169 research outputs found

    On distributed representation of output layer for recognizing Japanese Kana characters using neural networks

    Get PDF
    This paper presents an automatic coding scheme for representing the output layer of a neural network. Compared to local representation where the number of output unit is p, the number of output unit required for the proposed representation is close to log p. The output of seven different printers were used for evaluating the performance of the system. The proposed automatic representation gave the average recognition rate of 98.7% for 71 categories

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Recognition of Japanese handwritten characters with Machine learning techniques

    Get PDF
    The recognition of Japanese handwritten characters has always been a challenge for researchers. A large number of classes, their graphic complexity, and the existence of three different writing systems make this problem particularly difficult compared to Western writing. For decades, attempts have been made to address the problem using traditional OCR (Optical Character Recognition) techniques, with mixed results. With the recent popularization of machine learning techniques through neural networks, this research has been revitalized, bringing new approaches to the problem. These new results achieve performance levels comparable to human recognition. Furthermore, these new techniques have allowed collaboration with very different disciplines, such as the Humanities or East Asian studies, achieving advances in them that would not have been possible without this interdisciplinary work. In this thesis, these techniques are explored until reaching a sufficient level of understanding that allows us to carry out our own experiments, training neural network models with public datasets of Japanese characters. However, the scarcity of public datasets makes the task of researchers remarkably difficult. Our proposal to minimize this problem is the development of a web application that allows researchers to easily collect samples of Japanese characters through the collaboration of any user. Once the application is fully operational, the examples collected until that point will be used to create a new dataset in a specific format. Finally, we can use the new data to carry out comparative experiments with the previous neural network models

    Script Effects as the Hidden Drive of the Mind, Cognition, and Culture

    Get PDF
    This open access volume reveals the hidden power of the script we read in and how it shapes and drives our minds, ways of thinking, and cultures. Expanding on the Linguistic Relativity Hypothesis (i.e., the idea that language affects the way we think), this volume proposes the โ€œScript Relativity Hypothesisโ€ (i.e., the idea that the script in which we read affects the way we think) by offering a unique perspective on the effect of script (alphabets, morphosyllabaries, or multi-scripts) on our attention, perception, and problem-solving. Once we become literate, fundamental changes occur in our brain circuitry to accommodate the new demand for resources. The powerful effects of literacy have been demonstrated by research on literate versus illiterate individuals, as well as cross-scriptal transfer, indicating that literate brain networks function differently, depending on the script being read. This book identifies the locus of differences between the Chinese, Japanese, and Koreans, and between the East and the West, as the neural underpinnings of literacy. To support the โ€œScript Relativity Hypothesisโ€, it reviews a vast corpus of empirical studies, including anthropological accounts of human civilization, social psychology, cognitive psychology, neuropsychology, applied linguistics, second language studies, and cross-cultural communication. It also discusses the impact of reading from screens in the digital age, as well as the impact of bi-script or multi-script use, which is a growing trend around the globe. As a result, our minds, ways of thinking, and cultures are now growing closer together, not farther apart. ; Examines the origin, emergence, and co-evolution of written language, the human mind, and culture within the purview of script effects Investigates how the scripts we read over time shape our cognition, mind, and thought patterns Provides a new outlook on the four representative writing systems of the world Discusses the consequences of literacy for the functioning of the min

