Escuela
Politécnica
Superior

A

Recognition of Japanese
handwritten characters with
Machine learning technigues

;/' Bachelor’s degree in Multimedia Engineering

Bachelor’s Thesis

Author:
José Vicente Tomas Pérez

Supervisor:
José Manuel Ifesta Quereda " Universitat d’Alacant
A Universidad de Alicante

July 2020

Recognition of Japanese

handwritten characters with
Machine learning techniques

A comprehensive research on the difficulties for the
recognition of Japanese handwritten characters and the
application of Machine learning techniques used to
approach this problem

Author

José Vicente Tomas Pérez
Supervisor

José Manuel Inesta Quereda
Department of Software and Computing Systems (DLSI)

Bachelor’s degree in Multimedia Engineering

Escuela Universitat d’Alacant
AR niversita acan
Politecnica =N Universidad de Alicante
1/ Superior

ALICANTE, July 2020

Abstract

The recognition of Japanese handwritten characters has always been a challenge for
researchers. A large number of classes, their graphic complexity, and the existence of
three different writing systems make this problem particularly difficult compared to
Western writing. For decades, attempts have been made to address the problem using
traditional OCR (Optical Character Recognition) techniques, with mixed results.

With the recent popularization of machine learning techniques through neural net-
works, this research has been revitalized, bringing new approaches to the problem.
These new results achieve performance levels comparable to human recognition. Fur-
thermore, these new techniques have allowed collaboration with very different disci-
plines, such as the Humanities or East Asian studies, achieving advances in them that
would not have been possible without this interdisciplinary work.

In this thesis, these techniques are explored until reaching a sufficient level of un-
derstanding that allows us to carry out our own experiments, training neural network
models with public datasets of Japanese characters.

However, the scarcity of public datasets makes the task of researchers remarkably
difficult. Our proposal to minimize this problem is the development of a web application
that allows researchers to easily collect samples of Japanese characters through the
collaboration of any user.

Once the application is fully operational, the examples collected until that point will
be used to create a new dataset in a specific format. Finally, we can use the new data
to carry out comparative experiments with the previous neural network models.

Resumen

El reconocimiento 6ptico de caracteres japoneses manuscritos ha sido siempre un reto
para los investigadores. El gran ntimero de clases, su complejidad grafica y la existencia
de tres sistemas de escritura diferentes hacen este problema particularmente dificil en
comparacion a la escritura occidental. Durante décadas, se intent6 abordar el problema
mediante técnicas tradicionales de OCR (Reconocimiento Optico de Caracteres), con
resultados variados.

Con la reciente popularizacién de las técnicas de aprendizaje maquina a través de
redes neurales esta investigacion se ha revitalizado, aportando nuevos enfoques al prob-
lema. Estos nuevos resultados alcanzan niveles comparables al reconocimiento humano.
Ademas, estas nuevas técnicas han permitido la colaboracién con disciplinas muy difer-
entes, tales como las Humanidades o los estudios de Asia Oriental, logrando avances
en las mismas que no habrian sido posibles sin este trabajo interdisciplinario.

En este trabajo se exploran dichas técnicas, hasta alcanzar un nivel de comprension
suficiente que nos permite realizar nuestros propios experimentos, entrenando modelos
de redes neuronales con conjuntos de datos piiblicos de caracteres japoneses.

Sin embargo, la escasez de dichos conjuntos de datos publicos dificulta enormemente
la tarea de los investigadores. Nuestra propuesta para minimizar este problema es el
desarrollo de una aplicacién web que permita a los investigadores recolectar ejemplos
de caracteres japoneses facilmente mediante la colaboracién de cualquier usuario.

Una vez la aplicacién se encuentre plenamente operativa, se utilizaran los ejemplos
recogidos hasta el momento para crear un nuevo conjunto de datos en un formato
concreto. Finalmente, podemos utilizar los nuevos datos para realizar experimentos
comparativos con los anteriores modelos de redes neuronales.

1543

EIZIKJEOD%E X%@nun E:Fj‘b% tof;%ifbfmo ﬁ@ﬁ'}j\ 7
T7 4 DEMX, bi@3o®£&% FUARDEEEIZ LY, PEFEOEFICH
NTRIZEMLE INTVE T, MH4EE DM, kD OCR (%%Jﬁﬁc%mﬁk) %
R U CRIBEIZH LT 2 AN THONTE Y, #ERIZIEFXETT,

Za—INWAxY NI =0 %N UM FEDOTOED S MIZ XY, ZOMSEIRNE
M X 3, [l ﬁéﬁbu\77m FREZOLINELEZ, TUO6DH UWEERIE
ANEOFEIZICHT 2NN T A= VALV RN ZEKLTVET, X5 \pmbw
HUWHEIZEYD, AXBIEEXET Y THERE DI ZR L —Y 3 VA Al EE
@U\:@?%%@ﬁ%@bmﬁxﬂ%ﬁotﬁﬁéémﬁé:&ﬁ@%ibto

CDR{FTIE, HREOXFONHOT—42ty h2fliHL T=Z=a—F)32 v
NTD—2FF)INENL—=Vv T L, MEHOERZEFTLE U,

UL, AT —421Yy bR AR LTV 720, IEZEDOFEEIFEL SHLWIZ
KOFET, TORANONELLT, 22— —0HEBZEU CHAED X FZDY
VIINWERBBIINETED Web 77V r—avo#E 2TV EL,

T TVMERIZED ., TORMETIZINEIN-FZ2HEHL T, RFEDOEAT
FLWT—&2LYy NWERINET, mEIZ. FrLTF—X2/HL T, Moo=
A=) 3V NT—JEFTFINEDHBEERZFETTIET,

Acknowledgments

Although this is only the start of a new phase in my life, I have to thanks all this
people for the help along the way until now, without their support this would have
been truly difficult, if not impossible.

For my university classmates: To my teammates from our group TAKO-KO: Alberto,
Irene, Maria and Eduardo. For the hard-working hours creating and pushing forward
our last-year PBL project, a result of all the skills we acquired along this degree. And,
most importantly, for being the best friends anybody could have, even when we disagree
about everything possible just for fun. To the rest of you, though you all know who
I'm talking about: to Mdnica, putting up with me even before university, to Fsther,
for listening to me about every thinkable topic during our walks, to Martin, Moisés,
Mario, Javier, Yera, Carlos, Roque to all of you.

To my friends from Japanese lectures, David and Radil, for sharing my passion for
this language and culture, supporting each other during this long 7 semesters of classes,
even if after all of this we only reached intermediate level of this infinite ocean called
Japanese language. To Dani, for making me laugh and for standing my horrible football
skills. Hope he keep on it. And, of course to my Japanese teacher You Ozawa (in
Japanese (JP): /NE[%), for teaching me almost all my Japanese during these years,
for showing us the real culture as much as possible, for not giving up on us, and, last
but not least, for being a true friend for life. Without her, I wouldn’t have the required
knowledge to write this thesis.

To my lifelong friends from my home village. Evora, Rebeca, Grego, Jonathan, Rafa,
Josean, even if we don’t meet for weeks because of schedule problems, you are always
there willing to listen to my stupid tales and useless facts. Hope you can do it even for
a longer time because I'm not giving up soon.

To my supervisor teacher, José Manuel, for believing in me for this project, even
when he have more than enough students to care about.

And of course, to my parents, my brother and sister, for supporting me throughout
my life

Of course, I am interested, but I would not dare to talk about them. In talking about the
impact of ideas in one field on ideas in another field, one is always apt to make a fool of
oneself. In these days of specialization there are too few people who have such a deep
understanding of two departments of our knowledge that they do not make fools of

themselves in one or the other.
Richard P. Feynman.

When the ego dies, the soul awakes.

Mahatma Gandhi.

xiil

Contents

1 Introduction 1
1.1 Overview 1
1.2 Motivation 1
1.3 Related works 2
1.4 Proposal and Goals 3
1.5 Schedule 4
1.6 Outline 4
2 State of the Art 5
2.1 Introduction and history of OCR)
2.1.1 The history of OCR: An overview 6
2.1.2 The OCR pipeline 8
2.2 The Japanese language and its recognition challenges 13
2.2.1 Standards of Japanese writing 16

2.2.2 Relevant written script for Japanese datasets and the Sino-Japanese
correlation 19
2.2.3 Japanese typesetting and the graphical density 22
2.3 Introduction to Neural Networks 25
2.3.1 Historical background 000 25
2.3.2 The multilayer perceptron model and backpropagation 26
2.3.3 Convolutional Neural Networks 35
3 Methodology 41
3.1 Introduction 41
3.2 Review of Japanese Characters Datasets available 41
3.3 Software for Neural Network implementation 44
3.3.1 Tensorflow. 44
3.3.2 Keras 45
3.3.3 Python and the Anaconda environment 45
3.4 Software for Web application development 46
3.4.1 Flask and the WSGI server 46
342 PyMySQL 47
3.4.3 OpenCV 48
4 Experiments and Implementation 49
4.1 Introduction 49

XV

XVvi

CONTENTS

4.2 Multilayer perceptron model for character recognition
4.3 CNN model applied to Japanese datasets

4.4 Development of Japanese Crowd-sourcing web application

4.4.1 Requirements and specification
442 Designguide 0oL
4.4.2.1 Conceptual design

4.4.2.2 Persistence design

4.4.2.3 User experience

4.4.2.4 Interface design

4.4.2.5 Colours, logo and typography

4.4.3 Implementation and deployment
4.4.4 Testing and validation

4.5 Creation of MNIST format dataset using obtained data
4.6 Testing with model and comparison

5 Conclusion

5.1 Overview of results
5.2 Proposal of possible improvements

Bibliography

List of Acronyms y Abbreviations

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

Fonts OCR-Ay OCR-B
Elliptical Fourier Descriptor used over a cat shape from Mathworks, by
Auralius Manurung (2016)
Combined Hiragana and Katakana chart. Left character of each box is
Hiragana, while right one is Katakana. Phonetic lecture is included in
romagi, only pure sounds included. Chart by u/Danilinky (2019)
51 Basic kanji chart. Under each one, Chinese on’yomi readings are
written in katakana, while Japanese kun’yomi readings are written in
hiragana, as is provided in the standard. Chart by u/Danilinky (2019)

An example of correct use with genko yoshi layout. We can see in point
5 how the rule for full stops placement is applied. (Gus Polly from
Wikimedia, 2016)o
The three main styles of Japanese writing. From left to right: kaishotas,
gyoshotai and sosho. Image by HAZFEHS (nd.)
Left: An example of KuroNet being used over a full kuzushiji written
page, from Clanuwat et al. (2019). Right: A soba noodles restaurant
with a sign written in hentaigana. These type of signs are also a problem
for smartphone’s OCR software, typically used by tourists for machine
translation. This one reads as [Z XX] | kisoba yabu, though
hentaigana forms are not typeable in this document. Image from 24K
% bot (2020).
Left: Difference between Mincho and Goshikkutai typesets Image by
HF DN (2 45) (2017). Right: Comparison of font sizes in Internet
Explorer, we can notice that stroke density of kanji turn the text un-
readable between 10px and 8px. Google Chrome caps size to at least
10px to guarantee legibility. Image from 7 7> =7 Blog (2017). . .
A depiction of the single-layer perceptron model. From left to right, we
can see the inputs, labeled from z; to x,,, the weights, defined from wq to
Wy, & Summation Y and an Activation function with its corresponding
output. Image by Nazanin Delam (2016)
The described multilayer perceptron model. The digit’s image is decom-
posed into an input layer, followed by two hidden layers and an output.
We use the notation a®¥°") to refer to each neuron activation, likewise

the weights are represented by a w. Author’s own creation based on the
work of Andreas Refsgaard (2020)

14

15

24

Xvii

xXviil

LisT oF FIGURES

2.11

2.12
2.13

2.14

2.15

2.16

2.17

2.18

3.1

3.2

3.3

4.1

4.2

4.3

4.4

An example of a nine divided into features and subfeatures. The first
hidden layer is responsible of the smaller subfeatures, like edges. Suc-
cessive ones start to made up more complex features like loops, until
the whole digit is computed. Author’s own creation. 29
The main activation functions. Tikz graphs plots by ambs (2019) . . . 31
A 3D representation of the cost function value J(#) with two inputs 60,
and ;. We can see that two starting points can lead to two different
local minimums, without the certainty of either of them being a global
one. Original image by Andrew Ng (2018), modified by Albert Lai (2018) 32
A depiction of an ANN before and after dropout. Image from Srivastava
etal. (2014) 35
Example of convolution operation between a 7x7 input image and a 3x3
kernel, resulting in a 5x5 output matrix, also called feature map. Image
retrieved from Baskin et al. (2017) Lo 37
An representation of local connectivity. In this case, we see the connec-
tions create a kernel of size 5x5. Each of these carry a weight that is
multiplied by its correspondent input layer activation to output the hid-
den layer neuron, also called feature map. Image retrieved from Michael
Nielsen (2019) o 38
An example of Max Pooling and Average Pooling with a kernel of size
2x2 and a stride of 2 performed over a 4x4 feature map. Image retrieved
from Yani et al. (2019) 39
A representation of the VGG-16 architecture following the described
Convolutional Neural Network model in this section. We can see how
the input dimensionality get smaller with each successive layer. Image
retrieved from Shiet al. (2018) 40

The 10 classes of Kuzushiji-MNIST with its modern counterpart on the
left. Image from Mikel Bober-Irizar (2019) 42
Kangi and kana samples taken from ETL-8G dataset. Image from AIST
(2014) . . . 43
Representation of the Python WSGI server pipeline. Original image
from Nacho Alonso (2019), translated by this thesis” author. 47

Left: Loss curve portrayal Right: Accuracy curve portrayal with differ-
ence between training and validation sets. Image retrieved from George
VJose (2019).o 51
Left: KMNIST with no hidden layers during 10 epochs Right: KM-
NIST with 522-neuron hidden layer during 50 epochs. 52
Left: ETL-8B2 Hiragana with 2730-neuron hidden layer during 10
epochs Right: ETL-8B2 Hiragana with 2730-neuron hidden layer dur-
ing 50 epochs. 53
ETL-8B2 Kanji with 2730-neuron hidden layer during 10 epochs. . . . 54

LisT OF FIGURES Xix

4.5 Left: KMNIST with Keras CNN, batch of 16 and 20 epochs Right:
KMNIST with New CNN, batch of 16 and 20 epochs 55

4.6 Left: ETL-8B2 Hiragana with Keras CNN, batch of 16 and 20 epochs
Right: ETL-8B2 Hiragana with New CNN, batch of 16 and 20 epochs 56

4.7 Left: ETL-8B2 Kanji with Keras CNN, batch of 16 and 20 epochs
Right: ETL-8B2 Kanji with New CNN, batch of 16 and 20 epochs 57

4.8 Schema representing the application conceptual design. Author’s own
creation. L e 62

4.9 Database tables structure, along with each column’s datatype. Author’s
own creation. L. 64
4.10 User Journey Map of our web application. Author’s own creation. . . . 64

4.11 Wireframe of the web application interface for desktop and mobile de-

vices. Some annotations were made over the image with pointing arrows
for further clarification. Author’s own creation using Balsamiq tool. . . 65

4.12 Wireframe of the web application navigation flow. A mobile version is
used to save space. Author’s own creation using Balsamiq tool. 67
4.13 Colour palette of the KanjiRecon tool. Author’s own creation. 68
4.14 The KanjiRecon logo. Author’s own creation. 68

4.15 Nunito and Noto Serif JP fonts. The example sentence in Japanese
includes parts in katakana, hiragana and kangji. Author’s own creation. 69

4.16 Representation of the differences between the pageX/Y and clientX/Y
properties. Image retrieved from webdiz.com.ua (2019) 71

4.17 Example of canvas drawing with its corresponding base64 encoding.
Image retrieved from m.mkexdev.net (2010) 72

4.18 The full-width appearance of the application interface at the time of
deployment (Japanese version). 74

4.19 Left: Interface in mobile size (English version) Right: Confirmation
modal with its "Thank you” message (Japanese version). 75

4.20 Left: Mobile test score Right: Desktop test score. Both tests detail
other speed statistics. 76

4.21 Every character class present in our dataset represented by one sample.

This collage has been created using the Pillow (PIL) package. Be aware
this is not the actual size of the images inside the dataset. 7

4.22 Left: New dataset with Keras CNN, batch of 16 and 20 epochs (original

images) Right: New dataset with Keras CNN, batch of 16 and 20
epochs (inverted images). 79

4.23 Left: New dataset with our CNN, batch of 16 and 20 epochs Right:
New dataset with our CNN, batch of 16 and 20 epochs. 79

4.24 Results of the questions answered by the users about their nationality,

language and form of input. These pie charts have been created with
the Matplotlib package. 80

LisT oF FIGURES

4.25 Left: “Mouse” subset with our CNN, batch of 16 and 20 epochs Right:
“Finger” subset with our CNN, batch of 16 and 20 epochs. 81

List of Tables

4.1
4.2
4.3

4.4
4.5

The ETL-8B2 dataset structure. 50
Description of the different user profiles for the web application. 58
Detail of the restrictions we have to take into account during the devel-

opment. e e 59
Table of functional requirements for the web application. 60
Table of non-functional requirements for the web application. 61

xxi

Listings

4.1 New CNN code in Keras (Python) 54

xxiii

1 Introduction

This chapter serves as introduction to the main topic of the thesis. It is made
up of 5 different sections: Section 1.1 sets out the problem and how we expect to
undertake it, Section 1.2 explains the personal and circumstantial motivations to
carry out this research, Section 1.8 shows some of the currently most important
related works in the field of Japanese language recognition, Section 1.4 defines the
objectives for this project and Section 1.5 details the structure of this document.

1.1 Overview

The main objective of this Bachelor’s Thesis is to research the neural network structures
capable of obtaining state-of-the-art results for the recognition of modern Japanese
handwritten characters. In order to understand this task’s challenge, we will study
the structure and peculiarities of the Japanese language itself, starting from its history
and written form until these days. Firstly, we will use previous existing datasets to
develop the model, and afterwards, we will create a new dataset with a small number
of character classes from samples obtained via crowd-sourcing. This will be achieved
with a web application where the users will input the characters requested using the
device’s touchscreen, after which they will be processed to a standard format following
current conventions. This way we hope to address the current lack of accessible and
sizeable corpuses of Japanese language, creating a medium for researchers to easily
obtain open training data.

