298 research outputs found

    Discrete chain graph models

    Full text link
    The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one model class, referred to as models of LWF (Lauritzen--Wermuth--Frydenberg) or block concentration type, yields discrete models for categorical data that are smooth. This paper considers the structural properties of the discrete models based on the three alternative Markov properties. It is shown by example that two of the alternative Markov properties can lead to non-smooth models. The remaining model class, which can be viewed as a discrete version of multivariate regressions, is proven to comprise only smooth models. The proof employs a simple change of coordinates that also reveals that the model's likelihood function is unimodal if the chain components of the graph are complete sets.Comment: Published in at http://dx.doi.org/10.3150/08-BEJ172 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Computing all roots of the likelihood equations of seemingly unrelated regressions

    Get PDF
    Seemingly unrelated regressions are statistical regression models based on the Gaussian distribution. They are popular in econometrics but also arise in graphical modeling of multivariate dependencies. In maximum likelihood estimation, the parameters of the model are estimated by maximizing the likelihood function, which maps the parameters to the likelihood of observing the given data. By transforming this optimization problem into a polynomial optimization problem, it was recently shown that the likelihood function of a simple bivariate seemingly unrelated regressions model may have several stationary points. Thus local maxima may complicate maximum likelihood estimation. In this paper, we study several more complicated seemingly unrelated regression models, and show how all stationary points of the likelihood function can be computed using algebraic geometry.Comment: To appear in the Journal of Symbolic Computation, special issue on Computational Algebraic Statistics. 11 page

    Algebraic statistical models

    Full text link
    Many statistical models are algebraic in that they are defined in terms of polynomial constraints, or in terms of polynomial or rational parametrizations. The parameter spaces of such models are typically semi-algebraic subsets of the parameter space of a reference model with nice properties, such as for example a regular exponential family. This observation leads to the definition of an `algebraic exponential family'. This new definition provides a unified framework for the study of statistical models with algebraic structure. In this paper we review the ingredients to this definition and illustrate in examples how computational algebraic geometry can be used to solve problems arising in statistical inference in algebraic models

    A Bayesian information criterion for singular models

    Full text link
    We consider approximate Bayesian model choice for model selection problems that involve models whose Fisher-information matrices may fail to be invertible along other competing submodels. Such singular models do not obey the regularity conditions underlying the derivation of Schwarz's Bayesian information criterion (BIC) and the penalty structure in BIC generally does not reflect the frequentist large-sample behavior of their marginal likelihood. While large-sample theory for the marginal likelihood of singular models has been developed recently, the resulting approximations depend on the true parameter value and lead to a paradox of circular reasoning. Guided by examples such as determining the number of components of mixture models, the number of factors in latent factor models or the rank in reduced-rank regression, we propose a resolution to this paradox and give a practical extension of BIC for singular model selection problems

    Correction on Moments of minors of Wishart matrices

    Full text link
    Correction on Moments of minors of Wishart matrices by M. Drton and A. Goia (Ann. Statist. 36 (2008) 2261-2283), arXiv:math/0604488Comment: Published in at http://dx.doi.org/10.1214/12-AOS988 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore