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Abstract

Most of the existing sensor network deployments are

convergecast data collection applications that transmit

data from multiple sources to a sink. In this paper, we

present CoReDac, a self-organizing, collision-free con-

vergecast protocol. In contrast to previous solutions,

CoReDac consists not only of a data collection phase

but also an efficient and collision-free command phase.

This way, the protocol can be used below the applica-

tion layer for wireless versions of building automation

protocols such as BACnet that require both efficient re-

sponse and command phases. We present experiments that

show that CoReDac works as expected and demonstrate

its energy-efficiency for low duty cycle command-response

applications by comparing it to X-MAC.

1 Introduction

Building Automation Systems (BAS) are used to both

improve the indoor climate in buildings and to reduce the

operational costs. Originally, most BAS were heating,

ventilation and air-conditioning (HVAC) systems. To fur-

ther increase management and reduce costs, other func-

tions such as lighting, safety, security, and transporta-

tion supervision have been integrated into BAS. Tradition-

ally, BAS have been used in large buildings, for example,

schools, hospitals, and offices. For these types of build-

ings, the construction costs constitute only one seventh of

the overall operational costs [12]. Therefore, reducing the

operational costs with a BAS provides a great potential for

savings.

Wireless sensor networks (WSN) consist of networks

of tiny embedded systems with sensing capabilities that

communicate with each other using an on-board low

power radio module. Typically, sensor nodes transport

measured data to a base station in a multi-hop fashion.

Most available sensor nodes are matchbox-sized and pow-

ered by batteries. Since it is in general not possible, or too

labor-intensive, to replace the nodes’ batteries, reducing

power consumption is one of the major research activi-

ties in the area of wireless senor networks. Since typically

wireless communication is the most energy-intensive task

sensor nodes perform [21], a particular focus has been on

power-efficient communication protocols for wireless sen-

sor networks.

Integrating WSN and BAS has a number of advantages.

The main advantage is that WSN avoid wiring and hence

reduce the installation costs compared to wired solutions.

It is further possible to extend an existing BAS with wire-

less sensors in order to increase the sensor coverage. As

the installation costs decrease, it is possible to increase the

number of sensors and hence the spatial resolution. The

increased spatial resolution allows for more fine-grained

measurements and control. A further advantage is that

wireless technology enables temporary measurements: a

network can be set up to perform measurements during a

limited time in order to measure, optimize and evaluate

the effect of the optimization. Moreover, wireless sensors

can also be installed more easily in unapproachable places

such as at high heights.

There are efforts to use ZigBee as the underlying lay-

ers for BAS systems [19]. ZigBee requires that routers,

i.e. the nodes that forward packets on behalf of other

nodes, are mains-powered. In order to leverage the real

advantage of using WSNs, routers should not be mains-

powered. The radio is a sensor node’s major energy con-

sumer and idle listening requires almost as much power

as receiving or transmitting data. Hence, efficient solu-

tions must allow routers to turn off their radio as often

as possible which in multi-hop wireless networks requires

protocols that enable sensor nodes to turn off their radio

in a synchronized fashion. Many existing sensor network

applications collect data from sensor nodes and transmit

the data in a multi-hop fashion to a base station. This

task can be performed by convergecast protocols. Build-

ing automation protocols such as BACnet [1] are centered

around a command-response paradigm where a command

is sent to a device and a reply is awaited. Therefore con-

vergecast protocols alone are not sufficient in the context

of building automation. However, the most prominent of

convergecast protocols, D-MAC [13] and Dozer [3], have

been optimized for data collection only and do not offer

efficient solution for disseminating commands from the

base station to the sensor nodes.

In this paper, we present CoReDac. CoReDac con-

structs a collision-free tree that allows for low-power

command-response data collection. One of our basic ideas

is to use acknowledgements for slot assignment and syn-
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chronized node wake-up scheduling. WiseMAC has ex-

ploited a similar idea by including the sampling sched-

ule offset into acknowledgements [8]. CoReDac’s ability

to synchronize node wake-up without explicit time syn-

chronization seems very appealing and useful for data col-

lection applications that demand a low duty cycle and

long lifetime. CoReDac’s capability of performing effi-

cient command-response convergecast makes it suitable

as an underlying layer for e.g. BACnet and substantially

extends the lifetime of battery-powered sensing devices

in applications such as building automation. We present

CoReDac and experiments on real hardware that validate

the design of our protocol and demonstrate its energy-

efficiency.

