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ABSTRACT

An important feature of the new
variational techniques is that they can
handle nonsmooth functions, sets and
multifunctions equally well.

Borwein and Zhu [36]

Transversality properties of collections of sets, regularity properties of set-valued map-
pings, and error bounds of extended-real-valued functions lie at the core of variational anal-
ysis because of their importance for stability analysis, constraint qualifications, qualification
conditions in coderivative and subdifferential calculus, and convergence analysis of numeri-
cal algorithms. The thesis is devoted to investigation of several research questions related to
the aforementioned properties.

We develop a general framework for quantitative analysis of nonlinear transversality
properties by establishing primal and dual characterizations of the properties in both convex
and nonconvex settings. The Hölder case is given special attention. Quantitative relations
between transversality properties and the corresponding regularity properties of set-valued
mappings as well as nonlinear extensions of the new transversality properties of a set-valued
mapping to a set in the range space are also discussed.

We study a new property so called semitransversality of collections of set-valued map-
pings on metric (in particular, normed) spaces. The property is a generalization of the semi-
transversality of collections of sets and the negation of the corresponding stationarity, a
weaker property than the extremality of collections of set-valued mappings. Primal and dual
characterizations of the property as well as quantitative relations between the property and
semiregularity of set-valued mappings are formulated. As a consequence, we establish dual
necessary and sufficient conditions for stationarity of collections of set-valued mappings as
well as optimality conditions for efficient solutions with respect to variable ordering struc-
tures in multiobjective optimization.

We examine a comprehensive (i.e. not assuming the mapping to have any particular
structure) view on the regularity theory of set-valued mappings and clarify the relationships
between the existing primal and dual quantitative sufficient and necessary conditions includ-
ing their hierarchy. The typical sequence of regularity assertions, often hidden in the proofs,
and the roles of the assumptions involved in the assertions, in particular, on the underly-
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ing space: general metric, normed, Banach or Asplund are exposed. As a consequence,
we formulate primal and dual conditions for the stability properties of solution mappings to
inclusions.

We propose a unifying general framework of quantitative primal and dual sufficient and
necessary error bound conditions covering linear and nonlinear, local and global settings.
The function is not assumed to possess any particular structure apart from the standard as-
sumptions of lower semicontinuity in the case of sufficient conditions and (in some cases)
convexity in the case of necessary conditions. We expose the roles of the assumptions in-
volved in the error bound assertions, in particular, on the underlying space: general metric,
normed, Banach or Asplund. As a consequence, the error bound theory is applied to charac-
terize subregularity of set-valued mappings, and calmness of the solution mapping in convex
semi-infinite optimization problems.
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Chapter 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Differential calculus has been recognized as a very powerful tool in various models, in par-
ticular for solving optimization problems. However, the applicability of differential calculus
is restricted due to the requirement of smoothness assumption of data, while nonsmooth
structures frequently arise in numerous problems in mathematics and applied sciences. In
fact, nonsmoothness naturally enters not only through initial data of optimization-related
problems (particularly those with inequality and geometric constraints) but also via varia-
tional principles and other optimization, approximation, and perturbation techniques applied
to problems with even smooth data. Besides, many fundamental objects frequently appear-
ing in the framework of variational analysis (e.g., the distance/marginal/maximum functions,
solution mappings, etc.) are inevitably nonsmooth and/or set-valued.

The necessity of new forms of analysis that involve generalized differentiation to work
with nonsmooth objects leads to the development of modern variational analysis, which in-
dicates a broad spectrum of mathematical theory including variational principles, nonsmooth
and set-valued analysis, optimization, equilibrium, control, stability of linear and nonlinear
systems, and sensitivity with respect to data perturbations. Variational analysis has been
recognized as a fruitful and rapidly developing area, rich with applications in mathematics
in the last few decades. One of the main ingredients of the area is the construction of gen-
eralized differentiations in terms of primal and dual objects for nondifferentiable functions
(subderivatives and subdifferentials), sets with nonsmooth boundaries (tangent and normal
cones), and set-valued mappings (derivatives and coderivatives), which has become a pow-
erful tool in the study of sensitivity issues for various mathematical problems.
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Functions Set-Valued Mappings

Variational Analysis

Sets

Figure 1. Connections of sets, functions, and set-valued mappings
The thesis is devoted to studying three fundamental elements of variational analysis:

sets, functions, and set-valued mappings, all of which are generally nonconvex and have
nonsmooth boundaries. We establish new and upgraded characterizations of transversality
properties of collections of sets, regularity properties of set-valued mappings, error bounds
of extended-real-valued functions, and apply the properties in studying optimization-related
problems.

1.1.1 Transversality Properties

Transversality is about study of ‘good arrangements’ of collections of sets in normed vector
spaces near a point in their intersection. The origins of the concept of regular arrangement of
sets in space can be traced back to that of transversality in Differential Geometry which plays
of course with smooth manifolds [100,104]. Given two smooth manifolds and a point in their
intersection, a natural question is when the intersection is also a smooth manifold near the
common point. It has been shown that one of the sufficient conditions is when the pair of
two manifolds is transversal at this point in the sense that the sum of the tangent spaces to
each manifold at the point equals the whole space, or equivalently, the intersection of two
normal spaces (i.e., orthogonal complements to the tangent spaces) of the two manifolds at
the common point equals vector 0.

Due to the wide variety of applications coming from different areas, some transversal-
ity properties together with the corresponding necessary and/or sufficient conditions have
been rediscovered many times in different situations and often under different names. In
the context of modern variational analysis the terms transversality was coined by Alexander
Ioffe [114], and he then explained [116, p. 301] that ‘Regularity is a property of a single
object while transversality relates to the interaction of two or more independent objects’.
In the thesis we refer to transversality broadly as a group of ‘good arrangement’ properties,
which includes semitransversality, subtransversality, transversality (a specific property) and
some others.

Transversality properties are fundamental concepts in variational analysis in both theory
and practice aspects. They are crucial for the validity of qualification conditions in opti-
mization as well as subdifferential, normal cone and coderivative calculus, and convergence
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analysis of computational algorithms. Significant efforts have been invested into studying
various transversality properties and establishing their primal and dual necessary and/or suf-
ficient characterizations in various settings (convex and nonconvex, finite and infinite di-
mensional, finite and infinite collections of sets). Interested readers are refer to [9, 20, 25–
27,40,70,83,116,127–129,134–136,138–143,148,152,176,177,183,190,194,216,218] for
comprehensive discussions and interesting results.

Our working model in the thesis is a collection of n ≥ 2 arbitrary subsets Ω1, . . . ,Ωn of
a normed vector space X , having a common point x̄ ∈ ∩n

i=1Ωi. We are now going to discuss
the three properties: subtransversality, transversality and semitransversality. Each property is
presented in both geometric (how the sets intersect) and metric (how the sets are measured by
distances) terms. It is worth mentioning that geometric and metric versions of the respective
properties were not established simultaneously.

Definition 1 Let α > 0, δ1 > 0 and δ2 > 0. The collection {Ω1, . . . ,Ωn} is α−subtransversal
with δ1 and δ2 if one of the following two equivalent conditions are satisfied:

(i) for all ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi)< αρ , it holds

n⋂
i=1

Ωi∩Bρ(x) 6= /0; (1.1)

(ii) for all x ∈ Bδ2(x̄) with max1≤i≤n d(x,Ωi)< αδ1, it holds

αd

(
x,

n⋂
i=1

Ωi

)
≤ max

1≤i≤n
d(x,Ωi). (1.2)

The exact upper bound of all α ∈]0,1[ such that condition (1.1) or condition (1.2) is satis-
fied for some δ1 > 0 and δ2 > 0 is denoted str[Ω1, . . . ,Ωn](x̄) with the convention that the
supremum of the empty subset of R+ equals 0.

The property in part (i) as well as the qualitative equivalence between (i) and (ii) are
mentioned in [142], see also [38, Theorem 2] for the quantitative equivalence. Property
(i) can be viewed as a local analogue of the global uniform normal property introduced
in the convex setting in [20, Definition 3.1(4)] as a generalization of the property (N) of
convex cones by Jameson [119]. The subtransversality of {Ω1, . . . ,Ωn} is equivalent to the
condition str[Ω1, . . . ,Ωn](x̄)> 0, and the modulus provides a quantitative characterization of
this property. It is worth mentioning that the constant is, in a sense, a local analogue of the
normality constant in [20, Definition 4.2].

According to our understanding, property (ii) was first studied by Dolecki [77] under the
name separate decisively at a linear rate, while its nonlinear version was discussed earlier
[76, Lemma 4.2]. The property has been used (under different names) as a qualification
condition for establishing subdifferential and normal cone calculus rules: [111, Section 5],
metric inequality [183], linear coherence [194, Theorem 4.75]. Inequality (1.2) provides the
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upper bound of the distance from x to the intersection, which is very useful in computation
algorithms (especially when dealing with feasibility problems).

Given a collection of sets, the feasibility problem consists of finding a point in their
intersection, which is a very general model including, in particular, solving systems of all
sorts of equations and inequalities (algebraic, differential, etc.). Bauschke and Borwein [24,
25] used the property under the name linear regularity as a sufficient condition for the linear
convergence of alternating and cyclic projection algorithms for solving convex feasibility
problems in Hilbert spaces. Very recently, Luke et al. makes the picture in the convex setting
complete by showing that subtransversality is not only sufficient for the linear convergence
of alternating projections, but it is also necessary [160, Theorem 8].

The next definition introduces transversality which is a stronger property than sub-
transversality.

Definition 2 Let α > 0, δ1 and δ2 > 0. The collection {Ω1, . . . ,Ωn} is α−transversal with
δ1 and δ2 if one of the following two equivalent conditions are satisfied:

(i) for all ρ ∈]0,δ1[, ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αρ ,
it holds

n⋂
i=1

(Ωi−ωi− xi)∩ (ρB) 6= /0; (1.3)

(ii) for all ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ1, it holds

αd

(
0,

n⋂
i=1

(Ωi−ωi− xi)

)
≤ max

1≤i≤n
‖xi‖. (1.4)

The exact upper bound of all α ∈]0,1[ such that condition (1.3) or condition (1.4) is satis-
fied for some δ1 > 0 and δ2 > 0 is denoted tr[Ω1, . . . ,Ωn](x̄) with the convention that the
supremum of the empty subset of R+ equals 0.

Property (i) was originally studied by Kruger [127] under the name regularity as the nega-
tion of the approximate stationarity property, which is a weaker property than the (local) ex-
tremality [39,40]. The equivalence between (i) and (ii) is recently proved in [38, Theorem 2].
It is worth mentioning that transversality admits several equivalent metric characterizations
(see, Chapter 2). The table below recalls several names of the property.

2005 [127] 2006 [128] 2009 [129] 2013 [140] 2017 [139]
Regularity Strong Regularity Property (UR)S Uniform Regularity Transversality

We have known that subtransversality is not only sufficient but also necessary for the
local linear convergence of the convex alternating projection. In the nonconvex case, the
situation is much more complicated. In fact, it has been shown in [116, Example 9.25] that
sequences generated by the algorithm fail to converge to some points in the intersection
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although the subtransversality holds. The need for a stronger property which ensures the
linear convergence is essential, and this is exactly where transversality comes to play in
practice for the first time. In general, the requirements of nonconvex optimization have
caused an expansion of the range of transversality properties under consideration. Lewis
and Malick [149] and Lewis et al. [148] used the property under the name linear regular
intersection to prove the local linear convergence for alternating and averaged projections
for nonconvex feasibility problems. It is worth mentioning that, unlike subtransversality,
transversality is employed in computational areas under its equivalent dual characterizations
in terms of normal cones instead of the original primal (geometric and metric) ones. The
dual characterizations of transversality in finite dimensional spaces have been well known
for about 30 years under the names basic qualification condition and normal qualification
condition. We refer the reader to Kruger et al. [138, 139] for comprehensive discussions as
well as useful results about the property.

Subtransversality and transversality have strong connections with the error bound theory
which is going to be dicussed in detail in Section 1.1.3. In fact, the former is equivalent
to the function x 7→ max1≤i≤n d(x,Ωi) having a local error bound at x̄, while the latter can
represent the existence of a local error bound at x̄ uniformly near (0, . . . ,0) of the function
(x,(x1, . . . ,xn)) 7→max1≤i≤n d(x,(Ωi− xi)); cf. [121].

The next definition introduces semitransversality which has not attracted much attention
compared to its two siblings.

Definition 3 Let α > 0 and δ > 0. The collection {Ω1, . . . ,Ωn} is α−semitransversal with
δ if one of the following two equivalent conditions are satisfied:

(i) for all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αρ , it holds

n⋂
i=1

(Ωi− xi)∩Bρ(x̄) 6= /0; (1.5)

(ii) for all xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖< αδ , it holds

αd

(
x̄,

n⋂
i=1

(Ωi− xi)

)
≤ max

1≤i≤n
‖xi‖. (1.6)

The exact upper bound of all α > 0 such that condition (1.5) or condition (1.6) is satisfied
for some δ > 0 is denoted setr[Ω1, . . . ,Ωn](x̄) with the convention that the supremum of the
empty subset of R+ equals 0.

The property in part (i) was first studied by Kruger [127] as the negation of the stationar-
ity property, while qualitative equivalence between (i) and (ii) was first proved in [140, The-
orem 3.1(i)] (see also [38, Theorem 2] for the quantitative equivalence). The table below
represents the involve of the terminology.
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2005 [127] 2006 [128] 2009 [129] 2018 [142] 2020 [70]
Weak Regularity Regularity Property (R)S Semiregularity Semitransversality

It is obvious that the property is weaker than transversality. We recently showed
that semitransversality and transversality are equivalent in the convex setting [38, Propo-
sition 8]. On the other hand, semitransversality and subtransversality are generally indepen-
dent [141, 142]. Unlike the other two transversality properties, semitransversality does not
have an exact counterpart within the conventional error bound theory. The three transver-
sality properties, namely, semitransversality, subtransversality and transversality can be in-
terpreted, respectively, as direct analogues of semiregularity, subregularity and regularity of
set-valued mappings; cf. Section 1.1.2.

The maximum of the distances in Definitions 1, 2 and 3 and some other representations
in the sequel corresponds to the maximum norm in Rn employed in all these definitions and
assertions. It can be replaced everywhere by the sum norm [114, 116, 183] or any other
equivalent norm. All the assertions above including the quantitative characterizations will
remain valid (as long as the same norm is used everywhere), although the exact values of the
moduli do depend on the chosen norm and some estimates can change.

The subtransversality is not sufficient for the local linear convergence of the nonconvex
alternation projections, but it has an attractive property that transversality lacks: it is intrin-
sic in the sense that it is connected with the sets themselves and not with the ambient space.
On the contrary, two sets that are transversal in a subspace of a bigger space are no longer
transversal in the latter. So it is natural to look for a property that is connected with the
sets as such, not with the space where they are defined, and at the same time strong enough
to guarantee the convergence of alternating projections in small neighborhoods of points of
intersection. This is where the intrinsic transversality comes to play. The property was in-
troduced recently by Drusvyatskiy, Ioffe and Lewis [83] as a sufficient condition for local
linear convergence of alternating projections for nonconvex feasibility problems in finite di-
mensional spaces. Several characterizations of this property involving limiting objects in
infinite dimensional setting were established by Kruger [134]. It has been shown that intrin-
sic transversality and subtransversality coincide in the convex setting [116, Proposition 9.29].
Intrinsic transversality is originally defined on normal vectors in Euclidean spaces, and it has
been proved recently that the property admits equivalent characterizations that do not involve
normal vectors in the Hilbert setting [205].

Very recently, another important property called “tangential transversality” has come to
life. The property is used to obtain necessary optimality conditions for optimization prob-
lems in terms of abstract Lagrange multipliers and to formulate intersection rules for tangent
cones in Banach spaces. For more discussions about the property as well as connections with
other transversality properties, we refer the reader to these recent papers [3, 4, 30, 31].
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1.1.2 Regularity Properties

Let F : X ⇒ Y be a set-valued mapping between metric spaces, and consider the solvability
of generalized equations, that is, the problem of

finding x ∈ X such that F(x) 3 y, (1.7)

where y ∈ Y is given.
It is well-known that many important problems in variational analysis and optimization

are covered by this generalized equation model. In fact, the relation F(x) 3 y can stand for
a variational inequality or more broadly it can express a mixture of inequality and equality
conditions. The solution set is, of course, F−1(y) which is nonempty if and only if y ∈
range F . The central issue in investigating problem (1.7) is to study the behavior of the
solution set F−1(y) with respect to perturbations in y as a parameter, and one of the powerful
tools is the concept of metric regularity.

The mapping F is regular at (x̄, ȳ) ∈ gphF if there exists an α > 0, neighbourhoods U of
x̄ and V of ȳ such that

αd(x,F−1(y))≤ d(y,F(x)) (1.8)

for all x ∈ U and y ∈ V . The exact upper bound of all α > 0 such that condition (1.8) is
satisfied for some U and V is denoted rg[F ](x̄, ȳ) with the convention that the supremum of
the empty subset of R+ equals 0.

The constant α measures sensitivity or conditioning of the generalized equation, and
larger values of α correspond to more favorable behavior. The largest such constant α is
denoted by rg[F ](x̄, ȳ) and called the modulus of regularity which allows us to check how
large a perturbation can be before good behavior of a solution mapping breaks down.

Metric regularity establishes linear relationship between data change and solution error.
Strictly speaking, inequality (1.8) provides an estimate for how far a point x is from being a
solution to the general equation problem for F and the data y; the expression d(y,F(x)) mea-
sures the ‘residua’ when y /∈ F(x). It is clear that computing the residua is much more easier
than finding a solution of the generalized equation. Such an estimate is of importance for
numerous optimization problems, especially for numerical purposes. The following obser-
vation is by Dontchev and Rockafellar [81]. Let x̄ be a solution of the inclusion F(x)3 ȳ, and
let F be metrically regular at (x̄, ȳ), and let (xn,yn) be sufficiently close to (x̄, ȳ). Then, the
product of α and distance from xn to the solution set of the inclusion F(x) 3 yn is bounded
above by the residual d(yn,F(xn)). Metric regularity says that there exists a solution to the
inclusion F(x)3 yn at distance from xn proportional to the residual. In particular, if we know
the rate of convergence of the residual to zero, then we will obtain the rate of convergence of
approximate solutions to an exact one.

The metric regularity is a basic quantitative property of mappings in variational analysis
which is widely used in both theoretical and computational studies. In fact, it has been well
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recognized that this property plays a fundamental role in many aspects of nonlinear analysis,
optimization, control theory, etc., especially for studying sensitivity and stability of solutions
to generalized equations and various aspects of subdifferential calculus and optimization
theory. Metric regularity is also one of the powerful tools for establishing convergence rates
of various computational algorithms, for example, the proximal point method [52, 82], the
Newton method [1, 5], Picard iterations [8, 103, 161].

The name metric regularity was coined by Borwein in the 1986 work [34], but the concept
itself was established far earlier. Indeed, this concept can be traced back to the Banach
open mapping theorem for linear operators obtained in the 1930s by Banach and Schauder
[21, 203] in functional analysis. This theorem was extended for nonlinear operators: the
tangent space theorem of Lyusternik [166] and the surjection theorem of Graves [99], which
has been known as the cerebrated Graves-Lyusternik theorem. Specifically, the theorem
says that if a single-valued function F : X → Y is continuously Fréchet differentiable near
x̄, then it is regular at (x̄,F(x̄)) if and only if the operator derivative ∇F(x̄) is surjective,
i.e. F ′(x̄)X =Y . Another fundamental result in variational analysis is the Robinson-Ursescu
theorem (Robinson [199] and Ursescu [207]), an extension of the Banach open mapping
principle to set-valued mappings, which says that for a set-valued mapping F with closed
and convex graph, it is metrically regular at (x̄, ȳ) ∈ gphF if and only if ȳ is an interior point
of range F .

Metric regularity of a set-valued mapping F is known to be equivalent to two other prop-
erties: the openness with a linear rate around of F [81, Theorem 3E.9] and the Aubin prop-
erty (also called pseudo-Lipschitz or Lipschitz-like) of the inverse F−1 [81, Theorem 3E.7],
a property which in the single-valued case reduces to the Lipschitz continuity. Comprehen-
sive characterizations of metric regularity and related well-posedness properties of set-valued
mappings are available in the literature via both primal and dual constructions of generalized
differentiation. For the state of the art of the regularity theory of set-valued mappings and
its numerous applications we refer the reader to the books by Dontchev and Rockafellar [81]
and Ioffe [116].

We would like to mention another equivalent property of metric regularity [116, Propo-
sition 2.20]. The mapping F is graph-regular at (x̄, ȳ) ∈ gphF if there exist an α > 0, neigh-
borhoods U of x̄ and V of ȳ such that

αd(x,F−1(y))≤ d((x,y),gphF) (1.9)

for all x ∈U and y ∈V .
The property was initially studied by Jourani and Thibault [122]. The main idea of graph

regularity is that metric regularity is qualitatively unchanged when reasonable restrictions
on x and y are added, for instance, (x,y) /∈ gphF . The function (x,y) 7→ d(y,F(x)) in the
definition of metric regularity has a drawback that it generally fails to be lower semicontinu-
ous in infinite dimentional spaces. The function (x,y) 7→ d((x,y),gphF), on the other hand,
is Lipschitz continuous. Hence, necessary and sufficient conditions for the property can be
easily obtained when applying the error bound theory for lower semicontinuous functions.
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There are two basic ways of weakening the definition of metric regularity by fixing one of
the points involved in the definition. The first resulting property is called metric subregularity
and has attracted a lot of attention during the last decades.

We say that the mapping F is subregular at (x̄, ȳ) ∈ gphF if there exists an α > 0 and a
neighborhood U of x̄ such that

αd(x,F−1(ȳ))≤ d(ȳ,F(x))

for all x ∈U . The exact upper bound of all α > 0 such that condition (1.1.2) is satisfied for
some U is denoted srg[F ](x̄, ȳ) with the convention that the supremum of the empty subset
of R+ equals 0.

Metric subregularity property was introduced in [108] for single-valued maps in the con-
text of necessary optimality conditions. In [112] this property was called “regularity at a
point” and the terminology “metric subregularity” was suggested in [80]. Metric subregu-
larity lacks stability under small perturbations compared to metric regularity, i.e. the data
input ȳ is now fixed and not perturbed to a nearby y. Despite its instability, subregularity
has attracted remarkable attention because of its great importance in studying optimization-
related problems. It has been known that metric subregularity is equivalent to two properties:
pseudo-open at a linear rate of F [58], calmness [61] of its inverse F−1, a property which
corresponds to the Aubin continuity with one of the variables fixed. The number of publica-
tions that study this property is huge, see [2, 37, 78, 81, 172, 213] and the references therein
for many theoretical results as well as various applications of metric subregularity.

Another equivalent property of subregularity is of interest. The mapping F is graph
subregular at (x̄, ȳ) ∈ gphF if there exist an α > 0 and neighborhood U of x̄ such that

αd(x,F−1(ȳ))≤ d((x, ȳ),gphF) (1.10)

for all x ∈U .
The above four properties have direct counterparts in the error bound theory. Subreg-

ularity and graph subregularity are equivalent to the existence, respectively, of local error
bounds of the functions: x 7→ d(ȳ,F(x)) and x 7→ d((x, ȳ),gphF), while regularity and graph
regularity are equivalent to the existence, respectively, of local parametric error bounds
of the functions: (x,y) 7→ d(y,F(x)) and (x,y) 7→ d((x,y),gphF). We refer the reader
to [13, 116, 130, 131, 133, 182, 185, 188] and references therein for comprehensive discus-
sions as well as connections between the regularity and error bound theory.

We say that F is semiregular at (x̄, ȳ)∈ gphF if there exists an α > 0 and a neighborhood
V of ȳ such that

αd(x̄,F−1(y))≤ d(ȳ,y) (1.11)

for all y ∈ V . The exact upper bound of all α > 0 such that condition (1.11) is satisfied for
some U is denoted serg[F ](x̄, ȳ) with the convention that the supremum of the empty subset
of R+ equals 0.
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Being also weaker than metric regularity and general not comparable with subregular-
ity, the property is first investigated by Kruger [129]. It has been shown very recently that
semiregularity is equivalent to two properties: the open with a linear rate at (also known as
c-covering [129], regularity [128], controllability [114]) of F [58, Proposition 2.1], and the
Lipschitz lower semicontinuity ( also known as pseudo-calmness [85], linear recession [114])
of the inverse F−1 [124].

In [7, 85, 206], semiregularity has been used under the name hemiregularity. Unlike its
two well-established siblings, the semiregularity property has only started attracting attention
of researchers thanks to its importance, e.g., in the convergence analysis of inexact Newton-
type schemes for generalized equations [58, 129]. For primal and dual characterizations and
comprehensive discussions about the property, we refer the reader to the recent paper by
Cibulka, Fabian and Kruger [58].

1.1.3 Error Bounds

As in numerical analysis, an initial motivation to study error bounds in mathematical pro-
gramming arose from practical considerations in the computer implementation of iterative
methods for solving optimization and equilibrium programs. Iterative algorithms practically
do not give us an exact solution even if there is one, for instance, the alternating projection
algorithm for finding a point in the intersection of a pair of sets. Hence, when an algorithm
stops at an iteration and returns us a point, it is essential to know how good the current point
is in compassion with the ones in the solution set of the problem which is assumed nonempty
but typically unknown. In other words, it would be helpful if we know how far is that point
from the solution set. These observations become a primary motivation to investigate the
existence of an error bound of a function.

Given an extended-real-valued function f : X → R∞ := R∪{+∞} on a metric space X ,
and µ ∈]0,+∞], we denote

[ f ≤ 0] := {x ∈ X | f (x)≤ 0}, [0 < f < µ] := {x ∈ X | 0 < f (x)< µ}.

The sets [ f > 0], [ f < µ] and [ f ≤ µ] are defined in a similar way.

Definition 4 Suppose X is a metric space, f : X → R∞, and τ > 0. The function f admits a
τ−error bound at x̄ ∈ X if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

τd(x, [ f ≤ 0])≤ f (x) (1.12)

for all x ∈ Bδ (x̄)∩ [0 < f < µ], and either x̄ ∈ [ f ≤ 0] or δ =+∞.

The value of τ in Definition 4 obviously depends on the values of δ and µ . We will often
say that f admits a τ−error bound at x̄ with δ and µ .

Definition 4 combines the cases of local and global error bounds that are usually treated
separately. The conventional local error bound property corresponds to the case x̄ ∈ [ f ≤ 0],
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and δ being a (sufficiently small) finite number. In this case, we say that f admits a local
τ−error bound (with δ and µ). When δ = +∞, we have Bδ (x̄) = X , i.e. the error bound
property in Definition 4 is not related to any particular point, and we are in the setting of
global error bounds. In this case, we simply say that f admits a global τ−error bound.

The (local) error bound modulus of f at x̄ is defined as the exact upper bound of all τ > 0
such that f admits a τ−error bound at x̄, i.e.

Er f (x̄) := liminf
x→x̄, f (x)>0

f (x)
d(x, [ f ≤ 0])

= liminf
x→x̄, f (x)↓0

f (x)
d(x, [ f ≤ 0])

. (1.13)

In the above definition and throughout the thesis, we use the conventions d(x, /0X) = +∞,
inf /0R = +∞ and +∞

+∞
= +∞. (The last convention is only needed to accommodate for the

trivial case f ≡+∞.) The second equality in (1.13) is straightforward.
By definition (1.13), Er f (x̄)≥ 0. If Er f (x̄) = 0, then f does not admit a τ−error bound

at x̄ for any τ > 0.
Depending of a specific structure of f , the solution set [ f ≤ 0] can be a polyhedron de-

fined by finitely many linear inequalities, or more generally, the solution set of a nonlinear
nonsmooth optimization problem. Error bounds provide a linear estimate of the distance
from points and the solution set in terms residual values. In applications, this information
is very essential since computing the upper bound is manageable, while finding the solu-
tion set of a general nonlinear inequality is considerably hard. Such an estimation has been
intensively used in sensitivity analysis [121, 168, 170], and convergence analysis of compu-
tational algorithms [83, 116, 163–165, 169, 192]. The reader is refereed to excellent surveys
by Pang [193], Lewis and Pang [150] for intensive discussions and diverse applications of
error bounds.

Hoffman is believed to be the first person to study error bounds. In [105] he proved
the existence of a global (δ = +∞) error bound for affine functions on finite dimensional
spaces. The paper is now classic and has become the foundation for much of the subse-
quent work in this area. In fact, error bounds have played an important role in many ar-
eas in mathematical programming and variational analysis, and the number of publications
invested in studying this property is huge. Most of the earlier results were dedicated to
studying global error bounds for convex functions on both finite and infinite dimensional
spaces by requiring additional conditions on the solution set such as the Slater condition,
the boundedness, asymptotic constraint qualifications, the Abadie constraint qualification;
cf. [10, 11, 74, 75, 150, 157, 162, 167, 197]. Recently, it has been shown that error bounds of
convex functions can be examined by using conjugate counterparts [45, 63, 63, 220].

An alternative approach to study criteria for error bounds is to examine points outside
the solution set by employing basic tools in variational analysis. The initial work in this
area is by Ioffe [109]. Making use of the Ekeland variational principle and the sum rule for
Clarke subdifferentials, he proved the existence of global error bounds for locally Lipschitz
functions on Banach spaces under the condition that any Clarke subradient of the constraint
function at each point outside the solution set be norm bounded away from zero. The tech-

11



nique has been used by many researchers to extend for lower semicontinuous functions and
other kind of subdifferentials [12,121,131,178,179,208,209]. In the 2000 paper [112], Ioffe
made another pioneering work by using a primal object called slope to formulate sufficient
conditions for error bounds of lower semicontinuous function in metric spaces. Compared
with subdifferential sufficient characterizations, slope counterparts are weaker and often eas-
ier to check. It is worth mentioning that the two conditions are equivalent in the convex set-
ting. Characterizations of this kind have been used by many researchers in several cases, for
instance, vector-valued functions [28, 29], set-valued mappings [101, 102, 181]. Interested
readers are refereed to [12, 64, 92, 131–133, 180, 184, 186] and references therein for more
discussions and results.

Error bounds has strong connections with two groups of important concepts: transversal-
ity of collections of sets and regularity of set-valued mappings. In the previous section, we
have seen that metric regularity properties of set-valued mappings can be seen as the exis-
tence of a local error bound of appropriate functions. On the other hand, for any extended-
real-valued function f the existence of a local error bound of f at x̄ where f (x̄) = 0 is equiv-
alent to the subregularity at (x̄,0) of the epigraphical mapping Epi f : X ⇒ R defined for
any x ∈ X by Epi f (x) = {α ∈ R : α ≥ f (x)} [116, 154]. Error bounds are also closely
related to many other important properties in variational analysis, for instance, weak sharp
minima [41–44,128,220,221], conditioning [63], Kurdyka–Łojasiewicz inequality [33,120].

1.1.4 Structure of Thesis

Up until recently, mostly ‘linear’ transversality properties have been studied, although it
has been observed that such properties often fail in very simple situations, for instance,
when it comes to convergence analysis of computational algorithms. The first attempts to
consider nonlinear extensions of the transversality properties have been made recently in
[70,141,177,190]. Even in the linear setting, some dual sufficient conditions have been estab-
lished only for subtransversality and transversality properties (cf. [127–129, 138–140,142]).
Motivated by these observations, we develop in Chapter 2 a comprehensive (primal and
dual) quantitative analysis for transversality properties in the nonlinear setting. Apart from
the conventional Hölder case, which is given a special attention, our general model covers
also so called Hölder-type settings that have recently come into play in the closely related
error bound theory due to their importance for applications. We would like to emphasize that
our main objective is not formally extending earlier results in the literature from the Hölder
to a more general nonlinear setting, but rather to develop a comprehensive theory of transver-
sality. In fact, not many characterizations of semitransversality and transversality have been
known even in the linear case. The nonlinearity is just a simple setting, which allows us
to unify the existing results on the topic. In Sections 2.2 – 2.4, we establish primal (geo-
metric, metric, and slope) necessary and sufficient conditions for transversality properties.
Unlike earlier publications [141, 142], besides quantitative estimates for the rates/moduli of
the corresponding properties, we establish here also estimates for the other parameters in-
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volved in the definitions, particularly the size of the neighbourhood where a property holds,
which is important from the computational point of view. We show that subtransversality and
transversality admit several geometric and metric characterizations. In the convex setting, ge-
ometric and metric characterizations of nonlinear semitransversality and transversality can be
simplified significantly, and they are equivalent in the Hölder setting. Slope necessary condi-
tions for the properties follow directly from definitions of the respective properties, while the
sufficient counterparts stem from applying the Ekeland variational principle to appropriate
functions; the proofs are rather straightforward. This type of conditions are often considered
as just a first step on the way to producing more involved dual (subdifferential and normal
cone) conditions, and the primal sufficient characterizations remain hidden in the proofs. We
believe that primal conditions (being in a sense analogues of very popular slope characteriza-
tions of error bounds) can be of importance for applications since the slope is a derivative-like
object. Moreover, subdividing the conventional regularity/transversality theory into primal
and dual parts clarifies the roles of the main tools employed within the theory: the Ekeland
variational principle used in the primal part and the subdifferential sum rules used in the
dual part. Section 2.5 dedicates to dual (subdifferential and normal cone) characterizations
of nonlinear transversality properties. These characterizations are obtained by employing
corresponding slope necessary and sufficient conditions. Dual necessary conditions are for-
mulated under convexity assumptions by applying the conventional subdifferential sum rule
for convex functions in normed spaces. When formulating dual sufficient conditions, the
underlying space is assumed Banach or Asplund, and the sets are assumed closed. In the
setting of a general Banach space, the characterizations are formulated in terms of Clarke
normals and subdifferentials. When the space is Asplund, Fréchet normals and subdifferen-
tials are used in the statements. These characterizations can be easily reformulated in terms
of more general abstract subdifferentials possessing some natural properties (in particular,
appropriate sum rules) in a reference space (trustworthy subdifferentials [110]).

In Chapter 3, we study transversality and regularity properties of set-valued mappings.
Section 3.1 is about quantitative relations between transversality properties of collections of
sets and regularity properties of set-valued mappings in the nonlinear setting. In the Hölder
(in particular, linear) cases, these results improve corresponding ones in [141, 142]. Primal
and dual characterizations of nonlinear extensions of the new property transversality of a
mapping to a set in the range space due to Ioffe [114, 116] are also formulated. We study in
Section 3.2 primal and dual characterizations of a new property so called semitransversality
of collections of set-valued mappings on metric (in particular, normed) spaces. The property
is a natural extension of the semitransversality of collections of sets as well as the negation
of the corresponding stationarity, a weaker property than the extremality of collections of
set-valued mappings [175]. Several examples are provided, and connections between the
property and semiregularity of set-valued mappings are also discussed. In Section 3.3, we
establish new and upgraded primal (geometric and slope) and dual (subdifferential and nor-
mal cone) characterizations of uniform regularity properties of set-valued mappings. The
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approach follows the same pattern as that of the transversality theory. Specifically, slope
sufficient conditions comes from the application of the Ekeland variational principle, while
the necessary counterparts are obtained from definitions of the properties. Dual necessary
and sufficient conditions for regularity are obtained as consequences of the corresponding
slope conditions by applying appropriate subdifferential sum rules. They are formulated in
terms of distances from the respective dual vectors to normal cones to the graph of the set-
valued mapping. The conditions in terms of coderivatives [56, 57, 145, 189, 212] follow as
consequences. As a consequence, we establish characterizations of the conventional metric
regularity and subregularity of set-valued mappings as well as stability properties of solution
mappings to generalized equations.

Chapter 4 dedicates to local and global error bounds of extended-real-valued functions in
both linear and nonlinear settings. Conventional linear error bound conditions are discussed
in Section 4.2. It contains a preliminary statement – Proposition 46 – treating the case when
x in (1.12) is fixed and the general Theorem 32, the latter being an easy consequence of the
first. Both statements contain a condition, which has not been used in this type of statements
earlier. Conventional and alternative nonlinear error bound conditions are discussed in Sec-
tions 4.3 and 4.4, respectively. We demonstrate that the conventional nonlinear conditions
are straightforward consequences of the corresponding linear ones, while the alternative con-
ditions are consequences of the conventional ones. In Sections 4.5 and 4.6, we illustrate the
sufficient and necessary conditions for nonlinear error bounds by applying them to charac-
terizing nonlinear subregularity of general set-valued mappings and calmness of solution
and level set mappings of canonically perturbed convex semi-infinite optimization problems,
respectively.

1.2 Preliminaries

1.2.1 Notation and Definitions

Our basic notation is standard, see, e.g., [81, 172, 202]. The topological dual of a normed
vector space X is denoted by X∗, while 〈·, ·〉 denotes the bilinear form defining the pairing
between the two spaces. The open unit balls in X and X∗ are denoted by B and B∗, respec-
tively, and Bδ (x) stands for the open ball with center x and radius δ > 0. If not explicitly
stated otherwise, products of normed spaces are assumed equipped with the maximum norm
‖(x,y)‖ := max{‖x‖,‖y‖}, (x,y) ∈ X ×Y . Symbols R, R+ and N denote the real line (with
the usual norm), the set of all nonnegative real number and the set of all positive integers,
respectively.

For a set Ω⊂ X , its boundary and interior are denoted by bdΩ and int Ω. The indicator
function iΩ of Ω is defined as follows: iΩ(x) = 0 if x ∈ Ω and iΩ(x) = +∞ if x /∈ Ω. The
distance from a point x ∈ X to Ω is defined by d(x,Ω) := infu∈Ω ‖u− x‖, and we use the
convention d(x, /0) = +∞.
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For an extended-real-valued function f : X → R ∪ {±∞} on a metric space X , its
domain and epigraph are defined, respectively, by dom f := {x ∈ X | f (x) < +∞} and
epi f := {(x,α) ∈ X ×R | f (x) ≤ α}. The inverse of f (if it exists) is denoted by f−1.
Note that f is allowed to take the value−∞. This convention is needed only to accommodate
for the general chain rule in Lemma 9. Throughout the thesis, we employ the conventional
definitions of the lower and upper limits:

liminf
x→x̄

f (x) := sup
ε>0

inf
0<d(x,x̄)<ε

f (x) and limsup
x→x̄

f (x) := inf
ε>0

sup
0<d(x,x̄)<ε

f (x).

The function f is lower semicontinuous and upper semicontinuous at x̄ ∈ dom f if
liminfx→x̄ f (x) = f (x̄) and limsupx→x̄ f (x) = f (x̄), respectively.

A set-valued mapping F : X ⇒ Y between two sets X and Y is a mapping, which as-
signs to every x ∈ X a subset (possibly empty) F(x) of Y . We use the notations gphF :=
{(x,y) ∈ X ×Y | y ∈ F(x)} and dom F := {x ∈ X | F(x) 6= /0} for the graph and the domain
of F , respectively, and F−1 : Y ⇒ X for the inverse of F . This inverse (which always exists
with possibly empty values at some y) is defined by F−1(y) := {x ∈ X | y ∈ F(x)}, y ∈ Y .
Obviously domF−1 = F(X).

Given a subset Ω of a normed space X and a point x̄ ∈Ω, the sets (cf. [62, 126])

NF
Ω(x̄) :=

{
x∗ ∈ X∗ | limsup

Ω3x→x̄

〈x∗,x− x̄〉
‖x− x̄‖

≤ 0
}
, (1.14)

NC
Ω(x̄) :=

{
x∗ ∈ X∗ | 〈x∗,z〉 ≤ 0 for all z ∈ TC

Ω (x̄)
}

(1.15)

are the Fréchet and Clarke normal cones to Ω at x̄. In the last definition, TC
Ω
(x̄) stands for

the Clarke tangent cone [62] to Ω at x̄ that consists of all v ∈ X such that, whenever one has
sequences tk ↓ 0 and xk→ x̄ with xk ∈Ω, there exist vk→ v with xk + tkvk ∈Ω for all k. The
sets (1.14) and (1.15) are nonempty closed convex cones satisfying NF

Ω
(x̄)⊂ NC

Ω
(x̄). If Ω is

a convex set, they reduce to the normal cone in the sense of convex analysis:

NΩ(x̄) := {x∗ ∈ X∗ | 〈x∗,x− x̄〉 ≤ 0 for all x ∈Ω} .

Given a function f : X→R∪{±∞} and a point x̄ ∈ X with | f (x̄)|<+∞, the Fréchet and
Clarke subdifferentials of f at x̄ are defined as (cf. [62, 126])

∂
F f (x̄) :=

{
x∗ ∈ X∗ | liminf

x→x̄

f (x)− f (x̄)−〈x∗,x− x̄〉
‖x− x̄‖

≥ 0
}
, (1.16)

∂
C f (x̄) := {x∗ ∈ X∗ | 〈x∗,z〉 ≤ f ◦(x̄,z) for all z ∈ X} , (1.17)

where f ◦(x̄,z) is the Clarke–Rockafellar directional derivative [201] of f at x̄ in the direction
z ∈ X :

f ◦(x̄;z) := lim
ε↓0

limsup
(x,α)→(x̄, f (x̄))

f (x)≤α, t↓0

inf
‖z′−z‖<ε

f (x+ tz′)−α

t
.
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The last definition admits simplifications if f is lower semicontinuous at x̄ and especially if
it is Lipschitz continuous near x̄; cf. [201]. The sets (1.16) and (1.17) are closed and convex,
and satisfy ∂ F f (x̄) ⊂ ∂C f (x̄). If f is convex, they reduce to the subdifferential in the sense
of convex analysis (cf., e.g., [62, 126]):

∂ f (x̄) := {x∗ ∈ X∗ | f (x)− f (x̄)−〈x∗,x− x̄〉 ≥ 0 for all x ∈ X} .

The relationships between the subdifferentials of f at x̄ ∈ dom f and the corresponding
normal cones to its epigraph at (x̄, f (x̄)) are given by

∂
F f (x̄) =

{
x∗ ∈ X∗ | (x∗,−1) ∈ NF

epi f (x̄, f (x̄))
}
,

∂
C f (x̄) =

{
x∗ ∈ X∗ | (x∗,−1) ∈ NC

epi f (x̄, f (x̄))
}
.

By convention, we set NF
Ω
(x̄) = NC

Ω
(x̄) := /0 if x̄ /∈ Ω and ∂ F f (x̄) = ∂C f (x̄) := /0 if

| f (x̄)|=+∞. It is easy to check that NF
Ω
(x̄) = ∂ F iΩ(x̄) and NC

Ω
(x̄) = ∂CiΩ(x̄); cf., e.g.,

[62, 126].
We often use the generic notations N and ∂ for both Fréchet and Clarke objects, specify-

ing wherever necessary that either N := NF and ∂ := ∂ F , or N := NC and ∂ := ∂C.
Let F : X ⇒Y be a set-valued mapping between normed spaces, the coderivative of F at

(x,y) ∈ gphF is a set-valued mapping D∗F(x,y) : Y ∗⇒ X∗ defined by

D∗F(x,y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ NgphF(x,y)}, y∗ ∈ Y ∗. (1.18)

Depending on the type of the normal cone, the above formula defines the Fréchet D∗F or
Clarke D∗C coderivative.

1.2.2 Primal Tools

The fundamental tools for formulating primal characterizations of transversality, regularity
and error bound properties are the celebrated Ekeland variational principle (cf. [89]), and the
concept of slopes.

Lemma 1 (Ekeland variational principle) Suppose X is a complete metric space, f : X →
R∞ is lower semicontinuous, x ∈ X , ε > 0 and λ > 0. If

f (x)< inf
X

f + ε,

then there exists an x̂ ∈ X such that

(i) d(x̂,x)< λ ;

(ii) f (x̂)≤ f (x);

(iii) f (u)+(ε/λ )d(u, x̂)≥ f (x̂) for all u ∈ X .
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For an extended real-valued function f on a metric space, its slope and nonlocal slope at
x ∈ dom f are defined, respectively, by

|∇ f |(x) := limsup
u→x,u6=x

[ f (x)− f (u)]+
d(x,u)

and |∇ f |�(x) := sup
u6=x

[ f (x)− f+(u)]+
d(x,u)

, (1.19)

where α+ := max{0,α} for any α ∈ R and f+(u) := [ f (u)]+ . If x /∈ dom f , we set
|∇ f |(x) = |∇ f |�(x) :=+∞.

The slope was introduced in 1980 by DeGiorgi, Marino and Tosques [73], while the
nonlocal slope was suggested later by Ngai and Théra [185] (see also, Kruger [131]).

Remark 1 (i) The quantity |∇ f |(x) provides the rate of steepest descent of f at x. If X is
a normed space, and f is Fréchet differentiable at x, then |∇ f |(x) = ‖ f ′(x)‖. If f has
a local minimum at x, then |∇ f |(x) = 0.

(ii) Several extensions of the concept of slope for vector-valued functions as well as set-
valued mapping can be found in [28, 29, 101, 102, 181].

Recall that a Banach space is Asplund if every continuous convex function on an open
convex set is Fréchet differentiable on a dense subset [196], or equivalently, if the dual of
each its separable subspace is separable. We refer the reader to [172, 196] for discussions
about and characterizations of Asplund spaces. All reflexive, particularly, all finite dimen-
sional Banach spaces are Asplund.

The next lemma collects several facts about slopes and their relationships with subdiffer-
entials; cf. [12, 13, 15–17, 92, 93, 112, 116, 131].

Lemma 2 Let X be a metric space, f : X → R∞, and x ∈ dom f .

(i) If f is not lower semicontinuous at x, then |∇ f |(x) = +∞.

(ii) If f (x)> 0, then |∇ f |(x)≤ |∇ f |�(x).

Suppose X is a normed space.

(iii) |∇ f |(x)≤ |∂ F f |(x).

(iv) If f is convex, then |∇ f |(x) = |∂ f |(x). Moreover, if f (x)> 0, then |∇ f |(x) = |∇ f |�(x).

(v) If X is a Banach space and f is lower semicontinuous, then |∇ f |(x)≥ |∂C f |(x).

(vi) If X is an Asplund space and f is lower semicontinuous, then

|∇ f |(x)≥ liminf
u→x, f (u)→ f (x)

|∂ F f |(u).

Remark 2 Assertions (i)–(iv) in Lemma 2 are straightforward. The more involved asser-
tions (v) and (vi) are consequences of the sum rules in Lemma 4 for the respective subd-
ifferentials. Observe that the fuzzy sum rule for Fréchet subdifferentials in Lemma 4(iii)
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naturally translates into the ‘fuzzy’ (due to the liminf operation) inequality in (vi). The latter
estimate was first established (in a slightly more general setting of ‘abstract’ subdifferentials)
in [16, Proposition 4.1] (see also [112, Proposition 3.1]). We have failed to find assertion (v)
explicitly formulated in the literature. However, its proof only requires replacing the fuzzy
sum rule in part (iii) of Lemma 4 with the ‘exact’ one in part (ii); cf. the reasoning provided
in [17, Remark 6.1] to justify a similar fact involving the limiting subdifferentials.

Clarke subdifferentials in Lemma 2(v) and all the other statements in the thesis can be
replaced with Ioffe’s approximate G-subdifferentials [116] as they possess a sum rule sim-
ilar to the one in Lemma 4(ii); see [116, Theorem 4.69]. Moreover, it is clear that instead
of Clarke subdifferentials in general Banach spaces and Fréchet subdifferentials in Asplund
spaces as in parts (v) and (vi) of Lemma 2, one can consider more general subdifferential
pairs [19] (subdifferentials ‘trusted’ on a given space [116]) with subdifferentials possess-
ing a sum rule either in the exact or fuzzy form, respectively. We use Clarke and Fréchet
subdifferentials in this thesis to keep the presentation simple.

The next lemma provides chain rules for slopes.

Lemma 3 Let X be a metric space, f : X → R∞, ϕ : R→ R∞, x ∈ dom f and f (x) ∈ domϕ .
Suppose ϕ is nondecreasing on R and differentiable at f (x) with ϕ ′( f (x))> 0.

(i) |∇(ϕ ◦ f )|(x) = ϕ ′( f (x))|∇ f |(x).

(ii) Let f (x) > 0, ϕ(t) ≤ 0 if t ≤ 0, ϕ(t) > 0 if t > 0, and ϕ is differentiable on ]0, f (x)[,
with ϕ ′ is nonincreasing (nondecreasing). Then |∇(ϕ ◦ f )|�(x) ≥ ϕ ′( f (x))|∇ f |�(x)
(|∇(ϕ ◦ f )|�(x)≤ ϕ ′( f (x))|∇ f |�(x)).

Proof

(i) If x is a local minimum of f , then, thanks to the monotonicity of ϕ , it is also a local
minimum of ϕ ◦ f , and consequently, |∇(ϕ ◦ f )|(x) = |∇ f |(x) = 0. Suppose x is not a
local minimum of f . If f is not lower semicontinuous at x, i.e. α := limk→+∞ f (xk)<

f (x) for some sequence xk → x, then, in view of the assumption ϕ ′( f (x)) > 0, ϕ

is strictly increasing near f (x), and consequently, liminfk→+∞ ϕ( f (xk)) ≤ ϕ(α) <

ϕ( f (x)) (with the convention that ϕ(−∞) =−∞), i.e. ϕ ◦ f is not lower semicontinu-
ous at x; hence, in view of Lemma 2(i), |∇(ϕ ◦ f )|(x) = |∇ f |(x) = +∞. Suppose f is
lower semicontinuous at x, i.e. liminfu→x,u 6=x f (u) = f (x). Then, taking into account
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that x is not a local minimum of f ,

|∇(ϕ ◦ f )|(x) = limsup
u→x,u6=x

ϕ( f (x))−ϕ( f (u))
d(u,x)

= limsup
u→x,u6=x
f (u)< f (x)

ϕ( f (x))−ϕ( f (u))
d(u,x)

= limsup
u→x,u6=x
f (u)↑ f (x)

ϕ( f (x))−ϕ( f (u))
d(u,x)

= limsup
u→x,u6=x
f (u)↑ f (x)

(
ϕ( f (x))−ϕ( f (u))

f (x)− f (u)
· f (x)− f (u)

d(u,x)

)

= ϕ
′( f (x)) limsup

u→x,u6=x

f (x)− f (u)
d(u,x)

= ϕ
′( f (x))|∇ f |(x).

The proof is complete.

(ii) If f attains its minimum on X at x, then, thanks to the monotonicity of ϕ , we
have |∇(ϕ ◦ f )|�(x) = |∇ f |�(x) = 0. Thanks to the assumptions on ϕ , we have
(ϕ ◦ f )+(u) = ϕ( f+(u)) and, by the mean value theorem,

ϕ( f (x))−ϕ( f+(u))
d(u,x)

= ϕ
′(θ)

f (x)− f+(u)
d(u,x)

for some θ ∈] f+(u), f (x)[. The claimed inequalities follow from the respective mono-
tonicity assumptions on ϕ ′.

�

Remark 3 (i) The slope chain rule in Lemma 3(i) is a local result. Instead of assuming
that ϕ is defined on the whole real line, one can assume that ϕ is defined and finite on a
closed interval [α,β ] around the point f (x): α < f (x)< β . It is sufficient to define the
composition ϕ ◦ f for x with f (x) /∈ [α,β ] as follows: (ϕ◦ f )(x) := ϕ(α) if f (x)< α ,
and (ϕ◦ f )(x) := ϕ(β ) if f (x)> β . This does not affect the conclusion of the lemma.

(ii) Part (i) of Lemma 3 slightly improves [18, Lemma 4.1], where f and ϕ are assumed
lower semicontinuous and continuously differentiable, respectively.

We are going to use in Chapter 4 the following dual counterparts of the slope |∇ f |(x):

|∂ F f |(x) := d(0,∂ F f (x)) and |∂C f |(x) := d(0,∂C f (x)). (1.20)

Following [92,204], we call them (respectively, Fréchet and Clarke) subdifferential slopes of
f at x. When f is convex, we write simply |∂ f |(x).

When formulating sufficient error bound conditions, we use special collections of slope
operators. This allows us to combine several assertions into one. The collections are defined
recursively as follows:

(i) |D f |◦ := {|∇ f |}, |D f |= |D f |† := {|∇ f |�, |∇ f |};
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(ii) if X is Banach, then |D f |◦ := |D f |◦∪{|∂C f |}, |D f |= |D f |† := |D f |∪{|∂C f |};

(iii) if X is Asplund, then |D f |◦ := |D f |◦∪{|∂ F f |}, |D f | := |D f |∪{|∂ F f |}.

Thus, if X is an Asplund space, then |D f |= {|∇ f |�, |∇ f |, |∂C f |, |∂ F f |}, and if X is a Banach
space and f is convex, then |D f |= |D f |† = {|∇ f |�, |∇ f |, |∂ f |}. The ‘full’ set |D f | is going
to play the main role in the sufficient error bounds conditions below. In some conditions,
we also use the ‘truncated’ sets |D f |◦ and |D f |†, excluding the operators |∇ f |� and |∂ F f |,
respectively.

1.2.3 Dual Tools

The main dual tools are various subdifferential sum rules and subdifferential-related proper-
ties.

Lemma 4 (Subdifferential sum rules) Suppose X is a normed vector space, f1, f2 : X →
R∪{+∞}, and x̄ ∈ dom f1∩dom f2.

(i) Convex sum rule. If f1 and f2 are convex, and f1 is continuous at a point in dom f2,
then

∂ ( f1 + f2)(x̄) = ∂ f1(x̄)+∂ f2(x̄).

(ii) Clarke–Rockafellar sum rule. If f1 is Lipschitz continuous, and f2 is lower semi-
continuous in a neighbourhood of x̄, then

∂
C( f1 + f2)(x̄)⊂ ∂

C f1(x̄)+∂
C f2(x̄).

(iii) Fuzzy sum rule. If X is Asplund, f1 is Lipschitz continuous, and f2 is lower semi-
continuous in a neighbourhood of x̄, then, for any ε > 0, there exist x1,x2 ∈ X with
‖xi− x̄‖< ε , | fi(xi)− fi(x̄)|< ε (i = 1,2), such that

∂
F( f1 + f2)(x̄)⊂ ∂

F f1(x1)+∂
F f2(x2)+ εB∗.

The first sum rule in the lemma above is the conventional subdifferential sum rule of
convex analysis; see e.g. [117, Theorem 0.3.3] and [214, Theorem 2.8.7]. The second sum
rule is formulated in terms of Clarke subdifferentials. It was established in Rockafellar [201,
Theorem 2]. The expressions in (i) and (ii) are examples of exact sum rules. The third rule
is known as the fuzzy or approximate sum rule (Fabian [91]) for Fréchet subdifferentials in
Asplund spaces; cf., e.g., [126, Rule 2.2] and [172, Theorem 2.33]. Note that, unlike the
sum rules in parts (i) and (ii) of the lemma, the subdifferentials in the right-hand side of the
inclusion are computed not at the reference point, but at some points nearby. This explains
the name. Similar to the previous one, it is valid generally only as inclusion.

The following two facts are immediate consequences of the definitions of the Fréchet and
Clarke subdifferentials and normal cones (cf., e.g., [62, 126, 172]).
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Lemma 5 Suppose X is a normed space and f : X → R∪{+∞}. If x̄ ∈ dom f is a point of
local minimum of f , then 0 ∈ ∂ F f (x̄).

Lemma 6 Let Ω1 and Ω2 be subsets of a normed space X and ωi ∈ Ωi (i = 1,2). Then
NΩ1×Ω2(ω1,ω2) = NΩ1(ω1)×NΩ2(ω2), where in both parts of the equality N stands for
either the Fréchet (N := NF ) or the Clarke (N := NC) normal cone.

The following result presents a representation of the (convex) subdifferential of a norm
function; cf. [214, Corollary 2.4.16] and [159, Example 3.2.7].

Lemma 7 Let (Y,‖ · ‖) be a normed space. Then

(i) ∂‖ · ‖(0) = {y∗ ∈ Y ∗ | ‖y∗‖ ≤ 1};

(ii) ∂‖ · ‖(y) = {y∗ ∈ Y ∗ | 〈y∗,y〉= ‖y‖ and ‖y∗‖= 1}, y 6= 0.

We are going to use a representation of the subdifferential of a special convex function
on Xn+1 given in the next lemma; cf. [138, Lemma 3].

Lemma 8 Let X be a normed space and

ψ(u1, . . . ,un,u) := max
1≤i≤n

‖ui−ai−u‖, u1, . . . ,un,u ∈ X , (1.21)

where ai ∈ X (i = 1, . . . ,n). Let x1, . . . ,xn,x ∈ X and max1≤i≤n ‖xi−ai− x‖> 0. Then

∂ψ(x1, . . . ,xn,x) =
{
(x∗1, . . . ,x

∗
n,x
∗) ∈ (X∗)n+1 | x∗+

n

∑
i=1

x∗i = 0,

n

∑
i=1
‖x∗i ‖= 1,

n

∑
i=1
〈x∗i ,xi−ai− x〉= max

1≤i≤n
‖xi−ai− x‖

}
. (1.22)

Proof The convex function ψ given by (1.21) is a composition of the continuous lin-
ear mapping A : Xn+1 → Xn: (x1, . . . ,xn,x) 7→ (x1− a1− x, . . . ,xn− an− x) and the maxi-
mum norm on Xn: g(x1, . . . ,xn) := max1≤i≤n ‖xi‖. The adjoint mapping A∗ is in the form
(x∗1, . . . ,x

∗
n) 7→ (x∗1, . . . ,x

∗
n,−∑

n
i=1 x∗i ), while (cf., e.g., [214])

∂g(x1, . . . ,xn) =
{
(x∗1, . . . ,x

∗
n) ∈ X∗ |

n

∑
i=1
‖x∗i ‖= 1,

〈(x∗1, . . . ,x∗n),(x1, . . . ,xn)〉= max
1≤i≤n

‖xi‖
}
.

The conclusion is a consequence of the convex chain rule (cf., e.g., [214]). �

Remark 4 (i) It is easy to notice that in the representation (1.22), for any i = 1, . . . ,n,
either 〈x∗i ,xi−ai− x〉= max1≤ j≤n

∥∥x j−a j− x
∥∥ or x∗i = 0.
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(ii) The maximum norm on Xn used in (1.21) is a composition of the given norm on X
and the maximum norm on Rn. The corresponding dual norm produces the sum of the
norms in (1.22). Any other norm on Rn can replace the maximum in (1.21) as long as
the corresponding dual norm is used to replace the sum in (1.22).

We now formulate chain rules for Fréchet and Clarke subdifferentials, which are going to
be used in the sequel. Such rules are extensively used when proving dual characterizations
of nonlinear transversality, regularity and error bound properties. The next statement seems
to present the chain rules under the weakest assumptions, compared to the existing assertions
of this type, cf. [60,62,126,186,194,211]. We provide an elementary direct proof based only
on the definitions of the respective subdifferentials.

In the statement below, X is a general normed space, ψ : X → R∪{+∞} and ϕ : R→
R∪{±∞}. The composition function ϕ ◦ψ is defined in the usual way:

(ϕ ◦ψ)(x) :=

ϕ(ψ(x)) if x ∈ domψ,

+∞ if x /∈ domψ.
(1.23)

The outer function ϕ is assumed differentiable (or strictly differentiable) at the reference
point, while the inner function ψ is arbitrary and does not have to be even (semi-)continuous.
Note that ϕ◦ψ can take the value −∞.

Recall that ϕ is strictly differentiable at t̄ ∈ R if it is finite near t̄ and

ϕ
′(t̄) = lim

t ′,t ′′→t̄, t ′′ 6=t ′

ϕ(t ′′)−ϕ(t ′)
t ′′− t ′

,

which automatically holds if ϕ is continuously differentiable at t̄.

Lemma 9 Let X be a normed space, ψ : X→R∪{+∞}, ϕ :R→R∪{±∞}, and x̄∈ domψ .
Suppose that ϕ is nondecreasing on R, and finite and differentiable at ψ(x̄) with ϕ ′(ψ(x̄))>
0. Then

∂ (ϕ◦ψ)(x̄) = ϕ
′(ψ(x̄))∂ψ(x̄), (1.24)

where ∂ stands for the Fréchet subdifferential (∂ := ∂ F ). If ϕ is strictly differentiable at
ψ(x̄), then

(ϕ ◦ψ)◦(x̄;z) = ϕ
′(ψ(x̄))ψ◦(x̄;z) for all z ∈ X , (1.25)

and equality (1.24) holds true with ∂ standing for the Clarke subdifferential (∂ := ∂C).

Proof In view of the assumptions on ϕ , we have ϕ(t) > ϕ(ψ(x̄)) for all t > ψ(x̄) and
ϕ(t)< ϕ(ψ(x̄)) for all t < ψ(x̄). Set γ := liminfu→0 ψ(x̄+u). If γ 6= ψ(x̄), then

liminf
u→0

ψ(x̄+u)−ψ(x̄)
‖u‖

= lim
u→0

γ−ψ(x̄)
‖u‖

,

liminf
u→0

ϕ(ψ(x̄+u))−ϕ(ψ(x̄))
‖u‖

= lim
u→0

ϕ(γ)−ϕ(ψ(x̄))
‖u‖

.
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If γ < ψ(x̄), then both limits above equal −∞ and ∂ F(ϕ◦ψ)(x̄) = ∂ Fψ(x̄) = /0, while if
γ > ψ(x̄), then both limits equal +∞ and ∂ F(ϕ◦ψ)(x̄) = ∂ Fψ(x̄) = X∗.

Let γ = ψ(x̄) and x∗ ∈ X∗. Since ϕ ′(ψ(x̄))> 0, we have

liminf
u→0

ϕ(ψ(x̄+u))−ϕ(ψ(x̄))−ϕ ′(ψ(x̄))〈x∗,u〉
‖u‖

= liminf
u→0

ψ(x̄+u)→ψ(x̄)

ϕ(ψ(x̄+u))−ϕ(ψ(x̄))−ϕ ′(ψ(x̄))〈x∗,u〉
‖u‖

=ϕ
′(ψ(x̄)) liminf

u→0

ψ(x̄+u)−ψ(x̄)−〈x∗,u〉
‖u‖

.

It follows that x∗ ∈ ∂ Fψ(x̄) if and only if ϕ ′(ψ(x̄))x∗ ∈ ∂ F(ϕ◦ψ)(x̄). Hence, by the def-
inition (1.16), equality (1.24) holds true with ∂ standing for the Fréchet subdifferential
(∂ := ∂ F ).

Now suppose ϕ is strictly differentiable at ψ(x̄). Then ϕ is strictly increasing and in-
vertible in a neighbourhood of ψ(x̄). If (xk,αk)→ (x̄,ψ(x̄)) and ψ(xk)≤ αk (k = 1,2, . . .),
then βk := ϕ(αk)→ ϕ(ψ(x̄)) and ϕ(ψ(xk)) ≤ βk (k = 1,2, . . .). Conversely, if (xk,βk)→
(x̄,ϕ(ψ(x̄))) and ϕ(ψ(xk))≤ βk (k = 1,2, . . .), then αk := ϕ−1(βk)→ ψ(x̄) and ψ(xk)≤ αk

for all sufficiently large k.
Let z ∈ X . If for some ε > 0 and sequences (xk,αk)→ (x̄,ψ(x̄)) and tk ↓ 0, it holds

ψ(xk)≤ αk (k = 1,2, . . .) and

lim
k→+∞

inf
‖z′−z‖<ε

(ψ(xk + tkz′)−αk) 6= 0,

then |ϕ(αk)|<+∞ for all sufficiently large k,

liminf
k→+∞,‖z′−z‖<ε

(ϕ(ψ(xk + tkz′))−ϕ(αk)) 6= 0,

and the above limits are either both positive or both negative. Set

γ := lim
ε↓0

limsup
(x,α)→(x̄,ψ(x̄))

ψ(x)≤α, t↓0

inf
‖z′−z‖<ε

(ψ(x+ tz′)−α).

If γ < 0, then, in view of the above observation, (ϕ ◦ψ)◦(x̄;z) = ψ◦(x̄;z) = −∞. Similarly,
if γ > 0, then (ϕ ◦ψ)◦(x̄;z) = ψ◦(x̄;z) = +∞. If γ = 0, then

(ϕ ◦ψ)◦(x̄;z) = lim
ε↓0

limsup
(x,α)→(x̄,ψ(x̄))

ψ(x)≤α, t↓0

inf
‖z′−z‖<ε

|ψ(x+tz′)−α|<ε

ϕ(ψ(x+ tz′))−ϕ(α)

t

= ϕ
′(ψ(x̄)) lim

ε↓0
limsup

(x,α)→(x̄,ψ(x̄))
ψ(x)≤α, t↓0

inf
‖z′−z‖<ε

|ψ(x+tz′)−α|<ε

ψ(x+ tz′)−α

t
= ϕ

′(ψ(x̄))ψ◦(x̄;z).

