Transversality, regularity and error bounds in variational analysis and optimisation

Abstract

Transversality properties of collections of sets, regularity properties of set-valued mappings, and error bounds of extended-real-valued functions lie at the core of variational analysis because of their importance for stability analysis, constraint qualifications, qualification conditions in coderivative and subdifferential calculus, and convergence analysis of numerical algorithms. The thesis is devoted to investigation of several research questions related to the aforementioned properties. We develop a general framework for quantitative analysis of nonlinear transversality properties by establishing primal and dual characterizations of the properties in both convex and nonconvex settings. The H¨older case is given special attention. Quantitative relations between transversality properties and the corresponding regularity properties of set-valued mappings as well as nonlinear extensions of the new transversality properties of a set-valued mapping to a set in the range space are also discussed. We study a new property so called semitransversality of collections of set-valued mappings on metric (in particular, normed) spaces. The property is a generalization of the semitransversality of collections of sets and the negation of the corresponding stationarity, a weaker property than the extremality of collections of set-valued mappings. Primal and dual characterizations of the property as well as quantitative relations between the property and semiregularity of set-valued mappings are formulated. As a consequence, we establish dual necessary and sufficient conditions for stationarity of collections of set-valued mappings as well as optimality conditions for efficient solutions with respect to variable ordering structures in multiobjective optimization. We examine a comprehensive (i.e. not assuming the mapping to have any particular structure) view on the regularity theory of set-valued mappings and clarify the relationships between the existing primal and dual quantitative sufficient and necessary conditions including their hierarchy. The typical sequence of regularity assertions, often hidden in the proofs, and the roles of the assumptions involved in the assertions, in particular, on the underlying space: general metric, normed, Banach or Asplund are exposed. As a consequence, we formulate primal and dual conditions for the stability properties of solution mappings to inclusions. We propose a unifying general framework of quantitative primal and dual sufficient and necessary error bound conditions covering linear and nonlinear, local and global settings. The function is not assumed to possess any particular structure apart from the standard assumptions of lower semicontinuity in the case of sufficient conditions and (in some cases) convexity in the case of necessary conditions. We expose the roles of the assumptions involved in the error bound assertions, in particular, on the underlying space: general metric, normed, Banach or Asplund. As a consequence, the error bound theory is applied to characterize subregularity of set-valued mappings, and calmness of the solution mapping in convex semi-infinite optimization problems.Doctor of Philosoph

    Similar works