Finally, we can compare the results of the model using the same classes from previous
datasets and the ones obtained via crowd-sourcing. With this data, we can get to
meaningful conclusions about the situation of the field nowadays and remark ideas for
future paths to follow which may lead to improvements.

1.2 Motivation

Fulfilling the objective of a thesis, this document presents the work that was carried
out to prove the knowledge acquired during the Bachelor’s degree in Multimedia En-
gineering taken at the University of Alicante from 2016 to 2020. From this experience
stems the technological part of the motivation to create this work.

On the other hand, Japanese culture and society have been from many years ahead
of university a particular interest of mine. I found their lifestyle and language, as an

2 INTRODUCTION

evolution from their geographical and sociolinguistic environment, especially unique
from my, at that time, western view of the world. Therefore, I decided soon to turn
this into my second specialization. On this purpose, simultaneously to my degree, I
have studied the Japanese language every semester at this same University.

I have always wanted to believe that having two very different specializations should
not be an obstacle but an advantage in today’s world, as long as you hold a similar
level of expertise in both fields. Nowadays, the chances to study a degree with the
presence of different specialities are growing, yet this is still a work in progress.

By creating this thesis, I wish to close a circle by combining my two fields of study
during these four years: Multimedia engineering and Japanese language, at first glance
areas very far apart from each other, yet sharing a world of possibilities when they get
together. I hope that by taking a different approach to this language, which has come
to be one of my particular passions, I could attract people from technical careers to it,
and, eventually, help growing an inter-disciplinary environment.

Apart from this, the techniques used in this work will help me learn about the theory
and tools used for Machine Learning in general, and Optical Character Recognition in
particular.

1.3 Related works

As with other major languages, the first attempts to recognize Japanese characters used
traditional OCR methods, such as pattern recognition or feature extraction. Soon these
techniques were replaced with the coming of modern machine learning ones, later we
will develop on both of them. In this section, we will show the main related works
about recognition of Japanese characters using machine learning, as it is this thesis’s
topic.

Although the recognition of Japanese characters is a significant challenge due to their
own nature, the recognition of typewritten characters was considered already a "solved”
problem when using a standard font. Because of this, most of the works and research
papers nowadays about Japanese ideogram recognition only deal with the handwritten
script, if not single characters. Some works going towards this direction are Grebowiec
& Protasiewicz (2018) and Tsai (2016). In both papers, a neural network model is
suggested as an attempt to improve current recognition success statistics.

In recent years, data science has become one of the main research fields in Computer
Science. The reason behind this growth is the need to manage and process large
quantities of information, a.k.a "Big data”, and machine learning plays a key role
inside this data pipeline. This trend to move any existing data into the digital world
have naturally attracted scholars from very different fields into this area of informatics.
One of the most important ones is the Humanities. For many years ahead, Humanities
have used data-related technologies such as databases to properly store huge amount of
curations information and other types of documents, but now, with the popularization

1.4. PROPOSAL AND GOALS 3

of data science, the scholars of this field have seen the opportunity to create new
approaches to their research through applying data science techniques. The result
of this processing not only eases their work, but also informs them about details or
interpretations they didn’t notice at first glance. Of course, Japanese studies are not
an exception.

We call this union between humanities and informatics ” Digital Humanities”. Nowa-
days one of the main institutions which are pushing forward the boundaries of Japanese
character recognition is the Center for Open Data in the Humanities (CODH) from
the Research Organization of Information and Systems (ROIS) in Japan. Apart from
their work with other cultural or art-related elements, their need to efficiently process
old Japanese literature have required them to create models and datasets aimed to
Japanese script far better from previous ones. The most famous project until now
is Clanuwat et al. (2018), where a dataset of old cursive Japanese characters and its
corresponding recognition model via a neural network is suggested. We will develop
further on this language variances and its drawbacks later.

All in all, these are some of the related works until today where Japanese handwritten
characters processing is the main topic, sometimes as the primary topic, others as
derived one. Using the knowledge acquired from these readings, I wish to develop the
ability to judge my own model. I hope that this presented work bridges further the
research on humanities and machine learning.

1.4 Proposal and Goals

The main purpose of this thesis is to research the current field of Japanese language
recognition, both from western and native sources, and to compare various preexist-
ing models and datasets in order to understand where the field may lead for future
improvements. Therefore, the main objectives of this Bachelor’s thesis are:

o Review the current state of the art of OCR techniques using Machine learning in
general, and Japanese character recognition in particular.

o Understand the challenges of Japanese handwritten recognition by explaining the
language structure and peculiarities, from historical to today’s speech.

o Compare the previously existing models of recognition and their different success
rates depending on their focus.

o Analyse current datasets available of Japanese language and create our own one
using a crowd-sourcing web application that can also be repurposed for future
corpus creation.

o Use a neural network model based on previously studied ones with similar purpose
and compare its performance with our dataset and others.

4 INTRODUCTION

1.5 Schedule

This project has been developed during the 4™ year of the degree in Multimedia En-
gineering. The thesis topic was proposed in November 2019, starting work soon after.

The work pace of the project has not always been the same throughout the year due
to different circumstances. Until the end of May, the project has been developed at
the same time as the PBL project of my degree’s last year. During part of this period,
I worked on the project twice a week at the university itself, at 4 hours per session,
researching and doing experiments of Japanese dataset classification. This situation
changed abruptly from March due to the COVID-19 pandemic, working from that
moment until now from home. The web application was developed from late March
until the end of April. During the peak workload of the PBL project, the time spent
on this final degree project was reduced, but we tried to never interrupt it. Finally,
most of this Bachelor’s thesis has been written during the months of June and July, at
the same time that I was doing the external internship for my degree.

1.6 Outline

This document’s structure is conceived to follow the natural flow of the research, avoid-
ing to put chapters with previously unexplained concepts before other ones: Chapter
1 serves as an introduction to the main topic of the thesis, its motivations and some
related works. Chapter 2 intents to be a comprehensive research about traditional
Optical Character Recognition, the use of Neural Networks for this purpose and the
peculiarities of the Japanese language on this field. Chapter 3 is a record of the ma-
terials and technologies employed during the project, and the methodology followed
when using each of them. Chapter 4 presents the results of our experiments and the
development of our crowd-sourcing application. Chapter 5 describes our conclusions
in summary and proposes future improvements based on our experience.

2 State of the Art

This chapter intents to be a comprehensive explanation about the use of Neural
Networks for Optical Character Recognition and the peculiarities of Japanese
language on this field. It is made up of 8 different sections: Section 2.1 introduces
us to the world of OCR and its origin, Section 2.2 gives a brief introduction to
Japanese language itself and the challenges it presents for OCR and Section 2.3
show us a general view of the Neural Network technologies and its ins and outs,
with details of how these models are applied for OCR.

2.1 Introduction and history of OCR

We call Optical Character Recognition, a.k.a OCR, to the conversion of images of
typed, printed or handwritten nature into machine-readable data, whether for convert-
ing it into a digital document or for machine internal use. This images can come from
scanned documents, photos, subtitle text from television broadcast... etc. OCR is one
of the most successful applications of technology in the field of pattern recognition and
artificial intelligence.

It has reached a level of accuracy which allow us to use it on a daily basis with
a small margin of error. The applications range from digitization of printed texts to
the recognition of passport documents data. This process is often only a part from a
bigger system, aiming to objectives such as machine translation, text-to-speech or text
mining.

Many commercial systems for performing OCR exist, although the machines are still
not able to compete with human capabilities. This said, near-perfect performance is
already achieved in some environments. According to the Annual Test of OCR Accuracy
by the Information Science Research Institute from the University of Nevada, modern
OCR technologies performance range from 81% to 99%. Although the term OCR is a
general definition for a wide range of models, we can subdivide it into 4 categories:

« Optical Character Recognition is supposed to refer only to typewritten text,
one character at a time, although in reality is used as a generic term for these 4
technologies.

o Optical Word Recognition refers to typewritten text, one word at a time,
when the language uses spaces between words. This is an interesting fact for us,
as this is not the case of Japanese.

6 STATE OF THE ART

o Intelligent Character Recognition refers to handwritten script or cursive
text, one character at a time.

o Intelligent Word Recognition targets the same media as above, but one word
at a time. Both models usually involve the use of machine learning.

OCR lies in the field of Automatic Identification. We call Automatic Identification to
a wide range of solutions used when a traditional input into a computer is not the best
nor the most efficient way to handle the processing of data. Automatic Identification
technologies are around us everyday, such as bar codes in supermarkets, speech recogni-
tion in smartphones or magnetic stripes in credit cards. Compared to other automatic
identification technologies, OCR is unique in that it does not require control over the
original information. It is true though that the performance is directly dependent upon
the quality of input data, whether is typewritten or handwritten script.

To enable machines to perform human functions is an old ambition, and so is OCR
history. In the next section we will overview each significant milestone in OCR history
and their contribution to today’s technology.

2.1.1 The history of OCR: An overview

The first attempts of OCR-related technologies can be traced back to the 1870s. In
this year the American inventor Charles R. Carey created the first retina scanner using
a mosaic of photocells. Another important predecessor was the 1885’s Nipkow disk.
Invented by the Prussian technician Paul G. Nipkow, it consisted of a mechanically
spinning disk with a series of equally distanced holes of the same size drilled in it.
The Nipkow disk was the main component of mechanical televisions. Inside them, the
disk take the role of a primitive “raster”. The “screen” of these televisions was a small
circular sector of the disk, keeping the rest of it hidden behind another opaque layer.
When spinning, each hole appears to be a full line of the visible circular sector. This
allowed dividing the light coming from the image we wanted to transmit into small
pieces, coming through each hole. This way anything could be scanned line by line. In
the other side of the disk, a light sensor was placed (like a photodiode or photocell),
which converted the light coming from each hole individually into an electric signal. In
the receiver side, the same process was performed but in the opposite way, with disk
spinning at strictly the same velocity. Although a really smart concept, the Nipkow
disk is greatly limited by its size and curvature.

Moving to the 19th century, the development of OCR predecessors were boosted by
the creation of devices to aid the blind. In 1912, Edmund Fournier d’Albe, an Irish
physicist, develops the Optophone, a handheld scanner that when moved across a text,
generated a time-varying chord of tones to identify letters. The tool was supposed to
be aimed at the blind, but reading was slow and required of training. Moving toward
mid-century, electronic data processing was becoming an important field due to its
potential applications in the business world. In 1954, the first true OCR machine was

2.1. INTRODUCTION AND HISTORY OF OCR 7

installed in the offices of American magazine Reader’s Digest, handling the conversion
of typewritten sales reports into punched cards. By mid-1950’s, the first OCR machines
became commercially available. Although these machines had a more business-related
purpose, the research in OCR technology for the disabled didn’t pause. In the 1960’s
an influential device for the blind was developed. The Optacon, as it was called, was
an electromechanical equipment with which the user moved a scanner over a text while
a finger pad translated the words into vibrations that could be felt in the fingertips. It
was a great leap forward for blind people, until then limited to braille script reading.

A common problem of the first generation of OCR technologies, until 1965, was the
input material used. The font used for the texts was specially designed for machine-
reading and had a constrained shape. Later on, the number of supported fonts grew to
10. This number was determined by the pattern recognition method applied, mostly
because it had to compare each character with an entire library of prototype images
for each character of each font.

By the early 1970’s, the second generation of OCR came in. Though limited in the
number of supported characters, hand-printed documents were now readable for these
machines, like the IBM 1287. Japanese companies also played a role, like Hitachi or
Toshiba, with a letter sorting machine. Most importantly, a font standard for OCR
was pursued. As a result, the American OCR-A font was created, followed by the
European OCR-B. While the first was developed with OCR requirements in mind, the
second intended to feel more natural under human eyes. These fonts plus some special
characters from Magnetic Ink Character Recognition (MICR) code are included in the

Unicode standard since 1993.

ABCDEFGHIJKLMNOPARSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
1234567890

OCR-B

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
1234567890

Figure 2.1: Fonts OCR-A y OCR-B

The third generation of OCR machines appeared around the mid 1970’s. As always,
low cost and high performance were the ideal objectives for the devices, even more now
due to the market inquiry. The uniform print spacing and the small number of fonts
made OCR devices really useful in the age before personal computers. One could create
documents’ drafts on typewriters and then fed them into the computer through OCR,

8 STATE OF THE ART

cutting costs substantially in a time when word processors were still an expensive tool.
In 1974, Kurzweil Computer Products Inc. develops the first omnifont OCR software,
opening the doors to the development of font-independent devices.

Starting in the mid 1980’s, OCR devices and software became available to the wide
public, getting consequently cheaper until today’s standards. Nowadays, there is com-
monly no such things as “OCR machines”, but a wide variety of devices using OCR
libraries and software. Some famous ones are the free library Tesseract, sponsored by
Google, the PDF reader from Adobe Acrobat or the one used in Google Drive files.

The research in OCR is no more focused in the typewritten script, and have reas-
signed every effort in the field into the handwritten script and real-time recognition,
like with street signs or menus translation using a smartphone camera. Usually, these
solutions include the use of machine learning techniques, as we will detail later. More-
over, human crowdsourcing is recently used as a recognition technique, especially to
correct texts already passed through an OCR, software.

2.1.2 The OCR pipeline

In this section, we will explain the general recognition process and the techniques
typically employed in each step, but first, we will review some basic OCR terms. In
OCR, we call characters or patterns to the letters, numbers or special symbols that
make up a dataset. Inside a dataset, each class correspond to a different character.
The training of an OCR model is performed by showing the software examples of
characters of all the different classes. Based on this, the machine builds a common
description of each class of characters by defining a series of distinctive features. Usually
in commercial devices the training is already stored inside the software, but some of
them give the chance to train the model with new classes added by the user.

Although there are some systems where a step is not required or where the process
is shortened, a general OCR pipeline consists of 5 steps. First, we digitize the text
or character through optical scanning. Then, the regions of the image with text are
located, extracting them through a segmentation process. Once we have each part
clearly delimited, preprocessing is performed if necessary to get rid of imperfections,
like noise. After this, the system tries to identify the most important features of each
image, in order to compare them with similar features found during the training process
and therefore achieve an accurate classification. We will now describe each step with
more detail.

During the optical scanning, a digital image of the original material is captured.
Printed documents usually consist of black print on a white background, so it is common
to convert the resulting image into a bilevel image of black and white. This process
is called thresholding and is performed to facilitate the recognition in the following
steps of the process. Usually, a fixed threshold is used, where grey-levels below it
are considered black, and every other thing white. One popular option for this is the
Otsu’s Binarization. With correctly scanned documents this tends to be sufficient, but

2.1. INTRODUCTION AND HISTORY OF OCR 9

documents usually have a rather large degree of contrast. For these cases, an adaptive
threshold is recommended. This method varies the threshold depending on the local
properties of contrast an brightness, though is more computationally intensive. In
the past, the range of devices used for this process was limited, mainly scanners, and
therefore it was easier for developers to control the result. Nowadays, with the coming
of smartphones, images are no longer always high-contrast clear, neither with fixed
color background. Because of this, modern techniques not only include thresholding,
but a wide variety of filters.

The location and segmentation of the text inside the image is a step inside the
process that has gained importance in modern days, as OCR is often performed over
images where the text is only a small part of a wider scene, often with a complex
background. A fresh example of this is self-driving cars, equipped with cameras that
must take into account traffic signs. Focusing on the texts, segmentation is the isolation
of characters or words. This way characters are treated in a one by one manner. In
a perfect environment, this technique should be easy to implement, as it only consists
in isolating each connected black area, but in reality, several problems may arise. The
most common one is the extraction of touching and fragmented characters. When two
characters are touching, the software may try to treat them as a single one, leading
to recognition problems. These imperfections are often a result of dark images or low
thresholds. Serif fonts are also a source of problems, as a minimal threshold deviation
can cause them to touch. If we change to the realm of handwritten script, variances are
so common that word by word recognition is also a popular scope. We may also want
to reduce noise in the background, without neglecting the tracking of small characters
like commas or docs, sometimes mistakenly treated as noise.

The next phase in the process, and the last image-treatment one, is the preprocess-
ing. Due to a low scanning resolution or an inadequate threshold selection, characters
may be smeared or broken at this stage. This process aims to smooth the digitized
characters before feature extraction and classification. The smoothing implies both
filling and thinning. For this task we use two basic techniques: dilation and erosion,
respectively, part of the so-called “Morphological operations”. These techniques are
performed using a structuring element, a predefined kernel, over an input image. A
kernel is a small matrix with certain values used to apply effects over an image. To do
this, the center value of the kernel is lied over a pixel, with the rest of the values over
the surrounding ones. We must then multiply each pixel by the corresponding entry
of the kernel and then take the sum. That sum becomes the value of the center pixel
in the output image. This process is repeated over each pixel of the input image. We
call this operation “convolution”. One subtlety of this is what to do with the edges
of the images, where kernel values may not have a corresponding pixel. A common
fix for this is to extend the edge values of the image out by one, keeping the output
image the same size. There are quite a large range of kernels used in computer vision,
each with a specific name. Sobel kernel shows the differences in adjacent pixel values
in a particular direction, usually for edges contrast, while blur kernel de-emphasizes

10 STATE OF THE ART

these differences. As we will see later, convolution is also used in machine learning
for feature extraction. In addition, preprocessing usually applies normalization to
obtain characters with uniform slant, size and rotation. For this, the angle of rotation
must be found. While scanning a text or document, a skew might get into the scanned
image. In this case, a skew is an image oriented at a certain angle within horizontal.
Usually a Hought transformation method is used for skew correction, but the simplest
one is the so-called projection profile method. In this method, we project the image
horizontally to get a histogram of pixels (a bar graph representing the distribution of
numerical data). Then the image is rotated in different angles separated by a delta
interval. Wherever we find the maximum difference between peaks in the histogram,
that will be the skew angle of the image. The following correction is simply an image
rotation through an angle equal to the skew angle in the opposite direction. However,
if needed, single character rotation can be performed after recognition.