This proves (1.25). In view of the definition (1.17), equality (1.24) with ∂ standing for the
Clarke subdifferential (∂ := ∂C) is a consequence of (1.25). �
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Remark 5 (i) The chain rules in Lemma 9 are local results. Instead of assuming that ϕ

is defined on the whole real line with possibly infinite values, one can assume that ϕ

is defined and finite on a closed interval [α,β ] around the point ψ(x̄): α < ψ(x̄)< β .
The proof above remains valid if the definition (1.23) of the composition function is
slightly modified. The ‘if’ condition in the first line should be changed to x ∈ domψ

and ψ(x) ∈ domϕ , and another two lines should be added: (ϕ◦ψ)(x) := ϕ(α) if
ψ(x) < α , and (ϕ◦ψ)(x) := ϕ(β ) if β < ψ(x) < +∞. This change does not affect
the conclusion of the proposition.

(ii) If, additionally, ψ is assumed lower semicontinuous at x̄, then the proof of the propo-
sition can be shortened as the cases γ < ψ(x̄) in the first part of the proof and γ < 0 in
the second part cannot happen. In the lower semicontinuous setting, it is sufficient to
assume that ϕ is nondecreasing only on [ψ(x̄),+∞[ and there is no need to allow ϕ to
take the value −∞.

The next lemma presents several elementary relations between groups of vectors in a
normed space, which are frequently used when deducing dual characterizations of extremal-
ity, stationarity and transversality properties of collections of sets, although often hidden in
numerous proofs; cf. [40, Lemma 2.4].

Lemma 10 Let K1, . . . ,Kn be cones in a normed space, ε > 0, ρ > 0, and µ > 0. Suppose
that vectors z1, . . . ,zn satisfy

ρ

∥∥∥∥∥ n

∑
i=1

zi

∥∥∥∥∥+µ

n

∑
i=1

d(zi,Ki)< ε,
n

∑
i=1
‖zi‖= 1. (1.26)

(i) If ε +ρ ≤ µ , then there exist vectors ẑi (i = 1, . . . ,n) such that

ẑi ∈ Ki (i = 1, . . . ,n),
n

∑
i=1
‖ẑi‖= 1,

∥∥∥∥∥ n

∑
i=1

ẑi

∥∥∥∥∥< ε

ρ
. (1.27)

(ii) If ε +µ ≤ ρ , then there exist vectors ẑi (i = 1, . . . ,n) such that
n

∑
i=1

ẑi = 0,
n

∑
i=1
‖ẑi‖= 1,

n

∑
i=1

d(ẑi,Ki)<
ε

µ
.

(iii) Moreover, if the underlying space is dual to a normed space, and
n

∑
i=1
〈zi,xi〉 ≥ τ max

1≤i≤n
‖xi‖ (1.28)

for some vectors xi (i = 1, . . . ,n), not all zero, and a number τ ∈]0,1], then the vectors
ẑi (i = 1, . . . ,n) in parts (i) or (ii) satisfy

n

∑
i=1
〈ẑi,xi〉> τ̂ max

1≤i≤n
‖xi‖, (1.29)

where τ̂ := τµ−ε

µ+ε
under the assumptions in part (i), and τ̂ := τρ−ε

ρ+ε
under the assump-

tions in part (ii).
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Chapter 2

TRANSVERSALITY PROPERTIES OF

COLLECTIONS OF SETS

The content of this chapter is based on the publications [38, 65, 67, 68, 70].

2.1 Definitions and Basic Relationships

Recall that our working model is a collection of n ≥ 2 arbitrary subsets Ω1, . . . ,Ωn of a
normed vector space X , having a common point x̄ ∈ ∩n

i=1Ωi.
The next definition introduces three most common Hölder transversality properties. It is

a modification of [141, Definition 1].

Definition 5 Let α > 0 and q > 0. The collection {Ω1, . . . ,Ωn} is

(i) α−semitransversal of order q at x̄ if there exists a δ > 0 such that condition (1.5) is
satisfied for all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with max1≤i≤n ‖xi‖q < αρ;

(ii) α−subtransversal of order q at x̄ if there exist δ1 > 0 and δ2 > 0 such that condition
(1.1) is satisfied for all ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with max1≤i≤n dq(x,Ωi)< αρ;

(iii) α−transversal of order q at x̄ if there exist δ1 > 0 and δ2 > 0 such that condition
(1.3) is satisfied for all ρ ∈]0,δ1[, ωi ∈ Ωi ∩ Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with
max1≤i≤n ‖xi‖q < αρ .

The three properties in the above definition were referred to in [141] as [q]−semi-
regularity, [q]−subregularity and [q]−regularity, respectively. Property (ii) was defined
in [141] in a slightly different but equivalent way, under an additional assumption that q≤ 1.
When ∩n

i=1Ωi is closed and x̄ ∈ bd ∩n
i=1 Ωi, the condition q ≤ 1 is indeed necessary for the

α−subtransversality and α−transversality properties; see Remark 7. At the same time, as
observed in [141], the property of α−semitransversality can be meaningful with any positive
q (and any positive α); see Example 1. With q = 1 (linear case), the three properties reduce
to the conventional transversality properties, respectively.
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If a collection {Ω1, . . . ,Ωn} is α−semitransversal (respectively, α−subtransversal or
α−transversal) of order q at x̄ with some α > 0 and δ > 0 (or δ1 > 0 and δ2 > 0), we often
simply say that {Ω1, . . . ,Ωn} is semitransversal (respectively, subtransversal or transversal)
of order q at x̄. The number α characterizes the corresponding property quantitatively. The
exact upper bound of all α > 0 such that the property holds with some δ > 0 (or δ1 > 0
and δ2 > 0) is called the modulus of this property. We use the notations setrq[Ω1, . . . ,Ωn](x̄),
strq[Ω1, . . . ,Ωn](x̄) and trq[Ω1, . . . ,Ωn](x̄) for the moduli of the respective properties. If the
property does not hold, then by convention the respective modulus equals 0.

If q < 1, the Hölder transversality properties in Definition 5 are obviously weaker than
the corresponding conventional linear properties and can be satisfied for collections of sets
when the conventional ones fail. This can happen in many natural situations (see examples
in [141, Section 2.3]), which explains the growing interest of researchers to studying the
more subtle nonlinear transversality properties.

We now introduce general nonlinear versions of the properties in Definition 5. The non-
linearity in the definitions of the properties is determined by a continuous strictly increasing
function ϕ : R+→ R+ satisfying ϕ(0) = 0 and limt→+∞ ϕ(t) = +∞. The collection of all
such functions is denoted by C . We denote by C 1 the subfamily of functions from C which
are differentiable on ]0,+∞[ with ϕ ′(t) > 0 for all t > 0. Obviously, if ϕ ∈ C (ϕ ∈ C 1),
then ϕ−1 ∈ C (ϕ−1 ∈ C 1). If not explicitly stated otherwise, we assume from now on that
ϕ ∈ C . It is worth mentioning that for the purposes of our research it suffices to assume that
functions ϕ ∈ C are defined and invertible near 0.

If not explicitly stated otherwise, we assume from now on that ϕ ∈ C .

Definition 6 The collection {Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ if there exists a δ > 0 such that condition (1.5) is satisfied for
all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< ρ;

(ii) ϕ−subtransversal at x̄ if there exist δ1 > 0 and δ2 > 0 such that condition (1.1) is
satisfied for all ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with ϕ(max1≤i≤n d(x,Ωi))< ρ;

(iii) ϕ−transversal at x̄ if there exist δ1 > 0 and δ2 > 0 such that condition (1.3) is satisfied
for all ρ ∈]0,δ1[, ωi ∈Ωi∩Bδ2(x̄) and xi ∈X (i= 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< ρ .

Observe that conditions (1.5) and (1.3) are trivially satisfied when xi = 0 (i = 1, . . . ,n).
Hence, in parts (i) and (iii) of Definition 6 (as well as Definition 5) one can additionally
assume that max1≤i≤n ‖xi‖> 0. Similarly, in part (ii) of Definition 6 (as well as Definition 5)
one can assume that x /∈ ∩n

i=1Ωi.
Each of the properties in Definition 6 is determined by a function ϕ ∈ C , and a number

δ > 0 in item (i) or numbers δ1 > 0 and δ2 > 0 in items (ii) and (iii). The function plays
the role of a kind of rate or modulus of the respective property, while the role of the δ ’s is
more technical: they control the size of the interval for the values of ρ and, in the case of
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ϕ−subtransversality and ϕ−transversality in parts (ii) and (iii), the size of the neighbour-
hoods of x̄ involved in the respective definitions. Of course, if a property is satisfied with
some δ1 > 0 and δ2 > 0, it is satisfied also with the single δ := min{δ1,δ2} in place of both
δ1 and δ2. Unlike our previous publications on (linear and Hölder) transversality properties,
we use in the current chapter two different parameters to emphasise their different roles in
the definitions and the corresponding characterizations. Moreover, we are going to provide
quantitative estimates for the values of these parameters.

Given a δ > 0 in item (i) (δ1 > 0 and δ2 > 0 in items (ii) and (iii)), if a property is
satisfied for some function ϕ ∈ C , it is obviously satisfied for any function ϕ̂ ∈ C such
that ϕ̂−1(t) ≤ ϕ−1(t) for all t ∈]0,δ [ (t ∈]0,δ1[), or equivalently, ϕ̂(t) ≥ ϕ(t) for all t ∈
]0,ϕ−1(δ )[ (t ∈]0,ϕ−1(δ1)[). Thus, it makes sense looking for the smallest function in C (if
it exists) ensuring the corresponding property for the given sets. Observe also that taking a
smaller δ > 0 (smaller δ1 > 0 and δ2 > 0) may allow each of the properties to be satisfied with
a smaller ϕ . When the exact value of δ (δ1 and δ2) in the definition of the respective property
is not important, it makes sense to look for the smallest function ensuring the corresponding
property for some δ > 0 (δ1 and δ2).

The most important realization of the three properties in Definition 6 corresponds to
the Hölder setting, i.e. ϕ being a power function, given for all t ≥ 0 by ϕ(t) := α−1tq

with some α > 0 and q > 0. In this case, Definition 6 reduces to a (slight modification
of) [141, Definition 1], and we refer to the respective properties as α−semitransversality,
α−subtransversality and α−transversality of order q at x̄. With q = 1 (linear case), the
properties were studied in [128, 129, 142].

Another important for applications class of functions is given by the so called Hölder-
type [33, 153] ones, i.e. functions of the form t 7→ α−1(tq + t), frequently used in the error
bound theory, or more generally, functions t 7→ α−1(tq +β t) with some α > 0, β > 0 and
q > 0. Depending on the value of q, transversality properties determined by such functions
can be approximated by Hölder (if q < 1) or even linear (if q≥ 1) ones.

Proposition 1 Let ϕ(t) := α−1(tq+β t) with some α > 0, β > 0 and q > 0. If the collection
{Ω1, . . . ,Ωn} is ϕ−(semi-/sub-)transversal at x̄, then it is α ′−(semi-/sub-) transversal of
order q′ at x̄, where:

(i) if q < 1, then q′ = q and α ′ is any number in ]0,α[;

(ii) if q = 1, then q′ = 1 and α ′ := α(1+β )−1;

(iii) if q > 1, then q′ = 1 and α ′ is any number in ]0,αβ−1[.

Proof The assertions follow from Definition 5 in view of the following observations:

(i) if q< 1 and α ′ ∈]0,α[, then, for all sufficiently small t > 0, it holds α ′(1+β t1−q)< α ,
and consequently, ϕ(t) = α−1(1+β t1−q)tq < (α ′)−1tq;
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(ii) if q = 1 and α ′ = α(1+β )−1, then ϕ(t) = α−1(1+β )t = (α ′)−1t;

(iii) if q > 1 and α ′ ∈]0,αβ−1[, then, for all sufficiently small t > 0, it holds
α ′(β−1tq−1 +1)< αβ−1, and consequently, ϕ(t) = α−1β (β−1tq−1 +1)t < (α ′)−1t.

�

The next two propositions collect some simple facts about the properties in Definition 6
and clarify relationships between them.

Proposition 2 (i) If Ω1 = . . . = Ωn, and there exists a δ1 > 0 such that ϕ(t) ≥ t for all
t ∈]0,δ1[, then {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and any δ2 > 0.

(ii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then it is ϕ−se-
mitransversal at x̄ with δ1 and ϕ−subtransversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0
such that ϕ−1(δ ′1)+δ ′2 ≤ δ2.

(iii) If x̄∈ int ∩n
i=1 Ωi, then {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0.

Proof

(i) Let Ω := Ω1 = . . .= Ωn. Then condition (1.1) becomes Ω∩Bρ(x) 6= /0. This inclusion
is trivially satisfied if ϕ(d(x,Ω))< ρ and ϕ(ρ)≥ ρ .

(ii) Let {Ω1, . . . ,Ωn} be ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0. Since
condition (1.5) is a particular case of condition (1.3) with ωi = x̄ (i = 1, . . . ,n),
we can conclude that {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ1. Let

δ ′1 ∈]0,δ1] and δ ′2 > 0 be such that ϕ−1(δ ′1) + δ ′2 ≤ δ2, and let ρ ∈]0,δ ′1[ and
x ∈ Bδ ′2

(x̄) with ϕ(max1≤i≤n d(x,Ωi))< ρ . Choose ωi ∈ Ωi (i = 1, . . . ,n) such that
ϕ(max1≤i≤n ‖x−ωi‖)< ρ . Then, for any i = 1, . . . ,n,

‖ωi− x̄‖ ≤ ‖x−ωi‖+‖x‖< ϕ
−1(ρ)+δ

′
2 < δ2.

Set xi := x−ωi (i = 1, . . . ,n). We have ρ ∈]0,δ1[, ωi ∈ Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and
ϕ(max1≤i≤n ‖xi‖)< ρ . By Definition 6(iii), condition (1.3) is satisfied. This is equiv-
alent to condition (1.1). In view of Definition 6(ii), {Ω1, . . . ,Ωn} is ϕ−subtransversal
at x̄ with δ ′1 and δ ′2.

(iii) Let x̄ ∈ int ∩n
i=1 Ωi. Choose numbers δ1 > 0 and δ2 > 0 such that, with

δ := ϕ−1(δ1)+δ2, it holds Bδ (x̄) ⊂ ∩n
i=1Ωi. Then, for all ωi ∈ Ωi ∩ Bδ2(x̄) and

xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < δ1, it holds 0 ∈ ∩n
i=1(Ωi −ωi − xi),

and consequently, condition (1.3) is satisfied with any ρ > 0. Hence, {Ω1, . . . ,Ωn} is
ϕ−transversal at x̄ with δ1 and δ2.

�
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Remark 6 (i) The inequality ϕ−1(δ ′1)+δ ′2 ≤ δ2 in Proposition 2(ii) and some statements
below can obviously be replaced by the equality ϕ−1(δ ′1) + δ ′2 = δ2 providing in a
sense the best estimate for the values of the parameters δ ′1 and δ ′2.

(ii) In the Hölder setting, parts (i) and (iii) of Proposition 2 recapture [141, Remarks 4 and
3], respectively, while part (ii) improves [141, Remark 1].

(iii) The nonlinear semitransversality and subtransversality properties are in general inde-
pendent; see examples in [141, Section 2.3] and [142, Section 3.2].

Proposition 3 Let ∩n
i=1Ωi be closed and x̄ ∈ bd∩n

i=1Ωi. If {Ω1, . . . ,Ωn} is ϕ−subtrans-
versal (or ϕ−transversal) at x̄ with some δ1 > 0 and δ2 > 0, then there exists a t̄ ∈
]0,min{δ2,ϕ

−1(δ1)}[ such that ϕ(t)≥ t for all t ∈]0, t̄].

Proof Let {Ω1, . . . ,Ωn} be ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0. Choose
a point x̂ /∈ ∩n

i=1Ωi such that ‖x̂− x̄‖ < min{ϕ−1(δ1),δ2} and set t̄ := d(x̂,∩n
i=1Ωi). Then

t̄ < min{ϕ−1(δ1),δ2}. Besides, t̄ > 0 since ∩n
i=1Ωi is closed. Thanks to the continuity of

the function d(·,∩n
i=1Ωi), for any t ∈]0, t̄] there is an x ∈]x̄, x̂] such that d(x,∩n

i=1Ωi) = t.
We have ‖x− x̄‖ ≤ ‖x̂− x̄‖ < δ2 and ϕ(t)≤ ϕ(t̄)< δ1. Take a ρ ∈]ϕ(t),δ1[. Then
ϕ(max1≤i≤n d(x,Ωi)) ≤ ϕ(t) < ρ . By Definition 6(ii), t = d(x,∩n

i=1Ωi) < ρ , and letting
ρ ↓ ϕ(t), we arrive at t ≤ ϕ(t). If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄, the conclusion follows
in view of Proposition 2(ii). �

Remark 7 The conditions on ϕ in Proposition 3 in the Hölder setting can only be satisfied
if either q < 1, or q = 1 and α ≤ 1. This reflects the well known fact that the Hölder sub-
transversality and transversality properties are only meaningful when q ≤ 1 and, moreover,
the linear case (q = 1) is only meaningful when α ≤ 1; cf. [138, p. 705], [134, p. 118]. The
extreme case q = α = 1 is in a sense singular for subtransversality as in this case Defini-
tion 5(ii) yields d(x,∩n

i=1Ωi) = max1≤i≤n d(x,Ωi) for all x near x̄.
In accordance with Proposition 3, the ϕ−subtransversality and ϕ−transversality prop-

erties impose serious restrictions on the function ϕ . This is not the case with the ϕ−semi-
transversality property: ϕ can be, e.g., any power function.

Example 1 Let R2 be equipped with the maximum norm, and let q > 0, γ > 0,
Ω1 :=

{
(ξ1,ξ2) ∈ R2 | γ

1
q ξ2 + |ξ1|

1
q ≥ 0

}
, Ω2 :=

{
(ξ1,ξ2) ∈ R2 | γ

1
q ξ2−|ξ1|

1
q ≤ 0

}
and

x̄ := (0,0). Note that, when q > 1, the sets Ω1 and Ω2 are nonconvex. We claim that the pair
{Ω1,Ω2} is ϕ−semitransversal at x̄ with ϕ(t) := γtq (t ≥ 0).

Proof Given an r > 0, set x1 := (0,−r) and x2 := (0,r). Then ‖x1‖ = ‖x2‖ = r and
(±γrq,0) ∈ (Ω1 − x1)∩ (Ω2 − x2). Moreover, it is easy to notice that either (γrq,0) or
(−γrq,0) belongs to (Ω1 − x1) ∩ (Ω2 − x2) for any choice of vectors x1,x2 ∈ R2 with
max{‖x1‖,‖x2‖} ≤ r. Hence, (Ω1 − x1) ∩ (Ω2 − x2) ∩ Bρ(x̄) 6= /0 for all such vectors
x1,x2 ∈ R2 as long as ρ > γrq, and consequently, {Ω1,Ω2} is ϕ−semitransversal at x̄. �
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2.2 Geometric Characterizations

The next proposition provides alternative geometric representations of ϕ−transversality.
They differ from those in Definition 6(iii) by values of the parameters δ1 and δ2. Note
also the relations between the values of the parameters in the two groups of representations
and observe the similarity with those in Proposition 2(ii). One of the advantages of the alter-
native representations of ϕ−transversality given below is their direct relations with those in
the definition of ϕ−subtransversality. Some other advantages will be exposed later.

Proposition 4 Let δ1 > 0 and δ2 > 0. The following properties are equivalent:

(i) condition (1.3) holds for all ρ ∈]0,δ1[, ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) with
ωi + xi ∈ Bδ2(x̄) and ϕ(max1≤i≤n ‖xi‖)< ρ;

(ii) condition (1.5) holds for all ρ ∈]0,δ1[ and xi ∈ δ2B (i = 1, . . . ,n) with
ϕ(max1≤i≤n d(x̄,Ωi− xi))< ρ;

(iii) for all ρ ∈]0,δ1[ and x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
ϕ(max1≤i≤n d(x,Ωi− xi))< ρ , it holds

n⋂
i=1

(Ωi− xi)∩Bρ(x) 6= /0. (2.1)

Moreover, if {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
properties (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in place
of δ1 and δ2.

If properties (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn} is ϕ−sub-
transversal at x̄ with δ1 and δ2, and ϕ−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0
satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.

Proof We first prove the equivalence of the properties (i)–(iii).
(i)⇒ (ii). Let ρ ∈]0,δ1[ and xi ∈ δ2B (i = 1, . . . ,n) with ϕ(max1≤i≤n d(x̄,Ωi− xi))< ρ .

Choose ωi ∈ Ωi (i = 1, . . . ,n) such that ϕ(max1≤i≤n ‖x̄+ xi−ωi‖)< ρ . Set x′i := x̄+ xi−
ωi (i = 1, . . . ,n). Then ωi + x′i ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n ‖x′i‖) < ρ . By (i),
condition (1.3) is satisfied with x′i in place of xi (i = 1, . . . ,n). This is equivalent to condition
(1.5).

(ii) ⇒ (iii). Let ρ ∈]0,δ1[ and x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
ϕ(max1≤i≤n d(x,Ωi− xi))< ρ . Set x′i := x+xi− x̄ (i= 1, . . . ,n). Then x′i ∈ δ2B (i = 1, . . . ,n)
and ϕ(max1≤i≤n d(x̄,Ωi− x′i))< ρ . By (ii), condition (1.5) is satisfied with x′i in place of xi

(i = 1, . . . ,n). This is equivalent to condition (2.1).
(iii) ⇒ (i). Let ρ ∈]0,δ1[, ωi ∈ Ωi and xi ∈ X with ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and

ϕ(max1≤i≤n ‖xi‖)< ρ . Set x′i := ωi+xi− x̄ (i = 1, . . . ,n). Then, x̄+x′i ∈ Bδ2(x̄) (i = 1, . . . ,n)
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and ϕ(d(x̄,Ωi−x′i))≤ ϕ(max1≤i≤n ‖xi‖)< ρ . By (iii), condition (2.1) is satisfied with x̄ and
x′i in place of x and xi (i = 1, . . . ,n), respectively. This is equivalent to condition (1.3).

Suppose {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, and let δ ′1 ∈
]0,δ1] and δ ′2 > 0 be such that ϕ−1(δ ′1) + δ ′2 ≤ δ2. Then, for all ρ ∈]0,δ ′1[, ωi ∈ Ωi and
xi ∈ X with ωi + xi ∈ Bδ ′2

(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n ‖xi‖) < ρ , we have ‖ωi− x̄‖ ≤
‖xi‖+‖ωi + xi− x̄‖< ϕ−1(δ ′1)+δ ′2 ≤ δ2 (i = 1, . . . ,n). By Definition 6(iii), condition (1.3)
is satisfied, and consequently, property (i) holds with δ ′1 and δ ′2.

Suppose property (iii) holds with some δ1 > 0 and δ2 > 0. Setting xi := 0 (i = 1, . . . ,n),
we obtain the property in Definition 6(ii), i.e. {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1

and δ2.
Suppose property (i) holds with some δ1 > 0 and δ2 > 0, and let δ ′1 ∈]0,δ1] and δ ′2 > 0

be such that ϕ−1(δ ′1)+ δ ′2 ≤ δ2. Then, for all ρ ∈]0,δ ′1[, ωi ∈Ωi∩Bδ ′2
(x̄) and xi ∈ X (i =

1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< ρ , we have ‖ωi + xi− x̄‖ ≤ ‖ωi− x̄‖+‖xi‖< ϕ−1(δ ′1)+

δ ′2 ≤ δ2 (i = 1, . . . ,n). By (i), condition (1.3) is satisfied, and consequently, {Ω1, . . . ,Ωn} is
ϕ−transversal at x̄ with δ ′1 and δ ′2. �

Corollary 1 The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ if and only if there exist
δ1 > 0 and δ2 > 0 such that any of the properties (i)–(iii) in Proposition 4 holds.

When the sets are convex, the definitions and characterizations of the ϕ−semi-
transversality and ϕ−transversality admit simplifications. We are unsure about possible
meaningful simplifications of the ϕ−subtransversality.

Given a δ > 0, we denote by Ĉ δ the subfamily of functions from C satisfying the fol-
lowing property:

ϕ−1(ρ)

ρ
≤ ϕ−1(δ )

δ
for all ρ ∈]0,δ [. (2.2)

Observe that any ϕ ∈ C such that the function t 7→ ϕ−1(t)
t is nondecreasing on ]0,δ ] satisfies

this property. This is true (for all δ > 0), in particular, in the Hölder setting, i.e. when
ϕ(t) := α−1tq (t ≥ 0) for some α > 0 and q ∈]0,1].

In the convex case, the requirements that the relations in parts (i) and (iii) of Definition 6
hold for all small ρ > 0 can be significantly relaxed.

Proposition 5 Suppose Ω1, . . . ,Ωn are convex, δ > 0, and ϕ ∈ Ĉ δ . The collection
{Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ with δ if and only if

n⋂
i=1

(Ωi− xi)∩Bδ (x̄) 6= /0 (2.3)

for all xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ ;
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(ii) ϕ−transversal at x̄ with δ1 := δ and some δ2 > 0 if and only if

n⋂
i=1

(Ωi−ωi− xi)∩ (δ1B) 6= /0 (2.4)

for all ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ1.

Proof

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ , then, by Definition 6(i), for any
xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < δ , and any number ρ satisfying
ϕ (max1≤i≤n ‖xi‖)< ρ < δ , condition (1.5) holds. The latter condition obviously im-
plies (2.3).

Conversely, suppose condition (2.3) is satisfied for all xi ∈ X (i = 1, . . . ,n) with
ϕ(max1≤i≤n ‖xi‖) < δ . Let ρ be an arbitrary number in ]0,δ [ and let xi ∈ X
(i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < ρ . Set t := ϕ−1(ρ)/ϕ−1(δ ) and x′i := xi/t
(i = 1, . . . ,n). Then 0 < t < 1 and ‖x′i‖= ‖xi‖/t < ϕ−1(ρ)/t = ϕ−1(δ ) (i = 1, . . . ,n),
and consequently, there exists an x′ ∈ ∩n

i=1(Ωi− x′i)∩Bδ (x̄), i.e. x′ ∈ Bδ (x̄) and x′ =
ωi− x′i for some ωi ∈ Ωi (i = 1, . . . ,n), or equivalently, xi = t(ωi− x′) (i = 1, . . . ,n).
In view of the convexity of the sets, we have tωi +(1− t)x̄ ∈ Ωi (i = 1, . . . ,n). Set
x := x̄ + t(x′ − x̄). We have x = tωi +(1− t)x̄− t(ωi− x′) ∈Ωi− xi (i = 1, . . . ,n).
Moreover, in view of (2.2), ‖x− x̄‖ = t‖x′− x̄‖ < ϕ−1(ρ)δ/ϕ−1(δ ) ≤ ρ . Hence,
condition (1.5) is satisfied. By Definition 6(i), {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄
with δ .

(ii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 := δ and some δ2 > 0, then, by Defini-
tion 6(iii), for any ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)<
δ1, and any number ρ satisfying ϕ (max1≤i≤n ‖xi‖) < ρ < δ1, condition (1.3) holds.
The latter condition obviously implies (2.4).

Conversely, suppose condition (2.4) is satisfied for all ωi ∈ Ωi ∩Bδ2(x̄) and xi ∈ X
(i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ1. Then the collection of convex sets Ωi−ωi

(i = 1, . . . ,n), considered near their common point 0, satisfies the conditions in part (i)
and is consequently ϕ−semitransversal at 0 with δ1 uniformly over ωi ∈Ωi∩Bδ2(x̄)
(i = 1, . . . ,n). This means that {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2.

�

Remark 8 (i) The ‘linear’ version of Proposition 5 was established recently in [38].

(ii) Conditions (2.3) and (2.4) are equivalent to the metric estimates
d(x̄,∩n

i=1(Ωi− xi))< δ and d(0,∩n
i=1(Ωi−ωi− xi))< δ1, respectively.

(iii) The convexity assumption as well as condition ϕ ∈ Ĉ δ in Proposition 5 are only
needed in the sufficiency parts.
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Employing the same arguments as in the proof of Proposition 5, it is easy to establish sim-
plified convex case versions of the alternative representations of ϕ−transversality in Propo-
sition 4, and the ‘restricted’ two-set versions of ϕ−semitransversality and ϕ−transversality
in Proposition 10.

Proposition 6 Suppose Ω1, . . . ,Ωn are convex, δ1 > 0, δ2 > 0, and ϕ ∈ Ĉ δ1 . Properties
(i)–(iii) in Proposition 4 hold if and only if the following equivalent properties hold true:

(i) condition (2.4) holds for all ωi ∈ Ωi, xi ∈ X with ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
ϕ(max1≤i≤n ‖xi‖)< δ1;

(ii) condition (2.3) holds with δ1 in place of δ for all xi ∈ δ2B (i = 1, . . . ,n) with
ϕ(max1≤i≤n d(x̄,Ωi− xi))< δ1;

(iii) ∩n
i=1(Ωi − xi)∩ Bδ1(x) 6= /0 for all x,xi ∈ X with x + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and

ϕ(max1≤i≤n d(x,Ωi− xi))< δ1.

Proposition 7 Suppose Ω1 and Ω2 are convex, x̄ ∈Ω1∩Ω2, α > 0 and α ′ := (1+2α)−1.

(i) If {Ω1,Ω2} is ϕ−semitransversal at x̄ with some δ > 0, then

(Ω1− x)∩Ω2∩Bδ (x̄) 6= /0 (2.5)

for all x ∈ X with ϕ(‖x‖)< δ .

Suppose δ > 0, t̄ := ϕ−1(δ ), ϕ ∈ Ĉ δ , and ϕ(t)≤ αt for all t ∈]0, t̄]. If condition (2.5)
holds for all x ∈ t̄B, then {Ω1,Ω2} is α ′−semitransversal at x̄ with δ ′ :=

(
α + 1

2

)
t̄.

(ii) If {Ω1,Ω2} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then

(Ω1−ω1− x)∩ (Ω2−ω2)∩ (δ1B) 6= /0 (2.6)

for all ωi ∈Ωi∩Bδ2(x̄) (i = 1,2) and x ∈ X with ϕ(‖x‖)< δ1.

Suppose δ1 > 0, δ2 > 0, t̄ := ϕ−1(δ1), ϕ ∈ Ĉ δ1 , and ϕ(t) ≤ αt for all t ∈]0, t̄]. If
condition (2.6) holds for all ωi ∈Ωi∩Bδ2(x̄) (i = 1,2) and x ∈ t̄B, then {Ω1,Ω2} is
α ′−transversal at x̄ with δ ′1 :=

(
α + 1

2

)
t̄ and δ2.

The next statement clarifies the relationship between the nonlinear semitransversality and
transversality in the convex setting.

Proposition 8 Suppose Ω1, . . . ,Ωn are convex.

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with some δ > 0, then it is ψ−transversal
at x̄ with any ψ ∈ Ĉ δ , δ1 := δ and any δ2 > 0 such that δ2 +ψ−1(δ )≤ ϕ−1(δ ).

(ii) Suppose α > 0, δ > 0, ϕ ∈ Ĉ δ , and ϕ−1(ρ)/ρ ≥ α for all ρ ∈]0,δ [. If {Ω1, . . . ,Ωn}
is ϕ−semitransversal at x̄ with δ , then, for any ε ∈]0,α[, it is ψ−transversal at x̄ with
ψ ∈ C such that ψ−1(t) = ϕ−1(t)− εt if t ∈ [0,α], δ1 := δ and δ2 := εδ .
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Proof

(i) Let {Ω1, . . . ,Ωn} be ϕ−semitransversal at x̄ with some δ > 0, and let ψ ∈ Ĉ δ , δ1 := δ

and δ2 > 0 be such that δ2 + ψ−1(δ ) ≤ ϕ−1(δ ). Let ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X
(i = 1, . . . ,n) with ψ(max1≤i≤n ‖xi‖) < δ . Set x′i := ωi + xi− x̄ (i = 1, . . . ,n). Then
‖x′i‖≤ ‖ωi− x̄‖+‖xi‖< δ2+ψ−1(δ )≤ϕ−1(δ ) (i= 1, . . . ,n), and by Proposition 5(i),
∩n

i=1(Ωi− x′i)∩Bδ (x̄) 6= /0, which is equivalent to condition (2.4). In view of Proposi-
tion 5(ii), {Ω1, . . . ,Ωn} is ψ−transversal at x̄ with δ1 and δ2.

(ii) Observe that ψ−1 ∈ C , hence ψ ∈ C ; δ2 +ψ−1(δ ) = ϕ−1(δ ), and ψ−1(ρ)
ρ

= ϕ−1(ρ)
ρ
−

ε ≤ ψ−1(δ )
δ

for all ρ ∈]0,δ [.

�

In the Hölder setting, the above corollary yields the following assertion.

Corollary 2 Suppose Ω1, . . . ,Ωn are convex. Let α > 0 and q ∈]0,1]. If {Ω1, . . . ,Ωn} is
α−semitransversal of order q at x̄, then it is α ′−transversal of order q at x̄ with any α ′ ∈
]0,α[. As a consequence, {Ω1, . . . ,Ωn} is semitransversal of order q at x̄ if and only if it is
transversal of order q at x̄.

Remark 9 In the linear case (q = 1), the second part of Corollary 2 recaptures [127, Propo-
sition 13(iv)].

2.3 Metric Characterizations

The three transversality properties are defined in Definition 6 geometrically. We now show
that they can be characterized in metric terms. These metric characterizations can be used as
equivalent definitions of the respective properties.

Theorem 1 The collection {Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ with some δ > 0 if and only if

d

(
x̄,

n⋂
i=1

(Ωi− xi)

)
≤ ϕ

(
max

1≤i≤n
‖xi‖

)
(2.7)

for all xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ ;

(ii) ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if the following equiv-
alent conditions hold:

(a) for all x ∈ Bδ2(x̄) with ϕ (max1≤i≤n d(x,Ωi))< δ1, it holds

d

(
x,

n⋂
i=1

Ωi

)
≤ ϕ

(
max

1≤i≤n
d(x,Ωi)

)
; (2.8)
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(b) for all xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < δ1 and
ω1 + x1 = . . .= ωn + xn ∈ Bδ2(x̄), it holds

d

(
0,

n⋂
i=1

(Ωi−ωi− xi)

)
≤ ϕ

(
max

1≤i≤n
‖xi‖

)
; (2.9)

(iii) ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if inequality (2.9) holds
for all ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖)< δ1.

Proof

(i) Let {Ω1, . . . ,Ωn} be ϕ−semitransversal at x̄ with some δ > 0, and let xi ∈ X
(i = 1, . . . ,n) with ρ0 := ϕ(max1≤i≤n ‖xi‖) < δ . Choose a ρ ∈]ρ0,δ [. By (1.5),
d
(
x̄,∩n

i=1(Ωi− xi)
)
< ρ . Letting ρ ↓ ρ0, we arrive at inequality (2.7).

Conversely, let δ > 0 and inequality (2.7) hold for all xi ∈ X (i = 1, . . . ,n)
with ϕ(max1≤i≤n ‖xi‖) < δ . For all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with
ϕ(max1≤i≤n ‖xi‖) < ρ , we have d

(
x̄,∩n

i=1(Ωi− xi)
)
< ρ , which implies condition

(1.5). By Definition 6(i), {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ .

(ii) We first prove the equivalence between (a) and (b).

Suppose condition (a) is satisfied. Let ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) with
ϕ(max1≤i≤n ‖xi‖)< δ1 and x := ω1 + x1 = . . .= ωn + xn ∈ Bδ2(x̄). Then

ϕ (d(x,Ωi)) = ϕ (d(ωi + xi,Ωi))≤ ϕ(‖xi‖)< δ1 (i = 1, . . . ,n),

and consequently, inequality (2.8) is satisfied. Hence,

d
(

0,
n⋂

i=1

(Ωi−ωi− xi)
)
= d
(

x,
n⋂

i=1

Ωi

)
≤ ϕ

(
max

1≤i≤n
d(x,Ωi)

)
≤ ϕ

(
max

1≤i≤n
‖xi‖

)
.

Suppose condition (b) is satisfied. Let x ∈ Bδ2(x̄) with ϕ (max1≤i≤n d(x,Ωi))< δ1.
Choose ωi ∈Ωi (i = 1, . . . ,n) such that ϕ(max1≤i≤n ‖x−ωi‖)< δ1 and set x′i := x−ωi

(i = 1, . . . ,n). Then x = x′i +ωi ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n ‖x′i‖)< δ1. In
view of inequality (2.9) with x′i in place of xi (i = 1, . . . ,n), we obtain

d
(

x,
n⋂

i=1

Ωi

)
≤ ϕ

(
max

1≤i≤n
‖x−ωi‖

)
.

Taking infimum in the right-hand side over ωi ∈Ωi (i = 1, . . . ,n), we arrive at inequal-
ity (2.8).

We show that ϕ−subtransversality is equivalent to condition (i). Let {Ω1, . . . ,Ωn}
be ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0, and let x ∈ Bδ2(x̄) with
ρ0 := ϕ (max1≤i≤n d(x,Ωi))< δ1. Choose a ρ ∈]ρ0,δ1[. By Definition 6(ii), ∩n

i=1Ωi∩
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Bρ(x) 6= /0, and consequently, d
(
x,∩n

i=1Ωi
)
< ρ . Letting ρ ↓ ρ0, we arrive at inequality

(2.8).

Conversely, let δ1 > 0 and δ2 > 0, and inequality (2.8) hold for all x ∈ Bδ2(x̄)
with ϕ(max1≤i≤n d(x,Ωi)) < δ1. For any ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with
ϕ(max1≤i≤n d(x,Ωi))< ρ , we have d

(
x,∩n

i=1Ωi
)
< ρ, which implies condition (1.1).

By Definition 6(ii), {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and δ2.

(iii) Let {Ω1, . . . ,Ωn} be ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, and let ωi ∈
Ωi ∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ρ0 := ϕ(max1≤i≤n ‖xi‖) < δ1. Choose a
ρ ∈]ρ0,δ1[. By (1.3), d

(
0,∩n

i=1(Ωi−ωi− xi)
)
< ρ. Letting ρ ↓ ρ0, we arrive at in-

equality (2.9).

Conversely, let δ1 > 0 and δ2 > 0, and inequality (2.9) hold for all ωi ∈Ωi∩Bδ2(x̄)
and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < δ1. For any ρ ∈]0,δ1[,
ωi ∈Ωi∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < ρ , we have
d
(
0,∩n

i=1(Ωi−ωi− xi)
)
< ρ , which is equivalent to condition (1.3). By Defini-

tion 6(iii), {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2.

�

Example 2 Let R2 be equipped with the maximum norm, and let Ω1 := {(ξ1,ξ2) ∈ R2 |
ξ2 ≥ 0}, Ω2 := {(ξ1,ξ2) ∈ R2 | ξ2 ≤ ξ 2

1 } and x̄ := (0,0). Thus, Ω1∩Ω2 = {(ξ1,ξ2) ∈ R2 |
0 ≤ ξ2 ≤ ξ 2

1 }, and no shift of the sets can make their intersection empty. We claim that the
pair {Ω1,Ω2} is ϕ−semitransversal at x̄ with ϕ(t) :=

√
2t (t ≥ 0) and δ := 2.

Proof Observe that, given any ε ≥ 0, the vertical shifts of the sets determined by x1ε :=
(0,−ε) and x2ε := (0,ε) produce the largest ‘gap’ between them compared to all possible
shifts x1 and x2 with max{‖x1‖,‖x2‖} ≤ ε . Indeed,

(Ω1− x1ε)∩ (Ω2− x2ε) = {(ξ1,ξ2) ∈ R2 | ε ≤ ξ2 ≤ ξ
2
1 − ε}

⊂ (Ω1− x1)∩ (Ω2− x2),

as long as max{‖x1‖,‖x2‖} ≤ ε . Observe also that (
√

2ε,ε) ∈ (Ω1− x1ε)∩ (Ω2− x2ε).
Hence, for any x1,x2 ∈ R2 with ε := max{‖x1‖,‖x2‖}< ϕ−1(δ ) = 2, we have

d(x̄,(Ω1− x1)∩ (Ω2− x2))≤ ‖(
√

2ε,ε)‖=
√

2ε = ϕ (max{‖x1‖,‖x2‖}) .

In view of Theorem 1(i), {Ω1,Ω2} is ϕ−semitransversal at x̄ with δ . �

Example 3 Let R2 be equipped with the maximum norm, and let Ω1 := {(ξ1,ξ2) ∈ R2 |
ξ2 = ξ 2

1 }, Ω2 := {(ξ1,ξ2) ∈R2 | ξ2 =−ξ 2
1 } and x̄ := (0,0). Thus, Ω1∩Ω2 = {x̄}. We claim

that, for any γ > 1, the pair {Ω1,Ω2} is ϕ−subtransversal at x̄ with ϕ(t) := γ
√

t (t ≥ 0) and

any δ1 > 0 and δ2 > 0 satisfying δ2 +
1
2 +
√

δ2 +
1
4 < γ2.
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Proof Observe that, d(x,Ω1∩Ω2) = ‖x‖ for all x ∈R2 and, given any ε ≥ 0 and the corre-
sponding point xε := (0,ε), one has

min
‖x‖=ε

max{d(x,Ω1),d(x,Ω2)}= d(xε ,Ω1) = d(xε ,Ω2) = min
t≥0

max{ε− t, t2}.

It is easy to see that the minimum in the rightmost minimization problem is attained at

t :=
√

ε + 1
4 −

1
2 satisfying ε− t = t2. Thus,

min
‖x‖=ε

max{d(x,Ω1),d(x,Ω2)}= ε +
1
2
−
√

ε +
1
4
=

ε2

ε + 1
2 +
√

ε + 1
4

.

Hence, for any x ∈ R2 with ‖x‖< δ2, we have

d(x,Ω1∩Ω2) = ‖x‖ ≤
γ‖x‖√

‖x‖+ 1
2 +
√
‖x‖+ 1

4

≤ ϕ(max{d(x,Ω1),d(x,Ω2)}).

In view of Theorem 1(ii), {Ω1,Ω2} is ϕ−subtransversal at x̄ with δ1 and δ2. �

The next statement provides alternative metric characterizations of ϕ−transversality.
These characterizations differ from the one in Theorem 1(iii) by values of the parameters
δ1 and δ2 and have certain advantages, e.g., when establishing connections with metric regu-
larity of set-valued mappings. The relations between the values of the parameters in the two
groups of metric characterizations can be estimated.

Theorem 2 Let δ1 > 0 and δ2 > 0. The following conditions are equivalent:

(i) inequality (2.9) is satisfied for all xi ∈X and ωi ∈Ωi with ωi+xi ∈Bδ2(x̄) (i = 1, . . . ,n)
and ϕ(max1≤i≤n ‖xi‖)< δ1;

(ii) for all xi ∈ δ2B (i = 1, . . . ,n) with ϕ(max1≤i≤n d(x̄,Ωi− xi))< δ1, it holds

d
(

x̄,
n⋂

i=1

(Ωi− xi)
)
≤ ϕ

(
max

1≤i≤n
d(x̄,Ωi− xi)

)
; (2.10)

(iii) for all x,xi ∈ X with x+ xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n d(x,Ωi− xi))< δ1,
it holds

d
(

x,
n⋂

i=1

(Ωi− xi)
)
≤ ϕ

(
max

1≤i≤n
d(x,Ωi− xi)

)
. (2.11)

Moreover, if {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in
place of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn}
is ϕ−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.
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Proof We first prove the equivalence of conditions (i)–(iii).
(i)⇒ (ii). Let xi ∈ δ2B (i = 1, . . . ,n) with ϕ(max1≤i≤n d(x̄,Ωi− xi))< δ1. Choose ωi ∈

Ωi (i = 1, . . . ,n) such that ϕ(max1≤i≤n ‖x̄+xi−ωi‖)< δ1. Set x′i := x̄+xi−ωi (i = 1, . . . ,n).
Then ωi + x′i ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n ‖x′i‖) < δ1. By (i), inequality (2.9) is
satisfied with x′i in place of xi (i = 1, . . . ,n), i.e.

d
(

x̄,
n⋂

i=1

(Ωi− xi)
)
≤ ϕ

(
max

1≤i≤n
‖x̄+ xi−ωi‖

)
.

Taking the infimum in the righ-hand side of the above inequality over ωi ∈Ωi (i = 1, . . . ,n),
we arrive at inequality (2.10).

(ii) ⇒ (iii). Let x,xi ∈ X with x+ xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n d(x,Ωi−
xi)) < δ1. Set x′i := x + xi − x̄ (i = 1, . . . ,n). Then x′i ∈ δ2B (i = 1, . . . ,n) and
ϕ(max1≤i≤n d(x̄,Ωi− x′i)) < δ1. By (ii), inequality (2.10) is satisfied with x′i in place of
xi (i = 1, . . . ,n). This is equivalent to inequality (2.11).

(iii) ⇒ (i). Let xi ∈ X and ωi ∈ Ωi with ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and
ϕ(max1≤i≤n ‖xi‖) < δ1. Set x′i := ωi + xi − x̄ (i = 1, . . . ,n). Then, x̄ + x′i ∈ Bδ2(x̄) and
ϕ(max1≤i≤n d(x̄,Ωi− x′i)) ≤ ϕ(‖xi‖) < δ1. By (iii), inequality (2.11) is satisfied with x̄ and
x′i in place of x and xi (i = 1, . . . ,n), respectively, i.e.

d
(

0,
n⋂

i=1

(Ωi−ωi− xi)
)
≤ ϕ

(
max

1≤i≤n
d(0,Ωi−ωi− xi)

)
.

Since ωi ∈Ωi (i = 1, . . . ,n), inequality (2.9) is satisfied.
Suppose {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, and let δ ′1 ∈

]0,δ1] and δ ′2 > 0 be such that ϕ−1(δ ′1)+ δ ′2 ≤ δ2. Then, for all xi ∈ X and ωi ∈ Ωi with
ωi +xi ∈ Bδ ′2

(x̄) (i = 1, . . . ,n) and ϕ(max1≤i≤n ‖xi‖)< δ ′1, we have ‖ωi− x̄‖ ≤ ‖xi‖+‖ωi +

xi− x̄‖ < ϕ−1(δ ′1)+ δ ′2 ≤ δ2 (i = 1, . . . ,n). By Theorem 1(iii), inequality (2.9) is satisfied,
and consequently, condition (i) (as well as conditions (ii) and (iii)) holds with δ ′1 and δ ′2.

Conversely, suppose conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, and let δ ′1 ∈
]0,δ1] and δ ′2 > 0 be such that ϕ−1(δ ′1)+ δ ′2 ≤ δ2. Then, for all ωi ∈Ωi∩Bδ ′2

(x̄) and xi ∈
X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖xi‖) < δ ′1, we have ‖ωi + xi− x̄‖ ≤ ‖xi‖+ ‖ωi− x̄‖ <
ϕ−1(δ ′1) + δ ′2 ≤ δ2 (i = 1, . . . ,n). By (i), inequality (2.9) is satisfied, and consequently,
{Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ ′1 and δ ′2 according to Theorem 1(iii). �

Remark 10 (i) In the Hölder case, i.e. when ϕ(t) := α−1tq (t ≥ 0) for some α > 0 and
q ∈]0,1], condition (2.11) served as the main metric characterization of transversality;
cf. [141, 142]. In the linear case, condition (2.10) has been picked up recently in
[38, 40]. This condition seems an important advancement as it replaces an arbitrary
point x in (2.11) with the given reference point x̄. Condition (2.9) in part (i) seems
new. In view of Theorem 1(iii), it is the most straightforward metric counterpart of the
original geometric property (1.3).
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(ii) The metric characterizations of the three ϕ−transversality properties in the above the-
orems look similar: each of them provides an upper error bound type estimate for the
distance from a point to the intersection of sets, which can be useful from the compu-
tational point of view. For the account of nonlinear error bounds theory, we refer the
reader to [17, 18, 64, 211].

The next corollary provides qualitative metric characterizations of the three nonlinear
transversality properties. They are direct consequences of Theorems 1 and 2.

Corollary 3 The collection {Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ if and only if there exists a δ > 0 such that inequality (2.7)
holds for all xi ∈ δB (i = 1, . . . ,n);

(ii) ϕ−subtransversal at x̄ if and only if the following equivalent conditions hold:

(a) there exists a δ > 0 such that inequality (2.8) holds for all x ∈ Bδ (x̄);

(b) there exists a δ > 0 such that inequality (2.9) holds for all ωi ∈ Ωi∩Bδ (x̄) and
xi ∈ δB (i = 1, . . . ,n) with ω1 + x1 = . . .= ωn + xn;

(iii) ϕ−transversal at x̄ if and only if the following equivalent conditions hold:

(a) there exists a δ > 0 such that inequality (2.9) holds for all ωi ∈ Ωi∩Bδ (x̄) and
xi ∈ δB (i = 1, . . . ,n);

(b) there exists a δ > 0 such that inequality (2.10) holds for all xi ∈ δB (i = 1, . . . ,n);

(c) there exists a δ > 0 such that inequality (2.11) holds for all x∈ Bδ (x̄) and xi ∈ δB
(i = 1, . . . ,n).

Remark 11 In the Hölder setting, i.e. when ϕ(t) := α−1tq (t ≥ 0) with some α > 0 and
q > 0, the above corollary improves [141, Theorem 1]. In the linear case, the equivalence of
the three characterizations of transversality in Corollary 3(iii) has been established in [38].
We refer the readers to [134, 138, 139] for more discussions and historical comments.

The next two propositions identify important situations when ‘restricted’ versions
of the metric characterizations of nonlinear transversality properties in Theorem 1 can
be used: with all but one sets being translated in the cases of ϕ−semitransversality
and ϕ−transversality, and with the point x restricted to one of the sets in the case of
ϕ−subtransversality. The latter restricted version is of importance, for instance, when deal-
ing with alternating (or cyclic) projections. The first proposition formulates simplified nec-
essary characterizations of the transversality properties which are direct consequences of the
respective statements, while the second one gives conditions under which these characteri-
zations become sufficient in the case of two sets.
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Proposition 9 (i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with some δ > 0, then

d
(

x̄,
n−1⋂
i=1

(Ωi− xi)∩Ωn

)
≤ ϕ

(
max

1≤i≤n−1
‖xi‖

)
for all xi ∈ X (i = 1, . . . ,n−1) with ϕ(max1≤i≤n−1 ‖xi‖)< δ .

(ii) If {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0, then

d
(

x,
n⋂

i=1

Ωi

)
≤ ϕ

(
max

1≤i≤n−1
d(x,Ωi)

)
for all x ∈Ωn∩Bδ2(x̄) with ϕ(max1≤i≤n−1 d(x,Ωi))< δ1.

(iii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then

d
(

0,
n−1⋂
i=1

(Ωi−ωi− xi)∩ (Ωn−ωn)
)
≤ ϕ

(
max

1≤i≤n−1
‖xi‖

)
for all ωi ∈ Ωi ∩ Bδ2(x̄) (i = 1, . . . ,n) and xi ∈ X (i = 1, . . . ,n − 1) with
ϕ(max1≤i≤n−1 ‖xi‖)< δ1.

Proposition 10 Let Ω1,Ω2 be subsets of a normed space X , and x̄ ∈ Ω1 ∩Ω2. Let α > 0,
t̄ > 0, ϕ(t)≤ αt for all t ∈]0, t̄ ], and α ′ := (1+2α)−1.

(i) If for all x ∈ t̄B,

d (x̄,(Ω1− x)∩Ω2)≤ ϕ(‖x‖), (2.12)

then {Ω1,Ω2} is α ′−semitransversal at x̄ with δ :=
(
α + 1

2

)
t̄.

(ii) If there exists a δ2 > 0 such that, for all x ∈Ω2∩B2δ2(x̄) with d(x,Ω1)< t̄,

d (x,Ω1∩Ω2)≤ ϕ(d(x,Ω1)), (2.13)

then {Ω1,Ω2} is α ′−subtransversal at x̄ with δ1 :=
(
α + 1

2

)
t̄ and δ2.

(iii) If there exists a δ2 > 0 such that, for all ωi ∈Ωi∩Bδ2(x̄)(i = 1,2) and x ∈ t̄B,

d (0,(Ω1−ω1− x)∩ (Ω2−ω2))≤ ϕ(‖x‖)

then {Ω1,Ω2} is α ′−transversal at x̄ with δ1 :=
(
α + 1

2

)
t̄ and δ2.
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Proof

(i) Let δ :=
(
α + 1

2

)
t̄, and inequality (2.12) be satisfied for all x ∈ t̄B. Let ρ ∈]0,δ [

and x1,x2 ∈ X with max{‖x1‖,‖x2‖}< α ′ρ . Set x′ := x1 − x2. Thus, ‖x′‖ ≤
2max{‖x1‖,‖x2‖}< 2α ′δ = t̄. Hence, by (2.12) with x′ in place of x,

d(x̄,(Ω1− x1)∩ (Ω2− x2))≤ ‖x2‖+d(x̄− x2,(Ω1− x1)∩ (Ω2− x2))

= ‖x2‖+d(x̄,(Ω1− x′)∩Ω2)

≤ ‖x2‖+ϕ(‖x′‖)≤ ‖x2‖+α‖x′‖
≤ (1+2α)max{‖x1‖,‖x2‖}< ρ.

Hence, (Ω1 − x1) ∩ (Ω2 − x2) ∩ Bρ(x̄)6= /0 and, by Definition 5(i), {Ω1,Ω2} is
α ′−semitransversal at x̄ with δ .

(ii) Let δ1 :=
(
α + 1

2

)
t̄, δ2 > 0, and inequality (2.13) be satisfied for all x ∈ Ω2∩B2δ2(x̄)

with d(x,Ω1)< t̄. Let ρ ∈]0,δ1[ and x ∈ Bδ2(x̄) with max{d(x,Ω1),d(x,Ω2)}< α ′ρ .
Choose a number γ > 1 such that

‖x− x̄‖< γ
−1

δ2 and max{d(x,Ω1),d(x,Ω2)}< γ
−1

α
′
ρ,

and a point x′ ∈Ω2 such that ‖x− x′‖ ≤ γd(x,Ω2). Then

‖x′− x̄‖ ≤ ‖x− x′‖+‖x− x̄‖ ≤ γd(x,Ω2)+‖x− x̄‖
≤ (γ +1)‖x− x̄‖< (1+ γ

−1)δ2 < 2δ2,

d(x′,Ω1)≤ ‖x− x′‖+d(x,Ω1)≤ (γ +1)max{d(x,Ω1),d(x,Ω2)}
< (1+ γ

−1)α ′δ1 < 2α
′
δ1 = t̄.

Hence, by (2.13) with x′ in place of x,

d(x,Ω1∩Ω2)≤ ‖x− x′‖+d(x′,Ω1∩Ω2)≤ ‖x− x′‖+ϕ(d(x′,Ω1))

≤ ‖x− x′‖+αd(x′,Ω1)≤ (1+α)‖x− x′‖+αd(x,Ω1)

≤ (1+α)γd(x,Ω2)+αd(x,Ω1)

≤ ((1+α)γ +α)max{d(x,Ω1),d(x,Ω2)}.

Letting γ ↓ 1, we arrive at

d(x,Ω1∩Ω2)≤ (1+2α)max{d(x,Ω1),d(x,Ω2)}< ρ.

Hence, Ω1∩Ω2∩Bρ(x)6= /0 and, by Definition 5(ii), {Ω1,Ω2} is α ′−subtransversal at
x̄ with δ1 and δ2.

(iii) The proof follows that of assertion (i) with the sets Ω1−ω1 and Ω2−ω2 in place of
Ω1 and Ω2, respectively.

�
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Remark 12 (i) In the linear case, Proposition 10(ii) recaptures [139, Theorem 1(iii)],
while parts (i) and (iii) seem new.

(ii) Restricted versions of the metric conditions in Theorem 2 can be produced in a similar
way.

Checking the metric estimates of the ϕ−subtransversality and ϕ−transversality can be
simplified as illustrated by the following proposition referring to condition (2.8) in Theo-
rem 1(ii). Equivalent versions of conditions (2.10) and (2.11) in Theorem 2 look similar.

Proposition 11 The following conditions are equivalent:

(i) inequality (2.8) holds true;

(ii) for all ωi ∈Ωi (i = 1, . . . ,n), it holds

d
(

x,
n⋂

i=1

Ωi

)
≤ ϕ

(
max

1≤i≤n
‖x−ωi‖

)
; (2.14)

(iii) inequality (2.14) holds true for all ωi ∈ Ωi with ‖ωi− x̄‖ < ‖x− x̄‖+ϕ−1(‖x− x̄‖)
(i = 1, . . . ,n);

(iv) inequality (2.14) holds true for all ωi ∈Ωi with ϕ(‖ωi− x‖)< ‖x− x̄‖ (i = 1, . . . ,n).

Proof The equivalence (i)⇔ (ii) and implications (ii)⇒ (iii)⇒ (iv) are straightforward.
We next show that (iv) ⇒ (ii). Let condition (iv) hold true, ωi ∈ Ωi (i = 1, . . . ,n), and
ϕ(‖ωi− x‖)≥ ‖x− x̄‖ for some i. Then

d
(

x,
n⋂

i=1

Ωi

)
≤ ‖x− x̄‖ ≤ ϕ

(
max

1≤i≤n
‖x−ωi‖

)
,

i.e. inequality (2.14) is satisfied, and consequently condition (ii) holds true. �

2.4 Slope Characterizations

2.4.1 Slope Sufficient Conditions

In this section, we formulate slope sufficient conditions for the properties in Definition 6. The
conditions are straightforward consequences of the Ekeland variational principle (Lemma 1)
applied to appropriate lower semicontinuous functions. Throughout this section, X is a Ba-
nach space, the sets Ω1, . . . ,Ωn are closed; δ , δ1 and δ2 are given positive numbers. These
are exactly the assumptions which ensure that the Ekeland variational principle is applicable.
In view of Proposition 2(iii), it suffices to assume that x̄ ∈ bd ∩n

i=1 Ωi.
The sufficient conditions for the three properties follow the same pattern. We first es-

tablish nonlocal slope sufficient conditions arising from the Ekeland variational principle.
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These nonlocal conditions are largely of theoretical interest (unless the sets are convex):
they encapsulate the application of the Ekeland variational principle and serve as a source
of more practical local (infinitesimal) conditions. The corresponding local slope sufficient
conditions, their Hölder as well as simplified (δ -free) versions are formulated as corollar-
ies. This way we expose the hierarchy of this type of conditions. These results make the
foundation for the dual sufficient conditions for the respective properties in Section 2.5.

Along with the standard maximum norm on Xn+1, we are going to use also the following
norm depending on a parameter γ > 0:

‖(x1, . . . ,xn,x)‖γ := max
{
‖x‖,γ max

1≤i≤n
‖xi‖

}
, x1, . . . ,xn,x ∈ X . (2.15)

Semitransversality

Theorem 3 The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if, for some γ > 0
and any xi ∈ X (i = 1, . . . ,n) satisfying

0 < max
1≤i≤n

‖xi‖< ϕ
−1(δ ), (2.16)

there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− xi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.17)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying

‖x− x̄‖< λ , max
1≤i≤n

‖ωi− x̄‖< λ

γ
, (2.18)

0 < max
1≤i≤n

‖ωi− xi− x‖ ≤ max
1≤i≤n

‖xi‖. (2.19)

The proof below employs two closely related nonnegative functions on Xn+1 determined
by the given function ϕ ∈ C and vectors x1, . . . ,xn ∈ X :

f (u1, . . . ,un,u) := ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
, u1, . . . ,un,u ∈ X , (2.20)

f̂ := f + iΩ1×...×Ωn. (2.21)

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−semitransversal at x̄ with δ , and let γ > 0
be given. By Definition 6(i), there exist a ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with
ϕ(max1≤i≤n ‖xi‖)< ρ such that ∩n

i=1(Ωi− xi)∩Bρ(x̄) = /0. Thus, max1≤i≤n ‖xi‖> 0. Let
λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and λ ′ := min{λ ,ρ}. Then λ ′ > ϕ (max1≤i≤n ‖xi‖), ∩n

i=1(Ωi−
xi)∩Bλ ′(x̄) = /0, and consequently,

max
1≤i≤n

‖ui− xi−u‖> 0 for all ui ∈Ωi (i = 1, . . . ,n), u ∈ Bλ ′(x̄). (2.22)
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Let f and f̂ be defined by (2.20) and (2.21), respectively, while Xn+1 be equipped with the
metric induced by the norm (2.15). We have f̂ (x̄, . . . , x̄, x̄) = ϕ (max1≤i≤n ‖xi‖)< λ ′. Choose
a number ε such that f̂ (x̄, . . . , x̄, x̄)< ε < λ ′. Applying the Ekeland variational principle, we
can find points ωi ∈Ωi (i = 1, . . . ,n) and x ∈ X such that

‖(ω1, . . . ,ωn,x)− (x̄, . . . , x̄, x̄)‖γ < λ
′ ≤ λ , f (ω1, . . . ,ωn,x)≤ f (x̄, . . . , x̄, x̄), (2.23)

f (ω1, . . . ,ωn,x)− f (u1, . . . ,un,u)≤
ε

λ ′
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ (2.24)

for all (u1, . . . ,un,u) ∈Ω1× . . .×Ωn×X . In view of (2.22) and the definitions of λ ′ and f ,
conditions (2.23) yield (2.18) and (2.19). Since ε/λ ′< 1, condition (2.24) contradicts (2.17).
�

Remark 13 The expression in the left-hand side of (2.17) is the nonlocal γ-slope [131, p. 60]
at (ω1, . . . ,ωn,x) of the function (2.21).

The next statement is a localized version of Theorem 3.

Corollary 4 (i) The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if, for
some γ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.16), there exists a λ ∈
]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− xi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.25)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19).

(ii) If ϕ ∈ C 1, then inequality (2.25) in part (i) can be replaced by

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)
×

limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− xi− x‖− max
1≤i≤n

‖ui− xi−u‖

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1. (2.26)

Proof The expression in the left-hand side of (2.25) is the γ-slope [131, p. 61] of the
function (2.21) at (ω1, . . . ,ωn,x). The first assertion follows from Theorem 3 in view of
Lemma 2(ii), while the second one is a consequence of Lemma 3 in view of Remark 3(i). �

In the Hölder setting, Theorem 3 and Corollary 4 yield the following statement.

Corollary 5 Let α > 0 and q > 0. The collection {Ω1, . . . ,Ωn} is α−semitransversal of
order q at x̄ with δ if, for some γ > 0 and any xi ∈ X (i = 1, . . . ,n) with 0 < max1≤i≤n ‖xi‖<
(αδ )

1
q , there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

(
max

1≤i≤n
‖ωi− xi− x‖

)q
−
(

max
1≤i≤n

‖ui− xi−u‖
)q

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ α (2.27)
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for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), or all the more, such that

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1

× limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− xi− x‖− max
1≤i≤n

‖ui− xi−u‖

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ α. (2.28)

Proof The statement is a direct consequence of Theorem 3 and Corollary 4 with ϕ(t) :=
α−1tq for all t ≥ 0. Observe that ϕ−1(t) = (αt)

1
q . �

Remark 14 (i) On top of the explicitly given restriction ‖ωi− x̄‖ < λ/γ in Theorem 3
(and similar conditions in its corollaries) on the choice of the points ωi ∈ Ωi, which
involves γ , the other conditions implicitly impose another one:

‖ωi− x̄‖ ≤ ‖x− x̄‖+‖ωi− xi− x‖+‖xi‖ ≤ ‖x− x̄‖+2 max
1≤i≤n

‖xi‖,

and consequently, ‖ωi− x̄‖ < λ +2ϕ−1(δ ). This alternative restriction can be of im-
portance when γ is small.

(ii) The statements of Theorem 3 and its corollaries can be simplified (and weakened!) by
dropping condition (2.19).

