767 research outputs found

    Invariants for EA- and CCZ-equivalence of APN and AB functions

    Get PDF
    An (n,m)-function is a mapping from F2n{\mathbb {F}_{2}^{n}} to F2m{\mathbb {F}_{2}^{m}}. Such functions have numerous applications across mathematics and computer science, and in particular are used as building blocks of block ciphers in symmetric cryptography. The classes of APN and AB functions have been identified as cryptographically optimal with respect to the resistance against two of the most powerful known cryptanalytic attacks, namely differential and linear cryptanalysis. The classes of APN and AB functions are directly related to optimal objects in many other branches of mathematics, and have been a subject of intense study since at least the early 90’s. Finding new constructions of these functions is hard; one of the most significant practical issues is that any tentatively new function must be proven inequivalent to all the known ones. Testing equivalence can be significantly simplified by computing invariants, i.e. properties that are preserved by the respective equivalence relation. In this paper, we survey the known invariants for CCZ- and EA-equivalence, with a particular focus on their utility in distinguishing between inequivalent instances of APN and AB functions. We evaluate each invariant with respect to how easy it is to implement in practice, how efficiently it can be calculated on a computer, and how well it can distinguish between distinct EA- and CCZ-equivalence classes.publishedVersio

    The complexity of Boolean functions from cryptographic viewpoint

    Get PDF
    Cryptographic Boolean functions must be complex to satisfy Shannon\u27s principle of confusion. But the cryptographic viewpoint on complexity is not the same as in circuit complexity. The two main criteria evaluating the cryptographic complexity of Boolean functions on F2nF_2^n are the nonlinearity (and more generally the rr-th order nonlinearity, for every positive r<nr< n) and the algebraic degree. Two other criteria have also been considered: the algebraic thickness and the non-normality. After recalling the definitions of these criteria and why, asymptotically, almost all Boolean functions are deeply non-normal and have high algebraic degrees, high (rr-th order) nonlinearities and high algebraic thicknesses, we study the relationship between the rr-th order nonlinearity and a recent cryptographic criterion called the algebraic immunity. This relationship strengthens the reasons why the algebraic immunity can be considered as a further cryptographic complexity criterion

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Knapsack Problems in Groups

    Full text link
    We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure

    Multimode Spontaneous Parametric Down-Conversion in the Lossy Medium

    Full text link
    We study the process of multimode Spontaneous Parametric Down--Conversion (SPDC) in the lossy, one dimensional waveguide. We propose a description using first order Correlation Functions (CF) in the fluorescence fields, as a very fruitful and easy approach providing us with a complete information about the final multimode state. We formulate the equation of the evolution of the multimode CF along the crystal using four characteristic length scales. We solve it analytically in the one mode case and numerically in the multimode case. We capture simultaneous effects of three wave mixing with ultrashort pump, linear propagation and attenuation, and we are able to divide the evolution into three stages and predict it qualitatively. We find that losses do not destroy the quantum properties of SPDC but stabilize the final state

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Experimental investigation of pulsed entangled photons and photonic quantum channels

    Full text link
    The development of key devices and systems in quantum information technology, such as entangled particle sources, quantum gates and quantum cryptographic systems, requires a reliable and well-established method for characterizing how well the devices or systems work. We report our recent work on experimental characterization of pulsed entangled photonic states and photonic quantum channels, using the methods of state and process tomography. By using state tomography, we could reliably evaluate the states generated from a two-photon source under development and develop a highly entangled pulsed photon source. We are also devoted to characterization of single-qubit and two-qubit photonic quantum channels. Characterization of typical single-qubit decoherence channels has been demonstrated using process tomography. Characterization of two-qubit channels, such as classically correlated channels and quantum mechanically correlated channels is under investigation. These characterization techniques for quantum states and quantum processes will be useful for developing photonic quantum devices and for improving their performances.Comment: 12 pages, 8 figures, in Quantum Optics in Computing and Communications, Songhao Liu, Guangcan Guo, Hoi-Kwong Lo, Nobuyuki Imoto, Eds., Proceedings of SPIE Vol. 4917, pp.13-24 (2002
    • …
    corecore