1,493 research outputs found

    A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs

    Get PDF
    With the growing interest in wireless sensor networks (WSNs), minimizing network delay and maximizing sensor (node) lifetime are important challenges. Since the sensor battery is one of the most precious resources in a WSN, efficient utilization of the energy to prolong the network lifetime has been the focus of much of the research on WSNs. For that reason, many previous research efforts have tried to achieve tradeoffs in terms of network delay and energy cost for such data aggregation tasks. Recently, duty-cycling technique, i.e., periodically switching ON and OFF communication and sensing capabilities, has been considered to significantly reduce the active time of sensor nodes and thus extend network lifetime. However, this technique causes challenges for data aggregation. In this paper, we present a distributed approach, named distributed delay efficient data aggregation scheduling (DEDAS-D) to solve the aggregation-scheduling problem in duty-cycled WSNs. The analysis indicates that our solution is a better approach to solve this problem. We conduct extensive simulations to corroborate our analysis and show that DEDAS-D outperforms other distributed schemes and achieves an asymptotic performance compared with centralized scheme in terms of data aggregation delay.N/

    Critical-Path Aware Scheduling for Latency Efficient Broadcast in Duty-Cycled Wireless Sensor Networks

    Get PDF
    Minimum latency scheduling has arisen as one of the most crucial problems for broadcasting in duty-cycled Wireless Sensor Networks (WSNs). Typical solutions for the broadcast scheduling iteratively search for nodes able to transmit a message simultaneously. Other nodes are prevented from transmissions to ensure that there is no collision in a network. Such collision-preventions result in extra delays for a broadcast and may increase overall latency if the delays occur along critical paths of the network. To facilitate the broadcast latency minimization, we propose a novel approach, critical-path aware scheduling (CAS), which schedules transmissions with a preference of nodes in critical paths of a duty-cycled WSN. This paper presents two schemes employing CAS which produce collision-free and collision-tolerant broadcast schedules, respectively. The collision-free CAS scheme guarantees an approximation ratio of in terms of latency, where denotes the maximum node degree in a network. By allowing collision at noncritical nodes, the collision-tolerant CAS scheme reduces up to 10.2 percent broadcast latency compared with the collision-free ones while requiring additional transmissions for the noncritical nodes experiencing collisions. Simulation results show that broadcast latencies of the two proposed schemes are significantly shorter than those of the existing methods

    High-performance flexible energy storage and harvesting system for wearable electronics.

    Get PDF
    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices

    Power Management in Sensing Subsystem of Wireless Multimedia Sensor Networks

    Get PDF
    A wireless sensor network consists of sensor nodes deployed over a geographical area for monitoring physical phenomena like temperature, humidity, vibrations, seismic events, and so on. Typically, a sensor node is a tiny device that includes three basic components: a sensing subsystem for data acquisition from the physical surrounding environment, a processing subsystem for local data processing and storage, and a wireless communication subsystem for data transmission. In addition, a power source supplies the energy needed by the device to perform the programmed task. This power source often consists of a battery with a limited energy budget. In addition, it is usually impossible or inconvenient to recharge the battery, because nodes are deployed in a hostile or unpractical environment. On the other hand, the sensor network should have a lifetime long enough to fulfill the application requirements. Accordingly, energy conservation in nodes and maximization of network lifetime are commonly recognized as a key challenge in the design and implementation of WSNs. Experimental measurements have shown that generally data transmission is very expensive in terms of energy consumption, while data processing consumes significantly less (Raghunathan et al., 2002). The energy cost of transmitting a single bit of information is approximately the same as that needed for processing a thousand operations in a typical sensor node (Pottie & Kaiser, 2000). The energy consumption of the sensing subsystem depends on the specific sensor type. In some cases of scalar sensors, it is negligible with respect to the energy consumed by the processing and, above all, the communication subsystems. In other cases, the energy expenditure for data sensing may be comparable to, or even greater (in the case of multimedia sensing) than the energy needed for data transmission. In general, energy-saving techniques focus on two subsystems: the communication subsystem (i.e., energy management is taken into account in the operations of each single node, as well as in the design of networking protocols), and the sensing subsystem (i.e., techniques are used to reduce the amount or frequency of energy-expensive samples).Postprint (published version

