
https://doi.org/10.1007/s12095-021-00541-8

Invariants for EA- and CCZ-equivalence of APN and AB
functions

Nikolay S. Kaleyski1

Received: 16 February 2021 / Accepted: 6 July 2021 /
© The Author(s) 2021

Abstract
An (n, m)-function is a mapping from F

n
2 to F

m
2 . Such functions have numerous applica-

tions across mathematics and computer science, and in particular are used as building blocks
of block ciphers in symmetric cryptography. The classes of APN and AB functions have
been identified as cryptographically optimal with respect to the resistance against two of
the most powerful known cryptanalytic attacks, namely differential and linear cryptanaly-
sis. The classes of APN and AB functions are directly related to optimal objects in many
other branches of mathematics, and have been a subject of intense study since at least the
early 90’s. Finding new constructions of these functions is hard; one of the most significant
practical issues is that any tentatively new function must be proven inequivalent to all the
known ones. Testing equivalence can be significantly simplified by computing invariants,
i.e. properties that are preserved by the respective equivalence relation. In this paper, we
survey the known invariants for CCZ- and EA-equivalence, with a particular focus on their
utility in distinguishing between inequivalent instances of APN and AB functions. We eval-
uate each invariant with respect to how easy it is to implement in practice, how efficiently it
can be calculated on a computer, and how well it can distinguish between distinct EA- and
CCZ-equivalence classes.

Keywords CCZ-equivalence · EA-equivalence · Almost perfect nonlinear function ·
Almost bent function · Invariant

Mathematics Subject Classification 2010 06E30; 94A60

1 Introduction

A vectorial Boolean function, or (n, m)-function, is any mapping from the vector space
F

n
2 over the finite field F2 = {0, 1} to the vector space F

m
2 , where n and m are arbitrary

This article belongs to the Topical Collection: Boolean Functions and Their Applications V
Guest Editors: Lilya Budaghyan, Claude Carlet, Tor Helleseth and Kaisa Nyberg

� Nikolay S. Kaleyski
Nikolay.kaleyski@uib.no

1 Universitetet i Bergen, 5007 Bergen, Norway

Published online: 22 October 2021

Cryptography and Communications (2021) 13:995–1023

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-021-00541-8&domain=pdf
http://orcid.org/0000-0002-9695-1454
mailto: Nikolay.kaleyski@uib.no

natural numbers. In the particular case when m = 1, we refer to (n, 1)-functions simply
as Boolean functions. In this sense, an (n,m)-function can be seen as an m-dimensional
vector of (n, 1)-functions, hence the name. Vectorial Boolean functions are natural objects
that have many applications within computer science and mathematics. Perhaps the simplest
way to appreciate their utility is to observe that an (n,m)-function can be interpreted as an
operation that accepts n bits as input, and returns m bits as output. Since virtually all data can
be encoded as sequences of bits, this means that any transformation that operates on data of
any kind can be naturally represented in terms of Boolean functions and vectorial Boolean
functions. In particular, this is how all data is represented on an electronic computer; and
one need look no further than the indicator function of a subset, or the incidence matrix
of a graph to find examples of mathematical structures that can be encoded using binary
functions. The spectrum of applications of vectorial Boolean functions includes areas as
diverse as set theory, artificial intelligence, and algorithm design.

Vectorial Boolean functions also play a crucial role in cryptography, where they are used
as building blocks of both stream and block ciphers. In both cases, the properties of the
functions used directly influence the ultimate strength of the encryption; and thus, investi-
gating the cryptographic properties of (n,m)-functions, and finding concrete instances of
such functions that provide good resistance against various types of cryptanalytic attacks is
an important topic of research. A prominent example is the Rijndael block cipher, selected
as the Advanced Encryption Standard (AES) by the US National Institute of Standards and
Technology (NIST), which is one of the most secure and arguably the most popular block
cipher to date [29, 30]. One of the major factors contributing to the security of Rijndael
is a strong vectorial Boolean function that lies at the core of the encryption. In general, if
a particular form of cryptanalysis succeeds because of a cryptographically weak function,
this is due to the function having some undesirable property that can be exploited by the
attacker. Researchers have identified several properties and statistics that measure the resis-
tance of a function to different kinds of attacks. This quantification of the cryptographic
strength of vectorial Boolean functions has the great advantage that it allows the security of
a given function to be measured in an objective and systematic way; and, what is of equal
importance, provides researchers in the field with a concrete goal, namely to find functions
attaining the optimum values of these properties.

Two of the most powerful attacks against modern block ciphers are the so-called differen-
tial cryptanalysis [5] and linear cryptanalysis [45]. The statistics that measure the resistance
of a function F to these two attacks are called differential uniformity (denoted �F) and non-
linearity (denoted NL(F)), respectively. The differential uniformity of a function should
be as low as possible, and the nonlinearity should be as high as possible in order to resist
these two attacks. In the case of (n,m)-functions with n = m (which is arguably the most
practically significant and, therefore, well-studied case), the classes of (n, n)-functions that
achieve optimum differential uniformity and nonlinearity are called almost perfect nonlin-
ear (APN) and almost bent (AB) functions, respectively. These two classes were introduced
in the early 90’s [3, 46, 47], and have been the subject of intense study ever since. The fact
that these functions are cryptographically optimal implies that they have very little structure
or patterns that can be exploited by a malicious attacker; unfortunately, this also means that,
in general, they have very few properties that can be used analytically or constructively (we
note, however, that we are not claiming that e.g. APN and AB functions must lack any kind
of structure whatsoever; and we remark that some cryptographically optimal functions do
have strong structural properties; for instance, the earliest known APN functions are mono-
mials, and so they have a very simple polynomial representation). Intuitively, this is one
explanation for why their study is difficult, both theoretically and computationally. This is

996 Cryptography and Communications (2021) 13:995–1023

witnessed by the fact that a number of long-standing questions and problems on APN and
AB functions remain open to this day. The reader is referred to [25] for a comprehensive
overview of the background and results in the area, including a list of open problems.

One promising vector of attack for resolving some of these problems is to find new
instances of APN and AB functions. In this respect, it must be noted that any AB func-
tion is necessarily APN; the converse does not hold in general, although any quadratic
APN function over F2n with odd n is AB [26]. This means that AB functions provide
optimum resistance to both differential and linear cryptanalysis; and that searching for
APN functions is a natural way to search for AB functions as well. The number of (n, n)-
functions is astronomical even for small values of n: there are (2n)2n

such functions over
the finite field F2n for any natural number n, and so for values as small as n = 6, an
exhaustive search is out of the question at the current level of computational technol-
ogy. On the one hand, this makes it necessary to use more sophisticated combinations
of mathematical characterizations and computational methods in order to find new APN
functions; on the other hand, the large number of (n, n)-functions suggests that the total
number of APN functions (despite them being a rather special class of functions) also grows
rapidly with the dimension n, and their enumeration and classification quickly become
infeasible.

To make the classification of some given class of objects manageable, a typical approach
is to only classify them up to some suitable notion of equivalence that preserves the proper-
ties of interest to our study. In the case of APN and AB functions, these are the differential
uniformity and the nonlinearity. At present, there are several known notions of equivalence
on vectorial Boolean functions that preserve both of these properties. The most general
known relation of this type is called Carlet-Charpin-Zinoviev equivalence (after the names
of its inventors) [26], or CCZ-equivalence for short; results on APN and AB functions in
the literature are typically given up to CCZ-equivalence. A less general, but also very fre-
quently used equivalence relation is the extended affine equivalence, or EA-equivalence
for short. Although it is known to be strictly less general than CCZ-equivalence (even if
we allow taking inverses of permutations in addition to EA-equivalence) [20], it has been
shown that CCZ- and EA-equivalence coincide in the case of quadratic APN functions (in
the sense that two quadratic APN functions are CCZ-equivalent if and only if they are
EA-equivalent) [53]; since the vast majority of known APN functions are quadratic, this
makes the study of EA-equivalence and its properties almost as useful in practice as that
of CCZ-equivalence.

Classifying functions up to CCZ-equivalence (or EA-equivalence) dispenses, at least
partly, with the problem of their overwhelming number, but it raises another issue, namely:
how to prove the equivalence or inequivalence of two given functions. This is a matter of
great practical importance in the study of APN functions, since any “new” function obtained
from a computational search or theoretical construction needs to be compared for equiva-
lence against representatives from the equivalence classes of all known APN functions; this
“new” function is then genuinely new only in the case that it is not equivalent to any of
these representatives. Despite the definitions of both EA-equivalence and CCZ-equivalence
being natural and simple, testing whether two given functions are equivalent is a very hard
problem. Showing the inequivalence of two functions theoretically is only possible in some
special cases, and is still very laborious; see e.g. [17], which contains a theoretical proof of
inequivalence to the Gold, Kasami, and inverse power APN functions of an infinite family
of APN binomials. Computationally testing equivalence is quite difficult too: to the best of
our knowledge, there is currently no algorithm that can decide the CCZ-equivalence of any
two functions directly from the definition; instead, one typically uses tests relying on the

997Cryptography and Communications (2021) 13:995–1023

isomorphism of linear codes [11, 37]. These tests have a number of shortcomings: they are
difficult to implement (provided one does not have a working implementation of a test for
linear code isomorphism); the computation time and memory consumption is significant;
and, at least in the case of some implementations, these tests can give false negatives. More
precisely, the procedure that we have available either outputs the form of the isomorphism
showing that the linear codes corresponding to the tested functions are equivalent, or it out-
puts “false” in the case that no such isomorphism can be found; the latter, however, can
happen either because the procedure has traversed the entire search space and found no such
isomorphism (in which case we can correctly conclude that the functions are inequivalent);
or it can be because the procedure has run out of memory and has been forced to abort early,
in which case we can still get “false” as a result even though the functions may be equiva-
lent. Despite this, the linear code test remains the only option for testing CCZ-equivalence
in the general case. Other algorithms, operating from first principles, have been published
for dealing with specialized cases of CCZ- and EA-equivalence, such as in the case of affine
and linear equivalence [6], and the so-called restricted EA-equivalence [22, 48]; and, more
recently, an algorithm relying on invariants for testing EA-equivalence for even dimensions
[42], and an algorithm for testing the EA-equivalence of quadratic functions (for both even
and odd dimensions) [23].