The last step previous to classification is the feature extraction. This is one of
the most difficult problems of pattern recognition and OCR. In this step, we aim to
capture the essential characteristics of the characters. The most basic way to describe
a character is by the actual image, but usually more advanced methods are used to
shorten the process. These techniques are designed to extract only the features that
characterize each symbol, leaving out the unnecessary ones. We could divide these
methods in the next three categories:

o Distribution of points is a group of techniques based on the extraction of
a statistical distribution of points. Their main advantage is the tolerance to
distortions and style variations. Some of the more used ones are:

Zoning: The image is divided into several overlapping or non-overlapping
regions, within which the densities of black points are processed as features.

Moments: We choose a center for the image, like the center of gravity of
the character, and then we use the moments of inertia of black points about it
as center.

Crossings and distances: The number of times a character shape is crossed
by vectors along certain directions is used as a feature in this technique. Usually
the length of vectors crossing within the boundary of the character is considered
another feature.

N-tuples: The joint occurrence of black and white points in a certain specific
order is used as feature.

Characteristic loci: The number of times a vertical line is intersected by
the line segments describing the character.

o Transformations and series expansions such as Fourier, Walsh, Haar, Hough..

Techniques like these are used because they help to reduce the dimensions of the

.etc.

2.1. INTRODUCTION AND HISTORY OF OCR 11

feature vector and can be invariant to rotations and translations. These transfor-
mations are usually based on the curve describing the contour of the character.
Because of this, they are susceptible to noise around the character’s border, but
not to noise inside of the character.

2 L
-10 -5 0 5 10

Figure 2.2: Elliptical Fourier Descriptor used over a cat shape from Mathworks, by Auralius
Manurung (2016)

e Structural analysis is the extraction of features based on the topological and
geometric structures of a character. This features usually include strokes, end-
points, bays, intersections and loops. The extraction of these is not trivial, but
once obtained, they are very tolerant to noise and style variations, but not to
translation or rotation.

One last approach to this step is the template-matching techniques. Surpris-
ingly, in these no features are actually extracted. Instead, the image is matched with
a set of prototype images for each class. We then quantify the distance between each
pair, choosing the best match as the correct answer. Although is simple to implement,
this technique is easily sensible to noise, rotation or variations.

The most important step of the process is, of course, the classification. Here we aim
to identify each character and assign to it the correct character class as accurately as
possible. We could divide classification models into two categories: decision-theoretic
methods and structural methods. The first ones are used for characters numerically
represented in a feature vector, while the others are used for characters described by
more physical patterns which are not as easily measured. First, we will take a look
into the main decision-theoretic methods:

e The minimum distance classifiers or matching techniques are the groups
of methods where the distance between the feature vector of the character and
the class is measured, usually using the Euclidean distance, to find out the correct

12

STATE OF THE ART

character identity. They tend to work well if the classes’ means are separated
between each other by a large distance. If the entire character is used as input,
a template-matching approach is taken, instead of feature extraction.

The optimum statistical classifiers are a variety of probabilistic approaches
to recognition, with the objective of having, on average, the lowest probability of
making classification errors.

To build a probabilistic approach, we start defining our variable. First, we have
to choose a random variable that represents the statistical feature of a character
image, we will call this Z. A good example of a random feature would be the fill
percentage of the image, in other words, the proportion of foreground pixels in
the binary image. Using the random variable, we can build a probability model
for that feature in the form of Prob(Z|C), where C' are the character classes
C = A, B,1,2.... Given this, the probability that the random variable Z belongs
to class C' is computed for all classes C' = 1...N. Seen as a function for each
event C, the probability model Prob(Z|C') is known as the likelihood function
L(C) = Prob(Z|C). All in all, we want to find the probability that the character
is, in fact, C.

If there is no prior knowledge of what C' might be, then we usually assume it
to be normally distributed, like Prob(C) = 1/36 (as for a set formed by every
English alphabet letter plus numbers). This probabilistic approach is called a
Bayesian approach. The closer this assumption is to reality, the closer a Bayes’
classifier comes to optimal prediction. The most popular and simple example of
such classifier is a Naive Bayes classifier. This family of techniques are based
on the assumption of strong independence between the features, i.e., that the
value of a particular feature is independent of the value of any other feature,
given the class variable. Though this may be seen as an oversimplified view of
a problem, as sometimes there are obvious correlations between features, the
naive Bayes classifier has demonstrated to be useful in practice, even in complex
situations. To obtain these parameters necessary for the classifiers, a training
process is undertaken, after which a description of each class is obtained.

In general, these probabilistic predictions, classifications and inferences may be
simple in principle, but they rely on the proper selection of the random variable
7, that is, to choose the feature that best represents every character. Aboura
(2016)

Although these classifiers have been used along with neural networks for predic-
tions, they also have proved to work really well for their own.

Neural Networks are technically also part of the family of decision-theoretic
methods, but we will cover them more extensively in a specific chapter, as they
are a central part of this thesis.

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 13

On the other hand, Structural methods take into account the relationship between
character features as an element of importance when deciding on the class membership.
The most common of them is the Syntactic methods, where this relationship between
character is formulated by using grammatical concepts. We say that each class is
defined by a grammar, therefore a character is more similar to a class if is more likely
to be generated by the grammar of this class than others. Likewise, we say a grammar
is usually made-up of the structural components of the character.

The last step in the OCR pipeline is the post-processing. This step is compound
of some techniques used to improve the OCR final result after individual characters’
classification. The most common one is grouping, where characters already identified
are associated into strings, words, using the characters’ location in the document as
parameter. When letters are found enough close to each other, they are grouped
together. This process is fairly simple when using typeset characters, as fonts usually
have a fixed white-space between them. The real problem comes when we are dealing
with handwritten characters, where no standard exists.

Other error-detection or correction technique common in post-processing is the use
of context for improvements. Context is one of the main ideas to come to mind when
thinking about how to improve OCR results, though the actual implementation may be
fairly complex. One approach is to calculate the possibility of sequences of characters
appearing together, so unlikely or impossible letters’ pairs could be quickly discarded.
This requires to specify certain rules for each language. Although this may be a fast
method, the direct use of dictionaries to look up full words has been proven to be the
most efficient method for error detection. Nevertheless, such dictionary methods can
not detect an error in which classification resulted in another legal word, as it would
see it as a perfectly correct string.

2.2 The Japanese language and its recognition
challenges

Note: As for this section and the rest of the thesis standard, transcriptions of
Japanese words into Latin alphabet will be written in italics. We call this system
romaji (JP: 1 —<F).

In order to approach this thesis’s topic properly, first we have to understand to a
certain extent what we are dealing with. In general terms, Japanese (JP: HZAREE) is an
East Asian language spoken mainly in Japan and its surrounding islands, by around
128 million speakers. Officially, Japanese is inside an isolated language family alongside
the Ryukyuan (from Okinawa Islands in southern Japan (JP: ###11)), though it holds
important relations with Korean, mainly because the later one uses a large number of
loanwords from Japanese. This said, Japanese is not a uniform language by any means.
Dozens of dialects are spoken in the country, differing usually in the pitch accent, the

14 STATE OF THE ART

vocabulary or the particle usage. The most popular ones are the Kanto dialect (JP:
B F+) and the Kansai dialect (JP: BAPE), but we can even find dialects in northern
Japan which may be unintelligible for the rest of the country’s speakers.

The Japanese writing system is among one of the most complexes in the world. Due
to historical reasons that will be explained later, the Japanese language has come to
be written with a mixture of three different systems at the same time. First we have
hiragana and katakana systems. Both systems are similar, as each of their symbols
corresponds to a phonetic syllable, with the exception of consonant n, which is written
alone. In addition to the common or “pure” sounds, the syllabaries also provide the
speaker with the ability to represent mixed combinations. For this purpose, we can
add a smaller version of characters [%], [] or [& | behind any “i” ending character
to create a joint syllable. For example, if we take the hiragana [1Z] (pronounced
ni) and %] (pronounced ya), we can create the syllable 1Z%] (pronounced nya).
Furthermore, the sounds of the consonants in each syllable can be modified to create
the so-called “impure” sounds. To do this, we add the diacritic markers dakuten [|
or handakuten T° | over a character. The first one is used to turn any sound into
a voiced consonant: “h” to “b”, “k” to “g”...etc, for example, if we add dakuten to
katakana T 77] (pronounced ka), it transforms into [/] (pronounced ga). The second
marker is used to turn a “h” consonant into a “p”, for example with the hiragana [0]
(pronounced hi) and its accentuated version [TF] (pronounced pi). There are also
specials ways to modify the pitch accent for the reader if the word requires it, but we
will not cover them here. The main difference between them is that while hiragana is
often used to write native Japanese words, katakana is used to write loanwords from
foreign languages. Katakana is also often used to write onomatopoeias.

A 2D I|5 SV XN FIEIIESH DG T
ta sa a

n wa ra ya ma ha na ka
by # S|V E|lC =B FIUL>IEFWA
ri mi hi ni chi shi ki i
DI IAE ALAISTBRDVYNT XK I(5D
ru yu mu fu nu tsu su ku u
nv HANARRTTFIBEE|IFFAI
re me he ne te se ke e
Z I35 0(&K36EEFRKROD/J|EBMNEYIZCOBA
wo ro yo mo ho no to so ko o

Figure 2.3: Combined Hiragana and Katakana chart. Left character of each box is Hiragana,
while right one is Katakana. Phonetic lecture is included in romaji, only pure
sounds included. Chart by u/Danilinky (2019)

The last system is the kanji (JP:), Chinese characters integrated into the

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 15

Japanese writing system that are essential to language understanding. They are used
mostly for writing nouns and the stem form of verbs, where they are used jointly with
hiragana. In this case, hiragana serves as a suffix to create each different verb tense
and they receive the name okurigana (JP: 3% 4 fk#£4) or “accompanying letters”. For
example, in the sentence [5 137K % fRA TV E 9 | | meaning “Right now I'm drinking
water”, we are using kanji for both the noun “water” [7K] (pronounced mizu), and
the verb “drink” TfRd}] (pronounced nomu). As you see, [fRZ] is already using
an okurigana termination by default to represent the informal present tense, changing
it with the one in the sentence we obtain “drinking” fRA T\ & 9] (pronounced
nondeimasu), as this is the informal present continuous termination.

It is fair to say that this is not always the rule, as we can find both nouns and verbs
in full hiragana in the common written script. Japanese is a language that tends to
adapt itself to each situation, and therefore is also a language plenty of exceptions.
One such case is the different kanji reading. In Japanese, each kanji usually have two
or more readings: on’yomi (JP: Hat) and kun'yomi (JP: #lFi#A). The first one is
the Chinese originated reading, used usually when two or more kanji are put together,
as in nouns, while the second one is used when a kanji is used along with hiragana
characters, as in verbs. This is far to be a strict rule and you can commonly find
kanji with more than two readings, even five. Moreover, some kanji were created by
the Japanese themselves and therefore they lack an on’yomi reading. Kanji system
is undoubtedly complex, however, it serves one more specific purpose. In Japanese,
homophones (words that share the same pronunciation, regardless of the meaning)
are remarkably frequent. This is due to the low number of sounds in the Japanese
phonology and the use of loanwords from Chinese. In China, these words could be
told apart using a tone system, but they were phonetically uniformed at their arrival
to Japan, where there is no tone system. Kanji helps us to differentiate between such
words efficiently. In the spoken speech this is not possible and every word meaning is
guessed by the context, that is why Japanese is often referred to as a highly contextual
language.

el b L e el

* &5 20 &> u2 =
Fiv .
Bz, 55,
Bh
F
=

2z
»3
[l PPN Edaind A

=35 3 V&, b
samow | TR 5 <5

SENE
5

e

Vo
BL | T |5 S

B
NGBEEEEEE

h
o. o1 5] oz

7I<7J<kHElj1=E
=

19 o1, m1| o am | vosv |6 57 |TT8a0
~ BB ;’E v]:_—'l) & Uk S5A. 5D~

AT % | B

>> u> Y, 2> *> =39
&b 349 kel PE (4% ® B, B

> FU vo oo
(AT =172 <& (373

7>) 79
EENCTEN CENETN ENEERES
Bl)

Figure 2.4: 51 Basic kanji chart. Under each one, Chinese on’yomi readings are written
in katakana, while Japanese kun’yomi readings are written in hiragana, as is
provided in the standard. Chart by u/Danilinky (2019)

16 STATE OF THE ART

As for basic grammar notions, Japanese is said to have a SOV morphology, i.e, to
have a subject-object-verb word structure. In reality, the only strict rule is to keep
the verb at the end of the sentence, with the rest of elements mostly freely positioned.
One Japanese peculiarity previously mentioned are the particles. These suffixes are
used to mark the grammatical function of every sentence element, or as modifiers. For
instance, in the sentence [ZAVEX/NY 22 T9 | , meaning “This is a computer”, the
syllabic character [13] (pronounced wa), serves as the particle of topic, which is in this
case [Z#V] (“This”, pronounced kore). Following these we have the word [/3Y OV |
(pronounced pasokon), written in katakana because it is a phonetic abbreviation for the
English loanword “Personal Computer”. Finally we put the verb [T9] (pronounced
desu), meaning “to be”, at the end of the sentence, as is always required.

In this section, we will give a comprehensive explanation about modern Japanese
script, both typed and handwritten, as is directly related to this thesis’s premise. We
will not further cover other language fields, such as grammar or phonetics, as they are
not directly related, though they could be eventually brought up if part of the written
system needs of them to be properly explained.

2.2.1 Standards of Japanese writing

The most important part of the Japanese language for this thesis topic is the Japanese
writing style, as we aim to accomplish a recognition rate as accurate as possible. There-
fore, we need to consider as many aspects as possible of the Japanese writing conven-
tions. This knowledge will not only be useful for recognition, but also for the dataset
compilation process, as native speakers will be more willing to contribute if the setting
they see is more familiar.

Perhaps the most popular aspect of Japanese writing from abroad is the stroke
order, maybe because of the prevalence in the media of traditional calligraphy with
brush as a characteristic art from Japan or China. Stroke order is a concept that is
taught from the very beginning in Japanese schools and have a few exceptions, but in
general terms, the rules are: to go always top to bottom, left to right; horizontal before
vertical; and vertical strokes passing through others must be written at the end. All
of this in one go without any partial correction. These rules are important not only
for kangi, but also for hiragana and katakana. The concept of stroke order may be seen
as far-fetched from countries that use the Latin alphabet, but there are some cases
where the order is so important that affects the readability of the word. The most
obvious example of this occurs with the pairs of katakana characters [/] and V|
(pronounced shi and tsu, respectively) or with [>/] and [V] (pronounced n and so).
Past OCR recognition models for Chinese and Japanese characters were dependent on
the stroke order to work, this was inconvenient because the program relayed in the user
to correctly input every symbol. Using machine learning techniques we are no longer
dependent on them, though overly similar characters could be problematic.

When talking about rules and style codes, Japanese handwritten script has

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 17

proved to be an excellent example. Stroke order may be the most popular instance
of this, but is far to be the only one. It is standard in Japan to write any type of
manuscript in a special type of paper layout called Genko yoshi (JP: [RfEHAK). In
modern day Japan, the use of this “manuscript paper” has declined enormously due
to the preferred use of word processing software, although some computer programs
still have genko yoshi templates included. However, they are still very widely used (for
example, in newspapers) and primary and secondary students are required to write
their essays or assignments on genko yoshi, and therefore they have to learn the correct
way to use it. The standard layout is designed for vertical writing, from right to left.
Each column is composed of 20 squares, with usually ten columns per page. Each box
contains a single character. Between consecutive columns a vertical white space is left
for furigana characters (JP: #ix V) {#4). These small-size characters, known as “ruby”
in English, are annotations in hiragana or katakana over the main characters to hint
the lecture of rare kanji for native readers, or for students. In this case, they are placed
on the right side of each character. Each character is supposed to be centered inside
their respective box, some versions even have a cross dashed grid inside each individual
box to help the writer in this task. The same type of grid is used for individual kanji
practice. Apart from characters; commas, full stops or small hiragana/katakana are
supposed to be placed in the top right corner of their own box, except when this would
mean placing it as the first symbol of the next column, in which case it would be
placed in the bottom right corner of the last box with a character inside. These are in
summary the basic writing rules. Information from Z &fE3X 2 7 7 (2012).

4 3

] oam Aok

< B & AE &AL Z EFTLEERAE 1
A TR B I BAKTHICKTH '
Wi = # LB ZHEHENVNEO S S
g+ % O Lo L LR EEERAN o
oA S sk hgE LB CA T
&= s E s s R

LI O NEZE ZU0CTThiER > A
T A m S oLVl s®WmyT 7 |7
o B A 54 R EHEDD B T
RO c 2 ®bH " EHYELG T
n EE =T HEBEEZEIXE
- &5 = g% &AL ADE
fz 2 5 O B A K E TR T K
£ O % td X0 B2
W 58 F S ez =KL P CiEdE
B 3 K — Fwm L EHENTH T
O % F R B0 TR DR TE
nH o DT WEEDKTHE 7
TR R BELHDLOMT O

5/

Figure 2.5: An example of correct use with genko yoshi layout. We can see in point 5 how
the rule for full stops placement is applied. (Gus Polly from Wikimedia, 2016)

18 STATE OF THE ART

We will take advantage of this knowledge about Japanese writing customs to apply
it into the design of our dataset crowd-sourcing web application, using the grid layout
for our writing canvas, as we will see in the implementation chapter.

Of course, the presence of strict rules does not mean they will be followed by everyone.
In the end, each person writes following their own style, with a series of details and
nuances in each stroke that are difficult to predict. Some hiragana characters even have
a variety with a different number of strokes in its handwritten form. This “free style”
is accentuated when it comes to annotations reserved for oneself. However, during
elementary school, children are taught a specific common style called Kaishotai (JP:
f4ER). The Kai from the first character means “regular”. This traditional square
style is characterized by its horizontal lines slating upwards going from left to right.
Another styles of writing include: Gyoshotai (JP: {7Z1K), a semi-cursive flowing form
of writing, and Sosho (JP: ¥Z), a fully cursive style of calligraphy. The last one is
often performed with a single curving brushstroke and may be difficult to understand
for an untrained eye. This style deeply roots with the history of Japanese writing
and has been studied for the creation of recognition tools using Machine Learning
techniques, as we will see later. As one can imagine, if the recognition of sosho style
has been researched successfully, kaishotai standard writing should not be a problem
if the model is adapted to the environment where it will be used and we have quality
training data.

o

2
&

(%
A

S & ES

Figure 2.6: The three main styles of Japanese writing. From left to right: kaishotai,
gyoshotai and sosho. Image by HAZFE S (n.d.)

