same fixed point Ξ⋆ of 
W , where {κn} and {ξn} are appropriately chosen sequences in (0, 1) such 
that 0 < κ ≤ λ, κn, ξn < 1 for all n ∈ ℕ and for some κ. Then the Pic-
ard–Krasnoselskii hybrid iterative process converges faster than all the other 
four processes. 

Now, we prove the results given in section 4 using the Picard- 
Krasnoselskii hybrid iterative process. 

Theorem 4.5. Under the assumptions of Theorem 4.2, the proposed 
functional eq. (4.4) has a unique solution, say P⋆ ∈ ℰ, and the Pic-
ard–Krasnoselskii hybrid iterative sequence {τn}, defined in Table 2, 
converges strongly to P⋆. 

Proof. Let {τn} be an iterative sequence defined in Pic-
ard–Krasnoselskii hybrid iterative process for the the operator Φ from ℰ 
given by 

(ΦP)(x) = f(x)P(V 1(x) ) + (1 − f(x) )P(V 2(x) ), ∀x ∈ X and ∀P ∈ E .

Here, our aim is to prove that τn→P⋆ as n→∞. For this, we need to 
compute 

‖τn − P⋆‖ = ‖Φϑn − ΦP⋆‖ = ‖Φ(ϑn − P⋆) ‖

= sup
ι∕=ς

|Φ(ϑn − P⋆)(ι) − Φ(ϑn − P⋆)(ς) |
|ι − ς| .

For each ι, ς ∈ X with ι ∕= ς, we get 

⃒
⃒Ωι,ς

⃒
⃒ =

|Φ(ϑn − P⋆)(ι) − Φ(ϑn − P⋆)(ς) |
|ι − ς| .

The line of the proof of this theorem is identical to that of Theorem 
4.2. So, by following the steps mentioned in Theorem 4.2, we obtain 

‖τn − P⋆‖ ≤ Ξ1‖ϑn − P⋆‖. (4.8) 

Furthermore 

‖ϑn − P⋆‖ =

⃦
⃦
⃦

(
1− λ

)
τn+λΦτn − P⋆

⃦
⃦
⃦

≤
(

1− λ
)
‖τn − P⋆‖+λ‖Φτn − ΦP⋆‖

≤
(

1− λ
)
‖τn − P⋆‖+λsup

ι∕=ς

|Φ(τn − P⋆)(ι)− Φ(τn − P⋆)(ς)|
|ι− ς|

≤
(

1− λ
)
‖τn − P⋆‖+λΞ1‖τn − P⋆‖

=Ξ̃‖τn − P⋆‖,

(4.9)  

where Ξ̃ :=
(

1 − (1 − Ξ1)λ
)

. 

From (4.8) and (4.9), we have 

‖τn − P⋆‖ ≤ Ξ̃‖τn − P⋆‖

⋮
≤ Ξ̃n‖τn − P⋆‖.

As Ξ̃ < 1, therefore limn→∞‖τn − P⋆‖ = 0, which completes the proof. 

4.5. Stability analysis 

A pivotal question emerges in mathematical computation: Under 
what conditions can an approximate solution be considered effectively 
equivalent to the exact solution, especially in functional equations? We 
explore the viability of solutions that marginally diverge from specific 
equations as acceptable approximations. This inquiry extends to 
examine the stability of our proposed model (referenced in eq. (4.4)), 
where stability signifies the model’s resilience to minor perturbations. A 
stable model ensures that slight inaccuracies in inputs do not cause 
significant output discrepancies, highlighting the model’s reliability and 
robustness, with further insights available in seminal works (Aoki, 1950; 
Hyers, 1941; Hyers et al., 2012; Rassias, 1978; Ulam, 2012). 

Theorem 4.6. If Theorem 4.3 holds, the equation ΦP = P, where Φ : C → 
C by 

(ΦP)(x) = f(x)P(V 1(x) ) + (1 − f(x) )P(V 2(x) ), (4.10)  

satisfies the property of Hyers-Ulam-Rassias stability given in (Hyers 
et al., 2012) with α > 0, ∀ P ∈ C and ∀x ∈ X. 

Proof. Let P ∈ C with d(ΦP,P) ≤ φ(P). By Theorem 4.3, there is a 
unique P⋆ ∈ C having the property ΦP⋆ = P⋆. Thus, we get 

d(P,P⋆) ≤ d(P,PΦ) + d(PΦ,P⋆)

≤ φ(P) + d(PΦ,ΦP⋆)

≤ φ(P) + Ξ2d(P,P⋆),

where Ξ2 is given in Theorem 4.3, and so 

d(P,P⋆) ≤ αφ(P), with α := (1 − Ξ2)
− 1
.

The subsequent outcome regarding Hyers-Ulam stability is obtained 
based on the above analysis. 