The classification of functions into equivalence classes can be significantly simplified
and sped-up by means of invariants. An invariant is a property or statistic that is preserved
under a given equivalence relation. For instance, if p is an integer-valued statistic com-
putable for any (n, n)-function F , and is also a CCZ-invariant, then for any F,G : Fn

2 → F
n
2

that are CCZ-equivalent, we must have p(F) = p(G). Invariants can facilitate the classifi-
cation in several ways. Suppose that a tentative new instance of an APN function is obtained
via some construction or computer search. First, the values of different invariants for this
potentially new function can be computed and compared with those values for representa-
tives from the known classes of APN functions. If the set of values for the new function
does not match that of any known representative, then we can immediately conclude that
the discovered function is indeed new, and no further tests need to be performed. If, how-
ever, the set of values does coincide with that of one or more of the known representatives,
then only the representatives with that exact same set of values need to be tested for equiva-
lence against the newly discovered function; this will typically be a significantly smaller set
of functions. Most invariants are numerical values, which makes it easier to verify that the
computation has produced a meaningful result, and precludes the possibility of false posi-
tives or false negatives. Finally, some invariants have a natural interpretation, and describe
some property or structure of the function, which can be significant and useful in contexts
other than deciding equivalence. Constantly updated tables of the known invariants for all
known CCZ-inequivalent APN representatives can be found online at [1].

In this paper, we survey the known invariants for (n, n)-functions, with an emphasis on
their utility for the classification of APN and AB functions. We evaluate each invariant with
respect to several desirable properties. Ideally, we would like an invariant to be:

• simple: in other words, that it should not require any complicated algorithms or special
software for its computation; ideally, an invariant would be easily implementable on
any general purpose programming language without specialized tools or knowledge;

• efficient: that the invariant can be computed quickly, and without using too much
memory for a reasonable range of dimensions n;

• useful: that it should take many different values for APN functions from distinct
equivalence classes.

998 Cryptography and Communications (2021) 13:995–1023

2 Preliminaries

Let n, m be natural numbers. An (n,m)-function, or vectorial Boolean function is a map-
ping between the vector spaces F

n
2 and F

m
2 over the finite field with two elements, F2. In

the following, we concentrate on the case n = m, but we remark in passing that (n, 1)-
functions are called simply Boolean functions (as opposed to vectorial Boolean functions).
An (n,m)-function F can be seen as a vector F = (f1, f2, . . . , fm) of Boolean (n, 1)-
functions, each function fi(x) giving the value of the i-th coordinate of F(x) for x ∈ F

n
2.

The functions fi are called the coordinate functions of F . The component functions of
F are all non-zero linear combinations of its coordinate functions. For b ∈ F

m
2 , the compo-

nent function corresponding to the linear combination defined by b is denoted by Fb; that
is, Fb = ∑m

i=1bifi , where b = (b1, b2, . . . , bm) and fi are the coordinate functions of
F . As we shall see in Section 2.2, some cryptographic properties of an (n,m)-function F

are expressed in terms of the Hamming distance between its components and certain other
functions. We recall that the Hamming distance dH (F,G) between two (n,m)-functions
F and G is the number of inputs x ∈ F

n
2 on which the values of F and G are distinct, i.e.

dH (F,G) = #{x ∈ F
n
2 : F(x) �= G(x)}.

In the discussion of some of the invariants, we will use the notion of a multiset. Intu-
itively, a multiset is an unordered collection of elements in which the same element can
occur multiple times. We will refer to the number of times that an element e occurs in a mul-
tiset M as the multiplicity of e in M , and will refer to the collection of the multiplicities of
all elements in M as the multiplicities of M . Multisets will be denoted by square brackets,
e.g. [a, b, c], in contrast to ordinary sets, which are denoted by curly braces, e.g. {a, b, c}.

2.1 Representation of vectorial Boolean functions

A vectorial Boolean function F from F
n
2 to F

m
2 can be represented in several different ways.

Perhaps the simplest is the so-called truth-table representation, which is simply an exhaus-
tive list of the values F(x) for all possible inputs x ∈ F

n
2. The truth table for a (3, 3)-function

is given as an example in Table 1. The truth-table representation is rather efficient for
implementing vectorial Boolean functions on a computer; in fact, the straightforward imple-
mentations of most invariants work best if the input (n, n)-function is given as a truth-table.
Nonetheless, it has a number of serious shortcomings that make other representations prefer-
able: the size of the table grows exponentially with n and m; it is difficult to observe any
properties of the function from its truth table without performing non-trivial computations;
and it is difficult to express infinite families and constructions via truth tables.

Table 1 Truth table of a
(3, 3)-function x F(x)

000 000

001 101

010 110

011 111

100 100

101 011

110 001

111 010

999Cryptography and Communications (2021) 13:995–1023

Any (n,m)-function can be uniquely represented as a multivariate polynomial of the
form

F(x1, x2, . . . , xn) =
∑

I⊆{1,2,...,n}
aI

∏

i∈I

xj ,

where aI ∈ F
m
2 for all I ⊆ {1, 2, . . . , n} and the variables x1, x2, . . . , xn take values in F2.

This representation is known as the algebraic normal form (ANF) of F . In some cases,
the ANF allows for a significantly more compact representation of an (n, n)-function (when
the dimensions n and m are large, so that the size of the truth table becomes prohibitive;
while the number of terms with a non-zero coefficient in the ANF is small). The degree
of the ANF (as a multivariate polynomial) is called the algebraic degree of F ; due to the
uniqueness of the ANF, this notion is well defined. The algebraic degree has cryptographic
significance (it must be large in order to resist higher-order differential attacks) and, as we
shall see later, it is invariant under EA-equivalence (but not under CCZ-equivalence).

A function of algebraic degree at most 1, resp. 2, resp. 3 is called affine, resp. quadratic,
resp. cubic. Any affine (n, n)-function A satisfies

A(x) + A(y) + A(z) = A(x + y + z)

for any x, y, z ∈ F
n
2, and thus this notion coincides with the usual definition of affinity. If

an affine function L satisfies L(0) = 0 so that

L(x) + L(y) = L(x + y)

for any x, y ∈ F
n
2, it is called linear. Affine and linear functions as defined here behave in

the same way as they do over any vector space, and so all familiar notions and principles
from linear algebra can be carried over to the case of vectorial Boolean functions.

For example, the function given by its truth-table in Table 1 has the ANF

F(x1, x2, x3) = (0, 1, 1)x1x2 + (0, 1, 0)x1x3 + (1, 0, 0)x2x3 +
(1, 0, 0)x1 + (1, 1, 0)x2 + (1, 0, 1)x3. (1)

We can immediately see that its algebraic degree is 2; in other words, this is a quadratic
function. In this particular case, the size of the ANF is not significantly smaller than that of
the truth-table; but as the dimension n increases, the disparity between the size of the two
representations becomes more pronounced.

Let F2n denote the finite field with 2n elements for some natural number n. Recall that
F2n can be represented as an n-dimensional vector space over the prime field F2. Thus, Fn

2
can be identified with F2n , and (n, n)-functions can be seen as mapping from F2n to itself.
This allows any (n, n)-function to be represented as a univariate polynomial of the form

F(x) =
2n−1∑

i=0

aix
i,

where ai ∈ F2n for 0 ≤ 1 ≤ 2n − 1. This is known as the univariate representation of
F ; just like the ANF, it always exists and is uniquely defined. The algebraic degree can
be obtained directly from the univariate representation as the maximum binary weight of
an exponent i with a non-zero coefficient ai . The binary weight (also called 2-weight) of
a natural number i, denoted by w2(i), is the number of distinct powers of 2 in its binary
decomposition; that is, if we write i as i = ∑

j aj 2j for aj ∈ {0, 1}, then w2(i) = ∑
j aj .

Equivalently, w2(i) is the number of non-zero bits in the binary representation of i (for

1000 Cryptography and Communications (2021) 13:995–1023

instance, w2(11) = 3 since 11 can be written as 23 + 21 + 20, or as 1011 in binary). The
algebraic degree of F is then

deg(F) = max{w2(i) : 0 ≤ i ≤ 2n − 1, ai �= 0}.
We also remark that the component functions of F can be expressed using the absolute trace
function Tr : F2n → F2 as the Boolean functions Fb : x �→ Tr(bF (x)) for all non-zero
b ∈ F2n . We recall that the absolute trace is defined by

Tr(x) = x + x2 + x22 + · · · + x2n−1
.

The univariate representation is by far the most widely used at the moment. A decisive
reason for this is that many of the known APN functions (including infinite constructions
and families) have a very simple form under this representation; a classic example is the
Gold function x3, which is known to be APN over F2n for any natural number n [38,
46]. Indeed, the (3, 3)-function represented by Table 1 and the ANF in (1) is precisely x3

over F23 . At the time of writing, most known infinite constructions of APN functions are
expressed in the univariate representation; there are also a few constructions based on the
so-called bivariate representation (that we do not treat here, but briefly discuss below). A
list of the known infinite families of APN monomials is given in Table 2, and a list of the
known infinite polynomial APN families is given in Table 3.

The above is by no means an exhaustive list of known representations of vectorial
Boolean functions. Nonetheless, it should provide sufficient context for the sequel, and we
shall not go into any further details on the topic of representation of (n, n)-functions. We
will, however, mention the bivariate representation, in which a (2n, 2n)-function can be rep-
resented as pair of polynomials (F1(x, y), F2(x, y)) in two variables (see e.g. [25], p.47);
the representation of a quadratic function by means of a so-called quadratic APN matrix
(QAM) [56]; and the representation of a function by means of the values of its first-order
derivatives [50].