    Duty-cycled Wake-up Schemes for Ultra-low Power Wireless Communications

    Get PDF
    In sensor network applications with low traffic intensity, idle channel listening is one of the main sources of energy waste.The use of a dedicated low-power wake-up receiver (WRx) which utilizes duty-cycled channel listening can significantlyreduce idle listening energy cost. In this thesis such a scheme is introduced and it is called DCW-MAC, an acronym forduty-cycled wake-up receiver based medium access control.We develop the concept in several steps, starting with an investigation into the properties of these schemes under idealizedconditions. This analysis show that DCW-MAC has the potential to significantly reduce energy costs, compared to twoestablished reference schemes based only on low-power wake up receivers or duty-cycled listening. Findings motivatefurther investigations and more detailed analysis of energy consumption. We do this in two separate steps, first concentratingon the energy required to transmit wake-up beacons and later include all energy costs in the analysis. The more completeanalysis makes it possible to optimize wake-up beacons and other DCW-MAC parameters, such as sleep and listen intervals,for minimal energy consumption. This shows how characteristics of the wake-up receiver influence how much, and if, energycan be saved and what the resulting average communication delays are. Being an analysis based on closed form expressions,rather than simulations, we can derive and verify good approximations of optimal energy consumption and resulting averagedelays, making it possible to quickly evaluate how a different wake-up receiver characteristic influences what is possible toachieve in different scenarios.In addition to the direct optimizations of the DCW-MAC scheme, we also provide a proof-of-concept in 65 nm CMOS,showing that the digital base-band needed to implement DCW-MAC has negligible energy consumption compared to manylow-power analog front-ends in literature. We also propose a a simple frame-work for comparing the relative merits ofanalog front-ends for wake-up receivers, where we use the experiences gained about DCW-MAC energy consumption toprovide a simple relation between wake-up receiver/analog front-end properties and energy consumption for wide ranges ofscenario parameters. Using this tool it is possible to compare analog front-ends used in duty-cycled wake-up schemes, evenif they are originally designed for different scenarios.In all, the thesis presents a new wake-up receiver scheme for low-power wireless sensor networks and provide a comprehensiveanalysis of many of its important properties

    Smart-antenna techniques for energy-efficient wireless sensor networks used in bridge structural health monitoring