Corollary 4.3. If Theorem 4.3 holds, the equation ΦP = P, where Φ :

C →C defined as 

(ΦP)(x) = f(x)P(V 1(x) ) + (1 − f(x) )P(V 2(x) ), (4.11)  

has Hyers-Ulam stability given in (Hyers et al., 2012) with β > 0,

Table 2 
Summary of some iterative processes.  

Iterative Process Definition Reference 

Picard iterative process μ1 = μ ∈ A ,

μn+1 = W μn, n ∈ ℕ 
(Picard, 1890) 

Mann iterative process ν1 = ν ∈ A ,

νn+1 = (1 − κn)νn + κnW νn , n ∈ ℕ 
(Mann, 1953) 

Krasnoselskii iterative 
process 

ω1 = ω ∈ A ,

ωn+1 =
(

1 − λ
)

ωn + λW ωn, n ∈ ℕ 

(Xiang and 
Yuan, 2015) 

Ishikawa iterative 
process 

z̃1 = z̃ ∈ A ,

z̃n+1 = (1 − κn)z̃n + κnW ỹn,

ỹn = (1 − ξn)z̃n + ξnW z̃n , n ∈ ℕ 

(Ishikawa, 1974) 

Picard-Krasnoselskii 
hybrid process 

τ1 = τ ∈ A ,

τn+1 = W ϑn ,

ϑn =
(

1 − λ
)

τn + λW τn, n ∈ ℕ 

(Okeke and 
Abbas, 2017)    
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∀P ∈ C and ∀x ∈ X. 

5. Behavioral dynamics in T-mazes: Zebrafish and rat 
movements 

This section discusses our methods and designs for analyzing animal 
behavior in T-maze setups, focusing on zebrafish and rats. We describe 
our experimental setup, data acquisition, and use of machine learning to 
interpret movement patterns, providing insight into these species’ 
decision-making processes in controlled environments. 

5.1. Methodology and design 

In our research, we embarked on a comprehensive exploration of the 
behavioral dynamics of zebrafish and rats within a T-maze environment. 
The core of our methodology revolved around a meticulously designed 
T-maze setup tailored to elicit and capture the decision-making pro-
cesses of these animals. The data for the movements of zebrafish and rats 
within the T-maze setup can be obtained from (Benvenutti et al., 2021; 
Liu et al., 2023; Lucon-Xiccato and Bisazza, 2017; Yang and Mailman, 
2018) and the references therein.We employed advanced machine 
learning methods to study and analyze the movement trajectories of 
zebrafish and rats in the T-maze setup. We focused on the centroid points 
of the movements, which laid the groundwork for our computational 
analysis. 

Intriguing insights into species-specific navigational strategies are 
evident in Figs. 5–8, depicting the movement trajectories within a T- 
maze framework. Zebrafish exhibit notable variability and frequent di-
rection changes, particularly on the left side of the maze (Fig. 5). This 
behavior can reflect a trial-and-error approach or the influence of less 
developed spatial memory. In contrast, rat trajectories are more 
streamlined and targeted, especially when navigating to the right side 
(Fig. 7), suggesting a more refined cognitive map or higher learning 
efficiency. Despite these differences, both organisms exhibit common 
behavioral pauses at the original centroids, potentially indicating crit-
ical decision points or cognitive processing zones within the maze. These 
pauses can point to a shared underlying navigational mechanism across 
species. The contrast in movement patterns highlights potential differ-
ences in how zebrafish and rats process spatial information, evaluate 
options, and execute decisions, providing valuable insights for 
comparative cognitive research. 

5.2. Statistical analysis of movement patterns 

The statistical analysis of the centroid coordinates from the T-maze 
experiments provided significant insights into the movement patterns of 
both zebrafish and rats. For zebrafish, the mean vectors for left and right 
movements were computed as μleft = (242.82, 150.12) and μright =

(291.54,106.04), respectively. These vectors indicate a notable lateral 
displacement, particularly in leftward movements. The standard de-
viations, σleft = (23.83,39.28) and σright = (19.09,51.17), suggest 
greater variability along the y-axis in rightward movements. The t-test 
results, with a statistic of [ − 24.72,11.00] and a p-value of 
[
2.73 × 10− 89,2.10 × 10− 25], statistically validate the non-randomness 

in the movement patterns, indicating a significant directional bias in 
the zebrafish’s navigational choices. 

In the rat T-maze experiment, the mean centroid coordinates for 
leftward and rightward movements were (142.45,92.95) and 
(318.67,140.50), respectively. The standard deviations, 80.71 and 
83.27 for leftward movements and 78.54 and 103.35 for rightward 
movements, highlight a significant spread in the positional data. The t- 
test statistics, − 38.29 for the horizontal axis and − 9.00 for the vertical 
axis, along with p-values of 1.35 × 10− 213 and 7.82× 10− 19, confirm the 
statistical significance of these findings. This analysis not only demon-
strates distinct spatial preferences in the rats’ decision-making but also 
emphasizes the effectiveness of centroid point analysis in understanding 
the complex spatial dynamics of animal behavior in controlled 
experiments. 

