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On the core of

multiple longest traveling salesman games
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Abstract:

In this paper we introduce multiple longest traveling salesman (MLTS) games. An MLTS game

arises from a network in which a salesman has to visit each node (player) precisely once, except

its home location, in an order that maximizes the total reward. First it is shown that the value

of a coalition of an MLTS game is determined by taking the maximum of suitable combinations

of one and two person coalitions. Secondly it is shown that MLTS games with five or less players

have a nonempty core. However, a six player MLTS game may have an empty core. For the special

instance where the reward between a pair of nodes is equal to 0 or 1, we provide relations between

the structure of the core and the underlying network.

Keywords: Game theory, longest traveling salesman problem/game, multiple longest traveling

salesman problem/game, Core.

1 Introduction

A traveling salesman (TS) problem can be described by a complete undirected graph in

which the vertices represent the cities and the cost between two cities can be represented by

a cost function on the edges. The objective is to find a Hamiltonian cycle that minimizes

total cost. A Hamiltonian cycle is a tour that starts in a specific city, referred to as home

city, visits all other cities exactly once and then returns to the home city. For a review on

TS problems we refer to Lawler et al. (1997). An important variant of the TS problem is the

longest traveling salesman (LTS) problem. Here the cost function on the edges is replaced

by a reward function. The objective in an LTS problem is to find a Hamiltonian cycle
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that maximizes total rewards. For a review on LTS problems we refer to Lewenstein and

Sviridenko (2003), Blokh and Gutin (1995) and Barvinok et al. (2002). Multiple traveling

salesman (MTS) and multiple longest traveling salesman (MLTS) problems are relaxations

of TS and LTS problems respectively. The objective is to find a weak Hamiltonian cycle that

minimizes costs in case of MTS problems and maximizes rewards in case of MLTS problems.

A weak Hamiltonian cycle is a tour that starts and ends in the home city and visits each

city once except the home city that can be revisited several times.

Cooperative transferable utility MLTS (LTS) games arising from MLTS (LTS) problems

are the object of study of this paper. Given an MLTS (LTS) problem we identify each vertex

in the graph, except the one corresponding to the home location, with a player. Then the

value of a coalition in an MLTS (LTS) game is defined as the maximum reward this coalition

can obtain by solving the MLTS (LTS) problem on the complete subgraph on the vertices

corresponding to this coalition and the home location. It is shown that the the value of a

coalition of an MLTS game is determined as the maximum of suitable combinations of 1-

and 2-person subcoalitions.

We show that MLTS games have a nonempty core if the number of players is at most

five. MLTS games need not have core elements if the number of players is at least six. For

the special case when the reward function on the edges only takes values 0 or 1 we provide

relations between the structure of the core and the underlying 1-graph. Here the 1-graph is

the subgraph of the complete graph that contains exactly those edges with reward equal to

1. We show that if the 1-graph is Hamiltonian then the core is the convex hull of specific

(0, 1)-vectors. If the 1-graph is a line graph we show that the game is convex and therefore

the core is nonempty. If the 1-graph is a traceable 1-sum of Hamiltonian and line graphs, we

can characterize a nonempty subset of the core. If the 1-graph is a tree the core is nonempty

(cf. LeBreton et al. (1992)).

Finally we discuss the relation between TS games, introduced by Potters, Curiel and Tijs

(1992), and MTS games, LTS games and MLTS games.

The paper is organized as follows. In section 2 we formally introduce MLTS games. Section

3 provides the various results on the core and section 4 considers the relation between MLTS

games and MTS games.
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2 Multiple longest traveling salesman games

In this section we introduce longest traveling salesman games and multiple longest trav-

eling salesman games.

Let N0 = {0, 1, 2, . . . , n} denotes the set of cities that a salesman has to visit, where city

0 is the home city of the salesman. Let T = (tij) be an N0×N0-matrix where tij denotes the

rewards of going from city i to city j, with i, j ∈ N0. We assume tij ≥ 0, tij = tji and tii = 0

for every i, j ∈ N0. The network (N0, T ) is usually represented by the complete graph on N0

with rewards tij on the edges.

In a longest traveling salesman (LTS) problem a salesman, starting in city 0, has to visit

each of the other cities exactly once and has to return to city 0 at the end of the journey.

The order of the cities is selected in such a way that the total rewards are maximized.