We have presented some of the ideas described here in

a poster paper [26]. CoReDac also includes multi-channel

support that is described elsewhere [27]. The new con-

tributions of this paper include the detailed description of

CoReDac’s slot assignment procedure as well as the com-

mand phase that we introduce and evaluate in this paper.

To the best of our knowledge CoReDac is the first protocol

for collision-free command-response convergecast.

The rest of our paper is outlined as follows: In the next

section we present CoReDac’s design. Section 3 briefly

presents our implementation. Section 4 is devoted to ex-

perimental results on real hardware. Before concluding

we discuss related work in Section 5.

2 CoReDac Design

In this section, we present the design of CoReDac. We

start by presenting the design of the data collection phase,

i.e. the phase during that the data flows from the sources

to the base station. In the second part, we discuss the com-

mand phase, i.e. the phase during that commands or code

updates are disseminated to the sources, a process that is

triggered by the base station.

2.1 Design of the Collection Part

CoReDac uses the notion staggered slots introduced by

DMAC [13].
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Figure 1. Staggered wake-up a la DMAC

Figure 1 presents the staggered wake-up scheme em-

ployed by DMAC. As shown in the figure, different lev-

els of the tree send at different times in order to reduce
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Figure 2. Basic synchronization scheme

delay and contention. However, in DMAC there is still

contention between nodes on the same level.

Figure 2 presents one of CoReDac’s basic ideas. The

receiver of a message sends an ACK that besides acknowl-

edging a packet also states in how many seconds it will

turn on its radio again and is ready to receive packets from

its children. We call this time sleep time and assume that

it is determined by the sink node. This basic scheme does

not require explicit time synchronization since only rela-

tive time is of importance. Note that the figures are sim-

plified in that nodes do not need to have their radio turned

on during the whole duration of their TX slots.
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Figure 3. On-demand slot assignment that
avoids collisions

By adding offsets for different nodes into the ACK

packet, we can extend the basic scheme to let a parent

node assign slots to its children. Figure 3 demonstrates

how the sink assigns different offsets to its children. Each

acknowledgement packet contains ACK-fields denoting

the positive and negative acknowledgement of the chil-

dren’s data packets in always the same order. This way,

the position of the ACK-field can be used by the children

to compute their offset into the parent’s RX slot. In the

scenario in Figure 3, node N2 may send before N1. The

parent’s RX slot must be long enough to allow a maxi-

mum number of children to transmit. Furthermore, we

must allow new nodes to join the tree. In order to reduce

problems due to collisions between several joining nodes,

the latter randomly choose one of the extra slots that we

provide.

The scheme can be applied recursively to extend it to-

wards a whole tree. However, when extending the scheme

to several levels we need to take care to avoid collisions

between nodes on different levels. Towards this end, we

introduce a maximum number of children per node. Based

on this maximum and its position in the tree, a node can

compute its listen and send slots as well as offsets for its

children. This way, we build a collision-free tree with-
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Figure 4. Slot assignment for larger tree

out explicit time synchronization. An example is shown

in Figure 4. In this figure, N2 is the parent of N3 and

N4. From the information in the acknowledgement, N3
and N4 can infer their RX slot and their offset into N2’s

RX slot. The example of N4 shows that a node’s RX and

TX slot are not necessarily aligned, i.e. N4’s RX slot is

not immediately followed by its TX slot. Hence, a node

needs to turn its radio on and off more often which implies

a little energy overhead that should be well compensated

for by avoiding collisions.

Note that CoReDac assumes that the number of pack-

ets traveling from the sources to the sink does not increase

when the packets come closer to the sink implying that

data can be aggregated or not all nodes have data to trans-

mit.