5.3. Results and discussion 

5.3.1. Computational configuration and hyperparameter settings 
This study employed Jupyter Notebook 6.5.4 with a Python 3 IPy-

thon kernel to implement KNN, SVM, and a hybrid PCA-SVM method. 
Key libraries such as numpy, matplotlib, opencv, pandas, and scikit- 
learn were utilized for the extensive machine learning algorithms, 
data preprocessing, and model evaluation capabilities. The following 
hyperparameters were used:  

1. For KNN 
• The determination of the optimal number of neighbors (‘2-neigh-

bors’) was achieved through cross-validation, employing grid 

Fig. 5. Left movement.  
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search to ascertain the configuration that minimizes cross- 
validation error, thereby enhancing model precision.  

• The selection of the distance metric, typically Euclidean, was 
predicated on the data’s characteristics and the specific analytical 
prerequisites.  

2. For SVM  
• The regularization parameter (‘C’) and the kernel type (linear) 

were calibrated through a synergistic application of grid search 
and cross-validation, aiming to mediate the balance between 
model complexity and its generalization prowess.  

• In instances involving non-linear SVMs, the kernel coefficient 
(‘gamma’) underwent optimization via grid search, ensuring the 
model’s attunement to the data distribution.  

3. For PCA-SVM  
• Commencing with dimensionality reduction via Principal 

Component Analysis (PCA), the number of components preserved 

was dictated by the explained variance ratio, to ensure the distilled 
dataset retained the majority of the original data’s variance.  

• The SVM model was thereafter trained on this dimensionally 
reduced dataset, with hyperparameters refined as delineated 
above. 

5.3.2. Performance indicators 
To rigorously evaluate the efficacy of the proposed models in clas-

sifying animal behaviors within the T-maze, we implemented five key 
evaluation metrics: Precision, Recall, F1-score, Accuracy, and the 
Confusion Matrix. In this context, True Positives (TP) and True Nega-
tives (TN) represent instances where the models correctly identified the 
behavior as the expected or alternative action. Conversely, False Posi-
tives (FP) and False Negatives (FN) reflect misclassifications that 
represent a potential misunderstanding of the animal’s decision-making 
process. Accuracy, a cornerstone metric, is calculated by dividing the 
sum of correct classifications (TP and TN) by the total number of 

Fig. 6. Right movement.  

Fig. 7. Left movement.  
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observed behaviors, providing a holistic measure of the model’s overall 
performance in capturing the complexities of animal cognitive behavior 
in the experimental setup. 

The evaluation matrices are shown in the following equations: 

Recall =
FP

(FP + TN)
(5.1)  

Precision =
TP

(TP + FP)
(5.2)  

F1–score =
(2 × TP)

(2TP + FP + FN)
(5.3)  

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5.4)  

5.3.3. Results analysis and comparison 
The integration of K-Nearest Neighbors (KNN) and Support Vector 

Machine (SVM) classification algorithms (see (Bansal et al., 2022; 
Boateng et al., 2020)), along with a Principal Component Analysis- 
Support Vector Machine (PCA-SVM) hybrid approach (Hai and An, 
2016), has significantly enhanced our understanding of zebrafish and rat 
movements within T-maze environments. This comprehensive analysis, 
as detailed in Tables 3 and 4, showcases the detailed insights gained 
from these methodologies. For zebrafish, the KNN model demonstrated 
high precision and recall in identifying left movements, with impressive 

metrics indicating its efficacy in minimizing false positives. Conversely, 
the SVM method outperformed in precision and recall for left move-
ments, suggesting high accuracy in distinguishing them. Notably, by 
reducing dimensionality before classification, the PCA-SVM approach 
achieved remarkable accuracy rates of 98.07% for zebrafish and 98.15% 
for rats, highlighting its exceptional capability in interpreting complex 
behavioral data with minimal error. 

The PCA-SVM’s standout performance is attributed to its ability to 
distill essential features from the behavioral data, enhancing the SVM’s 
classification accuracy. This method’s success underscores the potential 
of combining dimensionality reduction with machine learning algo-
rithms to tackle the intricacies of animal behavior analysis. The detailed 
performance measures, including precision, recall, F-measure, and 
overall accuracy, affirm the robustness of PCA-SVM in capturing the 
behavior of animal movements within a controlled environment. This 
approach advances our understanding of animal cognition and exem-
plifies the transformative impact of machine learning techniques in 
behavioral science research. 