(iii) Inequalities (2.17), (2.25)–(2.28), which are crucial for checking nonlinear semi-
transversality, involve two groups of parameters: on one hand, sufficiently small
vectors xi ∈ X , not all zero, and on the other hand, points x ∈ X and ωi ∈ Ωi near
x̄. Note an important difference between these two groups. The magnitudes of xi

are directly controlled by the value of δ in the definition of ϕ−semitransversality:
ϕ (max1≤i≤n ‖xi‖) < δ . At the same time, taking into account that λ can be made
arbitrarily close to ϕ (max1≤i≤n ‖xi‖), the magnitudes of x− x̄ and ωi− x̄ (as well as
ωi− xi− x) are determined by δ indirectly; they are controlled by max1≤i≤n ‖xi‖: cf.
conditions (2.18) and (2.19).

(iv) In view of the definition of the parametric norm (2.15), if any of the inequalities (2.17),
(2.25)–(2.28) holds true for some γ > 0, then it also holds for any γ ′ ∈]0,γ[.

(v) Even in the linear setting, the characterizations in Corollary 5 are new.

The next corollary provides a simplified (and weaker!) version of Theorem 3. The sim-
plification comes at the expense of eliminating the difference between the two groups of
parameters highlighted in Remark 14(iii).

Corollary 6 The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if, for some γ > 0
and any xi ∈ X (i = 1, . . . ,n) satisfying (2.16), inequality (2.17) holds for all x ∈ Bδ (x̄) and
ωi ∈Ωi∩Bδ/γ(x̄) (i = 1, . . . ,n) satisfying (2.19).
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Sacrificing the estimates for δ in Theorem 3, and Corollaries 4 and 6, we arrive at the
following ‘δ -free’ statement.

Corollary 7 The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ if, for γ and all xi ∈
X (i = 1, . . . ,n) near 0 with max1≤i≤n ‖xi‖ > 0, x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) near x̄
satisfying (2.19), inequality (2.17) holds true. Moreover, inequality (2.17) can be replaced
by its localized version (2.25), or by (2.26) if ϕ ∈ C 1.

Subtransversality

Theorem 4 The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and δ2 if, for some
γ > 0 and any x′ ∈ X satisfying

‖x′− x̄‖< δ2, 0 < max
1≤i≤n

d(x′,Ωi)< ϕ
−1(δ1), (2.29)

there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.30)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying

‖x− x′‖< λ , max
1≤i≤n

‖ωi−ω
′
i‖<

λ

γ
, (2.31)

0 < max
1≤i≤n

‖ωi− x‖ ≤ max
1≤i≤n

‖ω ′i − x′‖< ϕ
−1(λ ). (2.32)

The proof below follows the pattern of that of Theorem 3. It employs a continuous real-
valued function f : Xn+1→ R+ determined by the given function ϕ ∈ C :

f (u1, . . . ,un,u) := ϕ

(
max

1≤i≤n
‖ui−u‖

)
, u1, . . . ,un,u ∈ X , (2.33)

and its restriction to Ω1× . . .×Ωn×X given by (2.21). Note that the function (2.33) is
a particular case of (2.20) corresponding to setting xi := 0 (i = 1, . . . ,n). We provide here
the proof of Theorem 4 for completeness and to expose the differences in handling the two
transversality properties, but we skip the proofs of most of its corollaries.

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−subtransversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Definition 6(ii), there exist a number ρ ∈]0,δ1[ and a point x′ ∈ Bδ2(x̄) such that
ϕ (max1≤i≤n d(x′,Ωi))< ρ and ∩n

i=1Ωi∩Bρ(x′) = /0. Hence, x′ /∈ ∩n
i=1Ωi and

0 < ϕ

(
max

1≤i≤n
d(x′,Ωi)

)
< ρ ≤ d

(
x′,

n⋂
i=1

Ωi

)
.

Let λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[. Choose numbers ε and λ ′ such that

ϕ

(
max

1≤i≤n
d(x′,Ωi)

)
< ε < λ

′ < min{λ ,ρ} ,
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and points ω ′i ∈ Ωi (i = 1, . . . ,n) such that ϕ (max1≤i≤n ‖ω ′i − x′‖) < ε . Let f and f̂ be de-
fined by (2.33) and (2.21), respectively, while Xn+1 be equipped with the metric induced by
the norm (2.15). We have f̂ (ω ′1, . . . ,ω

′
n,x
′)< ε . Applying the Ekeland variational principle,

we can find points ωi ∈Ωi (i = 1, . . . ,n) and x ∈ X such that

‖(ω1, . . . ,ωn,x)− (ω ′1, . . . ,ω
′
n,x
′)‖γ < λ

′, f (ω1, . . . ,ωn,x)≤ f (ω ′1, . . . ,ω
′
n,x
′), (2.34)

f (ω1, . . . ,ωn,x)− f (u1, . . . ,un,u)≤
ε

λ ′
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ (2.35)

for all (u1, . . . ,un,u) ∈ Ω1× . . .×Ωn×X . Thanks to (2.34), we have ‖x− x′‖ < λ ′, and
consequently,

d
(

x,
n⋂

i=1

Ωi

)
≥ d
(

x′,
n⋂

i=1

Ωi

)
−‖x− x′‖> d

(
x′,

n⋂
i=1

Ωi

)
−λ

′ > 0.

Hence, x /∈ ∩n
i=1Ωi, and max1≤i≤n ‖ωi− x‖ > 0. In view of the definitions of λ ′ and f ,

conditions (2.34) together with the last inequality yield (2.31) and (2.32). Since ε/λ ′ < 1,
condition (2.35) contradicts (2.30). �

The next statement is a localized version of Theorem 4.

Corollary 8 (i) The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and
δ2 if, for some γ > 0 and any x′ ∈ X satisfying (2.29), there exists a λ ∈
]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that

limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.36)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.31) and (2.32).

(ii) If ϕ ∈ C 1, then inequality (2.36) in part (i) can be replaced by

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)

× limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− x‖− max
1≤i≤n

‖ui−u‖

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1. (2.37)

In the Hölder setting, Theorem 4 and Corollary 8 yield the following statement. In view
of Remark 7, we assume that q≤ 1.

Corollary 9 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−subtransver-
sal of order q at x̄ with δ1 and δ2 if, for some γ > 0 and any x′ ∈ Bδ2(x̄) with

0 < max
1≤i≤n

d(x′,Ωi)< (αδ1)
1
q , there exists a λ ∈

]
α−1( max

1≤i≤n
d(x′,Ωi)

)q
,δ1
[

such that

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

(
max

1≤i≤n
‖ωi− x‖

)q
−
(

max
1≤i≤n

‖ui−u‖
)q

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ α, (2.38)
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for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.31) and

0 < max
1≤i≤n

‖ωi− x‖ ≤ max
1≤i≤n

‖ω ′i − x′‖< (αλ )
1
q ,

or all the more, such that

q
(

max
1≤i≤n

‖ωi− x‖
)q−1

× limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− x‖− max
1≤i≤n

‖ui−u‖

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ α. (2.39)

Remark 15 (i) The expressions in the left-hand sides of (2.30) and (2.36) are, respec-
tively, the nonlocal γ-slope and the γ-slope at (ω1, . . . ,ωn,x) of the function (2.21).

(ii) Under the conditions of Theorem 4, there are two ways for estimating ‖ωi− x̄‖:

‖ωi− x̄‖ ≤ ‖x′− x̄‖+‖ωi−ω
′
i‖+‖ω ′i − x′‖< δ2 +λ/γ +ϕ

−1(λ ), and

‖ωi− x̄‖ ≤ ‖x− x̄‖+‖ωi− x‖
≤ ‖x′− x̄‖+‖x− x′‖+ max

1≤i≤n
‖ω ′i − x′‖< δ2 +λ +ϕ

−1(λ ).

The second estimate does not involve γ and is better than the first one when γ < 1. A
similar observation can be made about Corollary 10.

(iii) It can be observed from the proof of Theorem 4 that the sufficient conditions for
ϕ−subtransversality can be strengthened by adding another restriction on the choice
of x′: ϕ (max1≤i≤n d(x′,Ωi))< d

(
x′,∩n

i=1Ωi
)
.

(iv) The statement of Theorem 4 and its corollaries can be simplified by dropping condition
(2.32).

(v) Inequalities (2.30), (2.36)–(2.39), which are crucial for checking nonlinear sub-
transversality, involve points x ∈ X and ωi ∈ Ωi near x̄. Their distance from x̄ is
determined in Theorem 4 via other points: x′ /∈ ∩n

i=1Ωi and ω ′i ∈ Ωi; cf. conditions
(2.31) and (2.32). Only the distance from x′ to x̄ and to the sets Ωi is directly con-
trolled by the values of δ1 and δ2 in the definition of ϕ−subtransversality: x′ ∈ Bδ2(x̄)
and ϕ (max1≤i≤n d(x′,Ωi)) < δ1. All the other distances are controlled by λ , which
can be made arbitrarily close to ϕ (max1≤i≤n d(x′,Ωi)).

(vi) In view of the definition of the parametric norm (2.15), if any of the inequalities (2.30),
(2.36)–(2.39) holds true for some γ > 0, then it also holds for any γ ′ ∈]0,γ[.

(vii) Corollary 9 strengthens [141, Proposition 6]. In the linear case, it improves [138,
Proposition 10].
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The next corollary provides a simplified (and weaker!) version of Theorem 4; cf. Re-
mark 15(v).

Corollary 10 The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and δ2 if, for
some γ > 0, inequality (2.30) holds for all x ∈ Bδ1+δ2(x̄) and ωi ∈ Ωi∩Bδ2+δ1/γ+ϕ−1(δ1)

(x̄)
(i = 1, . . . ,n) satisfying 0 < max1≤i≤n ‖ωi− x‖< ϕ−1(δ1).

Proof Let δ1 > 0 and δ2 > 0, x′ ∈ Bδ2(x̄) \∩
n
i=1Ωi, λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[, and

points x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfy conditions (2.31) and (2.32). Then

‖x− x̄‖ ≤ ‖x− x′‖+‖x′− x̄‖< λ +δ2 < δ1 +δ2,

‖ωi− x̄‖ ≤ ‖x′− x̄‖+‖ωi−ω
′
i‖+‖ω ′i − x′‖

< δ2 +λ/γ +ϕ
−1(λ )< δ2 +δ1/γ +ϕ

−1(δ1),

‖ωi− x‖< ϕ
−1(λ )< ϕ

−1(δ1),

i.e. points x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfy all the conditions in the corollary. Hence,
inequality (2.30) holds. It follows from Theorem 4 that {Ω1, . . . ,Ωn} is ϕ−subtransversal at
x̄ with δ1 and δ2. �

Sacrificing the estimates for δ1 and δ2 in Theorem 4, and Corollaries 8 and 10, we can
formulate the following ‘δ -free’ statement.

Corollary 11 The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ if inequality (2.30)
holds true for some γ > 0 and all x ∈ X near x̄ and ωi ∈ Ωi (i = 1, . . . ,n) near x̄ satisfy-
ing max1≤i≤n ‖ωi− x‖ > 0. Moreover, inequality (2.30) can be replaced by its localized
version (2.36), or by (2.37) if ϕ ∈ C 1.

Transversality

Since ϕ−transversality is in a sense an overarching property covering both ϕ−semitrans-
versality and ϕ−subtransversality (see Proposition 2(iii)), the next theorem contains some
elements of both Theorems 3 and 4, and its proof goes along the same lines. Similar to the
proof of Theorem 3, it employs functions (2.20) and (2.21).

Theorem 5 The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2 if, for some
γ > 0 and any ω ′i ∈Ωi∩Bδ2(x̄) (i= 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, there exists a λ ∈]ϕ(ξ ),δ1[

such that inequality (2.17) holds for all x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying

‖x− x̄‖< λ , max
1≤i≤n

‖ωi−ω
′
i‖<

λ

γ
, (2.40)

0 < max
1≤i≤n

‖ωi− xi− x‖ ≤ max
1≤i≤n

‖ω ′i − xi− x̄‖= ξ . (2.41)
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Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−transversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Definition 6(iii), there exist a number ρ ∈]0,δ1[ and points ω ′i ∈ Ωi∩Bδ2(x̄) and
x′i ∈ X (i = 1, . . . ,n) with ϕ(max1≤i≤n ‖x′i‖)< ρ such that ∩n

i=1(Ωi−ω ′i − x′i)∩ (ρB) = /0.
Thus, ξ := max1≤i≤n ‖x′i‖ > 0 and ξ < ϕ−1(ρ)< ϕ−1(δ1). Set xi := ω ′i + x′i − x̄
(i = 1, . . . ,n). Then

max
1≤i≤n

‖ω ′i − xi− x̄‖= max
1≤i≤n

‖x′i‖= ξ .

Let λ ∈]ϕ(ξ ),δ1[ and λ ′ := min{λ ,ρ}. Then ∩n
i=1(Ωi−xi)∩Bλ ′(x̄) = /0, and consequently,

condition (2.22) holds true. Let f and f̂ be defined by (2.20) and (2.21), respectively, while
Xn+1 be equipped with the metric induced by the norm (2.15). We have f̂ (ω ′1, . . . ,ω

′
n, x̄) =

ϕ (max1≤i≤n ‖x′i‖) = ϕ (ξ ) < λ ′. Choose a number ε such that f̂ (ω ′1, . . . ,ω
′
n, x̄) < ε < λ ′.

Applying the Ekeland variational principle, we can find points ωi ∈ Ωi (i = 1, . . . ,n) and
x ∈ X such that

‖(ω1, . . . ,ωn,x)− (ω ′1, . . . ,ω
′
n, x̄)‖γ < λ

′, f (ω1, . . . ,ωn,x)≤ f (ω ′1, . . . ,ω
′
n, x̄), (2.42)

and condition (2.24) holds for all u ∈ X and ui ∈Ωi (i = 1, . . . ,n). In view of (2.22) and the
definitions of λ ′ and f , conditions (2.42) yield (2.40) and (2.41). Since ε/λ ′ < 1, condition
(2.24) contradicts (2.17). �

The next statement is a localized version of Theorem 5.

Corollary 12 (i) The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2 if,
for some γ > 0 and any ω ′i ∈ Ωi ∩ Bδ2(x̄) (i = 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, there
exists a λ ∈]ϕ(ξ ),δ1[ such that inequality (2.25) holds for all x,xi ∈ X and ωi ∈ Ωi

(i = 1, . . . ,n) satisfying (2.40) and (2.41).

(ii) If ϕ ∈ C 1, then inequality (2.25) in part (i) can be replaced by (2.26).

In the Hölder setting, Theorem 5 and Corollary 12 yield the following statement. In view
of Remark 7, we assume that q≤ 1.

Corollary 13 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−transversal of
order q at x̄ with δ1 and δ2 if, for some γ > 0 and any ω ′i ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . ,n) and

ξ ∈]0,(αδ1)
1
q [, there exists a λ ∈]α−1ξ q,δ1[ such that inequality (2.27) holds true for all

x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.41), or all the more, such that
inequality (2.28) holds true.

Remark 16 (i) On top of the explicitly given restriction ‖ωi−ω ′i‖< λ/γ in Theorem 5
(and similar conditions in its corollaries), which involves γ , the other conditions im-
plicitly impose another one:

‖ωi−ω
′
i‖ ≤ ‖x− x̄‖+‖ωi− xi− x‖+‖ω ′i − xi− x̄‖
≤ ‖x− x̄‖+2ξ < λ +2ϕ

−1(δ1).

This alternative restriction can be of importance when γ is small.
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(ii) It can be observed from the proof of Theorem 5 that the sufficient conditions for
ϕ−transversality can be strengthened by adding another restriction on the choice of
ξ and xi: ϕ(ξ )< d(x̄,∩n

i=1(Ωi− xi)).

(iii) The sufficient conditions for ϕ−semitransversality and ϕ−subtransversality in The-
orems 3 and 4 are particular cases of those in Theorem 5, corresponding to setting
ω ′i := x̄ and x1 = . . .= xn, respectively.

(iv) The statement of Theorem 5 and its corollaries can be simplified by dropping condition
(2.41).

(v) Inequalities (2.17), (2.25)–(2.28), which are crucial for checking nonlinear transver-
sality, involve a collection of parameters: x,xi ∈ X and ωi ∈ Ωi, which are related to
another collection: a small number ξ > 0 and points ω ′i ∈ Ωi near x̄. The value of ξ

and magnitudes of ω ′i − x̄ are directly controlled by the values of δ1 and δ2 in the defi-
nition of ϕ−transversality: ϕ(ξ )< δ1 and ω ′i ∈ Bδ2(x̄). At the same time, taking into
account that λ can be made arbitrarily close to ϕ(ξ ), the magnitudes of x− x̄, ωi−ω ′i
and xi are determined by δ1 and δ2 indirectly; they are controlled by ξ : cf. conditions
(2.40) and (2.41). Thus, the derived parameters x,xi ∈ X and ωi ∈Ωi involved in (2.17)
possess the natural properties: when δ1 and δ2 are small, the points x and ωi are near x̄
and the vectors xi are small.

(vi) In view of the definition of the parametric norm (2.15), if any of the inequalities (2.17),
(2.25)–(2.28) holds true for some γ > 0, then it also holds for any γ ′ ∈]0,γ[.

(vii) Even in the linear setting, the characterizations in Corollary 13 are new.

The next corollary provides a simplified (and weaker!) version of Theorem 5; cf. Re-
mark 16(v).

Corollary 14 The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2 if, for some
γ > 0, inequality (2.17) holds for all x∈Bδ1(x̄), xi ∈X and ωi ∈Ωi∩Bδ2+δ1/γ(x̄) (i= 1, . . . ,n)
satisfying ϕ (max1≤i≤nd(xi + x̄,Ωi))< δ1 and 0 < max1≤i≤n ‖ωi− xi− x‖< ϕ−1(δ1).

Proof Let ω ′i ∈Ωi∩Bδ2(x̄), ξ ∈]0,ϕ−1(δ1)[, λ ∈]ϕ(ξ ),δ1[, and points x,xi ∈X and ωi ∈Ωi

(i = 1, . . . ,n) satisfy conditions (2.40) and (2.41). Then

‖x− x̄‖< λ < δ1, ‖ωi− x̄‖ ≤ ‖ω ′i − x̄‖+‖ωi−ω
′
i‖< δ2 +λ/γ < δ2 +δ1/γ,

d(xi + x̄,Ωi)≤ ‖xi + x̄−ω
′
i‖ ≤ ξ < ϕ

−1(δ1),

0 < max
1≤i≤n

‖ωi− xi− x‖ ≤ ξ < ϕ
−1(δ1),

i.e. points x,xi ∈X and ωi ∈Ωi (i= 1, . . . ,n) satisfy all the conditions in the corollary. Hence,
inequality (2.17) holds. It follows from Theorem 5 that {Ω1, . . . ,Ωn} is ϕ−transversal at x̄
with δ1 and δ2. �
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Sacrificing the estimates for δ1 and δ2 in Theorem 5, and Corollaries 12 and 14, we can
formulate the following ‘δ -free’ statement.

Corollary 15 The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ if, for some γ > 0 and
all x ∈ X near x̄, xi ∈ X (i = 1, . . . ,n) near 0 and ωi ∈ Ωi (i = 1, . . . ,n) near x̄ satisfying
max1≤i≤n ‖ωi− xi− x‖> 0, inequality (2.17) holds true. Moreover, inequality (2.17) can be
replaced by its localized version (2.25), or by (2.26) if ϕ ∈ C 1.

Remark 17 The sufficient conditions for ϕ−semitransversality and ϕ−transversality in
Theorems 3 and 5 and their corollaries use the same (slope) inequalities (2.17), (2.25) and
(2.26). Nevertheless, the sufficient conditions in Theorem 5 and Corollary 15 are stronger
than the corresponding ones in Theorem 3 and Corollary 7, respectively, as they require the
inequalities to be satisfied on a larger set of points. This is natural as ϕ−transversality is
a stronger property than ϕ−semitransversality. At the same time, the ‘δ -free’ versions in
Corollaries 7 and 15 are almost identical: the only difference is the additional condition

max
1≤i≤n

‖ωi− xi− x‖ ≤ max
1≤i≤n

‖xi‖

in Corollary 7. The sufficient condition in Corollary 15 is still acceptable for char-
acterizing ϕ−transversality, but the one in Corollary 7 seems a little too strong for
ϕ−semitransversality. That is why we prefer not to oversimplify these sufficient conditions.

2.4.2 Slope Necessary Conditions

In this section, we formulate slope necessary conditions for the properties in Definition 6.
They all follow the same pattern. We first establish nonlocal slope necessary conditions aris-
ing from the definitions of the respective properties. The corresponding local slope necessary
conditions, their Hölder as well as simplified (δ -free) versions are formulated as corollaries.
This way we expose the hierarchy of this type of conditions. These results make the founda-
tion for the dual necessary conditions for the respective properties in Section 2.5.

The next theorem establishes nonlocal slope necessary conditions for the three transver-
sality properties.

Theorem 6 Suppose there exist an α > 0 and a δ > 0 such that ϕ(t) ≥ αt for all t ∈
]0,ϕ−1(δ )[, and γ := (α−1 +1)−1.

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ , then

sup
ui∈Ωi (i=1,...,n), u∈X
(u1,...,un,u)6=(x̄,...,x̄,x̄)

ϕ

(
max

1≤i≤n
‖xi‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ 1 (2.43)

for all xi ∈ X (i = 1, . . . ,n) satisfying

0 < max
1≤i≤n

‖xi‖< ϕ
−1(δ ). (2.44)
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(ii) If {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 := δ and some δ2 > 0, then

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.45)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying

‖x− x̄‖< δ2, 0 < max
1≤i≤n

‖ωi− x‖< ϕ
−1(δ1). (2.46)

(iii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 := δ and some δ2 > 0, then

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x̄)

ϕ

(
max

1≤i≤n
‖ωi− xi− x̄‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn, x̄)‖γ

≥ 1 (2.47)

for all ωi ∈Ωi and xi ∈ X (i = 1, . . . ,n) satisfying

max
1≤i≤n

‖ωi− x̄‖< δ2, 0 < max
1≤i≤n

‖ωi− xi− x̄‖< ϕ
−1(δ1). (2.48)

Proof

(i) Suppose {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ . Let γ := (α−1 +1)−1,
xi ∈ X (i = 1, . . . ,n) satisfy (2.16). Denote M := ϕ (max1≤i≤n ‖xi‖) < δ . Then
M ≥ α max1≤i≤n ‖xi‖. Let η ∈]0,1[, and choose a number γ ′ ∈]ηγ,γ[. Then
(γ ′)−1−α−1 > 1. Choose a ξ > 1 such that ξ ≤ η−1, ξ ≤ (γ ′)−1−α−1 and ξ M < δ .
By Definition 6(i), we have ∩n

i=1(Ωi− xi)∩Bξ M(x̄) 6= /0, and consequently, there ex-
ist x̂ ∈ X and ω̂i ∈ Ωi (i = 1, . . . ,n), with ω̂1 − x1 = . . . = ω̂n − xn = x̂ such that
‖x̄− x̂‖ < ξ M. Since max1≤i≤n ‖ω̂i− xi− x̂‖ = 0 while max1≤i≤n ‖xi‖ > 0, we have
(ω̂1, . . . , ω̂n, x̂) 6= (x̄, . . . , x̄, x̄). Moreover, for all i = 1, . . . ,n,

‖ω̂i− x̄‖ ≤ ‖ω̂i− xi− x̄‖+‖xi‖
= ‖x̂− x̄‖+‖xi‖< ξ M+α

−1M ≤M(γ ′)−1 < M(ηγ)−1,

and consequently,

‖(ω̂1, . . . , ω̂n, x̂)− (x̄, . . . , x̄, x̄)‖γ = max
{
‖x̂− x̄‖,γ max

1≤i≤n
‖ω̂i− x̄‖

}
< M max

{
ξ ,η−1}= Mη

−1.

Hence, ϕ (max1≤i≤n ‖xi‖) =M > η‖(ω̂1, . . . , ω̂n, x̂)−(x̄, . . . , x̄, x̄)‖γ , and consequently,

sup
ui∈Ωi (i=1,...,n), u∈X
(u1,...,un,u)6=(x̄,...,x̄,x̄)

ϕ (max1≤i≤n ‖xi‖)−ϕ (max1≤i≤n ‖ui− xi−u‖)
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ ϕ(max1≤i≤n ‖xi‖)
‖(ω̂1, . . . , ω̂n, x̂)− (x̄, . . . , x̄, x̄)‖γ

> η .

Letting η ↑ 1, we arrive at inequality (2.43).
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(ii) Suppose {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and some δ2 > 0. Let
γ := (α−1 + 1)−1, x ∈ Bδ2(x̄) and ωi ∈ Ωi (i = 1, . . . ,n) satisfy (2.46). Denote
M := ϕ (max1≤i≤n ‖ωi− x‖) < δ1. Then M ≥ α max1≤i≤n ‖ωi− x‖. Let η ∈]0,1[,
and choose a number γ ′ ∈]ηγ,γ[. Then (γ ′)−1 − α−1 > 1. Choose a ξ > 1 such
that ξ ≤ η−1, ξ ≤ (γ ′)−1−α−1 and ξ M < δ1. By Definition 6(ii), there exists
an ω ∈ ∩n

i=1Ωi such that ‖ω − x‖ < ξ M. Since max1≤i≤n ‖ωi − x‖ > 0, we have
(ω, . . . ,ω,ω) 6= (ω1, . . . ,ωn,x). Moreover, for all i = 1, . . . ,n,

‖ω−ωi‖ ≤ ‖ω− x‖+‖ωi− x‖< ξ M+α
−1M ≤M(γ ′)−1 < M(ηγ)−1,

and consequently,

‖(ω, . . . ,ω,ω)− (ω1, . . . ,ωn,x)‖γ = max
{
‖ω− x‖,γ max

1≤i≤n
‖ω−ωi‖

}
< M max

{
ξ ,η−1}= Mη

−1.

Thus, ϕ (max1≤i≤n ‖ωi− x‖) = M > η‖(ω, . . . ,ω,ω) − (ω1, . . . ,ωn,x)‖γ . Since
η ∈]0,1[ is arbitrary, we obtain

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥
ϕ

(
max

1≤i≤n
‖ωi− x‖

)
‖(ω, . . . ,ω,ω)− (ω1, . . . ,ωn,x)‖γ

> η .

Letting η ↑ 1, we arrive at (2.45).

(iii) Suppose {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0. Let
γ := (α−1 + 1)−1, ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) satisfy (2.48). Denote
M := ϕ(max1≤i≤n ‖ωi− xi− x̄‖)< δ1. Then M ≥ α max1≤i≤n ‖ωi − xi − x̄‖. Let
η ∈]0,1[, and choose a number γ ′ ∈]ηγ,γ[. Then (γ ′)−1 − α−1 > 1. Choose a
ξ > 1 such that ξ ≤ η−1, ξ ≤ (γ ′)−1 − α−1 and ξ M < δ1. By Definition 6(iii),
∩n

i=1(Ωi−ωi−x′i)∩ (ξ M)B 6= /0, where x′i := x̄+xi−ωi (i = 1, . . . ,n), or equivalently,
∩n

i=1(Ωi−xi)∩Bξ M(x̄) 6= /0. Thus, there exist ω̂i ∈Ωi (i= 1, . . . ,n) and x̂∈ X such that
ω̂1−x1 = . . .= ω̂n−xn = x̂ such that ‖x̄− x̂‖< ξ M. Since max1≤i≤n ‖ω̂i−xi− x̂‖= 0
while max1≤i≤n ‖ωi− xi− x̄‖ > 0, we have (ω̂1, . . . , ω̂n, x̂) 6= (ω1, . . . ,ωn, x̄). More-
over, for all i = 1, . . . ,n,

‖ω̂i−ωi‖ ≤ ‖ω̂i− xi− x̄‖+‖xi + x̄−ωi‖
= ‖x̂− x̄‖+‖xi + x̄−ωi‖< ξ M+α

−1M ≤M(γ ′)−1 < M(ηγ)−1,

and consequently,

‖(ω̂1, . . . , ω̂n, x̂)− (ω1, . . . ,ωn, x̄)‖γ = max
{
‖x̂− x̄‖,γ max

1≤i≤n
‖ω̂i−ωi‖

}
< M max

{
ξ ,η−1}= Mη

−1.
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Hence, ϕ (max1≤i≤n ‖ωi− xi− x̄‖) = M > η‖(ω̂1, . . . , ω̂n, x̂)− (ω1, . . . ,ωn, x̄)‖γ , and
consequently,

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x̄)

ϕ(max1≤i≤n ‖ωi− xi− x̄‖)−ϕ(max1≤i≤n ‖ui− xi−u‖)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn, x̄)‖γ

≥ ϕ (max1≤i≤n ‖ωi− xi− x̄‖)
‖(ω̂1, . . . , ω̂n, x̂)− (ω1, . . . ,ωn, x̄)‖γ

> η .

Letting η ↑ 1, we arrive at (2.47).

�

Remark 18 (i) The expressions in the left-hand sides of (2.43), (2.45) and (2.47) are
the nonlocal γ-slopes [131, p. 60] computed at respective points of the extended-real-
valued function f̂ (2.21) where f : Xn+1→ R+ is given by (2.20) in the case of (2.43)
and (2.47), and by (2.33) in the case of (2.45).

(ii) In view of the definition of the parametric norm (2.15), if inequalities (2.43), (2.45)
and (2.47) hold with the given γ , they also hold with any γ ′ ∈]0,γ[. This observation
is applicable to all slope inequalities in this section.

In the Hölder setting, Theorem 6 yields the following statement.

Corollary 16 Let α > 0 and q ∈]0,1].

(i) Suppose {Ω1, . . . ,Ωn} is α−semitransversal of order q at x̄ with some δ > 0. Set
γ := (α

1
q δ

1
q−1 +1)−1. Then

sup
ui∈Ωi (i=1,...,n), u∈X
(u1,...,un,u)6=(x̄,...,x̄,x̄)

max
1≤i≤n

‖xi‖q− max
1≤i≤n

‖ui− xi−u‖q

‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ α

for all xi ∈ X (i = 1, . . . ,n) with 0 < max1≤i≤n ‖xi‖< (αδ )
1
q .

(ii) Suppose {Ω1, . . . ,Ωn} is α−subtransversal of order q at x̄. Set γ := (α
1
q δ

1
q−1

1 +1)−1.
Then

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− x‖q− max
1≤i≤n

‖ui−u‖q

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ α

for all x ∈ Bδ2(x̄) and ωi ∈Ωi (i = 1, . . . ,n) with 0 < max1≤i≤n ‖ωi− x‖< (αδ1)
1
q .

(iii) Suppose {Ω1, . . . ,Ωn} is α−transversal of order q at x̄. Set γ := (α
1
q δ

1
q−1

1 +1)−1.
Then

sup
ui∈Ωi (i=1,...,n), u∈X

(u1,...,un,u)6=(ω1,...,ωn,x̄)

max
1≤i≤n

‖ωi− xi− x̄‖q− max
1≤i≤n

‖ui− xi−u‖q

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn, x̄)‖γ

≥ α
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for all ωi ∈ Ωi ∩Bδ2(x̄) and xi ∈ X (i = 1, . . . ,n) with 0 < max1≤i≤n ‖ωi− xi− x̄‖ <
(αδ1)

1
q .

Proof The assertion in part (i) is a consequence of Theorem 6(i) with ϕ(t) := α−1tq

for all t ≥ 0; then of course, ϕ−1(t) = (αt)
1
q . To prove the statement, given an α and

a δ , we need to compute a lower bound ᾱ for ϕ(t)/t on ]0,ϕ−1(δ )[. The function
t 7→ ϕ(t)/t = α−1tq−1 is nonincreasing on ]0,+∞[; hence, its value at ϕ−1(δ ) = (αδ )

1
q

provides the exact lower bound. Thus, we can take ᾱ := α−1(αδ )
q−1

q = α
− 1

q δ
1− 1

q . Then
γ := (ᾱ−1 + 1)−1 = (α

1
q δ

1
q−1 + 1)−1. The rest of the proof is straightforward. The proofs

for parts (ii) and (iii) are similar. �

Remark 19 (i) When q = 1, we have γ := (α +1)−1 in Corollary 16, and this value does
not depend on δ . When q < 1, by choosing a sufficiently small δ , the value of γ can
be made arbitrarily close to 1.

(ii) Part (ii) of Corollary 16 strengthens [138, Proposition 10], while parts (i) and (iii) are
new even in the linear setting.

The next statement presents a localized version of Theorem 6 in the convex setting.

Corollary 17 Suppose Ω1, . . . ,Ωn and ϕ are convex, ϕ ′+(0) > 0, and γ := ((ϕ ′+(0))
−1 +

1)−1.

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with some δ > 0, then

limsup
ui

Ωi→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

ϕ

(
max

1≤i≤n
‖xi‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ 1 (2.49)

for all xi ∈ X (i = 1, . . . ,n) satisfying (2.16).

(ii) If {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0, then

limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1 (2.50)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.46).

(iii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then

limsup
ui

Ωi→ωi (i=1,...,n), u→x̄
(u1,...,un,u)6=(ω1,...,ωn,x̄)

ϕ

(
max

1≤i≤n
‖ωi− xi− x̄‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (ω1, . . . ,ωn, x̄)‖γ

≥ 1 (2.51)

for all ωi ∈Ωi and xi ∈ X (i = 1, . . . ,n) satisfying (2.48).
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Moreover, if ϕ ∈ C 1, then inequalities (2.49), (2.50) and (2.51) in parts (i)–(iii) can be
replaced, respectively, by

ϕ
′
(

max
1≤i≤n

‖xi‖
)

limsup
ui

Ωi→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

max
1≤i≤n

‖xi‖− max
1≤i≤n

‖ui− xi−u‖

‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ 1, (2.52)

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)

× limsup
ui

Ωi→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖ωi− x‖− max
1≤i≤n

‖ui−u‖

‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

≥ 1, (2.53)

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x̄‖
)

× limsup
ui

Ωi→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

max
1≤i≤n

‖ωi− xi− x̄‖− max
1≤i≤n

‖ui− xi−u‖

‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ 1. (2.54)

Proof In view of the convexity of ϕ , it holds ϕ(t)≥ ϕ ′+(0)t for all t ≥ 0. Moreover, func-
tions (2.20), (2.33) and (2.21) are convex. By Lemma 2(iv), the left-hand sides of inequali-
ties (2.43), (2.45) and (2.47) are equal to the left-hand sides of inequalities (2.49), (2.50) and
(2.51), respectively. If ϕ ∈ C 1, then, thanks to Lemma 3, the left-hand sides of inequalities
(2.49), (2.50) and (2.51) are equal, respectively, to the left-hand sides of inequalities (2.52),
(2.53) and (2.54). �

Remark 20 (i) The expressions in the left-hand sides of the inequalities (2.49), (2.50)
and (2.51) are the γ-slopes [131, p. 61] computed at respective points of the extended-
real-valued function (2.21), where f is defined by either (2.20) or (2.33).

(ii) The slope necessary conditions for ϕ−semitransversality and ϕ−subtransversality
in parts (i) and (ii) of Corollary 17 are particular cases of the slope condition of
ϕ−transversality in part (iii) of this corollary, corresponding to setting ω ′i := x̄ (i =
1, . . . ,n) and x1 = . . .= xn, respectively.

Sacrificing the estimates for the δ ’s in Theorem 6 and Corollary 17, we can formulate
‘δ -free’ versions of these statements.

Corollary 18 Suppose ϕ(t)≥αt for some α > 0 and all t > 0 near 0, and γ := (α−1 +1)−1.

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄, then inequality (2.43) holds for all xi ∈ X
(i = 1, . . . ,n) near 0 with max1≤i≤n ‖xi‖> 0.

(ii) If {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄, then inequality (2.45) holds for all x ∈ X
near x̄ and ωi ∈Ωi (i = 1, . . . ,n) near x̄ with max1≤i≤n ‖ωi− x‖> 0.
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(iii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄, then inequality (2.47) holds for all ωi ∈ Ωi

(i = 1, . . . ,n) near x̄ and xi ∈ X (i = 1, . . . ,n) near 0 with max1≤i≤n ‖ωi− xi− x̄‖> 0.

Corollary 19 Suppose Ω1, . . . ,Ωn and ϕ are convex, ϕ ′+(0) > 0, and
γ := ((ϕ ′+(0))

−1 +1)−1.

(i) If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄, then inequality (2.49) holds for all xi ∈ X
(i = 1, . . . ,n) near 0 with max1≤i≤n ‖xi‖> 0.

(ii) If {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄, then inequality (2.50) holds for all x ∈ X
near x̄ and ωi ∈Ωi (i = 1, . . . ,n) near x̄ with max1≤i≤n ‖ωi− x‖> 0.

(iii) If {Ω1, . . . ,Ωn} is ϕ−transversal at x̄, then inequality (2.51) holds for all ωi ∈ Ωi

(i = 1, . . . ,n) near x̄ and xi ∈ X (i = 1, . . . ,n) near 0 with max1≤i≤n ‖ωi− xi− x̄‖> 0.

Moreover, if ϕ ∈ C 1, then inequalities (2.49), (2.50) and (2.51) in parts (i)–(iii) can be
replaced by (2.52), (2.53) and (2.54), respectively.

Remark 21 If ∩n
i=1Ωi is closed and x̄ ∈ bd∩n

i=1Ωi, then condition ϕ ′+(0) > 0 in parts (ii)
and (iii) of Corollaries 17 and 19 can be dropped, as in this case Proposition 3 implies
that ϕ ′+(0) ≥ 1. Also in view of this proposition, one can suppose in parts (ii) and (iii) of
Theorem 6 and Corollary 18 that α ≥ 1.

The next sufficient condition for ϕ−subtransversality was established in [70].

Proposition 12 Suppose X is Banach, and Ω1, . . . ,Ωn are closed. The collection
{Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if, for some γ > 0
and any x′ ∈ X satisfying ‖x′− x̄‖ < δ2 and 0 < max1≤i≤n d(x′,Ωi) < ϕ−1(δ1), there ex-
ists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that inequality (2.50) holds for all x ∈ X and
ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying ‖x− x′‖ < λ , max1≤i≤n ‖ωi −ω ′i‖ < λγ−1 and 0 <

max1≤i≤n ‖ωi− x‖ ≤max1≤i≤n ‖ω ′i − x′‖< ϕ−1(λ ).

From Proposition 12 and Corollary 19(ii), we obtain a complete slope characterization
of ϕ−subtransversality in the convex case.

Corollary 20 Suppose X is Banach, Ω1, . . . ,Ωn are closed and convex, ϕ is convex, ϕ ′+(0)>
0, and γ := ((ϕ ′+(0))

−1 +1)−1. The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ if and
only if inequality (2.50) holds for all x ∈ X near x̄ and ωi ∈ Ωi (i = 1, . . . ,n) near x̄ with
max1≤i≤n ‖ωi− x‖> 0.

Remark 22 Combining sufficient conditions from the previous section for the other two
nonlinear transversality properties with the corresponding necessary conditions from Corol-
lary 19 does not lead to their complete slope characterizations.
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2.5 Dual Characterizations

2.5.1 Dual Sufficient Conditions

Semitransversality

If not explicitly stated otherwise, in this and the subsequent sections the space X is assumed
to be Banach, the sets Ω1, . . . ,Ωn are assumed closed; δ , δ1 and δ2 are given positive num-
bers.

The dual norm on (X∗)n+1 corresponding to (2.15) has the following form:

‖(x∗1, . . . ,x∗n,x∗)‖γ = ‖x∗‖+
1
γ

n

∑
i=1
‖x∗i ‖, x∗1, . . . ,x

∗
n,x
∗ ∈ X∗. (2.55)

We will denote by dγ the distance in (X∗)n+1 determined by (2.55).
In this section, we use the function f̂ given by (2.21) with f : Xn+1 → R+ defined by

(2.20). The next statement provides dual characterizations of ϕ−semitransversality in terms
of subdifferentials of f̂ .

Proposition 13 (i) The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if,
for some γ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.16), there exists a λ ∈
]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

dγ

(
0,∂ f̂ (ω1, . . . ,ωn,x)

)
≥ 1 (2.56)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), where ∂ in (2.56)
stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ in (2.56) standing for the
Fréchet subdifferential (∂ := ∂ F ), and condition (2.19) replaced by

0 < max
1≤i≤n

‖ωi− xi− x‖< ϕ
−1(λ ). (2.57)

Proof

(i) Suppose {Ω1, . . . ,Ωn} is not ϕ−semitransversal at x̄ with δ , and let γ > 0 be given.
By Theorem 3, there exist points xi ∈ X (i = 1, . . . ,n) satisfying (2.16) such that, for
any λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [, there exist x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying
(2.18) and (2.19), and a number τ ∈]0,1[ such that

ϕ

(
max

1≤i≤n
‖ωi− xi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
≤ τ‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ (2.58)

59



for all ui ∈Ωi near ωi (i = 1, . . . ,n) and all u near x. In other words, (ω1, . . . ,ωn,x) is
a local minimizer of the function

(u1, . . . ,un,u) 7→ f̂ (u1, . . . ,un,u)+ τ‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ . (2.59)

By Lemma 5, its Fréchet and, as a consequence, Clarke subdifferential at this point
contains 0. Observe that (2.59) is the sum of the function f̂ and the Lipschitz
continuous convex function (u1, . . . ,un,u) 7→ τ‖(u1, . . . ,un,u) − (ω1, . . . ,ωn,x)‖γ ,
and at any point all subgradients (x∗1, . . . ,x

∗
n,x
∗) of the latter function satisfy

‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ . By the Clarke–Rockafellar sum rule (Lemma 4(i)), there exists
a subgradient (x∗1, . . . ,x

∗
n,x
∗)∈ ∂C f̂ (ω1, . . . ,ωn,x) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ < 1.

The last inequality contradicts (2.56).

(ii) If X is Asplund, then one can employ the fuzzy sum rule (Lemma 4(ii)): for any
ε > 0, there exist points x′ ∈ Bε(x), ω ′i ∈Ωi∩Bε(ωi) (i = 1, . . . ,n), and a subgradient
(x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ F f̂ (ω ′1, . . . ,ω

′
n,x
′) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < τ +ε . The number

ε can be chosen small enough so that ‖x′− x̄‖ < λ , max1≤i≤n ‖ω ′i − x̄‖ < λ/γ , 0 <

max1≤i≤n ‖ω ′i − xi− x′‖ < ϕ−1(λ ), and τ + ε < 1. The last inequality again yields
‖(x∗1, . . . ,x∗n,x∗)‖γ < 1, which contradicts (2.56).

�

The key condition (2.56) in Proposition 13 involves subdifferentials of the function f̂
given by (2.21) with f : Xn+1→R+ defined by (2.20). Subgradients of f̂ have n+1 compo-
nent vectors x∗1, . . . ,x

∗
n,x
∗. As it can be seen from the representation (2.55) of the dual norm,

the contribution of the vectors x∗1, . . . ,x
∗
n on one hand and x∗ on the other hand to condition

(2.56) is different. The next corollary exposes this difference.

Corollary 21 (i) The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if, for
some γ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.16), there exists a λ ∈
]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that ‖x∗‖ ≥ 1 for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satis-
fying (2.18) and (2.19), and all (x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ f̂ (ω1, . . . ,ωn,x) with ∑

n
i=1 ‖x∗i ‖< γ ,

where ∂ stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ standing for the Fréchet
subdifferential (∂ := ∂ F ), and condition (2.19) replaced by (2.57).

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−semitransversal at x̄ with δ . Let γ > 0. By
Proposition 13, there exist xi ∈ X (i = 1, . . . ,n) satisfying (2.16) such that, for any λ ∈
]ϕ (max1≤i≤n ‖xi‖) ,δ [, there exist x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and
(2.19) ((2.57) if X is Asplund), and a subgradient (x∗1, . . . ,x

∗
n,x
∗) ∈ ∂C f̂ (ω1, . . . ,ωn,x)

((x∗1, . . . ,x
∗
n,x
∗) ∈ ∂ F f̂ (ω1, . . . ,ωn,x) if X is Asplund) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < 1. By

the definition (2.55) of the dual norm, this implies ∑
n
i=1 ‖x∗i ‖ < γ and ‖x∗‖ < 1. The latter

inequality contradicts the assumption. �

The next ‘δ -free’ statement is a direct consequence of Corollary 21.
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Corollary 22 (i) The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ if

lim
γ↓0

liminf
t↓0

t=max1≤i≤n ‖xi‖>0

lim
λ↓ϕ(t)

inf
‖x−x̄‖<λ , ‖ωi−x̄‖<λ/γ, ωi∈Ωi (i=1,...,n)

0<max1≤i≤n ‖ωi−xi−x‖≤t
(x∗1,...,x

∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x), ∑

n
i=1 ‖x∗i ‖<γ

‖x∗‖> 1, (2.60)

or, in particular, if

liminf
x→x̄, ωi

Ωi→x̄, xi→0, x∗i→0 (i=1,...,n)
max

1≤i≤n
‖ωi−xi−x‖>0, (x∗1,...,x

∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x)

‖x∗‖> 1, (2.61)

where ∂ stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ standing for the Fréchet
subdifferential (∂ := ∂ F ).

Remark 23 Condition (2.61) is obviously stronger than (2.60). Moreover, it is in fact suffi-
cient for the stronger ϕ−transversality property of Ω1, . . . ,Ωn; cf. Remark 28.

The proof of Proposition 13 utilizes the sum rules in Lemma 4 to obtain representations of
subgradients of the sum function (2.59) in terms of subgradients of the summand functions.
Note that one of the summands – the function f̂ – is itself a sum of functions; see (2.21). Next
we apply these sum rules again to obtain characterizations of the nonlinear semitransversality
in terms of normals to the given individual sets. This time the difference between the exact
sum rule in Lemma 4(i) and the approximate sum rule in Lemma 4(ii) becomes explicit in the
conclusions of the next theorem: compare the exact condition (2.65) and the corresponding
approximate condition (2.66).

Theorem 7 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if,
for some µ > 0 and any xi ∈X (i= 1, . . . ,n) satisfying (2.16), one of the following conditions
is satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(ωi))

)
≥ 1 (2.62)

for all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.19) and

‖x− x̄‖< λ , max
1≤i≤n

‖ωi− x̄‖< µλ , (2.63)

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying
n

∑
i=1
‖x∗i ‖= 1, (2.64)

n

∑
i=1
〈x∗i ,x+ xi−ωi〉= max

1≤i≤n
‖x+ xi−ωi‖, (2.65)

where N in (2.62) stands for the Clarke normal cone (N := NC);
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(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ ∈]0,1[ such that
inequality (2.62) holds with N standing for the Fréchet normal cone (N := NF ) for
all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.63) and (2.57), and all x∗i ∈ X∗ (i =
1, . . . ,n) satisfying condition (2.64) and

n

∑
i=1
〈x∗i ,x+ xi−ωi〉> τ max

1≤i≤n
‖x+ xi−ωi‖. (2.66)

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−semitransversal at x̄ with δ , and let µ > 0 be given.
Set γ := µ−1. By Proposition 13, there exist points xi ∈ X (i = 1, . . . ,n) satisfying (2.16)
such that, for any λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [, there exist x ∈ X and ωi ∈Ωi (i = 1, . . . ,n)
satisfying (2.19) ((2.57) if X is Asplund) and (2.63), and a subgradient (x̂∗1, . . . , x̂

∗
n, x̂
∗) ∈

∂ f̂ (ω1, . . . ,ωn,x) such that

‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ < 1, (2.67)

where ∂ stands for either the Clarke subdifferential (if X is a general Banach space) or the
Fréchet subdifferential (if X is Asplund). Recall from (2.21) that f̂ is a sum of two functions:
the function f given by (2.20) and the indicator function of the set Ω1× . . .×Ωn. Since
max1≤i≤n ‖ωi− xi− x‖> 0, f is locally Lipschitz continuous near (ω1, . . . ,ωn,x).

(i) X is a general Banach space, and (x̂∗1, . . . , x̂
∗
n, x̂
∗) in (2.67) is a Clarke subgradient. By

the Clarke–Rockafellar sum rule (Lemma 4(i)), there exist vectors (x̃∗1, . . . , x̃
∗
n, x̃
∗) ∈

∂C f (ω1, . . . ,ωn,x) and (u∗1, . . . ,u
∗
n) ∈ NC

Ω1×...×Ωn
(ω1, . . . ,ωn) such that

(x̂∗1, . . . , x̂
∗
n, x̂
∗) = (x̃∗1, . . . , x̃

∗
n, x̃
∗)+(u∗1, . . . ,u

∗
n,0). (2.68)

By Lemmas 6 and 9, Remark 5,

u∗i ∈ NC
Ωi
(ωi) (i = 1, . . . ,n), (2.69)

(x̃∗1, . . . , x̃
∗
n, x̃
∗) = ϕ

′(ψ(ω1, . . . ,ωn,x))(−x∗1, . . . ,−x∗n,x
∗), (2.70)

and (−x∗1, . . . ,−x∗n,x
∗) ∈ ∂ψ(ω1, . . . ,ωn,x), where

ψ(u1, . . . ,un,u) := max
1≤i≤n

‖ui− xi−u‖, u1, . . . ,un,u ∈ X . (2.71)

By Lemma 8, conditions (2.64) and (2.65) are satisfied, and

x∗ =
n

∑
i=1

x∗i . (2.72)

Combining (2.67), (2.68), (2.69), (2.70), (2.72) and (2.55), we obtain

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(

x∗i ,N
C
Ωi
(ωi)

))
< 1.

This contradicts (2.62).
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(ii) Let X be Asplund and a number τ ∈]0,1[ be given. Instead of the Clarke–Rocka-
fellar sum rule, one can employ the fuzzy sum rule (Lemma 4(ii)): for any ε > 0,
there exist points x′ ∈ Bε(x), yi ∈ Bε(ωi), ω ′i ∈Ωi∩Bε(ωi) (i = 1, . . . ,n), and vectors
(x̃∗1, . . . , x̃

∗
n, x̃
∗)∈ ∂ F f (y1, . . . ,yn,x′) and (u∗1, . . . ,u

∗
n)∈NF

Ω1×...×Ωn
(ω ′1, . . . ,ω

′
n) such that

‖(x̃∗1, . . . , x̃∗n, x̃∗)+(u∗1, . . . ,u
∗
n,0)− (x̂∗1, . . . , x̂

∗
n, x̂
∗)‖γ < ε. (2.73)

Denote

β :=
∣∣∣∣ϕ ′(max

1≤i≤n
‖ω ′i − xi− x′‖

)
−ϕ

′
(

max
1≤i≤n

‖yi− xi− x′‖
)∣∣∣∣ , (2.74)

and observe that β → 0 as ε ↓ 0. Recall that 0 < max1≤i≤n ‖ωi− xi− x‖ ≤
max1≤i≤n ‖xi‖< ϕ−1(λ ). The number ε can be chosen small enough so that∥∥x′− x̄

∥∥< λ , max
1≤i≤n

∥∥ω
′
i − x̄

∥∥< µλ , 0 < max
1≤i≤n

‖ω ′i − xi− x′‖< ϕ
−1(λ ),

‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ +(1+µ)β + ε < 1, (2.75)

max
1≤i≤n

‖yi−ω
′
i‖<

1− τ

2
max

1≤i≤n
‖x′− xi−ω

′
i‖. (2.76)

By Lemmas 6 and 9, Remark 5 and Lemma 8,

u∗i ∈ NF
Ωi
(ω ′i ) (i = 1, . . . ,n), (2.77)

(x̃∗1, . . . , x̃
∗
n, x̃
∗) = ϕ

′
(

max
1≤i≤n

‖yi− xi− x′‖
)
(−x∗1, . . . ,−x∗n,x

∗), (2.78)

where vectors x∗1, . . . ,x
∗
n,x
∗ ∈ X∗ satisfy (2.64), (2.72) and

n

∑
i=1
〈x∗i ,x′+ xi− yi〉= max

1≤i≤n
‖x′+ xi− yi‖. (2.79)

It follows from (2.64), (2.76) and (2.79) that
n

∑
i=1
〈x∗i ,x′+ xi−ω

′
i 〉 ≥

n

∑
i=1
〈x∗i ,x′+ xi− yi〉− max

1≤i≤n
‖yi−ω

′
i‖

= max
1≤i≤n

‖x′+ xi− yi‖− max
1≤i≤n

‖yi−ω
′
i‖

≥ max
1≤i≤n

‖x′+ xi−ω
′
i‖−2 max

1≤i≤n
‖yi−ω

′
i‖

> τ max
1≤i≤n

‖x′+ xi−ω
′
i‖.

Combining (2.72), (2.73), (2.77), (2.78) and (2.55), we obtain

ϕ
′
(

max
1≤i≤n

‖yi− xi− x′‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
x∗i ,N

F
Ωi
(ω ′i )

))
(2.72),(2.78)

= ‖x̃∗‖+µ

n

∑
i=1

d
(
−x̃∗i ,N

F
Ωi
(ω ′i )

) (2.77)
≤ ‖x̃∗‖+µ

n

∑
i=1
‖x̃∗i +u∗i ‖

(2.55)
= ‖(x̃∗1, . . . , x̃∗n, x̃∗)+(u∗1, . . . ,u

∗
n,0)‖γ

(2.73)
< ‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ + ε.
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Hence, thanks to (2.74), (2.75) and (2.79),

ϕ
′
(

max
1≤i≤n

‖ω ′i − xi− x′‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
x∗i ,N

F
Ωi
(ω ′i )

))
<‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ +(1+µ)β + ε < 1.

This contradicts (2.62).

�

The key dual transversality condition (2.62) in Theorem 7 combines two conditions on
the dual vectors x∗i ∈ X∗ (i = 1, . . . ,n): either their sum must be sufficiently far from 0, or the
vectors themselves must be sufficiently far from the corresponding normal cones. From the
point of view of applications, it can be convenient to have these conditions separated. The
next corollary shows that it can be easily done. It collects four separate sufficient conditions
for ϕ−semitransversality.

Corollary 23 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if,
for some γ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.16), one of the following conditions
is satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥≥ 1 (2.80)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.65) and

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
) n

∑
i=1

d (x∗i ,NΩi(ωi))< γ, (2.81)

where N stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ ∈]0,1[ such that
inequality (2.80) holds for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and
(2.57), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.81), where N
stands for the Fréchet normal cone (N := NF );

(iii) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
) n

∑
i=1

d (x∗i ,NΩi(ωi))≥ γ (2.82)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.65) and

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥< 1, (2.83)

where N in (2.82) stands for the Clarke normal cone (N := NC);
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(iv) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ ∈]0,1[ such that
inequality (2.82) holds for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and
(2.57), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.83), where N in
(2.82) stands for the Fréchet normal cone (N := NF ).

Proof It is sufficient to notice that the assumptions in parts (i)–(iv) of the above corollary
imply those in the respective parts of Theorem 7 with µ := γ−1. Indeed, the corollary re-
places condition (2.62) by a stronger condition: either (2.80) in parts (i) and (ii) or (2.82)
in parts (iii) and (iv). These conditions only need to be satisfied by x∗i ∈ X∗ (i = 1, . . . ,n)
satisfying (2.81) in the case of (2.80) or (2.83) in the case of (2.82). If any of the conditions
(2.81) and (2.83) is violated, then condition (2.62) is automatically satisfied. �

Corollary 23 ‘separating’ the two dual transversality conditions hidden in the key com-
bined condition (2.62) in Theorem 7 still has a drawback. It does not allow for the two ‘exact’
cases: x∗i ∈ NΩi(ωi) (i = 1, . . . ,n) (with appropriate normal cones) or ∑

n
i=1 x∗i = 0, very im-

portant for the transversality (as well as extremality and stationarity) theory; cf. conditions
(2.81) and (2.83). Employing Lemma 10, we can accommodate for these important cases.

Corollary 24 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if,
for some µ > 0 and any xi ∈X (i= 1, . . . ,n) satisfying (2.16), one of the following conditions
is satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that[
ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)]−1

+1≤ µ, (2.84)

and condition (2.80) holds true for all x∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.19)
and (2.63), and all x∗i ∈ NC

Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.66) with

τ :=
µϕ ′ (max1≤i≤n ‖ωi− xi− x‖)−1
µϕ ′ (max1≤i≤n ‖ωi− xi− x‖)+1

; (2.85)

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ̂ ∈]0,1[ such that
condition (2.80) hold true and[

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)]−1

+1≤ τ̂µ (2.86)

for all x∈X and ωi ∈Ωi (i= 1, . . . ,n) satisfying (2.57) and (2.63), and all x∗i ∈ NF
Ωi
(ωi)

(i = 1, . . . ,n) satisfying (2.64) and (2.66) with

τ :=
τ̂µϕ ′ (max1≤i≤n ‖ωi− xi− x‖)−1
µϕ ′ (max1≤i≤n ‖ωi− xi− x‖)+1

; (2.87)

(iii) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that[
ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)]−1

+µ ≤ 1, (2.88)
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and condition (2.82) holds true with γ := µ−1 and N standing for the Clarke normal
cone (N := NC) for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) and (2.63),
and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑

n
i=1 x∗i = 0, and conditions (2.64) and (2.66)

with

τ :=
ϕ ′ (max1≤i≤n ‖ωi− xi− x‖)−1
ϕ ′ (max1≤i≤n ‖ωi− xi− x‖)+1

; (2.89)

(iv) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ̂ ∈]0,1[ such that
condition (2.82) hold true with γ := µ−1 and N standing for the Fréchet normal cone
(N := NF ), and [

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x‖
)]−1

+µ ≤ τ̂ (2.90)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.57) and (2.63), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.66) with

τ :=
τ̂ϕ ′ (max1≤i≤n ‖ωi− xi− x‖)−1
ϕ ′ (max1≤i≤n ‖ωi− xi− x‖)+1

. (2.91)

Proof

(i) and (ii). Suppose {Ω1, . . . ,Ωn} is not ϕ−semitransversal at x̄ with δ , and let a µ > 0 be
given. Set γ := µ−1. By Theorem 7, there exist points xi ∈ X (i = 1, . . . ,n) satisfying
(2.16) such that both conditions (i) and (ii) in the theorem are not satisfied. Hence, for
any λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ (as well as τ ∈]0,1[ in case (ii)), there exist x ∈ X and
ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) (or (2.57) in case (ii)) and (2.63), and x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64) and (2.65) (or (2.66) in case (ii)) such that inequality
(2.62) is violated with N standing for the Clarke (Fréchet in case (ii)) normal cone.
Thus, conditions (1.26) hold true with ε := [ϕ ′ (max1≤i≤n ‖ωi− xi− x‖)]−1, ρ := 1,
zi := x∗i and Ki standing for NC

Ωi
(ωi) (or NF

Ωi
(ωi) in case (ii)) (i = 1, . . . ,n). Besides,

if inequality (2.84) is satisfied, we have ε +ρ ≤ µ and, by Lemma 10(i), there exist
vectors x̂∗i := ẑi ∈ X∗ (i = 1, . . . ,n) such that conditions (1.27) hold true, i.e. x̂∗i ∈
NC

Ωi
(ωi) (or x̂∗i ∈ NF

Ωi
(ωi) in case (ii)) (i = 1, . . . ,n), ∑

n
i=1 ‖x̂∗i ‖ = 1, while condition

(2.80), with x̂∗i in place of x∗i (i = 1, . . . ,n), is violated.

Moreover, setting τ := 1 in case (i), we have inequality (1.28) satisfied in both cases
and, by Lemma 10(iii), inequality (1.29) holds with τ̂ := τµ−ε

µ+ε
in place of τ . Observe

that the above definition of τ̂ is exactly the definition of τ in (2.85) in case (i) or in
(2.87) in case (ii). Since condition (2.80) is violated, both conditions (i) and (ii) are
not satisfied.

(iii) and (iv). The proof proceeds as above, replacing the application of part (i) of
Lemma 10 with that of its part (ii).
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Remark 24 Since τ defined by any of the formulas (2.85), (2.87), (2.89) and (2.91) is not in
general a constant, but depends on x, ωi and xi (i = 1, . . . ,n), checking condition (2.66) with
such a τ does not seem practical. Such a check becomes meaningful in the linear setting, i.e.
when ϕ ′, and consequently, also τ is constant; cf. Remark 31.

Dropping condition (2.66) in all parts of Corollary 24, we can formulate its simplified
and easier to use version.

Corollary 25 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with δ if,
for some µ > 0 and any xi ∈X (i= 1, . . . ,n) satisfying (2.16), one of the following conditions
is satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that conditions (2.84) and (2.80) hold
true for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) and (2.63), and all x∗i ∈
NC

Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64);

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ̂ ∈]0,1[ such that
conditions (2.86) and (2.80) hold true for all x∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying
(2.57) and (2.63), and all x∗i ∈ NF

Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64);

(iii) there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that conditions (2.88) and (2.82) hold
true with γ := µ−1 and N standing for the Clarke normal cone (N := NC) for all x ∈ X
and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) and (2.63), and all x∗i ∈ X∗ (i = 1, . . . ,n)
satisfying ∑

n
i=1 x∗i = 0 and condition (2.64);

(iv) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ̂ ∈]0,1[ such that
conditions (2.90) and (2.82) hold true with γ := µ−1 and N standing for the Fréchet
normal cone (N := NF ), for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.57) and
(2.63), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑

n
i=1 x∗i = 0 and condition (2.64).

Subtransversality

The dual characterizations in this section follow the pattern of those in the previous section
with appropriate adjustments in the proofs. We use the function f̂ given by (2.21) with
f : Xn+1 → R+ defined by (2.33). The next statement provides dual characterizations of
ϕ−subtransversality in terms of subdifferentials of f̂ .

Proposition 14 (i) The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and
δ2 if, for some γ > 0 and any x′ ∈ X satisfying (2.29), there exists a λ ∈
]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that condition (2.56) is satisfied for all x ∈ X and
ωi,ω

′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.31) and (2.32), where ∂ in (2.56) stands for the

Clarke subdifferential (∂ := ∂C).
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(ii) If X is Asplund, then the above assertion is valid with ∂ in (2.56) standing for the
Fréchet subdifferential (∂ := ∂ F ), and condition (2.32) replaced by

0 < max
1≤i≤n

‖ωi− x‖< ϕ
−1(λ ). (2.92)

Proof

(i) Suppose {Ω1, . . . ,Ωn} is not ϕ−subtransversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Theorem 4, there exists a point x′ ∈ X satisfying (2.29) such that, for any
λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[, there exist points x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n)

satisfying (2.31) and (2.32), and a number τ ∈]0,1[ such that

ϕ

(
max

1≤i≤n
‖ωi− x‖

)
−ϕ

(
max

1≤i≤n
‖ui−u‖

)
≤ τ‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ

for all ui ∈ Ωi near ωi (i = 1, . . . ,n) and all u near x. In other words, (ω1, . . . ,ωn,x)
is a local minimizer of the function (2.59). By Lemma 5, its Fréchet and, as a con-
sequence, Clarke subdifferential at this point contains 0. Observe that (2.59) is the
sum of the function f̂ and the Lipschitz continuous convex function (u1, . . . ,un,u) 7→
τ‖(u1, . . . ,un,u)− (ω1, . . . ,ωn,x)‖γ . At any point, all subgradients (x∗1, . . . ,x

∗
n,x
∗) of

the latter function satisfy ‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ . By the Clarke–Rockafellar sum rule
(Lemma 4(i)), there exists a subgradient (x∗1, . . . ,x

∗
n,x
∗) ∈ ∂C f̂ (ω1, . . . ,ωn,x) such that

‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ . The last inequality contradicts (2.56).

(ii) If X is Asplund, then one can employ the fuzzy sum rule (Lemma 4(ii)): for any
ε > 0, there exist points y ∈ Bε(x), yi ∈ Ωi∩Bε(ωi) (i = 1, . . . ,n), and a subgradient
(x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ F f̂ (y1, . . . ,yn,y) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < τ + ε . The num-

ber ε can be chosen small enough so that ‖y− x′‖ < λ , max1≤i≤n ‖yi−ω ′i‖ < λ/γ ,
0 < max1≤i≤n ‖yi− y‖ < ϕ−1(λ ), and τ + ε < 1. The last inequality again yields
‖(x∗1, . . . ,x∗n,x∗)‖γ < 1, which contradicts (2.56).

�

Similar to the case of nonlinear semitransversality, the difference in the contribution of
components of subgradients of f̂ to the key dual condition (2.56) in Proposition 14 can be
exposed.