In a multiple longest traveling salesman (MLTS) problem again the salesman has to visit

each city exactly once but now the home city can be revisited several times instead of only

at the start and the end of the journey.

LTS (MLTS) games arise from LTS (MLTS) problems if one associates players to the set

of cities N = {1, . . . , n} and each coalition of players faces an LTS (MLTS) problem.

Before formally introducing LTS and MLTS games we will fix some notation. For any

S ⊂ N we denote by Π(S) the set of bijective functions π : {1, . . . , |S|} → S, where π(k)

denotes the player that is visited in kth position in the tour on cities in S induced by π.

Associated to each π ∈ Π(S) we define the function π : {0, 1, . . . , |S|, |S| + 1} → S ∪ {0}
such that π(k) = π(k) if k ∈ {1, . . . , |S|} and π(0) = π(|S|+ 1) = 0.

The LTS game, (N, r), corresponding to (N0, T ), is defined by

r(S) = max
π∈Π(S)

|S|∑

k=0

tπ(k)π(k+1)

for every S ⊂ N .

The MLTS game, (N, v), corresponding to (N0, T ), is defined by

v(S) = max
〈S1,...,Sl〉∈P(S)

l∑
m=1

r(Sm)

for every S ⊂ N , where P(S) denotes the set of partitions of S.

It is readily seen that MLTS games are superadditive, i.e. v(S ∪ T ) ≥ v(S) + v(T ) for all

S, T ∈ 2N with S ∩ T = ∅, and monotonic, i.e. v(T ) ≥ v(S) for all S, T ∈ 2N with S ⊂ T .
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Recall that the core of a cooperative game (N, v), is given by

Core(v) = {x ∈ RN : x(N) = v(N), x(S) ≥ v(S) for all S ∈ 2N},

where x(T ) =
∑
i∈T

xi for any T ⊂ N . An element of the core gives an allocation of v(N) in

such a way that there is no coalition with an incentive to split off.

The following example illustrates that LTS games and MLTS games can be different.

Example 2.1. Let the network (N0, T ) be represented by the graph of Figure 1.
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Figure 1: A complete graph representing the network (N0, T ).

The associated LTS game is given by r({1}) = 2, r({2}) = 2, r({1, 2}) = t01 + t12 + t20 = 2.

Note that r({1}) + r({2}) = 4 > 2 = r({1, 2}). So Core(r) = ∅.
The associated MLTS game is given by v({1}) = 2, v({2}) = 2, v({1, 2}) = max{r({1})+r({2}),
r({1, 2})} = r({1}) + r({2}) = 4. In this case Core(v) = {(2, 2)}. 2

It is readily seen that v = r if and only if t0i + t0j ≤ tij for every i, j ∈ N .

The following theorem states that every MLTS game with at most five players has a

nonempty core. The proof of this theorem can be found in section 4.

Theorem 2.2. Let (N, v) be an MLTS game with |N | ≤ 5, then the core of (N, v) is

nonempty.

The following example provides a 6 player MLTS game with an empty core.

Example 2.3. Let the network (N0, T ) be represented by the graph in Figure 2. All edges

{i, j} with tij = 0 are omitted for convenience.
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Figure 2: A graph representing the network (N0, T ).

It is easy to check that the optimal tour of coalition {1, 2, 4, 6} is (0, 1, 4, 6, 2, 0) and

consequently v({1, 2, 4, 6}) = 11. Because of symmetry, v({1, 3, 4, 5}) = v({2, 3, 5, 6}) = 11.

An optimal tour of N is (0, 1, 4, 5, 6, 2, 3, 0). Hence v(N) = 16.

Assume that x is a core element of this game. Then x({1, 2, 4, 6}) ≥ 11, x({1, 3, 4, 5}) ≥
11 and x({2, 3, 4, 5}) ≥ 11. So if we sum these inequalities we obtain 2x(N) ≥ 33 which

contradicts x(N) = 16. Hence, the core is empty. 2

The following Theorem shows that the value of every coalition only depends on the values

of one and two person subcoalitions.

Theorem 2.4. Let (N, v) be an MLTS game corresponding to a network (N0, T ). Then

v(S) = max
π∈Π(S)

[|S|−1∑

k=1

v({π(k), π(k + 1)})−
|S|−1∑

k=2

v({π(k)})]

for all S ⊂ N .

