16,079 research outputs found

    Concepts and a case study for a flexible class of graphical Markov models

    Full text link
    With graphical Markov models, one can investigate complex dependences, summarize some results of statistical analyses with graphs and use these graphs to understand implications of well-fitting models. The models have a rich history and form an area that has been intensively studied and developed in recent years. We give a brief review of the main concepts and describe in more detail a flexible subclass of models, called traceable regressions. These are sequences of joint response regressions for which regression graphs permit one to trace and thereby understand pathways of dependence. We use these methods to reanalyze and interpret data from a prospective study of child development, now known as the Mannheim Study of Children at Risk. The two related primary features concern cognitive and motor development, at the age of 4.5 and 8 years of a child. Deficits in these features form a sequence of joint responses. Several possible risks are assessed at birth of the child and when the child reached age 3 months and 2 years.Comment: 21 pages, 7 figures, 7 tables; invited, refereed chapter in a boo

    Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.

    Get PDF
    We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time

    Graphical Markov models, unifying results and their interpretation

    Full text link
    Graphical Markov models combine conditional independence constraints with graphical representations of stepwise data generating processes.The models started to be formulated about 40 years ago and vigorous development is ongoing. Longitudinal observational studies as well as intervention studies are best modeled via a subclass called regression graph models and, especially traceable regressions. Regression graphs include two types of undirected graph and directed acyclic graphs in ordered sequences of joint responses. Response components may correspond to discrete or continuous random variables and may depend exclusively on variables which have been generated earlier. These aspects are essential when causal hypothesis are the motivation for the planning of empirical studies. To turn the graphs into useful tools for tracing developmental pathways and for predicting structure in alternative models, the generated distributions have to mimic some properties of joint Gaussian distributions. Here, relevant results concerning these aspects are spelled out and illustrated by examples. With regression graph models, it becomes feasible, for the first time, to derive structural effects of (1) ignoring some of the variables, of (2) selecting subpopulations via fixed levels of some other variables or of (3) changing the order in which the variables might get generated. Thus, the most important future applications of these models will aim at the best possible integration of knowledge from related studies.Comment: 34 Pages, 11 figures, 1 tabl

    On the Core of Multiple Longest Traveling Salesman Games

    Get PDF
    In this paper we introduce multiple longest traveling salesman (MLTS) games. An MLTS game arises from a network in which a salesman has to visit each node (player) precisely once, except its home location, in an order that maximizes the total reward.First it is shown that the value of a coalition of an MLTS game is determined by taking the maximum of suitable combinations of one and two person coalitions.Secondly it is shown that MLTS games with ¯ve or less players have a nonempty core.However, a six player MLTS game may have an empty core.For the special instance where the reward between a pair of nodes is equal to 0 or 1, we provide relations between the structure of the core and the underlying network.game theory;traveling salesman problem;games;core

    The Radio Number of Grid Graphs

    Full text link
    The radio number problem uses a graph-theoretical model to simulate optimal frequency assignments on wireless networks. A radio labeling of a connected graph GG is a function f:V(G)Z0+f:V(G) \to \mathbb Z_{0}^+ such that for every pair of vertices u,vV(G)u,v \in V(G), we have f(u)f(v)diam(G)+1d(u,v)\lvert f(u)-f(v)\rvert \ge \text{diam}(G) + 1 - d(u,v) where diam(G)\text{diam}(G) denotes the diameter of GG and d(u,v)d(u,v) the distance between vertices uu and vv. Let span(f)\text{span}(f) be the difference between the greatest label and least label assigned to V(G)V(G). Then, the \textit{radio number} of a graph rn(G)\text{rn}(G) is defined as the minimum value of span(f)\text{span}(f) over all radio labelings of GG. So far, there have been few results on the radio number of the grid graph: In 2009 Calles and Gomez gave an upper and lower bound for square grids, and in 2008 Flores and Lewis were unable to completely determine the radio number of the ladder graph (a 2 by nn grid). In this paper, we completely determine the radio number of the grid graph Ga,bG_{a,b} for a,b>2a,b>2, characterizing three subcases of the problem and providing a closed-form solution to each. These results have implications in the optimization of radio frequency assignment in wireless networks such as cell towers and environmental sensors.Comment: 17 pages, 7 figure

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    Group Colorability and Hamiltonian Properties of Graphs

    Get PDF
    The research of my dissertation was motivated by the conjecture of Thomassen that every 4-connected line graph is hamiltonian and by the conjecture of Matthews and Sumner that every 4-connected claw-free graph is hamiltonian. Towards the hamiltonian line graph problem, we proved that every 3-edge-connected, essentially 4-edge-connected graph G has a spanning eulerian subgraph, if for every pair of adjacent vertices u and v, dG(u) + dG(v) ≥ 9. A straight forward corollary is that every 4-connected, essentially 6-connected line graph with minimum degree at least 7 is hamiltonian.;We also investigate graphs G such that the line graph L(G) is hamiltonian connected when L( G) is 4-connected. Ryjacek and Vrana recently further conjectured that every 4-connected line graph is hamiltonian-connected. In 2001, Kriesell proved that every 4-connected line graph of a claw free graph is hamiltonian connected. Recently, Lai et al showed that every 4-connected line graph of a quasi claw free graph is hamiltonian connected, and that every 4-connected line graph of an almost claw free graph is hamiltonian connected. In 2009, Broersma and Vumer discovered the P3-dominating (P3D) graphs as a superfamily that properly contains all quasi claw free graphs, and in particular, all claw-free graphs. Here we prove that every 4-connected line graph of a P3D graph is hamiltonian connected, which extends several former results in this area.;R. Gould [15] asked what natural graph properties of G and H are sufficient to imply that the product of G and H is hamiltonian. We first investigate the sufficient and necessary conditions for G x H being hamiltonian or traceable when G is a hamiltonian graph and H is a tree. Then we further investigate sufficient and necessary conditions for G x H being hamiltonian connected, or edge-pancyclic, or pan-connected.;The problem of group colorings of graphs is also investigated in this dissertation. Group coloring was first introduced by Jeager et al. [21]. They introduced a concept of group connectivity as a generalization of nowhere-zero flows. They also introduced group coloring as a dual concept to group connectivity. Prior research on group chromatic number was restricted to simple graphs, and considered only Abelian groups in the definition of chi g(G). The behavior of group coloring for multigraphs is different to that of simple graphs. Thus we extend the definition of group coloring by considering general groups (both Abelian groups and non-Abelian groups), and investigate the properties of chig for multigraphs by proving an analogue to Brooks\u27 Theorem
    corecore