Computing listen slots The listen slot of a node de-

pends on its position in the tree. If a node is at position

pos, its RX slot is pos − 1 time slots before the base sta-

tion’s RX slot. For example, node N4’s RX slot in Fig-

ure 4 is two slots before the RX slot of its parent N2. Each

node can compute its position based only on the knowl-

edge of its parent’s position, the parent’s level and its po-

sition among its siblings, i.e. its offset into the parent’s

RX slot. All this information is available in the acknowl-

edgement.
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4

13

Figure 5. Computing listen slots

To compute the number of RX slots between a node

and its parent, we add the number of nodes in the parent’s

level that have a position numbered higher than the parent

(number of nodes on the same level and to the right of the

parent in Figure 5) to the number of nodes in the node’s

level with a position numbered lower than the node (num-

ber of nodes to the left).

pos = parent pos + max pos(parent level)−

parent pos + MAX ∗ (parent pos−

min pos(parent level)) + my pos (1)

where my pos is the node’s position among its siblings

that can be inferred from information in the acknowledge-

ment.

max pos(parent level) =

parent level∑

0

MAXparent level
(2)

min pos(parent level) =

max pos(parent level − 1) + 1 (3)

For example, consider how node 13 in Figure 5 computes

its position based only on the knowledge of its parent’s

position, the parent’s level and its offset with the help of

the formulas above: pos(13) = 6+7−6+(6−4)∗2+2 =
13.

2.2 Design of the Command Part
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Recv
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Level 2

Recv
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data

command

Recv
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data/response

S

S

Recv
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Figure 6. Design of command part

The command part of CoReDac is initiated by the base

station when it sends a command to its children. The chil-

dren then forward the command to their children as shown

in Figure 6. It is possible to place this command part di-

rectly after the collection phase which gives the system

the possibility to immediately react to the collected data.

One could imagine that a system might activate a sprin-

kler if a fire is detected. It is also possible to use the com-

mand phase just before the collection phase which would

allow the system to disseminate commands into the net-

work and receive an answer fast. This corresponds very

well with the client-server communication-model used in

BACnet [18].

In both cases it is important, that the phases do not

overlap and cause collisions. Avoiding overlap is no prob-

lem if the maximum depth of the tree is known. Note that

it is also possible to have two command phases, one just

before and one just after the collection phase.
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RX slots for the command phase In the following we

describe how we derive the RX time slots for the com-

mand phase.
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Figure 7. Computing slots for command
phase

Figure 7 shows one collection and one command

phase. As the figure shows, the RX time slot for the com-

mand phase starts at the same time for all children of a

certain parent.

(ppos − 1 + ppos − 1) ∗ RX − time + c sleep (4)

Equation 4 denotes how a node computes the start time

for its RX slot relative to the time it sent the last ac-

knowledgement as shown in Figure 7. In this equation

c sleep denotes the sink’s offset time between receiving

data and sending a command. We must avoid overlap be-

tween the collection and the command phase since this

might lead to collisions. In order to avoid overlapping

the following must be true: sleep time > c sleep + 2 ∗

(RX − time ∗ #nodes) = c sleep + 2 ∗ RXslottime ∗

(
∑

max level

0
MAX level

− 1).
The start time of an RX slot in the command phase

is relative to the reception of the ACK in the collection

phase. In the command phase, each node receives only ex-

actly one packet, namely the one from its parent. Hence,

a node can stop listening for commands when it has re-

ceived the command message from its parent. In Figure 7

these are the shaded parts of the RX slots in the command

phase.

(my pos − ppos − 1) ∗ RX − time + RX − time/2 (5)

Equation 5 denotes how a node computes the time for

forwarding its command message relative to the end of the

RX slot for reception of the command message.

3 Implementation

We have implemented CoReDac in the Contiki oper-

ating system [5] above the broadcast layer of the Rime

protocol stack [6], i.e. we turn the radio on and off at the

application layer. The scheme could also be implemented

in the MAC layer below the Rime stack. Our current im-

plementation is not optimized in that it does not try to min-

imize the guard times of the RX slots. In general, longer

RX slots allow for larger clock drift. Meier et al. discuss

how to minimize slot times [15].

4 Evaluation

In this section we present results from experiments

with real hardware using the Tmote Sky platform [20] as

well as simulations with the COOJA simulator [17].

4.1 Energy-efficiency of the Collection Phase

We measure the energy consumption of CoReDac’s

collection phase using four nodes deployed in a chain. In

CoReDac, we achieve this by simply setting the maximum

number of children per node to one. The energy consump-

tion is measured using Contiki’s software-based on-line

energy estimation method [7].