2.2 APN and AB functions

Let F be an (n,m)-function for some natural number n, and denote by δF (a, b) the number
of solutions x ∈ F2n to the equation

F(x + a) + F(x) = b (2)

for some a, b ∈ F2n . Note that the equation expresses the difference between two outputs
of F whose corresponding inputs are at distance a. If for some given a, some value of b is

Table 2 Known infinite families of APN power functions over F2n

Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [38, 46]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i + 1 [40, 44]

Welch 2t + 3 n = 2t + 1 3 [33]

Niho 2t + 2t/2 − 1, t even
n = 2t + 1

(t + 2)/2
[32]

2t + 2(3t+1)/2 − 1, t odd t + 1

Inverse 22t − 1 n = 2t + 1 n − 1 [3, 46]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3 [34]

1001Cryptography and Communications (2021) 13:995–1023

Table 3 Known infinite families of quadratic APN polynomials over F2n

ID Functions Conditions Source

F1-F2 x2s+1 + u2k−1x2ik+2mk+s
n = pk, gcd(k, 3) = gcd(s, 3k) =
1, p ∈ {3, 4}, i = sk mod p,m =
p − i, n ≥ 12, u primitive in F

∗
2n

[17]

F3 sxq+1 + x2i+1 + xq(2i+1) +
cx2i q+1 + cqx2i+q

q = 2m, n = 2m, gcd(i,m) = 1,
c ∈ F2n , s ∈ F2n \ Fq ,X2i+1 +
cX2i + cqX + 1 has no solution x

s.t. xq+1 = 1

[15]

F4 x3 + a−1Trn(a3x9) a �= 0 [18]

F5 x3 + a−1Tr3
n(a

3x9 + a6x18) 3|n, a �= 0 [19]

F6 x3 + a−1Tr3
n(a

6x18 + a12x36) 3|n, a �= 0 [19]

F7-F9 ux2s+1 +u2k
x2−k+2k+s +vx2−k+1 +

wu2k+1x2s+2k+s
n = 3k, gcd(k, 3) = gcd(s, 3k) =
1, v, w ∈ F2k , vw �= 1, 3|(k +
s), u primitive in F

∗
2n

[9]

F10 (x + x2m
)2k+1 + u′(ux +

u2m
x2m

)(2
k+1)2i +u(x+x2m

)(ux+
u2m

x2m
)

n = 2m,m � 2 even,
gcd(k,m) = 1 and i � 2
even, u primitive in F

∗
2n , u

′ ∈
F2m not a cube

[57]

F11 a2x22m+1+1 + b2x2m+1+1 +
ax22m+2 + bx2m+2 + (c2 + c)x3

n = 3m,m odd, L(x) = ax22m +
bx2m + cx satisfies the conditions
of Lemma 8 of [14]

[14]

F12 u(uqx + xqu)(xq + x) + (uqx +
xqu)22i+23i +a(uqx+xqu)22i

(xq +
x)2i + b(xq + x)2i+1

q = 2m, n = 2m, gcd(i,m) = 1,
x2i+1 + ax + b has no roots in F2m

[52]

F13 x3 + a(x2i+1)2k + bx3·2m +
c(x2i+m+2m

)2k

n = 2m = 10, (a, b, c) =
(β, 1, 0, 0), i = 3, k = 2, β

primitive in F22

[21]

n = 2m, m odd, 3 � m,
(a, b, c) = (β, β2, 1), β primitive
in F22 , i ∈ {m−2,m, 2m−1, (m−
2)−1 mod n}

significantly more likely to occur than all others, an attacker can exploit this to derive a cor-
relation between the input and output of the function. This is the basic idea of differential
cryptanalysis, which is one of the most powerful known attacks against block ciphers [5].
In order to be resistant to such attacks, the number of solutions to (2) should be as uniform
as possible over all possible choices of b ∈ F2n for any fixed non-zero a ∈ F2n . The differ-
ential uniformity of F , denoted by �F , is the largest value of δF (a, b) over all choices of
0 �= a ∈ F2n and b ∈ F2n . Symbolically:

�F = max{δF (a, b) : a, b ∈ F2n , a �= 0}.
The differential uniformity should be as low as possible in order to resist differential crypt-
analysis, and since x +a is a solution to (2) whenever x is, the differential uniformity of any
(n, n)-function can be no lower than two. A function is called almost perfect nonlinear
(APN) if it achieves this trivial lower bound with equality.

The differential spectrum DF of F is the multiset of the values of δF (a, b) over all
a, b ∈ F2n with a �= 0; that is,

DF = [δF (a, b) : a, b ∈ F2n , a �= 0].

1002 Cryptography and Communications (2021) 13:995–1023

Clearly, a function is APN if and only if its differential spectrum consists of the two values 0
and 2. The differential spectrum is, in fact, invariant under CCZ-equivalence, but it is practi-
cally useless for the purpose of distinguishing inequivalent APN functions. It does, however,
take a much more prominent role as an invariant of the ortho-derivatives of quadratic APN
functions, as described in Section 4.6.

We remark that the function DaF(x) = F(x + a) + F(x) is called the (discrete first-
order) derivative of F in direction a ∈ F2n . An APN function can be equivalently defined
as a function all of whose derivatives DaF for a �= 0 are 2-to-1 functions.

Another powerful attack against block ciphers is linear cryptanalysis [45], which
attempts to approximate the behavior of a function by means of linear functions. Intu-
itively, a function F should be as far away from all linear functions as possible in order
to be resistant to this attack. The nonlinearity of a Boolean function f : F2n → F2 is
defined as the minimum Hamming distance between f and any affine (n, 1)-function. This
notion can then be naturally generalized to the case of vectorial Boolean functions through
the nonlinearity of their component functions. The nonlinearity of an (n, n)-function F ,
denoted by NL(F), is defined as the minimum Hamming distance between any com-
ponent function of F , and any affine (n, 1)-function. The nonlinearity should be as high
as possible in order to resist linear cryptanalysis, and it has been shown [27, 51] that
it satisfies

NL(F) ≤ 2n−1 − 2(n−1)/2

for any (n, n)-function F . The functions that attain this upper bound with equality are called
almost bent (AB) functions. Note that AB functions exist only for odd values of n. In the
case of even n, functions with nonlinearity 2n−1 − 2n/2 are known, and they are conjec-
tured to be optimal with respect to nonlinearity; nonetheless, the exact upper bound on the
nonlinearity for (2n, 2n)-functions remains an open question.

It is also known that any AB function is necessarily APN. The converse does not hold
in general, although it is known that any quadratic APN (n, n)-function is AB when n is
odd [26]. Thus, AB functions provide optimal resistance against both linear and differential
cryptanalysis. In particular, constructing new instances and families of APN functions is a
natural approach to finding new constructions of AB functions.

Besides providing the best possible resistance to differential and linear cryptanalysis,
respectively, APN and AB functions correspond to optimal objects in other areas of mathe-
matics and computer science, including coding theory, combinatorics, projective geometry,
and sequence design. Developments in the study of cryptographic vectorial Boolean func-
tions therefore naturally lead to progress in other areas; and results and methods used in
these related fields of study can be applied to the investigation of APN and AB functions.
In essence, the natural definitions of APN and AB functions make them significant, univer-
sal objects that transcend the immediate practical needs of cryptography and have a much
broader relevance.

In addition to the differential uniformity and nonlinearity, the algebraic degree of an
(n, n)-function is also one of its important cryptographic properties; it should be high in
order to provide good resistance against higher-order differential attacks. In addition, there
are quite a few other statistics and properties for measuring the cryptographic strength
of a function against various kinds of attacks. Since in this paper we mostly focus on
invariants with respect to the classification of APN and AB functions, we do not go into
further details here. We refer the reader to [25] for a more comprehensive treatment of the
subject.

1003Cryptography and Communications (2021) 13:995–1023

2.3 Equivalence relations

Equivalence relations on (n, n)-functions that preserve the differential uniformity and non-
linearity are used to reduce the number of functions that need to be studied and classified.
Currently, CCZ-equivalence is the most general known equivalence relation preserving
these properties, and so classification and computational results on APN and AB function
are typically given up to CCZ-equivalence.

The notion of the CCZ-equivalence of two functions is expressed in terms of their graphs.
Let F and G be (n, n)-functions for some natural number n. The graph of F is the set
�F = {(x, F (x)) : x ∈ F2n}. Note that for any (n, n)-function F , its graph �F is contained
in the set F2

2n of pairs of elements from F2n . The latter can be identified with F22n , and thus
we can assume that �F is contained in F22n . Then F and G are said to be Carlet-Charpin-
Zinoviev equivalent, or CCZ-equivalent for short, if there exists an affine permutation A

of F22n mapping �F to �G, i.e.

{A(x) : x ∈ �F } = �G.

In Section 3, we will concentrate on properties that are left invariant by CCZ-equivalence.
For the time being, we remark that CCZ-equivalence preserves neither the algebraic degree,
nor the bijectivity of the function. This is noteworthy, as both of these can (and have) been
used constructively. In 2010, John Dillon constructed the only currently known instance
of an APN (n, n)-permutation for even n by traversing the CCZ-equivalence class of a
known (non-bijective) APN function over the same field [12]. In a similar vein, most of
the known instances of APN functions listed in the literature are quadratic. As pointed out
in Section 2.2, it is desirable for the algebraic degree to be high in order to resist higher-
order differential attacks. Traversing the CCZ-class of a quadratic APN function may yield
functions of higher algebraic degree that are CCZ-equivalent to it (and hence also APN).

A special case of CCZ-equivalence is the so-called extended affine equivalence, or EA-
equivalence for short. Two (n, n)-functions F and G are said to be EA-equivalent if there
exist affine (n, n)-functions A1, A2, A with A1 and A2 bijective such that

A1 ◦ F ◦ A2 + A = G. (3)

CCZ-equivalence is strictly more general than EA-equivalence combined with taking
inverses of permutations [20]. Nonetheless, the two equivalence relations coincide in the
case when both F and G are quadratic; that is, if F and G are quadratic APN (n, n)-
functions, then F and G are CCZ-equivalent if and only if they are EA-equivalent [53].
In practice, this makes EA-equivalence (and hence, properties that are invariant under EA-
equivalence) almost as useful as CCZ-equivalence in the case of APN functions, since all
known APN instances are equivalent to quadratic functions or monomials, with only a single
known exception for n = 6 [36].

Further specializations of EA-equivalence can be obtained by imposing additional
restrictions on A1, A2 and A. If A = 0 in (3), we say that F and G are affine equivalent. If
A = 0 and A1(0) = A2(0) = 0 (so that A1 and A2 are linear instead of merely affine), we
say that F and G are linear equivalent. Further restrictions have been investigated, such as
the so-called restricted EA-equivalence [22, 48]. These relations are of limited interest in
the APN case, and so we mostly concentrate on the notions of EA- and CCZ-equivalence.

For the sake of completeness, we also mention a special kind of equivalence that can
be defined for two power functions. If F(x) = xe1 and G(x) = xe2 are (n, n)-functions
for some natural numbers e1 and e2, then we say that F and G are cyclotomic equiv-
alent if there exists a natural number k such that 2ke1 = e2(mod 2n − 1) or 2ke−1

1 =

1004 Cryptography and Communications (2021) 13:995–1023

e2(mod 2n − 1), where e−1
1 is the multiplicative inverse of e1 modulo 2n − 1 (if it exists).