Corollary 26 (i) The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and
δ2 if, for some γ > 0 and any x′ ∈ X satisfying (2.29), there exists a λ ∈
]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that ‖x∗‖ ≥ 1 for all x ∈ X and ωi,ω

′
i ∈ Ωi (i =

1, . . . ,n) satisfying (2.31) and (2.32), and all (x∗1, . . . ,x
∗
n,x
∗) ∈ ∂ f̂ (ω1, . . . ,ωn,x) with

∑
n
i=1 ‖x∗i ‖< γ , where ∂ stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ standing for the Fréchet
subdifferential (∂ := ∂ F ), and condition (2.32) replaced by (2.92).
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Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−subtransversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Proposition 14, there exists a point x′ ∈ X satisfying (2.29) such that, for any λ ∈
]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[, there exist points x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n) satisfying

(2.31) and (2.32), and a subgradient (x∗1, . . . ,x
∗
n,x
∗) ∈ ∂C f̂ (ω1, . . . ,ωn,x) ((x∗1, . . . ,x

∗
n,x
∗) ∈

∂ F f̂ (ω1, . . . ,ωn,x) if X is Asplund) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < 1. By the representation
(2.55) of the dual norm, this implies ∑

n
i=1 ‖x∗i ‖ < γ and ‖x∗‖ < 1. The latter inequality

contradicts the assumption. �

Remark 25 In the Hölder setting, i.e. when ϕ(t) = α−1tq with α > 0 and q > 0, Corol-
lary 26 improves [141, Proposition 7].

The next ‘δ -free’ statement is a direct consequence of Corollary 26.

Corollary 27 (i) The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ if

lim
γ↓0

liminf
x′→x̄, t↓0

t=max1≤i≤n d(x′,Ωi)>0

lim
λ↓ϕ(t)

inf
‖x−x′‖<λ , ‖ωi−ω ′i‖<λ/γ, ωi,ω

′
i∈Ωi (i=1,...,n)

0<max1≤i≤n ‖ωi−x‖≤max1≤i≤n ‖ω ′i−x′‖<ϕ−1(λ )

(x∗1,...,x
∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x), ∑

n
i=1 ‖x∗i ‖<γ

‖x∗‖> 1,

(2.93)

or, in particular, if

liminf
x→x̄, ωi

Ωi→x̄, x∗i→0 (i=1,...,n)
max

1≤i≤n
‖ωi−x‖>0, (x∗1,...,x

∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x)

‖x∗‖> 1, (2.94)

where ∂ stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ being the Fréchet subdiffer-
ential (∂ := ∂ F ).

Remark 26 Condition (2.94) is obviously stronger than (2.93).

Next, similar to the case of nonlinear semitransversality, we apply the sum rules again to
the function f̂ to obtain characterizations of nonlinear subtransversality in terms of normals
to the given individual sets.

Theorem 8 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1 and
δ2 if, for some µ > 0 and any x′ ∈ X satisfying (2.29), one of the following conditions is
satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(ωi))

)
≥ 1 (2.95)
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for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.32) and∥∥x− x′

∥∥< λ , max
1≤i≤n

∥∥ωi−ω
′
i
∥∥< µλ , (2.96)

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and

n

∑
i=1
〈x∗i ,x−ωi〉= max

1≤i≤n
‖x−ωi‖, (2.97)

where N in (2.95) stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ and a τ ∈]0,1[ such
that inequality (2.95) holds with N standing for the Fréchet normal cone (N := NF )
for all x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.92) and (2.96), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64) and

n

∑
i=1
〈x∗i ,x−ωi〉> τ max

1≤i≤n
‖x−ωi‖. (2.98)

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−subtransversal at x̄ with δ1 and δ2, and let µ > 0
be given. By Proposition 14, there exists a point x′ ∈ X satisfying (2.29) such that, for
any λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[, there exist points x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n)

satisfying (2.31) and (2.32) ((2.92) if X is Asplund), and a subgradient (x̂∗1, . . . , x̂
∗
n, x̂
∗) ∈

∂ f̂ (ω1, . . . ,ωn,x) such that condition (2.67) holds, where γ := µ−1 and ∂ stands for either
the Clarke subdifferential (if X is a general Banach space) or the Fréchet subdifferential (if
X is Asplund). Recall from (2.21) that f̂ is a sum of two functions: the function f given by
(2.33) and the indicator function of the set Ω1× . . .×Ωn. Since max1≤i≤n ‖ωi− x‖> 0, f is
locally Lipschitz continuous near (ω1, . . . ,ωn,x).

(i) X is a general Banach space, and (x̂∗1, . . . , x̂
∗
n, x̂
∗) in (2.67) is a Clarke subgradient. By

the Clarke–Rockafellar sum rule (Lemma 4(i)), there exist vectors (x̃∗1, . . . , x̃
∗
n, x̃
∗) ∈

∂C f (ω1, . . . ,ωn,x) and (u∗1, . . . ,u
∗
n) ∈ NC

Ω1×...×Ωn
(ω1, . . . ,ωn) such that equality (2.68)

holds, where f is given by (2.33). By Lemmas 6 and 9 and Remark 5, these
vectors satisfy (2.69), (2.70) and (−x∗1, . . . ,−x∗n,x

∗) ∈ ∂ψ(ω1, . . . ,ωn,x), where
ψ(u1, . . . ,un,u) := max1≤i≤n ‖ui− u‖ (u1, . . . ,un,u ∈ X). By Lemma 8, conditions
(2.64), (2.72) and (2.97) are satisfied. Combining (2.67), (2.68), (2.69), (2.70), (2.72)
and (2.55), we obtain

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(

x∗i ,N
C
Ωi
(ωi)

))
< 1.

This contradicts (2.95).

(ii) Let X be Asplund and a number τ ∈]0,1[ be given. Instead of the Clarke–Rocka-
fellar sum rule, one can employ the fuzzy sum rule (Lemma 4(ii)): for any ε > 0,
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there exist points y ∈ Bε(x), yi ∈ Bε(ωi), ω ′′i ∈ Ωi∩Bε(ωi) (i = 1, . . . ,n), and vectors
(x̃∗1, . . . , x̃

∗
n, x̃
∗) ∈ ∂ F f (y1, . . . ,yn,y) and (u∗1, . . . ,u

∗
n) ∈ NF

Ω1×...×Ωn
(ω ′′1 , . . . ,ω

′′
n ) satisfy-

ing (2.73). Denote

β :=
∣∣∣∣ϕ ′(max

1≤i≤n
‖ω ′′i − y‖

)
−ϕ

′
(

max
1≤i≤n

‖yi− y‖
)∣∣∣∣ , (2.99)

and observe that β → 0 as ε ↓ 0. The number ε can be chosen small enough so that

‖y− x′‖< λ , max
1≤i≤n

‖y′i−ω
′′
i ‖<

λ

γ
, 0 < max

1≤i≤n
‖y′i− y‖< ϕ

−1(λ ),

condition (2.75) is satisfied, and

max
1≤i≤n

‖yi−ω
′′
i ‖<

1− τ

2
max

1≤i≤n
‖y−ω

′′
i ‖. (2.100)

By Lemmas 6 and 9, Remark 5 and Lemma 8, we have (2.77) and

(x̃∗1, . . . , x̃
∗
n, x̃
∗) = ϕ

′
(

max
1≤i≤n

‖yi− y‖
)
(−x∗1, . . . ,−x∗n,x

∗), (2.101)

where vectors x∗1, . . . ,x
∗
n,x
∗ ∈ X∗ satisfy (2.64), (2.72) and

n

∑
i=1
〈x∗i ,y− yi〉= max

1≤i≤n
‖y− yi‖. (2.102)

It follows from (2.100) and (2.102) that

n

∑
i=1
〈x∗i ,y−ω

′′
i 〉 ≥

n

∑
i=1
〈x∗i ,y− yi〉− max

1≤i≤n
‖yi−ω

′′
i ‖

= max
1≤i≤n

‖y− yi‖− max
1≤i≤n

‖yi−ω
′′
i ‖

≥ max
1≤i≤n

‖y−ω
′′
i ‖−2 max

1≤i≤n
‖yi−ω

′′
i ‖> τ max

1≤i≤n
‖y−ω

′′
i ‖.

Combining (2.72), (2.73), (2.77), (2.101) and (2.55), we obtain

ϕ
′
(

max
1≤i≤n

‖yi− y‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
x∗i ,N

F
Ωi
(ω ′′i )

))
(2.72),(2.101)

= ‖x̃∗‖+µ

n

∑
i=1

d
(
−x̃∗i ,N

F
Ωi
(ω ′′i )

) (2.77)
≤ ‖x̃∗‖+µ

n

∑
i=1
‖x̃∗i +u∗i ‖

(2.55)
= ‖(x̃∗1, . . . , x̃∗n, x̃∗)+(u∗1, . . . ,u

∗
n,0)‖γ

(2.73)
< ‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ + ε.

Hence, thanks to (2.99), (2.75) and (2.102),

ϕ
′
(

max
1≤i≤n

‖ω ′′i − y‖
)(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
x∗i ,N

F
Ωi
(ω ′′i )

))
<‖(x̂∗1, . . . , x̂∗n, x̂∗)‖γ +(1+µ)β + ε < 1.

This contradicts (2.95).
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The next corollary ‘separates’ the two conditions on the dual vectors x∗i ∈ X∗

(i = 1, . . . ,n) combined in the key dual transversality condition (2.95) in Theorem 8.

Corollary 28 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1

and δ2 if, for some γ > 0 and any x′ ∈ X satisfying (2.29), one of the following conditions is
satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥≥ 1 (2.103)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.31) and (2.32), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.97) and

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
) n

∑
i=1

d (x∗i ,NΩi(ωi))< γ, (2.104)

where N stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ and a τ ∈]0,1[ such that
inequality (2.103) holds for all x ∈ X and ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.31)

and (2.92), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.98) and (2.104), where
N stands for the Fréchet normal cone (N := NF );

(iii) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
) n

∑
i=1

d (x∗i ,NΩi(ωi))≥ γ (2.105)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.31) and (2.32), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.97) and

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥< 1, (2.106)

where N in (2.105) stands for the Clarke normal cone (N := NC);

(iv) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ and a τ ∈]0,1[ such that
inequality (2.105) holds for all x ∈ X and ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.31)

and (2.92), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.98) and (2.106), where
N in (2.105) stands for the Fréchet normal cone (N := NF ).
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Proof It is sufficient to notice that the assumptions in parts (i)–(iv) imply those in the
respective parts of Theorem 8. �

The next corollary complements Corollary 28 and accommodates for the two ‘exact’
cases x∗i ∈ NΩi(ωi) (i = 1, . . . ,n) and ∑

n
i=1 x∗i = 0. It is a consequence of Theorem 8 and

Lemma 10; cf. the proof of Corollary 24.

Corollary 29 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1

and δ2 if, for some µ > 0 and any x′ ∈ X satisfying (2.29), one of the following conditions is
satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that[
ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)]−1

+1≤ µ, (2.107)

and condition (2.103) holds true for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying

(2.32) and (2.96), and all x∗i ∈ NC
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.98) with

τ :=
µϕ ′ (max1≤i≤n ‖ωi− x‖)−1
µϕ ′ (max1≤i≤n ‖ωi− x‖)+1

; (2.108)

(ii) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ and a τ̂ ∈]0,1[ such
that condition (2.103) hold true and[

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)]−1

+1≤ τ̂µ (2.109)

for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.92) and (2.96), and all

x∗i ∈ NF
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.98) with

τ :=
τ̂µϕ ′ (max1≤i≤n ‖ωi− x‖)−1
µϕ ′ (max1≤i≤n ‖ωi− x‖)+1

; (2.110)

(iii) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that[
ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)]−1

+µ ≤ 1, (2.111)

and condition (2.105) holds true with γ := µ−1 and N standing for the Clarke normal
cone (N := NC) for all x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.32) and (2.96),

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.98)

with

τ :=
ϕ ′ (max1≤i≤n ‖ωi− x‖)−1
ϕ ′ (max1≤i≤n ‖ωi− x‖)+1

; (2.112)
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(iv) X is Asplund, and there exist a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ and a τ̂ ∈]0,1[ such that
condition (2.105) hold true with γ := µ−1 and N standing for the Fréchet normal cone
(N := NF ), and [

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)]−1

+µ ≤ τ̂ (2.113)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.92) and (2.96), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.98) with

τ :=
τ̂ϕ ′ (max1≤i≤n ‖ωi− x‖)−1
ϕ ′ (max1≤i≤n ‖ωi− x‖)+1

. (2.114)

Remark 27 Since τ defined by any of the formulas (2.108), (2.110), (2.112) and (2.114) is
not in general a constant, but depends on x and ωi (i = 1, . . . ,n), checking condition (2.98)
with such a τ does not seem practical. Such a check becomes meaningful in the linear setting,
i.e. when ϕ ′, and consequently, also τ is constant; cf. Remark 31.

Dropping condition (2.98) in all parts of Corollary 29, we can formulate its simplified
and easier to use version.

Corollary 30 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−subtransversal at x̄ with δ1

and δ2 if, for some µ > 0 and any x′ ∈ X satisfying (2.29), one of the following conditions is
satisfied:

(i) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that conditions (2.103) and (2.107)
hold true for all x ∈ X and ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.32) and (2.96), and

all x∗i ∈ NC
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64);

(ii) X is Asplund, and there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that conditions
(2.103) and (2.109) hold true for all x ∈ X and ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying

(2.92) and (2.96), and all x∗i ∈ NF
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64);

(iii) there exists a λ ∈]ϕ (max1≤i≤n d(x′,Ωi)) ,δ1[ such that conditions (2.105) and (2.111)
hold true with γ := µ−1 and N standing for the Clarke normal cone (N := NC) for
all x ∈ X and ωi,ω

′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.32) and (2.96), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0 and condition (2.64);

(iv) X is Asplund, and there exists a λ ∈]ϕ (max1≤i≤n ‖xi‖) ,δ [ such that conditions (2.113)
and (2.105) hold true, the latter with γ := µ−1 and N standing for the Fréchet normal
cone (N :=NF ), for all x∈ X and ωi,ω

′
i ∈Ωi (i= 1, . . . ,n) satisfying (2.92) and (2.96),

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0 and condition (2.64).
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Transversality

We use the function f̂ given by (2.21) with f : Xn+1 → R+ defined by (2.20). The next
statement provides dual characterizations of ϕ−transversality in terms of subdifferentials of
f̂ .

Proposition 15 (i) The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2 if,
for some γ > 0 and any ω ′i ∈Ωi∩Bδ2(x̄) (i= 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, there exists
a λ ∈]ϕ(ξ ),δ1[ such that condition (2.56) is satisfied for all x,xi ∈ X and ωi ∈Ωi

(i = 1, . . . ,n) satisfying (2.40) and (2.41), where ∂ in (2.56) stands for the Clarke
subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ in (2.56) standing for the
Fréchet subdifferential (∂ := ∂ F ), and condition (2.41) replaced by (2.57).

Proof

(i) Suppose {Ω1, . . . ,Ωn} is not ϕ−transversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Theorem 5, there exist points ω ′i ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and a number
ξ ∈]0,ϕ−1(δ1)[ such that, for any λ ∈]ϕ(ξ ),δ1[, there exist points x,xi ∈X and ωi ∈Ωi

(i = 1, . . . ,n), and a number τ ∈]0,1[ such that conditions (2.40) and (2.41) are satis-
fied, and inequality (2.58) holds for all ui ∈Ωi near ωi (i = 1, . . . ,n) and all u near x. In
other words, (ω1, . . . ,ωn,x) is a local minimizer of the function (2.59). By Lemma 5,
its Fréchet and, as a consequence, Clarke subdifferential at this point contains 0. Ob-
serve that (2.59) is the sum of the function f̂ and the Lipschitz continuous convex
function (u1, . . . ,un,u) 7→ τ‖(u1, . . . ,un,u)−(ω1, . . . ,ωn,x)‖γ , and at any point all sub-
gradients (x∗1, . . . ,x

∗
n,x
∗) of the latter function satisfy ‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ . By the

Clarke–Rockafellar sum rule (Lemma 4(i)), there exists a subgradient (x∗1, . . . ,x
∗
n,x
∗)∈

∂C f̂ (ω1, . . . ,ωn,x) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ ≤ τ < 1. The last inequality contradicts
(2.56).

(ii) If X is Asplund, then one can employ the fuzzy sum rule (Lemma 4(ii)): for any ε > 0,
there exist points x′ ∈ Bε(x) and yi ∈ Ωi ∩ Bε(ωi) (i = 1, . . . ,n), and a subgradient
(x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ F f̂ (y1, . . . ,yn,x′) such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < τ + ε . The number

ε can be chosen small enough so that ‖x′− x̄‖ < λ , max1≤i≤n ‖yi−ω ′i‖ < λ/γ , 0 <

max1≤i≤n ‖yi− xi− x′‖ < ϕ−1(λ ), and τ + ε < 1. The last inequality again yields
‖(x∗1, . . . ,x∗n,x∗)‖γ < 1, which contradicts (2.56).

�

Similar to the cases of the nonlinear semitransversality and subtransversality, the differ-
ence in the contribution of components of subgradients of f̂ to the key dual condition (2.56)
in Proposition 15 can be exposed.
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Corollary 31 (i) The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2 if, for
some γ > 0 and any ω ′i ∈ Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, there exists
a λ ∈]ϕ(ξ ),δ1[ such that ‖x∗‖ ≥ 1 for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying
(2.40) and (2.41), and all (x∗1, . . . ,x

∗
n,x
∗)∈ ∂ f̂ (ω1, . . . ,ωn,x) with ∑

n
i=1 ‖x∗i ‖< γ , where

∂ stands for the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ standing for the Fréchet
subdifferential (∂ := ∂ F ), and condition (2.41) replaced by (2.57).

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−transversal at x̄ with δ1 and δ2, and let γ > 0 be
given. By Proposition 15, there exist points ω ′i ∈ Ωi ∩ Bδ2(x̄) (i = 1, . . . ,n) and a num-
ber ξ ∈]0,ϕ−1(δ1)[ such that, for any λ ∈]ϕ(ξ ),δ1[, there exist x,xi ∈ X and ωi ∈ Ωi

(i = 1, . . . ,n) satisfying (2.40) and (2.41) ((2.57) if X is Asplund), and a subgradient
(x∗1, . . . ,x

∗
n,x
∗) ∈ ∂C f̂ (ω1, . . . ,ωn,x) ((x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ F f̂ (ω1, . . . ,ωn,x) if X is Asplund)

such that ‖(x∗1, . . . ,x∗n,x∗)‖γ < 1. By the representation (2.55) of the dual norm, this implies

∑
n
i=1 ‖x∗i ‖< γ and ‖x∗‖< 1. The latter inequality contradicts the assumption. �

The next ‘δ -free’ statement is a direct consequence of Corollary 31.

Corollary 32 (i) The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ if

lim
γ↓0

liminf
ω ′i

Ωi→x̄ (i=1,...,n)
ξ↓0

lim
λ↓ϕ(ξ )

inf
‖x−x̄‖<λ , ‖ωi−ω ′i‖<λ/γ, ωi∈Ωi (i=1,...,n)

0<max1≤i≤n ‖ωi−xi−x‖≤ξ

(x∗1,...,x
∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x), ∑

n
i=1 ‖x∗i ‖<γ

‖x∗‖> 1, (2.115)

or, in particular, if condition (2.61) is satisfied, where ∂ in both conditions stands for
the Clarke subdifferential (∂ := ∂C).

(ii) If X is Asplund, then the above assertion is valid with ∂ standing for the Fréchet
subdifferential (∂ := ∂ F ).

Remark 28 Condition (2.61) is obviously stronger than (2.115).

Next, similar to the cases of the nonlinear semitransversality and subtransversality, we
apply the sum rules again to the function f̂ to obtain characterizations of the nonlinear
transversality in terms of normals to the given individual sets.

Theorem 9 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and δ2

if, for some µ > 0 and any ω ′i ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, one of the
following conditions is satisfied:

(i) there exists a λ ∈]ϕ(ξ ),δ1[ such that inequality (2.62) holds for all x,xi ∈ X and ωi ∈
Ωi (i = 1, . . . ,n) satisfying (2.41) and

‖x− x̄‖< λ , max
1≤i≤n

∥∥ωi−ω
′
i
∥∥< µλ , (2.116)

and all x∗i ∈X∗ (i= 1, . . . ,n) satisfying (2.64) and (2.65), where N stands for the Clarke
normal cone (N := NC);
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(ii) X is Asplund, and there exist a λ ∈]ϕ(ξ ),δ1[ and a τ ∈]0,1[ such that inequality (2.62)
holds for all x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.57) and (2.116), and
all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.66), where N stands for the Fréchet
normal cone (N := NF ).

Proof Suppose {Ω1, . . . ,Ωn} is not ϕ−transversal at x̄ with δ1 and δ2, and let µ > 0 be
given. Set γ := µ−1. By Proposition 15, there exist points ω ′i ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and
a ξ ∈]0,ϕ−1(δ1)[ such that, for any λ ∈]ϕ(ξ ),δ1[, there exist points x ∈ X and ωi ∈Ωi (i =
1, . . . ,n) satisfying conditions (2.41) ((2.57) if X is Asplund) and (2.116), and a subgradient
(x̂∗1, . . . , x̂

∗
n, x̂
∗)∈ ∂ f̂ (ω1, . . . ,ωn,x) such that condition (2.67) holds, where ∂ stands for either

the Clarke subdifferential (if X is a general Banach space) or the Fréchet subdifferential (if
X is Asplund). The rest of the proof follows that of Theorem 7. �

Remark 29 The sufficient conditions in Theorems 7 and 8 correspond to setting, respec-
tively, ω ′i := x̄ (i = 1, . . . ,n) and x1 = . . .= xn in the sufficient conditions in Theorem 9.

The next corollary ‘separates’ the two conditions on the dual vectors x∗i ∈ X∗

(i = 1, . . . ,n) combined in the key dual transversality condition (2.62) in Theorem 9.

Corollary 33 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and
δ2 if, for some γ > 0 and any ω ′i ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, one of the
following conditions is satisfied:

(i) there exists a λ ∈]ϕ(ξ ),δ1[ such that inequality (2.80) holds for all x,xi ∈ X and
ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.41), and all x∗i ∈ X∗ (i = 1, . . . ,n) satis-
fying (2.64), (2.65) and (2.81), where N stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]ϕ(ξ ),δ1[ and a τ ∈]0,1[ such that inequality (2.80)
holds for all x,xi ∈X and ωi ∈Ωi (i= 1, . . . ,n) satisfying (2.40) and (2.57), and all x∗i ∈
X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.81), where N stands for the Fréchet
normal cone (N := NF );

(iii) there exists a λ ∈]ϕ(ξ ),δ1[ such that inequality (2.82) holds for all x,xi ∈ X and
ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.41), and all x∗i ∈ X∗ (i = 1, . . . ,n) satis-
fying (2.64), (2.65) and (2.83), where N stands for the Clarke normal cone (N := NC);

(iv) X is Asplund, and there exist a λ ∈]ϕ(ξ ),δ1[ and a τ ∈]0,1[ such that inequality (2.82)
holds for all x,xi ∈X and ωi ∈Ωi (i= 1, . . . ,n) satisfying (2.40) and (2.57), and all x∗i ∈
X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.83), where N stands for the Fréchet
normal cone (N := NF ).
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Proof It is sufficient to notice that the assumptions in parts (i)–(iv) imply those in the
respective parts of Theorem 9; cf. the proof of Corollary 23. �

The next corollary complements Corollary 33 and accommodates for the two ‘exact’
cases x∗i ∈ NΩi(ωi) (i = 1, . . . ,n) and ∑

n
i=1 x∗i = 0. They are consequences of Theorem 9 and

Lemma 10; cf. the proof of Corollary 24.

Corollary 34 Let ϕ ∈ C 1. The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with δ1 and
δ2 if, for some µ > 0 and any ω ′i ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and ξ ∈]0,ϕ−1(δ1)[, one of the
following conditions is satisfied:

(i) there exists a λ ∈]ϕ(ξ ),δ1[ such that conditions (2.84) and (2.80) hold true for all
x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.41) and (2.116), and all x∗i ∈ NC

Ωi
(ωi)

(i = 1, . . . ,n) satisfying (2.64) and (2.66) with τ defined by (2.85);

(ii) X is Asplund, and there exist a λ ∈]ϕ(ξ ),δ1[ and a τ̂ ∈]0,1[ such that conditions (2.86)
and (2.80) hold true for all x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.57) and
(2.116), and all x∗i ∈ NF

Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.66) with τ defined

by (2.87);

(iii) there exists a λ ∈]ϕ(ξ ),δ1[ such that conditions (2.88) and (2.82) hold true with γ :=
µ−1 and N standing for the Clarke normal cone (N := NC) for all x,xi ∈ X and ωi ∈Ωi

(i = 1, . . . ,n) satisfying (2.41) and (2.116), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying

∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.66) with τ defined by (2.89);

(iv) X is Asplund, and there exist a λ ∈]ϕ(ξ ),δ1[ and a τ̂ ∈]0,1[ such that conditions
(2.90) and (2.82) hold true with γ := µ−1 and N standing for the Fréchet normal cone
(N := NF ) for all x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.57) and (2.116), and
all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑

n
i=1 x∗i = 0, and conditions (2.64) and (2.66) with

τ defined by (2.91).

Remark 30 In all parts of Corollary 34, checking condition (2.66) (and the mentioning of
τ̂ ∈]0,1[ in parts (ii) and (iv)) can be dropped.

Hölder Transversality Properties

In this section, we consider the most important realizations of the three nonlinear transver-
sality properties corresponding to the Hölder setting, i.e. ϕ being a power function, given for
all t ≥ 0 by ϕ(t) := α−1tq with α > 0 and q > 0 (q ∈]0,1] in the case of Hölder subtransver-
sality and Hölder transversality). If not explicitly stated otherwise, the space X is assumed
to be Banach, and the sets Ω1, . . . ,Ωn are assumed closed.

The next three statements are direct consequences of Theorem 7, and Corollaries 23 and
24, respectively.
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Corollary 35 Let α > 0 and q > 0. The collection {Ω1, . . . ,Ωn} is α−semitransversal of
order q at x̄ with δ if, for some µ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying

0 < max
1≤i≤n

‖xi‖< (αδ )
1
q , (2.117)

one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1

(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(ωi))

)
≥ α (2.118)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) and (2.63), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64) and (2.65), where N in (2.118) stands for the Clarke
normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ and a τ ∈]0,1[ such that
inequality (2.118) holds with N standing for the Fréchet normal cone (N := NF ) for all
x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.63) and

0 < max
1≤i≤n

‖ωi− xi− x‖< (αλ )
1
q , (2.119)

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.66).

Corollary 36 Let α > 0 and q > 0. The collection {Ω1, . . . ,Ωn} is α−semitransversal at x̄
of order q with δ if, for some γ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.117), one of
the following conditions is satisfied:

(i) there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1

∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥≥ α (2.120)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.65) and

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1 n

∑
i=1

d (x∗i ,NΩi(ωi))< αγ, (2.121)

where N stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ and a τ ∈]0,1[ such that
inequality (2.120) holds for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and
(2.119), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.121), where N
stands for the Fréchet normal cone (N := NF );
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(iii) there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1 n

∑
i=1

d (x∗i ,NΩi(ωi))≥ αγ (2.122)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and (2.19), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.65) and

q
(

max
1≤i≤n

‖ωi− xi− x‖
)q−1

∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥< α, (2.123)

where N in (2.122) stands for the Clarke normal cone (N := NC);

(iv) X is Asplund, and there exist a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ and a τ ∈]0,1[ such that
inequality (2.122) holds for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.18) and
(2.119), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.123), where N in
(2.122) stands for the Fréchet normal cone (N := NF ).

Corollary 37 Let α > 0 and q > 0. The collection {Ω1, . . . ,Ωn} is α−semitransversal of
order q at x̄ with δ if, for some µ > 0 and any xi ∈ X (i = 1, . . . ,n) satisfying (2.117), one of
the following conditions is satisfied:

(i) there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

αq−1
(

max
1≤i≤n

‖ωi− xi− x‖
)1−q

+1≤ µ, (2.124)

and condition (2.120) holds true for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying
(2.19) and (2.63), and all x∗i ∈ NC

Ωi
(ωi) (i = 1, . . . ,n) satisfying conditions (2.64) and

(2.66) with

τ :=
µq(max1≤i≤n ‖ωi− xi− x‖)q−1−α

µq(max1≤i≤n ‖ωi− xi− x‖)q−1 +α
; (2.125)

(ii) X is Asplund, and there exist a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ and a τ̂ ∈]0,1[ such that
condition (2.120) holds true and

αq−1
(

max
1≤i≤n

‖ωi− xi− x‖
)1−q

+1≤ τ̂µ (2.126)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.63) and (2.119), and all
x∗i ∈ NF

Ωi
(ωi) (i = 1, . . . ,n) satisfying conditions (2.64) and (2.66) with

τ :=
τ̂µq(max1≤i≤n ‖ωi− xi− x‖)q−1−α

µq(max1≤i≤n ‖ωi− xi− x‖)q−1 +α
; (2.127)

80



(iii) there exists a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ such that

αq−1
(

max
1≤i≤n

‖ωi− xi− x‖
)1−q

+µ ≤ 1, (2.128)

and condition (2.122) holds true with γ := µ−1 and N standing for the Clarke normal
cone (N := NC) for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.19) and (2.63),
and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑

n
i=1 x∗i = 0, and conditions (2.64) and (2.66)

with

τ :=
q(max1≤i≤n ‖ωi− xi− x‖)q−1−α

q(max1≤i≤n ‖ωi− xi− x‖)q−1 +α
; (2.129)

(iv) X is Asplund, and there exist a λ ∈]α−1(max1≤i≤n ‖xi‖)q,δ [ and a τ̂ ∈]0,1[ such that
condition (2.122) holds true with γ := µ−1 and N standing for the Fréchet normal cone
(N := NF ), and

αq−1
(

max
1≤i≤n

‖ωi− xi− x‖
)1−q

+µ ≤ τ̂ (2.130)

for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.63) and (2.119), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.66) with

τ :=
τ̂q(max1≤i≤n ‖ωi− xi− x‖)q−1−α

q(max1≤i≤n ‖ωi− xi− x‖)q−1 +α
. (2.131)

Remark 31 Since τ defined by any of the formulas (2.125), (2.127), (2.129) and (2.131)
is not in general a constant, but depends on x, ωi and xi (i = 1, . . . ,n), checking condition
(2.66) with such a τ does not seem practical unless q= 1. In the latter case, formulas (2.125),
(2.127), (2.129) and (2.131) reduce, respectively, to

τ :=
µ−α

µ +α
, τ :=

τ̂µ−α

µ +α
, τ :=

1−α

1+α
and τ :=

τ̂−α

1+α
. (2.132)

In the general nonlinear case, condition (2.66) can be dropped, leading to more concise but
stronger sufficient conditions requiring a larger number of candidates to be checked.

The next three statements are direct consequences of Theorem 8, and Corollaries 28 and
29, respectively.

Corollary 38 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−subtransversal of
order q at x̄ with δ1 and δ2 if, for some µ > 0 and any x′ ∈ X satisfying

‖x′− x̄‖< δ2, 0 < max
1≤i≤n

d(x′,Ωi)< (αδ1)
1
q , (2.133)

one of the following conditions is satisfied:
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(i) there exists a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ such that

q
(

max
1≤i≤n

‖ωi− x‖
)q−1

(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(ωi))

)
≥ α (2.134)

for all x ∈ X and ωi,ω
′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.96) and

0 < max
1≤i≤n

‖ωi− x‖ ≤ max
1≤i≤n

‖ω ′i − x′‖< (αλ )
1
q , (2.135)

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.97), where N in (2.134) stands
for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ and a τ ∈]0,1[ such

that inequality (2.134) holds with N standing for the Fréchet normal cone (N := NF )
for all x ∈ X and ωi,ω

′
i ∈Ωi (i = 1, . . . ,n) satisfying (2.96) and

0 < max
1≤i≤n

‖ωi− x‖< (αλ )
1
q , (2.136)

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.98).

Corollary 39 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−subtransversal of
order q at x̄ with δ1 and δ2 if, for some γ > 0 and any x′ ∈ X satisfying (2.133), one of the
following conditions is satisfied:

(i) there exists a λ ∈]α−1(max1≤i≤n d(x′,Ωi))
q,δ1[ such that

q
(

max
1≤i≤n

‖ωi− x‖
)q−1

∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥≥ α (2.137)

for all x∈ X and ωi,ω
′
i ∈Ωi (i= 1, . . . ,n) satisfying (2.31) and (2.135), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.97) and

q
(

max
1≤i≤n

‖ωi− x‖
)q−1 n

∑
i=1

d (x∗i ,NΩi(ωi))< αγ, (2.138)

where N stands for the Clarke normal cone (N := NC);

(ii) there exists a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ such that

q
(

max
1≤i≤n

‖ωi− x‖
)q−1 n

∑
i=1

d (x∗i ,NΩi(ωi))≥ αγ (2.139)

for all x∈ X and ωi,ω
′
i ∈Ωi (i= 1, . . . ,n) satisfying (2.31) and (2.135), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64), (2.97) and

q
(

max
1≤i≤n

‖ωi− x‖
)q−1

∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥< α, (2.140)

where N in (2.139) stands for the Clarke normal cone (N := NC);
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(iii) X is Asplund, and there exist a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ and a τ ∈]0,1[ such

that inequality (2.137) holds for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying

(2.31) and (2.136), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.98) and (2.138),
where N stands for the Fréchet normal cone (N := NF );

(iv) X is Asplund, and there exist a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ and a τ ∈]0,1[ such

that inequality (2.139) holds for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying

(2.31) and (2.136), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.98) and (2.140),
where N in (2.139) stands for the Fréchet normal cone (N := NF ).

Remark 32 The sufficient condition in part (i) of Corollary 39 improves [141, Theorem 2].

Corollary 40 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−subtransversal of
order q at x̄ with δ1 and δ2 if, for some µ > 0 and any x′ ∈ X satisfying (2.133), one of the
following conditions is satisfied:

(i) there exists a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ such that

αq−1
(

max
1≤i≤n

‖ωi− x‖
)1−q

+1≤ µ, (2.141)

and condition (2.137) holds true for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying

(2.96) and (2.135), and all x∗i ∈ NC
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.98) with

τ :=
µq(max1≤i≤n ‖ωi− x‖)q−α

µq(max1≤i≤n ‖ωi− x‖)q−1 +α
; (2.142)

(ii) X is Asplund, and there exist a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ and a τ̂ ∈]0,1[ such

that condition (2.137) holds true and

αq−1
(

max
1≤i≤n

‖ωi− x‖
)1−q

+1≤ τ̂µ (2.143)

for all x ∈ X and ωi,ω
′
i ∈ Ωi (i = 1, . . . ,n) satisfying (2.96) and (2.136), and all

x∗i ∈ NF
Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.98) with

τ :=
τ̂µq(max1≤i≤n ‖ωi− x‖)q−α

µq(max1≤i≤n ‖ωi− x‖)q−1 +α
. (2.144)

(iii) there exists a λ ∈]α−1 (max1≤i≤n d(x′,Ωi))
q ,δ1[ such that

αq−1
(

max
1≤i≤n

‖ωi− x‖
)1−q

+µ ≤ 1, (2.145)

and condition (2.139) holds true with γ := µ−1 and N standing for the Clarke normal
cone (N :=NC) for all x∈X and ωi,ω

′
i ∈Ωi (i= 1, . . . ,n) satisfying (2.96) and (2.135),

and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.98)

with

τ :=
q(max1≤i≤n ‖ωi− x‖)q−1−α

q(max1≤i≤n ‖ωi− x‖)q−1 +α
; (2.146)
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(iv) X is Asplund, and there exist a λ ∈]α−1 (max1≤i≤n ‖xi‖)q ,δ [ and a τ̂ ∈]0,1[ such that
condition (2.139) holds true with γ := µ−1 and N standing for the Fréchet normal cone
(N := NF ), and

αq−1
(

max
1≤i≤n

‖ωi− x‖
)1−q

+µ ≤ τ̂ (2.147)

for all x∈ X and ωi,ω
′
i ∈Ωi (i= 1, . . . ,n) satisfying (2.96) and (2.136), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying ∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.98) with

τ :=
τ̂q(max1≤i≤n ‖ωi− x‖)q−1−α

q(max1≤i≤n ‖ωi− x‖)q−1 +α
. (2.148)

Remark 33 Since τ defined by any of the formulas (2.142), (2.144), (2.146) and (2.148) is
not in general a constant, but depends on x and ωi (i = 1, . . . ,n), checking condition (2.98)
with such a τ does not seem practical and can be dropped (at the expense of weakening the
assertions). Such a check becomes meaningful in the linear setting, i.e. when q = 1. In
this case, (2.142), (2.144), (2.146) and (2.148) reduce to the corresponding expressions in
(2.132).

The next three statements are direct consequences of Theorem 9, and Corollaries 33 and
34, respectively.

Corollary 41 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−transversal of
order q at x̄ with δ1 and δ2 if, for some µ > 0 and any ω ′i ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . ,n) and

ξ ∈]0,(αδ1)
1
q [, one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1ξ q,δ1[ such that inequality (2.118) holds for all x,xi ∈ X and
ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.41) and (2.116), and all x∗i ∈ X∗ (i = 1, . . . ,n) sat-
isfying (2.64) and (2.65), where N stands for the Clarke normal cone (N := NC);

(ii) X is Asplund, and there exist a λ ∈]α−1ξ q,δ1[ and a τ ∈]0,1[ such that inequality
(2.118) holds for all x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.116) and (2.119),
and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.66), where N stands for the
Fréchet normal cone (N := NF ).

Corollary 42 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−transversal of
order q at x̄ with δ1 and δ2 if, for some γ > 0 and any ω ′i ∈ Ωi∩Bδ2(x̄) and ξ ∈]0,(αδ1)

1
q [,

one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1ξ q,δ1[ such that inequality (2.120) holds for all x,xi ∈ X and
ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.41), and all x∗i ∈ X∗ (i = 1, . . . ,n) satis-
fying (2.64), (2.65) and (2.121), where N stands for the Clarke normal cone (N :=NC);
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(ii) X is Asplund, and there exist a λ ∈]α−1ξ q,δ1[ and a τ ∈]0,1[ such that inequality
(2.120) holds for all x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.119),
and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.121), where N stands for
the Fréchet normal cone (N := NF );

(iii) there exists a λ ∈]α−1ξ q,δ1[ such that inequality (2.122) holds for all x,xi ∈ X and
ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.41), and all x∗i ∈ X∗ (i = 1, . . . ,n) satis-
fying (2.64), (2.65) and (2.123), where N stands for the Clarke normal cone (N :=NC);

(iv) X is Asplund, and there exist a λ ∈]α−1ξ q,δ1[ and a τ ∈]0,1[ such that inequality
(2.122) holds for all x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.40) and (2.119),
and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.66) and (2.123), where N stands for
the Fréchet normal cone (N := NF ).

Corollary 43 Let α > 0 and q ∈]0,1]. The collection {Ω1, . . . ,Ωn} is α−transversal of
order q at x̄ with δ1 and δ2 if, for some µ > 0 and any ω ′i ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . ,n) and

ξ ∈]0,(αδ1)
1
q [, one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1ξ q,δ1[ such that conditions (2.120) and (2.124) hold true for all
x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.41) and (2.116), and all x∗i ∈ NC

Ωi
(ωi)

(i = 1, . . . ,n) satisfying (2.64) and (2.66) with τ defined by (2.125);

(ii) X is Asplund, and there exist a λ ∈]α−1ξ q,δ1[ and a τ̂ ∈]0,1[ such that conditions
(2.120) and (2.126) hold true for all x,xi ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying
(2.116) and (2.119), and all x∗i ∈ NF

Ωi
(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.66)

with τ defined by (2.127);

(iii) there exists a λ ∈]α−1ξ q,δ1[ such that conditions (2.122) and (2.128) hold true with
γ := µ−1 and N standing for the Clarke normal cone (N :=NC) for all x,xi ∈X and ωi ∈
Ωi (i = 1, . . . ,n) satisfying (2.41) and (2.116), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying

∑
n
i=1 x∗i = 0, and conditions (2.64) and (2.66) with τ defined by (2.129);

(iv) X is Asplund, and there exist a λ ∈]α−1ξ q,δ1[ and a τ̂ ∈]0,1[ such that conditions
(2.122) and (2.130) hold true with γ := µ−1 and N standing for the Fréchet normal
cone (N := NF ) for all x,xi ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying conditions (2.116)
and (2.119), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying ∑

n
i=1 x∗i = 0, and conditions (2.64)

and (2.66) with τ defined by (2.131).

2.5.2 Dual Necessary Conditions

Semitransversality

In this and subsequent sections, the sets Ω1, . . . ,Ωn and function ϕ ∈ C are assumed to be
convex.
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We are going to use the dual norm (2.55) and the function f̂ given by (2.21) with
f : Xn+1→ R+ defined by (2.20). The next statement provides a dual necessary condition
for ϕ-semitransversality in terms of subdifferentials of f̂ .

Proposition 16 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and

ϕ ∈ C be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ−semitransversal at x̄ with some
δ > 0, then

dγ

(
0,∂ f̂ (x̄, . . . , x̄, x̄)

)
≥ 1 (2.149)

for γ := ((ϕ ′+(0))
−1 +1)−1, and all xi ∈ X (i = 1, . . . ,n) satisfying (2.16).

Proof Under the assumptions made, the function f̂ is convex. The assertion follows from
Proposition 3(ii) since condition (2.149) is a direct consequence of (2.49). Indeed, for all
xi ∈ X (i = 1, . . . ,n) satisfying (2.16) and all (x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ f̂ (x̄, . . . , x̄, x̄), we have:

‖(x∗1, . . . ,x∗n,x∗)‖γ = sup
(u1,...,un,u)6=0

〈(x∗1, . . . ,x∗n,x∗),(u1, . . . ,un,u)〉
‖(u1, . . . ,un,u)‖γ

= limsup
ui→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

−〈(x∗1, . . . ,x∗n,x∗),(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)〉
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ limsup
ui→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

f̂ (x̄, . . . , x̄, x̄)− f̂ (u1, . . . ,un,u)
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

= limsup
ui

Ωi→x̄ (i=1,...,n), u→x̄
(u1,...,un,u)6=(x̄,...,x̄,x̄)

ϕ

(
max

1≤i≤n
‖xi‖

)
−ϕ

(
max

1≤i≤n
‖ui− xi−u‖

)
‖(u1, . . . ,un,u)− (x̄, . . . , x̄, x̄)‖γ

≥ 1.

�

Remark 34 Condition (2.149) in Proposition 16 is required to hold for all xi∈X (i = 1, ...,n)
satisfying (2.16). Observe that vectors xi (i = 1, ...,n) are not explicitly present in (2.149);
they are involved in the definition (2.20) of the function f .

The key condition (2.149) in Proposition 16 involves a subdifferential of the function f̂
given by (2.21) with f : Xn+1→R+ defined by (2.20). Subgradients of f̂ belong to (X∗)n+1

and have n+ 1 component vectors x∗1, . . . ,x
∗
n,x
∗. As it can be seen from the representation

(2.55) of the dual norm, the contribution of the vectors x∗1, . . . ,x
∗
n on one hand, and x∗ on the

other hand to condition (2.149) is different. The next corollary exposes this difference.

Corollary 44 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-semitransversal at x̄ with some δ > 0, then,
for all xi ∈ X (i = 1, . . . ,n) satisfying (2.16), and all (x∗1, . . . ,x

∗
n,x
∗) ∈ ∂ f̂ (x̄, . . . , x̄, x̄), it holds

‖x∗‖ ≥ 1− ((ϕ ′+(0))
−1 +1)

n

∑
i=1
‖x∗i ‖. (2.150)
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As a consequence,
liminf

x∗i→0 (i=1,...,n)
(x∗1,...,x

∗
n,x
∗)∈∂ f̂ (x̄,...,x̄,x̄)

‖x∗‖ ≥ 1.

Proof The assertion is a direct consequence of Proposition 16 and the representation (2.55)
of the dual norm. �

The next ‘δ -free’ statement is a direct consequence of Corollary 44.

Corollary 45 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-semitransversal at x̄, then

liminf
xi→0, x∗i→0 (i=1,...,n)

max
1≤i≤n

‖xi‖>0, (x∗1,...,x
∗
n,x
∗)∈∂ f̂ (x̄,...,x̄,x̄)

‖x∗‖ ≥ 1.

In the convex setting, a partial converse to Theorem 7 is possible.

Theorem 10 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-semitransversal at x̄ with some δ > 0,
then, with µ := (ϕ ′+(0))

−1 +1,

ϕ
′
(

max
1≤i≤n

‖xi‖
)(∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(x̄))
)
≥ 1 (2.151)

for all xi ∈ X (i = 1, . . . ,n) satisfying (2.16) and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64)
and

n

∑
i=1
〈x∗i ,xi〉= max

1≤i≤n
‖xi‖. (2.152)

Proof Let {Ω1, . . . ,Ωn} be ϕ-semitransversal at x̄ with some δ > 0. Let µ := (ϕ ′+(0))
−1+

1 and γ := µ−1. By Proposition 16, condition (2.149) is satisfied for all xi ∈ X (i = 1, . . . ,n)
satisfying (2.16). Observe that f̂ is a sum of the function f given by (2.20) and the indicator
function of the set Ω1× . . .×Ωn. Since max1≤i≤n ‖xi‖> 0, f is locally Lipschitz continuous
near (x̄, . . . , x̄, x̄). It is a composition of ϕ and the function

ψ(u1, . . . ,un,u) := max
1≤i≤n

‖ui− xi−u‖, u1, . . . ,un,u ∈ X . (2.153)

By Lemmas 4, 6 and 9, and Remark 5,

∂ f̂ (x̄, . . . , x̄, x̄) = ∂ f (x̄, . . . , x̄, x̄)+NΩ1×...×Ωn(x̄, . . . , x̄)×{0}

= ϕ
′
(

max
1≤i≤n

‖xi‖
)(

∂ψ(x̄, . . . , x̄, x̄)+NΩ1(x̄)× . . .×NΩn(x̄)×{0}
)
.

By Lemma 8, (−x∗1, . . . ,−x∗n,x
∗)∈ ∂ψ(x̄, . . . , x̄, x̄) if and only if conditions (2.64) and (2.152)

are satisfied and

x∗ =
n

∑
i=1

x∗i . (2.154)

Hence, condition (2.151) is a consequence of (2.149). �
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Remark 35 (i) The equality µ := (ϕ ′+(0))
−1 + 1 in Theorem 10 can be replaced by the

inequality µ ≥ (ϕ ′+(0))
−1 +1.

(ii) Conditions (2.151) and (2.152) in Theorem 10 are particular cases of conditions (2.62)
and (2.65) in Theorem 7, respectively, corresponding to setting ω1 = . . .=ωn = x := x̄.

From Theorems 7 and 10, we deduce the following corollary.

Corollary 46 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0)> 0.

(i) Suppose X is Banach and Ω1, . . . ,Ωn are closed. {Ω1, . . . ,Ωn} is ϕ-semitransversal
at x̄ if inequality (2.62) holds with some µ > 0 for all x ∈ X and ωi ∈ Ωi near x̄, and
xi ∈ X near 0 (i = 1, . . . ,n) satisfying (2.19), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying
(2.64) and (2.65).

(ii) If {Ω1, . . . ,Ωn} is ϕ-semitransversal at x̄, then inequality (2.151) holds
with µ := (ϕ ′+(0))

−1 + 1 for all xi ∈ X near 0 (i = 1, . . . ,n) satisfying
max1≤i≤n ‖xi‖> 0, and all x∗i ∈X∗ (i = 1, ...,n) satisfying (2.64) and (2.152).

A decomposition of the dual necessary transversality condition (2.151) in Theorem 10
can be easily obtained.

Corollary 47 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-semitransversal at x̄ with some δ > 0,
then, for all xi ∈ X (i = 1, . . . ,n) satisfying (2.16), the following conditions hold true:

(i) for all x∗i ∈ NΩi(x̄) (i = 1, . . . ,n) satisfying (2.64) and (2.152), it holds

ϕ
′
(

max
1≤i≤n

‖xi‖
)∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥≥ 1;

(ii) for all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.152) and ∑
n
i=1 x∗i = 0, it holds

ϕ
′
(

max
1≤i≤n

‖xi‖
) n

∑
i=1

d (x∗i ,NΩi(x̄))≥ ((ϕ ′+(0))
−1 +1)−1.

Subtransversality

In this subsection, we use the function f̂ given by (2.21) with f : Xn+1 → R+ defined by
(2.33). The next statement provides a dual necessary condition for ϕ-subtransversality in
terms of subdifferentials of f̂ .

Proposition 17 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and

ϕ ∈ C be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-subtransversal at x̄ with some δ1 > 0
and δ2 > 0, then

dγ

(
0,∂ f̂ (ω1, . . . ,ωn,x)

)
≥ 1 (2.155)

for γ := ((ϕ ′+(0))
−1 +1)−1, and all x ∈ X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.46).
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Proof Under the assumptions made, the function f̂ is convex. The assertion follows from
Proposition 4(ii) since condition (2.155) is a direct consequence of (2.50); cf. the proof of
Proposition 16. �

Similar to the case of nonlinear semitransversality, the difference in the contribution of
components of subgradients of f̂ to the key dual condition (2.155) in Proposition 14 can be
exposed.

Corollary 48 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-subtransversal at x̄ with some δ1 > 0 and
δ2 > 0, then, for all x∈X and ωi ∈Ωi (i = 1, . . . ,n) satisfying (2.46), and all (x∗1, . . . ,x

∗
n,x
∗)∈

∂ f̂ (ω1, . . . ,ωn,x), condition (2.150) holds. As a consequence,

liminf
x∗i→0 (i=1,...,n)

(x∗1,...,x
∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x)

‖x∗‖ ≥ 1.

Proof The assertion is a direct consequence of Proposition 14 and the representation (2.55)
of the dual norm. �

The next ‘δ -free’ statement is a direct consequence of Corollary 48.

Corollary 49 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-subtransversal at x̄, then

liminf
x→x̄, ωi

Ωi→x̄, x∗i→0 (i=1,...,n)
max

1≤i≤n
‖ωi−x‖>0, (x∗1,...,x

∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x)

‖x∗‖ ≥ 1.

In the convex setting, a partial converse to Theorem 8 is possible.

Theorem 11 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-subtransversal at x̄ with some δ1 > 0
and δ2 > 0, then, with µ := (ϕ ′+(0))

−1 +1, inequality (2.95) holds for all x ∈ X and ωi ∈Ωi

(i = 1, . . . ,n) satisfying (2.46), and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64) and (2.97).

Proof Let {Ω1, . . . ,Ωn} be ϕ-subtransversal at x̄ with some δ1 > 0 and δ2 > 0. Let µ :=
(ϕ ′+(0))

−1 +1 and γ := µ−1. By Proposition 14, condition (2.155) is satisfied for all x ∈ X
and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.46). Observe that f̂ is a sum of the function f given
by (2.33) and the indicator function of the set Ω1× . . .×Ωn. Since max1≤i≤n ‖ωi− x‖> 0, f
is locally Lipschitz continuous near (ω1, . . . ,ωn,x). It is a composition of ϕ and the function

ψ(u1, . . . ,un,u) := max
1≤i≤n

‖ui−u‖, u1, . . . ,un,u ∈ X .

By Lemmas 4, 6 and 9, and Remark 5,

∂ f̂ (ω1, . . . ,ωn,x) = ∂ f (ω1, . . . ,ωn,x)+NΩ1×...×Ωn(ω1, . . . ,ωn)×{0}

= ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)
(∂ψ(ω1, . . . ,ωn,x)+NΩ1(ω1)× . . .×NΩn(ωn)×{0}) .
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By Lemma 8, (−x∗1, ...,−x∗n,x
∗)∈ ∂ψ(ω1, ...,ωn,x) if and only if conditions (2.64), (2.97)

and (2.154) are satisfied. Hence, condition (3.132) is a consequence of (2.155). �

Remark 36 (i) The equality µ := (ϕ ′+(0))
−1 + 1 in Theorem 11 can be replaced by the

inequality µ ≥ (ϕ ′+(0))
−1 +1.

(ii) The necessary conditions in Theorem 11 correspond to setting ωi = ω ′i (i = 1, . . . ,n)
and x = x′ in the sufficient conditions in Theorem 8.

From Theorems 8 and 11, we deduce the following corollary.

Corollary 50 Let Ω1, . . . ,Ωn be closed convex subsets of a Banach space X , x̄ ∈ ∩n
i=1Ωi,

and ϕ ∈ C 1 be convex with ϕ ′+(0) > 0. The collection {Ω1, . . . ,Ωn} is ϕ-subtransversal at
x̄ if and only if inequality (2.95) holds with µ := (ϕ ′+(0))

−1 + 1 for all x ∈ X and ωi ∈ Ωi

(i = 1, . . . ,n) near x̄ with max1≤i≤n ‖ωi− x‖ > 0, and all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying
(2.64) and (2.97).

Proof The necessity part is exactly the ‘δ -free’ version of Theorem 11. To show the suffi-
ciency, observe that the conditions in Theorem 8 are satisfied (for some δ1 > 0 and δ2 > 0)
with µ := (ϕ ′+(0))

−1+1, any sufficiently large λ > 0, and x′ = x and ω ′i = ωi (i = 1, . . . ,n).
�

A decomposition of the dual necessary transversality condition in Theorem 11 can be
easily obtained.

Corollary 51 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-subtransversal at x̄ with some δ1 > 0
and δ2 > 0, then, for all x ∈ X and ωi ∈ Ωi (i = 1, . . . ,n) satisfying (2.46), the following
conditions hold true:

(i) for all x∗i ∈ NΩi(ωi) (i = 1, . . . ,n) satisfying (2.64) and (2.97), it holds

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
)∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥≥ 1;

(ii) for all x∗i ∈ X∗ (i = 1, . . . ,n) satisfying (2.64), (2.97) and ∑
n
i=1 x∗i = 0, it holds

ϕ
′
(

max
1≤i≤n

‖ωi− x‖
) n

∑
i=1

d (x∗i ,NΩi(ωi))≥ ((ϕ ′+(0))
−1 +1)−1.

Transversality

In this subsection, we use the function f̂ given by (2.21) with f : Xn+1 → R+ defined by
(2.20). The next statement provides a dual necessary condition for ϕ-transversality in terms
of subdifferentials of f̂ .
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Proposition 18 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and

ϕ ∈ C be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄ with some δ1 > 0
and δ2 > 0, then

dγ

(
0,∂ f̂ (ω1, . . . ,ωn, x̄)

)
≥ 1 (2.156)

for γ := ((ϕ ′+(0))
−1 +1)−1, and all ωi ∈Ωi and xi ∈ X (i = 1, . . . ,n) satisfying (2.48).

Proof Under the assumptions made, the function f̂ is convex. The assertion follows from
Theorem 5 since condition (2.156) is a direct consequence of (2.51); cf. the proof of Propo-
sition 16. �

Similar to the case of the other two nonlinear transversality properties, the difference
in the contribution of components of subgradients of f̂ to the key dual condition (2.156) in
Proposition 15 can be exposed.

Corollary 52 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄ with some δ1 > 0 and δ2 > 0,
then, for all ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) satisfying (2.48), and all (x∗1, . . . ,x

∗
n,x
∗) ∈

∂ f̂ (ω1, . . . ,ωn, x̄), condition (2.150) holds. As a consequence,

liminf
x∗i→0 (i=1,...,n)

(x∗1,...,x
∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x̄)

‖x∗‖ ≥ 1.

Proof The assertion is a direct consequence of Proposition 15 and the representation (2.55)
of the dual norm. �

The next ‘δ -free’ statement is a direct consequence of Corollary 52.

Corollary 53 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈C

be convex with ϕ ′+(0)> 0. If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄, then

liminf
ωi

Ωi→x̄, xi→0, x∗i→0 (i=1,...,n)
max

1≤i≤n
‖ωi−xi−x̄‖>0, (x∗1,...,x

∗
n,x
∗)∈∂ f̂ (ω1,...,ωn,x̄)

‖x∗‖ ≥ 1.

In the convex setting, a partial converse to Theorem 9 is possible.

Theorem 12 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄ with some δ1 > 0 and
δ2 > 0, then, with µ := (ϕ ′+(0))

−1 +1,

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x̄‖
)(∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥+µ

n

∑
i=1

d (x∗i ,NΩi(ωi))

)
≥ 1 (2.157)

for all ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) satisfying (2.48), and all x∗i ∈ X∗ (i = 1, . . . ,n)
satisfying (2.64) and

n

∑
i=1
〈x∗i , x̄+ xi−ωi〉= max

1≤i≤n
‖x̄+ xi−ωi‖. (2.158)

91



Proof Let {Ω1, . . . ,Ωn} be ϕ-transversal at x̄ with some δ1 > 0 and δ2 > 0. Let µ :=
(ϕ ′+(0))

−1+1 and γ := µ−1. By Proposition 15, condition (2.156) is satisfied for all ωi ∈Ωi

and xi ∈ X (i = 1, . . . ,n) satisfying (2.48). Observe that f̂ is a sum of the function f given by
(2.20) and the indicator function of the set Ω1× . . .×Ωn. Since max1≤i≤n ‖ωi−xi− x̄‖> 0, f
is locally Lipschitz continuous near (ω1, . . . ,ωn, x̄). It is a composition of ϕ and the function
ψ defined by (2.153). By Lemmas 4, 6, and 9, Remark 5,

∂ f̂ (ω1, . . . ,ωn, x̄) = ∂ f (ω1, . . . ,ωn, x̄)+NΩ1×...×Ωn(ω1, . . . ,ωn)×{0}

= ϕ
′
(

max
1≤i≤n

‖ωi− xi− x̄‖
)
(∂ψ(ω1, ...,ωn, x̄)+NΩ1(ω1)× . . .×NΩn(ωn)×{0}) .

By Lemma 8, (−x∗1, . . . ,−x∗n,x
∗)∈ ∂ψ(ω1, . . . ,ωn, x̄) if and only if conditions (2.64), (2.154)

and (2.158) are satisfied. Hence, condition (2.156) implies (2.157). �

Remark 37 (i) The equality µ := (ϕ ′+(0))
−1 + 1 in Theorem 12 can be replaced by the

inequality µ ≥ (ϕ ′+(0))
−1 +1.

(ii) Conditions (2.157) and (2.158) in Theorem 12 are particular cases of conditions, re-
spectively, (2.62) and (2.65) in Theorem 9, corresponding to setting x := x̄.

(iii) The necessary conditions in Theorems 10 and 11 correspond to setting, respectively,
ωi := x̄ (i = 1, . . . ,n) and x1 = . . .= xn in the necessary conditions in Theorem 12.

From Theorems 9 and 12, we deduce the following corollary.

Corollary 54 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0)> 0.

(i) Suppose X is Banach and Ω1, . . . ,Ωn are closed. {Ω1, . . . ,Ωn} is ϕ-transversal at x̄ if
inequality (2.62) holds with some µ > 0 for all x ∈ X and ωi ∈ Ωi near x̄ and xi ∈ X
near 0 (i = 1, . . . ,n) with max1≤i≤n ‖ωi− xi− x‖ > 0, and all x∗i ∈ X∗ (i = 1, . . . ,n)
satisfying (2.64) and (2.65).

(ii) If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄, then inequality (2.157) holds with
µ := (ϕ ′+(0))

−1 +1 for all ωi ∈ Ωi near x̄ and xi ∈ X near 0 (i = 1, . . . ,n) with
max1≤i≤n ‖ωi− xi− x̄‖> 0, and all x∗i ∈ X∗ (i= 1, . . . ,n) satisfying (2.64) and (2.158).

A decomposition of the dual transversality condition (2.151) in Theorem 10 can be easily
obtained.

Corollary 55 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and ϕ ∈

C 1 be convex with ϕ ′+(0) > 0. If {Ω1, . . . ,Ωn} is ϕ-transversal at x̄ with some δ1 > 0 and
δ2 > 0, then, for all ωi ∈ Ωi and xi ∈ X (i = 1, . . . ,n) satisfying (2.48), and all x∗i ∈ X∗

(i = 1, . . . ,n) satisfying (2.64) and (2.158), the following conditions hold true:

(i) if x∗i ∈ NΩi(x̄) (i = 1, . . . ,n), then ϕ ′ (max1≤i≤n ‖ωi− xi− x̄‖)
∥∥∥∥∑

n
i=1 x∗i

∥∥∥∥≥ 1;

(ii) if ∑
n
i=1 x∗i = 0, then

ϕ
′
(

max
1≤i≤n

‖ωi− xi− x̄‖
) n

∑
i=1

d (x∗i ,NΩi(x̄))≥ ((ϕ ′+(0))
−1 +1)−1.
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Chapter 3

TRANSVERSALITY AND REGULARITY

PROPERTIES OF SET-VALUED

MAPPINGS

The content of this chapter is based on the publications [65, 67–71].

3.1 Transversality and Regularity

3.1.1 Connections

This section presents connections between transversality properties of collections of sets
studied in Chapter 2 and regularity properties of set-valued mappings in the nonlinear setting.

For regularity properties, our model here is a set-valued mapping F : X ⇒ Y between
metric spaces. We consider its local regularity properties near a given point (x̄, ȳ) ∈ gphF .
The nonlinearity in the definitions of the properties is determined by a function ϕ ∈ C intro-
duced in Chapter 2.

Regularity of set-valued mappings have been intensively studied for decades due to its
numerous important applications. For discussions about the theory, we refer the reader to
Chapter 1. Nonlinear regularity properties have also been considered by many authors;
cf. [37, 95–97, 113, 132, 133, 144, 154, 191, 219]. The relations between transversality and
regularity properties are well known in the linear case [112,114,127–129,134,138,139,142]
as well as in the Hölder setting [141]. Below we briefly discuss more general nonlinear
models.

Definition 7 The mapping F is

(i) ϕ−semiregular at (x̄, ȳ) if there exists a δ > 0 such that

d(x̄,F−1(y))≤ ϕ(d(y, ȳ))

for all y ∈ Y with ϕ(d(y, ȳ))< δ ;
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(ii) ϕ−subregular at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0 such that

d(x,F−1(ȳ))≤ ϕ(d(ȳ,F(x)))

for all x ∈ Bδ2(x̄) with ϕ(d(ȳ,F(x)))< δ1;

(iii) ϕ−regular at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0 such that

d(x,F−1(y))≤ ϕ(d(y,F(x))) (3.1)

for all x ∈ X and y ∈ Y with d(x, x̄)+d(y, ȳ)< δ2 and ϕ(d(y,F(x)))< δ1.

The function ϕ ∈ C in the above definition plays the role of a kind of rate or modulus of
the respective property. In the Hölder setting, i.e. when ϕ(t) := α−1tq with α > 0 and q > 0,
we refer to the respective properties in Definition 7 as α−semiregularity, α−subregularity
and α−regularity of order q. These regularity properties have been studied in [96, 97, 132,
141,144,154]. It is usually assumed that q≤ 1. The exact upper bound of all α > 0 such that
a property holds with some δ > 0, or δ1 > 0 and δ2 > 0, is called the modulus of this property.
We use notations sergq[F ](x̄, ȳ), srgq[F ](x̄, ȳ) and rgq[F ](x̄, ȳ) for the moduli of the respective
properties. If a property does not hold, then by convention the respective modulus equals 0.
With q = 1 (linear case), the properties are called metric semiregularity, subregularity and
regularity, respectively; cf. [58, 81, 116, 129, 172, 202].

The following assertion is a direct consequence of Definition 7.

Proposition 19 If F is ϕ−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then it is ϕ−se-
miregular at (x̄, ȳ) with δ := min{δ1,ϕ(δ2)} and ϕ−subregular at (x̄, ȳ) with δ1 and δ2.

Note the combined inequality d(x, x̄)+d(y, ȳ)< δ2 employed in part (iii) of Definition 7
instead of the more traditional separate conditions x ∈ Bδ2(x̄) and y ∈ Bδ2(ȳ). This replace-
ment does not affect the property of ϕ−regularity itself, but can have an effect on the value
of δ2. Employing this inequality makes the property a direct analogue of the metric char-
acterization of ϕ−transversality in Theorem 2 and is convenient for establishing relations
between the regularity and transversality properties. The next proposition provides also an
important special case when the point x in (3.1) can be fixed: x = x̄.