We concentrate on the energy for radio listening as

radio listening is the dominating factor for power con-

sumption in WSNs [7]. We compare our protocol to X-

MAC [2], a power-saving MAC protocol that is designed

to run on top of the IEEE 802.15.4 physical layer. X-MAC

reduces the power consumption by switching the radio on

and off at regular intervals. When sending packets, nodes

broadcast a train of short strobe packets. The strobe packet

train is long enough to allow potential receivers to receive

at least one strobe. For unicast packets, the strobe pack-

ets include the address of the receiver of the full packet.

Having received a unicast strobe, a receiver directly sends

a short acknowledgment packet. The sender can then im-

mediately transmit the full packet. Other nodes that over-

hear the strobe packets can turn off their radio until the

full packet has been transmitted.

Figure 8 shows the average power consumption for ra-

dio listening comparing X-MAC with CoReDac. Since

our protocol has a constant radio listening time for each

packet, the radio listening time decreases approximately

linearly when less packets are sent. In all scenarios,

CoReDac performs better than X-MAC. We have also

measured the power consumption for transmitting pack-

ets. For CoReDac, this is less than around 1% of the

power consumption for listening and receiving packets

which confirms the measurements by Dunkels et al. [7].

The power consumption for transmitting with X-MAC is
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Figure 8. CoReDac’s average radio listen
power is lower than X-MAC’s

slightly more expensive due to the transmission of the

strobe packets.

We have confirmed the results for larger networks of

up to 30 nodes using the COOJA sensor network simu-

lator [17]. COOJA can simulate sensor networks at dif-

ferent levels and using the built-in sensor node emulator

MSPSim [9] we have verified that the difference in power

consumption between simulation and the results on real

hardware in Figure 8 is less than 2%. This suggests that

the results for larger networks obtained by simulation are

realistic.

Figure 8 also shows that with the same duty cycle, X-

MAC consumes less energy when there is less traffic, i.e. a

duty cycle of 10% will not per se extend the lifetime of the

network with a factor of 10 but that the lifetime extension

depends on the traffic volume. The reason for this is that

after the intended receiver of a packet has indicated that

it is ready to receive a packet, the receiver must have its

radio turned on until it has received the packet. This task

consumes much more energy than listening for the short

X-MAC strobe packets.

The results indicate that CoReDac is suitable for data

collection applications with very low duty cycles, for ex-

ample applications collecting temperature values in build-

ings.

4.2 Energy-efficiency of CoReDac with Command

Phase

In the experiment in this section, we evaluate the en-

ergy efficiency of CoReDac’s command phase using the

same setup as in the previous section, i.e. we deploy four

nodes in a chain.

The results are shown in Figure 9. The figure shows

that the additional energy consumption required for the

command phase is quite low, namely around 20%. The

energy consumption for the command phase is lower than

for the response phase since in the command phase, a node

expects exactly one packet transmitted by its parent and
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Figure 9. CoReDac’s command phase is
energy-efficient

can turn off the radio as soon as it has received this packet.

Furthermore, nodes do not need to listen to new nodes that

want to join the network.

4.3 Impact of the maximum number of children

In order to construct collision-free trees, we need

to define a maximum number of children per node.

This maximum number of children impacts the minimal

sleep time, i.e. the period between two collection phases

an operator can set. The maximum length of the period

depends on the length of the listen slots that in our unop-

timized implementation is currently set to 125 ms.
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Figure 10. Configurable minimum period de-

pends on the maximum number of children

Figure 10 depicts the minimum period for different tree

depths. When the depth, i.e. the number of levels in

the tree, increases the minimum period increases expo-

nentially. Note however, that for a maximum number of

four children per node, seven levels in the tree correspond

to almost 5500 nodes. While it might be possible to re-
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duce this minimum period without introducing collisions

in particular if the tree is quite sparse we have not consid-

ered this option since it might require reconfigurations in

case new nodes want to join the network.

For command-response applications, the minimum pe-

riod doubles compared with the values in Figure 10. If we

assume a maximum number of four children per node and

a tree with five levels, an operator can still set the sleep pe-

riod to less than 100 seconds which seems an acceptable

trade-off between delay and expected system lifetime.