    ํ•œ๊ตญ์–ด ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ ๊ตฌ์ถ•๊ณผ ํ™•์žฅ ์—ฐ๊ตฌ: ๊ฐ์ •๋ถ„์„์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ธ๋ฌธ๋Œ€ํ•™ ์–ธ์–ดํ•™๊ณผ, 2021. 2. ์‹ ํšจํ•„.Recently, as interest in the Bidirectional Encoder Representations from Transformers (BERT) model has increased, many studies have also been actively conducted in Natural Language Processing based on the model. Such sentence-level contextualized embedding models are generally known to capture and model lexical, syntactic, and semantic information in sentences during training. Therefore, such models, including ELMo, GPT, and BERT, function as a universal model that can impressively perform a wide range of NLP tasks. This study proposes a monolingual BERT model trained based on Korean texts. The first released BERT model that can handle the Korean language was Google Researchโ€™s multilingual BERT (M-BERT), which was constructed with training data and a vocabulary composed of 104 languages, including Korean and English, and can handle the text of any language contained in the single model. However, despite the advantages of multilingualism, this model does not fully reflect each languageโ€™s characteristics, so that its text processing performance in each language is lower than that of a monolingual model. While mitigating those shortcomings, we built monolingual models using the training data and a vocabulary organized to better capture Korean textsโ€™ linguistic knowledge. Therefore, in this study, a model named KR-BERT was built using training data composed of Korean Wikipedia text and news articles, and was released through GitHub so that it could be used for processing Korean texts. Additionally, we trained a KR-BERT-MEDIUM model based on expanded data by adding comments and legal texts to the training data of KR-BERT. Each model used a list of tokens composed mainly of Hangul characters as its vocabulary, organized using WordPiece algorithms based on the corresponding training data. These models reported competent performances in various Korean NLP tasks such as Named Entity Recognition, Question Answering, Semantic Textual Similarity, and Sentiment Analysis. In addition, we added sentiment features to the BERT model to specialize it to better function in sentiment analysis. We constructed a sentiment-combined model including sentiment features, where the features consist of polarity and intensity values assigned to each token in the training data corresponding to that of Korean Sentiment Analysis Corpus (KOSAC). The sentiment features assigned to each token compose polarity and intensity embeddings and are infused to the basic BERT input embeddings. The sentiment-combined model is constructed by training the BERT model with these embeddings. We trained a model named KR-BERT-KOSAC that contains sentiment features while maintaining the same training data, vocabulary, and model configurations as KR-BERT and distributed it through GitHub. Then we analyzed the effects of using sentiment features in comparison to KR-BERT by observing their performance in language modeling during the training process and sentiment analysis tasks. Additionally, we determined how much each of the polarity and intensity features contributes to improving the model performance by separately organizing a model that utilizes each of the features, respectively. We obtained some increase in language modeling and sentiment analysis performances by using both the sentiment features, compared to other models with different feature composition. Here, we included the problems of binary positivity classification of movie reviews and hate speech detection on offensive comments as the sentiment analysis tasks. On the other hand, training these embedding models requires a lot of training time and hardware resources. Therefore, this study proposes a simple model fusing method that requires relatively little time. We trained a smaller-scaled sentiment-combined model consisting of a smaller number of encoder layers and attention heads and smaller hidden sizes for a few steps, combining it with an existing pre-trained BERT model. Since those pre-trained models are expected to function universally to handle various NLP problems based on good language modeling, this combination will allow two models with different advantages to interact and have better text processing capabilities. In this study, experiments on sentiment analysis problems have confirmed that combining the two models is efficient in training time and usage of hardware resources, while it can produce more accurate predictions than single models that do not include sentiment features.