The confusion matrices for the KNN and SVM classification methods 
and their PCA-enhanced versions reveal detailed insights into the 
models’ classification capabilities for zebrafish and rat movements in a 
T-maze (see Figs. 9–14). For zebrafish, the SVM classifier demonstrates 
high accuracy and precision, with the PCA-SVM model further 
enhancing the true positive rates for both left and right movements 
while minimizing false positives, as shown in Figs. 10 and 11. The KNN 

Fig. 8. Right movement.  

Table 3 
Comparative analysis of KNN, SVM, and PCA-SVM performance in classifying 
the left-right movements of zebrafish.  

Method Behavior Precision 
% 

Recall 
% 

F-measure 
% 

Accuracy 
% 

KNN Left Movement 96.92 96.91 95.63 96.11 
Right 
Movement 

94.73 93.22 92.14  

SVM Left Movement 98.43 96.92 97.67 97.08 
Right 
Movement 

94.87 97.36 96.10  

PCA- 
SVM 

Left Movement 96.87 98.92 98.41 98.07 
Right 
Movement 

99.36 95.23 97.56   

Table 4 
Comparative analysis of KNN, SVM, and PCA-SVM performance in classifying 
the left-right movements of rats.  

Method Behavior Precision 
% 

Recall 
% 

F-measure 
% 

Accuracy 
% 

KNN Left Movement 92.32 97.16 94.68 93.42 
Right 
Movement 

95.32 87.74 91.37  

SVM Left Movement 96.25 97.67 96.95 96.18 
Right 
Movement 

96.07 93.72 94.88  

PCA- 
SVM 

Left Movement 97.29 98.67 98.63 98.15 
Right 
Movement 

98.07 94.59 97.22   
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Fig. 9. KNN confusion matrix for zebrafish behavior.  

Fig. 10. SVM confusion matrix for zebrafish behavior.  
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Fig. 11. PCA-SVM confusion matrix for zebrafish behavior.  

Fig. 12. KNN confusion matrix for rat behavior.  
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Fig. 13. SVM confusion matrix for rat behavior.  

Fig. 14. PCA-SVM confusion matrix for rat behavior.  
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classifier, while slightly less precise, still maintains a high accuracy for 
zebrafish, as evidenced by Fig. 9, indicating its effectiveness in dis-
tinguishing the species’ subtle movement variations. 

The KNN classifier exhibits impressive precision in analyzing rat 
movements, possibly surpassing the standard SVM (Fig. 12). This might 
be attributed to its suitability for handling consistent and defined rat 
movement patterns. The PCA-SVM model for rats, illustrated in Fig. 14, 
achieves a perfect classification rate for left movements and a substantial 
accuracy for right movements, asserting its exceptional performance in 
processing rat behavioral data. Conversely, the SVM model displays a 
slight dip in precision for rat movements compared to zebrafish, as 
shown in Fig. 13, which might reflect the distinct challenges posed by 
the rats’ movement dynamics. 

These confusion matrices are pivotal for assessing the predictive 
prowess of each classification approach. By dissecting the true positive, 
false positive, true negative, and false negative rates, we understand the 
model’s capability to distinguish left and right movements in zebrafish 
and rats accurately. Such a detailed evaluation not only delineates the 
comparative strengths and weaknesses of the classifiers but also en-
hances our comprehension of the behavioral patterns exhibited by these 
species in a structured experimental setup. 

6. Conclusion 

This study represents a significant advancement in understanding 
the complex decision-making processes of animals within T-maze en-
vironments, achieved through the integration of mathematical modeling 
and advanced machine-learning techniques. Beginning with the pio-
neering work of Bush and Wilson, (1956) on paradise fish, we developed 
a mathematical model to capture this behavioral phenomenon, estab-
lishing the existence, convergence, and stability of a unique solution. 
Our analysis, employing K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), and a hybrid approach of Principal Component Analysis 
(PCA) with SVM algorithms for zebrafish and rats, reveals intricate 
behavioral patterns. Notably, the PCA-SVM method demonstrated 
remarkable accuracy, achieving 98.07% for zebrafish and 98.15% for 
rats. This research advances our understanding of animal cognition. It 
underscores the potential of machine learning in behavioral science, 
setting the stage for further studies across a broader spectrum of species 
and decision-making contexts. 
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Istrăţescu, V.I., 1976. On a functional equation. J. Math. Anal. Appl. 56 (1), 133–136. 
Izumi, A., Tsuchida, J., Yamaguchi, C., 2013. Spontaneous alternation behavior in 

common marmosets (Callithrix jacchus). J. Comp. Psychol. 127 (1), 76. 
Johnson, A., Redish, A.D., 2007. Neural ensembles in CA3 transiently encode paths 

forward of the animal at a decision point. J. Neurosci. 27 (45), 12176–12189. 
Kirkby, R.J., Lackey, G.H., 1968. Spontaneous alternation in Mesocricetus auratus: age 

differences. Psychon. Sci. 10 (7), 257–258. 
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