Proof: Let S ⊂ N . First we show that

v(S) ≥ max
π∈Π(S)

[|S|−1∑

k=1

v({π(k), π(k + 1)})−
|S|−1∑

k=2

v({π(k)})].

Let ρ ∈ Π(S) be the order in which the maximum on the right hand side is attained. Then

ρ induces a tour on S in the following way: from 0 go to ρ(1) and from ρ(1) go directly to ρ(2)

if tρ(1)ρ(2) > t0ρ(1) + t0ρ(2) , otherwise go via 0 to ρ(2). The decision to go from ρ(k) directly to

ρ(k + 1) or indirectly via 0 is made analogously depending on tρ(k)ρ(k+1) > t0ρ(k) + t0ρ(k+1) or
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not, with k = 2, . . . , |S|−1. Finally from ρ(|S|) go back to 0. Clearly, this tour generates a set

B of positions in {1, . . . , |S|−1} for which the tour goes back to zero; F = {1, . . . , |S|−1}\B
is the set of positions where the tour moves forward. The total rewards of the induced tour

are

R =
∑

k∈B

(t0ρ(k) + t0ρ(k+1)) + t0ρ(1) + t0ρ(|S|) +
∑

k∈F

tρ(k)ρ(k+1).

It is sufficient to show that R =

|S|−1∑

k=1

v({ρ(k), ρ(k + 1)})−
|S|−1∑

k=2

v({ρ(k)}).

|S|−1∑

k=1

v({ρ(k), ρ(k + 1)})−
|S|−1∑

k=2

v({ρ(k)}) =

=
∑

k∈B

v({ρ(k), ρ(k + 1)}) +
∑

k∈F

v({ρ(k), ρ(k + 1)})−
|S|−1∑

k=2

v({ρ(k)})

=
∑

k∈B

(2t0ρ(k) + 2t0ρ(k+1)) +
∑

k∈F

(t0ρ(k) + tρ(k)ρ(k+1) + t0ρ(k+1))−
|S|−1∑

k=2

2t0ρ(k)

= R +
∑

k∈B

(t0ρ(k) + t0ρ(k+1)) +
∑

k∈F

(t0ρ(k) + t0ρ(k+1))− 2

|S|−1∑

k=2

t0ρ(k) − t0ρ(1) − t0ρ(|S|)

= R +

|S|−1∑

k=1

(t0ρ(k) + t0ρ(k+1))−
|S|−1∑

k=1

t0ρ(k) −
|S|∑

k=2

t0ρ(k)

= R.

To show the inverse we first suppose that there is a tour ρ such that

v(S) = r(S) =

|S|∑

k=0

tρ(k)ρ(k+1). (1)

Since ρ ∈ Π(S) is optimal for S, it holds that tρ(k)ρ(k+1) ≥ t0ρ(k) + t0ρ(k+1) for k ∈
{1, . . . , |S|−1}. Hence v({ρ(k), ρ(k+1)}) = r({ρ(k), ρ(k+1)}) = tρ(k)ρ(k+1) + t0ρ(k) + t0ρ(k+1).
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Then,

v(S) =

|S|∑

k=0

tρ(k)ρ(k+1) = t0ρ(1) +

|S|−1∑

k=1

tρ(k)ρ(k+1) + t0ρ(|S|)

= t0ρ(1) +

|S|−1∑

k=1

(
tρ(k)ρ(k+1) + t0ρ(k) + t0ρ(k+1)

)
+ t0ρ(|S|) −

|S|−1∑

k=1

t0ρ(k) −
|S|∑

k=2

t0ρ(k)

=

|S|−1∑

k=1

v({ρ(k), ρ(k + 1)})− 2

|S|−1∑

k=2

t0ρ(k)

=

|S|−1∑

k=1

v({ρ(k), ρ(k + 1)})−
|S|−1∑

k=2

v({ρ(k)})

≤ max
π∈Π(S)

[|S|−1∑

k=1

v({π(k), π(k + 1)})−
|S|−1∑

k=2

v({π(k)})].

So we know that v(S) ≥ max
π∈Π(S)

[|S|−1∑

k=1

v({π(k), π(k+1)})−
|S|−1∑

k=2

v({π(k)})] for every S ⊂ N

and that the equality holds when v(S) = r(S).