We note that this is a special case of affine equivalence and taking inverses of permutations,
since the function xe2 with 2ke1 = e2(mod 2n −1) can be obtained from xe1 by composing
the latter with the linear permutation x �→ x2k

. It is known that if two power functions are
CCZ-equivalent, they are necessarily cyclotomic equivalent [31, 54]. This greatly reduces
the complexity of deciding equivalence in the case of power functions since, unlike EA- and
CCZ-equivalence, testing cyclotomic equivalence is simple and amounts to solving modular
equations.

2.4 Testing equivalence via linear codes

The simplicity of the definitions of the equivalence relations in Section 2.3 belies the com-
plexity of testing them in practice. Indeed, doing so by exhaustive search (for instance, over
all affine permutations of F2

2n in the case of CCZ-equivalence) is only feasible for very small
dimensions. On the other hand, no efficient algorithm for deciding CCZ- or EA-equivalence
from first principles in the general case is known; the algorithm for testing EA-equivalence
from [42] is only effective for even dimensions; the one from [23] concerns only quadratic
functions; and the methods described in [6, 22, 48] apply to certain special cases of EA-
equivalence. We note that cyclotomic equivalence is a notable exception since deciding it
involves verifying the solvability of a small number of modular equations; this can be done
efficiently even for very high dimensions.

Testing CCZ-equivalence is typically done by means of linear codes as described in
[11, 37]. Given any (n, n)-function F , we can associate with it a linear code CF with the
parity-check matrix

MF =
⎛

⎝
1 1 1 1 · · · 1
0 1 α α2 · · · α2n−2

F(0) F (1) F (α) F (α2) · · · F(α2n−2
)

⎞

⎠ , (4)

where α is a primitive element of F2n . Then two (n, n)-functions F and G are CCZ-
equivalent if and only if their associated codes CF and CG are isomorphic, i.e. if there is a
permutation π of {1, 2, . . . , 2n} such that (x1, x2, . . . , xn) is a codeword of CF if and only
if (xπ(1), xπ(2), . . . , xπ(2n)) is a codeword of CG.

The problem of deciding the isomorphism of two linear codes is itself quite difficult.
The advantage of the above reduction is that coding theory is a very well developed area,
and algorithms for testing the isomorphism of linear codes are known and well studied.
Mathematical libraries and programming languages (such as Magma [8]) typically have a
working implementation of such algorithms, and implementing a CCZ-equivalence test then
amounts to simply constructing the parity-check matrices in (4) and passing them to the
relevant coding-theoretic framework.

Testing EA-equivalence can be done in the same way, except that a different associated
code is used [37]. In this case, the parity-check matrix has a different form; once again,
two functions are EA-equivalent if and only if their associated codes are isomorphic. In
practice, the associated codes in the case of EA-equivalence have a larger length than those
for CCZ-equivalence, and so testing EA-equivalence in this way is computationally more
difficult. In practice, one typically uses the test for CCZ-equivalence in the case of quadratic
APN functions since then two functions are CCZ-equivalent if and only if they are EA-
equivalent. In the same paper, it is shown that affine equivalence can be tested in the same
way as well; however, the length of the associated code is even larger than in the case of

1005Cryptography and Communications (2021) 13:995–1023

EA-equivalence, and since vectorial Boolean functions are typically classified up to CCZ-
or EA-equivalence, this last result is of limited practical utility.

Thus, deciding the CCZ-equivalence of two (n, n)-functions is currently only possible
via the isomorphism of linear codes. Unfortunately, this has certain shortcomings. For one,
the computation time and memory requirements increase exponentially with the dimen-
sion n. In practice, we are only able to test functions up to n = 10 on our server; for
higher dimensions, the memory consumption becomes prohibitive. Another problem is that
the current implementation of the isomorphism test in Magma can give false negatives if
it runs out of memory during the computation. This behavior occurs only if the dimen-
sion is high; but it is possible for this to occur for dimensions as low as n = 9 in some
cases.

Table 4 give some sample running times (in seconds) for verifying that two arbitrar-
ily selected APN functions from among the known CCZ-inequivalent representatives over
F2n are indeed CCZ-inequivalent for 6 ≤ n ≤ 10. These sample times are measured
by selecting some pairs of functions at random from among the known APN functions,
and running the linear code isomorphism on them; the times given in the table are aver-
aged over the tested pairs. The computation time in the case of CCZ-equivalent functions
is typically less, since the algorithm terminates as soon as an equivalence is found; while
in the case of inequivalent functions, all possibilities have to be exhausted before a neg-
ative answer can be given. The computation time also depends on the concrete pair of
functions being tested; if one of the functions is a monomial, the computation is gener-
ally faster. For some pairs of functions, the running time can be significantly longer or
shorter; the data given in Table 4 (as well as all other tables in this paper that contain
computation times) are only meant to provide a general idea of how long the computation
lasts in higher dimensions when compared to lower ones (of course, the actual computation
depends on a lot of other factors, such as the computational equipment used, the con-
crete implementation, the number of processes running in parallel, etc.). We stress that the
running times given in the following tables are only meant to give a general idea of the effi-
ciency of different methods, and make no claims about the experiments being statistically
accurate.

One remarkable observation that we can make from the table is that testing CCZ-
equivalence for odd dimensions takes significantly longer than doing so for even dimen-
sions; for instance, we can see that although 8 is greater than 7, the running time for
comparing functions over F27 is typically several times longer than the time for doing the
same over F28 . A possible intuitive explanation for this surprising behavior could be that
the known APN functions over fields of odd extension degree are much more “similar”
to each other (and thus, harder to distinguish) than those over fields of even extension
degree. Indeed, the vast majority of APN functions that we know over any finite field
(regardless of the parity of its extension degree) are quadratic; and we know that any
quadratic APN function over F2n for odd n is AB. Furthermore, AB functions behave
more “predictably” than APN functions in some sense (for instance, they have a fixed

Table 4 Sample times (in seconds) for verifying CCZ-inequivalence over F2n via the linear code equivalence
test

n 6 7 8 9 10

time (s) 0.020 7.170 0.180 8311.830 40.880

1006 Cryptography and Communications (2021) 13:995–1023

value of the nonlinearity, and do not have any bent components; the number of bent com-
ponents is actually one of the invariants under EA-equivalence discussed in Section 4.3,
and can take many distinct values across the known quadratic APN functions over F2n for
even values of n). As we will observe in Sections 3 and 4, some invariants behave simi-
larly, in the sense that they can taken many distinct values for APN functions over finite
fields of even extension degree (and can thus be useful for distinguishing between EA-
or CCZ-inequivalent ones); while the same invariants almost always take the same value
for the known APN functions over F2n with n odd, and so are practically useless in this
respect.

The above considerations further underline the practical importance of invariants. Com-
putational searches can easily produce thousands of functions and, especially in the case of
higher dimensions where testing equivalence can take a long time, partitioning the functions
according to the values of an efficiently computable invariant can save a lot of computation
time. In the case that two inequivalent functions have different values for a certain invariant
(or a combination of invariants), this precludes any possibility of a false negative.

2.5 A note on the computational results

In the following Sections 3 and 4, we survey the most frequently used invariants for clas-
sifying APN and AB functions up to CCZ- and EA-equivalence, and report on some
computational results for measuring how quickly these invariants can be computed, and
how well they can distinguish between distinct CCZ- and EA-equivalence classes. In this
section, we describe the computational equipment that we used and the sets of functions
that we tested the invariants on.

Computations in C and Python were performed on an HP EliteDesk 800 G2 SFF com-
puter, with a quad core 3.2 GHz processor with 15 GB of memory. Computations in Magma
were performed on a server with 56 3.2 GHz cores and 500 GB of memory.

All the experiments that we conduct are for dimensions n ≥ 6 since the classification
of APN functions for n < 6 is already complete [10]. In the case of n = 6, we use the 14
CCZ-inequivalent representatives from the switching classes [36]; 13 of them are quadratic
and represent all CCZ-classes of quadratic functions over F26 [35], while the remaining
function is the only known example of an APN instance CCZ-inequivalent to monomial
and quadratic functions. For n = 7, we use the list of 390 functions from [55, 56] along
with the newly found quadratic APN function from [43]; as shown in [43], the quadratic
representatives therein encompass all possible CCZ-classes of quadratic APN functions over
F27 . For n = 8, we use the 8181 functions from [55]; we note that recently more than 12
000 new inequivalent APN instances have been discovered in F28 [2], but we do not involve
these in the computations since the goal is to give an empiric idea of how efficient the
various invariants are in distinguishing distinct CCZ-classes (rather than to do a complete
classification); a constantly updated list of invariants for the known functions is available
at [1]. For n = 9 and n = 10, we take CCZ-inequivalent representatives from the known
infinite APN families along with the new functions found in [2]; this is necessary, since
some invariants tend to take a lot of different values among the known APN instances, but
only one or two values for instances belonging to the currently known APN families. Since
no classification of APN functions is available for dimensions n ≥ 11, we restrict ourselves
to only computing invariants for a few select functions in order to estimate the computation
time, without making any claims about the distinguishing power of the invariants in those
dimensions.

1007Cryptography and Communications (2021) 13:995–1023

3 Invariants under CCZ-equivalence

3.1 Trivial invariants

The differential uniformity (and, more generally, the differential spectrum) and nonlinearity
are invariant under CCZ-equivalence, but this does not help with the classification of APN
and AB functions, since by definition they have a fixed value of the differential uniformity
and nonlinearity, respectively.

3.2 The extendedWalsh spectrum

3.2.1 Definition

The Walsh transform WF : F2
2n → Z is an integer-valued function that can be associated

with any (n, n)-function F . More precisely, the Walsh transform of F is defined as

WF (a, b) =
∑

x∈F2n

(−1)b·F(x)+a·x, (5)

where “·” denotes a scalar product, or dot product on F2n (or, equivalently, on F
n
2). The

properties of the Walsh transform do not depend on the concrete choice of the scalar product.
There are at least two frequently used choices:

• if the multiplicands a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are viewed as n-
dimensional binary vectors in F

n
2, the product can be defined as a · b = a1b1 + a2b2 +

· · · + anbn, with addition and multiplication being over F2;
• the product can also be defined as a · b = Tr(ab), where Tr : F2n → F2 is the absolute

trace function from F2n to the prime field F2; in this case, the operands a and b are
multiplied in the finite field, and then this product is mapped onto F2 via the trace.

The former realization tends to be more suitable for implementing the Walsh transform in
a general-purpose programming language, while the latter is typically used in theoretical
proofs and constructions.