There are several others calligraphy styles of Japanese, often linked to a specific
context or use, such as kaishotai (JP: #15{it), reserved for theatrical arts like kabuki,
or the kakuji (JP: %) style, used for seals; but we will not cover them as they are
far off from regular written script.

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 19

2.2.2 Relevant written script for Japanese datasets and the
Sino-Japanese correlation

Once we understand the basic concepts and writing systems of Japanese, we are ready
to start collecting character samples. The question we should ask ourselves now is:
What characters classes? Hiragana and katakana syllabaries are the obvious starters for
a Japanese charset (yet we could also decide if they should include diacritics variants),
the real problem comes with kanji. According to the Dai Kan-Wa Jiten, probably the
most relevant compilation of Sino-Japanese characters, there are around 50000 kangji in
existence. Most of them are obscure, used for really specific things and rarely used even
in China. Then, what number of characters is necessary to better represent the modern
use of Japanese? After World War 11, the Allied Forces of Occupation of Japan issued
indications to the Japanese government for an integral reform of the writing system.
The objective was to simplify the language learning for children and the access to
literature and newspapers. An initial position based on the complete abolition of kanji
evolved into a more conservative reform. The number of characters in circulation were
reduced, some of them simplified, others completely discouraged. The result of this is a
list of 2136 characters called Joyo kanji (JP: # HES), meaning “regular use letters”.
They are supposed to be the necessary kanji to have literacy in Japanese. In reality,
the number of kanji used in modern written Japanese is more, especially in fields such
as medicine or family names. For the last case a special set was created, the Jinmeiyo
kanji (JP: N#HE), literally “people given names”. Children in elementary school
learn a subset of the joyo kanji of 1026 characters called Kyoiku kanji (JP: BB ET),
distributed throughout all 6 grades. JIS digital encoding, that will be detailed in the
next section, goes beyond this limit and reach the 6000 kangji. All in all, joyo kangji is a
good representation of modern Japanese and a more than decent reference for dataset
creation. This does not mean problems should disappear instantly, as kanji is a world
of exceptions. For instance, one particular issue that might be sensible for datasets is
the existence of the so-called idtaiji (JP: AKT), a variant form of a kanji with the
same meaning but different strokes. If we are to include that kind of variations in our
dataset, we have to take care of the use of duplicated class names.

Apart from the selection of kanji classes, we have to care about the so-called obso-
lete characters. In the previously mentioned kanji reforms, the characters that were
not included had the status of “officially discouraged”, however, we can also find char-
acters in a similar state outside the kanji domain. For instance, we have the characters
[&], pronounced we, and 2] | pronounced wi, in hiragana, and their counterparts
in katakana [T] and X] . These exist because the sounds they represent existed
in Japanese when they were created. After the sounds we and wi disappeared from
the spoken Japanese, the characters continued to be used to represent e and 7 sounds.
Nowadays their use is sparse but sometimes they are useful to represent foreign words
containing the “v” or “w” sounds, like whisky or wine, though these can also be repre-
sented using the “u” sound with dakuten [77] . For datasets aiming modern Japanese,

20 STATE OF THE ART

whether include them or not is a decision that only concern the researcher.

Finally, to be really meticulous, we must take into account the existence of some
symbols that do not belong to either the kanji category or the two syllabaries. We
could classify them as repetition marks or odoriji (JP: ¥V %), and they are fairly
common in written Japanese. The most important one is called noma %] , as looks
like a fusion between katakana characters for no and ma. It is basically used to show
the repetition of the previous kanji, hiragana or katakana character.

Not all datasets created are intended to be used for the recognition of modern
Japanese. Recently, the use of machine learning techniques has been decisive for the
recognition of old Japanese literature texts and other written materials from the same
era. In this case, a recognition model is fundamental because we are talking about
texts hardly understandable in modern times even for native Japanese speakers. The
difficulty to read these works stems directly from the history and origin of the Japanese
syllabaries. Hiragana and katakana are, at their core, simplified forms of kanji. Chinese
characters were introduced into the Japanese archipelago around the first or second
century A.D. Back when Japanese had no written system, Chinese characters were used
to represent Japanese sounds. This is the oldest native Japanese writing system, often
called by scholars Man’yogana (JP: J1ZK44), in reference to a homonymous ancient
book of poetry written using this system. The man’yogana system was extremely com-
plex and convoluted. Under this system, some kanji were used for their meaning, but
others were only read as a phonetic syllable, even two. Both of these were often used
simultaneously in the same texts, without guidance apart from context. Even today a
similar phenomenon to man’yogana called ateji (JP: ¥4 T#) occurs with some foreign
words that can be written in kanji, only because of their phonetic resemblance. Both
hiragana and katakana are a result of the development of man’yogana into a simpler
form. Hiragana was developed from man’yogana written in the previously mentioned
sosho (JP: B.3) cursive style. Hiragana was easier to learn and use, but was not
widely accepted by the educated elites or scholars, who preferred to use kanji. Hira-
gana became popular among women, who were not generally allowed to access the same
education as their male counterparts. Court women used it regularly for writing infor-
mal correspondence and literature. This is the main reason why hiragana was at first
know as onnade (JP: ZF), “women’s writing”, and also why even nowadays hiragana
is considered “feminine”. On the other hand, katakana was created by Buddhist monks
who were seeking a way to reduce the workload needed to transcribe their ancient oral
teachings. This task was time-consuming, as they had to write every single syllable as
a kanji. They developed katakana as a shorthand, creating them by taking only a few
strokes of each man’yogana character. The evolution from man’yogana characters to
hiragana and katakana ones was not immediate, but rather progressive. In the middle
point between man’yogana and hiragana we encounter the hentaigana (JP: ZAR{R %)
characters. The meaning of this term is “variant kana”, as in the past hiragana took
more than one possible form for each sound. They were officially discouraged by the
language reforms, but they are still sometimes used on traditional shop signs. In con-

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 21

trast, katakana has seen much less variation in its characters along the time. As cited
in the “Related works” section, the most important research concerning the recognition
of classical Japanese is carried over by the CODH from the ROIS. These texts, not only
from literature but also from all kinds of fields, are written in kuzushiji (JP: i UF),
“simplified characters”, which is another way to call the sosho (JP: FE) cursive style.
With the language reforms of the 1900’s, kuzushiji was ruled out from Japanese schools
curriculum. As a result, most native Japanese nowadays can not read books written
or printed just 150 years ago. This center works in collaboration with the National
Institute of Japanese Literature (NIJL) for the recollection of kuzushiji samples from
bookstores, auctions and their own archives. Their most notorious work is Clanuwat
et al. (2018), where a kuzushiji direct replacement of the famous MNIST dataset is
created. The distinct point is that kuzushiji contains also hentaigana, which means
many of the characters in the dataset have multiple ways of being written, therefore
successful models have to be able to capture the multi-modal distribution of each class.
This is the main reason why kuzushiji MNIST can be more challenging than the original
MNIST, serving as an alternative benchmark for machine learning algorithms (Lamb,
A., Clanuwat, T. Kitamoto, A., 2020). We could say this work is the most similar
to the objective of this thesis, referring to the creation of a new dataset following the
MNIST format. Their most recent project “KuroNet” is an end-to-end recognition
model for entire pages of text in kuzushiji without preprocessing, making it easy to
apply for real-world data (Clanuwat et al., 2019).

As we already know, Japanese kanji originated in China, and therefore there are
many similarities between both written scripts. However, the pass of time and history
have created significant differences between Chinese and Japanese characters.
Traditional Chinese hanzi (the spelling of kanji in Chinese) were first introduced in
Japan around the first century A.D. Nevertheless, it is believed that the first texts
were not written in Japan until the fifth century A.D, probably through bilingual
Korean officials. One concept used by both parts is the one of the “radicals”. A
“radical” (JP: #8#), bushu, is a part of the kanji which is found in more than one
character, sometimes in relation to a similar meaning. For example, the radical [5 |
S“statement”, can be found in both &1, “to talk”, and in[&& |, “language”. The radical
system was made popular by Chinese hanzi dictionaries. For this reason, radicals are a
common way of classifying characters for searching. There have been even attempts to
use these sub-character elements as a model to improve Neural Language Modeling in
Japanese. In Nguyen et al. (2017), a predictive language model using neural networks
is built under the premise that sub-character information could improve the ability to
capture generalizations. It is concluded that the effectiveness of this does depend on
the properties of the kanji dataset. We also have in Grebowiec & Protasiewicz (2018)
an example of the use of sub-character features for kanji recognition. In this case,
each time a stroke is written by the user, the model tries to classify it based on a kangji
dictionary. The process is repeated with every stroke until the number of possible kanji
is reduced to one.

22 STATE OF THE ART

|

=

T
e e %

3

Pol-us

c

Aﬁ‘"ﬂ%

o
o

—T
N A

~

TR,
oA I

i Jxi

A

Figure 2.7: Left: An example of KuroNet being used over a full kuzushiji written page, from
Clanuwat et al. (2019). Right: A soba noodles restaurant with a sign written
in hentaigana. These type of signs are also a problem for smartphone’s OCR
software, typically used by tourists for machine translation. This one reads as
[EZ X3 |, kisoba yabu, though hentaigana forms are not typeable in this
document. Image from Z{&{K# bot (2020).

The main difference between Japanese kanji and Chinese hanzi was introduced when
Mainland China decided to reform their writing system in the 1950’s. They simplified
the shape of the most common characters, some from existing variants, others com-
pletely from scratch. If a common radical was simplified, so was every character which
contained it. The resulting script of this process is what we call Simplified Chinese. As
a result, a large portion of Japanese kanji were no longer similar to their Chinese coun-
terparts, with the exception of Taiwan and Hong Kong, where Traditional Chinese is
still used. This distinction made the creation of potential bilingual OCR models much
more burdensome, as most of the characters have to include at least an alternative
form.

2.2.3 Japanese typesetting and the graphical density

Once we have profusely explained the details of the Japanese handwritten script, in
this section we will give a brief introduction to Japanese typesetting, since it is of
interest for some aspects of our work that will be explained here. Before the advent
of computers, typesetting in Japan was done using a type of long, squared woodblocks
with each character carved in one of the block sides. Because of this blocks, early
printed characters where designed to fit in the shape, giving them a characteristic

2.2. THE JAPANESE LANGUAGE AND ITS RECOGNITION CHALLENGES 23

squared style. Some of the most important printed typesets are Mincho (JP: HAFH{K),
with triangular endings to the lines, similar to serif in Latin typefaces, Shimbun shotai
(JP: FrEZEA), created in smaller sizes for newspapers, and Goshikkutai (JP: I3/
Z{K), in this case similar to English sans-serif. Fast-forward to nowadays, computers
have monopolized the world of typesetting. We call encoding to the way a character
set is mapped one-to-one inside our computer memory. One direct way of doing this
is storing each character as a single integer in memory. The problem is that each
integer is usually stored as a whole byte and for Latin alphabets, which take around
26 characters, it seems rather a waste of memory. Because of this, during the years
encoding schemes have been constantly optimized and convoluted, resulting in a messy
environment, and Japanese is no exception. In general, there are two main characters
sets used to write Japanese: the JIS and Unicode. JIS stands for “Japanese Industrial
Standard” (JP: HA T.23€Hi#) and is a blanked term to name every character set
published by the Japanese Standards Association. They were the first sets to allow
the use of Japanese characters in computers, using only katakana back when machines
were not powerful enough to support kanji. The development process of JIS has been
rather chaotic, resulting in the creation of multiple ramifications of the standard along
the years. Still, this has been the most used encoding in Japan for most of the time.
Unicode is an effort to assign a unique code to every living writing system and unlike
others, it follows a policy that each revision must be a strict set including the previous
ones, avoiding any conflicts with older standards. The migration from JIS and Shift-
JIS (a Microsoft variant) to Unicode is still in progress, mostly because of legacy and
compatibility issues. This know-how about Japanese typesetting is not only useful for
the design of our crowd-sourcing app and dataset’s labeling, but also for a key concept:
the graphical density. When designing printed or digital typesets for Japanese or
Chinese, one important factor to care of is the legibility of kanji characters. If a kanji
have too many strokes for the block within is contained, the white space between them
could be too small, even resulting in overlapping strokes. We call this a density problem
and in the worst cases could make the text incomprehensible. Although this might be
seen only as a visual perception issue, is also a potential barrier for recognition (Qu
J., Lu X., Liu L., Tang Z., Wang Y, n.d.). After collecting samples for our dataset,
it is usual to resize the images to reduce data input. Even though this is a useful
custom, we have to be careful that the general shape of the character is preserved. It
is general knowledge that Japanese fonts should at least use 9 pixels of height to be
legible. There have been already multiples complaints about this in videogames from
the Japanese themselves. Some games designed for portable devices with small screens
have kanji fonts so tiny that in some cases text could not be understood without the
context. In printed media, it is specified that characters should measure 9 points or 8
points (a letterpress printing unit around 0.3 mm) tall for optimal readability. (W3C
Standard for Japanese, 2012)

24 STATE OF THE ART

t6px P77 707 | WebBHESHOR ¥ v 7H5mbD 705
14px Py 727704 | Webflfestto R4 v 7#H5ED 704
12px Pw7LzFI0OY | WebSHERHORY v 7HEED 70

10px FPw 727707 | WebffF&HDAF ¥ FRHEEDTOY
’ 7 Bpx FrFzFIOY | WebSHERHOA Y » 215500 70
Bpac FeTar | WersaRads s IS0 S0

4|_|>. Pl VMRS ARLY T f

RAAF e T v 2

b7 ¥/ 88 EZ¥/dvvs

Figure 2.8: Left: Difference between Mincho and Goshikkutai typesets Image by #1 D A
(2 &) (2017). Right: Comparison of font sizes in Internet Explorer, we can
notice that stroke density of kanji turn the text unreadable between 10px and

8px. Google Chrome caps size to at least 10px to guarantee legibility. Image
from 7Y 7> =7 Blog (2017).

As a further comment, recognition of machine-typed Japanese characters
such as those covered in this section is a long-standing research path with many years
of history. The reason behind this is that the automatic recognition of document data
for businesses can significantly lower operation costs and increase productivity. This
need is pre-eminent in banking, insurance, postal service, etc. In Japan, the research
on this topic is carried out by many research laboratories (such as Nippon Telegraph
and Telephone (NTT) and ElectroTechnical Laboratory (ETL)), universities (such as
Tokyo, Osaka and Nagoya Universities) and a few large companies (like Toshiba and
Ricoh). The process follow the typical OCR pipeline described in the OCR section
of this chapter. The first difference with English OCR starts with the location and
segmentation step. In Japanese text images, a text line is segmented directly into a
sequence of characters as word boundaries are not distinguishable. Feature descriptors
for Japanese characters typically have large dimensionality due to the complexity of
kangji and their stroke structure. Moreover, several characters are structurally simi-
lar. Regarding the classification step, structural analysis and pattern matching are
examples of methods used traditionally before neural networks were widely used (S.N.
Srihari, G. Srikantan, T. Hong and S.W. Lam, 1996). A long pursued effort of Japanese
OCR was the creation of an omnifont or at least multi-font recognition model. For ex-
ample, in S.N. Srihari, T. Hong and Z. Shi (1997) a general purpose recognition model
for Japanese documents is proposed. It use a minimal error subspace and fast nearest-
neighbour classifiers. The model is even said to have been developed with multi-lingual
support, being possible it adaptation for similar oriental languages such as Chinese. Al-
though machine-typed characters are not the main objective of this thesis, it is worth

mentioning it as an example of previous efforts carried out in the field of Japanese
OCR.

2.3. INTRODUCTION TO NEURAL NETWORKS 25

2.3 Introduction to Neural Networks

An Artificial Neural Network (ANN) is, in short, a system composed of inter-
connected nodes arranged in layers. We call each node a “neuron” because they are
loosely inspired by the neurons of a biological brain. Neural networks are capable of,
given a data input, learn through example and generalize from that point for the sake
of making predictions. In this section we will detail the structure and in and outs of
Neural Networks to later describe how they are used for actual Machine Learning. But
first, we will provide a brief historical background.

2.3.1 Historical background

The concept of neural networks is older than it may seem. The history of these sys-
tems kickoff with the work of Warren McCulloch and Walter Pitts in 1943. These two
researchers in computational neuroscience created a model for neural networks that is
consider a foundation for both the understanding of the biological neural process and
the application of neural networks to artificial intelligence. Later on that same decade,
the neuropsychologist Donald O. Hebb developed a hypothesis based on the concept
of neural plasticity that became known as Hebbian learning. Neural plasticity is the
potential ability of the brain to undergo physiological changes. Hebb theorized, follow-
ing previously proposed Santiago Ramoén y Cajal’s ideas, that neurons may grown new
connections between them to store new memories. This hypothesis of unsupervised
learning is nowadays well established and served as an inspiration for future computa-
tional models. From 1954, researchers started to use for the first time computational
machines to simulate a Hebbian network. In 1958, the psychologist Frank Rosenblatt
developed the perceptron, a key concept for neural networks. The Russian mathe-
matician Alexey Ivakhnenko created jointly with other researchers the first multilayer
perceptron networks, a model which will define how functional neural networks look
like even today. At that point, machine learning stagnated due to two fundamental
issues. The first was that it was discovered that perceptrons were not able to process
exclusive-or logic, but most importantly, 1960’s computers were incapable of handling
large neural networks. The interest in neural networks were not revitalized until the
discovery of the backpropagation algorithm by Paul Werbos in 1975. This algorithm,
which will be explained later, has allowed the training of multilayer networks and keep
being a standard nowadays. By the 1980’s the computational power of digital electron-
ics had grown enough to continue the development of feasible neural networks. In 1992,
max-pooling is introduced to help in 3D object recognition in 2D images. Max-pooling
is a technique of non-linear down-sampling, in other words, it reduces the dimensions
of the data, the “samples”, by combining the outputs of certain neurons. This algo-
rithm is usually used in the design of Convolutional Neural Networks. Unlike
the multilayer perceptron model, CNN employs the convolution operation in at least
one of its layers. This type of model have proven to be really effective in processing

26 STATE OF THE ART

visual and two dimensional data. Although CNNs were already described in the 1980s,
they became relevant around this time, when processing power allowed their practical
implementation. Other important model is the Recurrent Neural Network, where data
is not only propagated forward, but also backwards. In 1997, the research team of
Jirgen Schmidhuber used a variation of Recurrent Neural Networks to overcome the
famous "vanishing gradient problem”. Nevertheless, CNNs constitutes today the state
of the art in machine learning as they have been the first to achieve human competitive
performance on certain contexts. These ANN’s related concepts will be explained with
more detail in the subsequent sections.