    Get PDF
    Abstract: It is well known that wireless sensor networks differ from other computing platforms in that 1- they typically require a minimal amount of computing power at the nodes; 2- it is often desirable for sensor nodes to have drastically low power consumption. The main benefit of the this work is a substantial network life before batteries need to be replaced or, alternatively, the capacity to function off of modest environmental energy sources (energy harvesting). In the context of Structural Health Monitoring (SHM), battery replacement is particularly problematic since nodes can be in difficult to access locations. Furthermore, any intervention on a bridge may disrupt normal bridge operation, e.g. traffic may need to be halted. In this regard, switchbeam smart antennas in combination with wireless sensor networks (WSNs) have shown great potential in reducing implementation and maintenance costs of SHM systems. The main goal of implementing switch-beam smart antennas in our application is to reduce power consumption, by focusing the radiated energy only where it is needed. SHM systems capture the dynamic vibration information of a bridge structure in real-time in order to assess the health of the structure and to predict failures. Current SHM systems are based on piezoelectric patch sensors. In addition, the collection of data from the plurality of sensors distributed over the span of the bridge is typically performed through an expensive and bulky set of shielded wires which routes the information to a data sink at one end of the structure. The installation, maintenance and operational costs of such systems are extremely high due to high power consumption and the need for periodic maintenance. Wireless sensor networks represent an attractive alternative, in terms of cost, ease of maintenance, and power consumption. However, network lifetime in terms of node battery life must be very long (ideally 5–10 years) given the cost and hassle of manual intervention. In this context, the focus of this project is to reduce the global power consumption of the SHM system by implementing switched-beam smart antennas jointly with an optimized MAC layer. In the first part of the thesis, a sensor network platform for bridge SHM incorporating switched-beam antennas is modelled and simulated. where the main consideration is the joint optimization of beamforming parameters, MAC layer, and energy consumption. The simulation model, built within the Omnet++ network simulation framework, incorporates the energy consumption profiles of actual selected components (microcontroller, radio interface chip). The energy consumption and packet delivery ratio (PDR) of the network with switched-beam antennas is compared with an equivalent network based on omnidirectional antennas. In the second part of the thesis, this system model is leveraged to examine two distinct but interrelated aspects: Gallium Arsenide (GaAs) based solar energy harvesting and switched-beam antenna strategies. The main consideration here is the joint optimization of solar energy harvesting and switchedbeam directional antennas, where an equivalent network based on omnidirectional antennas acts as a baseline reference for comparison purposes.Il est bien connu que les réseaux de capteurs sans fils diffèrent des autres plateformes informatiques étant donné 1- qu’ils requièrent typiquement une puissance de calcul minimale aux noeuds du réseau ; 2- qu’il est souvent désirable que les noeuds capteurs aient une consommation d’énergie dramatiquement faible. La principale retombée de ce travail réside en la durée de vie allongée du réseau avant que les piles ne doivent être remplacées ou, alternativement, la capacité de fonctionner indéfiniment à partir de modestes sources d’énergie ambiente (glânage d’énergie). Dans le contexte du contrôle de la santé structurale (CSS), le remplacement de piles est particulièrement problématique puisque les noeuds peuvent se trouver en des endroits difficiles d’accès. De plus, toute intervention sur un pont implique une perturbation de l’opération normale de la structure, par exemple un arrêt du traffic. Dans ce contexte, les antennes intelligentes à commutation de faisceau en combinaison avec les réseaux de capteurs sans fils ont démontré un grand potentiel pour réduire les coûts de réalisation et d’entretien de systèmes de CSS. L’objectif principal de l’intégration d’antennes à commutation de faisceau dans notre application réside dans la réduction de la consommation énergétique, réalisée en concentrant l’énergie radiée uniquement là où elle est nécessaire. Les systèmes de CSS capturent l’information dynamique de vibration d’une structure de pont en temps réel de manière à évaluer la santé de la structure et prédire les failles. Les systèmes courants de CSS sont basés sur des senseurs piézoélectriques planaires. De plus, la collecte de données à partir de la pluralité de senseurs distribués sur l’étendue du pont est typiquement effectuée par le biais d’un ensemble coûteux et encombrant de câbles blindés qui véhiculent l’information jusqu’à un point de collecte à une extremité de la structure. L’installation, l’entretien, et les coûts opérationnels de tels systèmes sont extrêmement élevés étant donné la consommation de puissance élevée et le besoin d’entretien régulier. Les réseaux de capteurs sans fils représentent une alternative attrayante, en termes de coût, facilité d’entretien et consommation énergétique. Toutefois, la vie de réseau en termes de la durée de vie des piles doit être très longue (idéalement de 5 à 10 ans) étant donné le coût et les problèmes liés à l’intervention manuelle. Dans ce contexte, ce projet se concentre sur la réduction de la consommation de puissance globale d’un système de CSS en y intégrant des antennes intelligentes à commutation de faisceau conjointement avec une couche d’accès au médium (couche MAC) optimisée. Dans la première partie de la thèse, une plateforme de réseau de capteurs sans fils pour le CSS d’un pont incorporant des antennes à commutation de faisceaux est modélisé et simulé, avec pour considération principale l’optimisation des paramètres de sélection de faisceau, de la couche MAC et de la consommation d’énergie. Le modèle de simulation, construit dans le logiciel de simulation de réseaux Omnet++, incorpore les profils de consommation d’énergie de composants réels sélectionnés (microcontrôleur, puce d’interface radio). La consommation d’énergie et le taux de livraison de paquets du réseau avec antennes à commutation de faisceau est comparé avec un réseau équivalent basé sur des antennes omnidirectionnelles. Dans la deuxième partie de la thèse, le modèle système proposé est mis à contribution pour examiner deux aspects distrincts mais interreliés : le glânage d’énergie à partir de cellules solaire à base d’arséniure de Gallium (GaAs) et les stratégies liées aux antennes à commutation de faisceau. La considération principale ici est l’optimisation conjointe du glânage d’énergie et des antennes à commutation de faisceau, en ayant pour base de comparaison un réseau équivalent à base d’antennes omnidirectionnelles

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201
    • …
    corecore