์ตœ๊ทผ ํŠธ๋žœ์Šคํฌ๋จธ ์–‘๋ฐฉํ–ฅ ์ธ์ฝ”๋” ํ‘œํ˜„ (Bidirectional Encoder Representations from Transformers, BERT) ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์ด์— ๊ธฐ๋ฐ˜ํ•œ ์—ฐ๊ตฌ ์—ญ์‹œ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์žฅ ๋‹จ์œ„์˜ ์ž„๋ฒ ๋”ฉ์„ ์œ„ํ•œ ๋ชจ๋ธ๋“ค์€ ๋ณดํ†ต ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฌธ์žฅ ๋‚ด ์–ดํœ˜, ํ†ต์‚ฌ, ์˜๋ฏธ ์ •๋ณด๋ฅผ ํฌ์ฐฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ELMo, GPT, BERT ๋“ฑ์€ ๊ทธ ์ž์ฒด๊ฐ€ ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๋ชจ๋ธ๋กœ์„œ ๊ธฐ๋Šฅํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์–ด ์ž๋ฃŒ๋กœ ํ•™์Šตํ•œ ๋‹จ์ผ ์–ธ์–ด BERT ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ€์žฅ ๋จผ์ € ๊ณต๊ฐœ๋œ ํ•œ๊ตญ์–ด๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT ๋ชจ๋ธ์€ Google Research์˜ multilingual BERT (M-BERT)์˜€๋‹ค. ์ด๋Š” ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋ฅผ ํฌํ•จํ•˜์—ฌ 104๊ฐœ ์–ธ์–ด๋กœ ๊ตฌ์„ฑ๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ ๋ชจ๋ธ์ด๋ฉฐ, ๋ชจ๋ธ ํ•˜๋‚˜๋กœ ํฌํ•จ๋œ ๋ชจ๋“  ์–ธ์–ด์˜ ํ…์ŠคํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ๊ทธ ๋‹ค์ค‘์–ธ์–ด์„ฑ์ด ๊ฐ–๋Š” ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ฐ ์–ธ์–ด์˜ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜์—ฌ ๋‹จ์ผ ์–ธ์–ด ๋ชจ๋ธ๋ณด๋‹ค ๊ฐ ์–ธ์–ด์˜ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ์ด ๋‚ฎ๋‹ค๋Š” ๋‹จ์ ์„ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋Ÿฌํ•œ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜๋ฉด์„œ ํ…์ŠคํŠธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ์–ธ์–ด ์ •๋ณด๋ฅผ ๋ณด๋‹ค ์ž˜ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•œ๊ตญ์–ด Wikipedia ํ…์ŠคํŠธ์™€ ๋‰ด์Šค ๊ธฐ์‚ฌ๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ KR-BERT ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๊ณต๊ฐœํ•˜์—ฌ ํ•œ๊ตญ์–ด ์ •๋ณด์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ“๊ธ€ ๋ฐ์ดํ„ฐ์™€ ๋ฒ•์กฐ๋ฌธ๊ณผ ํŒ๊ฒฐ๋ฌธ์„ ๋ง๋ถ™์—ฌ ํ™•์žฅํ•œ ํ…์ŠคํŠธ์— ๊ธฐ๋ฐ˜ํ•ด์„œ ๋‹ค์‹œ KR-BERT-MEDIUM ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์€ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ WordPiece ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•ด ๊ตฌ์„ฑํ•œ ํ•œ๊ธ€ ์ค‘์‹ฌ์˜ ํ† ํฐ ๋ชฉ๋ก์„ ์‚ฌ์ „์œผ๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ด๋“ค ๋ชจ๋ธ์€ ๊ฐœ์ฒด๋ช… ์ธ์‹, ์งˆ์˜์‘๋‹ต, ๋ฌธ์žฅ ์œ ์‚ฌ๋„ ํŒ๋‹จ, ๊ฐ์ • ๋ถ„์„ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํ•œ๊ตญ์–ด ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ์— ์ ์šฉ๋˜์–ด ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด๊ณ ํ–ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BERT ๋ชจ๋ธ์— ๊ฐ์ • ์ž์งˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๊ทธ๊ฒƒ์ด ๊ฐ์ • ๋ถ„์„์— ํŠนํ™”๋œ ๋ชจ๋ธ๋กœ์„œ ํ™•์žฅ๋œ ๊ธฐ๋Šฅ์„ ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๊ฐ์ • ์ž์งˆ์„ ํฌํ•จํ•˜์—ฌ ๋ณ„๋„์˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผฐ๋Š”๋ฐ, ์ด๋•Œ ๊ฐ์ • ์ž์งˆ์€ ๋ฌธ์žฅ ๋‚ด์˜ ๊ฐ ํ† ํฐ์— ํ•œ๊ตญ์–ด ๊ฐ์ • ๋ถ„์„ ์ฝ”ํผ์Šค (KOSAC)์— ๋Œ€์‘ํ•˜๋Š” ๊ฐ์ • ๊ทน์„ฑ(polarity)๊ณผ ๊ฐ•๋„(intensity) ๊ฐ’์„ ๋ถ€์—ฌํ•œ ๊ฒƒ์ด๋‹ค. ๊ฐ ํ† ํฐ์— ๋ถ€์—ฌ๋œ ์ž์งˆ์€ ๊ทธ ์ž์ฒด๋กœ ๊ทน์„ฑ ์ž„๋ฒ ๋”ฉ๊ณผ ๊ฐ•๋„ ์ž„๋ฒ ๋”ฉ์„ ๊ตฌ์„ฑํ•˜๊ณ , BERT๊ฐ€ ๊ธฐ๋ณธ์œผ๋กœ ํ•˜๋Š” ํ† ํฐ ์ž„๋ฒ ๋”ฉ์— ๋”ํ•ด์ง„๋‹ค. ์ด๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ์ž„๋ฒ ๋”ฉ์„ ํ•™์Šตํ•œ ๊ฒƒ์ด ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ(sentiment-combined model)์ด ๋œ๋‹ค. KR-BERT์™€ ๊ฐ™์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ ๊ตฌ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ฐ์ • ์ž์งˆ์„ ๊ฒฐํ•ฉํ•œ ๋ชจ๋ธ์ธ KR-BERT-KOSAC๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๋ฐฐํฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๊ณผ์ • ๋‚ด ์–ธ์–ด ๋ชจ๋ธ๋ง๊ณผ ๊ฐ์ • ๋ถ„์„ ๊ณผ์ œ์—์„œ์˜ ์„ฑ๋Šฅ์„ ์–ป์€ ๋’ค KR-BERT์™€ ๋น„๊ตํ•˜์—ฌ ๊ฐ์ • ์ž์งˆ ์ถ”๊ฐ€์˜ ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋˜ํ•œ ๊ฐ์ • ์ž์งˆ ์ค‘ ๊ทน์„ฑ๊ณผ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ๊ฐ ์ ์šฉํ•œ ๋ชจ๋ธ์„ ๋ณ„๋„ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ ์ž์งˆ์ด ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ•˜๋Š”์ง€๋„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๊ฐ์ • ์ž์งˆ์„ ๋ชจ๋‘ ์ถ”๊ฐ€ํ•œ ๊ฒฝ์šฐ์—, ๊ทธ๋ ‡์ง€ ์•Š์€ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์— ๋น„ํ•˜์—ฌ ์–ธ์–ด ๋ชจ๋ธ๋ง์ด๋‚˜ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ์—์„œ ์„ฑ๋Šฅ์ด ์–ด๋Š ์ •๋„ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋•Œ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋กœ๋Š” ์˜ํ™”ํ‰์˜ ๊ธ๋ถ€์ • ์—ฌ๋ถ€ ๋ถ„๋ฅ˜์™€ ๋Œ“๊ธ€์˜ ์•…ํ”Œ ์—ฌ๋ถ€ ๋ถ„๋ฅ˜๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์œ„์™€ ๊ฐ™์€ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ์‚ฌ์ „ํ•™์Šตํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ํ•˜๋“œ์›จ์–ด ๋“ฑ์˜ ์ž์›์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„๊ต์  ์ ์€ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ ๊ฒฐํ•ฉ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ ์€ ์ˆ˜์˜ ์ธ์ฝ”๋” ๋ ˆ์ด์–ด, ์–ดํ…์…˜ ํ—ค๋“œ, ์ ์€ ์ž„๋ฒ ๋”ฉ ์ฐจ์› ์ˆ˜๋กœ ๊ตฌ์„ฑํ•œ ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ์„ ์ ์€ ์Šคํ… ์ˆ˜๊นŒ์ง€๋งŒ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ์กด์— ํฐ ๊ทœ๋ชจ๋กœ ์‚ฌ์ „ํ•™์Šต๋˜์–ด ์žˆ๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ๊ณผ ๊ฒฐํ•ฉํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์—๋Š” ์ถฉ๋ถ„ํ•œ ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์–ธ์–ด ์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๊ธฐ๋Šฅ์ด ๊ธฐ๋Œ€๋˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๊ฒฐํ•ฉ์€ ์„œ๋กœ ๋‹ค๋ฅธ ์žฅ์ ์„ ๊ฐ–๋Š” ๋‘ ๋ชจ๋ธ์ด ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ–๋„๋ก ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์˜ ๊ฒฐํ•ฉ์ด ํ•™์Šต ์‹œ๊ฐ„์— ์žˆ์–ด ํšจ์œจ์ ์ด๋ฉด์„œ๋„, ๊ฐ์ • ์ž์งˆ์„ ๋”ํ•˜์ง€ ์•Š์€ ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Objectives 3 1.2 Contribution 9 1.3 Dissertation Structure 10 2 Related Work 13 2.1 Language Modeling and the Attention Mechanism 13 2.2 BERT-based Models 16 2.2.1 BERT and Variation Models 16 2.2.2 Korean-Specific BERT Models 19 2.2.3 Task-Specific BERT Models 22 2.3 Sentiment Analysis 24 2.4 Chapter Summary 30 3 BERT Architecture and Evaluations 33 3.1 Bidirectional Encoder Representations from Transformers (BERT) 33 3.1.1 Transformers and the Multi-Head Self-Attention Mechanism 34 3.1.2 Tokenization and Embeddings of BERT 39 3.1.3 Training and Fine-Tuning BERT 42 3.2 Evaluation of BERT 47 3.2.1 NLP Tasks 47 3.2.2 Metrics 50 3.3 Chapter Summary 52 4 Pre-Training of Korean BERT-based Model 55 4.1 The Need for a Korean Monolingual Model 55 4.2 Pre-Training Korean-specific BERT Model 58 4.3 Chapter Summary 70 5 Performances of Korean-Specific BERT Models 71 5.1 Task Datasets 71 5.1.1 Named Entity Recognition 71 5.1.2 Question Answering 73 5.1.3 Natural Language Inference 74 5.1.4 Semantic Textual Similarity 78 5.1.5 Sentiment Analysis 80 5.2 Experiments 81 5.2.1 Experiment Details 81 5.2.2 Task Results 83 5.3 Chapter Summary 89 6 An Extended Study to Sentiment Analysis 91 6.1 Sentiment Features 91 6.1.1 Sources of Sentiment Features 91 6.1.2 Assigning Prior Sentiment Values 94 6.2 Composition of Sentiment Embeddings 103 6.3 Training the Sentiment-Combined Model 109 6.4 Effect of Sentiment Features 113 6.5 Chapter Summary 121 7 Combining Two BERT Models 123 7.1 External Fusing Method 123 7.2 Experiments and Results 130 7.3 Chapter Summary 135 8 Conclusion 137 8.1 Summary of Contribution and Results 138 8.1.1 Construction of Korean Pre-trained BERT Models 138 8.1.2 Construction of a Sentiment-Combined Model 138 8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and Cost Advantages 139 8.2 Future Directions and Open Problems 140 8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance 140 8.2.2 Observation of Changes Depending on the Domain of Training Data 141 8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT Learns 142 8.2.4 The Specific Process of Sentiment Features Helping the Language Modeling of BERT is Unknown 143 Bibliography 145 Appendices 157 A. Python Sources 157 A.1 Construction of Polarity and Intensity Embeddings 157 A.2 External Fusing of Different Pre-Trained Models 158 B. Examples of Experiment Outputs 162 C. Model Releases through GitHub 165Docto