As we can see, neural networks date back to decades, but research did not gain trac-
tion until recent years. The question we might ask is: Why are we living a resurgence
now? The first factor is that we live in the age of Big Data, we need to handle huge
amounts of data on a daily basis, and these algorithms need similar amounts to succeed.
Secondly, these algorithms are massively parallelizable and can benefit from modern
GPU technologies that simply did not exist when they were invented. Finally, we now
have access to open source toolboxes like Tensorflow, which have extremely streamlined
the implementation of these models for developers (Alexander Amini, 2020).

2.3.2 The multilayer perceptron model and backpropagation

The multilayer perceptron model is at the origin of every neural network structure
nowadays. In order to understand this model, we have to understand first the concept
of the perceptron itself. The perceptron is a linear binary classifier, or in other words,
an algorithm that decides whether or not an input belong to an specific class. We call
it linear because its predictions are based on a linear function or combination of the
feature vector. In fact, we could say perceptrons are the “neurons” of our network.
Before multilayer perceptron, the simplest model of neural network is the single-layer
perceptron, another way for terming the perceptron algorithm. In Figure 2.9 we can
see the different parts of this algorithm. First we have the inputs, which are all the
numerical values we are going to feed our perceptron with. Linked with each value are
the weights, which will be multiplied to the its corresponding input. These weights
must be initialized from the start. If we need it, in this step we can add a bias value
to be used, with the objective of shifting away the decision boundaries from the origin.
In this case such value is 1. Once we have the results of the previous multiplications,
in the next step we sum all of them to obtain what could be consider the perceptron
output. However, usually this value is passed through an activation function before the
end of the process. This function maps our value inside a range where the final output
is expected to be. Heaviside step function is usually used in single-layer perceptron as
activation function. Heaviside maps every positive value to 1 and every negative value
to 0. Activation functions are particularly important in multiple layers models, as we
will explain later.

2.3. INTRODUCTION TO NEURAL NETWORKS 27

Inputs Weights Net input Activation
function function

@ + output

Schematic of Rosenblatt’s perceptron.

Figure 2.9: A depiction of the single-layer perceptron model. From left to right, we can
see the inputs, labeled from x; to x,,, the weights, defined from wg to w,, a
Summation) | and an Activation function with its corresponding output. Image
by Nazanin Delam (2016)

Once we know how the basic structure of a perceptron works, we can explain the
multilayer perceptron model, and more importantly, how the training process is used
to actually achieve what we know as Machine Learning. But before all this, what
are we referring to exactly when talking about Machine Learning? We could say
Artificial Intelligence is the field that focuses on building algorithms that can process
information to inform future decisions. In short, these are the techniques that enables
computers to mimic human behaviour. Machine Learning is just a subset of Artificial
Intelligence that focuses in teaching an algorithm how to do a task without explicitly
being programmed to do so. Also, the term Deep Learning has recently become
popular in this field. Following the sequence, Deep Learning is a subset of Machine
Learning that aims to automatically extract the useful patterns from data in neural
networks that are needed to inform future predictions. (Alexander Amini, 2020)

Now we are ready to deepen in how a neural network actually works. We will try to
explain it in the most intuitive way possible, assuming no background. Let us use as an
example a seemingly simple task: to recognize a number from a binary image between
0 and 9. Our objective is not only to explain the general working of a multilayer neural
network structure, but to actually understand what is behind the process and by what
reasons the structure is motivated. First, we will explain the structure of the model,
and afterwards, the training process algorithm.

We can define each "neuron” or node from our network simply as something that
holds a number from 0 to 1. For our first layer, each neuron corresponds to the input of
an image’s pixels. If our image is 28 x 28 pixels size, then we have a layer of 784 neurons.

28 STATE OF THE ART

Each of them holds a number that represents the greyscale value of its corresponding
pixel, from 0 for black pixels, to 1 for white pixels. We call "activations” to each of
these numbers inside the neurons of the network.

Input Hidden layers Output
a0 W all) a®

pixel 1—Q 0 - O 0

pixel 2—Q i Q

pixel 3— Qo

pixel 4 —C - Z O O 1

28 px pixel 5—Q" -. =

pixel 6— 0" O \ O 2

pixel 7— Q" \

pixel 8—Q . o

pixel 9— O O 2, v s Q 3
pixel 10—C vé MELALEE:

pixel 11— O Vo s Q4
pixel 12— O - ; -

pixel 13—C CJ = 4 : O 5
pixel 14— O L & :

pixel 15— O - C) () 6
pixel 16—~

pixel 17— O~ . O O 7
pixel 18— Oaind” - —rannia A

pixel 19—C -~ *~

pixel 20— O O O 8
pixel 784 —C3 O 09

Figure 2.10: The described multilayer perceptron model. The digit’s image is decomposed
into an input layer, followed by two hidden layers and an output. We use
the notation a(!®¥¢") to refer to each neuron activation, likewise the weights
are represented by a w. Author’s own creation based on the work of Andreas
Refsgaard (2020)

Jumping over to our last layer we can see it is made up of ten neurons, each rep-
resenting one of the digits we are willing to classify. The activation in each of these
neurons, again ranging from 0 to 1, represents how much the system thinks that a
given image corresponds with each digit. We call “hidden layers” to the ones laying in
between the input and the output.

The activations in one layer determine the activations of the next layer through its
connections. The heart of the network, as an information processing mechanism, comes
down to how activations in one layer bring about activations in the next layer. This
process is similar to the one taking place inside our brain, where when some group of
neurons are fired, it can cause others to fire. Assuming our network is already trained,
if it is fed with a certain digit’s image, activation in each successive layer will provoke
the activation in the final output layer, where the biggest activation should be that of
the neuron representing the digit we used as input.

But why we expect our layers to behave like that? What are they supposed to
be doing? When our brains recognise digits, it does so by breaking down them in
smaller components. For example, an eight is made of two loops, while a nine only
have one plus a straight line. In a perfect world, we hope each neuron in the hidden

2.3. INTRODUCTION TO NEURAL NETWORKS 29

layers corresponds with one of these features. This way, a neural network only have
to know which specific combination of features made up each digit. Of course, these
features could be broken down into other subfeatures, such as dividing the loop into
4 edges. Again, in a perfect model, we could hope that each neuron from our first
hidden layer corresponds to some subfeature, while the second hidden layer’s neurons
represent the bigger features we described first. In the end, whether or not our network
decomposes the digits this way is difficult to know without knowledge of the training
process. Breaking down things into layers of abstractions is not only a model for image
recognition. For example, in speech recognition certain sounds can be taken as features,
which eventually will be joined together in syllables adding another layer of abstraction
to the equation. The network will combine these tokens into an output of words or
sentences for recognition. Extrapolating to this thesis’s topic, we could even identify
these features as the kanji’s radicals we cover in the previous section, if not a subset

of them.
r
q "’

Last layers «=——— First layers

Figure 2.11: An example of a nine divided into features and subfeatures. The first hidden
layer is responsible of the smaller subfeatures, like edges. Successive ones start
to made up more complex features like loops, until the whole digit is computed.
Author’s own creation.

Once we understand what to expect our neural network to do, we can deepen in
the behaviour of the layers themselves. As we said, a layer objective could be to know
if a certain type of edge is present in one region of the image. The parameters we
should tweak to make one layer express the presence of a feature have already been
mentioned in our introduction to the perceptron concept. Giving an input layer with
all its neurons connected to one neuron of the next layer, we assign a “weight”, positive
o negative, to each of these connections. These layers are also called “dense layers”, as
each neuron is connected with every neuron of the next layer. We then multiply each
input neuron activation to its connected weight, and sum the results. If we wanted
to detect whether or not an edge is present in one region, we could assign negative
weights to the pixels around that area, so the sum is larger because the edge pixels are
brighter than the surrounding pixels. The sum of these multiplications could be any
number, but as we want every neuron to hold a value between 0 and 1, an Activation
function is required. In short, we are measuring "how positive” the weighted sum is.
Sometimes we don’t want a neuron to light up when this sum is only bigger than 0,
maybe we need it to only meaningfully start from 5, for example. In that case, a bias

30 STATE OF THE ART

value of 5 is added before using the activation function. All in all, this is how our
single-layer perceptron model fits inside the multilayer perceptron one, repeating it for
each neuron of each layer.

aV) = U(wo,oaéo) + wo,laﬁo) + 4 wonal” + bo) (2.1)

This expression represents the weighted sum of the input layer neurons activations.
The current layer activation is represented with a(®), with its corresponding weights
Wp . Our chosen bias is represented with by. Finally, the Greek letter sigma o is
commonly used to illustrate an activation function. The result of this operation is the
activation a™ of a neuron in the next layer.

A more notationally correct way of representing the 2.1 formula is by using matrices.
We can take all the input layer activations into one single column and all the weights
as a matrix, with each row corresponding to the connections between one layer and a
particular neuron of the next layer. This way, the weighted sums of the activations in
one layer can be calculated using the vector product of the matrix and the column.
Also, we can organize the biases in another column, so we can sum them directly to
the result of the previous vector product. We can then proceed to apply our activation
function to each component of the resulting vector. This type of notation is very
relevant, as modern GPUs optimize matrix calculations for us. (Grant Sanderson,
2018)

a(O) b
Wo,0 Wo,1 - Won (() \ 0
0
1) Wi W11 - Win aq by
aV =0 , o . N (2:2)
Wgo Wg1 - Wkn a£?> by

Activation functions could be basically classified in two types: linear and non-
linear functions. Linear functions have the equation f(z) = z and therefore their
output is not confined between any range. This type does not help with the complexity
of usual data that is fed to the neural network. The most interesting and used type
is the non-linear functions. They help the model to generalize or adapt to a variety of
data and to differentiate between the output. Some functions commonly used nowadays
are Sigmoid, Tanh and ReLLU. The Sigmoid function is a S-shape looking curve that
exists between 0 and 1. Its use was motivated by the biological analogy of neurons being
either active or inactive. This type of range is also useful when we want to predict a
probability as an output. A popular generalization of Sigmoid is the Softmax function,
as plain Sigmoid use is not that common anymore. The Tanh function, or hyperbolic
tangent, exists in the range between -1 and 1. The advantage in this case is that
negative inputs will be mapped strongly negative, while zero inputs will be mapped
near zero in the graph. The ReLU function, or Rectified Linear Unit, maps to 0 if our

2.3. INTRODUCTION TO NEURAL NETWORKS 31

output is less than zero, keeping the value otherwise. ReLU is right now the most used
activation function in the world since it is a common part of Convolutional Neural
Networks. One of its main advantages is that it has a computationally low cost in
comparison with Sigmoid and Tahn. Usually activation functions are set to be used on
a layer level. While ReLU is used for the hidden layers, Softmax is the standard for
the output layer. (Sagar Sharma, 2017)

1 1 4 1y
0.5
0.5 5 |
| oz —0.5 | x
10 -5 5 10 5 5
(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.12: The main activation functions. Tikz graphs plots by ambs (2019)

Every neuron from the input layer is connected to every neuron of the next layer,
each connection with its own weight and bias. This adds up to a respectable 784 x10
weights, not taking into account the successive layers of the network. With them,
we are talking about (784x10)+(10x10)+(10x10)=8040 weights and 104+10+10=30
biases. We can already deduce why machine learning is always considered a computing
intensive task.

Previously, we have mentioned that the weights of the network should be initialized
by the start of the process. In fact, when we talk about training our model, we are
referring to finding the right weight and biases.

The first concept to come to mind when thinking about training a neural network
is the method to follow. What we want in our case is, essentially, an algorithm where
you could show a certain amount of training data, which comes in the form of images
of handwritten digits along with labels for what are supposed to be, and it will adjust
those 8040 weights and 30 biases in order to improve its performance on the training
data. Hopefully, this layer structure will mean that what it learns also generalizes
to images beyond that training data. In this section, we will explain the process to
come out with this algorithm and its functioning. To start things off, we are going to
initialize all the weights and biases randomly. Needless to say, in this state the network
is going to perform worse than expected, with a kind of messy output. To correct this,
we need to define a cost function between the expected network’s output and the real
one. In other words, what we do is add up the squares of the differences between those
two outputs. This is the cost of a single training example. This sum is small when
the network confidently classifies the image correctly, but is large when the network
does not know what it is doing, like in our case. If we consider the average cost over

32 STATE OF THE ART

all the training data, we get a measure of how lousy our network is. Therefore, what
we want to do to improve the performance of our network is to reduce the value of
our cost function. Sometimes, we can find the input that minimizes the value of a
function explicitly, but this is not feasible for a function with thousands of inputs like
ours. What we do in this case is to choose any input in the function and decide in
which direction to step to make the output lower. In a 2d function this could be done
easily following the slope reference, but in a function with multiple inputs like ours we
have to find whatever direction that decreases the cost most quickly. In multi-variable
calculus, the “gradient” of a function gives you the direction of steepest ascend, i.e., the
one that increases the function most quickly. On the contrary, if we take the negative
of that gradient, it gives us the direction to step that decreases the function most
quickly. This is called gradient descent. Eventually, we will reach a minimum. The
problem is that it is not guaranteed to be the global minimum, as it may be simply
a local minimum. Finding the global minimum is much more difficult than finding a
local one. In other words, we could have found a valley in our function, but not the
deepest valley. This process of taking small steps until reaching a minimum is also the
reason why neurons have continuously ranging activations rather than simply on and
off states, so these steps are much more smooth.

04 R
02 g
B, L

Figure 2.13: A 3D representation of the cost function value J(#) with two inputs 6, and 65.
We can see that two starting points can lead to two different local minimums,
without the certainty of either of them being a global one. Original image by
Andrew Ng (2018), modified by Albert Lai (2018)

Notation wise, we can organize all the weights and biases of our network into a large
column vector. The negative gradient of the cost function is just another column vector.
Adding or subtracting the second one values from its corresponding inputs of the first
vector will minimize the average cost, and therefore, improve our network’s output for
all the samples. Using this, we can represent the gradient descent in a non-spacial
way, avoiding the constraints of 3D space. The algorithm for computing this gradient
efficiently, which is the core of how neural networks learn, is called backpropagation.

2.3. INTRODUCTION TO NEURAL NETWORKS 33

[2.4] [0.18] [258]
—1.1 0.45 —0.65
" 1.7 o —-0.5]| o - 1.2
W = , - VC(W) = , W+ (=VC(W)) = . (2.3)
—2.16 1.3 —0.86
| 3.8 | —0.4] | 34
where: W — Column vector of weight values.

—VC(W) — Column vector of negative gradient of the cost function.

Because thinking about the gradient vector as a direction in 8040 dimensions is
beyond the scope of our imagination, we can think about it in another way: The
magnitude of each component of the negative gradient vector is telling us how sensitive
the cost function is to each weight and bias. For example, if the negative gradient for
a specific weight is 4.20 and for other is 0.10, it means that the cost of the function is
x42 times more sensitive to changes in the first weight than in the second.

Because the cost function involves averaging a certain cost per example over all
the ten of thousands of training examples, the way that we adjust the weight and
biases for a single gradient descent step also depends on every single example (Grant
Sanderson, 2018). For the sake of simplification we will explain the backpropagation
algorithm through a single example. Starting with an untrained network, the results in
the output may look almost random. We can not change this directly, as we only have
influence over the weights and biases. However, we can at least hope how the changes
in the output activations should be. In short, we want the activation representing
our image’s digit to go up and the rest to go down to correct the error. The change
should be proportional to how far away is the activation to its target value. Let us
focus on the neuron representing our image’s digit, and therefore the one we wish to
increase. Looking at the connections to this neuron coming from the previous layer, we
would want to increase the weights of the connections with higher activation neurons,
as they are the ones which could have a stronger influence over our target. The next
thing to look at could be the previous layer activations. If everything connected to our
target neuron with a positive weight increases its activation, and decrease when the
weight is negative, then the target neuron will become more active. Of course we can
not change directly the activation values, but it is worth to keep track of them. The
desired changes determined by the target neuron are added together with the desired
ones determined by the rest of neurons of the output layer, again, in proportion to the
corresponding weights and in proportion to how much each of those neurons needs to
change. This way, we get a list of adjustments that we want to happen to the layer.
Once we have this, we can recursively apply the same process to the relevant weights
that determine those values, repeating the algorithm and moving backwards through

34 STATE OF THE ART

the network. This is what we know as backpropagation. As this is only for one
sample, we have to repeat the same back-prop routine of updating weights for every
training sample, and then average together all the changes. This average is, in fact,
the negative gradient of the cost function.

In practice, computers do not calculate the influence of every training example over
the network’s weight and biases at once, as it would take too much time. Instead,
usually the training data is shuffled and divided in “mini-batches” of a certain number of
samples. Then, we compute in each gradient descent step only one of these subdivisions
each time. Each “mini-batch” gradient descent is only an approximation of the full
training dataset, but it also gives us a significant computational speed up. In the end,
you will still find a local minimum, only that following a less direct path.

But, what is exactly a batch? A batch is compromised of a certain number of
samples. While training, a for-loop iterates over these samples, making predictions
for each one. At the end of the batch, we compare the predictions with the expected
outputs to obtain an error we can use to calculate the gradient descent. The training
dataset can be divided into one or more batches. If the batch size is equal to the
dataset size, i.e, all the samples are used to create a single batch, the algorithm is
called Batch Gradient Descent. If the batch size is equal to only one sample, is
called Stochastic Gradient Descent. If the batch size is more than one sample but
less than the size of the full dataset, then is called Mini-Batch Gradient Descent.
Some popular batch sizes for this variety are 32, 64 and 128.