Finally, if there is no ρ such that (1) is satisfied, then there exists a partition 〈S1, . . . , St〉
of S such that v(S) =

t∑
j=1

r(Sj), and we can use the same argument for all partition elements

S1, . . . , St separately. Aggregating the t formulas the result follows. 2

Observe that Theorem 2.4 is also true for LTS games.

In the following we will denote by (N0, T
01) a network in which the rewards of edges of T

equal either 0 or 1. The corresponding MLTS (LTS) games will be referred to as 0-1 MLTS

(LTS) games. It turns out that an optimal tour for a coalition S will visit the cities i ∈ S

with t0i = 1 separately.

Theorem 2.5. Let (N, v) be an MLTS game corresponding to a network (N0, T
01). Then,

v(S) =
∑

i∈S\S∗
v({i}) + v(S∗),

for every S ⊂ N , where S∗ = {i ∈ S : t0i = 0}.

Proof: Given S ⊂ N it holds that v(S) ≥
∑

i∈S\S∗
v({i})+v(S∗) because 〈S∗, ({i})i∈S\S∗〉

is a partition of S and (N, v) is superadditive.
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Next, we have to show that v(S) ≤
∑

i∈S\S∗
v({i})+v(S∗). Using Theorem 2.4 it is sufficient

to prove that

max
π∈Π(S)

[|S|−1∑

k=1

v({π(k), π(k + 1)})−
|S|−1∑

k=2

v({π(k)})] ≤
∑

i∈S\S∗
v({i}) + v(S∗).

Let ρ ∈ Π(S) be the order in which the maximum is reached, then ρ induces a tour, that

is optimal in the corresponding MLTS problem, and sets B and F just as in the proof of

Theorem 2.4. Moreover, as t0i + t0j ≥ tij for every i ∈ S \S∗, j ∈ S it holds that ρ(F ) ⊂ S∗.

So, denoting by R the total rewards of the induced tour,

R =
∑

k∈B

(t0ρ(k) + t0ρ(k+1)) + t0ρ(1) + t0ρ(|S|) +
∑

k∈F

tρ(k)ρ(k+1)

=
∑

k∈B

t0ρ(k) + t0ρ(|S|) +
∑

k∈B

t0ρ(k+1) + t0ρ(1) +
∑

k∈F

tρ(k)ρ(k+1)

=
∑

k∈B
ρ(k)∈S∗

t0ρ(k) +
∑

k∈B
ρ(k)∈S\S∗

t0ρ(k) + t0ρ(|S|)+

∑

k∈B
ρ(k+1)∈S∗

t0ρ(k+1) +
∑

k∈B
ρ(k+1)∈S\S∗

t0ρ(k+1) + t0ρ(1) +
∑

k∈F

tρ(k)ρ(k+1)

=
∑

k∈B
ρ(k)∈S\S∗

t0ρ(k) + t0ρ(|S|) +
∑

k∈B
ρ(k+1)∈S\S∗

t0ρ(k+1) + t0ρ(1) +
∑

k∈F

tρ(k)ρ(k+1)

≤
∑

i∈S\S∗
t0i +

∑

i∈S\S∗
t0i +

∑

k∈F

tρ(k)ρ(k+1)

= 2
∑

i∈S\S∗
t0i +

∑

k∈F

tρ(k)ρ(k+1) =
∑

i∈S\S∗
v({i}) +

∑

k∈F

tρ(k)ρ(k+1)

≤
∑

i∈S\S∗
v({i}) + r(F ) ≤

∑

i∈S\S∗
v({i}) + r(S) ≤

∑

i∈S\S∗
v({i}) + v(S).

where the fourth equality holds since i ∈ S∗ implies that t0i = 0. 2

3 0-1 MLTS games

In this section we investigate the structure of the core of 0-1 MLTS games.

For a network (N0, T
01) we denote by N∗ the set of players that are connected to city 0

with reward 0. So, N\N∗ is the set of players that are connected to city 0 with reward 1. From
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Theorem 2.5 it follows that every element of the core assigns to each player in N\N∗ exactly

2. For this reason we will restrict attention to standard networks with N = N∗ in the re-

maining part of this section. Observe that in this case 0-1 MLTS and 0-1 LTS games coincide.