The values WF (a, b) of the Walsh transform are referred to as Walsh coefficients. The
Walsh spectrum of an (n, n)-function F is the multiset of the values of its Walsh coeffi-
cients for all possible a, b ∈ F2n . The extended Walsh spectrum WF of F is the multiset
of the absolute values of all of the Walsh coefficients of F , that is

WF = [|WF (a, b)| : a, b ∈ F2n].

The extended Walsh spectrum is invariant under CCZ-equivalence.
As we will see in the evaluation below, the extended Walsh spectrum is not a very use-

ful invariant in terms of its distinguishing power. Nonetheless, it is a good idea to compute
it as a first step in analyzing a function, since the computation of several of the following
invariants either require, or are facilitated by, knowledge of all values of the Walsh trans-
form. Furthermore, it does become useful in distinguishing inequivalent quadratic APN
functions when applied to their ortho-derivatives rather than to the functions themselves;
ortho-derivatives are described in Section 4.6.

1008 Cryptography and Communications (2021) 13:995–1023

3.2.2 Evaluation

The Walsh transform can be implemented easily on any programming language; its com-
putation from (5) requires nothing more complicated than basic arithmetic operations
(addition, modulation, and XOR, and possibly finite field multiplication depending on how
the scalar product is implemented). On algebra systems such as Magma [8] that include
built-in functionality for computations over finite fields, both implementations can be easily
realized. Furthermore, there are more sophisticated methods such as the so-called butterfly
transform allowing the set of all Walsh coefficients of a given function to be computed even
more efficiently (see Algorithm 9.3 on p. 276 in [41]).

Depending on the implementation, the Walsh transform can be computed very effi-
ciently. A straightforward implementation in C taking the truth table of an (n, n)-function
as input needs around 20 seconds to compute the entire Walsh spectrum for n = 10; further
measurements are provided in Table 5 below. The memory consumption is negligible.

Unfortunately, the extended Walsh spectrum does not do a good job of distinguishing
between inequivalent functions. Among all known APN instances F over F2n for odd values
of n, there are only two possible values of WF : all known APN functions except for the
inverse power function x2n−2 and the Dobbertin power function x24i+23i+22i+2i−1 for n = 5i

have the so-called Gold-like spectrum (that is, the same as the Gold function x3); while the
inverse power function and the Dobbertin power function share the same extended Walsh
spectrum which is distinct from that of any other known APN function. We note that the
Dobbertin power function is only defined for dimensions n that are divisible by 5 (so that
the first two odd dimensions for which it is defined are n = 5 and n = 15), and so its
characteristic Walsh spectrum is not reflected in Table 5, which only accounts for the values
of the Walsh spectra in the range 6 ≤ n ≤ 10.

For n = 6 and n = 10, we observe a similar partition. More precisely, all known APN
functions over F26 have a Gold-like spectrum, except for one (function 2.5 from [36]); and
all functions over F210 have a Gold-like spectrum, except for the Dobbertin power function
x339. For n = 8, the situation is a bit more varied. We know more than 20 000 CCZ-
inequivalent APN functions over F28 [2], and these have six distinct values of the extended
Walsh spectrum. Still, the vast majority of the known APN functions have a Gold-like spec-
trum; and it is remarkable that the same is true for all known polynomial (as opposed to
monomial) APN functions (regardless of the dimension n) that have been classified into
infinite families.

3.3 Invariants from associated designs

3.3.1 Definition

An incidence structure is a triple (P,B,I), where P = {p1, p2, . . . , pm} is a set of
points, B = {b1, b2, . . . , bn} is a set of blocks, and I ⊆ P × B is an incidence relation.

Table 5 Time for computing the extended Walsh spectrum in C

n 6 7 8 9 10 11 12

time (s) 0.023 0.076 0.391 2.863 22.566 171.602 1410.009

total 14 491 21 115 46 21 – –

values 2 2 6 2 2 – –

1009Cryptography and Communications (2021) 13:995–1023

Typically, we assume that the blocks in B are subsets of P , and the incidence relation I is
set membership. The notion of an incidence structure is quite natural and general; the field
of combinatorial design theory studies incidence structures called block designs. We can
associate to any incidence structure a so-called incidence matrix, which is a binary m × n

matrix M representing the incidence relation I . More precisely, for any i, j in the range
1 ≤ i ≤ m and 1 ≤ j ≤ n, the element Mi,j on the i-th row and j -th column of M is equal
to 1 if (pi, bj) ∈ I; and is equal to 0 otherwise. We refer the reader to [4] or [28] for more
background on incidence structures and combinatorial designs.

Given any (n, n)-function F , two designs can be associated with it [36]. In both cases,
the set of points is simply F

2
2n , that is, the set of all pairs of elements from the finite field.

The first design is denoted by dev(GF), and its blocks are of the form

{(x + a, F (x) + b) : x ∈ F2n}
for a, b ∈ F2n . The second design is denoted by dev(DF), and its blocks are the sets

{(x + y + a, F (x) + F(y) + b) : x, y ∈ F2n}
for a, b ∈ F2n . The rank of the incidence matrix of dev(GF) is called the �-rank of F , and
the rank of the incidence matrix of dev(DF) is called the �-rank of F . The �- and �-rank
are shown to be invariant under CCZ-equivalence, and are two of the currently most widely
used invariants in practice.

The orders of the automorphism groups of dev(GF) and dev(DF) are also CCZ-
invariant, but their computation is only feasible for small dimensions, and so they are not
quite as useful as the �- and �-rank. Nonetheless, these automorphism groups give rise to
a CCZ-invariant that can be quite useful in practice: the order of the so-called multiplier
group. The multiplier group is the subgroup of the automorphism group of dev(GF) con-
sisting of automorphisms of a special form; its order, denoted by M(GF), is invariant under
CCZ-equivalence, and can be computed much more efficiently than the order of the full
automorphism group. We note that the formal definition of the multiplier group is some-
what technical, and does not contribute anything to the discussion; we omit it, and refer the
reader to [36] instead.

3.3.2 Evaluation

The definition of these invariants is conceptually simple, although it does require familiar-
ity with the notion of a combinatorial design and its incidence matrix (and automorphism
group, in the case of the M(GF)). In the case of the �- and �-rank, the incidence matrix
corresponding to dev(GF) and dev(DF) can be constructed quite easily. The main issue
is the computation of its rank, which requires a sophisticated implementation in order to
be efficiently computable in practice. In both cases, we need to compute the rank of a
binary 22n × 22n matrix (whose construction takes significant time and which occupies a
lot of memory, especially for higher dimensions), and a straightforward implementation of
say Gaussian elimination is not nearly fast enough. One is thus forced to rely on software
libraries or algebra systems (such as Magma) that implement efficient algorithms for com-
puting the rank of a matrix; or, otherwise, to implement such highly non-trivial algorithms
oneself.

Computing the �- and �-rank is fairly efficient for small dimensions, but the time com-
plexity grows exponentially; for n = 10, computing a single �-rank can take more than a
week. A summary of the average computation times (in seconds) is given in Table 6. The
real bottleneck, however, is the memory consumption; the 500 GB of memory available

1010 Cryptography and Communications (2021) 13:995–1023

Table 6 Computation times (in seconds) for the �-rank, the �-rank, and the order of M(GF)

n 6 7 8 9 10

�-rank 2 15 138 4229 899024

�-rank 2 20 308 6976 –

M(GF) 0.010 0.120 0.100 11.330 8.710

on our server suffice only for computing �-ranks up to dimension 10, and �-ranks up to
dimension 9.

Despite these shortcomings, the �-rank, �-rank, and the order M(GF) of the multiplier
group are rather useful invariants, as they can take on a lot of distinct values for the known
functions. Table 7 gives a summary of the number of distinct values that the �-rank, �-
rank, and M(GF) can take individually, and the number of distinct combinations of values
that they can take on together. Note that computing �-ranks for n ≥ 10 and computing any
of the invariants from this section for n ≥ 11 is currently impossible due to insufficient
memory on our server.

The values of the design invariants for the 35 new functions over F29 and the 5 new
functions over F210 from [2] are given below in Tables 8 and 9. The functions are indexed in
the order in which they appear in the dataset associated to [2]. A complete listing is available
online at [1].

3.4 The distance invariant

3.4.1 Definition

A lower bound on the Hamming distance between an APN function F and the closest APN
function to it in terms of Hamming distance is shown in [16]. The value of this lower bound
is calculated from the minimum value contained in a multiset �F of natural numbers that
can be associated with any (n, n)-function F . The multiset �F is shown to be invariant
under CCZ-equivalence in the case of APN functions; that is, if F and G are CCZ-equivalent
APN functions, then �F = �G. One can, however, easily find counterexamples to �F

being invariant in the case when F and G are not APN.
The multiset �F is defined as follows. Let F be an (n, n)-function for some natural

number n. For any b, c ∈ F2n , we define a set

πF (b, c) = {a ∈ F2n : (∃x ∈ F2n)F (x) + F(a + x) + F(a + c) = b}.

Table 7 Number of distinct design invariants for some known APN functions

n no. of functions �-ranks �-ranks M(GF) combinations

6 14 9 3 7 11

7 491 14 6 5 20

8 8192 24 11 10 49

9 46 31 15 8 41

10 16 15 – 7 15

1011Cryptography and Communications (2021) 13:995–1023

Table 8 Design invariants for the 35 new APN functions over F29 [2]

ID �-rank �-rank M(GF) ID �-rank �-rank M(GF)

1 48864 940 2560 19 48564 944 3584

2 48860 938 2560 20 48612 936 3584

3 48618 942 3584 21 48624 930 3584

4 48626 944 3584 22 48622 940 3584

5 48602 930 3584 23 48594 944 3584

6 48624 942 3584 24 48564 942 3584

7 48630 944 3584 25 48594 942 3584

8 48610 930 3584 26 48622 944 3584

9 48558 932 3584 27 48610 942 3584

10 48620 944 3584 28 48594 942 3584

11 48602 932 3584 29 48620 944 3584

12 48616 944 3584 30 48554 922 10752

13 48562 942 3584 31 48624 930 10752

14 48578 940 3584 32 48602 940 3584

15 48626 944 3584 33 48596 942 3584

16 48628 940 3584 34 48228 926 75264

17 48602 942 3584 35 48228 926 75264

18 48580 930 3584

That is, πF (b, c) contains all directions a ∈ F2n for which the derivative DaF(x) = F(x +
a) + F(x) maps to F(a + c) + b. The multiset �F then consists of the cardinalities of
πF (b, c) for all possible choices of b, c ∈ F2n ; symbolically:

�F = [#πF (b, c) : b, c ∈ F2n].
As indicated above, if F and G are APN and CCZ-equivalent, then we must necessarily
have �F = �G. The lower bound on the Hamming distance mentioned previously can be
computed as (min �F)/3�+1, where min �F is the smallest value in �F . It is also shown
in [16] that the lower bound is not, in general, tight for n ≥ 5. It is remarkable that while
this lower bound is CCZ-invariant, the exact value of the Hamming distance to the closest
APN function is not.

If F is quadratic, it is shown that

[#πF (b, c) : b ∈ F2n] = [#πF (b, c′) : b ∈ F2n]

Table 9 Design invariants for the
5 new APN functions over F210

[2]
ID �-rank M(GF)

1 163400 31744

2 163398 31744

3 163308 158720

4 164026 31744

5 164026 31744

1012 Cryptography and Communications (2021) 13:995–1023

for any c, c′ ∈ F2n . It is thus sufficient to compute only the reduced multiset

�0
F = [#πF (b, 0) : b ∈ F2n],

which then completely determines the full multiset �F . Recall that the quadratic case is by
far the most practically significant, as almost all known APN instances are quadratic, or at
least CCZ-equivalent to quadratic ones. This reduction is then quite valuable, as it allows us
to reduce the time for computing this invariant by a factor of 2n.

3.4.2 Evaluation

Computing �F (or �0
F) is simple as it only requires summing finite field elements (which

can be implemented via the binary XOR operation on most programming languages) and
counting how many times a certain value occurs.

The computation time is quite fast, especially in the case of quadratic functions when
only the reduced multiset �0

F has to be computed. Table 10 shows some example com-
putation times (in seconds) of a straightforward C implementation for functions over F2n

for 5 ≤ n ≤ 11. The last two columns give the total number of functions on which the
invariant was tested and the number of distinct values that �F takes over those functions,
respectively.

As indicated by Table 10, this invariant is not very effective for distinguishing inequiv-
alent functions for odd dimensions. Indeed, for all odd n in the range 5 ≤ n ≤ 11, we
observe only two values of �F ; one is attained by the inverse power function, while all the
remaining known APN functions take the second value. This is particularly remarkable for
n = 7, where we know a large number of CCZ-inequivalent APN instances. Furthermore,
as shown in [10, 43], the considered representatives for n = 5 and n = 7 cover all CCZ-
classes of quadratic APN functions over F25 and F27 , respectively; we can thus conclude
that all quadratic APN functions over F25 and F27 have a Gold-like value of �F .

In the case of even dimensions, on the other hand, �F proves to be quite useful for
distinguishing between CCZ-equivalence classes. For n = 8, we get 6669 distinct values
for the tested 8181 functions from [55]. What is particularly noteworthy, is that instances
over even dimensions from the known infinite polynomial (as opposed to monomial) APN
families always take the same value of �F as the Gold function x3. All the other values of
�F that we observe correspond to instances discovered by computational searches that have
not been classified into infinite families yet. As in the case of the extended Walsh spectrum,
the Dobbertin power function for n = 5 has the same value of �F as the inverse power
function. Thus, the inverse and Dobbertin power functions are currently the only known

Table 10 Computation times and number of distinct values of �F for some known APN instances

n �0
F �F all values

5 0.002 0.064 3 2

6 0.003 0.192 14 5

7 0.004 0.512 491 2

8 0.004 1.024 8181 6669

9 0.005 2.56 11 2

10 0.031 31.744 21 4

11 0.066 135.168 13 2

1013Cryptography and Communications (2021) 13:995–1023

infinite families of APN functions to have a value of �F distinct from that of the Gold
functions.

4 Invariants under EA-equivalence

Despite EA-equivalence being strictly less general than CCZ-equivalence, we know that
two quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.
Since almost all known APN functions are CCZ-equivalent to monomials or to quadratic
functions, this makes tests and invariants for EA-equivalence almost as useful in practice as
ones for the more general CCZ-equivalence.

4.1 Trivial invariants

Since EA-equivalence is a particular case of CCZ-equivalence, any two functions that are
EA-equivalent are also CCZ-equivalent. Consequently, all invariants described in Section 3
remain invariants under EA-equivalence as well.

4.2 Algebraic degree andminimum degree

The algebraic degree of any (n, n)-function is invariant under EA-equivalence since the
composition of an arbitrary function F with an affine function does not change the alge-
braic degree of F . Since the majority of known APN functions are quadratic, and since
most computational searches tend to produce quadratic APN functions, the algebraic degree
is of somewhat limited use in practice. In particular, we note that APN functions are typi-
cally classified up to CCZ-equivalence, and a major reason for the study of the less general
EA-equivalence and its associated invariants is due to the fact that the two notions of equiv-
alence coincide for quadratic APN functions; that is, two quadratic APN functions are
CCZ-equivalent if and only if they are EA-equivalent. If the functions involved are not of
algebraic degree 2, then EA-equivalence no longer coincides with CCZ-equivalence in this
sense. However, the algebraic degree can be a useful invariant if we truly need to classify
functions up to EA-equivalence (instead of using EA-equivalence as an indirect method for
testing CCZ-equivalence as in the case of quadratic APN functions). In particular, the CCZ-
class of a quadratic APN function can contain functions of various algebraic degrees, and
the latter can be used to distinguish EA-inequivalent functions. The algebraic degree can
play a prominent role in theoretical arguments and, in particular, proofs of inequivalence;
as a noteworthy example, it was used to show that CCZ-equivalence is strictly more general
than EA-equivalence combined with taking inverses [20].

A related invariant is the minimum degree, introduced in [20]. The minimum degree of
an (n, n)-function F , denoted min d◦(F), is the minimum algebraic degree of a component
function of F :

min d◦(F) = min{deg(Fb) : 0 �= b ∈ F2n}.
In general, the minimum degree and algebraic degree of an (n, n)-function can be differ-
ent. Furthermore, as long as the minimum degree is greater than 1, it is invariant under
EA-equivalence. As in the case of the algebraic degree, the minimum degree is not useful
for distinguishing between quadratic functions, but can be effective in other contexts. In
[20], for instance, the first infinite families of APN and AB functions inequivalent to power
functions are constructed, and the minimum degree is used in the proof of this inequivalence.

1014 Cryptography and Communications (2021) 13:995–1023

4.3 Number of subspaces in the set of non-bent components

4.3.1 Definition

Recall that a Boolean (n, 1)-function f is called bent if its non-linearity equals 2n−1 −
2n/2−1. Equivalently, f is bent if and only if its Walsh transform satisfies Wf (a) = ±2n/2

for all a ∈ F2n . Given an (n, n)-function F , we can define the set SF of those elements
b ∈ F2n for which the component function Fb = Tr(bF (x)) is not bent; symbolically, we
can write

SF = {b ∈ F2n : (∃a ∈ F2n)WF (a, b) �= ±2n/2},
or, equivalently,

SF = {b ∈ F2n : (∃a ∈ F2n)WF (a, b) = 0}
in the case of quadratic F .

If we now denote by nF (i) the number of i-dimensional linear subspaces contained in
SF , the value nF (i) is an EA-invariant for any natural number i; that is, if F and G are EA-
equivalent, then nF (i) = nG(i) for all i [13, 39]. This is easy to see from the fact that if
G = A1 ◦F ◦A2 +A, with all involved functions defined as in (3), then b ∈ SF if and only
if A′

1(b) ∈ SG, where A′
1(x) is the adjoint operator of A1(x)+A1(0). Clearly, if nF (i) = 0

for some i, then nF (j) = 0 for all j ≥ i as well. This allows us to compute SF and the
values of nF (i) for i = 1, 2, 3, . . . until an i′ is found for which nF (i′) = 0, and to use the
vector NF = (nF (1), nF (2), . . . , nF (i′ − 1)) for distinguishing between EA-classes.

Note that this invariant is only useful in the case of even dimensions. In the case of odd
n, any quadratic APN (n, n)-function is AB, so that we have {WF (a, b) : a ∈ F2n} =
{0, ±2(n+1)/2} for any 0 �= b ∈ F2n . Consequently, SF = F2n , and NF has no distinguishing
power.

4.3.2 Evaluation

Implementing NF as an invariant is simple and easily doable in any general-purpose
programming language. As observed in Section 3.2, the Walsh transform can be readily
implemented via standard arithmetic and logic operations, and the entire Walsh spectrum of
a given function can be computed quite quickly. In this case, the entire Walsh spectrum does
not need to be computed (for every b ∈ F2n , we can stop computing WF (a, b) as soon as
we find an a ∈ F2n which witnesses that Fb is not bent), so the computation of SF is even
faster. In particular, if the Walsh spectrum or extended Walsh spectrum has already been
computed for the given function (say, in the process of computing some other invariant), SF

can be determined almost immediately.
Computing the number nF (i) of subspaces of a given dimension i is the most compu-

tationally heavy part of the calculation. The simplest possible approach is to perform an
exhaustive search, which is usually sufficiently fast, and does not require anything more
complicated than using finite field (or, equivalently, vector space) addition via XOR, and
verifying that a set of elements is closed under addition. Furthermore, an algorithm for
recovering the subspaces contained in a given set of elements has been developed recently
[7], and can be used to further speed up the computations.

The memory consumption is also very modest, although the computation time does
increase exponentially with the dimension. Table 11 shows the time (in seconds) for com-
puting NF for x3 over F2n for all even dimensions n in the range 6 ≤ n ≤ 12 on a simple
implementation in C.

1015Cryptography and Communications (2021) 13:995–1023

Table 11 Computation times and number of distinct values for NF for some known APN instances

n 6 8 10 12

time (s) 0.004 0.168 11.508 1151.773

number of functions 14 8181 21 –

values 6 641 11 –

4.4 The thickness spectrum

4.4.1 Definition

The notion of the thickness of a vector space is introduced in [24]. Given an (n, n)-function
F , we begin by finding the set ZF of its Walsh zeros, that is, the pairs (a, b) ∈ F

2
2n on which

the Walsh transform of F evaluates to zero:

ZF = {(a, b) : a, b ∈ F2n , WF (a, b) = 0}.
The thickness of any subspace V ⊆ ZF is defined as the dimension of its projection onto
{(0, x) : x ∈ F2n}. Equivalently, if V is an n-dimensional space and L is a linear permutation
of F22n mapping {(x, 0) : x ∈ F2n} to V , we can write L in matrix form as

L =
[

a b

c d

]

.

