7,329 research outputs found

    Evaluating e-commerce trust using fuzzy logic [article]

    Get PDF
    Trust is widely recognized as an essential factor for the continual development of business to customer electronic commerce (B2C EC). Many trust models have been developed, however, most are subjective and do not take into account the vagueness and ambiguity of EC trust and the customers’ intuitions and experience when conducting online transactions. In this article, we develop a fuzzy trust model using fuzzy reasoning to evaluate EC trust. This trust model is based on the information customers expect to find on an EC Website and is shown to increase customers trust towards online merchants. We argue that fuzzy logic is suitable for trust evaluation as it takes into account the uncertainties within e-commerce data and like human relationships; it is often expressed by linguistics terms rather then numerical values. The evaluation of the proposed model will be illustrated using two case studies and a comparison with two evaluation models was conducted to emphasise the importance of usin fuzzy logic

    The price of risk in construction projects: contingency approximation model (CAM)

    Get PDF
    Little attention has been focussed on a precise definition and evaluation mechanism for project management risk specifically related to contractors. When bidding, contractors traditionally price risks using unsystematic approaches. The high business failure rate our industry records may indicate that the current unsystematic mechanisms contractors use for building up contingencies may be inadequate. The reluctance of some contractors to include a price for risk in their tenders when bidding for work competitively may also not be a useful approach. Here, instead, we first define the meaning of contractor contingency, and then we develop a facile quantitative technique that contractors can use to estimate a price for project risk. This model will help contractors analyse their exposure to project risks; and help them express the risk in monetary terms for management action. When bidding for work, they can decide how to allocate contingencies strategically in a way that balances risk and reward

    Condition Assessment Models for Sewer Pipelines

    Get PDF
    Underground pipeline system is a complex infrastructure system that has significant impact on social, environmental and economic aspects. Sewer pipeline networks are considered to be an extremely expensive asset. This study aims to develop condition assessment models for sewer pipeline networks. Seventeen factors affecting the condition of sewer network were considered for gravity pipelines in addition to the operating pressure for pressurized pipelines. Two different methodologies were adopted for models’ development. The first method by using an integrated Fuzzy Analytic Network Process (FANP) and Monte-Carlo simulation and the second method by using FANP, fuzzy set theory (FST) and Evidential Reasoning (ER). The models’ output is the assessed pipeline condition. In order to collect the necessary data for developing the models, questionnaires were distributed among experts in sewer pipelines in the state of Qatar. In addition, actual data for an existing sewage network in the state of Qatar was used to validate the models’ outputs. The “Ground Disturbance” factor was found to be the most influential factor followed by the “Location” factor with a weight of 10.6% and 9.3% for pipelines under gravity and 8.8% and 8.6% for pipelines under pressure, respectively. On the other hand, the least affecting factor was the “Length” followed by “Diameter” with weights of 2.2% and 2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure. The developed models were able to satisfactorily assess the conditions of deteriorating sewer pipelines with an average validity of approximately 85% for the first approach and 86% for the second approach. The developed models are expected to be a useful tool for decision makers to properly plan for their inspections and provide effective rehabilitation of sewer networks.1)- NPRP grant # (NPRP6-357-2-150) from the QatarNational Research Fund (Member of Qatar Foundation) 2)-Tarek Zayed, Professor of Civil Engineeringat Concordia University for his support in the analysis part, the Public Works 3)-Authority of Qatar (ASHGAL) for their support in the data collection

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Updating known distribution models for forecasting climate change impact on endangered species

    Get PDF
    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species’ distribution, instead of building new models that are based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem
    corecore