Another important concept in training is the epoch. An epoch is a complete pass
of the learning algorithm through the training dataset, and therefore is compromised
of one or more batches. Likewise, one epoch pass means that every sample of the
dataset has had the chance to update the model parameters. Usually, the training
process involves performing more than one epoch through the dataset. This means
that a typical training for an ANN is compromised of two for-loops: one iterates over
the number of epochs, where each loop proceeds over the dataset, and the other, within
the latter one, iterates over each batch of samples. (Jason Brownlee, 2018a)

Both the number of batches and the number of epochs are considered hyperpa-
rameters. We call hyperparameters to the variables that are set before training and
determine the network structure or the training routine (Pranoy Radhakrishnan, 2017).
For example, the number of epochs tends to be traditionally large, around hundreds
or thousands, so the model’s error can be sufficiently minimized. Other important
hyperparameters are the number of neurons in the hidden layers and the number of
hidden layers themselves. The choice of the number of neurons in each of these layers
is important for our network performance. Even the number of hidden layers is not
an evident choice. In practice, these are chosen by experimental tests, adding more
when the number of layers seems not being able to capture a dataset’s complexity. In
general, usually one hidden layer is sufficient for the majority of problems. The more
hidden layers are present, the more difficult the training becomes. However, there do
exist some guidelines to choose the number of hidden neurons. Using too few neurons

2.3. INTRODUCTION TO NEURAL NETWORKS 35

in the hidden layers will result in underfitting. Underfitting occurs when there are
too few neurons to model the training data nor generalize to new data. On the other
hand, having too many neurons in the hidden layers may result in overfitting. Over-
fitting occurs when the model has so much information processing capacity that learns
the detail and noise in the training data to the extent that it affects negatively the
model’s performance (Jason Brownlee, 2016). Usually, we want the number of hidden
neurons to be around 2/3 the size of the input layer, plus the size of the output layer,
but never more than twice the size of the input layer. (How many hidden layers should
I use?, n.d.)

Overfitting is often regarded as the most serious issue, as underfitting can be easily
detected given a good performance metric. One straightforward way to detect if our
model is overfitting is if the error in the training set is low but not so in the test set.
There are different techniques to limit overfitting. One is to hold until the end of the
training a validation dataset to test the model with unseen data. However, Dropout
is probably the most important technique to avoid overfitting. It consist in randomly
dropping out some nodes and its connections to other layers during the training based
on a probability. In effect, each update to the layer is performed with a different
“view” of it (Jason Brownlee, 2018b). Although dropout makes the training process
noisier, it has proven to significantly reduce overfitting. Dropout is also considered a
hyperparameter, taking usually a value between 20% and 50%. A lower value will have
a minimal effect, while a higher one could result in under-learning.

(a) Standard Neural Net (b) After applying dropout.

Figure 2.14: A depiction of an ANN before and after dropout. Image from Srivastava et al.
(2014)

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks, ConvNets or simply CNN are a class of neural
networks that have proven to be very effective in the field of image recognition and
classification. For this reason, is in the best interest of us to employ them for our
character recognition scope. CNNs are also inspired by the biological neural organiza-
tion of the Visual Cortex, in the sense that individual neurons respond to stimuli in a
restricted area of the visual field known as the Receptive Field. In short, a CNN is a

36 STATE OF THE ART

neural network that uses convolution in place of matrix multiplication in at least one
layer. The CNN’s capture of images’ spacial dependencies stems from a better fitting
to image datasets thanks to the reduction in the number of parameters and reusability
of weights. CNNs have also been used for non-images, though not in the same quantity.
The very first significant iteration of a Convolutional Neural Network was the LeNet
architecture, developed by Yann LeCun in the 1990s. At that time, LeNet was used
mainly for characters recognition tasks such as ZIP codes or digits. Although recently
new architectures that improve performance have been proposed, such as VGGNet, the
LeNet architecture remains to be a foundation for current models, as they all use the
same main concepts.

The structure of a CNN is typically comprised of 3 main sections: the Convolution
layers, the Pooling layers and the Fully Connected layers. Understanding how these
basic building blocks work is essential to understand modern CNN models. We will
now delve into each of them following the network order.

The way of organizing the input image for CNNs is no different than in standard
neural networks. Pixel values are plotted along a matrix with the same size as the
image, only that this time we will not turn it into a layer yet. RGB images have three
channels of color and therefore use three pixel matrices.

We have already previously explained how the convolution operation is performed
over an image using a kernel in Section 2.1.2; for OCR preprocessing. Here in CNNs
the process is similar, but the intention is not. The objective of convolution in CNNs
is to extract high-level features from the input image. The advantage over traditional
ANNSs is that we don’t take features individually, such as pixels, but within a receptive
field. This way the spatial information of the features is preserved. Conventionally,
CNNs use a first convolution layer for low-level features, such as edges or orientation,
and a second layer for high-level ones. Each custom structure adds a certain number
of layers until the network holds a proper understanding of the images in the dataset
(Sumit Saha, 2018).

Mathematically, a convolution is an operation on two functions that produces a
third function expressing how the shape of one is modified by the other, which can be
represented as follows:

y(t) = (f * 9)(t) = / " f(n)glt -)dr (2.4)

where: f — Input function.
g — Kernel function.
y — Feature map.

This expression means that the resulting feature map y is defined as the integral
of the product of input f and kernel g after one of them is reversed and shifted. In
computers the inputs are discrete, so a discrete convolution is defined in that case.

2.3. INTRODUCTION TO NEURAL NETWORKS 37

In CNN terminology, the result matrix from the dot product between the input and
the kernel is called “Feature Map”, “Activation Map” or “Convolved Feature” (Ujjwal
Karn, 2016). This feature map is always smaller than the input image, as edges are not
computed in this case. We call “Stride Length” to the number of pixels the kernel moves
each step from left to right until it parses the complete row. Moving on, it hops to the
start of the next row and repeats the process until the entire input is traversed. In case
we are dealing with a RGB image, the process is carried out simultaneously for the three
matrices of each color. The results of the dot product between the input matrices and
the kernel over the same position are summed and added to its corresponding position
in the output feature map. Although there some padding techniques to output a feature

map the size of the input, usually it is kept small to save computational cost.

10,00 (L0 (2,00 1(3.00 14,00 1(5,00 (6,00
10,1 20 13,1 141 15,1 16,1 “

102 | L2 | 122 [162 | 42 | 162 | 162 HO0) | HLO | HEZ0
03 | 103 | 129 | 63 | 149 | 163 | 163 X | HOD |HOD | HED | =
104 | 114 | 124 | 164 | 144 | 164 | 164 HO2) | H1,2) | HE2)
103 | 115 | 128 | 165 | 149 | 165 | K3 .
Filter
106 | 116 | 126 | 166 | 148 | 166 | K68

Figure 2.15: Example of convolution operation between a 7x7 input image and a 3x3 kernel,
resulting in a 5xb output matrix, also called feature map. Image retrieved from
Baskin et al. (2017)

We know that convolution is used in computer vision to highlight certain features
of images, such as edges or depth, by using some specific kernels. In CNNs, however,
kernels are not predefined, but trained. To understand how is this implemented, we
have to look at how a convolutional layer works. We could say that a convolutional
layer is comprised of three main components: the local connectivity, the shared weights
and the convolutional operation itself.

Local connectivity is a key concept for understanding how this layer works. Usu-
ally in traditional ANNs, every neuron of the input layer is connected to every neuron
of the next hidden layer, following the dense layer structure. Local connectivity means
that one single neuron from the convolutional layer is only connected to a certain
quantity of neurons of the previous layer, taking only their values into consideration.
This way, we are defining a weights’ kernel over the previous layer, whose size is the
number of neurons connected with the next one. If we follow this local connectivity
structure for every neuron of the convolutional layer, we can see that we have in fact
defined a convolutional operation where the resulting feature map is made up of the

38 STATE OF THE ART

values contained in each neuron from the said layer. Unlike ANNs, where weights are
different for each connection between layers, CNNs use a system of shared weights to
force every connection of a hidden layer to use the same weights. Weights in this case
behave as a particular kernel, whose values change when the network is trained, allow-
ing the network to adjust them to detect certain features. Since weights are shared, the
network does not have to learn the kernel values of each neuron in the layer separately
to detect the features, as they all use the same ones. As the size of this kernel depends
on the number of connections to each neuron in the convolutional layer coming from
the previous layer, we can define it as a hyperparameter.

input neurons

22208 first hidden layer
0000 e

--"_____-.-__.--..'_.
[elelslone by

Figure 2.16: An representation of local connectivity. In this case, we see the connections
create a kernel of size 5x5. Each of these carry a weight that is multiplied
by its correspondent input layer activation to output the hidden layer neuron,
also called feature map. Image retrieved from Michael Nielsen (2019)

On the contrary, if every single neuron of the hidden layer is connected to every
neuron of the input layer, we call the structure “global connectivity”.

Another new kind of layers that are introduced by CNNs are the Pooling layers.
In general terms, a pooling layer is a form of non-linear downsampling. In other words,
they use dimensionality reduction to decrease the computational power required for
processing the data. The reduction of output dimensionality may seem detrimental
to CNNs’ purpose of taking into account spatial information, but at last, the exact
location of a feature is less important than its rough location relative to other fea-
tures. Moreover, this also helps to extract the dominant features which are invariant
to rotation or position.

The process of pooling is done using a filter that slides over the input matrix. Usually
a kernel of size 2x2 with a stride length of 2 is used for this purpose. Once the kernel is
positioned, we can use two types of pooling: Average Pooling or Max Pooling. Average
pooling returns the average of all the values covered by the kernel. On the other
hand, Max pooling returns the maximum value of the ones covered by the kernel. Max
pooling also offers the advantage of noise suppression, thus it has become the most

2.3. INTRODUCTION TO NEURAL NETWORKS 39

common technique to use. It is a custom to periodically insert these layers between
successive convolutional layers in the CNN architecture.

Max Pooling Average Pooling
29 | 15 | 28 | 184 31 15 | 28 | 184
0 |100| 70 | 38 0 100 | 70 | 38
12 | 12 i 2 12| 12 7 2
12 | 12 | 45 6 12 | 12 | 45 6
2%x2 2x2
pool size pool size
\J \j
100 | 184 36 | 80
12 | 45 12 | 15

Figure 2.17: An example of Max Pooling and Average Pooling with a kernel of size 2x2 and

a stride of 2 performed over a 4x4 feature map. Image retrieved from Yani et
al. (2019)

The last parts of a traditional CNN structure are the Fully connected layers.
These type of layers are the same as those used in the multilayer perceptron model, with
a softmax activation function in the output. The name “fully connected” points to the
fact that every neuron of the layer is connected with every neuron of the previous layer.
These layers are used after the succession of convolutional and pooling layers to perform
the classification using the extracted features. Additionally, fully connected layers are
an easy way of learning non-linear combinations of these features. Most features coming
from convolutional layers are adequate for classification, but a combination of them
might be even better. Before using these layers, we shall flatten the output matrix
from the previous layers into a column vector. We can then fed this vector to the fully
connected layers for classification. Softmax is used in the final output layer as activation
function to ensure that the sum of output probabilities is equal to 1. Meanwhile, ReLLU
is often used as activation function in the hidden layers.

The use of this function helps to mitigate the effects of the famous Vanishing
gradient problem. The vanishing gradient problem happens when the use of certain
activation functions make the gradients of the loss function vanishingly small, thus
making the network difficult to train. The problem becomes worse while more layers
are added, as the error propagates backwards from the output and makes the gradient
decrease exponentially. While Sigmoid can potentially provoke this problem, ReLU is
a good countermeasure due to its limited range. (Chi-Feng Wang, 2019)

40 STATE OF THE ART

224x224x3 224x224x64

112x112x128

56x56%x256
28x28x512

J/}‘_/ i 1x1x4096 1x1x1000

@ convolutional + RelLU

u/ max pooling

E[] fully connected + RelLU

softmax

Figure 2.18: A representation of the VGG-16 architecture following the described Convo-
lutional Neural Network model in this section. We can see how the input
dimensionality get smaller with each successive layer. Image retrieved from
Shi et al. (2018)

All in all, CNNs create a pipeline that is capable of segmenting images’ features
through different convolutional and pooling layers to be properly used in classification.
We can tune this structure for our needs through some hyperparameters such as the
number of filters, the filter shape and the pooling filter shape. Layers nearer the output
tend to have more filters, as feature map size increases with depth. The filter shape is
usually chosen based on the dataset content. We must also be careful with the size of
the pooling filter, as larger sizes could lead to excessive information loss.

3 Methodology

This chapter is a record of the materials and technologies employed during the
project, and the methodology followed when using each of them. It is made up of
4 different sections: Section 3.1 summarizes the materials that will be described,
Section 3.2 lists the Japanese Characters Datasets used for the experiments and
details its contents, Section 3.3 gives a brief background about the tools used
to build the Neural Networks models and Section 3.4 describes the technologies
chosen for the development of the web application and the reasons behind it.

3.1 Introduction

In the following sections we will review the materials and technologies used for the im-
plementation of our project. We could divide these into three categories: the datasets,
the ANN’s software and the technologies used for the crowd-sourcing web app develop-
ment. Datasets could be labelled as materials, though they are collected using digital
devices and software. We will briefly cover the background of each of these technolo-
gies, followed by the purpose of using them. It is important to address each of these
categories in order to understand the implementation that will be explained in the next
chapter.

3.2 Review of Japanese Characters Datasets available

Datasets are the primary source material of our research, without them, nothing would
make sense. As we previously mentioned, the success of a recognition model depends
mostly on the use of quality and considerable training data. In this sense, Japanese is an
additional challenge. This is due to the lack of accessible, sizeable and public training
datasets for this language. This is because the creation of datasets for far-east languages
such as Japanese or Chinese is an extremely time and money-consuming process due
to the high number of different classes to take into account. Although recently new
public datasets have been made available, we are still far from the numbers of western
languages. (Velek & Nakagawa, 2002)

First, we will cover the previously mentioned Kuzushiji-MNIST dataset. In
section 2.2.2, we already explained the concept of the kuzushiji writing style, yet we
still don’t know about the meaning of the MNIST part. The MNIST dataset (Modified
National Institute of Standards and Technology) is a dataset of handwritten digits

41

42 METHODOLOGY

released in 1998. It includes 60000 examples for the training set and 10000 for the test
set. This data was retrieved initially from mailed paper forms, then normalized into a
20x20 pixel box and, at last, centered in a 28x28 image using the center of gravity.
With the pass of the years, it has become a standard to test ANN’s models, and thus
we are talking about it today (Michael Garris, 2019). The Kuzushiji-MNIST dataset
is designed as a drop-in replacement for the MNIST dataset, following its same format
(28x28 images in 10 classes). Released in 2018, it has a total of 70000 examples.
Although limited to 10 classes, Kuzushiji-MNIST is still a substantial challenge for
ANN’s models due to the multiple ways of writing a single character class in cursive
style. The fact that we will be using old handwritten script to test a model does not
really matter, as this multi-modal distribution for each class is also common in modern
Japanese and could be beneficial for our testing.

7%

ov

>

&
rvuﬁ
Y

*

vy

o
regpn 8
e

S o

[fee~ral ¥ R Penwdy

J’u

N*‘

[4

A rertige
o ¥
-

A
-

3

<D
e fon SD.

Ne it S Y
> IS

SERN
s~ WL Y
A3y Frealan O
> A NG aN
L
[~ \3 ot

B
=%
»0%‘;‘*

&ﬂéivo~
w%

e SN
)
PP

o
=

S

{

R e N e
i

ES)
x
El
2
Ly
(&
3
.?_,.
o
z

a<w€;

éiﬁ ’Hw’”%

Figure 3.1: The 10 classes of Kuzushiji-MNIST with its modern counterpart on the left.
Image from Mikel Bober-Irizar (2019)

The ROIS-CODH has also developed the Kuzushiji-49 and Kuzushiji-Kanji datasets
simultaneously. Kuzushiji-49 consist of 49 hiragana classes, while Kuzushiji-Kanji is
made up of 3832 kanji classes. Despite having a larger amount of samples, these
datasets are highly imbalanced (each class has a very different number of examples),
and thus they are less optimal for training experiments. It is interesting to note though,
that Kuzushiji-Kanji images have a larger size of 64x64. This is an example of trying
to avoid a problem of kanji graphical density, as described in section 2.2.3. We will see
in a moment how this size pick is shared by other datasets.

Apart from these newly created kuzushiji-specific cases, public Japanese databases
keep being scarce. Japanese companies that develop OCR systems usually have their
own datasets, but they are not open to the public. That leaves us with only two
well-known, public and sizeable datasets: the JEITA-HP dataset and the ETL dataset
(Kitamura et al., 2015). It is our hope that the development of our open-source crowd-
sourcing web application will help researchers to easily create new public Japanese
language datasets in the future and thus improving the current situation.

The JEITA-HP dataset was originally collected by Hewlett-Packard Japan and
later released by the Japan Electronics and Information Technology Industries Associ-

3.2. REVIEW OF JAPANESE CHARACTERS DATASETS AVAILABLE 43

ation (JEITA). JEITA-HP consists of DATASET-A, with 480 writers, and DATASET-
B, with 100 writers. The two datasets were collected under different conditions, with
DATASET-B being written more neatly than DATASET-A. The entire database con-
sist on 3214 character classes, with 3306 images per writer. Each one of these have a
resolution of 64x64 pixels, which are encoded into 512 bytes. In general, JEITA-HP
has not been used as much as others, despite having been created many years ago.
Sadly, it seems like JEITA-HP is no longer easily accessible in spite of being public.