The thickness of V is then the rank of c.
Let i be any natural number, and let us denote by tF (i) the number of n-dimensional

subspaces of ZF that have thickness i. The thickness spectrum of F is then the vector
TF = (tF (1), tF (2), . . . , tF (i)), where i is the smallest natural number for which tF (i) = 0.
As with the number nF (i) of subspaces in the set of non-bent components, if tF (i) = 0 for
some i, then tF (j) = 0 for all j ≥ i as well, so the previous definition is justified. The
thickness spectrum can then be shown to be invariant under EA-equivalence.

4.4.2 Evaluation

The computation of the thickness spectrum involves computing ZF (which essentially
involves computing the Walsh spectrum of F), then going through all n-dimensional sub-
spaces of ZF and computing the thickness of each subspace. Finding these subspaces can
be done using the same approaches used in the computation of NF discussed in Section 4.3.
The rest of the implementation is conceptually simple: after finding the n-dimensional sub-
spaces, it is trivial to project them onto {(0, x) : x ∈ F2n} by restricting the coordinates
on the left-hand side to zero; and computing the dimension of the projections amounts to
counting the number of elements that they contain.

On the other hand, the time for computing TF is longer than that for computing NF ,
since we have to work over a 2n-dimensional (instead of n-dimensional) vector space. It
is intuitively clear that if k < l < n are natural numbers, then finding all k-dimensional
subspaces in a set of elements from F

2n
2 is easier than finding all l-dimensional subspaces.

In the case of NF , one might restrict to the computation of nF (i) for only small values of
i, and still hope to obtain a useful invariant. In the case of TF , all n-dimensional subspaces
have to be found before any further computations can take place. Table 12 gives a summary
of the time (in seconds) needed for computing the thickness spectrum of x3 over F2n with

1016 Cryptography and Communications (2021) 13:995–1023

Table 12 Computation time and number of values of the thickness spectrum for some known APN instances

n 6 7 8 9 10

time (s) 0.86 1.12 0.92 188.174 8.91

total 14 – 8181 46 21

values 8 – 185 40 7

6 ≤ n ≤ 10 using the SboxU library [49]. As we can see from Table 11, the running times
for computing NF and TF are comparable; however, NF tends to have more distinguishing
power than the thickness spectrum.

4.5 A family of invariants based on zero sums

4.5.1 Definition

An algorithm for computationally testing two given (n, n)-functions F and G for EA-
equivalence is developed in [42]. The algorithm is based on computing two multisets, one
for F and one for G, which contain some information about the mapping A1 from (3). More
precisely, each element of F2n occurs in each of the two multisets with a certain multiplic-
ity, and it is shown that x and A1(x) must have the same multiplicity for any x ∈ F2n if (3)
holds. In particular, the multiplicities of the two associated multisets must be the same, i.e.
they are invariant under EA-equivalence.

To make this more precise, we let k be a natural number, and define

	k
F = [F(x1) + F(x2) + · · · + F(xk) : x1, x2, . . . , xk ∈ F2n , x1 + x2 + · · · + xk = 0];

in other words, 	k
F is the multiset of the sums of F on all k-tuples of elements adding up to

0. If F and G are EA-equivalent, and k is even, then the multiplicities of 	k
F and 	k

G are the
same. Note that it does not matter whether these k-tuples are taken to be ordered, unordered,
or whether we allow repetitions among their elements; all of these variations lead to what is
essentially the same invariant.

The smallest possible value for which the invariants make sense is k = 4 (for k = 2, the
multiset 	2

F would consist only of zeros). The multiplicities of 	k
F can always be computed

via the Walsh transform; if mk
F (s) denotes the multiplicity of s ∈ F2n in 	k

F , then

mk
F (s) = 1

22n

∑

a,b∈F2n

(−1)b·sWk
F (a, b). (6)

This method for computing the multiplicities has the advantage that its time complexity does
not depend on the choice of k, which only affects the power to which the Walsh coefficients
in (6) have to be raised.

The proof of the above statement can be found in the full version of the conference
paper [42], which is under review at Cryptography and Communications at the moment;

1017Cryptography and Communications (2021) 13:995–1023

for the sake of completeness, we describe the basic idea below. The statement follows by
straightforward manipulations using the properties of the Walsh transform. We have

∑

a,b

(−1)b·sWk
F (a, b) =

∑

a,b

∑

x1,x2,...,xk

(−1)b·(F (x1)+F(x2)+···+F(xk)+s)+a·(x1+x2+···+ak)

= 22n#{(x1, x2, . . . , xk) ∈ F
k
2n :

k∑

i=1

xi = 0,

k∑

i=1

F(xi) = s},

which then easily implies (6).
It must be noted that in the case of APN functions, the 	k

F invariant is essentially the
same as the �F invariant described in Section 3.4; that is, if F and G are both APN,
then �F = �G if and only if 	k

F and 	k
G have the same multiplicities. An advantage of

	k
F is that it remains invariant for functions of any differential uniformity, while �F is

invariant only in the case of APN functions; 	k
F also provides information about what the

EA-equivalence between the two tested functions might look like, while �F does not. On
the other hand, �F is invariant under CCZ-equivalence (and it is easy to find counterexam-
ples showing that 	k

F is not), and provides a lower bound on the distance between F and
the closest APN function.

4.5.2 Evaluation

One of the advantages of the algorithm in [42] is that it does not require any complicated
mathematical or algorithmic machinery, and can be implemented from first principles (as
opposed to the linear code test for CCZ-equivalence). Regardless of whether the computa-
tion is done from the definition, or via the Walsh transform, it only requires finite field (or
vector space) addition, which can be represented as XOR, and counting multiplicities of
elements from the finite field. If the Walsh spectrum of F is available, computing the mul-
tiplicities of 	k

F via (6) is quite straightforward. For the sake of completeness, we mention
also the recently published algorithm for testing the EA-equivalence of quadratic functions
[23].

As noted above, �F and 	4
F have the same distinguishing power in the case of APN

functions. In particular, these invariants are only useful in the case of even dimensions, in
which case they can take a lot of distinct values. Once again, representatives from the known
infinite families of APN functions (with the notable exception of the inverse power function
over odd dimensions) have the same value of 	4

F as the Gold function x3.

4.6 Ortho-derivatives

4.6.1 Definition

The concept of an ortho-derivative is introduced in [23, 49], and appears to be quite useful
for partitioning quadratic APN functions into EA-equivalence classes. Given a quadratic
(n, n)-function F , an ortho-derivative of F is any (n, n)-function πF such that

πF (a) · (F (x) + F(a + x) + F(a) + F(0)) = 0 (7)

for all x ∈ F2n . In this sense, πF is orthogonal to all values of the expression F(x + a) +
F(x) + F(a) + F(0) = DaF(x) + DaF(0). Note that ortho-derivatives can be defined for
any (n, n)-function F ; however, F is APN if and only if πF (a) is uniquely defined for all
non-zero a ∈ F2n . Thus, in the APN case, a unique (n, n)-function πF can be associated

1018 Cryptography and Communications (2021) 13:995–1023

with any quadratic APN (n, n)-function F . Furthermore, it is known that if F and G are
two EA-equivalent (n, n)-functions via A1 ◦ F ◦ A2 + A = G, then

πG = A−1
1 ◦ πF ◦ A2;

thus, the ortho-derivatives of two EA-equivalent APN functions are EA-equivalent them-
selves. The advantage is that the ortho-derivatives have a much more “varied” structure than
the APN functions that they are associated with; as pointed out in [23], it seems that the
algebraic degree of πF is n−2 whenever F is an APN (n, n)-function. This is intuitively one
of the reasons that the ortho-derivatives can take on many different values for the various
invariants under EA-equivalence and CCZ-equivalence, and the latter become immensely
more useful for partitioning functions into EA-classes.

4.6.2 Evaluation

Computing the truth table of the ortho-derivative itself is a very easy task; the simplest way
involves guessing the value of πF (a) for each 0 �= a ∈ F2n . For every possible candidate
for the value of πF (a), it suffices to verify that (7) is satisfied. Computing (7), on other
hand, requires nothing more than vector space addition and the implementation of the scalar
product. The truth table of πF can thus be reconstructed very quickly, even for relatively
large dimensions. Table 13 gives some sample running times (in seconds) for computing
the ortho-derivative of x3 using SboxU. The row labeled “functions” gives the number of
functions that were tested (all of them being CCZ-inequivalent to each other); while “val-
ues” gives the number of distinct values obtained across all of these functions. The set of
functions used for the tests consists of all known quadratic APN functions over F2n for
the appropriate value of n. We note that there are only two known cases in which CCZ-
inequivalent functions can have an orthoderivative with the same differential spectrum and
the same Walsh spectrum: these are the Gold functions x3 and x9 over F27 , and the Gold
functions x3 and x33 over F29 . The CCZ-classes of all other known quadratic APN func-
tions (including the other Gold functions, e.g. x5, x9 and x17 over F29) can be distinguished
with the help of orthoderivatives in this way.

Once the ortho-derivative is computed, it remains to apply some of the previously
examined invariants, such as the Walsh spectrum and differential spectrum, to distinguish
between the EA-classes of the ortho-derivatives. The number of values in Table 13 refers
to the number of distinct combinations of the Walsh spectrum and differential spectrum
observed among the ortho-derivatives. Note that the ortho-derivatives themselves are not
APN, and so the differential spectrum becomes a useful invariant. In fact, as indicated by
the data in Table 13, this is sufficient to distinguish between all currently known classes of
quadratic APN functions (with the exception of some Gold functions). Thus, a partition-
ing by means of the ortho-derivatives appears to have the same strength in practice as an

Table 13 Computation time for finding the truth table of πF , and number of values of the Walsh and
differential spectra of πF for some known APN instances

n 6 7 8 9 10 11 12

time (s) 0 0.00021 0.0006 0.002 0.34 0.22 0.84

functions 14 488 21 103 42 19 – –

values 14 487 21 103 41 19 – –

1019Cryptography and Communications (2021) 13:995–1023

EA-equivalence test. Nonetheless, invariants can only be used to disprove the equivalence
between two functions; and so, if two (n, n)-functions F and G have the same invariants for
πF and πG, this does not constitute a proof of their EA-equivalence. It would thus be very
interesting to find more examples of EA-inequivalent functions whose ortho-derivatives
have the same spectrum of invariant values.

Despite this, as indicated by Table 13, the combination of the extended Walsh spectrum
and the differential spectrum of the ortho-derivative is sufficient to distinguish between any
pair of EA-inequivalent quadratic APN functions (with the exception of the Gold functions).