Proposition 20 Let δ1 > 0 and δ2 > 0. Consider the following conditions:

(a) inequality (3.1) holds for all x ∈ Bδ2(x̄) and y ∈ Bδ2(ȳ) with ϕ(d(y,F(x)))< δ1;

(b) inequality (3.1) holds for all x ∈ X and y ∈ Y with d(x, x̄) + d(y, ȳ) < δ2 and
ϕ(d(y,F(x)))< δ1;

(c) d(x̄,F−1(y))≤ ϕ(d(y,F(x̄))) for all y ∈ Bδ2(ȳ) with ϕ(d(y,F(x̄)))< δ1.

Then
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(i) (a)⇒ (b)⇒ (c). Moreover, condition (b) implies (a) with δ ′2 := δ2/2 in place of δ2.

(ii) If X is a normed space, Y = Xn for some n ∈ N, ȳ = (x̄1, . . . , x̄n) and F : X ⇒ Xn is
given by

F(x) := (Ω1− x)× . . .× (Ωn− x), x ∈ X , (3.2)

where Ω1, . . . ,Ωn ⊂ X , then (b)⇔ (c).

Proof

(i) All the implications are straightforward.

(ii) In view of (i), we only need to prove (c) ⇒ (b). Suppose condition (c) is satisfied.
Let x ∈ X , y = (x1, . . . ,xn) ∈ Xn, ‖x− x̄‖+ ‖y− ȳ‖ < δ2 and ϕ(d(y,F(x))) < δ1. Set
x′i := xi + x− x̄ (i = 1, . . . ,n) and y′ := (x′1, . . . ,x

′
n). Then

‖y′− ȳ‖ ≤ ‖y′− y‖+‖y− ȳ‖= ‖x− x̄‖+‖y− ȳ‖< δ2,

d(x,F−1(y)) = d(x,∩n
i=1(Ωi− xi)) = d(x̄,∩n

i=1(Ωi− x′i)) = d(x̄,F−1(y′)),

d(y,F(x)) = max
1≤i≤n

d(xi,Ωi− x) = max
1≤i≤n

d(x′i,Ωi− x̄) = d(y′,F(x̄)).

and, thanks to (c), d(x,F−1(y))≤ ϕ(d(y,F(x))).

�

The set-valued mapping (3.2) plays the key role in establishing relations between the reg-
ularity and transversality properties. It was most likely first used by Ioffe in [112]. Observe
that F−1(x1, . . . ,xn) = (Ω1− x1)∩ . . .∩ (Ωn− xn) for all x1, . . . ,xn ∈ X and, if x̄ ∈ ∩n

i=1Ωi,
then (0, . . . ,0) ∈ F(x̄).

The next statement is a reformulation of the metric characterizations of the transversality
properties in Theorem 1. It generalizes and extends the corresponding results in [38, 112,
114, 127–129, 134, 138, 139, 141, 142].

Theorem 13 Let Ω1, . . . ,Ωn be subsets of a normed space X , F be defined by (3.2), x̄ ∈
∩n

i=1Ωi and ȳ := (0, . . . ,0) ∈ Xn. The collection {Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ with some δ > 0 if and only if F is ϕ−semiregular at (x̄, ȳ)
with δ ;

(ii) ϕ−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if F is ϕ−subregular
at (x̄, ȳ) with δ1 and δ2;

(iii) ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

d(0,F−1(ω1 + x1, . . . ,ωn + xn))≤ ϕ(‖y‖) (3.3)

for all ωi ∈Ωi∩Bδ2(x̄) (i = 1, . . . ,n) and y := (x1, . . . ,xn) ∈ Xn with ϕ(‖y‖)< δ1.
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Observe that the condition in part (iii) of Theorem 13 is similar to, but not exactly the
one in the definition of ϕ−regularity. The next statement shows that the latter corresponds
to alternative metric characterizations of ϕ−transversality.

Proposition 21 Let Ω1, . . . ,Ωn be subsets of a normed space X , F be defined by (3.2), x̄ ∈
∩n

i=1Ωi, ȳ := (0, . . . ,0) ∈ Xn, δ1 > 0 and δ2 > 0. The following properties are equivalent:

(i) inequality (3.3) holds for all ωi ∈ Ωi, y := (x1, . . . ,xn) ∈ Xn with ωi + xi ∈ Bδ2(x̄)
(i = 1, . . . ,n) and ϕ(‖y‖)< δ1;

(ii) d(x̄,F−1(y))≤ ϕ(d(y,F(x̄))) for all y ∈ δ2BXn with ϕ(d(y,F(x̄)))< δ1;

(iii) inequality (3.1) holds for all x ∈ X , y := (x1, . . . ,xn) ∈ Xn with x+ xi ∈ Bδ2(x̄) (i =
1, . . . ,n) and ϕ(d(y,F(x)))< δ1;

(iv) the mapping F is ϕ−regular at (x̄, ȳ) with δ1 and δ2.

Moreover, if {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iv) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in place
of δ1 and δ2.

Conversely, if properties (i)–(iv) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . ,Ωn} is
ϕ−transversal at x̄ with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.

Proof With the exception of item (iv), the statement is a reformulation of Theorem 2 in
terms of the mapping F . It is easy to see that conditions (iii) and (iv) are equivalent; cf. the
hints to the proof of the linear version of this fact in [38]. �

Corollary 56 Let Ω1, . . . ,Ωn be subsets of a normed space X , F be defined by (3.2), x̄ ∈
∩n

i=1Ωi and ȳ := (0, . . . ,0) ∈ Xn. The collection {Ω1, . . . ,Ωn} is ϕ−transversal at x̄ if and
only if F is ϕ−regular at (x̄, ȳ).

In the convex case, conditions (i)–(iv) in Proposition 21 admit simplifications.

Corollary 57 Let Ω1, . . . ,Ωn be convex subsets of a normed space X , F be defined by (3.2),
x̄ ∈ ∩n

i=1Ωi, ȳ := (0, . . . ,0) ∈ Xn, δ1 > 0 and δ2 > 0. Conditions (i)–(iv) in Proposition 21
hold if and only if the following equivalent properties hold true:

(i) F−1(ω1 + x1, . . . ,ωn + xn)∩ (δ1B) 6= /0 for all ωi ∈ Ωi, y := (x1, . . . ,xn) ∈ Xn with
ωi + xi ∈ Bδ2(x̄) (i = 1, . . . ,n) and ϕ(‖y‖)< δ1;

(ii) F−1(y)∩Bδ1(x̄) 6= /0 for all y ∈ δ2BXn with ϕ(d(y,F(x̄)))< δ1;

(iii) F−1(y) ∩ Bδ1(x̄) 6= /0 for all x ∈ X , y := (x1, . . . ,xn) ∈ Xn with x + xi ∈ Bδ2(x̄)
(i = 1, . . . ,n) and ϕ(d(y,F(x)))< δ1.

The next corollary is a consequence of Theorem 13 and Proposition 21.
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Corollary 58 Let Ω1, . . . ,Ωn be subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, ϕ ∈ C , and F be

defined by (3.2). The collection {Ω1, . . . ,Ωn} is

(i) ϕ−semitransversal at x̄ if and only if F is ϕ−semiregular at (x̄,(0, . . . ,0));

(ii) ϕ−subtransversal at x̄ if and only if F is ϕ−subregular at (x̄,(0, . . . ,0));

(iii) ϕ−transversal at x̄ if and only if F is ϕ−regular at (x̄,(0, . . . ,0)).

Remark 38 (i) In the Hölder setting Corollary 58 reduces to [141, Proposition 9].

(ii) Apart from the mapping F defined by (3.2), in the case of two sets other set-valued
mappings can be used to ensure similar equivalences between the ϕ−transversality
and ϕ−regularity properties; see [116].

In view of Corollary 58, the nonlinear transversality properties of collections of sets
can be viewed as particular cases of the corresponding nonlinear regularity properties of
set-valued mappings. We are going to show that the two popular models are in a sense
equivalent.

Given an arbitrary set-valued mapping F : X ⇒ Y between metric spaces and a point
(x̄, ȳ) ∈ gphF , we can consider the two sets:

Ω1 := gphF, Ω2 := X×{ȳ} (3.4)

in the product space X ×Y . Note that (x̄, ȳ) ∈ Ω1 ∩Ω2 = F−1(ȳ)×{ȳ}. To establish the
relationship between the two sets of properties, we have to assume in the next two theorems
that X and Y are normed vector spaces.

Theorem 14 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and ϕ ∈ C . Let Ω1

and Ω2 be defined by (3.4), and ψ(t) := ϕ(2t)+ t for all t ≥ 0.

(i) If F is ϕ−semiregular at (x̄, ȳ) with some δ > 0, then {Ω1,Ω2} is ψ−semitransversal
at (x̄, ȳ) with δ ′ := δ +ϕ−1(δ )/2.

(ii) If F is ϕ−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1,Ω2} is ψ−sub-
transversal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 such that ϕ(2ψ−1(δ ′1))≤ δ1 and
ψ−1(δ ′1)+δ ′2 ≤ δ2.

(iii) If F is ϕ−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1,Ω2} is ψ−trans-
versal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 such that ϕ(2ψ−1(δ ′1)) ≤ δ1 and
ψ−1(δ ′1)+δ ′2 ≤ δ2/2.
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Proof Observe that ψ ∈C , ϕ(2ψ−1(t))+ψ−1(t) = t and ψ(ϕ−1(t)/2) = t+ϕ−1(t)/2 for
all t ≥ 0.

(i) Let F be ϕ−semiregular at (x̄, ȳ) with some δ > 0. Set δ ′ := δ + ϕ−1(δ )/2 =

ψ(ϕ−1(δ )/2). Let ρ ∈]0,δ ′[ and (u1,v1),(u2,v2) ∈ ψ−1(ρ)B. Set y′ := ȳ+ v1− v2.
Observe that

(Ω1− (u1,v1))∩ (Ω2− (u2,v2)) = (gphF− (u1,v1))∩ (X×{ȳ− v2})
=
(
F−1(y′)−u1

)
×{ȳ− v2}.

We haven ‖y′ − ȳ‖ = ‖v1 − v2‖ ≤ ‖v1‖ + ‖v2‖ < 2ψ−1(ρ), and consequently,
ϕ(‖y′− ȳ‖)< ϕ(2ψ−1(ρ))< ϕ(2ψ−1(δ ′)) = δ . By Definition 7(i),

d(x̄,F−1(y′)−u1)≤ d(x̄,F−1(y′))+‖u1‖
≤ ϕ(‖y′− ȳ‖)+‖u1‖< ϕ(2ψ

−1(ρ))+ψ
−1(ρ) = ρ,

and consequently,

d ((x̄, ȳ),(Ω1− (u1,v1))∩ (Ω2− (u2,v2)))≤max{d(x̄,F−1(y′)−u1),‖v2‖}
< max{ρ,ψ−1(ρ)}= ρ;

hence,

(Ω1− (u1,v1))∩ (Ω2− (u2,v2))∩Bρ(x̄, ȳ) 6= /0. (3.5)

By Definition 6(i), {Ω1,Ω2} is ϕ−semitransversal at (x̄, ȳ) with δ ′.

(ii) Let F be ϕ−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose numbers δ ′1 > 0
and δ ′2 > 0 such that ϕ(2ψ−1(δ ′1)) ≤ δ1 and ψ−1(δ ′1)+δ ′2 ≤ δ2. Let ρ ∈]0,δ ′1[ and
(x,y)∈ Bδ ′2

(x̄, ȳ) with ψ(max{d((x,y),Ω1),d((x,y),Ω2)})< ρ , i.e. ‖y− ȳ‖<ψ−1(ρ)

and there exists a point (x1,y1) ∈ gphF such that ‖(x,y)− (x1,y1)‖< ψ−1(ρ). Then

‖x1− x̄‖ ≤ ‖x1− x‖+‖x− x̄‖< ψ
−1(δ ′1)+δ

′
2 ≤ δ2,

d(ȳ,F(x1))≤ ‖y1− ȳ‖ ≤ ‖y− ȳ‖+‖y1− y‖< 2ψ
−1(ρ),

and consequently, ϕ(d(ȳ,F(x1)))< ϕ(2ψ−1(ρ))< ϕ(2ψ−1(δ ′1))≤ δ1. Choose a pos-
itive ε < 2ψ−1(ρ)−d(ȳ,F(x1)). By Definition 7(ii), there exists an x′ ∈ F−1(ȳ) such
that ‖x′− x1‖< ϕ(d(ȳ,F(x1))+ ε)< ϕ(2ψ−1(ρ)). Hence, (x′, ȳ) ∈Ω1∩Ω2 and

‖x− x′‖ ≤ ‖x1− x′‖+‖x− x1‖< ϕ(2ψ
−1(ρ))+ψ

−1(ρ) = ρ,

‖y− ȳ‖< ψ
−1(ρ)< ρ.

Thus, Ω1 ∩Ω2 ∩Bρ(x,y) 6= /0. By Definition 6(ii), {Ω1,Ω2} is ψ−subtransversal at
(x̄, ȳ) with δ ′1 and δ ′2.
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(iii) Let F be ϕ−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose numbers δ ′1 > 0 and
δ ′2 > 0 such that ϕ(2ψ−1(δ ′1))≤ δ1 and ψ−1(δ ′1)+δ ′2≤ δ2/2. Let ρ ∈]0,δ ′1[, (x1,y1)∈
gphF ∩Bδ ′2

(x̄, ȳ), x2 ∈ Bδ ′2
(x̄) and (u1,v1),(u2,v2) ∈ ψ−1(ρ)B. Set y′ := y1 + v1− v2.

Then

‖x1− x̄‖+‖y′− ȳ‖ ≤ ‖v1‖+‖v2‖+‖x1− x̄‖+‖y1− ȳ‖< 2ψ
−1(δ ′1)+2δ

′
2 ≤ δ2,

ϕ(d(y′,F(x1)))≤ ϕ(‖y′− y1‖)≤ ϕ(‖v1‖+‖v2‖)< ϕ(2ψ
−1(δ ′1))≤ δ1.

Choose a positive ε < 2
(
ψ−1(ρ)−max{‖v1‖,‖v2‖}

)
. By Definition 7(iii), there ex-

ists an x′ ∈ F−1(y′) such that

‖x1− x′‖< ϕ(‖y′− y1‖+ ε)≤ ϕ(2max{‖v1‖,‖v2‖}+ ε)< ϕ(2ψ
−1(ρ)).

Denote x̂ := x′ − x1 − u1 and ŷ := y′ − y1 − v1. Thus, (x′,y′) ∈ Ω1 and (x̂, ŷ) ∈
Ω1− (x1,y1)− (u1,v1). At the same time, ŷ =−v2 and (x̂, ŷ) ∈Ω2− (x2, ȳ)− (u2,v2).
Moreover,

‖x̂‖ ≤ ‖x′− x1‖+‖u1‖< ϕ(2ψ
−1(ρ))+ψ

−1(ρ) = ρ,

‖ŷ‖= ‖v2‖< ψ
−1(ρ)< ρ;

hence (x′,y′) ∈ ρB. By Definition 6(iii), {Ω1,Ω2} is ψ−transversal at (x̄, ȳ) with δ ′1
and δ ′2.

�

Theorem 15 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and ϕ ∈ C . Let Ω1

and Ω2 be defined by (3.4), and ψ(t) := ϕ(t/2) for all t ≥ 0.

(i) If {Ω1,Ω2} is ϕ−semitransversal at (x̄, ȳ) with some δ > 0, then F is ψ−semiregular
at (x̄, ȳ) with δ .

(ii) If {Ω1,Ω2} is ϕ−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then F is
ψ−subregular at (x̄, ȳ) with δ ′1 := min{δ1,ψ(2δ2)} and δ2.

(iii) If {Ω1,Ω2} is ϕ−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then F is ψ−re-
gular at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 such that ψ−1(δ ′1)+δ ′2 ≤ δ2.

Proof Observe that ψ ∈ C .

(i) Let {Ω1,Ω2} be ϕ−semitransversal at (x̄, ȳ) with some δ > 0. By Definition 6(i),
condition (3.5) is satisfied for all ρ ∈]0,δ [ and (u1,v1),(u2,v2) ∈ ϕ−1(ρ)B. Let y ∈ Y
with ρ0 := ψ(‖y− ȳ‖)< δ . Choose a ρ ∈]ρ0,δ [ and observe that

ϕ

(∥∥∥∥(0,
y− ȳ

2

)∥∥∥∥)= ϕ

(
‖y− ȳ‖

2

)
= ψ (‖y− ȳ‖)< ρ.
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In view of (3.5), we can find (x1,y1) ∈ gphF and x2 ∈ X such that

(x1,y1)−
(

0,
y− ȳ

2

)
= (x2, ȳ)−

(
0,

ȳ− y
2

)
∈ Bρ(x̄, ȳ).

Hence, y1 = ȳ + 2 y−ȳ
2 = y, x1 ∈ F−1(y), ‖x1 − x̄‖ < ρ , and consequently,

d(x̄,F−1(y)) < ρ . Letting ρ ↓ ρ0, we obtain d(x̄,F−1(y)) ≤ ψ(‖y− ȳ‖). By Defi-
nition 7(i), F is ψ−semiregular at (x̄, ȳ) with δ .

(ii) Let {Ω1,Ω2} be ϕ−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. By Def-
inition 6(ii), gphF ∩ (X ×{ȳ})∩Bρ(x,y) 6= /0 for all ρ ∈]0,δ1[ and (x,y) ∈ Bδ2(x̄, ȳ)
with ϕ(d((x,y),gphF)) < ρ and ϕ(‖y− ȳ‖) < ρ . Set δ ′1 := min{δ1,ψ(2δ2)}. Let
x∈Bδ2(x̄) and ψ(d(ȳ,F(x)))< δ ′1. Choose a y∈F(x) such that ρ0 :=ψ(‖ȳ−y‖)< δ ′1,
and a ρ ∈]ρ0,δ

′
1[. Set ŷ := y+ȳ

2 . Observe that

‖ŷ− y‖= ‖ŷ− ȳ‖= ‖ȳ− y‖
2

=
ψ−1(ρ0)

2
<

ψ−1(ρ)

2
=ϕ
−1(ρ),

‖ŷ− ȳ‖< ψ−1(ρ)

2
<

ψ−1(δ ′1)

2
≤ δ2.

Thus, ρ ∈]0,δ1[, (x, ŷ) ∈ Bδ2(x̄, ȳ), ϕ(d((x, ŷ),gphF)) ≤ ϕ(‖ŷ− y‖) < ρ and ϕ(‖ŷ−
ȳ‖)< ρ . Hence, gphF∩(X×{ȳ})∩Bρ(x, ŷ) 6= /0, and consequently, d(x,F−1(ȳ))< ρ .
Letting ρ ↓ ρ0, we obtain d(x,F−1(ȳ))≤ ψ(‖ȳ−y‖). Taking the infimum in the right-
hand side of this inequality over y∈F(x), we conclude that F is ψ−subregular at (x̄, ȳ)
with δ ′1 and δ2 in view of Definition 7(ii).

(iii) Let {Ω1,Ω2} be ϕ−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, i.e.
for all ρ ∈]0,δ1[, (x′,y′) ∈ gphF ∩ Bδ2(x̄, ȳ), u1 ∈ X and v1,v2 ∈ Y with
ϕ(max{‖u1‖,‖v1‖,‖v2‖})< ρ , it holds(

gphF− (x′,y′)− (u1,v1)
)
∩ (X×{−v2})∩ (ρB) 6= /0,

or equivalently, d
(
x′+u1,F−1(y′+ v1− v2)

)
< ρ . In other words, d

(
x,F−1(y)

)
< ρ

for all ρ ∈]0,δ1[, (x′,y′) ∈ gphF ∩Bδ2(x̄, ȳ), x ∈ X and y ∈ Y with ‖x− x′‖< ϕ−1(ρ)

and ‖y− y′‖< 2ϕ−1(ρ). Choose numbers δ ′1 ∈]0,δ1] and δ ′2 > 0 such that ψ−1(δ ′1)+

δ ′2 ≤ δ2. Let x ∈ X and y ∈ Y with ‖x− x̄‖+ ‖y− ȳ‖ < δ ′2 and ψ(d(y,F(x))) < δ ′1.
Choose a y′ ∈ F(x) such that ρ0 :=ψ(‖y−y′‖)< δ ′1 and a ρ ∈]ρ0,δ

′
1[. Then ρ ∈]0,δ1[,

(x,y′) ∈ gphF , ‖x− x̄‖< δ ′2 < δ2, ‖y′− ȳ‖ ≤ ‖y′− y‖+‖y− ȳ‖< ψ−1(δ ′1)+δ ′2 ≤ δ2

and ‖y− y′‖ < ψ−1(ρ) = 2ϕ−1(ρ). Hence, d
(
x,F−1(y)

)
< ρ . Letting ρ ↓ ρ0, we

obtain d(x,F−1(y)) ≤ ψ(‖y− y′‖). Taking the infimum in the right-hand side of this
inequality over y′ ∈ F(x), we conclude that F is ψ−regular at (x̄, ȳ) with δ ′1 and δ ′2 in
view of Definition 7(iii).

�

The next corollary of Theorems 14 and 15 provides qualitative relations between the
regularity and transversality properties.
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Corollary 59 Let X and Y be normed spaces, F : X ⇒Y , (x̄, ȳ) ∈ gphF , and ϕ ∈ C . Let Ω1

and Ω2 be defined by (3.4), ψ1(t) := ϕ(2t)+ t and ψ2(t) := ϕ(t/2) for all t ≥ 0.

(i) If F is ϕ−(semi-/sub-)regular at (x̄, ȳ), then {Ω1,Ω2} is ψ1−(semi-/sub-)transversal
at (x̄, ȳ).

(ii) If {Ω1,Ω2} is ϕ−(semi-/sub-)transversal at (x̄, ȳ), then F is ψ2−(semi-/sub-)regular
at (x̄, ȳ).

The next statement addresses the Hölder setting. It is a consequence of Theorems 14 and
15 with ϕ(t) := α−1tq for some α > 0, q > 0 and all t ≥ 0.

Corollary 60 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , α > 0 and q > 0.
Let Ω1 and Ω2 be defined by (3.4), α1 := 2−qα , α2 := 2qα , and ψ(t) := α

−1
1 tq + t for all

t ≥ 0.

(i) If F is α−semiregular of order q at (x̄, ȳ) with some δ > 0, then {Ω1,Ω2} is ψ−se-
mitransversal at (x̄, ȳ) with δ ′ := δ +(αδ )

1
q/2.

If {Ω1,Ω2} is α−semitransversal of order q at (x̄, ȳ) with some δ > 0, then F is
α2−semiregular of order q at (x̄, ȳ) with δ .

(ii) Let q ≤ 1. If F is α−subregular of order q at (x̄, ȳ) with some δ1 > 0 and δ2 > 0,
then {Ω1,Ω2} is ψ−subtransversal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 such that
(2ψ−1(δ ′1))

q ≤ αδ1 and ψ−1(δ ′1)+δ ′2 ≤ δ2.

If {Ω1,Ω2} is α−subtransversal of order q at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then
F is α2−subregular of order q at (x̄, ȳ) with δ ′1 := min{δ1,α

−1δ
q
2 } and δ2.

(iii) Let q ≤ 1. If F is α−regular of order q at (x̄, ȳ) with some δ1 > 0 and δ2 > 0,
then {Ω1,Ω2} is ψ−transversal at (x̄, ȳ) with any δ ′1 > 0 and δ ′2 > 0 such that
(2ψ−1(δ ′1))

q ≤ αδ1 and ψ−1(δ ′1)+δ ′2 ≤ δ2/2.

If {Ω1,Ω2} is α−transversal of order q at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then F is
α2−regular of order q at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 such that 2(αδ ′1)

1
q +δ ′2≤

δ2.

In view of Corollary 60, Hölder transversality properties of {Ω1,Ω2} imply the corre-
sponding Hölder regularity properties of F , while Hölder regularity properties of F imply
certain ‘Hölder-type’ transversality properties of {Ω1,Ω2} determined by the function ψ .
Utilizing Proposition 1, they can be approximated by proper Hölder (or even linear) transver-
sality properties.

Corollary 61 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , α > 0 and q > 0.
Let Ω1 and Ω2 be defined by (3.4) and α1 := 2−qα . If F is α−(semi-/sub-) transversal at
(x̄, ȳ), then {Ω1,Ω2} is α ′−(semi-/sub-)transversal of order q′ at x̄, where:
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(i) if q < 1, then q′ = q and α ′ is any number in ]0,α1[;

(ii) if q = 1, then q′ = 1 and α ′ := (1+α
−1
1 )−1;

(iii) if q > 1, then q′ = 1 and α ′ is any number in ]0,1[.

Thanks to Corollaries 60 and 61, in the case q ∈]0,1] we have full equivalence between
the two sets of properties. The following corollary recaptures [141, Proposition 10].

Corollary 62 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and q ∈]0,1]. Let
Ω1 and Ω2 be defined by (3.4).

(i) {Ω1,Ω2} is α−semitransversal of order q at (x̄, ȳ) if and only if F is semiregular of
order q at (x̄, ȳ). Moreover,

sergq[F ](x̄, ȳ)
sergq[F ](x̄, ȳ)+2q ≤ setrq[Ω1,Ω2](x̄)≤

sergq[F ](x̄, ȳ)
2q .

(ii) {Ω1,Ω2} is α−subtransversal of order q at (x̄, ȳ) if and only if F is subregular of order
q at (x̄, ȳ). Moreover,

srgq[F ](x̄, ȳ)
srgq[F ](x̄, ȳ)+2q ≤ strq[Ω1,Ω2](x̄)≤

srgq[F ](x̄, ȳ)
2q .

(iii) {Ω1,Ω2} is α−transversal of order q at (x̄, ȳ) if and only if F is regular of order q at
(x̄, ȳ). Moreover,

rgq[F ](x̄, ȳ)
rgq[F ](x̄, ȳ)+2q ≤ trq[Ω1,Ω2](x̄)≤

rgq[F ](x̄, ȳ)
2q .

The next theorem translates nonlinear transversality properties of the collection {Ω1,Ω2}
into certain metric properties of the mapping F , which can be used along with those in
Definition 7.

Theorem 16 Let X and Y be normed spaces, F : X ⇒Y , (x̄, ȳ)∈ gphF , Ω1 and Ω2 be defined
by (3.4).

(i) If {Ω1,Ω2} is ϕ−semitransversal at (x̄, ȳ) with some δ > 0, then

d(x̄+u,F−1(ȳ+ v))≤ ϕ (max{‖u‖,‖v‖/2}) (3.6)

for all u ∈ X and v ∈ Y with ϕ (max{‖u‖,‖v‖/2})< δ .

(ii) If {Ω1,Ω2} is ϕ−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

d(x,F−1(ȳ))≤ ϕ (max{d((x,y),gphF),‖y− ȳ‖}) (3.7)

for all x ∈ Bδ2(x̄) and y ∈ Bmin{ϕ−1(δ1),δ2}(ȳ) with ϕ(d((x,y),gphF))< δ1.
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(iii) If {Ω1,Ω2} is ϕ−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

d(x+u,F−1(y+ v))≤ ϕ (max{‖u‖,‖v‖/2}) (3.8)

for all (x,y) ∈ gphF ∩Bδ2(x̄, ȳ), and u ∈ X , v ∈ Y with ϕ (max{‖u‖,‖v‖/2})< δ1.

Moreover, if ϕ(t)≥ t for all t ∈]0,ϕ−1(δ )[ in part (i), or ϕ(t)≥ t for all t ∈]0,ϕ−1(δ1)[

in parts (ii) and (iii), then the respective implications hold as equivalences.

Proof

(i) Let x1 := (u1,v1), x2 := (u2,v2) ∈ X×Y . Then,

(Ω1− x1)∩ (Ω2− x2) = (F−1(ȳ+ v1− v2)−u1)×{ȳ− v2}, (3.9)

d ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2)) = max{d(x̄+u1,F−1(ȳ+ v1− v2)),‖v2‖}.

Thus, the inequality

d ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2))≤ ϕ(max{‖x1‖,‖x2‖})

implies

d(x̄+u1,F−1(ȳ+ v1− v2))≤ ϕ(max{‖u1‖,‖u2‖,‖v1‖,‖v2‖}), (3.10)

and if ϕ(‖v2‖) < δ , the converse implication is true when ϕ(t) ≥ t for all
t ∈]0,ϕ−1(δ )[.

We claim that the following conditions are equivalent:

(a) inequality (3.6) holds for all u ∈ X and v ∈ Y with ϕ (max{‖u‖,‖v‖/2})< δ ;

(b) inequality (3.10) holds for all u1,u2 ∈ X and v1,v2 ∈ Y with
ϕ(max{‖u1‖,‖u2‖,‖v1‖,‖v2‖})< δ .

(a) ⇒ (b). Let u1,u2 ∈ X and v1,v2 ∈ Y with ϕ(max{‖u1‖,‖u2‖,‖v1‖,‖v2‖}) < δ .
Then inequality (3.6) holds for u1 and v1− v2 in place of u and v, i.e.

d(x̄+u1,F−1(ȳ+ v1− v2))≤ ϕ(max{‖u1‖,‖v1− v2‖}),

and consequently, inequality (3.10) holds.

(b)⇒ (a). Let u∈X and v∈Y with ϕ (max{‖u‖,‖v‖/2})< δ . Then, inequality (3.10)
holds for u1 := u, u2 := 0, v1 := v/2 and v2 :=−v/2, which is equivalent to inequality
(3.6).

Thus, (a)⇔ (b), which, in view of Theorem 1(i), proves the assertion.
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(ii) Let (x,y) ∈ X×Y . Thanks to (3.4), we have

d((x,y),Ω2) = ‖y− ȳ‖, d((x,y),Ω1∩Ω2) = max{d(x,F−1(ȳ)),‖y− ȳ‖}.

Thus, the inequality

d ((x,y),Ω1∩Ω2)≤ ϕ(max{d((x,y),Ω1),d((x,y),Ω2)}

implies inequality (3.7), and if ϕ(‖y− ȳ‖)< δ1, the converse implication is true when
ϕ(t)≥ t for all t ∈]0,ϕ−1(δ1)[. In view of Theorem 1(ii), this proves the assertion.

(iii) Let x1 := (u1,v1), x2 := (u2,v2), (x,y) ∈ X×Y and z ∈ X . Then,

(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2)

= (F−1(y+ v1− v2)− x−u1)×{−v2},
d ((0,0),(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2))

= max{d(x+u1,F−1(y+ v1− v2)),‖v2‖}.

Thus, the inequality

d ((0,0),(Ω1− (x,y)− x1)∩ (Ω2− (z, ȳ)− x2))≤ ϕ (max{‖x1‖,‖x2‖}) (3.11)

implies

d(x+u1,F−1(y+ v1− v2))≤ ϕ(max{‖u1‖,‖u2‖,‖v1‖,‖v2‖}), (3.12)

and, if ϕ(‖v2‖) < δ1, the converse implication is true when ϕ(t) ≥ t for all
t ∈]0,ϕ−1(δ1)[. The same arguments as in the proof of (i) show that inequal-
ity (3.12) holds for all (x,y) ∈ Ω1 ∩ Bδ2(x̄, ȳ), u1,u2 ∈ X and v1,v2 ∈ Y with
ϕ(max{‖u1‖,‖u2‖,‖v1‖,‖v2‖})< δ if and only if inequality (3.8) holds for all (x,y)∈
gphF ∩Bδ2(x̄, ȳ), u ∈ X and v ∈ Y with ϕ (max{‖u‖,‖v‖/2}) < δ . In view of Theo-
rem 1(iii), this proves the assertion.

�

Using the estimates in the proof of Theorem 16, we can also translate the metric char-
acterizations of the nonlinear transversality in Theorem 2 into certain metric conditions in-
volving the set-valued mapping F .

Proposition 22 Let X and Y be normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , Ω1 and Ω2 be
defined by (3.4), δ1 > 0 and δ2 > 0. The following properties are equivalent:

(i) for all (x,y) ∈ gphF , u ∈ X and v1,v2 ∈ Y with ϕ(max{‖u‖,‖v1‖}) < δ1, ϕ(‖v2‖) <
min{δ1,ϕ(δ2)}, and (x,y)+(u,v1) ∈ Bδ2(x̄, ȳ), it holds

d(x+u,F−1(y+ v1− v2))≤ ϕ(max{‖u‖,‖v1‖,‖v2‖}); (3.13)
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(ii) for all u ∈ X and v1,v2 ∈Y with max{‖u‖,‖v1‖}< δ2, ϕ(‖v2‖)< min{δ1,ϕ(δ2)} and
ϕ(d((x̄, ȳ)+(u,v1),gphF))< δ1, it holds

d(x̄+u,F−1(ȳ+ v1− v2))≤ ϕ(max{d((x̄, ȳ)+(u,v1),gphF),‖v2‖}); (3.14)

(iii) for all (x,y), (u,v1) ∈ X × Y and v2 ∈ Y with (x,y) + (u,v1) ∈ Bδ2(x̄, ȳ),
ϕ(d ((x,y)+(u,v1),gphF))< δ1, and ϕ(‖y+ v2− ȳ‖)< min{δ1,ϕ(δ2)}, it holds

d(x+u,F−1(y+ v1− v2))

≤ ϕ (max{d ((x,y)+(u,v1),gphF) ,‖y+ v2− ȳ‖}) . (3.15)

Moreover, if {Ω1,Ω2} is ϕ−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then
conditions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in place
of δ1 and δ2.

Conversely, if properties (i)–(iii) hold with some δ1 > 0 and δ2 > 0, and ϕ(t)≥ t for
all t ∈]0,ϕ−1(δ1)[, then {Ω1,Ω2} is ϕ−transversal at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0
satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.

Proof

(i) Given x1 := (u1,v1), x2 := (u2,v2), (x,y) ∈ X×Y and z ∈ X , inequality (3.11) implies
(3.12), and the conditions are equivalent if ϕ(‖v2‖) < δ1, and ϕ(t) ≥ t for all t ∈
]0,ϕ−1(δ1)[. Moreover, given x,u ∈ X and y,v1,v2 ∈ Y , inequality (3.12) holds with
u1 := u for all u2 ∈ X with ϕ(‖u2‖) < δ1 if and only if inequality (3.13) is satisfied.
Hence, condition (i) is equivalent to the one in Proposition 2(i).

(ii) Given x1 := (u1,v1) and x2 := (u2,v2), inequality

d ((x̄, ȳ),(Ω1− x1)∩ (Ω2− x2))

≤ ϕ (max{d((x̄, ȳ),Ω1− x1),d((x̄, ȳ),Ω2− x2)})

implies

d(x̄+u1,F−1(ȳ+ v1− v2))≤ ϕ (max{d((x̄, ȳ)+(u1,v1),gphF),‖v2‖}) , (3.16)

and the converse implication is true if ϕ(‖v2‖) < δ1 and, ϕ(t) ≥ t for all
t ∈]0,ϕ−1(δ1)[. Observe that inequality (3.16) holds with u1 := u if and only if in-
equality (3.14) is satisfied. Hence, condition (ii) is equivalent to the one in Proposi-
tion 2(ii).

(iii) Given x1 := (u1,v1), x2 := (u2,v2) and (x,y) ∈ X ×Y , we have representation (3.9),
and consequently,

d ((x,y),(Ω1− x1)∩ (Ω2− x2))

= max
{

d(x+u1,F−1(y+ v1− v2)),‖y+ v2− ȳ‖
}
.
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Thus, the inequality

d ((x,y),(Ω1− x1)∩ (Ω2− x2))

≤ ϕ (max{d ((x,y),Ω1− x1) ,d ((x,y),Ω2− x2)})

implies inequality (3.15), and the converse implication is true if ϕ(‖y+ v2− ȳ‖)< δ1,
and ϕ(t) ≥ t for all t ∈]0,ϕ−1(δ1)[. Hence, condition (iii) is equivalent to Proposi-
tion 2(iii).

The remaining conclusions follow from Proposition 4 and Theorem 2. �

Thanks to Proposition 6, we can formulate a simplified version of Proposition 22 for the
convex case.

Corollary 63 Let X and Y be normed spaces, F : X ⇒Y have a convex graph, (x̄, ȳ)∈ gphF ,
Ω1 and Ω2 be defined by (3.4), δ1 > 0, δ2 > 0, and ϕ ∈ Ĉ δ1 . Properties (i)–(iii) in Theorem 2
hold if and only if the following equivalent conditions hold true:

(i) F−1(y+ v1− v2)∩Bδ1(x+ u) 6= /0 for all (x,y) ∈ gphF , u ∈ X and v1,v2 ∈ Y with
ϕ(max{‖u‖,‖v1‖})< δ1, ϕ(‖v2‖)< min{δ1,ϕ(δ2)}, and (x,y)+(u,v1) ∈ Bδ2(x̄, ȳ);

(ii) F−1(ȳ+ v1− v2)∩Bδ1(x̄+u) 6= /0 for all u ∈ X and v1,v2 ∈ Y with max{‖u‖,‖v1‖}<
δ2, ϕ(‖v2‖)< min{δ1,ϕ(δ2)}, and ϕ(d((x̄, ȳ)+(u,v1),gphF))< δ1;

(iii) F−1(y + v1 − v2) ∩ Bδ1(x + u) 6= /0 for all (x,y), (u,v1) ∈ X ×Y and v2 ∈ Y with
(x,y)+ (u,v1) ∈ Bδ2(x̄, ȳ), ϕ(d ((x,y)+(u,v1),gphF)) < δ1, and ϕ(‖y+ v2− ȳ‖) <
min{δ1,ϕ(δ2)}.

3.1.2 Transversality of a Set-Valued Mapping to a Set

We now discuss nonlinear extensions of the new transversality properties of a set-valued
mapping to a set in the range space due to Ioffe [114, 116]. In the rest of this section,
F : X ⇒ Y is a set-valued mapping between normed spaces, (x̄, ȳ) ∈ gphF , S is a subset of
Y , ȳ ∈ S, and ϕ ∈ C .

Definition 8 The mapping F is

(i) ϕ−semitransversal to S at (x̄, ȳ) if {gphF,X × S} is ϕ−semitransversal at (x̄, ȳ), i.e.
there exists a δ > 0 such that

(gphF− (u1,v1))∩ (X× (S− v2))∩Bρ(x̄, ȳ) 6= /0 (3.17)

for all ρ ∈]0,δ [, u1 ∈ X , v1,v2 ∈ Y with ϕ (max{‖u1‖,‖v1‖,‖v2‖})< ρ;

(ii) ϕ−subtransversal to S at (x̄, ȳ) if {gphF,X×S} is ϕ−subtransversal at (x̄, ȳ), i.e. there
exist δ1 > 0 and δ2 > 0 such that

gphF ∩ (X×S)∩Bρ(x,y) 6= /0 (3.18)

for all ρ ∈]0,δ1[ and (x,y) ∈ Bδ2(x̄, ȳ) with ϕ(max{d((x,y),gphF),d(y,S)})< ρ;
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(iii) ϕ−transversal to S at (x̄, ȳ) if {gphF,X ×S} is ϕ−transversal at (x̄, ȳ), i.e. there exist
δ1 > 0 and δ2 > 0 such that

(gphF− (x1,y1)− (u1,v1))∩ (X× (S− y2− v2))∩ (ρB) 6= /0 (3.19)

for all ρ ∈]0,δ1[, (x1,y1) ∈ gphF ∩Bδ2(x̄, ȳ), y2 ∈ S∩Bδ2(ȳ), u1 ∈ X , v1,v2 ∈ Y with
ϕ (max{‖u1‖,‖v1‖,‖v2‖})< ρ .

The two-set model {gphF,X×S} employed in Definition 8 is an extension of the model
(3.4), which corresponds to the case when S is a singleton: S := {ȳ}.

The metric characterizations of the properties in the next two statements are conse-
quences of Theorems 1 and 2, respectively. Each characterization can be used as an equiva-
lent definition for the respective property.

Corollary 64 The mapping F is

(i) ϕ−semitransversal to S at (x̄, ȳ) with some δ > 0 if and only if

d
(
(x̄, ȳ),(gphF− (x1,y1))∩ (X× (S− y2))

)
≤ ϕ (max{‖x1‖,‖y1‖,‖y2‖})

for all x1 ∈ X , y1,y2 ∈ Y with ϕ(max{‖x1‖,‖y1‖,‖y2‖})< δ ;

(ii) is ϕ−subtransversal to S at (x̄, ȳ) with some δ1 > 0 and δ2 > 0 if and only if the
following equivalent conditions hold:

(a) for all (x,y) ∈ Bδ2(x̄, ȳ) with ϕ
(

max{d((x,y),gphF),d(y,S)}
)
< δ1, it holds

d ((x,y),gphF ∩ (X×S))≤ ϕ (max{d((x,y),gphF),d(y,S)}) ;

(b) for all (x1,y1) ∈ gphF ∩Bδ2(x̄, ȳ), y2 ∈ S∩Bδ2(ȳ) and u1 ∈ X , v1,v2 ∈ Y with
ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ1 and x1+u1 ∈ Bδ2(x̄), y1+v1 = y2+v2 ∈ Bδ2(ȳ),
it holds

d ((0,0),(gphF− (x1,y1)− (u1,v1))∩ (X× (S− y2− v2)))

≤ ϕ (max{‖u1‖,‖v1‖,‖v2‖}) ; (3.20)

(iii) ϕ−transversal to S at (x̄, ȳ) with some δ1 > 0 and δ2 > 0 if and only if inequality
(3.20) holds for all (x1,y1) ∈ gphF ∩Bδ2(x̄, ȳ), y2 ∈ S∩Bδ2(ȳ) and u1 ∈ X , v1,v2 ∈ Y
with ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ1.

Corollary 65 Let δ1 > 0 and δ2 > 0. The following conditions are equivalent:

(i) for all (x1,y1)∈ gphF∩Bδ2(x̄, ȳ), y2 ∈ S∩Bδ2(ȳ) and u1 ∈ X , v1,v2 ∈Y with x1+u1 ∈
Bδ2(x̄), y1+v1,y2+v2 ∈ Bδ2(ȳ) and ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ1, inequality (3.20)
holds true;
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(ii) for all x1,y1,y2 ∈ δ2B with ϕ(max{d((x̄, ȳ),gphF − (x1,y1)),d(ȳ,S− y2)}) < δ1, it
holds

d ((x̄, ȳ),(gphF− (x1,y1))∩ (X× (S− y2)))

≤ ϕ (max{d((x̄, ȳ),gphF− (x1,y1)),d(ȳ,S− y2)}) ; (3.21)

(iii) for all x,x1 ∈ X , y,y1,y2 ∈ Y such that x + x1 ∈ Bδ2(x̄), y+ y1,y+ y2 ∈ Bδ2(ȳ) and
ϕ (max{d((x,y),gphF− (x1,y1)),d(y,S− y2)})< δ1, it holds

d
(
(x,y),(gphF− (x1,y1))∩ (X× (S− y2))

)
≤ ϕ

(
max{d((x,y),gphF− (x1,y1)),d(y,S− y2)}

)
.

Moreover, if F is ϕ−transversal to S at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then condi-
tions (i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in place of
δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then F is ϕ−trans-
versal to S at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.

Remark 39 In the linear case, i.e. when ϕ(t) := αt for some α > 0 and all t ≥ 0, in view
of Corollaries 64(ii)(a) and 65(iii), the properties in parts (ii) and (iii) of Definition 8 reduce,
respectively, to the ones in [116, Definitions 7.11 and 7.8]. The property in part (i) is new.

The next two statements provide characterizations of the properties in the convex case.
They are direct consequences of Propositions 5 and 6, respectively.

Proposition 23 Suppose gphF and S are convex, δ > 0, and ϕ ∈ Ĉ δ . The mapping F is

(i) ϕ−semitransversal to S at (x̄, ȳ) with δ if and only if

(gphF− (u1,v1))∩ (X× (S− v2))∩Bδ (x̄, ȳ) 6= /0 (3.22)

for all u1 ∈ X and v1,v2 ∈ Y with ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ ;

(ii) ϕ−transversal to S at (x̄, ȳ) with δ1 := δ and some δ2 > 0 if and only if

(gphF− (x1,y1)− (u1,v1))∩ (X× (S− y2− v2))∩ (δ1B) 6= /0 (3.23)

for all (x1,y1) ∈ gphF ∩ Bδ2(x̄, ȳ), y2 ∈ S ∩ Bδ2(ȳ), u1 ∈ X and v1,v2 ∈ Y with
ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ1.

Proposition 24 Suppose gphF and S are convex, δ1 > 0, δ2 > 0, and ϕ ∈ Ĉ δ1 . The following
properties are equivalent:

(i) condition (3.23) holds for all (x1,y1) ∈ gphF , y2 ∈ S, u1 ∈ X and v1,v2 ∈ Y with
x1 +u1 ∈ Bδ2(x̄), y1 + v1,y2 + v2 ∈ Bδ2(ȳ) and ϕ (max{‖u1‖,‖v1‖,‖v2‖})< δ1;
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(ii) condition (3.22) holds with δ1 in place of δ for all u1 ∈ δ2BX and v1,v2 ∈ δ2BY with
ϕ(max{d((x̄, ȳ),gphF− (u1,v1)),d(ȳ,S− v2)})< δ1;

(iii) for all x,u1 ∈ X and y,v1,v2 ∈ Y such that x+u1 ∈ Bδ2(x̄), y+ v1,y+ v2 ∈ Bδ2(ȳ) and
ϕ (max{d((x,y),gphF− (u1,v1)),d(y,S− v2)})< δ1, it holds

(gphF− (u1,v1))∩ (X× (S− v2))∩Bδ1(x,y) 6= /0.

Moreover, if F is ϕ−transversal to S at (x̄, ȳ) with δ1 and some δ2 > 0, then properties
(i)–(iii) hold with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2 in place of δ1 and
δ2.

Conversely, if properties (i)–(iii) hold with δ1 and some δ2 > 0, then F is ϕ−transversal
to S at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying ϕ−1(δ ′1)+δ ′2 ≤ δ2.

The set-valued mapping (3.2), crucial for establishing equivalences between trans-
versality properties of collections of sets and the corresponding regularity properties of set-
valued mappings, in the setting considered here translates into the mapping G : X ×Y ⇒

(X×Y )× (X×Y ) of the following form:

G(x,y) :=
(
gphF− (x,y)

)
×
(
X× (S− y)

)
, (x,y) ∈ X×Y. (3.24)

Observe that G−1(x1,y1,x2,y2) =
(
gphF − (x1,y1)

)
∩
(
X × (S− y2)

)
for all x1,x2 ∈ X ,

y1,y2 ∈ Y and, if (x̄, ȳ) ∈ gphF , ȳ ∈ S, then
(
(0,0),(0,0)

)
∈ G(x̄, ȳ).

The relationships between the nonlinear transversality and regularity properties in the
next statement are direct consequences of Theorem 13 and Proposition 21.

Theorem 17 Let G be defined by (3.24).

(i) F is ϕ−semitransversal to S at (x̄, ȳ) with some δ > 0 if and only if G is ϕ−semiregular
at
(
(x̄, ȳ),(0,0),(0,0)

)
with δ .

(ii) F is ϕ−subtransversal to S at (x̄, ȳ) with some δ1 > 0 and δ2 > 0 if and only if G is
ϕ−subregular at

(
(x̄, ȳ),(0,0),(0,0)

)
with δ1 and δ2.

(iii) If F is ϕ−transversal to S at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then G is ϕ−regular
at
(
(x̄, ȳ),(0,0),(0,0)

)
with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying δ ′2 +ϕ−1(δ ′1)≤ δ2.

Conversely, if G is ϕ−regular at
(
(x̄, ȳ),(0,0),(0,0)

)
with some δ1 > 0 and δ2 >

0, then F is ϕ−transversal to S at (x̄, ȳ) with any δ ′1 ∈]0,δ1] and δ ′2 > 0 satisfying
δ ′2 +ϕ−1(δ ′1)≤ δ2.

Remark 40 It is easy to see that the set-valued mapping (3.24) can be replaced in our con-
siderations by the truncated mapping G : X×Y ⇒ X×Y ×Y defined by

G (x,y) :=
(
gphF− (x,y)

)
× (S− y), (x,y) ∈ X×Y.
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The last mapping admits a simple representation G (x,y) = gphF − (x,y,y), where the set-
valued mapping F : X ⇒ Y ×Y is defined by

F (x) := F(x)×S, x ∈ X .

It was shown in [116, Theorems 7.12 and 7.9] that in the linear case the subtransversality
and transversality of F to S at (x̄, ȳ) are equivalent to the metric subregularity and regularity,
respectively, of the mapping (x,y) 7→F (x)− (y,y) at ((x̄, ȳ),0).

In the rest of this section, we assume that X and Y are Banach spaces, gphF and S are
closed, and ϕ ∈ C 1; δ , δ1 and δ2 are given positive numbers.

The dual characterizations of the nonlinear transversality properties in the next three
statements are direct consequences of Theorems 7, 8 and 9, respectively.

Theorem 18 The mapping F is ϕ−semitransversal to S at (x̄, ȳ) with δ if, for some µ > 0
and any u1 ∈ X , v1,v2 ∈ Y with 0 < max{‖u1‖,‖v1‖,‖v2‖}< ϕ−1(δ ), one of the following
conditions is satisfied:

(i) there exists a λ ∈]ϕ (max{‖u1‖,‖v1‖,‖v2‖}) ,δ [ such that

ϕ
′ (max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖})

(
‖x∗1‖+‖y∗1 + y∗2‖

+µ
(
d((x∗1,y

∗
1),NgphF(x1,y1))+d(y∗2,NS(y2))

))
≥ 1 (3.25)

for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF and y2 ∈ S satisfying

max{‖x− x̄‖ ,‖y− ȳ‖}< λ , max{‖x1− x̄‖,‖y1− ȳ‖,‖y2− ȳ‖}< µλ , (3.26)

0 < max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}
≤max{‖u1‖,‖v1‖,‖v2‖}, (3.27)

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying

‖x∗1‖+‖y∗1‖+‖y∗2‖= 1, (3.28)

〈x∗1,x+u1− x1〉+ 〈y∗1,y+ v1− y1〉+ 〈y∗2,y+ v2− y2〉
= max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}, (3.29)

where N in (3.25) stands for the Clarke normal cone (N := NC);

(ii) X and Y are Asplund spaces, and there exist a λ ∈]ϕ (max{‖u1‖,‖v1‖,‖v2‖}) and a
τ ∈]0,1[ such that inequality (3.25) holds with N standing for the Fréchet normal cone
(N := NF ) for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF and y2 ∈ S satisfying (3.26) and

0 < max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}< ϕ
−1(λ ), (3.30)

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.28) and

〈x∗1,x+u1− x1〉+ 〈y∗1,y+ v1− y1〉+ 〈y∗2,y+ v2− y2〉
> τ max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}. (3.31)
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Theorem 19 The mapping F is ϕ−subtransversal to S at (x̄, ȳ) with δ1 and δ2 if, for some
µ > 0 and any (x′,y′) ∈ Bδ2(x̄, ȳ) with 0 < max{d((x′,y′),gphF),d(y′,S)}< ϕ−1(δ1), one
of the following conditions is satisfied:

(i) there exists a λ ∈]ϕ (max{d((x′,y′),gphF),d(y′,S)}) ,δ1[ such that

ϕ
′ (max{‖x1− x‖,‖y1− y‖,‖y2− y‖})

(
‖x∗1‖+‖y∗1 + y∗2‖

+µ
(
d
(
(x∗1,y

∗
1),NgphF(x1,y1)

)
+d(y∗2,NS(y2))

))
≥ 1 (3.32)

for all (x,y) ∈ X×Y and (x1,y1),(x′1,y
′
1) ∈ gphF , y2,y′2 ∈ S satisfying

max{‖x− x′‖,‖y− y′‖}< λ , max{‖x1− x′1‖,‖y1− y′1‖,‖y2− y′2‖}< µλ , (3.33)

0 < max{‖x1− x‖,‖y1− y‖,‖y2− y‖}
≤max{‖x′1− x′‖,‖y′1− y′‖,‖y′2− y′‖}< ϕ

−1(λ ),

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.28) and

〈x∗1,x− x1〉+ 〈y∗1,y− y1〉+ 〈y∗2,y− y2〉= max{‖x− x1‖,‖y− y1‖,‖y− y2‖}, (3.34)

where N in (3.32) stands for the Clarke normal cone (N := NC);

(ii) X and Y are Asplund spaces, and there exist numbers λ ∈
]ϕ (max{d((x′,y′),gphF),d(y′,S)}) ,δ1[ and τ ∈]0,1[ such that inequality
(3.32) holds with N standing for the Fréchet normal cone (N := NF ) for all
(x,y) ∈ X×Y and (x1,y1),(x′1,y

′
1) ∈ gphF , y2,y′2 ∈ S satisfying (3.33) and

0 < max{‖x1 − x‖,‖y1 − y‖,‖y2 − y‖} < ϕ−1(λ ), and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗

satisfying (3.28) and

〈x∗1,x− x1〉+ 〈y∗1,y− y1〉+ 〈y∗2,y− y2〉
> τ max{‖x− x1‖,‖y− y1‖,‖y− y2‖}. (3.35)

Theorem 20 The mapping F is ϕ−transversal to S at (x̄, ȳ) with δ1 and δ2 if, for some
µ > 0 and any (x′1,y

′
1) ∈ gphF ∩Bδ2(x̄, ȳ), y′2 ∈ S∩Bδ2(ȳ) and ξ ∈]0,ϕ−1(δ1)[, one of the

following conditions is satisfied:

(i) there exists a λ ∈]ϕ(ξ ),δ1[ such that inequality (3.25) holds with N standing for the
Clarke normal cone (N := NC) for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF , y2 ∈ S and
u1 ∈ X , v1,v2 ∈ Y satisfying

max{‖x− x̄‖,‖y− ȳ‖}< λ , max{‖x1− x′1‖,‖y1− y′1‖,‖y2− y′2‖}< µλ , (3.36)

0 < max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}
≤max{‖x′1−u1− x̄‖,‖y′1− v1− ȳ‖,‖y′2− v2− ȳ‖}= ξ , (3.37)

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.28) and (3.29);
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(ii) X and Y are Asplund spaces, and there exist numbers λ ∈]ϕ(ξ ),δ1[ and τ ∈]0,1[ such
that inequality (3.25) holds with N standing for the Fréchet normal cone (N := NF ) for
all (x,y) ∈ X×Y , (x1,y1) ∈ gphF , y2 ∈ S and u1 ∈ X , v1,v2 ∈ Y satisfying (3.30) and
(3.36), and all x∗1 ∈ X∗, y∗1,y

∗
2 ∈ Y ∗ satisfying (3.28) and (3.31).

In the Hölder setting, Definition 8 takes the following form.

Definition 9 Let α > 0. The mapping F is

(i) α−semitransversal of order q > 0 to S at (x̄, ȳ) if there exists a δ > 0 such
that condition (3.17) is satisfied for all ρ ∈]0,δ [, u1 ∈ X , v1,v2 ∈ Y with
(max{‖u1‖,‖v1‖,‖v2‖})q < αρ;

(ii) α−subtransversal of order q ∈]0,1] to S at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0
such that condition (3.18) is satisfied for all ρ ∈]0,δ1[ and (x,y) ∈ Bδ2(x̄, ȳ) with
(max{d((x,y),gphF),d(y,S)})q < αρ;

(iii) α−transversal of order q ∈]0,1] to S at (x̄, ȳ) if there exist δ1 > 0 and δ2 > 0 such
that condition (3.19) is satisfied for all ρ ∈]0,δ1[, (x1,y1) ∈ gphF ∩Bδ2(x̄, ȳ), y2 ∈
S∩Bδ2(ȳ), u1 ∈ X , v1,v2 ∈ Y with (max{‖u1‖,‖v1‖,‖v2‖})q < αρ .

In the linear case, i.e. when ϕ(t) =αt for some α > 0 and all t ≥ 0, the properties in parts
(ii) and (iii) of the above definition reduce, respectively, to the ones in [116, Definitions 7.11
and 7.8]. The property in part (i) is new.

Dual characterizations of the Hölder transversality properties follow immediately.

Corollary 66 Let α > 0 and q > 0. The mapping F is α−semitransversal of order q to S at
(x̄, ȳ) with δ if, for some µ > 0 and any u1 ∈ X , v1,v2 ∈Y with 0 < max{‖u1‖,‖v1‖,‖v2‖}<
(αδ )

1
q , one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1 (max{‖u1‖,‖v1‖,‖v2‖})q ,δ [ such that

q(max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖})q−1 (‖x∗1‖+‖y∗1 + y∗2‖
+µ

(
d((x∗1,y

∗
1),NgphF(x1,y1))+d(y∗2,NS(y2))

))
≥ α (3.38)

for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF and y2 ∈ S satisfying (3.26) and (3.27), and
all x∗1 ∈ X∗, y∗1,y

∗
2 ∈ Y ∗ satisfying (3.28) and (3.29), where N in (3.38) stands for the

Clarke normal cone (N := NC);

(ii) X and Y are Asplund spaces, and there exist a λ ∈]α−1 (max{‖u1‖,‖v1‖,‖v2‖})q and
a τ ∈]0,1[ such that inequality (3.38) holds with N standing for the Fréchet normal
cone (N := NF ) for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF and y2 ∈ S satisfying (3.26) and

0 < max{‖x1−u1− x‖,‖y1− v1− y‖,‖y2− v2− y‖}< (αλ )
1
q , (3.39)

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.28) and (3.31).
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Corollary 67 Let α > 0 and q ∈]0,1]. The mapping F is α−subtransversal of order q
to S at (x̄, ȳ) with δ1 and δ2 if, for some µ > 0 and any (x′,y′) ∈ Bδ2(x̄, ȳ) with 0 <

max{d((x′,y′),gphF),d(y′,S)}< (αδ1)
1
q , one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1 (max{d((x′,y′),gphF),d(y′,S)})q ,δ1[ such that

q(max{‖x1− x‖,‖y1− y‖,‖y2− y‖})q−1 (‖x∗1‖+‖y∗1 + y∗2‖
+µ

(
d((x∗1,y

∗
1),NgphF(x1,y1))+d(y∗2,NS(y2))

))
≥ α (3.40)

for all (x,y) ∈ X×Y and (x1,y1),(x′1,y
′
1) ∈ gphF , y2,y′2 ∈ S satisfying (3.33) and

0 < max{‖x1− x‖,‖y1− y‖,‖y2− y‖}

≤max{‖x′1− x′‖,‖y′1− y′‖,‖y′2− y′‖}< (αλ )
1
q ,

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.28) and (3.29), where N in (3.40) stands for

the Clarke normal cone (N := NC);

(ii) X and Y are Asplund spaces, and there exist numbers λ ∈
]α−1 (max{d((x′,y′),gphF),d(y′,S)})q ,δ1[ and τ ∈]0,1[ such that inequal-
ity (3.40) holds with N standing for the Fréchet normal cone (N := NF ) for
all (x,y) ∈ X×Y and (x1,y1),(x′1,y

′
1) ∈ gphF , y2,y′2 ∈ S satisfying (3.33) and

0 < max{‖x1−x‖,‖y1−y‖,‖y2−y‖}< (αλ )
1
q , and all x∗1 ∈ X∗, y∗1,y

∗
2 ∈Y ∗ satisfying

(3.28) and (3.35).

Corollary 68 Let α > 0 and q ∈]0,1]. The mapping F is α−transversal of order q to S at
(x̄, ȳ) with δ1 and δ2 if, for some µ > 0 and any (x′1,y

′
1) ∈ gphF ∩Bδ2(x̄, ȳ), y′2 ∈ S∩Bδ2(ȳ)

and ξ ∈]0,(αδ1)
1
q [, one of the following conditions is satisfied:

(i) there exists a λ ∈]α−1(ξ )q,δ1[ such that inequality (3.38) holds with N standing for
the Clarke normal cone (N := NC) for all (x,y) ∈ X×Y , (x1,y1) ∈ gphF , y2 ∈ S and
u1 ∈ X , v1,v2 ∈ Y satisfying (3.36) and (3.37), and all x∗1 ∈ X∗, y∗1,y

∗
2 ∈ Y ∗ satisfying

(3.28) and (3.29);

(ii) X and Y are Asplund, and there exist a λ ∈]α−1(ξ )q,δ1[ and a τ ∈]0,1[ such that
inequality (3.38) holds with N standing for the Fréchet normal cone (N := NF ) for all
(x,y) ∈ X×Y , (x1,y1) ∈ gphF , y2 ∈ S and u1 ∈ X , v1,v2 ∈ Y satisfying (3.36) and
(3.39), and all x∗1 ∈ X∗, y∗1,y

∗
2 ∈ Y ∗ satisfying (3.28) and (3.31).

Remark 41 The combined dual transversality conditions (3.25), (3.32), (3.38) and (3.40)
involving normal cones to gphF and S in the statements above can be ‘decomposed’ into
components; cf. Corollaries 23, 24, 28, 29, 33, 34, 39 and 40.

The next three statements are direct consequences of Theorems 10, 11 and 12, respec-
tively.

113



Proposition 25 Let F : X ⇒Y be a set-valued mapping between normed spaces with convex
graph, S be a convex subset of Y , (x̄, ȳ)∈ gphF , ȳ∈ S, and ϕ ∈C 1 be convex with ϕ ′+(0)> 0.
If F is ϕ-semitransversal to S at (x̄, ȳ) with δ , then, with µ := (ϕ ′+(0))

−1 +1,

ϕ
′ (max{‖u1‖,‖v1‖,‖v2‖})

(
‖x∗1‖+‖y∗1 + y∗2‖

+µ
(
d((x∗1,y

∗
1),NgphF(x̄, ȳ))+d(y∗2,NS(ȳ))

))
≥ 1

for all u1 ∈ X , v1,v2 ∈ Y satisfying 0 < max{‖u1‖,‖v1‖,‖v2‖} < ϕ−1(δ ), and all x∗1 ∈ X∗,
y∗1,y

∗
2 ∈ Y ∗ satisfying

‖x∗1‖+‖y∗1‖+‖y∗2‖= 1, 〈x∗1,u1〉+ 〈y∗1,v1〉+ 〈y∗2,v2〉= max{‖u1‖,‖v1‖,‖v2‖}. (3.41)

Proposition 26 Let F : X ⇒Y be a set-valued mapping between normed spaces with convex
graph, S be a convex subset of Y , (x̄, ȳ)∈ gphF , ȳ∈ S, and ϕ ∈C 1 be convex with ϕ ′+(0)> 0.
If F is ϕ-subtransversal to S at (x̄, ȳ) with δ1 and δ2, then, with µ := (ϕ ′+(0))

−1 +1,

ϕ
′ (max{‖x1− x‖,‖y1− y‖,‖y2− y‖})

(
‖x∗1‖+‖y∗1 + y∗2‖

+µ
(
d((x∗1,y

∗
1),NgphF(x1,y1))+d(y∗2,NS(y2))

))
≥ 1

for all (x,y) ∈ Bδ2(x̄, ȳ) and (x1,y1) ∈ gphF , y2 ∈ S satisfying

0 < max{‖x1− x‖,‖y1− y‖,‖y2− y‖}< ϕ
−1(λ ),

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.41) and

〈x∗1,x− x1〉+ 〈y∗1,y− y1〉+ 〈y∗2,y− y2〉= max{‖x− x1‖,‖y− y1‖,‖y− y2‖}.

Proposition 27 Let F : X ⇒Y be a set-valued mapping between normed spaces with convex
graph, S be a convex subset of Y , (x̄, ȳ)∈ gphF , ȳ∈ S, and ϕ ∈C 1 be convex with ϕ ′+(0)> 0.
If F is ϕ-transversal to S at (x̄, ȳ) with δ1 and δ2, then, with µ := (ϕ ′+(0))

−1 +1,

ϕ
′ (max{‖x1−u1− x̄‖,‖y1− v1− ȳ‖,‖y2− v2− ȳ‖})

(
‖x∗1‖+‖y∗1 + y∗2‖

+µ
(
d((x∗1,y

∗
1),NgphF(x1,y1))+d(y∗2,NS(y2))

))
≥ 1

for all (x1,y1) ∈ gphF ∩Bδ2(x̄, ȳ), y2 ∈ S∩Bδ2(ȳ) and u1 ∈ X , v1,v2 ∈ Y with

0 < max{‖x1−u1− x̄‖,‖y1− v1− ȳ‖,‖y2− v2− ȳ‖}< ϕ
−1(δ1),

and all x∗1 ∈ X∗, y∗1,y
∗
2 ∈ Y ∗ satisfying (3.41) and

〈x∗1, x̄+u1− x1〉+ 〈y∗1, ȳ+ v1− y1〉+ 〈y∗2, ȳ+ v2− y2〉

= max{‖x1−u1− x̄‖,‖y1− v1− ȳ‖,‖y2− v2− ȳ‖}.