    The effect of orthographic systems on the developing reading system:Typological and computational analyses

    Get PDF
    Orthographic systems vary dramatically in the extent to which they encode a languageโ€™s phonological and lexico-semantic structure. Studies of the effects of orthographic transparency suggest that such variation is likely to have major implications for how the reading system operates. However, such studies have been unable to examine in isolation the contributory effect of transparency on reading because of covarying linguistic or sociocultural factors. We first investigated the phonological properties of languages using the range of the worldโ€™s orthographic systems (alphabetic, alphasyllabic, consonantal, syllabic, and logographic), and found that, once geographical proximity is taken into account, phonological properties do not relate to orthographic system. We then explored the processing implications of orthographic variation by training a connectionist implementation of the triangle model of reading on the range of orthographic systems while controlling for phonological and semantic structure. We show that the triangle model is effective as a universal model of reading, able to replicate key behavioral and neuroscientific results. The model also generates new predictions deriving from an explicit description of the effects of orthographic transparency on how reading is realized and defines the consequences of orthographic systems on reading processes. (PsycInfo Database Record (c) 2020 APA, all rights reserved

    Learning to Behave: Internalising Knowledge

    Get PDF

    Ventral occipito-temporal cortex function and anatomical connectivity in reading

    Get PDF
    Previous functional neuroimaging studies of reading in skilled readers, acquired dyslexia and developmental dyslexia have all shown that the left ventral occipito-temporal cortex (vOT) is involved in visual word recognition. Specifically, a region in the left posterior occipito-temporal sulcus lateral to fusiform gyrus and medial to inferior temporal gyrus has been reported to play an important role. However, the precise functional contribution of this area in reading is yet to be fully explored. In this thesis, I empirically evaluated a claim that vOT responds not only to bottom-up processing demands of the visual stimuli but is also influenced by automatic, top-down non-visual processing demands, as proposed by the Interactive Account of vOT functioning. The first part of this thesis investigated the functional properties of vOT during reading, using functional magnetic resonance imaging. In the first project, the top-down influences on vOT were investigated, teasing apart visual and non-visual properties of written stimuli. In the second project, using the Japanese orthography I disentangled a wordโ€™s lexical frequency from the frequency of its visual form โ€“ an important distinction for understanding the neural information processing in regions engaged by reading and further explored the interactive nature of the vOT responses. The second part then investigated the anatomical basis of these functional interactions between vOT and other cortical regions. I used diffusion-weighted magnetic resonance imaging and tractography, the only method currently available to identify and measure white matter fibre pathways non-invasively and in vivo. My research has demonstrated that vOT integrates bottom-up visual information and top-down predictions from regions encoding non-visual attributes of the stimulus in an interactive fashion. It also illustrated the putative anatomical basis for functional connectivity during reading, which is consistent with the parallel cortical visual pathways seen in other primates. Altogether, the results provide strong support for the Interactive Account
    • โ€ฆ
    corecore