On the other hand, the ETL dataset is still available and has been the standard
for OCR research of Japanese kanji characters for many years. The ETL database
is a group of datasets collected by the Electrotechnical laboratory (nowadays known
as the AIST) under the cooperation with the JEITA, universities and other research
organizations for character recognition from 1973 to 1984. The database is comprised
of 9 datasets. Each one of them consists of a combination of hiragana, katakana or
kangi. In total, we are roughly talking about 1.2 million handwritten and machine-
printed characters. For our research, we will take a look at ETL-1, ETL-8 and ETL-9
datasets. ETL-1 contains handwritten katakana samples from 1445 writers, apart from
other ASCII characters. ETL-8 contains handwritten hiragana and kanji from 160
writers. As there are 75 hiragana classes and 878 kanji classes, they add up to a
total of 152,480 samples. ETL-9 is similar to this last one, including 3036 hiragana
and kanji classes from 4000 writers. The characters of these datasets are labelled by
their unique Shift-JIS codes. Fach image is an isolated grey-scale character of size
64x64. Preprocessing wise, all samples have been pre-segmented and centered, and, to
maximise contrast, binarized using Otsu’s method. (AIST, 2014)

Luckily, we have been granted access to the ETL datasets after requesting it from
AIST, therefore we will be able to use it in our experiments.

Figure 3.2: Kanji and kana samples taken from ETL-8G dataset. Image from AIST (2014)

44 METHODOLOGY

These datasets are rather big in terms of samples. The quality of data and its
preprocessing is important, but so is the quantity of it. As it is remarked in Velek
& Nakagawa (2002), having large training sets significantly increases the recognition
rate for Japanese character classifiers. We will carry out our classification experiments
using Kuzushiji-MNIST and ETL in the next chapter. If an ANN structure is capable
of accurately handling both Kuzushiji-MNIST and ETL, we could confidently say that
it is prepared for most of the Japanese script given proper training data.

Both Kuzushiji-MNIST and ETL are off-line character pattern datasets, which means
we only have the final visual image of the character. It is traditionally related with
OCR, as characters are scanned directly from a paper or other physical medium. On
the other hand, an on-line character pattern is information about the movement that
created a character. This means no visual information is included in the dataset. An
on-line representation makes no sense for printed characters, and for handwritten ones
the information has to be captured during the writing process. If Japanese off-line
pattern datasets are already scarce, on-line ones are even more rare.

There are other Japanese datasets who deserve an honourable mention. These
datasets are not comprised of handwritten characters, but they have been used in
some recognition experiments. For instance, the Center of Excellence for Document
Analysis and Recognition (CEDAR) from the State University of New York has a
database of machine-printed Japanese character images. The images are extracted
from documents, books, faxes, magazines, newspapers... etc. This dataset is available
for purchase. Other notable datasets are the ones derived from KanjiVG. KanjiVG is
an educational open-source project for teaching people kanji. Each kanji is stored in
the form of an SVG file that gives the shape and direction of each of its strokes. Some
machine learning projects have used this vector data in a simplified manner to train
and test their ANN models.

3.3 Software for Neural Network implementation

In this section we will summarize the main features of the tools and libraries used for
testing the neural network models in our own machine. Rather than being differentiated
tools, this software works jointly in a sort of machine learning pipeline, so that the final
user only needs to worry about his ANN structure.

3.3.1 Tensorflow

Tensorflow is an end-to-end open-source machine learning library that helps to develop
and train ML models. It was developed initially by the Google Brain Team for internal
use, but was soon used across diverse Google companies in both research and commer-
cial applications. The first implementation, by the name of “Disbelief”, dates back to
2011, but it was not until 2017 that we saw an initial release version of Tensorflow. Its

3.3. SOFTWARE FOR NEURAL NETWORK IMPLEMENTATION 45

popularity stems from being highly optimized for deep learning in ANNs. The name
Tensorflow derives from the tensor, which is a vector or matrix of n-dimensions that
can represent all types of data. We call “tensor’s shape” to the dimensionality of this
matrix or array. In machine learning, tensors are the operations that neural networks
perform in multidimensional array data. For example, the feature vector will usually
be the primary input to populate a tensor. Tensorflow was developed with C+4 and
Python and can run in multiple CPUs and GPUs. It is available on Windows, Linux,
macOS, Android and iOS. For the user, Tensorflow provides stable Python, C, C++,
Go, Java, Javascript and Swift APIs. Additionally, we also have Tensorboard avail-
able, which is a visualization tool to make easier to understand the execution process
of Tensorflow.

3.3.2 Keras

Keras is a machine learning API written in Python, running on the top of Tensorflow
2.0. Created by Frangois Chollet in 2015, it is conceived as an interface with a focus
on enabling fast experimentation. Keras offers a series of high-level, intuitive instruc-
tions that serve as an abstraction of machine learning models. These implementations
represent the “building blocks” of neural networks, such as layers, activation functions
or optimizers. Both standard and convolutional neural networks are supported, along
with some common utilities like dropout or pooling. This way, we can easily develop
and try new models, hence increasing our productivity. Keras can run both on top
of Tensorflow or Theano backend, which is yet another machine learning framework.
Other backends are available, but Tensorflow is the officially recommended one. Start-
ing with Tensorflow 2.0, Keras is highly integrated into the Tensorflow ecosystem,
taking it as an inspiration for its high-level API. Keras let us build our models in two
different ways: using the Sequential API or the Functional API. The Sequential API
is the simplest type of model, allowing us to create a linear stock of layers step by
step. We simply add the layers one by one from input to output. On the other hand,
the Functional API allows us to create models with non-linear topology, shared layers
and multiple inputs or outputs. For example, we can create a model with part or all
the inputs directly connected with the output, so we can choose to train it following
the intermediate layers or taking the bypass between input and output. Additionally,
Keras includes some well-know datasets to debug models or create code examples, such
as the previously mentioned MNIST.

3.3.3 Python and the Anaconda environment

For this thesis, we managed our versions of Python, Tensorflow and Keras with Ana-
conda. Anaconda is an open-source distribution of Python and R for data science and
machine learning. Anaconda distribution includes over 250 basic packages by default,
but thousands more can be download using its own package management system conda.

46 METHODOLOGY

Unlike Python’s default package manager pip, conda manages package dependencies
in a way that is favourable for data science. For example, if we try to install a new
package using pip, it will install all the dependencies last versions regardless of the re-
quirements of the already installed packages. This could potentially break previously
working code, or even worse, appears to work but with different results. In contrast,
conda tries to create a compatible set of dependencies, warning you if not possible.
Moreover, conda allows you to create and maintain different environments containing
a specific Python version, files, packages and dependencies that will not interact with
other environments. This is the fastest way to set up a machine learning configu-
ration without installation hassles. Anaconda also includes a GUI called Anaconda
Navigator where you can launch applications and manage packages without using the
command line. Among these applications, we have the well-known Visual Studio Code
or RStudio.

3.4 Software for Web application development

Like all web applications, we can divide ours into server-side and client-side. The server-
side has been developed using the Python-based web framework Flask, so we can use
the library OpenCV for preprocessing of the samples in the server before storing. The
client-side has been developed mostly with plain HTML, CSS and Javascript, though
with special attention to the Canvas API, as we will see in the next chapter.

3.4.1 Flask and the WSGI server

Flask is a micro web framework written in Python. The word “micro” here means that
Flask aims to maintain the application core simple but extensible. By default, Flask
does not include any utilities or libraries that other frameworks may include, such as a
database layer or form validations. Instead, Flask supports different extensions to add
these functionalities to your application. This said, Flask does have some conventions,
such as storing all the templates and static files in homonymous subdirectories within
the application source tree. Flask uses the Jinja template engine to embed variables
with data from the server into our HTML. A Jinja template usually contains variables
or expressions that get replaced with values when the template is rendered on page
load, also using tags to control the template’s logic. A minimal Flask application would
be a Python file with a Flask import, followed by the declaration route to tell Flask
what URL should trigger whatever function we may declare after that. Moreover,
Flask follows the WSGI standard. The Web Server Gateway Interface (WSGI) is
a specification that describes how a web server forwards requests to web applications
written in Python. The web server is in charge of serving the client with the files
it needs, such as HTML and CSS, using the HT'TP protocol. When the web server
receives a request from the client, it in turn asks the web application to generate the

3.4. SOFTWARE FOR WEB APPLICATION DEVELOPMENT 47

page by running the predefined Python code. Once generated, the page is forwarded
to the web server which in turn sends it to the client. We could say the WSGI is the
language used by the web server and the Python web application to communicate with
each other. In our case, we use Flask for the Python web application, but there are
other popular frameworks, such as Django. Currently, the most popular WSGI Web
server is Gunicorn, but for our project we use Phusion Passenger, as we will see in the
next chapter. Additionally, an Nginx server is usually used between the client and the
web server to retrieve static files such as CSS or images.

‘ Client Request w

r N

HTTP

Y

| NGIMX e sener [of B, |

p. A

]

: WSGI
h gunlcorn Web Server

I WSG
- Flask T Python =
‘ ﬁas Application L J Patabase

Figure 3.3: Representation of the Python WSGI server pipeline. Original image from Nacho
Alonso (2019), translated by this thesis’ author.

3.4.2 PyMySQL

Previously we have mentioned that Flask relies on extensions to include basic utili-
ties, such as the database layer. For this purpose, we used the PyMySQL package.
PyMySQL is a pure-Python MySQL client library, or in other words, an interface
for connecting to a MySQL database server from Python. It implements the Python
Database API, which is the Python standard for database interfaces and can support
a wide range of database servers. The goal of PyMySQL is to be a drop-in replace-
ment for MySQLdb, which is another database connector for Python. There are a
few reasons to use PyMySQL over MySQLdb. First, while MySQLdb is a C extension
module, PyMySQL is written in pure Python. For this reason, end-users of MySQLdb
need to wait for new binaries to be compiled for each new release of Python. In con-
trast, PyMySQL does not have any dependency and therefore is easier to run in some

48 METHODOLOGY

systems as you do not need headers or compiled C components. Another important
advantage is that PyMySQL supports Python 3. Although some forks of MySQLdb
do support Python 3, until today no official support is available. For some users it is
also important that PyMySQL works with PyPy, which is a faster Python compiler.
All in all, the main reasons to use PyMySQL have to do with compatibility, even being
slower due to its pure Python implementation.

3.4.3 OpenCV

OpenCV is a real-time computer vision software library. The Open Source Computer
Vision Library (OpenCV) was originally developed by Intel and released in 2000, being
nowadays maintained by a non-profit foundation. OpenCV is written in C++, though
it started as a C library. New developments and functions are now written in C++,
with bindings for Python, Java and Matlab. There are also several wrappers for other
languages. Due to its open-source BSD license, OpenCV is used extensively in all kind
of companies, research groups and government bodies. Moreover, it supports GPU’s
hardware acceleration through the use of CUDA and OpenCL for parallel computa-
tions. Some of the main modules of OpenCV are: image processing, video analysis,
camera calibration, 2D features detector, object detection, ...etc. In our project we
make use of the first of these modules to perform resize operations and content checks
on the received character samples from our crowd-sourcing web application. Thanks to
the OpenCV Python binding we can make use of all of these functions in our Flask app,
though in a slower manner than the native C4++ implementation. OpenCV has also
evolved to include statistical machine learning utilities such as ANNs implementation,
the Naive Bayer classifier or k-nearest neighbour.

4 Experiments and Implementation

This chapter describes the results of our experiments and the development of our
crowd-sourcing application. It is made up of 4 different sections: Section 4.1
gives a brief introduction about the structure of this chapter, Section 4.2 presents
the results of employing multilayer perceptron models over pre-existing Japanese
character datasets, likewise, Section 4.3 shows the results of using Convolutional
Neural Networks for the same purpose, Section 4.4 summarizes the development
and design of our crowd-sourcing web application, Section 4.5 describes the pro-
cess of collecting and creating our own Japanese character dataset and Section
4.6 compares the results of the previous datasets with our own one using the same
models.

4.1 Introduction

In this chapter, we are going to describe the experiments and implementation following
the natural flow of our project. First, we have to define multilayer perceptron and CNN
models that fit the previous Japanese datasets, based on already studied models and
our knowledge about ANNs. At the same time, we can briefly see how these are
implemented in Keras. After this, we will describe the process of planning, creating
and setting up our own web application for collecting new character data, and, once we
count with a significant amount, turn it into a suitable dataset to feed the previously
proposed models. Along with the character itself, the application asks the user some
relevant questions, with the purpose of creating subsets of characters depending on the
answers. Finally, we can compare the results between both datasets and figure out the
basis of their differences.

4.2 Multilayer perceptron model for character
recognition

In this section, we will test the performance of multilayer perceptron models over
the datasets listed in the last chapter. Multilayer perceptron are basic ANN models,
so they are not expected to perform better than more advance models like CNN.
However, multilayer perceptron models often show better results than expected in
multiples situations, and it is very interesting to see to what extent we can improve

49

50 EXPERIMENTS AND IMPLEMENTATION

their performance. For this section and the next we will use three datasets as training
data: KMNIST, hiragana characters from ETL-8B2 and kanji, again from ETL-8B2.

Kuzushiji MINIST is a drop-in replacement of the MNIST digits dataset, and
therefore it works without any special treatment. We only have to download the
npz files, which are Numpy’s compressed array format, and proceed as with any other
dataset. These files are openly provided by the ROIS-CODH in their GitHub repository.
Usually when training ML models, datasets are divided in two subgroups: train and
test. Train is the actual data with which we train our model, while test is a part of
the dataset we hold apart to test the accuracy of the model with previously unseen
data. The Kuzushiji MNIST dataset already provides these two subsets in separated
compressed files, so is even faster to get down to business.

On the other hand, the ETL requires a considerable amount of work to be usable in
a real model. The ETL is an unusually old dataset. Back in its days, it was distributed
by sending recorded media like magnetic tapes and CD-Rs with the postal mail. This
is why each record in it is organized completely linearly, byte by byte. To make it
a suitable Keras input, we have had to create some specific functions in Python to
convert it from its original format to the usual train and test data. First, we unpack
the original files by providing the exact byte length of each record. Following the record
structure that we can see in Table 4.1, we iterate through each record, extracting the
images and labels from each sample and reshaping the images into its 64 x64px size.
Once we have each of them, we proceed to shuffle the data. This function from the
sklearn package does random permutations of the data collection in a consistent way.
Lastly, we use the train_ test split function to separate a test subset from the rest of
the training set. The size of this test set is specified as a percentage parameter in the
function, in our case 20%. After following these steps, the ETL dataset is now in the
same state as Kuzushiji MNIST.

bytes | type contents

1-2 Integer | Serial Sheet Number

3-4 Binary | JIS Kanji Code (JIS X 0208)

5-8 ASCII | JIS Typical Reading (ex. ‘ALM’)

9-512 | Packed | Binary image of 64 x 63 = 4032 pixels

Table 4.1: The ETL-8B2 dataset structure.

Before coding the models, we still have to do a couple of steps. First, we are going
to normalize the data input from 0-255 to 0-1, for the reasons we explained in Chap-

4.2. MULTILAYER PERCEPTRON MODEL FOR CHARACTER RECOGNITION o1

ter 2. Secondly, we convert our labels to one-hot encoding format. Most machine
learning algorithms require numerical input and output variables. Usually our labels
are categorical data, such as “dog” or ours “d”. One-hot encoding is used to convert
categorical data into integer data, so we can safely input our data into the ML models.

Before proposing some models, we may want to know how we can judge their per-
formance objectively. In machine learning we usually use the loss and accuracy to
evaluate the performance of our model after each epoch. Both are calculated for the
training and validation sets. The loss is the summation of the errors made for each
example. The accuracy is the percentage of correct classifications made by the model
after the learning is complete. These parameters are concrete and a good indicator,
but sometimes they fail to offer a more global perspective of the model behaviour. To
achieve this we can use learning curves. These plots allow us to observe where the
training is progressing towards and diagnose its behaviour. Observing the curves we
can deduce what is happening inside the network, something that would be otherwise
impossible to analyse parameter by parameter. In the Figures 4.1, we can see the
reasons that may be causing each different trajectory of the curve.

A o
loss accuracy training accurac

validation accuracy:
little overfitting

low learning rate

validation accuracy: strong overfitting

high learning rate

\

fo
- r
P

good learning rate

Figure 4.1: Left: Loss curve portrayal Right: Accuracy curve portrayal with difference be-
tween training and validation sets. Image retrieved from George V Jose (2019).

In general terms, the gap between training and validation accuracy is a clear sign of
overfitting. The larger the gap, the higher the overfitting (George V Jose, 2019). Of
course, this is relative to the scale used to plot the y-axis in the graph. We will use
the same type of accuracy plot to diagnose the behaviour of our models.

This said, the most important factor to take into account keeps being the data
itself. Without proper training data, the model is ill-fated from the beginning. Many
of the problems that arise during training actually have to do with the data itself,
primarily due to an imbalanced dataset, but sometimes simply because there is not

accuracy

1.00 A

0.98

=4
w0
=3

o
©
B

o
©
]

0.90

52 EXPERIMENTS AND IMPLEMENTATION

enough data to support the problem statement.

Lastly, we also have calculated a baseline error based on the accuracy returned by
the evaluation of our test data after the network learning is complete. It is included at
the top of each accuracy curve.

First, let’s take a look at the KMNIST results. KMNIST has only 10 classes, but
with a large number of samples. Each class have 6000 training samples and 1000 test
samples. In theory, having such a large number of samples for only 10 classes makes
easier for a model to generalize the data, even with a simple multilayer perceptron
ANN. First, we started with a network with no hidden layers, only with the input layer
of 784 neurons (since 2828 image = 784 pixels), and the output layer. As you can see
in Figure 4.2(a), after 10 epochs we got a pretty decent baseline error of 8.93% with a
training accuracy of 0.99 and validation accuracy of 0.92 at the last epoch. We tried
then to add a hidden layer. Following the rule explained in Chapter 2, a good reference
size for hidden layers is 2/3 of the input layer, in our case 522 neurons. This model
is featured in Figure 4.2(b), trained during 50 epochs and obtaining a better baseline
error of 7.38%. However, we see how the values stay in a range around the same as the
previous model, suggesting that we have reached a limit.

Baseline Error: 8.93% Baseline Error: 7.38%

1004

accuracy
o o] o
w w w w
~ - o [+-]

o
w
=]

—— train_accuracy —— train_accuracy
validation_accuracy validation_accuracy

e
e
3

T T T T T T T T T T T
0 2 4 6 8 0 10 20 30 40 50
epoch epoch

Figure 4.2: Left: KMNIST with no hidden layers during 10 epochs Right: KMNIST with
522-neuron hidden layer during 50 epochs.