Remark 42 Decompositions of the combined dual necessary transversality conditions in
Propositions 25, 26 and 27 can be easily obtained; cf. Corollaries 47, 51 and 55.
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3.2 Semitransversality of Collections of Set-Valued Map-
pings

3.2.1 Definitions and Basic Relationships

The next definition recalls the well-known extremality and stationarity of collections of sets.

Definition 10 Let Ω1, . . . ,Ωn be subsets of a normed space X , and x̄ ∈ ∩n
i=1Ωi. The collec-

tion {Ω1, . . . ,Ωn} is

(i) locally extremal at x̄ if there exists a ρ ∈]0,+∞] such that, for any α > 0, there exist
xi ∈ X (i = 1, . . . ,n) satisfying max1≤i≤n ‖xi‖< α and

n⋂
i=1

(Ωi− xi)∩Bρ(x̄) = /0; (3.42)

(ii) stationary at x̄ if for any α > 0, there exist ρ ∈]0,α[ and xi ∈ X (i = 1, . . . ,n) satisfying
(3.42) and

max
1≤i≤n

‖xi‖< αρ. (3.43)

Remark 43 (i) Conditions (i) and (ii) in Definition 10 mean that appropriate arbitrarily
small shifts of the sets make them nonintersecting (in a neighbourhood of x̄). This is a
very general model embracing many optimality notions. Note that (i)⇒(ii) holds true,
and it can be strict [127, 129]. The two conditions are equivalent when the sets are
convex, and in this case we can take ρ :=+∞ in condition (i).

(ii) Unlike condition (i), in condition (ii) the magnitude of the “shifts” of the sets are
related to that of the neighbourhood in which the sets become nonintersecting, namely
max1≤i≤n ‖xi‖/ρ < α .

The semitransversality of collections of sets in the below definition is the negation of the
stationarity.

Definition 11 Let Ω1, . . . ,Ωn be subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and α > 0. The

collection {Ω1, . . . ,Ωn} is α−semitransversal at x̄ if there exists a δ > 0 such that

n⋂
i=1

(Ωi− xi)∩Bρ(x̄) 6= /0 (3.44)

for all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with satisfying (3.43).

For discussions about the property in Definition 11, we refer the reader to Chapter 1.
From now on, we assume that (X ,d) and (Xi,di) are metric spaces, Fi : Xi ⇒ X are set-

valued mappings, x̄i ∈ Xi (i = 1, . . . ,n), and x̄ ∈ ∩n
i=1Fi(x̄i).
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Definition 12 The collection {F1, . . . ,Fn} is

(i) local extremal at x̄ for (x̄1, . . . , x̄n) if there exists a ρ ∈]0,+∞] such that, for any α > 0,
there are xi ∈ Xi (i = 1, . . . ,n) satisfying max1≤i≤n{di(xi, x̄i),d(x̄,Fi(xi))}< α and

n⋂
i=1

Fi(xi)∩Bρ(x̄) = /0; (3.45)

(ii) stationary at x̄ for (x̄1, . . . , x̄n) if for any α > 0, there exist ρ ∈]0,α[ and xi ∈ Xi (i =
1, . . . ,n) satisfying (3.45) and

max
1≤i≤n

{di(xi, x̄i),d(x̄,Fi(xi))}< αρ. (3.46)

The property in part (i) of Definition 12 recaptures [175, Definition 3.3], while the one in
part (ii) is new. Both properties can be seen as the generalized versions of the corresponding
ones in Definition 10; cf. Proposition 28. It is straightforward in Definition 12 that the
implication (i)⇒(ii) holds true.

We are now ready to introduce the concept semitransversality of collections of set-valued
mappings.

Definition 13 Let α > 0. The collection {F1, . . . ,Fn} is α−semitransversal at x̄ for
(x̄1, . . . , x̄n) if there exists a δ > 0 such that

n⋂
i=1

Fi(xi)∩Bρ(x̄) 6= /0 (3.47)

for all ρ ∈]0,δ [ and xi ∈ Xi (i = 1, . . . ,n) satisfying (3.46).

The property in Definition 13 is the negation of the stationarity in Definition 12(ii). Un-
like the properties in Definitions 10 and 11 which require the linear structure of the under-
lying space, the ones in Definitions 12 and 13 are defined on metric spaces, see Example 4.

Proposition 28 The local extreamlity, stationarity, and semitransversality in Definitions 10
and 11 are particular cases of the corresponding ones in Definitions 12 and 13.

Proof We provide a proof for semitransversality properties in Definitions 11 and 13. The
proofs for the other cases are analogous.

Let Ω1, . . . ,Ωn be subsets of a normed space X , x̄∈∩n
i=1Ωi, and α > 0. Define Fi : X ⇒X

(i = 1, . . . ,n) for all x ∈ X by

Fi(x) := Ωi− x (i = 1, . . . ,n). (3.48)

Let x̄i = 0, then Fi(x̄i) = Ωi (i = 1, . . . ,n), and consequently, x̄ ∈ ∩n
i=1Fi(x̄i). Suppose

{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with some δ > 0. By Definition 13,
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condition (3.47) holds for all ρ ∈]0,δ [ and xi ∈ Xi (i = 1, . . . ,n) satisfying (3.46). Combin-
ing this with (3.48), condition (3.44) holds for all ρ ∈]0,δ [ and xi ∈ X (i = 1, . . . ,n) with
satisfying (3.43) since

max
1≤i≤n

{‖xi‖,d(x̄,Ωi− xi)}= max
1≤i≤n

‖xi‖.

By Definition 11, {Ω1, . . . ,Ωn} is α−semitransversal at x̄ with δ . �

Example 4 Let (X ,d) be a metric space, (Xi,di) be discrete metric spaces, Fi : Xi ⇒ X ,
x̄i ∈ Xi (i = 1, . . . ,n), x̄ ∈ ∩n

i=1Fi(x̄i), and α > 0. Then, {F1, . . . ,Fn} is α−semitransversal at
x̄ for (x̄1, . . . , x̄n) with δ := α−1.

Proof Let ρ ∈]0,δ [ and xi ∈Xi (i= 1, . . . ,n) satisfy (3.46). Let δ :=α−1. Then, di(xi, x̄i)<

αρ < 1, and consequently, xi = x̄i (i = 1, . . . ,n). Hence, condition (3.47) is satisfied. By
Definition 13, {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . �

Example 5 Let Ω1 := R×{0}, Ω2 := {0}× [0,+∞[, x̄ := (0,0) ∈ Ω1 ∩Ω2, x̄1 = x̄2 = 0,
α > 0 and δ > 0. Define F1,F2 : R⇒ R2 for any x ∈ R by

F1(x) := Ω1, F2(x) :=

Ω2 if x = 0,

{0}×R otherwise.

Then F(x̄1) = Ω1 and F(x̄2) = Ω2. We claim that {Ω1,Ω2} is not α−semitransversal at x̄
with δ , but {F1,F2} is α−semitransversal at x̄ for (x̄1, x̄2) with δ .

Proof Choose a ρ ∈]0,δ [, x1 := (0,αρ) and x2 := (0,0). Then x1,x2 ∈ (αρ)B, and con-
dition (3.44) is not satisfied. By Definition 11, {Ω1,Ω2} is not α−semitransversal at x̄ with
δ .

Let xi ∈ R (i = 1,2) such that maxi=1,2{|xi − x̄i|,d(x̄,Fi(xi))} < αρ , or equivalently,
maxi=1,2 |xi − x̄i| < αρ. By the definition of F1 and F2, we have x̄ ∈ F1(x1) ∩ F2(x2) ∩
Bρ(x̄), and consequently, condition (3.47) holds true. By Definition 13, {F1,F2} is
α−semitransversal at x̄ for (x̄1, x̄2) with δ . �

The following theorem establishes a metric characterization of the property in Defini-
tion 13.

Theorem 21 Let α > 0. The collection {F1, . . . ,Fn} is α−semitransversal at x̄ for
(x̄1, . . . , x̄n) with some δ > 0 if and only if

αd

(
x̄,

n⋂
i=1

Fi(xi)

)
≤ max

1≤i≤n
{di(xi, x̄i),d(x̄,Fi(xi))} (3.49)

for all xi ∈ Xi (i = 1, . . . ,n) satisfying

max
1≤i≤n

{di(xi, x̄i),d(x̄,Fi(xi))}< αδ . (3.50)
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Proof Suppose {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with some
δ > 0. Let xi ∈ Xi (i = 1, . . . ,n) satisfy (3.50). Let ρ ∈]0,δ [ such that ρ >

α−1 max1≤i≤n{di(xi, x̄i),d(x̄,Fi(xi))}. By Definition 13,

d

(
x̄,

n⋂
i=1

Fi(xi)

)
< ρ. (3.51)

Letting ρ ↓ α−1 max1≤i≤n{di(xi, x̄i),d(x̄,Fi(xi))}, we obtain inequality (3.49).
Conversely, let ρ ∈]0,δ [ and xi ∈ Xi (i = 1, . . . ,n) satisfying (3.46). In view of (3.49), we

obtain (3.51), and consequently, condition (3.47) is satisfied. By Definition 13, {F1, . . . ,Fn}
is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . �

The next statement is a direct consequence of Theorem 21.

Corollary 69 Let Ω1, . . . ,Ωn be subsets of a normed space X , x̄ ∈ ∩n
i=1Ωi, and α > 0. Let

Fi (i = 1, . . . ,n) be defined by (3.48). The collection {F1, . . . ,Fn} is α−semitransversal at x̄
for (0, . . . ,0) with some δ > 0 if and only if

αd

(
x̄,

n⋂
i=1

(Ωi− xi)

)
≤ max

1≤i≤n
‖xi‖ (3.52)

for all xi ∈ Xi (i = 1, . . . ,n) satisfying max1≤i≤n ‖xi‖< αδ .

Remark 44 Corollary 69 recaptures [38, Theorem 2], see also [140, Theorem 3.1(i)].

3.2.2 Slope Necessary and Sufficient Conditions

This section is dedicated to slope necessary and sufficient conditions for the semitransver-
sality in Definition 13.

We are going to employ a metric depending on a parameter γ > 0 given by

dγ((u1, . . . ,un,u),(v1, . . . ,vn,v)) := max
{

d(u,v),γ max
1≤i≤n

d(ui,vi)

}
(3.53)

for any (u1, . . . ,un,u),(v1, . . . ,vn,v) ∈ Xn+1.

Proposition 29 Let δ > 0 and α > 0.

(i) Suppose X is complete, and Fi (i = 1, . . . ,n) are closed-valued. The collection
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ if, for some γ > 0 and all
xi ∈ Xi (i = 1, . . . ,n) satisfying (3.50), ui ∈ X (i = 1, . . . ,n) satisfying

ui ∈ Fi(xi) (i = 1, . . . ,n), max
1≤i≤n

d(ui, x̄)< αδ , (3.54)

it holds

sup
v′i∈Fi(xi) (i=1,...,n), x′∈X
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x)

max
1≤i≤n

d(vi,x)− max
1≤i≤n

d(v′i,x
′)

dγ((v1, . . . ,vn,x),(v′1, . . . ,v
′
n,x′))

≥ α (3.55)
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for all x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying

d(x, x̄)< δ , max
1≤i≤n

d(vi,ui)< δ/γ, (3.56)

0 < max
1≤i≤n

d(vi,x)≤ max
1≤i≤n

d(ui, x̄). (3.57)

(ii) If {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , then, with γ := (α +

1)−1,

sup
u′i∈Fi(xi) (i=1,...,n), x′∈X
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x̄)

max
1≤i≤n

d(vi, x̄)− max
1≤i≤n

d(v′i,x
′)

dγ((v1, . . . ,vn, x̄),(v′1, . . . ,v
′
n,x′))

≥ α (3.58)

for all xi ∈ Xi and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying

0 < max
1≤i≤n

d(vi, x̄)≤ max
1≤i≤n

di(xi, x̄i)< αδ . (3.59)

The proof below employs two closely related nonnegative functions on Xn+1 determined
by the given points x1, . . . ,xn ∈ X :

f (v1, . . . ,vn,x) := max
1≤i≤n

d(vi,x), v1, . . . ,vn,x ∈ X , (3.60)

f̂ := f + iF1(x1)×...×Fn(xn)×X . (3.61)

Proof

(i) Suppose {F1, . . . ,Fn} is not α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , and let
γ > 0 be given. By Definition 13, there exist a ρ ∈]0,δ [ and xi ∈ Xi (i = 1, . . . ,n)
satisfying (3.46) such that

n⋂
i=1

Fi(xi)∩Bρ(x̄) = /0. (3.62)

Then, condition (3.50) is satisfied. By (3.62),

max
1≤i≤n

d(zi,z)> 0 for all z ∈ Bρ(x̄), zi ∈ Fi(xi) (i = 1, . . . ,n). (3.63)

In view of (3.46), we can find ui ∈ Fi(xi) (i = 1, . . . ,n) such that max1≤i≤n d(ui, x̄) <
αρ < αδ , i.e. condition (3.54) is satisfied. Let f and f̂ be defined by (3.60) and
(3.61). We have f̂ (u1, . . . ,un, x̄)<αρ , and it follows from (3.63) that f̂ (u1, . . . ,un, x̄)>
0. Choose a number ε such that f (u1, . . . ,un, x̄) < ε < αρ . Applying the Ekeland
variational principle (Lemma 1) to the restriction of f̂ to the complete metric space
F1(x1)× . . .×Fn(xn)×X with the γ−distance (3.53), we can find x ∈ X and vi ∈ Fi(xi)

(i = 1, . . . ,n) such that

dγ((v1, . . . ,vn,x),(u1, . . . ,un, x̄))< ρ, f (v1, . . . ,vn,x)≤ f (u1, . . . ,un, x̄), (3.64)

f (v1, . . . ,vn,x)− f (v′1, . . . ,v
′
n,x
′)≤ ε

ρ
dγ((v1, . . . ,vn,x),(v′1, . . . ,v

′
n,x
′)) (3.65)
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for all (v′1, . . . ,v
′
n,x
′) ∈ F1(x1)× . . .×Fn(xn)×X . Conditions (3.64) yield (3.56) and

(3.57). Since ε/ρ < α , condition (3.65) contradicts (3.55).

(ii) Suppose {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . Let xi ∈ Xi,
vi ∈ Fi(xi) (i = 1, . . . ,n) satisfy condition (3.59). Let γ := (α + 1)−1 and M :=
α−1 max1≤i≤n d(vi, x̄) < δ . Let η ∈]0,1[, and choose a number γ ′ ∈]ηγ,γ[. Then
(γ ′)−1−α > 1. Choose a ξ > 1 such that ξ ≤ η−1, ξ ≤ (γ ′)−1−α , and ξ M < δ . In
view of Definition 13, we have ∩n

i=1Fi(xi)∩Bξ M(x̄) 6= /0, and consequently, there exist
x̂ ∈ X and v̂i ∈ Fi(xi) (i = 1, . . . ,n) with v̂1 = . . .= v̂n = x̂ such that d(x̂, x̄)< ξ M. It is
obvious that (v̂1, . . . , v̂n, x̂) 6= (v1, . . . ,vn, x̄). Moreover, for all i = 1, . . . ,n,

d(v̂i,vi)≤ d(v̂i, x̄)+d(vi, x̄)< ξ M+αM ≤M(γ ′)−1 < M(ηγ)−1,

and consequently,

dγ((v̂1, . . . , v̂n, x̂),(v1, . . . ,vn, x̄)) = max
1≤i≤n

{d(x̂, x̄),γd(v̂i,vi)}

< M max
{

ξ ,η−1}= Mη
−1.

Hence, max1≤i≤n d(vi, x̄)> ηαdγ((v̂1, . . . , v̂n, x̂),(v1, . . . ,vn, x̄)), and consequently,

sup
v′i∈Fi(xi) (i=1,...,n), x′∈X
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x̄)

max
1≤i≤n

d(vi, x̄)− max
1≤i≤n

d(v′i,x
′)

dγ((v1, . . . ,vn, x̄),(v′1, . . . ,v
′
n,x′))

≥
max

1≤i≤n
d(vi, x̄)

dγ((v1, . . . ,vn, x̄),(û1, . . . , ûn, x̂))
> ηα.

Letting η ↑ 1, we arrive at (3.58).

Remark 45 (i) The necessary condition in part (ii) is a particular case of the sufficient
condition in part (i) by setting x := x̄, vi := ui (i = 1, . . . ,n).

(ii) It is evident from (3.58) and (3.68) that γ := (α + 1)−1 in part (ii) of Proposition 29
(and in subsequent statement) can be replaced by any positive γ ≤ (α +1)−1.

(iii) The closedness assumption in part (i) of Proposition 29 is used to ensure the lower
semicontinuity of the indicator function of the set F1(x1)× . . .×Fn(xn).

(iv) Dropping either condition (3.56) or (3.57) makes the sufficient condition in Proposi-
tion 29(i) stronger (while weakening the result).

(v) The expressions in the left-hand sides of the inequalities (3.55) and (3.58) are the
nonlocal γ-slopes |∇ f̂ |�γ (cf. [131, p. 60]) of the function f̂ defined by (3.61) computed
at (v1, . . . ,vn,x) and (v1, . . . ,vn, x̄), respectively.

(vi) It suffices to assume in Proposition 29(i) (and subsequent statements) that Fi (i =
1, . . . ,n) are closed-valued, respectively, at xi ∈ Xi (i = 1, . . . ,n) satisfying (3.50).
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(vii) Parts (i) and (ii) of Proposition 29 improve [70, Theorem 4.1] and [68, Theorem 3.1(i)],
respectively, in the linear setting.

�

The next statement presents a localized version of Proposition 29, which plays a funda-
mental role in establishing dual characterizations of the property.

Proposition 30 Let δ > 0 and α > 0.

(i) Suppose X is complete, and Fi (i = 1, . . . ,n) are closed-valued. The collection
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with some δ > 0 if, for some
γ > 0 and all xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54),

limsup
v′i

Fi(xi)→ vi (i=1,...,n), x′→x
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x)

max
1≤i≤n

d(vi,x)− max
1≤i≤n

d(v′i,x
′)

dγ((v1, . . . ,vn,x),(v′1, . . . ,v
′
n,x′))

≥ α (3.66)

for all x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57).

(ii) Suppose Fi (i = 1, . . . ,n) are convex-valued. If {F1, . . . ,Fn} is α−semitransversal at x̄
for (x̄1, . . . , x̄n) with some δ > 0, then

limsup
v′i

Fi(xi)→ vi (i=1,...,n), x′→x̄
(v′1,...,v

′
n,x
′)6=(u1,...,un,x̄)

max
1≤i≤n

d(vi, x̄)− max
1≤i≤n

d(v′i,x
′)

dγ((v1, . . . ,vn, x̄),(v′1, . . . ,v
′
n,x′))

≥ α (3.67)

with γ := (α +1)−1 for all xi ∈ Xi and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59).

Proof

(i) In view of Lemma 2(ii), condition (3.66) implies (3.55).

(ii) The left-hand sides of conditions (3.58) and (3.67) involve the same difference quotient
for the function f̂ defined by (3.61). Under the assumptions made, this function is
convex. By Lemma 2(iv), the left-hand sides of conditions (3.58) and (3.67) coincide.
The assertion is a consequence of Proposition 29(ii).

�

Remark 46 (i) The expressions in the left-hand sides of the inequalities (3.66) and (3.67)
are the slopes with respect to the γ-distance (3.68) computed at (v1, . . . ,vn,x) and
(v1, . . . ,vn, x̄), respectively, of the function f̂ given by (3.61).

(ii) It suffices to assume in Proposition 30(ii) (and subsequent statements) that Fi (i =
1, . . . ,n) are convex-valued, respectively, at xi ∈ Bαδ (x̄i) (i = 1, . . . ,n).
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3.2.3 Dual Necessary and Sufficient Conditions

To establish dual characterizations of the semitransversality, the imaging space X is assumed
to have a linear structure. In this case, the γ−distance (3.53) becomes

‖(v1, . . . ,vn,v)‖γ := max
{
‖v‖,γ max

1≤i≤n
‖vi‖

}
, v,v1, . . . ,vn ∈ X . (3.68)

The dual norm on (X∗)n+1 corresponding to (3.68) has the following form:

‖(v∗1, . . . ,v∗n,v∗)‖γ
= ‖v∗‖+ 1

γ

n

∑
i=1
‖v∗i ‖, v∗,v∗1, . . . ,v

∗
n ∈ X∗. (3.69)

We will denote by dγ the distance in (X∗)n+1 determined by (3.69).
In this section, we use the function f̂ given by (3.61) with f : Xn+1→R∪{+∞} defined

by (3.60).

Proposition 31 Let δ > 0 and α > 0.

(i) Suppose X is Banach, and Fi (i = 1, . . . ,n) are closed-valued. The collection
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ if, for some γ > 0 and all
xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54), it holds

dγ

(
0,∂ f̂ (v1, . . . ,vn,x)

)
≥ α (3.70)

with ∂ := ∂C for all x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57).

If X is Asplund, then the above assertion is valid with ∂ := ∂ F , and condition (3.57) is
replaced by

0 < max
1≤i≤n

‖vi− x‖< αδ . (3.71)

(ii) Suppose Fi (i = 1, . . . ,n) are convex-valued. If {F1, . . . ,Fn} is α−semitransversal at x̄
for (x̄1, . . . , x̄n) with some δ > 0, then

dγ

(
0,∂ f̂ (v1, . . . ,vn, x̄)

)
≥ α (3.72)

with γ := (α +1)−1 for all xi ∈ Xi and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59).

Proof

(i) Suppose {F1(x̄1), . . . ,Fn(x̄n)} is not α−semitransversal at x̄ with δ . Let γ > 0. By
Proposition 30(i), there exist xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54),
x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and a number τ ∈]0,α[

such that

max
1≤i≤n

‖vi− x‖− max
1≤i≤n

‖v′i− x′‖ ≤ τ‖(v1, . . . ,vn,x)− (v′1, . . . ,v
′
n,x
′)‖γ
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for all (v′1, . . . ,v
′
n,x
′) ∈ F1(x1)× . . .×Fn(xn)×X near (v1, . . . ,vn,x). In other words,

(v1, . . . ,vn,x) is a local minimizer of the function

(v′1, . . . ,v
′
n,x
′) 7→ f̂ (v′1, . . . ,v

′
n,x
′)+ τ‖(v1, . . . ,vn,x)− (v′1, . . . ,v

′
n,x
′)‖γ . (3.73)

Hence, its Fréchet and, as a consequence, Clarke subdifferentials at this point contains
the subgradient 0. Observe that (3.73) is the sum of the function f̂ and the Lips-
chitz continuous convex function (v′1, . . . ,v

′
n,x
′) 7→ τ‖(v1, . . . ,vn,x)− (v′1, . . . ,v

′
n,x
′)‖γ ,

and at any point all subgradients (v∗1, . . . ,v
∗
n,v
∗) of the latter function satisfy

‖(v∗1, . . . ,v∗n,v∗)‖γ ≤ τ . By the Clarke–Rockafellar sum rule (Lemma 4(ii)), there exists
a subgradient (v∗1, . . . ,v

∗
n,v
∗) ∈ ∂C f̂ (v1, . . . ,vn,x) such that ‖(v∗1, . . . ,v∗n,v∗)‖γ ≤ τ < α .

The last inequality contradicts (3.70).

If X is Asplund, then one can employ the fuzzy sum rule (Lemma 4(iii)): for any
ε > 0, there exist points x′ ∈ Bε(x),v′i ∈ Bε(vi)∩Fi(xi) (i = 1, . . . ,n), and a subgra-
dient (v∗1, . . . ,v

∗
n,v
∗) ∈ ∂ F f̂ (v′1, . . . ,v

′
n,x
′) such that ‖(v∗1, . . . ,v∗n,v∗)‖γ < τ + ε . The

number ε can be chosen small enough so that ‖x′− x̄‖ < δ , max1≤i≤n ‖v′i − vi‖ <
δ/γ , max1≤i≤n ‖v′i − x′‖ < αδ , and τ + ε < α . The last inequality again yields
‖(v∗1, . . . ,v∗n,v∗)‖γ < α , which contradicts (3.70).

(ii) Under the assumptions made, the function f̂ is convex. Let γ := (α + 1)−1. In view
of Proposition 30(ii), for all xi ∈ Xi and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59), and
(v∗1, . . . ,v

∗
n,v
∗) ∈ ∂ f̂ (v1, . . . ,vn, x̄), we have

‖(v∗1, . . . ,v∗n,v∗)‖γ

= sup
(v′1,...,v

′
n,x)6=0

〈(v∗1, . . . ,v∗n,v∗),(v′1, . . . ,v′n,x′)〉
‖(v′1, . . . ,v′n,x′)‖γ

= limsup
v′i→vi (i=1,...,n), x′→x̄
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x̄)

−〈(v∗1, . . . ,v∗n,v∗),(v′1, . . . ,v′n,x′)− (v1, . . . ,vn, x̄)〉
‖(v′1, . . . ,v′n,x′)− (v1, . . . ,vn, x̄)‖γ

≥ limsup
v′1→v1 (i=1,...,n), x′→x̄
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x̄)

f̂ (v1, . . . ,vn, x̄)− f̂ (v′1, . . . ,v
′
n,x
′)

‖(v′1, . . . ,v′n,x′)− (v1, . . . ,vn, x̄)‖γ

= limsup
v′i

Fi(xi)→ vi (i=1,...,n), x′→x̄
(v′1,...,v

′
n,x
′)6=(v1,...,vn,x̄)

max
1≤i≤n

‖x̄− vi‖− max
1≤i≤n

‖x′− v′i‖

‖(v1, . . . ,vn, x̄)− (v′1, . . . ,v
′
n,x′)‖γ

≥ α.

The proof is complete. �

The key conditions (3.71) and (3.72) in Proposition 31 involve subdifferentials of the
function f̂ given by (3.61). Subgradients of f̂ belong to (X∗)n+1 and have n+1 component
vectors v∗1, . . . ,v

∗
n,v
∗. As it can be seen from the representation (3.69) of the dual norm, the

contribution of the vectors v∗1, . . . ,v
∗
n on one hand and v∗ on the other hand to conditions

(3.71) and (3.72) is different. The next proposition exposes this difference.
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Proposition 32 Let δ > 0 and α > 0.

(i) Suppose X is Banach, and Fi (i = 1, . . . ,n) are closed-valued. The collection
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ if, for some γ > 0 and all
xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54),

‖v∗‖ ≥ α (3.74)

for all x∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and (v∗1, . . . ,v
∗
n,v
∗)∈

∂ f̂ (v1, . . . ,vn,x) with ∑
n
i=1 ‖v∗i ‖< αγ , where ∂ := ∂C.

If X is Asplund, then the above assertion is valid with ∂ := ∂ F , and condition (3.57) is
replaced by (3.71).

(ii) Suppose Fi (i = 1, . . . ,n) are convex-valued. If {F1, . . . ,Fn} is α−semitransversal at x̄
for (x̄1, . . . , x̄n) with δ , then

‖v∗‖ ≥ α− (α +1)
n

∑
i=1
‖v∗i ‖ (3.75)

for all xi ∈ Xi, vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59), and (v∗1, . . . ,v
∗
n,v
∗) ∈

∂ f̂ (v1, . . . ,vn, x̄). As a consequence,

liminf
v∗i→0 (i=1,...,n)

(v∗1,...,v
∗
n,v
∗)∈∂ f̂ (v1,...,vn,x̄)

‖v∗‖ ≥ α.

Proof

(i) Suppose {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , and let γ > 0 be
given. By Proposition 31(i), there exist xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50)
and (3.54), x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57) ((3.71) if
X is Asplund), and a subgradient (v∗1, . . . ,v

∗
n,v
∗) ∈ ∂C f̂ (v1, . . . ,vn,x) ((v∗1, . . . ,v

∗
n,v
∗) ∈

∂ F f̂ (v1, . . . ,vn,x) if X is Asplund) such that ‖(v∗1, . . . ,v∗n,v∗)‖γ < α . By the represen-
tation (3.69) of the dual norm, this implies ∑

n
i=1 ‖v∗i ‖ < αγ and ‖v∗‖ < α . The latter

inequality contradicts the assumption.

(ii) The assertion is a direct consequence of Proposition 31(ii) and the representation (3.69)
of the dual norm.

�

The next corollary provides the δ−free version of Proposition 32.

Corollary 70 Let α > 0.
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(i) Suppose X is Banach, and Fi (i = 1, . . . ,n) are closed-valued. The collection
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) if

liminf
xi→x̄i, ui

Fi(xi)→ x̄, x→x̄, vi
Fi(xi)→ ui, v∗i→0 (i=1,...,n)

0< max
1≤i≤n

‖vi−x‖, (v∗1,...,v∗n,v∗)∈∂ f̂ (v1,...,vn,x)

‖v∗‖> α, (3.76)

where ∂ := ∂C.

If X is Asplund, then the above assertion is valid with ∂ := ∂ F .

(ii) Suppose Fi (i = 1, . . . ,n) are convex-valued. If {F1, . . . ,Fn} is α−semitransversal at x̄
for (x̄1, . . . , x̄n), then

liminf
xi→x̄i, vi∈Fi(xi), v∗i→0 (i=1,...,n)

0< max
1≤i≤n

‖vi−x̄‖≤ max
1≤i≤n

di(xi,x̄i), (v∗1,...,v
∗
n,v
∗)∈∂ f̂ (v1,...,vn,x̄)

‖x∗‖ ≥ α.

The proof of Proposition 31(i) utilizes the sum rules in parts (ii) and (iii) of Lemma 4 to
obtain representations of subgradients of the sum function (3.73) in terms of subgradients of
the summand functions. Note that one of the summands – the function f̂ – is itself a sum
of functions; see (3.61). Next we apply these sum rules again to obtain characterizations
of the semitransversality in terms of normals to individual set-valued mappings. This time
the difference between the exact sum rule in Lemma 4(ii) and the approximate sum rule in
Lemma 4(iii) becomes explicit in the conclusions of the next theorem: compare the exact
condition (3.79) and the corresponding approximate condition (3.80).

Theorem 22 Let X be a Banach space, δ > 0 and α > 0. Suppose Fi (i = 1, . . . ,n) are
closed-valued. The collection {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ

if, for some µ > 0 and all xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54), one of
the following conditions is satisfied:

(i) with N := NC, ∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
v∗i ,NFi(xi)(vi)

)
≥ α (3.77)

for all x ∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and v∗i ∈ X∗ (i =
1, . . . ,n) satisfying

n

∑
i=1
‖v∗i ‖= 1, (3.78)

n

∑
i=1
〈v∗i ,x− vi〉= max

1≤i≤n
‖x− vi‖. (3.79)
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(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.77) holds with N :=
NF for all x ∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.70), and v∗i ∈ X∗

(i = 1, . . . ,n) satisfying (3.77) and

n

∑
i=1
〈v∗i ,x− vi〉> τ max

1≤i≤n
‖x− vi‖. (3.80)

Proof Suppose {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . Let µ >

0. By Proposition 31(i), there exist xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and
(3.54), x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and a subgradient
(v̂∗1, . . . , v̂

∗
n, v̂
∗) ∈ ∂ f̂ (v1, . . . ,vn,x) such that

‖(v̂∗1, . . . , v̂∗n, v̂∗)‖γ < α, (3.81)

where γ := µ−1 and ∂ stands for either the Clarke subdifferential (if X is a general Banach
space) or the Fréchet subdifferential (if X is Asplund). Recall from (3.61) that f̂ is a sum
of two functions: the maximum norm function defined by (3.60) and the indicator function
of the set F1(x1)× . . .×Fn(xn). Since max1≤i≤n ‖vi− x‖> 0, the former is locally Lipschitz
continuous near (v1, . . . ,vn,x).

(i) X is a Banach space, and (v̂∗1, . . . , v̂
∗
n, v̂
∗) in (3.81) is a Clarke subgradient. By

the Clarke–Rockafellar sum rule (Lemma 4(ii)), there exist (v∗1, . . . ,v
∗
n,v
∗) ∈

∂C f (v1, . . . ,vn,x) and (ṽ∗1, . . . , ṽ
∗
n) ∈ NC

F1(x1)×...×Fn(xn)
(v1, . . . ,vn) such that

(v̂∗1, . . . , v̂
∗
n, v̂
∗) = (v∗1, . . . ,v

∗
n,v
∗)+(ṽ∗1, . . . , ṽ

∗
n,0). (3.82)

By Lemma 6, ṽ∗i ∈ NC
Fi(xi)

(vi) (i = 1, . . . ,n). In view of Lemma 8, conditions (3.78),
(3.79) are satisfied, and

v∗ =
n

∑
i=1

v∗i . (3.83)

Combining (3.81), (3.82) and (3.83), we obtain∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(

v∗i ,N
C
Fi(xi)

(vi)
)
< α.

This contradicts (3.77).

(ii) Let X be Asplund and a number τ ∈]0,1[ be given. In view of the fuzzy sum
rule (Lemma 4(iii)): for any ε > 0, there exist x′ ∈ Bε(x), v′i ∈ Bε(vi) ∩ Fi(xi),
v′′i ∈ Bε(vi) (i = 1, . . . ,n), (v∗1, . . . ,v

∗
n,v
∗) ∈ ∂ F f (v′′1, . . . ,v

′′
n,x
′) and (ṽ∗1, . . . , ṽ

∗
n) ∈

NF
F1(x1)×...×Fn(xn)

(v′1, . . . ,v
′
n), such that

‖(ṽ∗1, . . . , ṽ∗n,0)+(v∗1, . . . ,v
∗
n,v
∗)− (v̂∗1, . . . , v̂

∗
n, v̂
∗)‖γ < ε. (3.84)
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The number ε can be chosen small enough so that

‖x′− x̄‖< δ , max
1≤i≤n

‖v′i−ui‖< δ/γ, 0 < max
1≤i≤n

‖v′i− x‖< αδ ,

and

‖(v̂∗1, . . . , v̂∗n, v̂∗)‖γ + ε < α, (3.85)

max
1≤i≤n

‖v′′i − v′i‖<
1− τ

2
max

1≤i≤n
‖x′− v′i‖. (3.86)

By Lemma 6, ṽ∗i ∈ NF
Fi(xi)

(v′i) (i = 1, . . . ,n). In view of Lemma 8, v∗1, . . . ,v
∗
n,v
∗ satisfy

(3.78), (3.83), and

n

∑
i=1
〈v∗i ,x′− v′′i 〉= max

1≤i≤n
‖x′− v′′i ‖. (3.87)

It follows from (3.86) and (3.87) that

n

∑
i=1
〈u∗1,x′− v′i〉 ≥

n

∑
i=1
〈v∗i ,x′− v′′i 〉− max

1≤i≤n
‖v′′i − v′i‖

= max
1≤i≤n

‖v′′i − x′‖− max
1≤i≤n

‖v′′i − v′i‖

≥ max
1≤i≤n

‖x′− v′i‖−2 max
1≤i≤n

‖v′′i − v′i‖

> τ max
1≤i≤n

‖x′− v′i‖.

Combining (3.84) and (3.85), we obtain∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(

v∗i ,N
F
Fi(xi)

(v′i)
)
< ‖(v̂∗1, . . . , v̂∗n, v̂∗)‖γ + ε < α.

This contradicts (3.77).

�

Remark 47 Theorem 22 is a generalized version of Theorem 7 in the linear setting.

The key dual semitransversality condition (3.77) in Theorem 22 combines two conditions
on the dual vectors v∗1, . . . ,v

∗
n ∈ X∗: either their sum must be sufficiently far from 0 or the

vectors themselves must be sufficiently far from the corresponding normal cones. From the
point of view of applications, it can be convenient to have these conditions separated. The
next two corollaries show that it can be easily done.

Corollary 71 Let X be a Banach space, δ > 0 and α > 0. Suppose Fi (i = 1, . . . ,n) are
closed-valued. The collection {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ

if, for some γ > 0 and all xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54), one of the
following conditions is satisfied:
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(i) with N := NC,

n

∑
i=1
‖v∗i ‖ ≥ α (3.88)

for all x ∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and v∗i ∈ X∗ (i =
1, . . . ,n) satisfying (3.78), (3.79) and

n

∑
i=1

d
(
v∗i ,NFi(xi)(vi)

)
< αγ; (3.89)

(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.88) holds for all
x ∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.70), and v∗i ∈ X∗ (i = 1, . . . ,n)
satisfying (3.77), (3.80) and (3.89) with N := NF .

Proof It is sufficient to notice that the assumptions Corollary 71(i) and (ii) imply those in
the respective parts of Theorem 22. Indeed, the corollary replaces condition (3.77) by the
stronger condition (3.88), which only needs to be satisfied by v∗i ∈X∗ (i= 1, . . . ,n) satisfying
(3.89). Setting µ := γ−1, we see that if condition (3.89) is violated, then condition (3.77) is
automatically satisfied. �

Corollary 72 Let X be a Banach space, δ > 0 and α > 0. Suppose Fi (i = 1, . . . ,n) are
closed-valued. The collection {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ

if, for some γ > 0 and all xi ∈ Xi, ui ∈ X (i = 1, . . . ,n) satisfying (3.50) and (3.54), one of the
following conditions is satisfied:

(i) with N := NC,

n

∑
i=1

d
(
v∗i ,NFi(x1)(vi)

)
≥ α (3.90)

for all x ∈ X , vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.57), and v∗i ∈ X∗ (i =
1, . . . ,n) satisfying (3.78), (3.79) and

n

∑
i=1
‖v∗i ‖< αγ; (3.91)

(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.90) holds with N :=NF

for all x ∈ X and vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.56) and (3.70), and all v∗i ∈ X∗

(i = 1, . . . ,n) satisfying (3.77), (3.80) and (3.91).

Proof Cf. the proof of Corollary 71. �

The next statement provides a dual necessary condition for the property, which is partially
a converse of Theorem 22.
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Theorem 23 Let δ > 0 and α > 0. Suppose Fi (i = 1, . . . ,n) are convex-valued. If
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , then∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
v∗i ,NFi(xi)(vi)

)
≥ α (3.92)

with µ := α + 1 for all xi ∈ Xi, vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59), and v∗i ∈ X∗ (i =
1, . . . ,n) satisfying (3.78) and

n

∑
i=1
〈v∗i , x̄− vi〉= max

1≤i≤n
‖x̄− vi‖. (3.93)

Proof Let {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . Let µ := α + 1
and γ := µ−1. By Proposition 31(ii), condition (3.72) is satisfied for all xi ∈ Xi, vi ∈ Fi(xi)

(i = 1, . . . ,n) satisfying (3.59). Observe that f̂ is a sum of the function f given by (3.60)
and the indicator function of the set F1(x1)× . . .×Fn(xn). Since max1≤i≤n ‖vi− x̄‖> 0, f is
locally Lipschitz continuous near (v1, . . . ,vn, x̄). In view of Lemmas 4(i) and 6,

∂ f̂ (v1, . . . ,vn, x̄) = ∂ f (v1, . . . ,vn, x̄)+NF1(x1)×...×Fn(xn)(v1, . . . ,vn)×{0}
= ∂ f (v1, . . . ,vn, x̄)+NF1(x1)(v1)× . . .×NFn(xn)(vn)×{0}.

By Lemma 8, (v∗1, . . . ,v
∗
n,v
∗) ∈ ∂ f (v1, . . . ,vn, x̄) if and only if conditions (3.78), (3.83) and

(3.93) are satisfied. Hence, condition (3.92) is a consequence of (3.72). �

Remark 48 (i) It is evident from (3.92) that µ := α + 1 in Theorem 23 can be replaced
by any µ ≥ α +1.

(ii) Conditions (3.92) and (3.93) in Theorem 23 are particular cases of conditions (3.77)
and (3.79) in Theorem 22, respectively, corresponding to setting x := x̄ and vi := ui

(i = 1, . . . ,n).

(iii) Theorem 23 improves Theorem 10 in the linear setting.

In the convex setting, a similar decomposition of the dual semitransversality condition
(3.92) in Theorem 23 can be easily obtained.

Corollary 73 Let δ > 0 and α > 0. Suppose Fi (i = 1, . . . ,n) are convex-valued. If
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , then, for all xi ∈ Xi, vi ∈ Fi(xi)

(i = 1, . . . ,n) satisfying (3.59), the following conditions are satisfied:

(i) for all v∗i ∈ NFi(xi)(vi) (i = 1, . . . ,n) satisfying (3.78) and (3.93),

n

∑
i=1
‖v∗i ‖ ≥ α;

(ii) for all v∗i ∈ X∗ (i = 1, . . . ,n) satisfying (3.78), (3.93) and ∑
n
i=1 v∗i = 0,

n

∑
i=1

d
(
v∗i ,NF1(xi)(vi)

)
≥ α.
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3.2.4 Semitransversality and Semiregularity

In this section, we establish relationships between the semitransversality and semiregularity
of set-valued mappings.

Definition 14 Let F : X ⇒Y be a set-valued mapping between metric spaces, (x̄, ȳ)∈ gphF ,
and α > 0. The mapping F is α−semiregular at (x̄, ȳ) if there exists a δ > 0 such that

αd(x̄,F−1(y))≤ d(y, ȳ) (3.94)

for all y ∈ Bαδ (ȳ).

For discussions about the property in Definition 14, we refer the reader to Chapter 1.
The semiregularity also admits the equivalent geometric reformulation.

Proposition 33 Let F : X ⇒ Y be a set-valued mapping between metric spaces, (x̄, ȳ) ∈
gphF , δ > 0 and α > 0. The mapping F is α−semiregular at (x̄, ȳ) with δ and α if and only
if

F−1(y)∩Bρ(x̄) 6= /0 (3.95)

for all ρ ∈]0,δ [ and y ∈ Y with d(y, ȳ)< αρ .

Proof Cf. the proof of Theorem 21. �

Let Fi : Xi ⇒ X (i = 1, . . . ,n) be set-valued mappings between metric spaces, x̄i ∈ Xi

(i = 1, . . . ,n), and x̄ ∈ ∩n
i=1Fi(x̄i). Define F : X ⇒ X1× . . .×Xn by

F(x) := F−1
1 (x)× . . .×F−1

n (x), x ∈ X . (3.96)

Observe that (x̄,(x̄1, . . . , x̄n)) ∈ gphF and

F−1(x1, . . . ,xn) =
n⋂

i=1

Fi(xi)

for all xi ∈ Xi (i = 1, . . . ,n).

Theorem 24 Let F be defined by (3.96), δ > 0 and α > 0.

(i) If F is α−semiregular at (x̄,(x̄1, . . . , x̄n)) with δ , then {F1, . . . ,Fn} is
α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ .

(ii) Suppose max1≤i≤n d(x̄,Fi(xi)) ≤ max1≤i≤n di(xi, x̄i) for all xi ∈ Bαδ (x̄i) (i = 1, . . . ,n).
If {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ , then F is
α−semiregular at (x̄,(x̄1, . . . , x̄n)) with δ .
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Proof

(i) Suppose F is α−semiregular at (x̄,(x̄1, . . . , x̄n)) with δ . In view of Definition 14,

αd

(
x̄,

n⋂
i=1

Fi(xi)

)
≤ max

1≤i≤n
di(xi, x̄i) (3.97)

for all xi ∈ Xi (i = 1, . . . ,n) satisfying max1≤i≤n di(xi, x̄i) < αδ . Consequently, in-
equality (3.49) holds for all xi ∈ Xi (i = 1, . . . ,n) satisfying (3.50). By Theorem 21,
{F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ .

(ii) Suppose {F1, . . . ,Fn} is α−semitransversal at x̄ for (x̄1, . . . , x̄n) with δ . By Theo-
rem 21, then inequality (3.49) holds for all xi ∈ Xi (i = 1, . . . ,n) satisfying (3.50).
Under the assumption made, inequality (3.97) is satisfied for all xi ∈ Xi (i = 1, . . . ,n)
with max1≤i≤n di(xi, x̄i)< αδ . Hence, F is α−semiregular at (x̄,(x̄1, . . . , x̄2)) with δ .

�

In view of Theorem 24, semitransversality of collections of set-valued mappings can be
viewed as a particular case of semiregularity of set-valued mappings. We now show that the
two models are in a sense equivalent.

Let F : X ⇒ Y be a set-valued mapping between normed spaces, and (x̄, ȳ) ∈ gphF .
Define F1,F2 : X×Y ⇒ X×Y for any x ∈ X ,y ∈ Y by

F1(x,y) := gphF− (x,y), F2(x,y) := X×{ȳ}− (x,y). (3.98)

Observe that (x̄, ȳ) ∈ F1(x̄1)∩F2(x̄2), where x̄1 = x̄2 = (0,0).
The following quantitative relations has recently been established in [70].

Theorem 25 Let F1 and F2 be defined by (3.98), δ > 0 and α > 0, α1 := (2α−1 +1)−1 and
α2 := 2α .

(i) If F is α−semiregular at (x̄, ȳ) with δ , then {F1,F2} is α1−semitransversal at (x̄, ȳ)
for (x̄1, x̄2) with min{δ (1+α/2),2α−1 +1}.

(ii) If {F1,F2} is α1−semitransversal at (x̄, ȳ) for (x̄1, x̄2) with δ , then F is α2−semiregular
at (x̄, ȳ) with δ .

3.2.5 Applications

Our aim in this section is to employ the results in previous sections to formulate charac-
terizations of stationarity of collections of set-valued mappings as well as obtain necessary
conditions in multiobjective optimization problems with variable ordering structures.
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Stationarity of collections of set-valued mappings

Theorem 26 Let X be a Banach space, and Fi (i = 1, . . . ,n) be closed-valued. If {F1, . . . ,Fn}
is stationary at x̄ for (x̄1, . . . , x̄n), then, for every δ > 0, α > 0 and µ > 0, there exist xi ∈
Bαδ (x̄i), ui ∈ F(xi)∩Bαδ (x̄) (i = 1, . . . ,n) such that the following conditions are satisfied:

(i) with N := NC, ∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
v∗i ,NFi(xi)(vi)

)
< α (3.99)

for some x∈Bδ (x̄) and vi ∈Fi(xi)∩Bδ µ(ui) (i= 1, . . . ,n) satisfying (3.57), and v∗i ∈X∗

(i = 1, . . . ,n) satisfying (3.78);

(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.99) holds with N :=NF

for some x∈Bδ (x̄) and vi ∈Fi(xi)∩Bδ µ(ui) (i= 1, . . . ,n) satisfying (3.71), and v∗i ∈X∗

(i = 1, . . . ,n) satisfying (3.80).

Proof The statement follows from Theorem 22 together with the fact that stationarity is the
negation of semitransversality. �

The next corollaries are direct consequences of Theorem 26.

Corollary 74 Let X be a Banach space, and Fi (i= 1, . . . ,n) be closed-valued. If {F1, . . . ,Fn}
is stationary at x̄ for (x̄1, . . . , x̄n), then, for every δ > 0, α > 0 and γ > 0, there exist xi ∈
Bαδ (x̄i), ui ∈ F(xi)∩Bαδ (x̄) (i = 1, . . . ,n) such that the following conditions are satisfied:

(i)

n

∑
i=1
‖v∗i ‖< α (3.100)

for some x ∈ Bδ (x̄) and vi ∈ Fi(xi)∩Bδ µ(ui) (i = 1, . . . ,n) satisfying (3.57), and v∗i ∈
NC

Fi(xi)
(vi) (i = 1, . . . ,n) satisfying (3.78);

(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.100) holds for some
x ∈ Bδ (x̄) and vi ∈ Fi(xi)∩Bδ µ(ui) (i = 1, . . . ,n) satisfying (3.71), and v∗i ∈ NF

Fi(xi)
(vi)

(i = 1, . . . ,n) satisfying (3.80).

Corollary 75 Let X be a Banach space, Fi (i = 1, . . . ,n) be closed-valued. If {F1, . . . ,Fn}
stationary at x̄ for (x̄1, . . . , x̄n), then, for every δ > 0, α > 0 and γ > 0, there exist xi ∈Bαδ (x̄i),
ui ∈ F(xi)∩Bαδ (x̄) (i = 1, . . . ,n) such that the following conditions are satisfied:

(i) with N := NC,

n

∑
i=1

d
(
v∗i ,NFi(x1)(vi)

)
< α (3.101)
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for some x∈Bδ (x̄) and vi ∈Fi(xi)∩Bδ µ(ui) (i= 1, . . . ,n) satisfying (3.57), and v∗i ∈X∗

(i = 1, . . . ,n) satisfying (3.78), and ∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥= 0; (3.102)

(ii) X is Asplund, and there exists a τ ∈]0,1[ such that inequality (3.101) holds with N :=
NF for some x ∈ Bδ (x̄) and vi ∈ Fi(xi)∩Bδ µ(ui) (i = 1, . . . ,n) satisfying (3.71), and
v∗i ∈ X∗ (i = 1, . . . ,n) satisfying (3.80) and (3.102).

In the convex setting we can establish dual sufficient conditions for stationarity. Note
that in this case we just need the image space X being a normed vector space.

Theorem 27 Suppose Fi (i = 1, . . . ,n) are convex-valued. The collection {F1, . . . ,Fn} is
stationary at x̄ for (x̄1, . . . , x̄n), if for every δ > 0, α > 0 and µ > 0, there exist xi ∈ Xi,
vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59), and v∗i ∈ X∗ (i = 1, . . . ,n) satisfying (3.93),∥∥∥∥∥ n

∑
i=1

v∗i

∥∥∥∥∥+µ

n

∑
i=1

d
(
v∗i ,NFi(xi)(vi)

)
< α.

Proof The statement follows from Theorem 23 together with the fact that stationarity is the
negation of semitransversality. �

The next statement follows straightforwardly from Theorem 27.

Corollary 76 Suppose Fi (i = 1, . . . ,n) are convex-valued. The collection {F1, . . . ,Fn} is
stationary at x̄ for (x̄1, . . . , x̄n), if for every δ > 0, α > 0 and µ > 0, there exist xi ∈ Xi,
vi ∈ Fi(xi) (i = 1, . . . ,n) satisfying (3.59), the one of the following conditions is satisfied:

(i) there exist v∗i ∈ NFi(xi)(vi) (i = 1, . . . ,n) satisfying (3.93) such that

n

∑
i=1
‖v∗i ‖< α;

(ii) there exist v∗i ∈ X∗ (i = 1, . . . ,n) satisfying (3.93) and ∑
n
i=1 v∗i = 0 such that

n

∑
i=1

d
(
v∗i ,NF1(xi)(vi)

)
< α.

Necessary conditions in multiobjective optimization

Let D : Y ⇒ Y be a set-valued mapping on a vector space Y . Define an ordering relation
induced from D denoted by

y≤D ȳ if and only if ȳ ∈ y+D(ȳ) (3.103)
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for any y, ȳ ∈ Y . That latter can be rewritten as y ∈ ȳ−D(ȳ). The mapping D is called a
variable ordering structure. Let us recall that the relation D is said to be almost transitivity
if

[y1 ∈ clD(y2) & y2 ∈D(y3)]⇒ y1 ∈D(y3)

for any y1,y2,y3 ∈ Y . The almost transitivity is widely used in the study of multiobjective
optimization problems; cf. [22, 173, 175, 222]. It is worth mentioning that the conventional
Pareto efficiency [118, 158] is almost transitivity if the cone is convex and pointed [173,
Proposition 5.56].

Definition 15 Let Ω be a subset of a vector space Y , and ȳ ∈Ω. Then ȳ is called an Pareto
efficient point of Ω with respect to D if there is no ȳ 6= y ∈Ω such that y≤D ȳ, i.e. Ω∩ (ȳ−
D(ȳ)) = {ȳ}.

It is obvious that the concept in Definition 15 reduces to the Pareto efficiency when the
ordering structure is constant, i.e D(y)=K for any y∈Y where K is a closed, convex, pointed
cone. For intensive discussions about variable ordering structures and related concepts, the
reader is referred to [22, 23, 49, 50, 86–88, 90] and references therein.

Let F : X ⇒Y be a set-valued mapping between Banach spaces, Ω be a nonempty subset
of X , and D is a variable ordering structure on Y . Our interest is the constrainted multiob-
jective optimization problem with geometric constraint of the following form

P : minimize F(x),

subject to x ∈Ω with respect to D .

Definition 16 A pair (x̄, ȳ) ∈ gphF is called an efficient solution of the problem P if x̄ ∈Ω

and ȳ is an efficient point of F(Ω) with respect to D , i.e. there is no pair (x,y) ∈ gphF with
x ∈Ω and y 6= ȳ such that y≤D ȳ.

As we already discussed, the primary advantage of the concept extremality/stationarity
of collections of set-valued mappings is the ability to describe several optimal notions in
vector optimization that the conventional ones cannot do. The next proposition illustrates
this observation.

Proposition 34 Let D be almost transitivity, (x̄, ȳ) ∈ gphF be an efficient solution of P .
Let X1 := (ȳ−D(ȳ))∪{ȳ}, X2 := {0}, and Fi : Xi ⇒ X ×Y (i = 1,2) be defined for any
y ∈ X1 by

F1(y) := Ω× (y− clD(y)) and F2(0) := gphF. (3.104)

Then the pair {F1,F2} is stationary at (x̄, ȳ) for (ȳ,0).

134



Proof In view of [22, Proposition 2] (see also [175, Example 3.5]), the pair {F1,F2} is
locally extremal at (x̄, ȳ) for (ȳ,0). Since extremality implies stationarity, we get the conclu-
sion. �

The following statements establish necessary conditions for efficient solutions of the
problem P . These results are obtained by employing dual necessary conditions for the
stationarity of collections of set-valued mappings. The conditions of this kind are new to the
best of our knowledge.

Theorem 28 Let gphF and Ω be closed, and D be almost transitivity. If (x̄, ȳ) ∈ gphF be
an efficient solution of P , then, for every δ > 0, α > 0 and µ > 0, there exist y ∈ Bαδ (ȳ),
(x1,y1) ∈ [Ω× (y−clD(y))]∩Bαδ (x̄, ȳ), (x2,y2) ∈ gphF ∩Bαδ (x̄, ȳ) such that the following
conditions are satisfied:

(i) with N := NC,

‖(x∗1,y∗1)+(x∗2,y
∗
2)‖+

µ
(
d((x∗1,y

∗
1),NΩ(x1,y1)×Ny−clD(y)(x1,y1))+d((x∗2,y

∗
2),NgphF(x2,y2))

)
< α

(3.105)

for some (x′,y′) ∈ Bδ (x̄, ȳ), (x′1,y
′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1) and (x′2,y

′
2) ∈

gphF ∩Bδ µ(x2,y2) satisfying

0 < max
i=1,2
‖(x′i− x′,y′i− y′)‖ ≤ max

i=1,2
‖(xi− ȳ,yi− ȳ)‖< αδ , (3.106)

and (x∗i ,y
∗
i ) ∈ X∗×Y ∗ (i = 1,2) satisfying

‖(x∗1,y∗1)‖+‖(x∗2,y∗2)‖= 1, (3.107)
2

∑
i=1
〈(x∗i ,y∗i ),(x′− x′i,y

′− y′i)〉= max
i=1,2
‖(x′− x′i,y

′− y′i)‖; (3.108)

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.105) holds
with N := NF for some (x′,y′) ∈ Bδ (x̄, ȳ), (x′1,y

′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1)

and (x′2,y
′
2) ∈ gphF ∩Bδ µ(x2,y2) satisfying

0 < max
i=1,2
‖(x′i− x′,y′i− y′)‖< αδ , (3.109)

and (x∗i ,y
∗
i ) ∈ X∗×Y ∗ (i = 1,2) satisfying (3.107) and

2

∑
i=1
〈(x∗i ,y∗i ),(x′− x′i,y

′− y′i)〉> τ max
i=1,2
‖(x′− x′i,y

′− y′i)‖. (3.110)

Proof Under the assumptions made the set-valued mappings F1 and F2 given by (3.104)
are closed-valued. The statements are consequences of Theorem 26 and Proposition 34. �

The following statements follow straightforwardly from Theorem 28.
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Corollary 77 Let gphF and Ω be closed, and D be almost transitivity. If (x̄, ȳ) ∈ gphF be
an efficient solution of P , then, for every δ > 0, α > 0 and µ > 0, there exist y ∈ Bαδ (ȳ),
(x1,y1) ∈ [Ω× (y−clD(y))]∩Bαδ (x̄, ȳ), (x2,y2) ∈ gphF ∩Bαδ (x̄, ȳ) such that the following
conditions are satisfied:

(i)

‖(x∗1,y∗1)+(x∗2,y
∗
2)‖< α (3.111)

for some (x′,y′) ∈ Bδ (x̄, ȳ), (x′1,y
′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1) and (x′2,y

′
2) ∈

gphF ∩Bδ µ(x2,y2) satisfying (3.106), and x∗1 ∈ NC
Ω
(x1), y∗1 ∈ NC

y−clD(y)(y1), (x∗2,y
∗
2) ∈

NC
gphF(x2,y2) satisfying (3.107) and (3.108).

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.111) holds
for some (x′,y′) ∈ Bδ (x̄, ȳ), (x′1,y

′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1) and (x′2,y

′
2) ∈

gphF ∩Bδ µ(x2,y2) satisfying (3.109), and x∗1 ∈ NF
Ω
(x1), y∗1 ∈ NF

y−clD(y)(y1), (x∗2,y
∗
2) ∈

NF
gphF(x2,y2) satisfying (3.107) and (3.110).

Corollary 78 Let gphF and Ω be closed, and D be almost transitivity. If (x̄, ȳ) ∈ gphF be
an efficient solution of P , then, for every δ > 0, α > 0 and µ > 0, there exist y ∈ Bαδ (ȳ),
(x1,y1) ∈ [Ω× (y−clD(y))]∩Bαδ (x̄, ȳ), (x2,y2) ∈ gphF ∩Bαδ (x̄, ȳ) such that the following
conditions are satisfied:

(i) with N := NC,

d((x∗1,y
∗
1),NΩ(x1)×Ny−clD(y)(y1))+d((x∗2,y

∗
2),NgphF(x2,y2))< α (3.112)

for some (x′,y′) ∈ Bδ (x̄, ȳ), (x′1,y
′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1) and (x′2,y

′
2) ∈

gphF ∩ Bδ µ(x2,y2) satisfying (3.106), and (x∗i ,y
∗
i ) ∈ X∗ ×Y ∗ (i = 1,2) satisfying

(3.107), (3.108) and

‖(x∗1,y∗1)+(x∗2,y
∗
2)‖= 0; (3.113)

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.112) holds
with N := NF for some (x,y) ∈ Bδ (x̄, ȳ), (x′1,y

′
1) ∈ [Ω× (y− clD(y))]∩Bδ µ(x1,y1)

and (x′2,y
′
2) ∈ gphF ∩Bδ µ(x2,y2) satisfying (3.109), and (x∗i ,y

∗
i ) ∈ X∗×Y ∗ (i = 1,2)

satisfying (3.106), (3.110) and (3.113).

3.3 Uniform Regularity of Set-Valued Mappings and Sta-
bility of Implicit Multifunctions

3.3.1 Definitions and Discussions

Many important problems in variational analysis and optimization can be modelled by an
inclusion y∈ F(x), where F is a set-valued mapping. The behavior of the solution set F−1(y)
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when y and/or F are perturbed is of special interest. The concepts of metric regularity and
subregularity (cf., e.g., [81, 116, 173]) have been the key tools when studying stability of
solutions. In the next definition, we use the names α−regularity and α−subregularity, fixing
the main quantitative parameter in the conventional definitions of the properties.

Definition 17 Let X and Y be metric spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and α > 0. The
mapping F is

(i) α−regular at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

αd(x,F−1(y))≤ d(y,F(x)) (3.114)

for all x ∈ Bδ (x̄) and y ∈ Bδ (ȳ) with d(y,F(x))< αµ;

(ii) α−subregular at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

αd(x,F−1(ȳ))≤ d(ȳ,F(x)) (3.115)

for all x ∈ Bδ (x̄) with d(ȳ,F(x))< αµ .

Note that δ and µ in the above definition can take infinite values; thus, the definition
covers local as well as global properties. This remark applies also to the subsequent def-
initions. The technical conditions d(y,F(x)) < αµ and d(ȳ,F(x)) < αµ can be dropped
(cf. [112, 172]), particularly because the value µ = +∞ is allowed. This does not affect the
properties themselves, but can have an effect on the value of δ .

Inequalities (3.114) and (3.115) provide linear estimates of the distance from x to the
solution set of the respective generalized equation via the ‘residual’ d(y,F(x)) or d(ȳ,F(x)).
As commented by Dontchev and Rockafellar [81, p.178] ‘in applications, the residual is
typically easy to compute or estimate, whereas finding a solution might be considerably
more difficult’.

Besides their importance in studying stability of solutions to inclusions, regularity type
estimates are involved in constraint qualifications for optimization problems, qualification
conditions in subdifferential and coderivative calculus, and convergence analysis of compu-
tational algorithms [1, 5, 6, 8, 52, 59, 82, 103, 161].

When y is not fixed and can be any point in a neighbourhood of a given point ȳ, it
represents canonical perturbations of the inclusion ȳ ∈ F(x). For some applications it can
be important to allow also perturbations in the right-hand side. This leads to the need to
consider parametric inclusions ȳ ∈ F(p,x) (or even y ∈ F(p,x), thus, combining the two
types of perturbations), where F is a set-valued mapping of two variables, with (nonlinear)
perturbations in the right-hand side given by a parameter p from some fixed set P.

Along with the mapping F : P×X ⇒Y , which is our main object in this chapter, given a
point p ∈ P, we consider the mapping Fp := F(p, ·) : X ⇒ Y . Given a y ∈ Y , the mapping

p 7→ G(p) := F−1
p (y) = {x ∈ X | y ∈ F(p,x)} (3.116)
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can be interpreted as an implicit multifunction corresponding to the parametric inclusion
y ∈ F(p,x). When studying implicit multifunctions, it is common to consider ‘uniform’
versions of the properties in Definition 17 (cf., e.g., [115, Definition 3.1]).

Definition 18 Let X and Y be metric spaces, and P be a set, F : P×X ⇒ Y , x̄ ∈ X , ȳ ∈ Y ,
and α > 0. The mapping F is

(i) α−regular in x uniformly in p over P at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈]0,+∞]

such that

αd(x,F−1
p (y))≤ d(y,F(p,x)) (3.117)

for all p ∈ P, x ∈ Bδ (x̄) and y ∈ Bδ (ȳ) with d(y,F(p,x))< αµ;

(ii) α−subregular in x uniformly in p over P at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈
]0,+∞] such that

αd(x,F−1
p (ȳ))≤ d(ȳ,F(p,x)) (3.118)

for all p ∈ P and x ∈ Bδ (x̄) with d(ȳ,F(p,x))< αµ .

If P is a singleton, then the properties in Definition 18 reduce to the corresponding con-
ventional regularity properties in Definition 17. Moreover, the subregularity property in Def-
inition 18(ii) coincides in this case with the subregularity property of the mapping (3.116)
considered in [56].

Remark 49 (i) If Y is a linear metric space with a shift-invariant metric, in particular, a
normed space, then the property in part (i) of Definition 18 reduces to the one in part
(ii) with the extended parameter set P̂ := P×Y and set-valued mapping F̂((p,y),x) :=
F(p,x)− y, ((p,y),x) ∈ P̂×X , in place of P and F , respectively. Moreover, in both
parts of the definition, it is sufficient to consider the case ȳ := 0: the general case
reduces to it by replacing F with F− ȳ.

(ii) Unlike Definition 17, in Definition 18 the reference point (x̄, ȳ) is not associated with
the graph of F . This is a technical relaxation caused by the fact that gphF is a subset
of a product of three spaces P×X ×Y , and at this stage there is no reference point in
P. Definition 19 below is formulated in a more conventional way.

(iii) There exist other concepts of uniform regularity in the literature. For instance, it is not
uncommon to talk about uniform regularity when inequality (3.114) holds for all (x,y)
in a compact subset of X×Y ; cf. [59].