A network (N0, T
01) induces a graph G1, where G1 is the undirected graph with set of

vertices N and set of edges E = {{i, j} ⊂ N : tij = 1}. The graph G1 is called traceable if

there exists a complete Hamiltonian path. A Hamiltonian path between vertices i and j is a

succession of connected vertices starting in i and ending in j such that all the vertices in the

succession appear exactly once. We say that a Hamiltonian path between vertices i and j is

complete if it visits all the vertices in the graph. A Hamiltonian path is closed if the starting

vertex and the end vertex coincide. A Hamiltonian cycle is a complete closed Hamiltonian

path. A graph is Hamiltonian if it contains a Hamiltonian cycle.

The following proposition states that traceability of G1 in a standard 0-1 MLTS problem is

equivalent to v(N) = |N |−1 for the corresponding MLTS game. The proof is straightforward

and therefore omitted.

Proposition 3.1. Let (N, v) be an MLTS game corresponding to a standard network

(N0, T
01). Then v(N) = |N | − 1 if and only if the graph G1 is traceable.

The following result implies that a 0-1 MLTS game has a nonempty core whenever the

associated graph G1 is traceable. Here eS ∈ RN denotes the vector where eS
j = 1 if j ∈ S

and eS
j = 0 otherwise.

Theorem 3.2. Let (N, v) be an MLTS game corresponding to a standard network (N0, T
01).

If G1 is traceable, then conv{eN − e{i} : i ∈ N} ⊂ Core(v).

Proof: Let i ∈ N and let xi = eN − e{i}. It is sufficient to show that xi ∈ Core(v). By

definition xi(N) = |N | − 1 = v(N) and xi(S) ≥ |S| − 1 ≥ v(S) for every S ⊂ N . 2

The following theorem shows that the inclusion of Theorem 3.2 is an equality if G1 is

Hamiltonian.

Theorem 3.3. Let (N, v) be an MLTS game corresponding to a standard network (N0, T
01).

If G1 is Hamiltonian, then Core(v) = conv{eN − e{i} : i ∈ N}.

9



Proof: By Theorem 3.2 it is sufficient to show that Core(v) ⊂ conv{eN − e{i} : i ∈ N}.
Since G1 is Hamiltonian, it holds for i ∈ N that v(N \ {i}) = |N | − 2. Since v(N) = |N | − 1

it follows that 0 = v({i}) ≤ xi ≤ v(N) − v(N \ {i}) = 1 for every x ∈ Core(v). Hence

C(v) ⊂ {x ∈ RN : xi ∈ [0, 1],
∑
i∈N

xi = |N | − 1}. Because conv{eN − e{i} : i ∈ N} = {x ∈

RN : xi ∈ [0, 1],
∑
i∈N

xi = |N |−1} we can conclude that Core(v) ⊂ conv{eN−e{i} : i ∈ N}.2

Next we show that an 0-1 MLTS game is convex whenever G1 is a line. Recall that a

cooperative game (N, v) is convex if v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for every S ⊂
T ⊂ N \ {i}. For the proof of this result we need the concept of connected components of a

graph G, i.e. maximally connected subgraphs of G.

Theorem 3.4. Let (N, v) be an MLTS game corresponding to a standard network (N0, T
01).

If G1 is a line, then (N, v) is convex.

Proof: Let S ⊂ T ⊂ N \{i}. We prove that v(S∪{i})−v(S) ≤ v(T ∪{i})−v(T ). First

observe that for any i ∈ N and U ⊂ N \ {i} it holds v(U ∪ {i})− v(U) ∈ {0, 1, 2}. Hence if

v(T ∪{i})−v(T ) = 2, the inequality is satisfied by the observation. If v(T ∪{i})−v(T ) = 1,

then i is connected to exactly one component of T in G1. Because G1 is a line it holds

that i is connected, at most, to one component of S in G1. So v(S ∪ {i}) − v(S) ≤ 1. If

v(T ∪ {i})− v(T ) = 0, then i is not connected to any component of T in G1. Hence i is not

connected to any component of S in G1. So v(S ∪ {i})− v(S) = 0. 2

Before we can state our next result we need the notion of 1-sum of two graphs that

arises from standard situations. Let G = (V, E) and H = (V ′, E ′) be two graphs such that

|V ∩V ′| = 1. Then we define the 1-sum of G and H by G⊕H = (V ∪V ′, E∪E ′). The 1-sum

of more than two graphs is defined in a recursive way.

Example 3.5. The graph in Figure 3 is 1-sum of the line L1 with set of players NL1 =

{1, 2, 3} and the Hamiltonian graphs H1, H2 with set of players NH1 = {3, 4, 5, 6, 7} and

NH2 = {7, 8, 9, 10} respectively.
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Figure 3: 1-sum of Hamiltonian graphs and lines that is traceable.

Observe that in the associated MLTS game, (N, v), an optimal tour for N is given by

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0). So, v(N) = 9 which implies that the 1-sum of L1, H1, H2 is

traceable. 2

We will only consider traceable graphs that are 1-sum of line graphs L1, . . . , Lq and

Hamiltonian graphs H1, . . . , Hp. In Figure 4 we illustrate some 1-sums that are not traceable.
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Figure 4: 1-sums that are not traceable.

It is readily verified that to achieve traceability each line is coalesced to, at most, two

Hamiltonian graphs using its end vertices. Moreover, each Hamiltonian graph is coalesced

to, at most, two different graphs (either two lines, or one line and one Hamiltonian graph,

or two Hamiltonian graphs) using two consecutive vertices in a Hamiltonian cycle.

Now consider a standard network (N0, T
01) such that G1 is traceable and such that

G1 is 1-sum of Hamiltonian graphs {Hr}p
r=1 and lines {Ls}q

s=1. We denote by NLs (NHr)

the set of players of Ls (Hr) and by vLs (vHr) the characteristic function of the MLTS

game corresponding to the standard network (NLs , T
01
|Ls

) ((NHr , T
01
|Hr

)). Let {xHr}p
r=1 and

{xLs}q
s=1 be such that xHr ∈ Core(vHr) for every r ∈ {1, . . . , p}, xLs ∈ Core(vLs) for every
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s ∈ {1, . . . , q}. We define x ∈ RN by

xi =





xLs
i + xHr

i if i ∈ NLs ∩NHr ,

xHr
i + xHt

i if i ∈ NHR
∩NHt ,

xLs
i if i ∈ NLs and i /∈ NHr for every r ∈ {1, . . . , p},

xHr
i if i ∈ NHr , i /∈ NLs for every s ∈ {1, . . . , q} and i /∈ NHt , t 6= r

(2)

Since G1 is traceable, (2) covers all cases.

Theorem 3.6. Let (N, v) be an MLTS game corresponding to a standard network (N0, T
01).

Moreover, let G1 be traceable and the 1-sum of Hamiltonian graphs {Hr}p
r=1 and lines

{Ls}q
s=1. Then each vector x ∈ RN as defined in (2) is an element of Core(v).

Proof: Observe that there are exactly p + q − 1 players that are in exactly two of the

underlying Hamiltonian and line graphs. Then

∑
i∈N

xi =

p∑
r=1

∑
i∈Hr

xHr
i +

q∑
s=1

∑
i∈LS

xLs
i =

p∑
r=1

(|NHr | − 1) +

q∑
s=1

(|NLs| − 1)

=

p∑
r=1

|NHr |+
q∑

s=1

|NLs| − p− q = (|N |+ p + q − 1)− (p + q) = |N | − 1.

Next we show stability. Let ρ be an optimal tour of S ⊂ N in G1 and let E(ρ) denote the

set of edges in G1 covered by ρ. Hence v(S) = |E(ρ)|. Obviously, E(ρ) ∩ E(L1), . . . , E(ρ) ∩
E(Lq), E(ρ) ∩ E(H1), . . . , E(ρ) ∩ E(Hp) is a partition of E(ρ), where E(Ls) and E(Hr)

denote the set of edges of Ls and Hr, respectively. Let A ∈ {L1, . . . , Lq, H1, . . . , Hp}, we

can define an induced tour in S ∩ A in the following way. Let k1, . . . , k|S∩NA| be such that

k1 < k2 < . . . < k|S∩NA| and ρ(kl) ∈ S∩NA for every l. Then the induced tour is given by: from

0 go to ρ(k1) and from ρ(k1) go directly to ρ(k2) if {ρ(k1), ρ(k2)} ∈ E(ρ) ∩ E(A), otherwise

go via 0 to ρ(k2). The decision to go from ρ(kl) directly to ρ(kl+1) or indirectly via 0 is made

analogously depending on {ρ(kl), ρ(kl+1)} ∈ E(ρ)∩E(A) or not, with l = 2, . . . , |S∩NA|−1.