5 Conclusion

We have surveyed some known invariants on (n, n)-functions under CCZ- and EA-
equivalence. The list of invariants is not meant to be complete, but aims to include all
invariants that are commonly used in the classification of APN and AB functions in prac-
tice. Each of the invariants is evaluated in terms of how easy it is to implement in a
general-purpose programming language, how efficient it is to compute, and how well it can
distinguish between distinct equivalence classes of (n, n)-functions.

The considered CCZ-invariants include:

• the differential uniformity and non-linearity (trivial);
• the extended Walsh spectrum WF ;
• the invariants from the associated combinatorial designs dev(GF) and dev(DF), viz.

the �-rank, �-rank, and order of the multiplier group, as well as the orders of the
automorphism groups of dev(GF) and dev(DF);

• the multiset �F used in the computation of the lower bound on the Hamming distance
between two APN functions (invariant only for APN functions).

The considered EA-invariants include:

• all CCZ-invariants;
• the algebraic degree deg(F) and the minimum degree min d◦(F);
• the number nF (i) of i-dimensional subspaces in the set SF of non-bent components of

F ;
• the number tF (i) of n-dimensional subspaces of thickness i in the set ZF of Walsh

zeros of F ;
• the multiplicities of the elements in the multiset 	k

F for all even k, i.e. the number of
times that each element of F2n can be expressed as a sum F(x1)+F(x2)+· · ·+F(xk)

with x1 + x2 + · · · + xk = 0;
• the ortho-derivatives πF (or, to be more precise, the EA-equivalence class of the ortho-

derivative).

For each invariant, we have used a straightforward implementation in a suitable program-
ming language (typically C in the case of the invariants that can be defined and computed
from first principles, and Magma when more sophisticated mathematical structures or algo-
rithms are involved) and have given example running times over the range of dimensions n

in which the invariant can be reasonably used in practice. We have also counted how many
different values each invariant can take over some of the known APN instances in each
dimension, and have remarked on the further properties and significance of some of the
invariants.

1020 Cryptography and Communications (2021) 13:995–1023

Acknowledgements The research presented in this paper was supported by the Trond Mohn Foundation.
I would like to express my gratitude to the anonymous reviewers for their thorough proofreading and

helpful comments. I would also like to thank Lilya Budaghyan and Christof Beierle for various useful remarks
and discussions.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Encyclopedia of Boolean functions. http://web.archive.org/web/20080207010024/http://www.
808multimedia.com/winnt/kernel.ht://boolean.h.uib.no/mediawiki/index.php/Main Page

2. Beierle, C., Leander, G.: New instances of quadratic APN functions. arXiv:2009.07204 (2020)
3. Thomas, B., Cunsheng, D.: On almost perfect nonlinear permutations. In: Workshop on the Theory and

Application of of Cryptographic Techniques, pp. 65–76. Springer (1993)
4. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, vol. 1. Cambridge, Cambridge University Press (1999)
5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72

(1991)
6. Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A toolbox for cryptanalysis: Linear and affine

equivalence algorithms. In: International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 33–50. Springer (2003)

7. Bonnetain, X., Perrin, L., Tian, S.: Anomalies and vector space search: Tools for s-box analysis. In: Inter-
national Conference on the Theory and Application of Cryptology and Information Security. Springer
(2019)

8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput.
24(3-4), 235–265 (1997)

9. Bracken, C., Byrne, E., Markin, N., McGuire, G.: A few more quadratic APN functions. Cryptogr.
Commun. 3(1), 43–53 (2011)

10. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. Des. Codes
Crypt. 49, 273–288 (2008)

11. Browning, K.: APN polynomials and related codes. Special Vol. J. Comb. Inf. Syst. Sci. 34, 135–159
(2009)

12. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six.
Finite Fields: Theory Appl. 518, 33–42 (2010)

13. Budaghyan, L., Calderini, M., Carlet, C., Coulter, R., Villa, I.: Generalized isotopic shift construction
for APN functions Des. Codes Crypt. 89, 1–14 (2020)

14. Budaghyan, L., Calderini, M., Carlet, C., Coulter, R.S., Villa, I.: Constructing APN functions through
isotopic shifts. IEEE Trans. Inf. Theory 66(8), 5299–5309 (2020)

15. Budaghyan, L., Carlet, C.: Classes of quadratic APN trinomials and hexanomials and related structures.
IEEE Trans. Inf. Theory 54(5), 2354–2357 (2008)

16. Budaghyan, L., Carlet, C., Helleseth, T., Kaleyski, N.: On the distance between APN functions. IEEE
Trans. Inf. Theory 66(9), 5742–5753 (2020)

17. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power
functions. IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)

18. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from known ones. Finite Fields
Their Appl 15(2), 150–159 (2009)

19. Budaghyan, L., Carlet, C., Leander, G.: On a construction of quadratic APN functions. In: 2009 IEEE
Information Theory Workshop. pp 374–378 (2009)

1021Cryptography and Communications (2021) 13:995–1023

http://creativecommons.org/licenses/by/4.0/
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/ winnt/kernel.ht://boolean.h.uib.no/mediawiki/index.php/Main_Page
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/ winnt/kernel.ht://boolean.h.uib.no/mediawiki/index.php/Main_Page
http://arxiv.org/abs/2009.07204

20. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials.
IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

21. Budaghyan, L., Helleseth, T., Kaleyski, N.: A new family of APN quadrinomials. IEEE Trans. Inf.
Theory 66(11), 7081–7087 (2020)

22. Budaghyan, L., Kazymyrov, O.: Verification of restricted ea-equivalence for vectorial boolean functions.
In: International Workshop on the Arithmetic of Finite Fields, pp. 108–118. Springer (2012)

23. Canteaut, A., Couvreur, A., Perrin, L.: Recovering or testing extended-affine equivalence.
arXiv:2103.00078 (2021)

24. Canteaut, A., Perrin, L.: On CCZ-equivalence, extended-affine equivalence, and function twisting. Finite
Fields Their Appl. 56, 209–246 (2019)

25. Carlet, C.: Boolean functions for cryptography and coding theory (2021)
26. Carlet, C., Charpin, P., Zinoviev, V.A.: Codes, bent functions and permutations suitable for DES-like

cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)
27. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Workshop on the

Theory and Application of Cryptographic Techniques, EUROCRYPT 94, vol. 950, pp. 356–365 (1994)
28. Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs. CRC press (2006)
29. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
30. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer, Berlin (2002)
31. Dempwolff, U.: Ccz equivalence of power functions. Des. Codes Crypt. 86(3), 665–692 (2018)
32. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Niho case. Inf. Comput.

151(1), 57–72 (1999)
33. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inf.

Theory 45(4), 1271–1275 (1999)
34. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): A new case for n divisible by 5.

Int. Conf. Finite Fields Appl. 113–121 (2001)
35. Edel, Y.: Quadratic APN functions as subspaces of alternating bilinear forms. In: Proceedings of the

Contact Forum Coding Theory and Cryptography III, vol. 2009, pp. 11–24 (2011)
36. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun.

3(1), 59–81 (2009)
37. Edel, Y., Pott, A.: On the equivalence of nonlinear functions (2009)
38. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.)

IEEE Trans. Inf. Theory 14(1), 154–156 (1968)
39. Göloğlu, F., Pavlů, J.: On CCZ-inequivalence of some families of almost perfect nonlinear functions to

permutations. Cryptogr. Commun. 1–15 (2021)
40. Janwa, H., Wilson, R.M.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications

to cyclic codes. In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, pp. 180–194. Springer (1993)

41. Joux, A.: Algorithmic cryptanalysis. CRC press (2009)
42. Kaleyski, N.: Deciding ea-equivalence via invariants. In: The 11th International Conference on

Sequences and Their Applications (SETA 2020) (2020)
43. Kalgin, K., Idrisova, V.: The classification of quadratic APN functions in 7 variables (2020)
44. Kasami, T.: The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller

codes. Inf. Comput. 18(4), 369–394 (1971)
45. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Workshop on the Theory and Application

of of Cryptographic Techniques, pp. 386–397. Springer (1993)
46. Nyberg, K.: Differentially uniform mappings for cryptography. Lect. Notes Comput. Sci 765, 55–64

(1994)
47. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Cryptol. 8(1), 27–37 (1995)
48. Özbudak, F., Sınak, A., Yayla, O.: On verification of restricted extended affine equivalence of vectorial

boolean functions. In: International Workshop on the Arithmetic of Finite Fields, pp. 137–154. Springer
(2014)

49. Perrin, L.: How to take a function apart with sboxu. The 5th International Workshop on Boolean
Functions and their Applications (BFA 2020) (2020)

50. Sălăgean, A.: Discrete antiderivatives for functions over Fn
p . Des. Codes Crypt. 88(3), 471–486 (2020)

51. Sidelnikov, V.M.: On the mutual correlation of sequences. Soviet Math. Dokl. 12, 197–201 (1971)
52. Taniguchi, H.: On some quadratic APN functions. Des. Codes Crypt. 87, 1–11 (2019)
53. Yoshiara, S.: Equivalences of quadratic APN functions. J. Algebraic Comb. 35(3), 461–475 (2012)
54. Yoshiara, S.: Equivalences of power APN functions with power or quadratic APN functions. J. Algebraic

Comb. 44(3), 561–585 (2016)

1022 Cryptography and Communications (2021) 13:995–1023

http://arxiv.org/abs/2103.00078

55. Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions (2013)
56. Yuyin, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions. Des. Codes

Cryptogr. 73(2), 587–600 (2014)
57. Zhou, Y., Pott, A.: A new family of semifields with 2 parameters. Adv. Math. 234, 43–60 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1023Cryptography and Communications (2021) 13:995–1023

	Invariants for EA- and CCZ-equivalence of APN and AB functions
	Abstract
	Introduction
	Preliminaries
	Representation of vectorial Boolean functions
	APN and AB functions
	Equivalence relations
	Testing equivalence via linear codes
	A note on the computational results

	Invariants under CCZ-equivalence
	Trivial invariants
	The extended Walsh spectrum
	Definition
	Evaluation

	Invariants from associated designs
	Definition
	Evaluation

	The distance invariant
	Definition
	Evaluation

	Invariants under EA-equivalence
	Trivial invariants
	Algebraic degree and minimum degree
	Number of subspaces in the set of non-bent components
	Definition
	Evaluation

	The thickness spectrum
	Definition
	Evaluation

	A family of invariants based on zero sums
	Definition
	Evaluation

	Ortho-derivatives
	Definition
	Evaluation

	Conclusion
	References