Local (in p) versions of the properties in Definition 18 are of special interest. They
correspond to P being a neighbourhood of a point p̄ in some metric space; cf., e.g., [115,187].
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Definition 19 Let P, X and Y be metric spaces, F : P×X ⇒Y , (p̄, x̄, ȳ) ∈ gphF , and α > 0.
The mapping F is

(i) α−regular in x uniformly in p at (p̄, x̄, ȳ) if there exist η ∈]0,+∞], δ ∈]0,+∞] and
µ ∈]0,+∞] such that inequality (3.117) is satisfied for all p ∈ Bη(p̄), x ∈ Bδ (x̄) and
y ∈ Bδ (ȳ) with d(y,F(p,x))< αµ;

(ii) α−subregular in x uniformly in p at (p̄, x̄, ȳ) if there exist η ∈]0,+∞], δ ∈]0,+∞] and
µ ∈]0,+∞] such that inequality (3.118) is satisfied for all p ∈ Bη(p̄) and x ∈ Bδ (x̄)
with d(ȳ,F(p,x))< αµ .

We often simply say that F is regular or subregular if the exact value of α in the above
definitions is not important. The exact upper bound of all α > 0 such that a property in
the above definitions is satisfied with some δ ∈]0,+∞] and µ ∈]0,+∞] (and η ∈]0,+∞]), is
called the modulus (or rate) of the property.

Apart from the main parameter α , providing a quantitative measure of the respective
property, the properties in above definitions depend also on the auxiliary parameters δ , η and
µ . They control (directly and indirectly) the size of the neighbourhoods of x̄ and p̄ involved
in the definitions. As discussed above, the last parameter can be dropped (together with the
corresponding constraints). We keep all the parameters to emphasize their different roles in
the definitions and corresponding characterizations. The necessary and sufficient regularity
conditions presented in the chapter normally involve the same collection of parameters.

The properties in Definitions 18 and 19 can be interpreted as kinds of Lipschitz-like
properties of the implicit multifunction (solution mapping) (3.116). This observation opens
a way for numerous applications of the characterizations established in this chapter and many
other papers; cf. Section 3.2.3.

Regularity properties of implicit multifunctions were first considered by Robinson
[198, 200] when studying stability of solution sets of linear and differentiable nonlinear sys-
tems. This initiated a great deal of research by many authors, mostly in normed spaces
(and with ȳ := 0). Dontchev et al. [79, Theorem 2.1] gave a sufficient condition for regu-
larity of implicit multifunctions in terms of graphical derivatives. Ngai et al. [184, 187] em-
ployed the theory of error bounds to characterize the property in metric and Banach spaces.
In [56,98,106,107,146,189,212] dual sufficient conditions were established in finite and in-
finite dimensions in terms of Fréchet, limiting, directional limiting and Clarke coderivatives.
Chieu et al. [51] established connections between regularity and Lipschitz-like properties of
implicit multifunctions.

The regularity properties of the type given in Definitions 18 and 19 are referred to in the
literature as metric regularity [56,107,146], metric regularity in Robinson’s sense [189,212],
and Robinson metric regularity [51, 106] (of implicit multifunctions). We refer the readers
to [14, 19, 81, 115, 145, 189] for more discussions and historical comments.

The metric properties in Definitions 18 and 19 admit equivalent geometric characteriza-
tions. This is illustrated by the next proposition providing a characterization for the property
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in Definition 18(ii).

Proposition 35 Let X and Y be metric spaces, and P be a set, F : P×X ⇒ Y , x̄ ∈ X , ȳ ∈ Y ,
and α > 0. The mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) with some
δ ∈]0,+∞] and µ ∈]0,+∞] if and only if

F−1
p (ȳ)∩Bρ(x) 6= /0 (3.119)

for all ρ ∈]0,µ[, p ∈ P and x ∈ Bδ (x̄) with d(ȳ,F(p,x))< αρ .

Proof Suppose F is α−subregular in x uniformly in p over P at (x̄, ȳ) with some δ ∈]0,+∞]

and µ ∈]0,+∞]. Let ρ ∈]0,µ[, p ∈ P and x ∈ Bδ (x̄) with d(ȳ,F(p,x)) < αρ . Then
d(ȳ,F(p,x)) < αµ . By Definition 18(ii), d(x,F−1

p (ȳ)) ≤ α−1d(ȳ,F(p,x)) < ρ . Hence,
condition (3.119) is satisfied.

Conversely, suppose δ ∈]0,+∞] and µ ∈]0,+∞], and condition (3.119) is satisfied for
all ρ ∈]0,µ[, p ∈ P and x ∈ Bδ (x̄) with d(ȳ,F(p,x)) < αρ . Let p ∈ P and x ∈ Bδ (x̄) with
d(ȳ,F(p,x)) < αµ . Choose a ρ satisfying α−1d(ȳ,F(p,x)) < ρ < µ . Then, by (3.119),
d(x,F−1

p (ȳ))< ρ . Letting ρ ↓ α−1d(ȳ,F(p,x)), we arrive at (3.118), i.e. F is α−subregular
in x uniformly in p over P at (x̄, ȳ) with δ and µ . �

The aim of this chapter is not to add some new sufficient or necessary conditions for
regularity properties of general set-valued mappings or implicit multifunctions to the large
volume of existing ones (although some conditions in the subsequent sections are indeed
new), but to propose a unifying general (i.e. not assuming the mapping F to have any par-
ticular structure and not using tangential approximations of gphF) view on the theory of
regularity, and clarify the relationships between the existing conditions including their hier-
archy. We expose the typical sequence of regularity assertions, often hidden in the proofs,
and the roles of the assumptions involved in the assertions, in particular, on the underlying
space: general metric, normed, Banach or Asplund.

We present a series of necessary and sufficient regularity conditions with the main em-
phasis (in line with the current trend in the literature) on the latter ones. The (typical) se-
quence of sufficient regularity conditions is represented by the following chain of assertions,
each subsequent assertion being a consequence of the previous one:

(i) nonlocal primal space conditions in complete metric spaces (Theorem 29(ii));

(ii) local primal space conditions in complete metric spaces (Corollary 80(ii));

(iii) subdifferential conditions in Banach and Asplund spaces (Proposition 36);

(iv) normal cone conditions in Banach and Asplund spaces (Theorem 30);

(v) coderivative conditions in Banach and Asplund spaces (Corollaries 83 and 84).
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Even if one targets coderivative conditions, they still have to go through the five steps listed
above with details often hidden in long proofs. Apart from making the whole process more
transparent, which is our main objective, the assertions in (i)–(iv) can be of independent
interest, at least theoretically, especially the slope type conditions in (ii) and normal cone
conditions in (iv). In combination with tangential approximations of gphF , they are likely
to lead to verifiable regularity conditions.

The implications (i)⇒ (ii) and (iv)⇒ (v) in the above list follow immediately from the
definitions. The main assertions are the sufficiency of condition (i), and implications (ii)
⇒ (iii)⇒ (iv). They employ the following fundamental tools of variational analysis:

• Ekeland variational principle (sufficiency of condition (i));

• sum rules for respective subdifferentials (implications (ii)⇒ (iii)⇒ (iv)).

Thus, all the sufficient conditions on the list are consequences of the Ekeland variational
principle, and as such, they are ‘outer’ conditions, i.e. they need to be checked at points
outside the solution set F−1

p (ȳ).
Most of the sufficient conditions are accompanied by the corresponding necessary ones.

The necessary conditions do not require the underlying spaces to be complete and are gen-
erally easy consequences of the definitions. With the exception of the general nonlocal con-
dition in Theorem 29(i), such conditions are formulated in normed spaces and assume the
graph of F to be convex. In Section 2.5.1, we provide a series of dual necessary regularity
conditions for set-valued mappings with closed convex graphs acting between Banach spaces
some of which are also sufficient.

In the setting of complete metric spaces, and assuming that gphFp is closed for all
p ∈ P, the gap between the nonlocal necessary and sufficient subregularity conditions in
Theorem 29 is not big: they share the same inequality (3.62); with all the other parameters
coinciding, the sufficiency part naturally requires it to hold for all x in a larger set. Unfor-
tunately, unlike the ‘full’ regularity possessing the well known coderivative criterion (see,
e.g., [125, 172]), this is not the case in general with local subregularity conditions unless
the graph of F is convex. The sufficient subregularity conditions presented in the chapter
are the weakest possible in each group, but can still be far from necessary. As it has been
discussed in the literature (see, e.g., a discussion of the equivalent subtransversality property
in [138]), the reason for this phenomenon lies in the fact that the subregularity property lacks
robustness.

The hot topic of regularity of a set-valued mapping F with a special structure, partic-
ularly in the arising in numerous applications such as, e.g., KKT systems and variational
inequalities, case when F = g+G with g single valued and G set-valued (typically a nor-
mal cone mapping), is outside the scope of the current chapter. Computing ‘slopes’ and
coderivatives of such mappings (or normal cones to their graphs) is usually a difficult job
and requires imposing additional assumptions on g and G. This is what people working in
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this area normally do. We want to emphasize that this type of conditions still fall into the
five-point scheme described above.

3.3.2 Slope Necessary and Sufficient Conditions

This section is dedicated to slope necessary and sufficient conditions. For simplicity, we fo-
cus on the uniform subregularity property in Definition 18(ii). The corresponding conditions
for the property in Definition 18(i) can be formulated in a similar way. Besides, in view of
Remark 49(i), in normed spaces (which is our setting in the next section) such conditions
can be obtained as consequences of those for the subregularity.

The necessary conditions are deduced directly from the definitions of the respective prop-
erties, while the sufficient ones come from the application of the Ekeland variational princi-
ple. In the convex case, the conditions are necessary and sufficient.

In this section, P is a nonempty set, X and Y are metric spaces, and F : P×X ⇒ Y . We
assume the parameters x̄ ∈ X , ȳ ∈ Y , α > 0, δ ∈]0,+∞] and µ ∈]0,+∞] to be fixed. In what
follows, we employ a collection of functions

ψp(u,v) := d(v, ȳ)+ igphFp(u,v), u ∈ X , v ∈ Y (3.120)

depending on a parameter p ∈ P. Along with the standard maximum distance on X ×Y , we
also use a metric depending on a parameter γ > 0:

dγ((u,v),(x,y)) := max{d(u,x),γd(v,y)} , u,x ∈ X , v,y ∈ Y. (3.121)

The next theorem plays a crucial role for the subsequent considerations. The slope
and subdifferential/normal cone/coderivative conditions for uniform α−subregularity in this
chapter are consequences of this theorem.

Theorem 29 (i) If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with some
δ ∈]0,+∞] and µ ∈]0,+∞], then

sup
(u,v)∈gphFp,(u,v)6=(x,y)
d(u,x̄)<δ+µ,d(v,ȳ)<αµ

d(y, ȳ)−d(v, ȳ)
dγ((u,v),(x,y))

≥ α (3.122)

for γ := α−1, and all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfying

x /∈ F−1
p (ȳ), y ∈ F(p,x)∩Bαµ(ȳ). (3.123)

(ii) Suppose X and Y are complete, and gphFp is closed for all p ∈ P. If inequality (3.122)
holds for some γ > 0, and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.123), then F
is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
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Proof

(i) Suppose F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ . Let
p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfy (3.123), γ := α−1, and η > 1. By (3.123) and
Definition 18(ii), there exist a ξ ∈]1,η [ such that ξ d(y, ȳ)<αµ , and a point x̂∈F−1

p (ȳ)
such that αd(x, x̂)< ξ d(y, ȳ). Thus, (x̂, ȳ) ∈ gphFp, (x̂, ȳ) 6= (x,y),

d(x̂, x̄)≤ d(x̂,x)+d(x, x̄)< α
−1

ξ d(y, ȳ)+δ ≤ µ +δ , and

dγ((x,y),(x̂, ȳ)) = max{d(x, x̂),γd(y, ȳ)} ≤ α
−1 max{ξ ,1}d(y, ȳ) = α

−1
ξ d(y, ȳ).

Hence,

sup
(u,v)∈gphFp,(u,v)6=(x,y)
d(u,x̄)<δ+µ,d(v,ȳ)<αµ

d(y, ȳ)−d(v, ȳ)
dγ((u,v),(x,y))

≥ d(y, ȳ)
dγ((x̂, ȳ),(x,y))

≥ αξ
−1 > αη

−1.

Letting η ↓ 1, we arrive at (3.122).

(ii) Suppose F is not α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ . By
Definition 18(ii), there exist points p ∈ P and x ∈ Bδ (x̄) such that

d(ȳ,F(p,x))< α min{d(x,F−1
p (ȳ)),µ}.

Hence, x /∈ F−1
p (ȳ), or equivalently, ȳ /∈ F(p,x). Set µ0 := min{d(x,F−1

p (ȳ)),µ}.
Choose a number ε such that d(ȳ,F(p,x)) < ε < αµ0, and a point y ∈ F(p,x) such
that d(y, ȳ)< ε . The function ψp : X ×Y → R+∪{+∞}, defined by (3.120), is lower
semicontinuous on Bµ+δ (x̄)×Bαµ(ȳ). Besides,

ψp(x,y) = d(y, ȳ)< inf
Bµ+δ (x̄)×Bαµ (ȳ)

ψp + ε.

Let γ > 0. Applying the Ekeland variational principle (Lemma 1) to the restriction of
ψp to the complete metric space Bµ+δ (x̄)×Bαµ(ȳ) with the metric (3.121), we can
find a point (x̂, ŷ) ∈ Bµ+δ (x̄)×Bαµ(ȳ) such that

dγ((x̂, ŷ),(x,y))< µ0, ψp(x̂, ŷ)≤ ψp(x,y), (3.124)

ψp(x̂, ŷ)≤ ψp(u,v)+(ε/µ0)dγ((u,v),(x̂, ŷ)) (3.125)

for all (u,v) ∈ Bµ+δ (x̄)×Bαµ(ȳ). By (3.124), we have ŷ ∈ F(p, x̂), and

d(x̂, x̄)≤ d(x̂,x)+d(x, x̄)< µ0 +δ ≤ µ +δ ,

d(ŷ, ȳ)≤ d(y, ȳ)< ε < αµ0 ≤ αµ.

Besides, d(x̂,x) < µ0 ≤ d(x,F−1
p (ȳ)). This implies x̂ /∈ F−1

p (ȳ), and consequently,
ŷ 6= ȳ. It follows from (3.125) that

sup
(u,v)∈gphFp,(u,v)6=(x̂,ŷ)
d(u,x̄)<δ+µ,d(v,ȳ)<αµ

d(ŷ, ȳ)−d(v, ȳ)
dγ((u,v),(x̂, ŷ))

≤ ε

µ0
< α.

The last estimate contradicts (3.122).
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Remark 50 (i) The expression in the left-hand side of the inequality (3.122) is the nonlo-
cal γ-slope [131, p. 60] at (x,y) of the restriction of the function ψp, given by (3.120),
to gphFp∩ [Bδ+µ(x̄)×Bαµ(ȳ)].

(ii) By the definition of the metric (3.121), if inequality (3.122) is satisfied with a γ > 0,
then it is also satisfied with any γ ′ ∈]0,γ[. This observation is applicable to all slope
inequalities in this section.

(iii) The completeness of the space and closedness assumption in part (ii) of Theorem 29
(and the subsequent statements) can be relaxed: it suffices to require that gphFp ∩
[Bδ+µ(x̄)×Bαµ(ȳ)] is complete for all p ∈ P.

(iv) The sufficient condition in part (ii) of Theorem 29 is often hidden in the proofs of dual
sufficient conditions.

(v) When X and Y are complete, and gphFp is closed for all p ∈ P, the gap between the
nonlocal necessary and sufficient regularity conditions in parts (i) and (ii) of Theo-
rem 29 is not big: they share the same inequality (3.62); with all the other parameters
coinciding, the necessity part (i) guarantees this inequality to hold for all x ∈ Bδ (x̄),
while the sufficiency part (ii) requires it to hold for all x in a larger set Bδ+µ(x̄).

We now illustrate Theorem 29 by applying it to the local (in p) setting in Definition 19(ii).
The application is straightforward. We provide a single illustration of this kind, although the
other statements in this and the next section are also applicable to this setting.

Corollary 79 Let P be a metric space, and (p̄, x̄, ȳ) ∈ gphF .

(i) If F is α−subregular in x uniformly in p at (p̄, x̄, ȳ) with η , δ and µ , then inequality
(3.122) holds with γ := α−1 for all p ∈ Bη(p̄), x ∈ Bδ (x̄) and y ∈Y satisfying (3.123).

(ii) Suppose X and Y are complete, and gphFp is closed for all p ∈ Bη(p̄). If inequality
(3.122) holds for some γ > 0, and all p ∈ Bη(p̄), x ∈ Bδ+µ(x̄) and y ∈ Y satisfying
(3.123), then F is α−subregular in x uniformly in p at (p̄, x̄, ȳ) with η , δ and µ .

The next statement presents a localized version of Theorem 29.

Corollary 80 (i) Suppose X and Y are normed spaces, and gphFp is convex for all p∈ P.
If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ , then

limsup
u→x,v→y,(u,v)∈gphFp,(u,v)6=(x,y)

d(u,x̄)<δ+µ,d(v,ȳ)<αµ

d(y, ȳ)−d(v, ȳ)
dγ((u,v),(x,y))

≥ α (3.126)

for γ := α−1, and all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfying (3.123).

(ii) Suppose X and Y are complete, and gphFp is closed for all p ∈ P. If inequality (3.126)
holds for some γ > 0, and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.123), then F
is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
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Proof In view of Remarks 50(i) and 51(i), assertion (i) follows from Lemma 2(iv) and
Theorem 29(i), while assertion (ii) is a consequence of Lemma 2(ii) and Theorem 29(ii). �

Remark 51 (i) The expression in the left-hand side of inequality (3.126) is the γ-slope
[131, p. 61] at (x,y) of the restriction of the function ψp, given by (3.120), to gphFp∩
[Bδ+µ(x̄)×Bαµ(ȳ)].

(ii) The convexity assumption in part (i) of Corollary 80 (and its subsequent statements)
can be relaxed: it suffices to require that gphFp∩ [Bδ+µ(x̄)×Bαµ(ȳ)] is convex for all
p ∈ P.

(iii) In the particular case when P is a neighborhood of a point p̄ in some metric space,
part (ii) of Corollary 80 is a quantitative version of [115, Proposition 3.5]. Ngai et
al. [187, Theorem 3] established a primal sufficient condition for the property under
the assumption that the mapping F(·, x̄) is lower semicontinuous at p̄.

3.3.3 Dual Necessary and Sufficient Conditions

In this section, we continue studying the mapping F : P×X ⇒ Y where P is a nonempty
set, while X and Y are assumed to be normed spaces. We also assume the parameters x̄ ∈ X ,
ȳ ∈ Y , α > 0, δ ∈]0,+∞] and µ ∈]0,+∞] to be fixed, and the collection of functions ψp be
defined by (3.120).

The primal and dual parametric product space norms, corresponding to the distance
(3.121), have the following form:

‖(x,y)‖γ = max{‖x‖,γ‖y‖}, x ∈ X , y ∈ Y. (3.127)

‖(x∗,y∗)‖γ = ‖x∗‖+
1
γ
‖y∗‖, x∗ ∈ X∗, y∗ ∈ Y ∗. (3.128)

We denote by dγ the distance in X∗×Y ∗ determined by (3.128).

Dual Sufficient Conditions

In this subsection, we assume that X and Y are Banach spaces, and gphFp is closed for all
p ∈ P.

The next subdifferential sufficient condition for uniform α−subregularity is a conse-
quence of Corollary 80(ii) thanks to two subdifferential sum rules in Lemma 4.

Proposition 36 Let ∂ := ∂C. If

dγ (0,∂ψp(x,y))≥ α (3.129)

for some γ > 0, and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.123), then F is
α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .

If X and Y are Asplund, then the above assertion is valid with ∂ := ∂ F .
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Proof Suppose F is not α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
Let γ > 0. By Corollary 80(ii), there exist points p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying
(3.123), and an α ′ ∈]0,α[ such that

‖y− ȳ‖−‖v− ȳ‖ ≤ α
′‖(u,v)− (x,y)‖γ

for all (u,v) ∈ gphFp ∩ [Bµ+δ (x̄)× Bαµ(ȳ)] near (x,y). In other words, (x,y) is a local
minimizer of the function

(u,v) 7→ ψp(u,v)+α
′‖(u,v)− (x,y)‖γ . (3.130)

By Lemma 5, its Fréchet and, as a consequence, Clarke subdifferential at this point contains
0. Observe that (3.130) is the sum of the function ψp and the Lipschitz continuous convex
function (u,v) 7→ α ′‖(u,v)−(x,y)‖γ , and, by Lemma 7, at any point all subgradients (x∗,y∗)
of the latter function satisfy ‖(x∗,y∗)‖γ ≤ α ′. By Lemma 4(ii), there exists a subgradient
(x∗,y∗) ∈ ∂Cψp(x,y) such that ‖(x∗,y∗)‖γ ≤ α ′ < α , which contradicts (3.129).

Let X and Y be Asplund. Choose an ε > 0 such that

ε < min
{

δ +µ−‖x− x̄‖,αµ−‖y− ȳ‖,α−α
′,‖y− ȳ‖/2,d(x,F−1

p (ȳ))/2
}
.

By Lemma 4(iii), there exist points x′ ∈ Bε(x),y′ ∈ Bε(y) with (x′,y′) ∈ gphFp, and a sub-
gradient (x∗,y∗) ∈ ∂ Fψp(x′,y′) such that

‖(x∗,y∗)‖γ < α
′+ ε < α. (3.131)

Besides, x′ ∈ Bδ+µ(x̄)\F−1
p (ȳ), ȳ 6= y′ ∈ Bαµ(ȳ) as

‖y− ȳ‖/2 < ‖y′− ȳ‖, d(x,F−1
p (ȳ))/2 < d(x′,F−1

p (ȳ)),

‖x′− x̄‖ ≤ ‖x′− x‖+‖x− x̄‖< δ +µ, ‖y′− ȳ‖ ≤ ‖y′− y‖+‖y− ȳ‖< αµ.

It follows from (3.131) that dγ (0,∂ψp(x′,y′))< α , which contradicts (3.129). �

Remark 52 Condition (3.129) with Fréchet subdifferentials is obviously weaker (hence,
more efficient) than its version with Clarke ones. However, it is only applicable in Asplund
spaces.

The key condition (3.129) in Proposition 36 involves subdifferentials of the function ψp.
Subgradients of this function belong to X∗×Y ∗ and have two component vectors x∗ and
y∗. In view of the representation (3.69) of the dual norm on X∗×Y ∗, the contributions of
the vectors x∗ and y∗ to the condition (3.129) are different. The next corollary exposes this
difference.

Corollary 81 If there exists an ε > 0 such that ‖x∗‖ ≥ α for all p ∈ P, x ∈ Bδ+µ(x̄) and
y ∈ Y satisfying (3.123), and all (x∗,y∗) ∈ ∂Cψp(x,y) with ‖y∗‖< ε; particularly if

liminf
F−1

p (ȳ)63x→x̄,F(p,x)3y→ȳ,y∗→0
p∈P,y6=ȳ,(x∗,y∗)∈∂Cψp(x,y)

‖x∗‖> α,

then F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
If X and Y are Asplund, then the above assertion is valid with ∂ F in place of ∂C.
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Proof Suppose F is not α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
Let ε > 0 and γ := ε/α . By Proposition 36, there exist p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y
satisfying (3.123), and a subgradient (x∗,y∗) ∈ ∂Cψp(x,y) ((x∗,y∗) ∈ ∂ Fψp(x,y) if X and Y
are Asplund) such that ‖(x∗,y∗)‖γ <α . In view of the representation of the dual norm (3.69),
this implies ‖x∗‖< α and ‖y∗‖< αγ = ε , a contradiction. �

The function ψp involved in the subdifferential sufficient conditions for the uniform
α−subregularity in Proposition 36, is itself a sum of two functions. We are now going
to apply the sum rules again to obtain sufficient conditions in terms of Clarke and Fréchet
normals to gphFp.

Theorem 30 The mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ

and µ if, for some γ > 0, and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈Y satisfying (3.123), one of the
following conditions is satisfied:

(i) with N := NC,

dγ((0,−y∗),NgphFp(x,y))≥ α (3.132)

for all y∗ ∈ Y ∗ satisfying

‖y∗‖= 1, 〈y∗,y− ȳ〉= ‖y− ȳ‖; (3.133)

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.132) holds
with N := NF for all y∗ ∈ Y ∗ satisfying

‖y∗‖= 1, 〈y∗,y− ȳ〉> τ‖y− ȳ‖. (3.134)

Proof Suppose F is not α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ .
Let γ > 0. In view of Proposition 36, there exist p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying
(3.123), and a subgradient (x̂∗, ŷ∗) ∈ ∂ψp(x,y) such that ‖(x̂∗, ŷ∗)‖γ < α , where either ∂ :=
∂C (if X and Y are general Banach spaces) or ∂ := ∂ F (if X and Y are Asplund). Recall
from (3.120) that ψp is a sum of two functions: the Lipschitz continuous convex function
v 7→ g(v) := ‖v− ȳ‖ and the indicator function of the closed set gphFp.

(i) By Lemma 4(ii), there exist y∗ ∈ ∂g(y) and (u∗,v∗) ∈ NC
gphFp

(x,y) such that (x̂∗, ŷ∗) =
(0,y∗)+(u∗,v∗). Thus,

dγ((0,−y∗),NC
gphFp

(x,y))≤ ‖(0,y∗)+(u∗,v∗)‖γ = ‖(x̂∗, ŷ∗)‖γ < α,

which contradicts (3.132). Since y 6= ȳ, by Lemma 7, y∗ satisfies conditions (3.133).

(ii) Let X and Y be Asplund, and τ ∈]0,1[. By Lemma 4(iii), for any ε > 0, there exist x1 ∈
Bε(x), y1,y2 ∈ Bε(y) with (x1,y1) ∈ gphFp, and y∗ ∈ ∂g(y2), (u∗,v∗) ∈ NF

gphFp
(x1,y1)

such that

‖(0,y∗)+(u∗,v∗)− (x̂∗, ŷ∗)‖γ < ε. (3.135)
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The number ε can be chosen small enough to ensure that x1 ∈ Bδ+µ(x̄)\F−1
p (ȳ), y1 ∈

Bαµ(ȳ), y2 6= ȳ, and

‖y1− ȳ‖ ≥ 1
2
‖y− ȳ‖, ‖y2− y1‖<

1− τ

4
‖y− ȳ‖, ‖(x̂∗, ŷ∗)‖γ + ε < α.

By Lemma 7, we have ‖y∗‖= 1 and 〈y∗,y2− ȳ〉= ‖y2− ȳ‖. Moreover,

‖y2− y1‖<
1− τ

4
‖y− ȳ‖ ≤ 1− τ

2
‖y1− ȳ‖,

and consequently,

〈y∗,y1− ȳ〉 ≥ 〈y∗,y2− ȳ〉−‖y2− y1‖= ‖y2− ȳ‖−‖y2− y1‖
≥ ‖y1− ȳ‖−2‖y2− y1‖> τ‖y1− ȳ‖.

Making use of (3.135), we obtain

dγ((0,−y∗),NF
gphFp

(x1,y1))≤ ‖(0,y∗)+(u∗,v∗)‖γ < ‖(x̂∗, ŷ∗)‖γ + ε < α.

This contradicts (3.132).

�

Remark 53 (i) Condition (3.132) with Fréchet normal cones is obviously weaker (hence,
more efficient) than its version with Clarke ones; cf. Remark 52. However, the As-
plund space sufficient condition of uniform α−subregularity in part (ii) of Theorem 30
is not necessarily weaker than its general Banach space version in part (i), as it replaces
the equality in (3.133) with a less restrictive inequality in (3.134), which involves an
additional parameter τ . Of course, τ can be chosen arbitrarily close to 1 making the
difference between the constraints (3.133) and (3.134) less significant. The weaker
than (3.133) conditions (3.134) employed in part (ii) of Theorem 30 are due to the
approximate subdifferential sum rule (Lemma 4(iii)) used in its proof.

(ii) The following alternative sufficient condition is established half way within the proof
of part (ii) of Theorem 30:

emphX and Y are Asplund, and, given any ε > 0, inequality (3.132) holds with N :=
NF for all v ∈ Bε(y) and all y∗ ∈ Y ∗ satisfying (3.133) with v in place of y.

It employs the stronger equality conditions (3.133) instead of (3.134), but involves an
unknown vector v (arbitrarily close to y). Conditions of this type are used by some
authors, but we prefer more explicit ones in Theorem 30(ii) and the statements derived
from it.

The qualitative sufficient conditions for uniform regularity follow immediately.

Corollary 82 The mapping F is subregular in x uniformly in p over P at (x̄, ȳ) if one of the
following conditions is satisfied:
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(i) sup
γ>0

liminf
F−1

p (ȳ)63x→x̄,F(p,x)3y→ȳ
p∈P,y6=ȳ,‖y∗‖=1,〈y∗,y−ȳ〉=‖y−ȳ‖

dγ((0,−y∗),NC
gphFp

(x,y))> 0;

(ii) X and Y are Asplund, and
sup

γ>0,τ∈]0,1[
liminf

F−1
p (ȳ)63x→x̄,F(p,x)3y→ȳ

p∈P,y6=ȳ,‖y∗‖=1,〈y∗,y−ȳ〉>τ‖y−ȳ‖

dγ((0,−y∗),NF
gphFp

(x,y))> 0.

The next example illustrates the sufficient conditions for subregularity in Corollary 82.

Example 6 Let P = X = Y := R, F(p,x) := {(p− x)2} for all p ∈ P and x ∈ X , and let
ȳ := 0. By (3.116), F−1

p (ȳ) = {p}. Thus, d(x,F−1
p (ȳ)) = |x− p| and d(ȳ,F(p,x)) = (x− p)2

for all p ∈ P and x ∈ X . Hence, for any α > 0 and p ∈ P, inequality (3.118) is violated when
x sufficiently close to x̄ := 0, i.e. the mapping F is not subregular in x uniformly in p over
P at (x̄, ȳ). Observe that the graph gphFp is closed for all p ∈ P, and, for any p ∈ P and
(x,y) ∈ gphFp,

(2(x− p),−1) ∈ NC
gphFp

(x,y) = NF
gphFp

(x,y).

Let p = 0, x 6= 0, y = x2, and y∗ ∈ R satisfy (3.133) or (3.134), hence, y∗ = 1, and, for any
γ > 0, dγ((0,−y∗),(2x,−1)) = 2|x| → 0 as x ↓ 0. Both inequalities in Corollary 82 are not
satisfied.

Theorem 30 yields sufficient conditions for uniform α−subregularity in terms of
coderivatives.

Corollary 83 The mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ

and µ if, for some η ∈]0,+∞], and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.123), one
of the following conditions is satisfied:

(i) with D∗ := D∗C, for all y∗ ∈ Y ∗ satisfying (3.133), it holds

d(0,D∗Fp(x,y)(Bη(y∗))≥ α; (3.136)

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.136) holds
with D∗ := D∗F for all y∗ ∈ Y ∗ satisfying (3.134).

Proof Given an η ∈]0,+∞], set γ := α−1η . In view of the representations (1.18)
of the coderivative and (3.69) of the dual norm, condition (3.132) means that ‖u∗‖+
γ−1‖v∗− y∗‖ ≥ α for all v∗ ∈ Y ∗ and u∗ ∈ D∗Fp(x,y)(v∗). The last inequality is obviously
satisfied if either ‖u∗‖ ≥ α or ‖v∗−y∗‖ ≥ η , or equivalently, if ‖u∗‖ ≥ α when v∗ ∈ Bη(y∗).
�

The coderivative sufficient condition (3.136) can be replaced by its ‘normalized’ (and a
little stronger!) version.
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Corollary 84 The mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ

and µ if, for some η ∈]0,1[, and all p ∈ P, x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.123), one of
the following conditions is satisfied:

(i) with D∗ := D∗C,

d(0,D∗Fp(x,y)
(

v∗

‖v∗‖

)
≥ α

1−η
(3.137)

for all y∗ ∈ Y ∗ satisfying (3.133) and v∗ ∈ Bη(y∗);

(ii) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.137) holds
with D∗ := D∗F for all y∗ ∈ Y ∗ satisfying (3.134) and v∗ ∈ Bη(y∗).

Proof Let η ∈]0,1[, p∈ P, x∈ Bδ+µ(x̄) and y∈Y satisfy (3.123), and y∗ ∈Y ∗ satisfy either
(3.133) or (3.134). We need to show that, if inequality (3.137) holds for all v∗ ∈ Bη(y∗),
then inequality (3.136) holds. First note that, in view of (3.133) or (3.134), ‖y∗‖ = 1. Let
v∗ ∈ Bη(y∗) and u∗ ∈ D∗Fp(x,y)(v∗). Then ‖v∗‖> 1−η ∈]0,+∞]. Thus, condition (3.137)
is well defined. Moreover, u∗/‖v∗‖ ∈ D∗Fp(x,y)(v∗/‖v∗‖) and, in view of (3.137), ‖u∗‖ ≥
α‖v∗‖/(1−η)> α , i.e. inequality (3.136) holds. �

The next qualitative assertion is an immediate consequence of Corollary 83.

Corollary 85 The mapping F is subregular in x uniformly in p over P at (x̄, ȳ) if one of the
following conditions is satisfied:

(i) lim
δ↓0

inf
p∈P,x∈Bδ (x̄)\F−1

p (ȳ), ȳ6=y∈F(p,x)∩Bδ (ȳ)
‖y∗‖=1,〈y∗,y−ȳ〉=‖y−ȳ‖

d(0,D∗CFp(x,y)(Bδ (y
∗))> 0;

(ii) X and Y are Asplund, and
lim

δ↓0,τ↑1
inf

p∈P,x∈Bδ (x̄)\F−1
p (ȳ), ȳ6=y∈F(p,x)∩Bδ (ȳ)

‖y∗‖=1,〈y∗,y−ȳ〉>τ‖y−ȳ‖

d(0,D∗FFp(x,y)(Bδ (y
∗))> 0.

Remark 54 (i) In the particular case when P is a neighborhood of a given point p̄ in
a metric space, Corollary 85 (taking into account Remark 53(ii) in some instances)
improves [145, Theorem 3.6], [184, Theorem 3.4], [146, Theorem 3.2], [107, The-
orem 3.5], [106, Theorem 3.1], [189, Corollary 2.2], [56, Theorem 1] (in the linear
setting), and [115, Theorem 4.1(e)].

(ii) Clarke normal cones in this section can be replaced by Ioffe’s G-normal cones [116].

Dual Necessary Conditions

In this subsection, X and Y are normed spaces, F : P× X ⇒ Y , x̄ ∈ X , ȳ ∈ Y , α > 0,
δ ∈]0,+∞], µ ∈]0,+∞], and we assume that gphFp is convex for all p ∈ P.

The next statement provides a necessary condition for uniform α−subregularity in terms
of subdifferentials of the function ψp defined by (3.120).

150



Proposition 37 If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ ,
then inequality (3.129) is satisfied with γ := α−1 for all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfy-
ing (3.123).

Proof Under the assumptions made, the function ψp is convex for all p ∈ P. Let γ := α−1,
and p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfy (3.123). For any (x∗,y∗) ∈ ∂ψp(x,y), we have

‖(x∗,y∗)‖γ = sup
(u,v)6=(0,0)

〈(x∗,y∗),(u,v)〉
‖(u,v)‖γ

= limsup
u→x,v→y
(u,v)6=(x,y)

−〈(x∗,y∗),(u,v)− (x,y)〉
‖(u,v)− (x,y)‖γ

≥ limsup
u→x,v→y
(u,v)6=(x,y)

ψp(x,y)−ψp(u,v)
‖(u,v)− (x,y)‖γ

= limsup
u→x,v→y

(u,v)∈gphFp,(u,v)6=(x,y)

‖y‖−‖v‖
‖(u,v)− (x,y)‖γ

.

By Corollary 80(i), we have ‖(x∗,y∗)‖γ ≥ α. Taking the infimum in the left-hand side of the
last inequality over (x∗,y∗) ∈ ∂ψp(x,y), we obtain inequality (3.129). �

Combining the above statement with Proposition 36, we obtain a complete subdifferential
characterization of uniform α−subregularity in the convex setting.

Corollary 86 Let X and Y be Banach, and gphFp be closed for all p ∈ P. The mapping F
is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ if and only if inequality
(3.129) holds with γ := α−1 for all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfying (3.123).

As a consequence, F is subregular in x uniformly in p over P at (x̄, ȳ) if and only if

sup
γ>0

liminf
x→x̄,y→ȳ

p∈P,x/∈F−1
p (ȳ), ȳ6=y∈F(p,x)

dγ (0,∂ψp(x,y))> 0.

The next corollary follows from Proposition 37 in view of the representation (3.69) of
the dual norm.

Corollary 87 If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ , then
‖x∗‖ ≥ α(1−‖y∗‖) for all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfying (3.123), and (x∗,y∗) ∈
∂ψp(x,y). As a consequence,

liminf
x→x̄, y→ȳ,y∗→0

p∈P,x/∈F−1
p (ȳ), ȳ6=y∈F(p,x),(x∗,y∗)∈∂ψp(x,y)

‖x∗‖ ≥ α.

The next statement gives a partial converse to Theorem 30.

Theorem 31 If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ , then for
all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satisfying (3.123), and y∗ ∈ Y ∗ satisfying (3.133), inequality
(3.132) is satisfied with γ := α−1.
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Proof Observe that ψp is the sum of the convex continuous function v 7→ g(v) := ‖v− ȳ‖
and the indicator function of the convex set gphFp. By Lemma 4(i), ∂ψp(x,y) = {0}×
∂g(y)+NgphFp(x,y). The assertion follows from Proposition 37 in view of Lemma 7(ii). �

Combining Theorems 30 and 31, we can formulate a necessary and sufficient characteri-
zation of uniform α−subregularity in the convex setting.

Corollary 88 Let X and Y be Banach, and gphFp be closed for all p ∈ P. The mapping F is
α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ if and only if for all p ∈ P,
x ∈ Bδ (x̄) and y ∈ Y satisfying (3.123), and y∗ ∈ Y ∗ satisfying (3.133), inequality (3.132) is
satisfied with γ := α−1.

As a consequence, F is subregular in x uniformly in p over P at (x̄, ȳ) if and only if

sup
γ>0

liminf
x→x̄, p∈P,y→ȳ,x/∈F−1

p (ȳ)
ȳ6=y∈F(p,x),‖y∗‖=1,〈y∗,y−ȳ〉=‖y−ȳ‖

dγ((0,−y∗),NgphFp(x,y))> 0. (3.138)

The next example illustrates the necessary condition in Theorem 31.

Example 7 Let P = X = Y := R, F(p,x) := {p− x} for all p ∈ P and x ∈ X , and let x̄ =

ȳ := 0. By (3.116), F−1
p (ȳ) = {p}. Thus, d(x,F−1

p (ȳ)) = d(ȳ,F(p,x)) = |x− p| for all p ∈ P
and x ∈ X . Hence, inequality (3.118) is satisfied for all p ∈ P, x ∈ X , and α ∈]0,1], i.e.
the mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) for any α ∈]0,1]. We
have gphFp = {(x,y) | y = p− x} is closed and convex for all p ∈ P, and NgphFp(x,y) =
{(t, t) | t ∈ R} for any (x,y) ∈ gphFp. Let y∗ ∈ R satisfy (3.133). Then y∗ = 1 if y > 0,
and y∗ = −1 if y < 0. It is easy to check that, given a γ > 0, in both cases the distance
dγ((0,−y∗),NgphFp(x,y)) equals 1 if γ ≤ 1, or γ−1 if γ > 1. Hence, condition (3.138) is
satisfied, confirming the uniform subregularity of F .

The next statement is a consequence of Theorem 31. It is in a sense a partial converse to
Corollary 83.

Corollary 89 If F is α−subregular in x uniformly in p over P at (x̄, ȳ) with δ and µ , then
d(0,D∗Fp(x,y)(Bη(y∗)) ≥ α(1−η) for any η ∈]0,1[, all p ∈ P, x ∈ Bδ (x̄) and y ∈ Y satis-
fying (3.123), and y∗ ∈ Y ∗ satisfying (3.133).

Proof In view of the representations (1.18) of the coderivative and (3.69) of the dual norm,
condition (3.132) with γ := α−1 means that ‖u∗‖+ α‖v∗− y∗‖ ≥ α for all v∗ ∈ Y ∗ and
u∗ ∈ D∗Fp(x,y)(v∗). Hence, it yields ‖u∗‖> α(1−η) if ‖v∗− y∗‖< η . �

Combining the above statement with Corollary 83, we obtain a complete coderivative
characterization of uniform α−subregularity in the convex setting. It improves [56, Theo-
rem 3] (in the linear case).

Corollary 90 Let X and Y be Banach, and gphFp be closed and convex for all p ∈ P. The
mapping F is α−subregular in x uniformly in p over P at (x̄, ȳ) if and only if

lim
δ↓0

inf
x∈Bδ (x̄)\F−1

p (ȳ), ȳ6=y∈F(p,x)∩Bδ (ȳ)
p∈P,‖y∗‖=1,〈y∗,y−ȳ〉=‖y−ȳ‖

d(0,D∗Fp(x,y)(Bδ (y
∗)))≥ α.
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3.3.4 Metric Subregularity, Metric Regularity, and Implicit Multifunc-
tions

In this section, we illustrate the necessary and sufficient conditions for uniform subregularity
established in the preceding sections when applied to several conventional properties of set-
valued mappings.

Metric Subregularity

The conventional regularity properties in Definition 17 are particular cases of the uniform
regularity properties in Definition 18 corresponding to P being a singleton, which practically
means that the set-valued mapping F does not involve a parameter.

The next three statements, which are immediate consequences of the corresponding
‘parametric’ ones in Sections 3.3.2 and 3.3.3, illustrate this observation for the case of sub-
regularity. Here X and Y are normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , α > 0, δ ∈]0,+∞]

and µ ∈]0,+∞].

Proposition 38 (i) Suppose gphF is convex. If F is α−subregular at (x̄, ȳ) with δ and
µ , then, with γ := α−1,

limsup
u→x,v→y,(u,v)∈gphF,(u,v)6=(x,y)

d(u,x̄)<δ+µ,d(v,ȳ)<αµ

‖y− ȳ‖−‖v− ȳ‖
‖(u− x,v− y)‖γ

≥ α (3.139)

for all x ∈ Bδ (x̄) and y ∈ Y satisfying

x /∈ F−1(ȳ), y ∈ F(x)∩Bαµ(ȳ). (3.140)

(ii) Suppose X and Y are Banach, and gphF is closed. If inequality (3.139) holds for some
γ > 0, and all x ∈ Bδ+µ(x̄) and y ∈ Y satisfying (3.140), then F is α−subregular at
(x̄, ȳ) with δ and µ .

Proof The statement is a consequence of Corollary 80. �

Proposition 39 (i) Suppose gphF is convex. If F is α−subregular at (x̄, ȳ) with δ and
µ , then

dγ((0,−y∗),NgphF(x,y))≥ α (3.141)

for γ := α−1, and all x ∈ Bδ (x̄) and y ∈ Y satisfying (3.140), and y∗ ∈ Y ∗ satisfying
(3.133).

(ii) Suppose X and Y are Banach, and gphF is closed. The mapping F is α−subregular
at (x̄, ȳ) with δ and µ if, for some γ > 0, and all x ∈ Bδ+µ(x̄) and y ∈ Y satisfying
(3.140), one of the following conditions is satisfied:
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(a) inequality (3.141) holds with N := NC for all y∗ ∈ Y ∗ satisfying (3.133);

(b) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.141)
holds with N := NF for all y∗ ∈ Y ∗ satisfying (3.134).

Proof The statement is a consequence of Theorems 30 and 31. �

Proposition 40 (i) Suppose gphF is convex. If F is α−subregular at (x̄, ȳ) with δ and
µ , then d(0,D∗F(x,y)(Bη(y∗))≥ α(1−η) for any η ∈]0,1[, all x ∈ Bδ (x̄) and y ∈ Y
satisfying (3.140), and y∗ ∈ Y ∗ satisfying (3.133).

(ii) Suppose X and Y are Banach, and gphF is closed. The mapping F is α−subregular at
(x̄, ȳ) with δ and µ if, for some η ∈]0,+∞], and all x ∈ Bδ+µ(x̄) and y ∈ Y satisfying
(3.140), one of the following conditions is satisfied:

(a) with D∗ := D∗C, for all y∗ ∈ Y ∗ satisfying (3.133), it holds

d(0,D∗F(x,y)(Bη(y∗))≥ α; (3.142)

(b) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.142)
holds with D∗ := D∗F for all y∗ ∈ Y ∗ satisfying (3.134).

Proof The statement is a consequence of Corollaries 83 and 89. �

Remark 55 (i) In Proposition 38(ii), it is sufficient to assume that X and Y are com-
plete metric spaces (with distances in place of norms in condition (3.139)), or even
that gphF is complete; cf. Remark 50(iii). In this setting, the sufficient condition in
Proposition 38(ii) can be viewed as a quantitative version of [131, Corollary 5.8(d)]
and [115, Theorem 2.4(a)].

(ii) Proposition 40 improves [154, Theorem 5.3]. In the linear setting, part (ii) of this
proposition improves [154, Theorem 3.3], [187, Theorem 6], [56, Theorem 8], [115,
Theorem 2.6], and the corresponding parts of [131, Corollary 5.8]. Proposition 40(ii)
with condition (a) recaptures [217, Theorem 3.2].

Metric Regularity

The conventional metric regularity is a particular case of the uniform regularity property
in Definition 18(i) corresponding to P being a singleton. At the same time, as it follows
from the observation in Remark 49(i), in the normed space setting it can be treated as a
particular case of the uniform subregularity property in Definition 18(ii) for the set-valued
mapping F̂(y,x) := F(x)− y, (y,x) ∈ Y ×X with y considered as a parameter. Obviously
(x̄, ȳ) ∈ gphF if and only if (ȳ, x̄,0) ∈ gph F̂ .

The next three statements, which are immediate consequences of the corresponding
‘parametric’ ones in Sections 3.3.2 and 3.3.3, illustrate the above observation. Here X and Y
are normed spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , α > 0, δ ∈]0,+∞] and µ ∈]0,+∞].
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Proposition 41 (i) Suppose gphF is convex. If F is α−regular at (x̄, ȳ) with δ and µ ,
then

limsup
u→x,v→z,(u,v)∈gphF,(u,v)6=(x,z)

d(u,x̄)<δ+µ,d(v,y)<αµ

‖z− y‖−‖v− y‖
‖(u− x,v− z)‖γ

≥ α (3.143)

for γ := α−1, and all x ∈ Bδ (x̄), y ∈ Bδ (ȳ) and z ∈ Y satisfying

x /∈ F−1(y), z ∈ F(x)∩Bαµ(y). (3.144)

(ii) Suppose X and Y are Banach spaces, and gphF is closed. The mapping F is α−regular
at (x̄, ȳ) with δ and µ if inequality (3.143) holds with some γ > 0 for all x ∈ Bδ+µ(x̄),
y ∈ Bδ (ȳ) and z ∈ Y satisfying (3.144).

Proof The statement is a consequence of Corollary 80. �

Proposition 42 (i) Suppose gphF is convex. If F is α−regular at (x̄, ȳ) with δ and µ ,
then

dγ((0,−y∗),NgphF(x,z))≥ α (3.145)

for γ := α−1, and all x ∈ Bδ (x̄), y ∈ Bδ (ȳ) and z ∈ Y satisfying (3.144), and y∗ ∈ Y ∗

satisfying

‖y∗‖= 1, 〈y∗,z− y〉= ‖z− y‖. (3.146)

(ii) Suppose X and Y are Banach, and gphF is closed. The mapping F is α−regular
at (x̄, ȳ) with δ and µ if, for some γ > 0 and all x ∈ Bδ+µ(x̄), y ∈ Bδ (ȳ) and z ∈ Y
satisfying (3.144), one of the following conditions holds:

(a) inequality (3.145) holds with N := NC for all y∗ ∈ Y ∗ satisfying (3.146);

(b) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.145)
holds with N := NF for all y∗ ∈ Y ∗ satisfying

‖y∗‖= 1, 〈y∗,z− y〉> τ‖z− y‖. (3.147)

Proof The statement is a consequence of Theorems 30 and 31. �

Proposition 43 (i) Suppose gphF is convex. If F is α−regular at (x̄, ȳ) with δ and µ ,
then d(0,D∗F(x,z)(Bη(y∗))≥ α(1−η) for any η ∈]0,1[, all x∈ Bδ (x̄), y∈ Bδ (ȳ) and
z ∈ Y satisfying (3.144), and all y∗ ∈ Y ∗ satisfying (3.146).

(ii) Suppose X and Y are Banach, and gphF is closed. The mapping F is α−regular at
(x̄, ȳ) with δ and µ if, for some η ∈]0,+∞] and all x ∈ Bδ+µ(x̄), y ∈ Bδ (ȳ) and z ∈ Y
satisfying (3.144), one of the following conditions holds:
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(a) with D∗ := D∗C, for all y∗ ∈ Y ∗ satisfying (3.146), it holds

d(0,D∗F(x,z)(Bη(y∗))≥ α; (3.148)

(b) X and Y are Asplund, and there exists a τ ∈]0,1[ such that inequality (3.148)
holds with D∗ := D∗F for all y∗ ∈ Y ∗ satisfying (3.147).

Proof The statement is a consequence of Corollaries 83 and 89. �

Remark 56 (i) In the normed space setting, the sufficient condition in Proposition 41(ii)
can be viewed as a quantitative version of [112, Theorem 1] and [115, Theorem 2.4(a)].

(ii) Proposition 43(ii) enhances [53, Theorem 3.7]. Part (a) of Proposition 43(ii) improves
[106, Corollary 3.1] and [53, Theorem 3.5] (in the linear case), while part (b) improves
(in the linear case) [53, Theorem 3.1] and [56, Theorem 7].

Implicit Multifunctions

Now we get back to the implicit multifunction (3.116) and consider its particular case cor-
responding to the parametric generalized equation ȳ ∈ F(p,x) (with fixed left-hand side),
i.e.

G(p) := {x ∈ X | ȳ ∈ F(p,x)}, p ∈ P, (3.149)

where F : P×X ⇒ Y , and P, X and Y are metric spaces. Stability properties of implicit
multifunctions, i.e. solution sets of parametric generalized equations, are of great importance
for many applications and have been the subject of numerous publications; cf., e.g., [14, 19,
34, 51, 53, 56, 57, 81, 98, 106, 107, 115, 116, 124, 145, 146, 184, 187, 189, 198, 200, 212]. Here,
for illustration, we focus on the most well known perturbation stability property of set-valued
mappings called Aubin property; cf. [81, 172].

Definition 20 A mapping G : P ⇒ X between metric spaces has the Aubin property at
(p̄, x̄) ∈ gphG with rate l > 0 if there exist η ∈]0,+∞], δ ∈]0,+∞] and µ ∈]0,+∞] such
that

d(x,G(p))≤ l d(p, p′)

for all p, p′ ∈ Bη(p̄) with d(p, p′)< µ , and x ∈ G(p′)∩Bδ (x̄).

Similar to Definitions 17, 18 and 19, the inequality d(p, p′) < µ is not essential in the
above definition and can be dropped together with the constant µ . We keep them for consis-
tency with the definitions and characterizations in the preceding sections. We also establish
connections between the constant µ and the corresponding constants in the other definitions.
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Given a point (p̄, x̄, ȳ) ∈ gphF and a number α > 0, the uniform α−subregularity prop-
erty of F at (p̄, x̄, ȳ) in Definition 19(ii) means that there exist η ∈]0,+∞], δ ∈]0,+∞] and
µ ∈]0,+∞] such that

αd(x,G(p))≤ d(ȳ,F(p,x)) (3.150)

for all p ∈ Bη(p̄) and x ∈ Bδ (x̄) with d(ȳ,F(p,x))< αµ . Several primal and dual sufficient
and necessary conditions for this property have been formulated in the preceding sections.

Inequality (3.150) provides an estimate for the distance from x to the value of the implicit
multifunction (3.149) at p in terms of the residual of the parametric generalized equation.
However, this estimate does not say much about the behaviour of the implicit multifunction.
An additional assumption on the mapping F is needed, which would allow one to get rid of
F in the right-hand side of the inequality (3.150). This additional assumption is given in the
next definition, which is a modification of the second part of [115, Definition 3.1], where we
borrow the terminology from. A similar property was considered in [124], where the authors
used the name Lipschitz lower semicontinuity.

Definition 21 Let l > 0. The mapping F is said to l−recede in p uniformly in x at (p̄, x̄, ȳ)
if there exist η ∈]0,+∞], δ ∈]0,+∞] and µ ∈]0,+∞] such that

d(ȳ,F(p,x))≤ ld(p, p′) (3.151)

for all x ∈ Bδ (x̄) and p, p′ ∈ Bη(p̄) with d(p, p′)< µ and ȳ ∈ F(p′,x).

The next statement is a modification of [115, Theorem 3.2].

Proposition 44 Let α > 0 and l > 0. Suppose that F

• is α−subregular in x uniformly in p at (p̄, x̄, ȳ) with some η ∈]0,+∞], δ ∈]0,+∞] and
µ ∈]0,+∞];

• l−recedes in p uniformly in x at (p̄, x̄, ȳ) with η , δ and αµ/l.

Then the mapping G given by (3.149) has the Aubin property at (p̄, x̄) with rate l/α with η ,
δ and αµ/l.

Proof Let p, p′ ∈ Bη(p̄) with d(p, p′) < αµ/l, and x ∈ G(p′) ∩ Bδ (x̄). By (3.149),
ȳ ∈ F(p′,x). By (3.151), d(ȳ,F(p,x)) < αµ . Using successively (3.150) and (3.151), we
obtain

d(x,G(p))≤ 1
α

d(ȳ,F(p,x))≤ l
α

d(p, p′).

�

Combining Proposition 44 with the sufficient conditions for uniform subregularity for-
mulated in the preceding sections, we can immediately obtain various sufficient conditions
for the Aubin property of the implicit multifunction (3.149). The next proposition collects
three sufficient conditions arising from Corollary 80(ii), Theorem 30 and Corollary 83, re-
spectively.
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Proposition 45 Let P be a metric space, X and Y be complete metric spaces, F : P×X ⇒Y ,
(p̄, x̄, ȳ) ∈ gphF , G : P ⇒ X be given by (3.149). Suppose that gphFp is closed for all
p ∈ Bη(p̄). The mapping G has the Aubin property at (p̄, x̄) with rate l > 0 with η , δ

and µ if, for some l′ > 0, F l′−recedes in p uniformly in x at (p̄, x̄, ȳ) with η , δ and µ , and
one of the following conditions holds true:

(i) there exists a γ > 0 such that

limsup
u→x,v→y,(u,v)∈gphFp,(u,v)6=(x,y)

d(u,x̄)<lδ+µ,d(v,ȳ)<l′µ

d(y, ȳ)−d(v, ȳ)
dγ((u,v),(x,y))

≥ l′

l

for all p, x and y satisfying

p ∈ Bη(p̄), x ∈ Bδ+µ(x̄)\F−1
p (ȳ), y ∈ F(p,x)∩Bl′µ(ȳ); (3.152)

(ii) X and Y are Banach, and there exists a γ > 0 such that, with N := NC,

dγ((0,−y∗),NgphFp(x,y))≥
l′

l
(3.153)

for all p, x and y satisfying (3.152), and all y∗ ∈ Y ∗ satisfying (3.133);

(iii) X and Y are Asplund, and there exist a γ > 0 and a τ ∈]0,1[ such that condition (3.153)
is satisfied with N := NF for all p, x and y satisfying (3.152), and y∗ ∈ Y ∗ satisfy-
ing (3.134);

(iv) X and Y are Banach, and

d(0,D∗Fp(x,y)(Bη(y∗))≥
l′

l
(3.154)

with D∗ := D∗C for all p, x and y satisfying (3.152), and y∗ ∈ Y ∗ satisfying (3.133);

(v) X and Y are Asplund, and there exists a τ ∈]0,1[ such that condition (3.154) is satisfied
with D∗ := D∗F for all p, x and y satisfying (3.152), and y∗ ∈ Y ∗ satisfying (3.134).

Remark 57 Condition (i) in Proposition 45 can be seen as a quantitative version of [115,
Theorem 3.9], while conditions (iv) and (v) improve [115, Theorem 4.1] and [116, Theo-
rem 7.26]. Conditions (ii) and (iii) are new. Note that these two conditions are weaker than
(iv) and (v), respectively.
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Chapter 4

ERROR BOUNDS REVISITED

The content of the chapter is based on the preprint [66].

4.1 Introduction

Necessary and especially sufficient conditions for error bounds of (extended) real-valued
functions have been a subject of intense research for more than half a century due to their
numerous applications in optimization and variational analysis, particularly in convergence
analysis of iterative algorithms, penalty functions, optimality conditions, weak sharp min-
ima, stability and well-posedness of solutions, (sub)regularity and calmness of set-valued
mappings, and subdifferential calculus; see, e.g., the surveys by Jong-Shi Pang [193] and
Dominique Azé [12], the recent book by Alexander Ioffe [116], and the most recent pa-
pers [18, 131, 133, 137, 155, 156, 211].

A huge number of sufficient and necessary conditions for error bounds have been ob-
tained in the linear [12, 16, 19, 54, 55, 92, 93, 121, 131, 137, 156, 171, 179, 184, 209, 210], as
well as more subtle nonlinear (mostly Hölder) [17, 18, 48, 64, 130, 133, 137, 155, 178, 185,
186, 209, 211, 215] settings.

The next definition introduces error bounds in the nonlinear setting, a generalization of
the property defined in Definition 4. The nonlinearity is determined by a function ϕ : R+→
R+ satisfying ϕ(0) = 0 and ϕ(t)> 0 if t > 0. The family of all such functions is denoted by
C . We denote by C 1 the subfamily of functions from C which satisfy limt→+∞ ϕ(t) = +∞,
and are continuously differentiable on ]0,+∞[ with ϕ ′(t) > 0 for all t > 0. Obviously, if
ϕ ∈ C 1, then ϕ−1 ∈ C 1. Observe that, for any α > 0 and q > 0, the function t 7→ αtq on R+

belongs to C 1.

Definition 22 Suppose X is a metric space, f : X → R∞, and ϕ ∈ C . The function f admits
a ϕ−error bound at x̄ ∈ X if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

d(x, [ f ≤ 0])≤ ϕ( f (x)) (4.1)

for all x ∈ Bδ (x̄)∩ [0 < f < µ], and either x̄ ∈ [ f ≤ 0] or δ =+∞.
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Under the conditions of Definition 22, we will often say that f admits a ϕ−error bound
at x̄ with δ and µ . When δ <+∞, we say that f admits a local ϕ−error bound at x̄ (with δ

and µ). When δ =+∞ (hence, Bδ (x̄) = X), we say that f admits a global ϕ−error bound.

Remark 58 (i) The τ−error bound property in Definition 4 is a particular case of the
ϕ−error bound property, corresponding to ϕ being the linear function t 7→ τ−1t.

(ii) Any function ϕ ∈ C can be extended to the whole R by setting ϕ(t) = 0 for all t < 0.
Then one obviously has [ f ≤ 0] = [ϕ ◦ f ≤ 0], and the seemingly more general ϕ−error
bound property in Definition 22 becomes the conventional 1−error bound property for
the composition function ϕ ◦ f .

(iii) The requirement limt→+∞ ϕ(t) = +∞ in the definition of the family C 1 is technical. It
is only needed to ensure that ϕ−1 is defined on the whole R+. Both conditions can be
weakened.

In all assertions in the current chapter involving Fréchet subdifferentials it is sufficient
to assume functions from C 1 to be (not necessarily continuously) differentiable. Con-
tinuous differentiability is only needed for assertions involving Clarke subdifferentials.

(iv) It is not unusual to consider nonlinear error bounds with inequality (4.1) in Defini-
tion 22 replaced with the following one:

ψ(d(x, [ f ≤ 0]))≤ f (x), (4.2)

where ψ ∈ C . The models (4.1) and (4.2) are obviously equivalent with ψ = ϕ−1 as
long as one of the functions ψ or ϕ (hence, also the other one) is strictly increasing,
which is the case, in particular, when ϕ,ψ ∈ C 1.

Similar to the linear case, it makes sense to look for a smaller function ϕ ∈ C satisfying
inequality (4.1) (for the appropriate set of points x ∈ X). It is not easy to order functions on
the whole set C . It is more practical to consider a subset of positive multiples of a given
function ϕ ∈ C . Extending definition (1.13), we define the (local) ϕ−error bound modulus
of f at x̄ as

Er ϕ f (x̄) := liminf
x→x̄, f (x)>0

ϕ( f (x))
d(x, [ f ≤ 0])

. (4.3)

It is easy to see that this is the reciprocal of the exact lower bound of all α > 0 such that f
admits an (αϕ)−error bound at x̄. When ϕ(t) = tq for some q > 0 and all t > 0, definition
(4.3) coincides with that of the modulus of q−order error bounds [137]. In particular, with
q = 1 it reduces to (1.13).

The main aim of this chapter is not to add some new sufficient or necessary conditions
for error bounds to the large volume of existing ones (although some conditions in the sub-
sequent sections are indeed new even in the linear setting), but to propose a comprehensive
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unifying general (i.e. not assuming the function f to have any particular structure) view on
the theory of error bounds (linear and nonlinear, local and global) and clarify the relation-
ships between the existing conditions including their hierarchy. We expose the roles of the
assumptions involved in the error bound assertions, in particular, on the underlying space:
general metric, normed, Banach or Asplund. Employing special collections of slope opera-
tors defined below, we introduce a succinct form of sufficient error bound conditions, which
allows one to combine in a single statement several different assertions: nonlocal and local
primal space conditions in complete metric space, and subdifferential conditions in Banach
and Asplund spaces.

The hot topics of error bounds for special families of functions and error bounds under
uncertainty (see, e.g., [54, 55, 155, 156]) are outside the scope of the current chapter.

The core of the chapter consists of three theorems treating linear (Theorem 32), nonlin-
ear (Theorem 33) and ‘alternative’ nonlinear (Theorem 34) error bound conditions that seem
to cover all existing general error bound results. We show that the ‘nonlinear’ Theorem 33
is a straightforward consequence of the ‘linear’ Theorem 32, while the ‘alternative nonlin-
ear’ Theorem 34 is a straightforward consequence of the conventional Theorem 33. In its
turn, the original Theorem 32 is a consequence of a preliminary statement – Proposition 46
– treating the case when x in (1.12) is fixed, while encapsulating all the main arguments used
in the general statement. Following Ioffe [112, Basic lemma], separate preliminary ‘fixed x’
type statements have been formulated by many authors; cf. [116,137,184–186,210]. Propo-
sition 46 seems to be the most comprehensive one.

All the statements have the same structure, each combining several assertions that are
mostly well known and are often formulated (and proved) as separate theorems:

(i) sufficient error bound conditions for a lower semicontinuous function on a complete
metric space:

(a) nonlocal primal space conditions;

(b) infinitesimal primal space conditions in terms of slopes;

(c) in the setting of a Banach space, dual space conditions in terms of Clarke subdif-
ferentials;

(d) in the setting of an Asplund space, dual space conditions in terms of Fréchet
subdifferentials;

(ii) nonlocal primal space necessary error bound conditions for a (not necessarily lower
semicontinuous) function on a metric space (except Theorem 34);

(iii) dual space necessary error bound conditions for a convex function on a normed space
in terms of conventional convex subdifferentials.

This chapter seems to be the first attempt to combine the above assertions in a single
statement. We believe that it not only makes the presentation shorter, but also clarifies the
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overall picture: it exposes the relationships between the assertions and the hierarchy of the
sufficient conditions in part (i). Most of the assertions in Theorem 32 and to some extent also
in Theorems 33 and 34 have been proved multiple times by many authors, often with long
multi-page ‘from scratch’ proofs, and ‘new’ proofs keep coming. We think that it is time to
make a pause and summarize the main ideas behind the assertions.

In the case of the key ‘fixed x’ type Proposition 46 characterizing linear error bounds, the
implication (b)⇒ (a) in part (i) of the above list as well as the necessary conditions in parts
(ii) and (iii) follow immediately from the definitions. They are included for the completeness
of the picture. The main assertions are the sufficiency of condition (a), and implications (c)
⇒ (b) and (d)⇒ (b). They employ the following fundamental tools of variational analysis:

• Ekeland variational principle (sufficiency of condition (a));

• sum rules for respective subdifferentials (implications (c)⇒ (b) and (d)⇒ (b)).