Finally from ρ(k|S∩NA|) go back to 0. Then, the total reward corresponding to this tour is

|E(ρ) ∩ E(A)|. Hence v(S ∩NA) ≥ |E(ρ) ∩ E(A)|. Therefore

v(S) = |E(ρ)| = |E(ρ) ∩ E(L1)|+ . . . + |E(ρ) ∩ E(Lq)|+
+ |E(ρ) ∩ E(H1)|+ . . . + |E(ρ) ∩ E(Hp)|
≤ v(S ∩NL1) + . . . + v(S ∩NLq) + v(S ∩NH1) + . . . + v(S ∩NHp)

≤ xL1(S ∩NL1) + . . . + xLq(S ∩NLq) + xH1(S ∩NH1) + . . . + xHp(S ∩NHp)

= x(S). 2
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The following example shows that if G1 is not traceable the core of the corresponding

MLTS game can be empty.

Example 3.7. Let (N0, T
01) be the standard network of which G1 is represented in Figure 5.
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Figure 5: A non-traceable graph representing the standard network (N0, T
01).

In this case is easy to check that an optimal tour for N is (0,5,3,1,4,6,0,2,0) so v(N) =

4. An optimal tour for {1, 2, 3, 5} is (0, 2, 1, 3, 5, 0) and v({1, 2, 3, 5}) = 3. By symmetry

v({1, 2, 4, 6}) = 3 and v({3, 4, 5, 6}) = 3. Hence if x ∈ Core(v) then, x({1, 2, 3, 5}) ≥ 3,

x({1, 2, 4, 6}) ≥ 3 and x({3, 4, 5, 6}) ≥ 3. Therefore, if we sum all the inequalities, we find

2x(N) ≥ 9 which contradicts x(N) = 4. Hence, the core is empty. 2

Finally we have

Theorem 3.8. Let (N, v) be an MLTS game corresponding to a standard network (N0, T
01).

If G1 is a tree, then (N, v) has a nonempty core.

The proof is straightforward because if G1 is a tree, then the corresponding 0-1 MLTS

game is Γ-component additive (see LeBreton et al. (1992)).

4 Relation between MLTS games and MTS games

In this section we prove Theorem 2.2. For this purpose we define multiple traveling salesman

(MTS) games and we show that they are related to MLTS games.

Let (N0, T ) be a network as before, but with a different interpretation: tij now represents

the costs of going from city i to city j, with i, j ∈ N0.
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In a traveling salesman (TS) problem corresponding to the cost network (N0, T ) a sales-

man, starting in city 0, has to visit each of the other cities exactly once and has to return

to city 0 at the end of the journey. The order of the cities is selected in such a way that the

total costs are minimized.

In a multiple traveling salesman (MTS) problem the salesman has to visit each city ex-

actly once but now the home city can be revisited several times instead of only at the start

and the end of the journey.

In Potters, Curiel and Tijs (1992) TS games arising from TS problems are introduced.

Analogously one can define MTS games arising from MTS problems where the players are

identified with the set of cities N = {1, . . . , n} and each coalition of cities faces an MTS

problem.

The TS game (N, κ), corresponding to the cost network (N0, T ) is given by

κ(S) = min
π∈Π(S)

|S|∑

k=0

tπ(k)π(k+1)

for every S ⊂ N and the MTS game, (N, c), corresponding to (N0, T ) is defined by

c(S) = min
〈S1,...,Sl〉∈P(S)

l∑
m=1

κ(Sm)

for every S ⊂ N .

It is readily seen that given a cost network (N0, T ) the corresponding TS and MTS co-

incide, if and only if t0i + t0j ≥ tij for every i, j ∈ N .

Analogously to Theorem 2.4 it can be proved that for an MTS game (N, c) it holds that

c(S) = min
π∈Π(S)

[|S|−1∑

k=1

c({π(k), π(k + 1)})−
|S|−1∑

k=2

c({π(k)})] (3)

for all S ⊂ N .

Observe that this result also holds for TS games.

Using the results in Potters, Curiel and Tijs (1992), Tamir (1989) and Kuipers (1991) we

can state the following result on the nonempty core of the traveling salesman game.
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Theorem 4.1. Let (N, κ) be a TS game with |N | ≤ 5 corresponding to a cost network

(N0, T ) such that t0i + t0j ≥ tij for every i, j ∈ N . Then, Core(κ) 6= ∅.