In order to construct collision-free trees, CoReDac de-

liberately tolerates unused slots which increases the dura-

tion of the collection and command phases in particular

when the maximum number of children is large. How-

ever, if the maximum is small, there is a danger that sen-

sor nodes are not included in the tree. We have performed

initial simulations that have shown that the number of sen-

sors excluded from the network depends very much on the

way the network is set up. If it is set up node by node, i.e.

one node is started after the previous node is connected

to the tree, no node is excluded from the network. This

is evident, since the previously connected node per se has

empty slots. If all nodes are started at the same time, the

sink initiates the setup of the network by sending acknowl-

edgements. Our simulations have shown that in this case

having a maximum number of children larger than two is

beneficial and a maximum of three leads to reasonable re-

sults. The optimal maximum however depends on many

factors including the number and density of nodes, exact

placement and the number of extra slots reserved for join-

ing nodes. Future work will evaluate different strategies

and investigate these trade-offs in more detail.

5 Related Work

In previous work, we have demonstrated that it is pos-

sible to implement BACnet on resource-constrained sen-

sor nodes [18]. This paper presents an energy-efficient

command-response convergecast protocol that could be

used as a MAC layer for this previous work. This scheme

would increase the lifetime of such an integrated system.

We have previously underlayed ZigBee with X-MAC

and this way increased ZigBee lifetime with a factor of

10 [24]. The experiments in this paper have shown that

CoReDac is more power-efficient than X-MAC in con-

vergecast scenarios. X-MAC on the other hand is much

more flexible and useful than CoReDac for other scenar-

ios than convergecast.

Dozer [3] is probably the most efficient convergecast

protocol. Unlike CoReDac, Dozer explicitly accepts colli-

sions. Dozer’s authors claim that a “global TDMA scheme

is expensive since it demands the existence of a network-

wide time synchronization”. Our work shows that this is

not the case. Unlike CoReDac and D-MAC, Dozer does

not use the notion of a staggered wakeup schedule to de-

crease data delivery latency.

D-MAC introduced the notion of staggered slots that

we also use [13]. Even though D-MAC has introduced

some means to reduce the risk for collisions, there is still

contention between nodes on the same level and the risk

for collision of their data packets. In contrast to this,

CoReDac builds a collision-free scheduling scheme based

on the notion of staggered slots. Another protocol that

avoids but still accepts collisions is DRAND [23]. In con-

trast to D-MAC, CoReDac also supports an efficient com-

mand phase. As CoReDac, wave scheduling is designed

to avoid interference between packet transmissions [25].

Wave scheduling is evaluated in the NS-2 simulator only

using IEEE 802.11 radios. The same is true for Chiapa et

al.’s DCQS protocol [4]. TRAMA is another collision-free

MAC protocol that is evaluated by simulation only [22].

Other approaches for convergecast that do not build

collision-free trees include Twinkle [11] and the approach

proposed by Gandham et al. [10]. The latter tries to reduce

latency by minimizing the number of required time slots

whereas we deliberately tolerate extra time slots to build

CoReDac’s collision free trees.

Zhang et al. [28] have focused their convergecast work

on data collection only. Their protocol does not include

any command phase.

Koala is another approach for low power data re-

trieval [16]. In this approach, data is not regularly trans-

mitted to the sink but retrieved by bulk data downloads

initiated by the sink. Koala and other types of storage-

centric sensor networks are useful for sensor network ap-

plications that do not require real-time information [14].

6 Conclusions

In this paper, we have presented CoReDac, a converge-

cast protocol that dynamically builds a collision-free tree

based on information in the acknowledgements. In con-

trast to other convergecast protocols, CoReDac supports

a command-response paradigm which makes CoReDac

suitable as an underlying layer for e.g. building au-

tomation protocols such as BACnet. We have imple-

mented CoReDac in the Contiki operating system. We

have demonstrated CoReDac’s energy-efficiency by com-

paring it to X-MAC an energy-efficient MAC protocol for

wireless sensor networks. Our experiments on real hard-

ware also demonstrated the low overhead of the command

phase.
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[17] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and

T. Voigt. Cross-level sensor network simulation with

cooja. In Proceedings of the First IEEE International

Workshop on Practical Issues in Building Sensor Network

Applications (SenseApp 2006), Tampa, Florida, USA,

Nov. 2006.
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