The seemingly counter-intuitive fact that sufficient conditions for nonlinear error bounds
can be deduced from those for the corresponding linear ones was demonstrated by Corvellec
et al. using, first, the ‘change-of-metric principle’ [17,64], and then the ‘change-of-function’
approach [18] (see also [137, 185]). Our presentation here largely follows the latter one. We
emphasise that throughout the chapter the word ‘nonlinear’ is used in the conventional sense:
‘not necessarily linear’.

In the general nonlinear setting, conventional sufficient local error bound conditions, be-
sides slopes and subdifferentials, naturally involve variable coefficients ϕ ′( f (u)) computed
at appropriate points u ∈ [ f > 0]. Several publications have appeared recently proving alter-
native nonlinear sufficient conditions with coefficients, which involve ϕ ′ depending not on
values of the function f but on distance d(u, [ f ≤ 0]); cf. [48,64,137,211,215]. Such results
normally assume certain monotonicity of ϕ ′. We show in Theorem 34 that the alternative
sufficient conditions are consequences of the conventional ones. Observe that when ϕ is
linear (the conventional linear case), the coefficients are constant, and there is no difference
between ‘conventional’ and ‘alternative’ conditions.

4.2 Conventional Linear Error Bound Conditions

The next preliminary statement treats the case when x in the definition of linear error bounds
is fixed. It contains all the main ingredients used in the general statement (Theorem 32), the
latter being an easy consequence of the first. The nonlinear error bound statements in the
subsequent sections are also direct or indirect consequences of the next proposition.

Proposition 46 Suppose X is a metric space, f : X → R∞, x ∈ [ f > 0], and τ > 0.

(i) Let X be complete, f be lower semicontinuous, and α ∈]0,1]. The error bound in-
equality (1.12) holds, provided that one of the following conditions is satisfied:
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(a) |∇̆ f | ∈ |D f |† and α|∇̆ f |(u)≥ τ for all u ∈ X satisfying

f (u)≤ f (x), (4.4)

d(u,x)< αd(x, [ f ≤ 0]), (4.5)

α f (u)< τd(u, [ f ≤ 0]), (4.6)

f (u)< τd(x, [ f ≤ 0]); (4.7)

(b) X is Asplund and there exists a µ > f (x) such that α|∂ F f |(u) ≥ τ for all u ∈ X
satisfying f (u)< µ , and conditions (4.5)–(4.7).

(ii) If the error bound inequality (1.12) holds, then |∇ f |�(x)≥ τ .

(iii) Let X be a normed space, and f be convex. If the error bound inequality (1.12) holds,
then |∂ f |(x)≥ τ .

All but one of the arguments in the short proof below have been used many times in
numerous proofs of this type of assertions.

Proof

(i) Suppose that the error bound inequality (1.12) does not hold, i.e.

f (x)< τd(x, [ f ≤ 0]). (4.8)

Choose a τ ′ ∈]0,τ[ such that f (x)< τ ′d(x, [ f ≤ 0]). By the Ekeland variational princi-
ple applied to the lower semicontinuous function f+ := max{ f ,0}, there exists a point
u ∈ X satisfying (4.4) and (4.5), and such that

f+(u)≤ f+(u′)+α
−1

τ
′d(u′,u) for all u′ ∈ X . (4.9)

We show that u satisfies also (4.6) and (4.7), while α|∇ f |�(u) < τ . By (4.5), u /∈
[ f ≤ 0]. Hence, f+(u) = f (u), and it follows from (4.9) that α|∇ f |�(u)≤ τ ′ < τ , and
α f (u)≤ τ ′d(u′,u) for all u′ ∈ [ f ≤ 0]. The last inequality yields (4.6), while (4.8) and
(4.4) imply (4.7). This proves the sufficiency of condition (a) with |∇̆ f |= |∇ f |�. The
sufficiency of this condition with the other components of |D f |◦ and the implication
(b)⇒ (a) are consequences of Lemma 2(ii), (v) and (vi).

(ii) is an immediate consequence of the definition of the nonlocal slope.

(iii) follows from (ii) thanks to Lemma 2(iv).

�

Remark 59 (i) In view of the definition of |D f |†, condition (a) in Proposition 46(i) com-
bines three separate primal and dual sufficient error bound conditions:
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(a1) α|∇ f |�(u)≥ τ for all u ∈ X satisfying conditions (4.4)–(4.7);

(a2) α|∇ f |(u)≥ τ for all u ∈ X satisfying conditions (4.4)–(4.7);

(a3) X is Banach and α|∂C f |(u)≥ τ for all u ∈ X satisfying conditions (4.4)–(4.7).

Moreover, thanks to parts (ii), (v) and (vi) of Lemma 2, we have (a3)⇒ (a2)⇒ (a1)
and (b)⇒ (a2). Thus, condition (a) in Proposition 46(i) can be replaced equivalently
with the simpler condition (a1), the weakest of the three sufficient conditions above.

Conditions (a1), (a2), (a3) and (b) represent four types of sufficient error bound con-
ditions frequently appearing in the literature, with each of them having its own area of
applicability. Such conditions are often proved independently as separate assertions.
Proposition 46(i) seems to be the first attempt to combine them in a single statement.

With obvious minor adjustments, this observation applies to all assertions in this chap-
ter containing multi-component sets of slope operators |D f |◦, |D f |† or |D f |.

(ii) The core of Proposition 46(i) is made of the sufficiency of condition (a1), which is a
consequence of the Ekeland variational principle, and implications (a3) ⇒ (a2) and
(b)⇒ (a2), which follow from the sum rules for respective subdifferentials.

(iii) The parameter α in Proposition 46(i) arises naturally from the application of the Eke-
land variational principle. In most cases this type of assertions are formulated with
α = 1. Taking a smaller α , strengthens the slope inequalities in the sufficient con-
ditions at the expense of reducing the set of points satisfying inequality (4.5). This
‘trade-off’ parameter has been used in several publications [137, 211, 215, 219].

(iv) Restrictions (4.4)–(4.7) on the choice of u∈X and inequality f (u)< µ in condition (b)
in Proposition 46(i) also arise naturally from the application of the Ekeland variational
principle. Weakening or dropping any/all of these restrictions produces new (stronger!)
sufficient conditions widely used in the literature. This can be particularly relevant in
the case of restrictions (4.5)–(4.7) involving distances to the unknown set [ f ≤ 0]. Note
that, if restriction (4.5) is dropped, it makes sense checking the resulting sufficient
condition with α = 1. If a point x̄ ∈ [ f ≤ 0] is known, restrictions (4.5), (4.6) or (4.7)
can be replaced, respectively, with the weaker inequalities:

d(u,x)< αd(x, x̄), α f (u)< τd(u, x̄) or f (u)< τd(x, x̄).

(v) This seems to be the first time that inequality (4.7) appears as a part of sufficient linear
error bound conditions. It is a bit surprising since its nonlinear analogues have been
exploited in the literature; see, e.g., [215]. We demonstrate in the next theorem that
this inequality can be meaningful in the linear setting too, thus, paving the way to the
subsequent nonlinear extensions.
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(vi) Since ∂ F f (x) ⊂ ∂C f (x), the subdifferential slope inequality in condition (a3) obvi-
ously implies the one in condition (b). However, the implication (a3)⇒ (b) is not true
in general because the restriction f (u) < µ in (b) is weaker than the corresponding
inequality (4.4) in (a). The number µ > f (x) in condition (b) can be chosen arbitrar-
ily close to f (x), but cannot be replaced with f (x) because of the ‘fuzzy’ inequality
in Lemma 2(vi), which, in turn, is a consequence of the fuzzy sum rule for Fréchet
subdifferentials in Lemma 4(iii).

The general error bound statement in the next theorem is a straightforward consequence
of Proposition 46.

Theorem 32 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , τ > 0, δ ∈]0,+∞] and µ ∈
]0,+∞].

(i) Let X be complete, f be lower semicontinuous, α ∈]0,1], and either x̄ ∈ [ f ≤ 0] or
δ =+∞. Let |∇̆ f | ∈ |D f |. The function f admits a τ−error bound at x̄ with δ ′ := δ

1+α

and µ , provided that α|∇̆ f |(u)≥ τ for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying

max{α,1−α} f (u)< τd(u, [ f ≤ 0]). (4.10)

(ii) If f admits a τ−error bound at x̄ with δ and µ , then |∇ f |�(u)≥ τ for all u ∈ Bδ (x̄)∩
[0 < f < µ].

(iii) Let X be a normed space, and f be convex. If f admits a τ−error bound at x̄ with δ

and µ , then |∂ f |(u)≥ τ for all u ∈ Bδ (x̄)∩ [0 < f < µ].

Proof To prove assertion (i), it suffices to check that, if x ∈ Bδ ′(x̄)∩ [0 < f < µ] and
u ∈ X satisfies conditions (4.5)–(4.7) and f (u) < µ (in particular if it satisfies (4.4)), then
u ∈ Bδ (x̄)∩ [0 < f < µ], and it satisfies conditions (4.10). Indeed, we have u ∈ [ f < µ]. In
view of (4.5), u∈ [ f > 0] and d(u,x)< αd(x, x̄). The last inequality together with x ∈ Bδ ′(x̄)
yield u ∈ Bδ (x̄). Condition (4.5) obviously implies d(u, [ f ≤ 0]) > (1−α)d(x, [ f ≤ 0]),
and it follows from (4.7) that (1−α) f (u) < τd(u, [ f ≤ 0]). Together with (4.6), this gives
(4.10). Assertions (ii) and (iii) follow immediately from the corresponding assertions in
Proposition 46. �

Remark 60 (i) In view of the definition of |D f |, Theorem 32(i) combines four separate
primal and dual sufficient error bound conditions corresponding to |∇̆ f | equal to |∇ f |�,
|∇ f |, |∂C f | or |∂ F f | (in appropriate spaces).

(ii) The parameter α in Theorem 32(i) determines a trade-off between the main inequality
α|∇̆ f |(u)≥ τ (and also inequality (4.10)) and the radius δ ′ of the neighbourhood of x̄
in which the error bound estimate holds; cf. Remark 59(iii). In the conventional case
α = 1, we have δ ′ = δ/2 as it has been observed in numerous publications.
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(iii) Weakening or dropping any of the restrictions on u produces new (stronger!) suffi-
cient conditions; cf. Remark 59(iv). This can be particularly relevant in the case of
inequality (4.10) involving the distance to the unknown set [ f ≤ 0]. If x̄ ∈ [ f ≤ 0], it is
common to replace this distance with d(x, x̄).

(iv) Sufficient error bound conditions of the type in Theorem 32(i) with the weaker in-
equality α f (u) < τd(u, [ f ≤ 0]) in place of (4.10) can be found in the literature (cf.,
e.g., [137, Theorem 3.4]). The fact that this inequality can be strengthened by re-
placing α with max{α,1−α} seems to be observed for the first time here. It is a
consequence of condition (4.7) in Proposition 46.

(v) Under the conditions of part (iii) of Theorem 32, one can easily show that, if for all
x ∈ Bδ (x̄)∩ [0 < f < µ] condition (1.12) holds as equality, then |∂ f |(x) = τ for all
x ∈ Bδ (x̄)∩ [0 < f < µ].

The local τ−error bound conditions are collected in the next three corollaries.

Corollary 91 Suppose X is a complete metric space, f : X → R∞ is lower semicontinuous,
and τ > 0. Let |∇̆ f | ∈ |D f |. The function f admits a local τ−error bound at x̄ ∈ [ f ≤
0], provided that |∇̆ f |(x) ≥ τ for all x ∈ [ f > 0] near x̄ with f (x) near 0. Moreover, if
|∇̆ f |= |∇ f |�, then the above condition is also necessary.

Corollary 92 Suppose X is a Banach space, f : X → R∞ is convex lower semicontinuous,
and τ > 0. Let |∇̆ f | ∈ |D f |. The function f admits a local τ−error bound at x̄ ∈ [ f ≤ 0] if
and only if |∇̆ f |(x)≥ τ for all x ∈ [ f > 0] near x̄.

Corollary 93 Suppose X is a complete metric space, f : X → R∞ is lower semicontinuous,
and x̄ ∈ [ f ≤ 0]. Then

Er f (x̄) = liminf
x→x̄, f (x)↓0

|∇ f |�(x)≥ liminf
x→x̄, f (x)↓0

|∇ f |(x).

If X is Banach (Asplund), then |∇ f | in the above inequality can be replaced with |∂C f |
(|∂ F f |). If X is Banach and f is convex, then

Er f (x̄) = liminf
x→x̄, f (x)>0

|∂ f |(x).

Remark 61 The limits

liminf
x→x̄, f (x)↓0

|∇ f |�(x), liminf
x→x̄, f (x)↓0

|∇ f |(x) and liminf
x→x̄, f (x)↓0

|∂ f |(x) (4.11)

are referred to in [92,93,131] as, respectively, the strict outer, uniform strict outer and strict
outer subdifferential slopes of f at x̄; cf. limiting slopes [112, 116].
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The error bound inequalities (1.12), (4.1) and (4.2) correspond to the sublevel set [ f ≤ 0].
Definitions 4 and 22 and the corresponding error bound conditions can be easily extended
to the case of an arbitrary sublevel set [ f ≤ c] where c ∈ R. It suffices to replace f in
the definitions and statements with f − c (with the corresponding small adjustment in the
definition of the nonlocal slope).

The nonlocal slope |∇ f |�(x) in Proposition 46(ii) cannot in general be replaced with the
local one unless f is convex. As observed in [16, proof of Proposition 2.1], this can be done
if instead of the fixed error bound inequality (1.12) one considers a family of perturbed ones.

Proposition 47 Suppose X is a metric space, f : X → R∞, x ∈ [ f > 0], and τ > 0. If

τd(x, [ f ≤ c])≤ f (x)− c (4.12)

for all sufficiently large c < f (x), then |∇ f |(x)≥ τ .

Theorem 32 and Proposition 47 yield the following statement for ‘perturbed’ error
bounds extending [16, Theorem 2.1], [64, Theorem 2.3] and [18, Theorem 3.2].

Proposition 48 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , τ > 0, δ ∈]0,+∞] and
µ ∈]0,+∞].

(i) Let X be complete, f be lower semicontinuous, α ∈]0,1], and either x̄ ∈ [ f ≤ 0] or
δ = +∞. Let |∇̆ f | ∈ |D f |◦. The perturbed error bound inequality (4.12) holds for
all c ∈ [0,µ[ and x ∈ B δ

1+α

(x̄)∩ [c < f < µ] provided that α|∇̆ f |(x) ≥ τ for all x ∈
Bδ (x̄)∩ [0 < f < µ].

(ii) If the perturbed error bound inequality (4.12) holds for all c ∈ [0,µ[ and x ∈ Bδ (x̄)∩
[c < f < µ], then |∇ f |(x)≥ τ for all x ∈ Bδ (x̄)∩ [0 < f < µ].

Remark 62 (i) Proposition 48 provides necessary and sufficient conditions for the fol-
lowing perturbed τ−error bound property of f at x̄ ∈ X with some δ ∈]0,+∞] and
µ ∈]0,+∞] such that either x̄ ∈ [ f ≤ 0] or δ = +∞: inequality (4.12) holds for all
c ∈ [0,µ[ and x ∈ Bδ (x̄)∩ [c < f < µ].

(ii) Thanks to Corollary 91 and Proposition 48, conditions

• |∇ f |�(x)≥ τ for all x ∈ [ f > 0] near x̄ with f (x) near 0, and

• |∇ f |(x)≥ τ for all x ∈ [ f > 0] near x̄ with f (x) near 0

provide full characterizations of, respectively, the τ−error bound and the perturbed
τ−error bound properties of f at x̄ ∈ [ f ≤ 0]. In view of Lemma 2(iv), in the convex
case the perturbed τ−error bounds are equivalent to the conventional ones.

(iii) The perturbed τ−error bound property of f at x̄ ∈ [ f ≤ 0] is actually the τ−metric
regularity of the (truncated) epigraphical set-valued mapping x 7→ epi f (x) :=
{c ∈ [0,+∞[ | f (x)≤ c} at (x̄,0); cf. [18, Remark 3.2].
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4.3 Nonlinear Error Bound Conditions

In view of Remark 58(ii), one can easily deduce from Theorem 32 and Proposition 46 suffi-
cient and necessary conditions for nonlinear error bounds. The sufficient conditions become
meaningful when ϕ ∈ C 1 as in this case one can employ the chain rules in Lemmas 3 and 9.

Theorem 33 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , ϕ ∈ C 1, δ ∈]0,+∞] and
µ ∈]0,+∞].

(i) Let X be complete, f be lower semicontinuous, α ∈]0,1], and either x̄ ∈ [ f ≤ 0] or
δ =+∞. The function f admits a ϕ−error bound at x̄ with δ ′ := δ

1+α
and µ , provided

that one of the following conditions is satisfied:

(a) α|∇(ϕ ◦ f )|�(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying

max{α,1−α}ϕ( f (u))< d(u, [ f ≤ 0]); (4.13)

(b) |∇̆ f | ∈ |D f |◦ and αϕ ′( f (u))|∇̆ f |(u)≥ 1 for all u∈Bδ (x̄)∩ [0< f < µ] satisfying
condition (4.13).

If ϕ ′ is nonincreasing, then |D f |◦ in (b) can be replaced with |D f |.

(ii) If f admits a ϕ−error bound at x̄ with δ and µ , then |∇(ϕ ◦ f )|�(u) ≥ 1 for all
u ∈ Bδ (x̄)∩ [0 < f < µ].

(iii) Let X be a normed space, and f be convex. If f admits a ϕ−error bound at x̄ with δ

and µ , then ϕ( f (u))
f (u) |∂ f |(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ].

If, moreover, ϕ ′ is nondecreasing, particularly if ϕ is convex, then ϕ ′( f (u))|∂ f |(u)≥ 1
for all u ∈ Bδ (x̄)∩ [0 < f < µ].

Proof Assertions (i) and (ii) are direct consequences of the corresponding assertions in
Theorem 32, applied to the composition function ϕ ◦ f with τ = 1, and Lemmas 3 and 9.
To prove the first part of assertion (iii), it suffices to notice that inequality (1.12) reduces
to inequality (4.1) by setting τ := f (x)

ϕ( f (x)) and apply Proposition 46(iii). By the mean value
theorem, τ−1 = ϕ ′(θ) for some θ ∈]0, f (x)[. If ϕ ′ is nondecreasing, then τ−1 ≤ ϕ ′( f (x)),
which proves the second part. �

Remark 63 (i) In view of the definition of |D f |◦ (or |D f |), condition (b) in Theo-
rem 33(i) combines three (or four) separate primal and dual sufficient error bound
conditions corresponding to |∇̆ f | equal to |∇ f |�, |∇ f |, |∂C f | or |∂ F f | (in appropriate
spaces).

(ii) With |∇̆ f | = |∂C f | or |∇̆ f | = |∂ F f |, inequality αϕ ′( f (u))|∇̆ f |(u) ≥ 1 in (b) can be
interpreted as the Kurdyka–Łojasiewicz property (as defined, e.g., in [9, 32]).
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(iii) As in the linear case, parameter α in Theorem 33(i) determines a trade-off between
the main inequalities α|∇(ϕ ◦ f )|�(u)≥ 1 in (a) and αϕ ′( f (u))|∇̆ f |(u)≥ 1 in (b) and
the radius δ ′ of the neighbourhood of x̄ in which the error bound estimate holds. In the
conventional case α = 1, we have δ ′ = δ/2.

(iv) Weakening or dropping any of the restrictions on u produces new (stronger!) sufficient
conditions. This can be particularly relevant in the case of inequality (4.13) involving
the distance to the unknown set [ f ≤ 0]. If x̄ ∈ [ f ≤ 0], it is common to replace this
distance with d(u, x̄).

(v) If the function t 7→ ϕ(t)
t is nondecreasing on ]0,+∞[ (particularly, if ϕ is convex) then

the assumption of differentiability of ϕ in Theorem 33 can be dropped. As one can
observe from the above proof, it suffices to replace ϕ ′( f (u)) in condition (b) with
ϕ( f (u))

f (u) .

(vi) Under the conditions of part (iii) of Theorem 33, one can easily show that, if for all
u ∈ Bδ (x̄)∩ [0 < f < µ] condition (4.1) holds as equality, then ϕ ′( f (u))|∂ f |(u) = 1
for all u ∈ Bδ (x̄)∩ [0 < f < µ]; cf. Remark 60(v).

(vii) Employing Proposition 48, one can expand Theorem 33 to cover a perturbed ϕ−error
bound property of f at x̄ ∈ [ f ≤ 0] as in [18, Theorems 4.1 and 4.2]; cf. Remark 62.

(viii) With δ = +∞, µ < +∞, α = 1 and ϕ(t) := τ−1tq for some τ > 0 and q > 0 and all
t > 0 (Hölder case), Theorem 33(i) with |∇̆ f |= |∇ f | in condition (b) recaptures [185,
Corollary 2.5], while with |∇̆ f |= |∂ F f | it recaptures [186, Corollary 2(i)].

(ix) With x̄ ∈ bd [ f ≤ 0], δ < +∞, µ = +∞, α = 1, and ϕ(t) := (τ)−1tq for some τ > 0
and q > 0 and all t > 0 (Hölder case), Theorem 33(i) with |∇̆ f | = |∂ F f | in condition
(b) recaptures [186, Corollary 2(ii)].

(x) With x̄ ∈ [ f ≤ 0], µ = +∞, and ϕ(t) := (ατ)−1tq for some τ > 0 and q > 0 and all
t > 0 (Hölder case), part (i) of Theorem 33 with |∇̆ f | = |∂C f | and |∇̆ f | = |∂ F f | in
condition (b) improves [137, Theorem 3.7], while part (iii) partially recaptures and
extends [137, Lemma 3.33].

The local ϕ−error bound sufficient conditions are collected in the next three corollaries.

Corollary 94 Suppose X is a complete metric space, f : X → R∞ is lower semicontinuous,
and ϕ ∈ C 1. The function f admits a local ϕ−error bound at x̄ ∈ [ f ≤ 0], provided that one
of the following conditions is satisfied:

(i) |∇(ϕ ◦ f )|�(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0;

(ii) |∇̆ f | ∈ |D f |◦ and ϕ ′( f (x))|∇̆ f |(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0.
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Condition (i) is also necessary.
If ϕ ′ is nonincreasing, then |D f |◦ in (ii) can be replaced with |D f |.

Corollary 95 Suppose X is a Banach space, f : X → R∞ is convex lower semicontinuous,
x̄ ∈ [ f ≤ 0], and ϕ ∈ C 1. Consider the following conditions:

(i) f admits a local ϕ−error bound at x̄;

(ii) |∇(ϕ ◦ f )|�(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0;

(iii) ϕ ′( f (x))|∂ f |(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0;

(iv) ϕ( f (x))
f (x) |∂ f |(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0.

Then (iii)⇒ (ii)⇒ (i)⇒ (iv). Moreover, if ϕ ′ is nondecreasing, particularly if ϕ is convex,
then all the conditions are equivalent.

Corollary 96 Suppose X is a complete metric space, f : X → R∞ is lower semicontinuous,
ϕ ∈ C 1, x̄ ∈ [ f ≤ 0], and Er ϕ f (x̄) be defined by (4.3).

(i) The following estimate holds true:

Er ϕ f (x̄) = liminf
x→x̄, f (x)↓0

|∇(ϕ ◦ f )|�(x)≥ liminf
x→x̄, f (x)↓0

ϕ
′( f (x))|∇ f |(x).

If X is Banach (Asplund), then |∇ f | in the above inequality can be replaced with |∂C f |
(|∂ F f |).

(ii) If X is Banach and f is convex, then

Er ϕ f (x̄)≤ liminf
x→x̄, f (x)↓0

ϕ( f (x))
f (x)

|∂ f |(x).

Moreover, if ϕ satisfies

ϕ(t)
t
≤ γϕ

′(t) for some γ ≥ 1 and all t > 0, (4.14)

then |∂ f |>ϕ (x̄)≤ Er ϕ f (x̄)≤ γ|∂ f |>ϕ (x̄), where

|∂ f |>ϕ (x̄) := liminf
x→x̄, f (x)↓0

ϕ
′( f (x))|∂ f |(x); (4.15)

as a consequence, f admits a local (αϕ)−error bound at x̄ with some α satisfying
|∂ f |>ϕ (x̄)≤ α−1 ≤ γ|∂ f |>ϕ (x̄) if and only if |∂ f |>ϕ (x̄)> 0.

Remark 64 (i) In Theorem 33(i)(a), Corollary 94(i) and Corollary 95(ii), it suffices to
assume that ϕ ∈ C .
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(ii) In the Hölder case, i.e. when ϕ(t) := τ−1tq for some τ > 0 and q > 0 and all t > 0,
we have ϕ ′(t) = qτ−1tq−1 and ϕ(t)

t = τ−1tq−1. Thus, the implication (iii) ⇒ (iv) in
Corollary 95 is trivially satisfied when q ≤ 1, while the opposite implication holds
when q≥ 1, i.e. ϕ is convex. Moreover, if q≤ 1, then condition (4.14) is satisfied (as
equality) with γ = q−1.

When ϕ(t) := tq for some q> 0 and all t > 0, definition (4.15) reduces to [137, (3.13)].
In particular, if q = 1, it coincides with the strict outer subdifferential slope of f at x̄
given by the last expression in (4.11).

(iii) Condition (4.14) can be replaced by the following weaker condition:
limsupt↓0

ϕ(t)
tϕ ′(t) <+∞.

It can be convenient to reformulate Theorem 33 using the function ψ :=ϕ−1 ∈C 1 instead
of ϕ .

Corollary 97 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , ψ ∈ C 1, δ ∈]0,+∞] and
µ ∈]0,+∞].

(i) Let X be complete, f be lower semicontinuous, α ∈]0,1], and either x̄ ∈ [ f ≤ 0] or
δ =+∞. The error bound inequality (4.2) holds for all x ∈ B δ

1+α

(x̄)∩ [0 < f < µ],
provided that one of the following conditions is satisfied:

(a) α|∇(ψ−1 ◦ f )|�(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying

f (u)< ψ((max{α,1−α})−1d(u, [ f ≤ 0])); (4.16)

(b) |∇̆ f | ∈ |D f |◦ and α|∇̆ f |(u) ≥ ψ ′(ψ−1( f (u))) for all u ∈ Bδ (x̄)∩ [0 < f < µ]

satisfying condition (4.16).

If ϕ ′ is nonincreasing, then |D f |◦ in (b) can be replaced with |D f |.

(ii) If the error bound inequality (4.2) holds for all u ∈ Bδ (x̄) ∩ [0 < f < µ], then
|∇(ψ−1 ◦ f )|�(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ].

(iii) Let X be a normed space, and f be convex. If the error bound inequality (4.2) holds
for all u ∈ Bδ (x̄)∩ [0 < f < µ], then |∂ f |(u) ≥ f (u)

ψ−1( f (u)) for all u ∈ Bδ (x̄)∩ [0 < f <
µ]. Moreover, if ψ ′ is nonincreasing, particularly if ψ is concave, then |∂ f |(u) ≥
ψ ′(ψ−1( f (u))) for all u ∈ Bδ (x̄)∩ [0 < f < µ].

Remark 65 With x̄ ∈ [ f ≤ 0], δ <+∞, µ =+∞ and α = 1, Corollary 97(i) with condition
(b) and |∇̆ f |= |∂ F f | strengthens [211, Theorem 3.2], while with δ = µ =+∞ and α = 1 it
strengthens [211, Theorem 3.3].
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4.4 Alternative Nonlinear Error Bound Conditions

In this section, we discuss an alternative set of sufficient and necessary conditions for non-
linear error bounds which instead of values of the given function f employ the distance to
the solution set [ f ≤ 0].

The next simple tool is helpful when comparing the resulting conditions. We have not
found a reference for this assertion and provide a short proof for completeness.

Lemma 11 Suppose ϕ ∈ C 1. If ϕ ′ is nonincreasing (nondecreasing) on ]0,+∞[, then
the function t 7→ ϕ(t)

t is nonincreasing (nondecreasing) on ]0,+∞[, and ϕ ′(t) ≤ ϕ(t)
t(

ϕ ′(t)≥ ϕ(t)
t

)
for all t ∈]0,+∞[.

Proof Let 0 < t1 < t2. If ϕ ′ is nonincreasing, then

ϕ(t1)
t1

=
1
t1

∫ t1

0
ϕ
′(t)dt ≥ ϕ

′(t1)≥
1

t2− t1

∫ t2

t1
ϕ
′(t)dt, (4.17)

and consequently,

ϕ(t2)
t2

=
1
t2

(
ϕ(t1)+

∫ t2

t1
ϕ
′(t)dt

)
≤ 1

t2

(
ϕ(t1)+

t2− t1
t1

ϕ(t1)
)
=

ϕ(t1)
t1

. (4.18)

Similarly, if ϕ ′ is nondecreasing, we have the opposite inequalities in (4.17) and (4.18). �

Theorem 34 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , ϕ ∈ C 1, δ ∈]0,+∞] and
µ ∈]0,+∞].

(i) Let X be complete, f be lower semicontinuous, ϕ ′ be nonincreasing, α ∈]0,1], and
either x̄ ∈ [ f ≤ 0] or δ = +∞. Let |∇̆ f | ∈ |D f |. The function f admits a ϕ−error
bound at x̄ with δ ′ := δ

1+α
and µ , provided that

αϕ
′(ϕ−1((max{α,1−α})−1d(u, [ f ≤ 0])))|∇̆ f |(u)≥ 1 (4.19)

for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying condition (4.13).

(ii) Let X be a normed space, and f be convex. If f admits a ϕ−error bound at x̄ with δ

and µ , then d(u,[ f≤0])
ϕ−1(d(u,[ f≤0])) |∂ f |(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ].

If, moreover, ϕ ′ is nondecreasing, particularly if ϕ is convex, then
ϕ ′(ϕ−1(d(u, [ f ≤ 0])))|∂ f |(u)≥ 1 for all u ∈ Bδ (x̄)∩ [0 < f < µ].

Proof

(i) The assertion is a consequence of Theorem 33(i). It suffices to notice that, by the
monotonicity of ϕ ′, we have ϕ ′(ϕ−1((max{α,1−α})−1d(u, [ f ≤ 0]))) ≤ ϕ ′( f (u))
for all u ∈ X satisfying condition (4.13).
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(ii) The first part follows from Proposition 46(iii) applied with τ := ϕ−1(d(x,[ f≤0]))
d(x,[ f≤0]) .

If ϕ ′ is nondecreasing, then (ϕ−1)′ is nonincreasing and, by Lemma 11, τ ≥
(ϕ−1)′(d(x, [ f ≤ 0])) = 1/ϕ ′(ϕ−1(d(x, [ f ≤ 0]))). This proves the second part.

�

Remark 66 (i) In view of the definition of |D f |, Theorem 34(i) combines four separate
primal and dual sufficient error bound conditions corresponding to |∇̆ f | equal to |∇ f |�,
|∇ f |, |∂C f | or |∂ F f | (in appropriate spaces).

(ii) Compared to Theorem 33(i), the statement of Theorem 34(i) contains an additional
assumption that ϕ ′ is nonincreasing This assumption is satisfied, e.g., in the Hölder
setting, i.e. when ϕ(t) := τ−1tq for some τ > 0 and q ∈]0,1], and all t ≥ 0. In the
linear case, i.e. when q = 1, the sufficient conditions in Theorems 33 and 34 are
equivalent, and reduce to the corresponding ones in Theorem 32.

(iii) Under the assumption that ϕ ′ is nonincreasing and with α = 1, the local sufficient con-
ditions in Theorem 34(i) are in a sense weaker than the corresponding conventional
ones in Theorem 33(i). Indeed, if α = 1 and, given some δ ∈]0,+∞] and µ ∈]0,+∞],
condition (b) in Theorem 33(i) is satisfied with some |∇̆ f | ∈ |D f |◦, then, by The-
orem 33(i), ϕ−1(d(u, [ f ≤ 0])) ≤ f (u) for all u ∈ Bδ ′(x̄), where δ ′ := δ/2. (As a
consequence, inequality (4.13) is violated for all u ∈ Bδ ′(x̄).) Then, thanks to the
monotonicity of ϕ ′, for all u ∈ Bδ ′(x̄), we have ϕ ′(ϕ−1(d(u, [ f ≤ 0]))) ≥ ϕ ′( f (u)),
and consequently, inequality (4.19) is satisfied with the same |∇̆ f |.

(iv) In view of the monotonicity of ϕ−1 and ϕ ′, one can replace max{α,1−α} in (4.13)
and (4.19) in Theorem 34(i) with any positive β ≤ max{α,1−α}. In particular, one
can take β := α or β := 1−α (if α < 1). The resulting sufficient conditions are
obviously stronger (hence, less efficient) than those in the current statement.

(v) With x̄∈ [ f ≤ 0], µ =+∞, α < 1, and ϕ(t) :=(αq(1−α)1−qτ)−1tq for some τ > 0 and
q > 0 and all t > 0 (Hölder case), Theorem 34(i) with |∇̆ f |= |∂ F f | and |∇̆ f |= |∂C f |
improves and strengthens [137, Theorem 3.11].

The local ϕ−error bound sufficient conditions arising from Theorem 34(i) are collected
in the next three corollaries.

Corollary 98 Suppose X is a complete metric space, f : X → R∞ is lower semicontinuous,
ϕ ∈ C 1, and ϕ ′ is nonincreasing. Let |∇̆ f | ∈ |D f |. The function f admits a local ϕ−error
bound at x̄ ∈ [ f ≤ 0], provided that

ϕ
′(ϕ−1(d(x, [ f ≤ 0])))|∇̆ f |(x)≥ 1

for all x ∈ [ f > 0] near x̄ with f (x) near 0.
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Corollary 99 Suppose X is a Banach space, f : X → R∞ is convex lower semicontinuous,
x̄ ∈ [ f ≤ 0], ϕ ∈ C 1 and ϕ ′ is nonincreasing. Consider the following conditions:

(i) f admits a local ϕ−error bound at x̄;

(ii) ϕ ′(ϕ−1(d(x, [ f ≤ 0])))|∂ f |(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0;

(iii) d(x,[ f≤0])
ϕ−1(d(x,[ f≤0])) |∂ f |(x)≥ 1 for all x ∈ [ f > 0] near x̄ with f (x) near 0.

Then (ii)⇒ (i)⇒ (iii). If ϕ is linear, then all the conditions are equivalent.

Corollary 100 Suppose X is a complete metric space, f : X →R∞ is lower semicontinuous,
ϕ ∈ C 1, ϕ ′ is nonincreasing, and x̄ ∈ [ f ≤ 0].

(i) The following estimate holds true:

Er ϕ f (x̄)≥ liminf
x→x̄, f (x)↓0

ϕ
′(ϕ−1(d(x, [ f ≤ 0])))|∇ f |(x).

If X is Banach (Asplund), then |∇ f | in the first inequality can be replaced with |∂C f |
(|∂ F f |).

(ii) If X is Banach and f is convex, then

Er ϕ f (x̄)≤ liminf
x→x̄, f (x)↓0

d(x, [ f ≤ 0])
ϕ−1(d(x, [ f ≤ 0]))

|∂ f |(x).

Moreover, if ϕ satisfies condition (4.14), then |̂∂ f |>ϕ (x̄) ≤ Er ϕ f (x̄) ≤ γ |̂∂ f |>ϕ (x̄),
where

|̂∂ f |>ϕ (x̄) := liminf
x→x̄, f (x)↓0

ϕ
′(ϕ−1(d(x, [ f ≤ 0])))|∂ f |(x);

as a consequence, f admits a local (αϕ)−error bound at x̄ with some α satisfying
|̂∂ f |>ϕ (x̄)≤ α−1 ≤ γ |̂∂ f |>ϕ (x̄) if and only if |̂∂ f |>ϕ (x̄)> 0.

Remark 67 In view of Remark 66(iii), when ϕ ′ is nonincreasing, each of the sufficient con-
ditions in Corollaries 98 and 99 is implied by the corresponding condition in Corollaries 94
and 95, respectively. Similarly, condition |∂ f |>ϕ (x̄)> 0 implies |̂∂ f |>ϕ (x̄)> 0.

In view of Remark 64(ii), the next statement is a consequence of Corollaries 96 and 100.
It recaptures [137, Corollary 3.35].

Corollary 101 Suppose X is a Banach space, f : X → R∞ is convex lower semicontinuous,
x̄ ∈ [ f ≤ 0], and q ∈]0,1]. The following assertions are equivalent:

(i) the function f admits a local error bound of order q at x̄, i.e. there exist τ > 0 and
δ > 0 such that

τd(x, [ f ≤ 0])≤ ( f (x))q for all x ∈ Bδ (x̄)∩ [ f > 0],
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(ii) liminf
x→x̄, f (x)>0

( f (x))q−1|∂ f |(x)> 0.

(iii) liminf
x→x̄, f (x)>0

(d(x, [ f ≤ 0]))1− 1
q |∂ f |(x)> 0.

It can be convenient to reformulate Theorem 34 using the function ψ :=ϕ−1 ∈C 1 instead
of ϕ . Obviously ϕ ′ is nonincreasing if and only if ψ ′ is nondecreasing.

Corollary 102 Suppose X is a metric space, f : X → R∞, x̄ ∈ X , ψ ∈ C 1, δ ∈]0,+∞] and
µ ∈]0,+∞].

(i) Let X be complete, f be lower semicontinuous, ψ ′ be nondecreasing, α ∈]0,1],
β := max{α,1−α}, and either x̄ ∈ [ f ≤ 0] or δ = +∞. Let |∇̆ f | ∈ |D f |. The er-
ror bound inequality (4.2) holds for all x ∈ B δ

1+α

(x̄)∩ [0 < f < µ], provided that

α|∇̆ f |(u)≥ ψ
′(β−1d(u, [ f ≤ 0])) (4.20)

for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying f (u)< ψ(β−1d(u, [ f ≤ 0])).

(ii) Let X be a normed space, and f be convex. If the error bound inequality (4.2)
holds for all x ∈ Bδ (x̄)∩ [0 < f < µ], then |∂ f |(u) ≥ ψ(d(u,[ f≤0]))

d(u,[ f≤0]) for all u ∈ Bδ (x̄)∩
[0 < f < µ]. Moreover, if ψ ′ is nonincreasing, particularly if ψ is concave, then
|∂ f |(u)≥ ψ ′(d(u, [ f ≤ 0])) for all u ∈ Bδ (x̄)∩ [0 < f < µ].

Remark 68 (i) Condition (4.20) can itself be interpreted as an error bound estimate. Un-
like the conventional upper estimates (4.1) and (4.2) for the distance to the set [ f ≤ 0]
in terms of the values of the function f , the inequality provides an estimate for this
distance in terms of the appropriate slopes of the function f .

(ii) Remark 66(iv) is applicable to Corollary 102(i).

(iii) With x̄ ∈ [ f ≤ 0], δ < +∞, µ = +∞, and α < 1, Corollary 102(i) with appropriate
slopes strengthens [215, Theorem 3.1 and Proposition 3.3] and [211, Theorems 3.1
and 3.4]. Note that in [215] the function ψ is assumed convex that does not seem to
be necessary. It is also worth observing that the rather complicated statements in [215,
Theorem 3.1 and Proposition 3.3] become simpler if the two parameters β > 0 and
τ > 0 involved in them are replaced with a single parameter α := β/(τ +β ) ∈]0,1[
and one employs the function t 7→ ψ(ταt) instead of ψ .

A special case of Corollary 102, which can be of interest, is when the function ψ is
defined via another function ν : R+→ R+ as follows: ψ(t) :=

∫ t
0 ν(s)ds (t ≥ 0).

Corollary 103 Suppose X is a complete metric space, f : X → R∞ is lower semicontin-
uous, x̄ ∈ X , ν : R+ → R+ is nondecreasing, ν(t) > 0 for all t > 0,

∫+∞

0 ν(t)dt = +∞,
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δ ∈]0,+∞], µ ∈]0,+∞], α ∈]0,1], β := max{α,1−α}, and either x̄ ∈ [ f ≤ 0] or δ = +∞.
Let |∇̆ f | ∈ |D f |. The error bound inequality∫ d(x,[ f≤0])

0
ν(t)dt ≤ f (x)

holds for all x ∈ B δ

1+α

(x̄)∩ [0 < f < µ], provided that

α|∇̆ f |(u)≥ ν(β−1d(u, [ f ≤ 0]))

for all u ∈ Bδ (x̄)∩ [0 < f < µ] satisfying f (u)<
∫ β−1d(u,[ f≤0])

0 ν(s)ds.

Remark 69 With δ =+∞ and α = 1, Corollary 103 with |∇̆ f |= |∇ f | recaptures [64, Theo-
rem 4.3] and [18, Theorem 7.1]. With δ <+∞, µ =+∞ and α = 1, it recaptures [17, Corol-
lary 4.1].

4.5 Subregularity of Set-Valued Mappings

In this section, we illustrate the sufficient and necessary conditions for nonlinear error
bounds by applying them to characterizing the nonlinear version of the ubiquitous prop-
erty of subregularity (cf. [81, 116]) of set-valued mappings. Nonlinear subregularity has
many important applications and has been a subject of intense research in recent years;
cf. [130, 133, 154, 174, 219].

Below, F : X ⇒ Y is a set-valued mapping between metric spaces, and (x̄, ȳ) ∈ gphF .
Recall that X×Y is assumed to be equipped with the maximum distance.

Definition 23 Let ϕ ∈ C . The mapping F is

(i) ϕ−subregular at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

d(x,F−1(ȳ))≤ ϕ(d(ȳ,F(x)))

for all x ∈ Bδ (x̄) with d(ȳ,F(x))< µ;

(ii) graph ϕ−subregular at (x̄, ȳ) if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such that

d(x,F−1(ȳ))≤ ϕ(d((x, ȳ),gphF)) (4.21)

for all x ∈ Bδ (x̄) with d((x, ȳ),gphF)< µ .

Remark 70 Instead of the standard maximum distance employed in (4.21), it is common
when studying regularity properties of mappings to consider parametric distances of the
type dρ((x,y,(u,v)) := max{d(x,u),ρd(y,v)}, where ρ > 0; cf. [13, 16, 116, 130, 131, 133].
This usually gives an additional degree of freedom and leads to sharper conditions. We
avoid doing it here just for simplicity as our main purpose in this section is to provide some
illustrations. All the conditions below can be easily extended to parametric distances.
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The nonlinear property in part (i) of Definition 23 is a quite common extension of the
conventional subregularity; cf., e.g., [133], while the property in part (ii) extends the (lin-
ear) graph subregularity studied by Jourani and Thibault [122]. In the linear case, the two
properties are equivalent. The next proposition establishes quantitative relations between the
properties in the nonlinear setting.

Proposition 49 Let ϕ ∈ C , δ ∈]0,+∞] and µ ∈]0,+∞].

(i) If F is graph ϕ−subregular at (x̄, ȳ) with δ and µ , then it is ϕ−subregular at (x̄, ȳ)
with δ and µ .

(ii) Suppose ϕ(t) ≤ t for all t ∈]0,δ [. If F is ϕ−subregular at (x̄, ȳ) with δ and µ , then
it is graph ψ−subregular at (x̄, ȳ) with ψ(t) := 2t (t ≥ 0), δ ′ = min{δ ,µ}/2 and any
µ ′ ∈]0,+∞].

Proof

(i) Suppose F is graph ϕ−subregular at (x̄, ȳ) with δ and µ . Let x ∈ Bδ (x̄) with
d(ȳ,F(x))< µ . Then d((x, ȳ),gphF)≤ d(ȳ,F(x)). Thus, d((x, ȳ),gphF)< µ and, in
view of Definition 23(ii), d(x,F−1(ȳ))≤ ϕ(d((x, ȳ),gphF))≤ ϕ(d(ȳ,F(x))). Hence,
F is ϕ−subregular at (x̄, ȳ) with δ and µ .

(ii) Suppose F is ϕ−subregular at (x̄, ȳ) with δ and µ . Let x ∈ Bδ ′(x̄), where
δ ′ = min{δ ,µ}/2. Observe that d((x, ȳ),gphF) ≤ d(x, x̄) and, if d((u,v),(x, ȳ)) ≤
d(x, x̄), then d((u,v),(x̄, ȳ))≤ 2d(x, x̄)< 2δ ′. Hence,

d((x, ȳ),gphF) = inf
(u,v)∈gphF∩B2δ ′(x̄,ȳ)

max{d(x,u),d(ȳ,v)}.

For any (u,v)∈ gphF∩B2δ ′(x̄, ȳ), we have u∈Bδ (x̄), and d(ȳ,F(u))≤ d(ȳ,v)< 2δ ′=

min{δ ,µ}. Thus, by Definition 23(i) and the assumption on ϕ ,

d(u,F−1(ȳ))≤ ϕ(d(ȳ,F(u)))≤ d(ȳ,F(u))≤ d(ȳ,v),

and consequently,

d(x,F−1(ȳ))≤ d(x,u)+d(ȳ,v)≤ 2d((x, ȳ),(u,v)) = ψ(d((x, ȳ),(u,v))).

Taking infimum over (u,v) ∈ gphF ∩ B2δ ′(x̄, ȳ), we arrive at d(x,F−1(ȳ)) ≤
ψ(d((x, ȳ),gphF)). Hence, F is graph ψ−subregular at (x̄, ȳ) with δ ′ and any
µ ′ ∈]0,+∞].

�

Observe that graph subregularity of F in Definition 23(ii) is precisely the error bound
property of the Lipschitz continuous function x 7→ d((x, ȳ),gphF). When applied to this
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function, formulas (1.19) and (1.20) lead to the following definitions of the primal and dual
slopes of the set-valued mapping F at x̄:

|∇F |�(x) := sup
u6=x

[d((x, ȳ),gphF)−d((u, ȳ),gphF)]+
d(u,x)

,

|∇F |(x) := limsup
u→x,u6=x

[d((x, ȳ),gphF)−d((u, ȳ),gphF)]+
d(u,x)

,

|∂CF |(x) := d(0,∂Cd((·, ȳ),gphF)(x)), |∂ FF |(x) := d(0,∂ Fd((·, ȳ),gphF)(x)).

Note that they differ from the corresponding slopes used in [130, 131, 133]. We use below
the collections of slope operators of F (being realizations of the corresponding collections
of f ) defined recursively as follows:

(i) |DF |◦ := {|∇F |}, |DF |= |DF |† := {|∇F |�, |∇F |};

(ii) if X is Banach, then |DF |◦ := |DF |◦∪{|∂CF |}, |DF |= |DF |† := |DF |∪{|∂CF |};

(iii) if X is Asplund, then |DF |◦ := |DF |◦∪{|∂ FF |}, |DF | := |DF |∪{|∂ FF |}.

The next two statements are consequences of Theorems 33 and 34, respectively. Their
first parts extend [121, Theorem 2.4] and [116, Theorem 2.53].

Proposition 50 Suppose X and Y are metric spaces, ϕ ∈ C 1, δ ∈]0,+∞] and µ ∈]0,+∞].

(i) Let X be complete and α ∈]0,1]. The mapping F is graph ϕ−subregular at (x̄, ȳ) with
δ ′ := δ

1+α
and µ , provided that one of the following conditions is satisfied:

(a) α|∇(ϕ ◦ d((·, ȳ),gphF))|�(u) ≥ 1 for all u ∈ Bδ (x̄) \ F−1(ȳ) with
d((u, ȳ),gphF)< µ satisfying

max{α,1−α}ϕ(d((u, ȳ),gphF))< d(u,F−1(y)); (4.22)

(b) |∇̆F | ∈ |DF |◦ and αϕ ′(d((u, ȳ),gphF))|∇̆F |(u) ≥ 1 for all u ∈ Bδ (x̄) \F−1(ȳ)
with d((u, ȳ),gphF)< µ satisfying condition (4.22).

If ϕ ′ is nonincreasing, then |DF |◦ in (b) can be replaced with |DF |.

(ii) If F is ϕ−graph regular at (x̄, ȳ) with δ and µ , then |∇(ϕ ◦d((·, ȳ),gphF))|�(u) ≥ 1
for all u ∈ Bδ (x̄)\F−1(ȳ) with d((u, ȳ),gphF)< µ .

(iii) Let X and Y be normed spaces, and gphF be convex. If F is graph ϕ−subregular at
(x̄, ȳ) with δ and µ , then ϕ(d((u,ȳ),gphF))

d((u,ȳ),gphF) |∂F |(u) ≥ 1 for all u ∈ Bδ (x̄) \F−1(ȳ) with
d((u, ȳ),gphF)< µ .
If, moreover, ϕ ′ is nondecreasing, particularly if ϕ is convex, then
ϕ ′(d((u, ȳ),gphF))|∂F |(u)≥ 1 for all u ∈ Bδ (x̄)\F−1(ȳ) with d((u, ȳ),gphF)< µ .

Proposition 51 Suppose X and Y are metric spaces, ϕ ∈ C 1, δ ∈]0,+∞] and µ ∈]0,+∞].
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(i) Let X be complete, ϕ ′ be nonincreasing, and α ∈]0,1]. Let |∇̆F | ∈ |DF |. The mapping
F is graph ϕ−subregular at (x̄, ȳ) with δ ′ := δ

1+α
and µ , provided that

αϕ
′(ϕ−1((max{α,1−α})−1d(u,F−1(ȳ))))|∇̆F |(u)≥ 1

for all u ∈ Bδ (x̄)\F−1(ȳ) with d((u, ȳ),gphF)< µ satisfying condition (4.22).

(ii) Let X and Y be normed spaces, and gphF be convex. If F is graph ϕ−subregular at
(x̄, ȳ) with δ and µ , then d(u,F−1(ȳ))

ϕ−1(d(u,F−1(ȳ))) |∂F |(u) ≥ 1 for all u ∈ Bδ (x̄) \F−1(ȳ) with
d((u, ȳ),gphF)< µ .
If, moreover, ϕ ′ is nondecreasing, particularly if ϕ is convex, then
ϕ ′(ϕ−1(d(u,F−1(ȳ))))|∂F |(u)≥ 1 for all u ∈ Bδ (x̄)\F−1(ȳ) with d((u, ȳ),gphF)<

µ .

4.6 Convex Semi-Infinite Optimization

In this section, we consider a canonically perturbed convex semi-infinite optimization prob-
lem:

P(c,b) : minimize ψ(x)+ 〈c,x〉
subject to gt(x)≤ bt , t ∈ T,

where x ∈ Rn is the vector of variables, c ∈ Rn, 〈·, ·〉 represents the usual inner product in
Rn, T is a proper compact subset of a metric space Z, ψ : Rn→ R and gt : Rn→ R (t ∈ T )
are convex functions, and the function (t,x) 7→ gt(x) is assumed to be lower semicontinuous
on T ×Rn, and b ∈C(T,R) (the space of continuous functions from T to R). In this setting,
the pair (c,b) ∈ Rn×C(T,R) is regarded as the parameter to be perturbed. The norm in this
parameter space is given by ‖(c,b)‖ := max{‖c‖,‖b‖∞}, where ‖ ·‖ is any given norm in Rn

and ‖b‖∞ := maxt∈T |bt |.
The solution, feasible set and level set mappings corresponding to the above problem are

the set-valued mappings defined, respectively, by

S (c,b) := {x ∈ Rn | x solves P(c,b)}, (c,b) ∈ Rn×C(T,R), (4.23)

F (b) := {x ∈ Rn | gt(x)≤ bt , t ∈ T}, b ∈C(T,R),

L (α,b) := {x ∈F (b) | ψ(x)+ 〈c̄,x〉 ≤ α}, (α,b) ∈ R×C(T,R). (4.24)

If c := c̄ in (4.23) is fixed, then S reduces to the partial solution mapping Sc̄ : C(T,R)⇒Rn

given by Sc̄(b) = S (c̄,b).
Our goal in this section is to use nonlinear error bound conditions for analyzing nonlinear

calmness of the mappings S , Sc̄ and L .

Definition 24 Let F : Y ⇒ X be a set-valued mapping between metric spaces, (ȳ, x̄)∈ gphF ,
and ϕ ∈C . The mapping F is ϕ−calm at (ȳ, x̄) if there exist δ ∈]0,+∞] and µ ∈]0,+∞] such
that

d(x,F(ȳ))≤ ϕ(d(y, ȳ)) (4.25)
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for all y ∈ Y with d(y, ȳ)< µ and x ∈ F(y)∩Bδ (x̄).

Calmness of set-valued mappings plays an important role in optimization theory, cf. [81,
116]. It is easy to check that F is ϕ−calm at (ȳ, x̄) ∈ gphF with some δ and µ if and only if
F−1 is ϕ−subregular at (x̄, ȳ) with the same δ and µ.

Cánovas et al. [47] examined the problem P(c,b) in the particular case when gt (t ∈ T )
are linear functions and ψ ≡ 0, and obtained estimates for the calmness modulus. In [46],
Cánovas et al. studied the modulus of metric regularity of the solution mapping. Kruger et
al. [137] established characterizations of Hölder calmness of the solution mapping by em-
ploying the error bound theory. Motivated by the latter paper, we establish characterizations
of the calmness in the nonlinear setting.

From now on, we assume a point ((c̄, b̄), x̄) ∈ gphS to be given. Obviously, if S is
ϕ−calm at ((c̄, b̄), x̄) for some ϕ ∈ C , then Sc̄ is ϕ−calm at (b̄, x̄). We are going to employ
the following convex and continuous function:

f (x) := max{ψ(x)−ψ(x̄)+ 〈c̄,x− x̄〉, sup
t∈T

(gt(x)− b̄t)}, x ∈ Rn. (4.26)

Observe that

S (c̄, b̄) = [ f = 0] = [ f ≤ 0] = L (ψ(x̄)+ 〈c̄, x̄〉, b̄), (4.27)

f+(x) = d((ψ(x̄)+ 〈c̄, x̄〉, b̄),L −1(x)) for all x ∈ Rn.

As a consequence, we have the following statement.

Proposition 52 Let ϕ ∈ C . The mapping L is ϕ−calm at (x̄,(ψ(x̄)+ 〈c̄, x̄〉, b̄)) with some
δ ∈]0,+∞] and µ ∈]0,+∞] if and only if f admits a ϕ−error bound at x̄ with the same δ and
µ .

The assertions in the next proposition are extracted from [137, Proposition 4.5 & The-
orem 4.7] and their proofs. The set of active indices at x ∈ F (b) is defined by Tb(x) :=
{t ∈ T | gt(x) = bt}. The problem P(c,b) satisfies Slater condition if there exists an x̂ ∈ Rn

such that gt(x̂)< bt for all t ∈ T .

Proposition 53 Let P(c̄, b̄) satisfy the Slater condition.

(i) There exist δ > 0, µ > 0 and M > 0 such that

ψ(x)−ψ(x̄)+ 〈c̄,x− x̄〉 ≤M‖(c,b)− (c̄, b̄)‖ (4.28)

for all (c,b) ∈ Bµ(c̄, b̄) and x ∈S (c,b)∩Bδ (x̄).

(ii) If xn→ x̄ with f (xn) ↓ 0, then

(a) there exists a sequence {bn}n∈N⊂C(T,R) such that xn ∈F (bn) and ‖bn− b̄‖∞≤
N f (xn) for some N > 0 and all n ∈ N;
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(b) there exist a finite subset T0 ⊂ ∩n∈NTbn(xn), and γt > 0, ut ∈ ∂gt(x̄) (t ∈ T0) and
u ∈ ∂ψ(x̄) such that −(c̄+u) ∈ ∑t∈T0 γtut .

The next proposition extending [137, Propositions 4.4] gives sufficient conditions for
nonlinear calmness of the level set mapping L .

Proposition 54 Let P(c̄, b̄) satisfy the Slater condition and ϕ ∈ C 1 satisfy the following
condition:

∀N > 0 ∃γ > 0 such that
ϕ(Nt)

t
≤ γϕ

′(t) for all t > 0. (4.29)

If L is not (αϕ)−calm at ((ψ(x̄)+ 〈c̄, x̄〉, b̄), x̄) for all α > 0, then there exist sequences
xn→ x̄ and {bn}n∈N ⊂C(T,R) such that xn ∈F (bn) (n ∈ N), f (xn) ↓ 0 and

lim
n→+∞

ϕ(‖bn− b̄‖∞)

d(xn,Sc̄(b̄))
= 0. (4.30)

Proof Suppose L is not (αϕ)−calm at ((ψ(x̄) + 〈c̄, x̄〉, b̄), x̄) for all α > 0. By Corol-
lary 96(ii), there exists a sequence xn→ x̄ with f (xn) ↓ 0 such that

lim
n→+∞

ϕ
′( f (xn))|∂ f |(xn) = 0.

By Lemma 2(iv),

|∂ f |(xn) = |∇ f |�(xn)≥ sup
u∈S (c̄,b̄)

f (xn)

‖xn−u‖
=

f (xn)

d(xn,S (c̄, b̄))
, n ∈ N.

By Proposition 53(ii), there exist a sequence {bn}n∈N ⊂C(T,R) and a number N ∈ N such
that xn ∈F (bn) and ‖bn− b̄‖∞ ≤ N f (xn) for all n ∈ N. Then, with γ > 0 corresponding to
N in view of condition (4.29), we have

0≤ lim
n→+∞

ϕ(‖bn− b̄‖∞)

d(xn,S (c̄, b̄))
≤ lim

n→+∞
|∂ f |(xn)

ϕ(‖bn− b̄‖∞)

f (xn)

≤ lim
n→+∞

|∂ f |(xn)
ϕ(N f (xn))

f (xn)
≤ γ lim

n→+∞
|∂ f |(xn)ϕ ′( f (xn)) = 0.

This completes the proof. �

Remark 71 (i) Condition (4.29) implies condition (4.14). It is satisfied, e.g., in the
Hölder case, i.e. when ϕ(t) = τ−1tq for some τ > 0 and q ∈]0,1], or more gener-
ally, when ϕ(t) = τ−1(tq +β t) for some τ > 0, β > 0 and q ∈]0,1].

(ii) Condition (4.29) can be replaced by the following weaker condition: for any N > 0,
limsupt↓0

ϕ(Nt)
tϕ ′(t) <+∞.

Proposition 55 Let P(c̄, b̄) satisfy the Slater condition, and ϕ ∈ C . If f admits a ϕ−error
bound at x̄ with some δ ∈]0,+∞] and µ ∈]0,+∞], then there exists an α > 0 such that S is
φα−calm at ((c̄, b̄), x̄) with some δ ′ ∈]0,δ [ and µ ′ ∈]0,µ[, where φα(t) := ϕ(αt) (t ≥ 0).
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Proof Let f have a ϕ−error bound at x̄ with some δ ∈]0,+∞] and µ ∈]0,+∞]. By Propo-
sition 53(i), there exist δ ′ ∈]0,δ [, µ ′ ∈]0,µ[ and M > 0 such that inequality (4.28) holds for
all (c,b) ∈ Bµ ′(c̄, b̄) and x ∈S (c,b)∩Bδ ′(x̄). It follows from (4.1), (4.27) and (4.28) that,
for all (c,b) ∈ Bµ ′(c̄, b̄) and x ∈S (c,b)∩Bδ ′(x̄)∩ [ f > 0] (hence, x ∈F (b)),

d(x,S (c̄, b̄)) =d(x, [ f ≤ 0])≤ ϕ( f (x))

≤ϕ(max{[ψ(x)−ψ(x̄)+ 〈c̄,x− x̄〉]+, sup
t∈T

[bt− b̄t ]+})

≤ϕ(max{M,µ ′}‖(c− c̄,b− b̄)‖) = ϕ(α‖(c− c̄,b− b̄)‖),

where α := max{M,µ ′}. Hence, S is φα−calm at ((c̄, b̄), x̄) with δ ′ and µ ′. �

Proposition 56 Let ψ and gt (t ∈ T ) be linear, P(c̄, b̄) satisfy the Slater condition, and ϕ ∈
C 1 satisfy condition (4.29). If Sc̄ is ϕ−calm at (b̄, x̄), then there exists an α > 0 such that
L is (αϕ)−calm at ((ψ(x̄)+ 〈c̄, x̄〉, b̄), x̄).

Proof Suppose L is not (αϕ)−calm at ((ψ(x̄)+ 〈c̄, x̄〉, b̄), x̄) for all α > 0. By Proposi-
tion 53(ii) and Proposition 54, there exist sequences xn→ x̄ and bn→ b̄ such that xn ∈F (bn)

(n ∈ N), and conditions (4.30) and (b) in Proposition 53(ii) are satisfied. By continuity, we
can assume that P(c̄,bn) satisfies the Slater condition for all sufficiently large n. It readily
follows from condition (b) in Proposition 53(ii) in the linear setting that xn ∈Sc̄(bn) for all
sufficiently large n. Thus, Sc̄ is not ϕ−calm at (b̄, x̄). �
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FUTURE RESEARCH

In this section, we briefly describe some potential research directions on the topic of transver-
sality, regularity and error bounds.

1) Borwein et al. [35] recently examine convergence rates of the cyclic projection al-
gorithm for solving semialgebraic convex feasibility problems under the Hölder sub-
transversality qualification condition. This approach is further investigated by Drusvy-
atskiy et al. [84] in the convex ill-posed semidefinite setting. It would be good to ana-
lyze the aforementioned models in the case when the convexity assumption is dropped.
We think that the the nonlinear (in particular, Hölder) transversality property (a specific
property) can be employed for the convergence analysis of these algorithms.

2) The affine hull regularity property is originally defined by Phan [195] and subsequently
used by Dao and Phan [72] as a qualification condition for the linear convergence of
generalized Douglas-Rachford (DR) algorithms. It would be interesting to study the
Hölder version of the property by formulating necessary and sufficient conditions for
the property in terms of primal and dual objects based on the generalized differen-
tiation theory. The property then will be applied to convergence analysis of the DR
algorithm and its variants for solving nonconvex feasibility problems.

3) The growing interest in computational algorithms and optimization leads to the devel-
opment of transversality/regularity theory. While subtransversality and transversality
have been studied for decades, their siblings such as affine hull regularity [195], in-
trinsic transversality [83,134,205], and tangential transversality [30] have come to life
very recently. It is well known that transversality implies the three properties which
imply subtransversality, and intrinsic transversality is equivalent to subtransversality
in the convex setting. To make the picture of the transversality theory clear (hopefully
complete), we believe that the following questions should be taken into account for
future clarifications.

(a) What are the connections of affine hull regularity/intrinsic transversal-
ity/tangential transversality?

(b) What can be said about the above relations when the sets under consideration are
convex and/or the underlying space is finite-dimensional?
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(c) Can primal (slope, geometric, metric) and dual (subdifferential, coderivative, nor-
mal cone) characterizations of the tangential transversality be formulated?

4) Metric regularity properties of set-valued mappings and their variants have been topics
of intensive study in the literature. However, most of the existing results are dedicated
to the very general setting when F : X ⇒ Y is an arbitrarily set-valued mapping be-
tween metric spaces. It would be useful to analyze particular cases when the set-valued
mapping under consideration posses one of the following structures:

(a) F : Rn ⇒ Rm where gphF is a semialgebraic (in particular, polyhedral) set in
Rn+m;

(b) F := f +NΩ where f : Rn→Rn is a single-valued mapping, Ω is a given convex
set in Rn, and NΩ stands the normal cone in the sense of convex analysis.

The established results are expected to profit from these specific structures. Part (a) is
motivated by recent achievements by Lee and Pham [147], while part (b) is a continu-
ation of our recent work [71].

5) Recently, Karkhaneei and Mahdavi-Amiri [123] study necessary and/or sufficient con-
ditions for weak sharp minima of extended-real-valued functions on manifolds, which
improve the previous work of Li et al. [151]. It is standard that error bounds and weak
sharp minima are strongly connected. Hence, we think that it is possible to establish
(primal and dual) characterizations of error bounds of extended-real-valued [66] and
vector-valued functions [28] on manifolds in both linear and nonlinear settings by em-
ploying variational analysis techniques on manifolds [94]. The established results can
be used to analyze convergence rates of computational methods on manifolds.
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[46] Cánovas, M.J., Hantoute, A., López, M.A., Parra, J.: Stability of indices in the KKT
conditions and metric regularity in convex semi-infinite optimization. J. Optim. The-
ory Appl. 139(3), 485–500 (2008)
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[130] Kruger, A.Y.: Error bounds and Hölder metric subregularity. Set-Valued Var. Anal.
23(4), 705–736 (2015)

[131] Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79
(2015)
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