Now we show that every MTS game with at most five players has a nonempty core.

Theorem 4.2. Let (N, c) be an MTS game with |N | ≤ 5 corresponding to a cost network

(N0, T ). Then, Core(c) 6= ∅.

Proof: We are going to construct a cost network (N0, U) such that the associated TS

game, (N, κ), and (N, c) coincide.

Let U be defined by u0i = t0i, uij = t0i + t0j if tij > t0i + t0j and uij = tij otherwise, for

every i, j ∈ N .

The matrix of costs U satisfies the triangular inequalities with respect to the home

location. Hence, using Theorem 4.1, (N, κ) has nonempty core and it suffices to show that

κ(S) = c(S) for all S ⊂ N . Using (3) it is sufficient to prove that κ(S) = c(S) for all S ⊂ N

with |S| ≤ 2.

Case 1: S = {i}, with i ∈ N .

κ({i}) = 2u0i = 2t0i = c({i}).

Case 2: S = {i, j}, with i, j ∈ N , i 6= j, such that tij > t0i + t0j,

κ({i, j}) = uij + u0i + u0j = (t0i + t0j) + t0i + t0j = 2t0i + 2t0j = c({i, j}).

Case 3: S = {i, j}, with i, j ∈ N , i 6= j, such that tij ≤ t0i + t0j,

κ({i, j}) = uij + u0i + u0j = tij + t0i + t0j = c({i, j}).

2

Next we will show how MLTS games and MTS games are related.

Theorem 4.3. Let (N, v) be an MLTS game. Then there exists an MTS game (N, c) and a

constant k ∈ R such that v(S) = 2k|S| − c(S) for every S ⊂ N .

Analogously, let (N, c) be an MTS game. Then there exists an MLTS game (N, v) and a

constant l ∈ R such that c(S) = 2l|S| − v(S) for every S ⊂ N .
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Proof: We will only prove the first part of the theorem, the second part is analogous.

Let (N, v) be an MLTS game corresponding to a (reward) network (N0, T ). We define a cost

network (N0, U) by u0i = k−t0i, uij = 2k−tij for every i, j ∈ N , with k ∈ R such that U ≥ 0.

We will show that the MTS game, (N, c), associated to (N0, U) satisfies v(S) = 2k|S|− c(S)

for all S ⊂ N . Using Theorem 2.4 and equation (3) it is sufficient to prove this for S ⊂ N

with |S| ≤ 2.

Case 1: S = {i}, with i ∈ N .

v({i}) = 2t0i = 2k − (2k − 2t0i) = 2k − 2u0i = 2k − c({i}).

Case 2: S = {i, j}, with i, j ∈ N , i 6= j.

v({i, j}) = max{tij + t0i + t0j, 2t0i + 2t0j}
= 4k − (

4k −max{tij + t0i + t0j, 2t0i + 2t0j}
)

= 4k −min{2k − tij + k − t0i + k − t0j, 2k − 2t0i + 2k − 2t0j}
= 4k −min{uij + u0i + u0j, 2u0i + 2u0j} = 4k − c({i, j}). 2

Proof Theorem 2.2: It is now an immediate consequence of Theorem 4.2 and Theorem 4.3.

The following example provides a cost network (N0, T ) such that the entries of T take

values 0 or 1 and the associated MTS game has an empty core.

Example 4.4. Let the cost network (N0, T ) be represented by the graph in Figure 6. The

edges drawn have costs 0, all other edges have costs 1.
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Figure 6: A graph representing the cost network (N0, T ).
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It is easy to check that the optimal tour of coalition {1, 2, 3, 6} is (0, 2, 1, 6, 3, 0) and con-

sequently c({1, 2, 3, 6}) = 1. Because of symmetry, c({3, 4, 5, 6}) = 1. An optimal tour of

{1, 2, 4, 5} is (0, 2, 1, 5, 4, 0), so c({1, 2, 4, 5}) = 0. An optimal tour of N is (0, 2, 1, 6, 5, 4, 3, 0),

so c(N) = 2.

If x ∈ Core(c) then x({1, 2, 3, 6}) ≤ 1, x({3, 4, 5, 6}) ≤ 1 and x({1, 2, 4, 5}) ≤ 0. So if we

sum the inequalities we obtain 2x(N) ≤ 2 which contradicts x(N) = 2. Hence, the core is

empty. 2
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