Next is the turn of the hiragana characters from ETL-8B2. This dataset is com-
prised of the 71 hiragana classes, including the dakuten and handakuten diacritics vari-
ances, with 160 samples each. In this case, we have more classes and fewer samples, so
logically we can expect the model to perform worse. A first test without any hidden
layers during 10 epochs returns a considerable 21.96% baseline error. Following the
same logic as the last model, we now try with a hidden layer of 2730 neurons (2/3 of
a 64x64 layer). This returns at the end a slightly better baseline error of 14.71%. We

accuracy

o
n
L

o
'S
L

o
w

o
[N}
L

o
=

4.3. CNN MODEL APPLIED TO JAPANESE DATASETS 53

can see the evolution of this model from 10 to 50 epochs in Figures 4.3(a) and 4.3(b),
respectively. These show clearly how the validation accuracy gets stuck around 0.8,
while the training accuracy almost gets to 1.0. This is a clear sign of moderate over-
fitting. In other words, at some point the model has started memorizing the training
set, failing to generalize the data, so the validation accuracy can not further improve.

Baseline Error: 18.67% Baseline Error: 14.71%

1.0+

—— train_accuracy
B validation_accuracy
b 0.8

o
=

accuracy

I
s

0.2 1 —— train_accuracy

validation_accuracy

T T T T T T T T T T T
0 2 4 6 8 0 10 20 30 40 50
epoch epoch

Figure 4.3: Left: ETL-8B2 Hiragana with 2730-neuron hidden layer during 10 epochs
Right: ETL-8B2 Hiragana with 2730-neuron hidden layer during 50 epochs.

Lastly, we have the kanji characters from ETL-8B2. This dataset contains thou-
sands of classes, but because of time constraints we have limited it to 100 classes,
which is a similar number to the rest of datasets and the one we are going to create.
The number of samples per class remains 160. In this case, after some trial and error
guesses, the model with the best performance turns to be the one with a single 2730
neuron hidden layer, having a 26.05% baseline error. We can see it during 10 epoch in
Figure 4.4.

These multilayer perceptron models are interesting in the sense of learning to in-
terpret the parameters that define the behaviour of neural networks, but performance
wise we could expect something much better. For that reason we are going now to
delve into CNN models.

4.3 CNN model applied to Japanese datasets

As it was previously explained in Chapter 2, Convolutional Neural Networks are very
effective in the field of image classification. We will now test the accuracy of this
statement. In this section we will use two models of CNNs for our experiments. The
first one is an example CNN intended for the MNIST dataset that is included in the

54

EXPERIMENTS AND IMPLEMENTATION

Baseline Error: 26.05%

o
oo
1

—— train_accuracy
—— validation_accuracy

accuracy
o o o o e
w Y (5} [s] =~
1 1 1 1 1

o
8]
1

[=]
=
L

0 2 4
epoch

Figure 4.4: ETL-8B2 Kanji with 2730-neuron hidden layer during 10 epochs.

Keras documentation (Frangois Chollet, 2015). It is comprised of two convolutional
layers (64 and 32 neurons) with its respective MaxPooling layers and a Flatten layer.
This is a good starter to see how the datasets perform inside CNN models. The second
one has been created by ourselves, based on the research of Tsai (2016) and in turn
in the VGGNet model. Using the modern Keras-Tensorflow syntax, we have tweaked
the basic VGG structure to follow the convolutional layer ordering that gave the best
results in the experiments carried out by Tsai (2016). This CNN structure code is
featured in Listing 4.1.

Listing 4.1: New CNN code in Keras (Python)

def CNN_ deep model():

model = keras.Sequential()

model.add (keras.Input(shape=(64, 64, 1)))
model.add(layers.Conv2D(32, (3, 3), activation="relu’))
model.add(layers.MaxPooling2D (pool_size=(2, 2)))
model.add(layers.Dropout(0.25))

model.add(layers.Conv2D(64, (3, 3), activation="relu’))
model.add(layers.MaxPooling2D(pool _size=(2, 2)))
model.add(layers.Dropout(0.25))

model.add(layers.Conv2D(128, (3, 3), activation="relu’))
model.add(layers.MaxPooling2D (pool__size=(2, 2)))
model.add(layers.Dropout(0.25))

model.add(layers.Conv2D(256, (3, 3), activation="relu’))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Dropout(0.25))

model.add(layers.Flatten())

accuracy

0.98

0.96

4
o
B

=4
0
N

0.90

0.88

4.3. CNN MODEL APPLIED TO JAPANESE DATASETS 55

model.add
model.add

layers.Dense(4096))

layers.Activation(’relu’))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(num__classes, activation=’softmax’))

Compile model

model.compile(loss=’categorical crossentropy’, optimizer="adam’, metrics=['accuracy’])
return model

===

Something that has not been mentioned previously and that we can be found in the
previous code are the optimizers. The role of optimizers inside the machine learning
pipeline is to update the weight parameters to minimize the cost function. The cost
function tells the optimizer if it is moving in the right direction to reach the global
minimum. The one we are using, “Adam” (Adaptive Moment Estimation), is one of
the most popular gradient descent optimization algorithms and is very computationally
and memory efficient.

We will now test both of our CNN models with KMNIST dataset. In Figure 4.5(a)
we can see the results of the Keras CNN with a batch size of 16 during 20 epochs.
We obtain a good 5.30% baseline error, with 0.9785 of training accuracy and 0.9460 of
validation accuracy at the last epoch. In this case, using our own CNN returns similar
or slightly lower results than the Keras model. This last one can be seen in Figure
4.5(b), with a baseline error of 6.37% during 20 epochs. The values for this model at
the last epoch were 0.9535 of training accuracy and 0.9363 of validation accuracy.

Baseline Error: 5.30% Baseline Error: 6.37%
0.96
0.94
0.92
0.90 -
>
o
j
5 088
b=
o
0.86
0.84
’ —— train_accuracy 0.82 —— train_accuracy
validation_accuracy validation_accuracy
T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch epach

Figure 4.5: Left: KMNIST with Keras CNN, batch of 16 and 20 epochs Right: KMNIST
with New CNN, batch of 16 and 20 epochs

In the next experiments using ETL-8B2, we will see how optimal curves are sup-
posed to look. First, is the turn of hiragana. The Keras CNN experiment of Figure
4.6(a) still has a curve similar to the rest, trained with a batch size of 16 during 20
epochs. It returns a 8.29% baseline accuracy, with 0.9914 of training accuracy and

1.00 4

0.95

0.90

ko4
2}
v

accuracy

0.80

0.75

0.70

56 EXPERIMENTS AND IMPLEMENTATION

0.9171 of validation accuracy at the last epoch. On the other hand, the experiment
using our CNN in Figure 4.6(b) shows how both the training and validation curves
converge, which is a sign of having a good fitting model. The model ends with a 5.58%
baseline error, with a training accuracy of 0.9886 and a validation accuracy of 0.9421.

Baseline Error: 8.29% Baseline Error: 5.58%

e o o
~) w
L L L

124
o
L

accuracy

o
w
L

0.3

—— train_accuracy
validation_accuracy

—— train_accuracy

0.2 validation_accuracy

T T T T
10.0 12.5 15.0 17.5

epach

T T T T T T T T
10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5

epoch

T T T T
0.0 2.5 5.0 7.5

Figure 4.6: Left: ETL-8B2 Hiragana with Keras CNN, batch of 16 and 20 epochs Right:
ETL-8B2 Hiragana with New CNN, batch of 16 and 20 epochs

Lastly, we will cover the experiments with ETL-8B2 kanji. In theory, these ex-
periments should show superior performance compared to their hiragana counterpart
despite having the same number of examples per class, since in general kanji have
more differential characteristics between them due to their complexity. In this case,
the Keras CNN obtains a really good result, with a 1.88% baseline error, a training
accuracy of 0.9989 and a validation accuracy of 0.9812, as shown in Figure 4.7(a). Fi-
nally, our own CNN achieves an excellent result with a 0.78% baseline error. As shown
in Figure 4.7(b), the last epoch gives us a training accuracy of 0.9796 and a validation
accuracy of 0.9922.

With this, we conclude our experiments on publicly available Japanese datasets. A
human equivalent recognition rate of 96.7% for kanji has been reported in Yin et al.
(2013). Some of our models therefore outperform the human recognition rate.

4.4 Development of Japanese Crowd-sourcing web
application
This section details the process of development of our crowd-sourcing web application

from its initial definition to its final validation. The process starts with the description
of the functional and non-functional requirements of the web application, so we can

accuracy

1.000

0.975 1

0.950 1

0.925 4

0.900 1

0.875 1

0.850 4

0.825 4

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 57

Baseline Error: 1.88% Baseline Error: 0.78%

0.8 4

o
o
L

accuracy

o
'S
L

0.2+

—— train_accuracy —— train_accuracy
validation_accuracy validation_accuracy
T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch epoch

Figure 4.7: Left: ETL-8B2 Kanji with Keras CNN, batch of 16 and 20 epochs Right:
ETL-8B2 Kanji with New CNN, batch of 16 and 20 epochs

clearly set the guidelines of development for the project. Moving on, the design section
not only includes definitions for the style, but also architectural and back-end design.
After that, the characteristics described in the last sections are put into practice during
the implementation and deployment process. Finally, we carry out a series of tests and
validations with different users to assure the proper working of the application.

4.4.1 Requirements and specification

The creation of our own crowd-sourcing web application is one of the main parts
of this project. Above all, the application aims to be straightforward to use, yet
completely functional. We could not achieve this without proper planning beforehand.
We will establish the restrictions, requirements and user profiles for this app through
the standard of IEEE 830 (IEEE, 2008). This standard establishes a series of good
practices for the specification of software requirements. Since the organization and
format of the standard are not fixed, we can adapt it to describe the parts we are
interested in.

First, we will describe the general features of the users that our application is target
to. These user profiles are organized in Table 4.2, including for each one a description
of themselves, their skills and their role inside the application.

o8

EXPERIMENTS AND IMPLEMENTATION

User kind Features

Profile

Owner of the system. Usually a researcher
or professional interested in Japanese OCR.

Administrator/Researcher | Skills

High technical and linguistic educational
level. Should have reasonable knowledge in
web technologies and distributed systems,
as well as enough comprehension of the
Japanese language inner working.

Role

The administrator is in charge of managing
the proper working of the whole system, solv-
ing any eventual issue. Fulfilling the role of
researcher, the administrator must also de-
fine the form of the Japanese dataset the app
will gather.

Profile

Any person who uses the application. Usu-
ally interested in Japanese OCR or willing to
collaborate.

User Skills

No technical education is required. The user
should have at least basic knowledge about
the Japanese writing system to correctly use
the application. Either English or Japanese
understanding is required to use the applica-
tion.

Role

The user only task is to collaborate to the
dataset creation through the client-side in-
terface, where they can input one character
at a time and send it after answering some
basic questions. They can repeat this process
as many times as they want.

Table 4.2: Description of the different

user profiles for the web application.

Secondly, we have to define the restrictions we will be facing during the develop-
ment of the application. We explain each of them in Table 4.3, along with a reference
code that will be used in later sections to cite each restriction if necessary. A description

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 59

and type for each restriction are also included.

Reference code

Type

Description

RES-HW-01

Hardware

We have server memory limitations. The applica-
tion will be deployed in a shared hosting, where one
physical server hosts multiple websites. Therefore, we
only get a percentage of that individual server. Specifi-
cally, we have 20GB of SSD disk space and around 1GB
of RAM.

RES-SW-01

Software

Our back-end must be capable of running our
OpenCV scripts for character images preprocessing.
This implies that our server application must be able of
executing code in an OpenCV supported language, in
this case Python.

RES-SH-01

Schedule

This is the most important restriction. Our web applica-
tion must reach a state of minimum viable product
well ahead of schedule, before this thesis’ deadline,
so it can collect enough character samples to create a
dataset that can be used for comparative testing.

Table 4.3: Detail of the restrictions we have to take into account during the development.

We will now define the different requirements we will have to fulfil during develop-
ment to achieve the objectives of our application. We can divide them into two types:
functional and non-functional requirements. These will be presented in two different
tables. Similarly to the restrictions, each requirement has a reference code for citing
later if required. Each reference code is made up of two parts that refer to the content
of the requirement: whether is a functional or non-functional one (FR or NFR), and if
it concerns the user, the administrator or the system itself (USR, ADMIN or SYS).

The functional requirements are the ones which make reference to the system
functionalities. They define the basic system components, generally divided into system
input, processing, and output. These are listed in Table 4.4.

60

EXPERIMENTS AND IMPLEMENTATION

Reference code

Profile

Description

FR-ADMIN-01

Administrator

The administrator/researcher defines the form of
the Japanese dataset that will be collected by
the web application. This includes the character
classes and the number of samples per class and
category.

FR-USR-01

User

The user draws the requested character inside the
HTML Canvas in the web application interface.

FR-USR-02

User

The user has to answer three questions related to
his birthplace, language ability and method used
to input the character before sending one.

FR-USR-03

User

Once the user sends the character sample, a confir-
mation modal will pop up acknowledging his con-
tribution and asking to press the return button to
input a different character class.

FR-USR-04

User

The user can choose in which language the ap-
plication interface is displayed, either English or
Japanese.

Table 4.4: Table of functional requirements for the web application.

Finally, the non-functional requirements are the ones most related to the system
itself. They are regarded as quality requirements to define the behaviour of the system
as planned, establishing some limits if necessary. These are listed in Table 4.5.

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 61

Reference code

Profile

Description

NRF-SYS-01

System

Once the character is received by the server app,
preprocessing is performed over each sample to
adapt it to our desired format.

NRF-SYS-02

System

Each character sample and its questions answers
are stored in the file system and the database, re-
spectively.

NRF-SYS-03

System

The system will always request a character
based on the number of character records in the
database, prioritising the classes with fewer sam-
ples and maintaining the dataset balanced.

NRF-SYS-04

System

The system must reject any post from the client
with a blank canvas input.

NRF-SYS-05

System

The application interface will adapt to any screen
size or device. This includes support for character
input through mouse, touchscreen or stylus pen.

NRF-SYS-06

System

The application must be 24/7 available through a
fixed web domain. Users from all around the world
must be able to send samples without restrictions
apart from an internet connection.

NRF-SYS-07

System

All the application and the material collected must
be under an appropriate open-source license, so
both the application and the datasets created un-
der it will be public and free for everyone, forever.

NRF-SYS-08

System

The application code will be highly commented
and under a version code system to easily allow
contributing developers to add functionalities or
fork the project.

Table 4.5: Table of non-functional requirements for the web application.

62 EXPERIMENTS AND IMPLEMENTATION

4.4.2 Design guide

The design section is one of the most relevant for the development. Here we are going to
solve the problems stated in the requirements section. These solutions are the ones that
will be implemented in the next section to successfully develop a web application that
covers our expectations. Not all of these requirements can be addressed using a single
technology, in fact, is more common to use multiple technologies to implement each of
them. For better clarification, we will divide this section into various subsections that
represent each part of the design process in a more concrete way.

4.4.2.1 Conceptual design

Here we define the building blocks of our application. This structure can be useful in
the future to organize the actual implementation of the project. All the application
logic is centralized in the server, leaving the client-side interface only as the input for
data. A representation of this structure is shown in Figure 4.8.

Server

File system 8
Database Dataset
definition

Application Logic

- Localization

Client

Application
Interface

Figure 4.8: Schema representing the application conceptual design. Author’s own creation.

Each of these building blocks can be defined as follows:

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 63

o The Application Interface is where all the information is displayed to the user
from the web browser, including the requested character and the three questions
for the user.

e Our chosen Styles and Fonts are loaded into the application interface to com-
pose the application visual aspect.

o The Localization are the versions of the static texts in the application in English
and Japanese.

e The Canvas is the part of the application interface from which the user inputs
the character.

o The Application Logic controls the storage of data sent by the client, the
preprocessing of the character images and the sending of data to the client for
display, all from the server.

o« The Database and File system are the so-called “persistent” parts of the
application, where we store all the data coming from the client for later exami-
nation.

o The Dataset definition is a static section of the server storage where the new
dataset content is defined.

4.4.2.2 Persistence design

We call “persistence” to the part or parts of the application that are used to store data.
In our case, this data is received from the client each time the application collects a new
sample. The persistence of our application can be divided into two different sections:
the database and the file system.

For our application, it was decided to store the character images inside the server file
system, instead of inside the database itself. This is because file systems are already
optimized to store files, including web server file systems. On the other hand, databases
require additional code to extract and stream images and the latency may be slower
than direct file access. We therefore decided to store them in the server file system, at
the same time reducing the load on the database server.

Inside the database two tables were created: Dataset and Classes. The Dataset
table holds every record made to the dataset, with a character name column, an image
URL to reference the path of each image in the server file system and the answers of
each user to the three questions (NRF-SYS-02). The Classes table holds the number
of records that the application has collected for each character up to that point. We
keep this register in order to avoid having to recount the number of records of each
character from the Dataset table each time the application decides which character to
request (NRF-SYS-03). Our relational database server uses MariaDB and is managed
with PyMySQL, as explained in the last chapter.

64 EXPERIMENTS AND IMPLEMENTATION

dataset classes
name: varchar(20) name: varchar(20)
imageurl: varchar(20) number: int(20)

country: varchar(20)
language: varchar(20)

type: varchar(20)

Figure 4.9: Database tables structure, along with each column’s datatype. Author’s own
creation.

4.4.2.3 User experience

Usability and accessibility are very important factors to take into account when con-
sidering our application structure, but so is the user experience. We could define the
user experience as the “feeling” an application transmits while using it. One good way
of representing the user experience is through a User Journey Map, like the one in
Figure 4.10.

Enter the Read the Draw the Answer the Sending and
website instructions character questions acknowledgment

I Negative experiences I I Positive experiences I

Figure 4.10: User Journey Map of our web application. Author’s own creation.

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 65

Studying this type of user experience patterns is truly relevant for our application
because, in principle, the user does not get any trade back from using our web applica-
tion, apart from an appreciation message. We can see in our User Journey Map that a
user using our web application is most of the time dealing with “negative experiences”,
that is doing actively things without feedback. Therefore, our mission is to reduce the
time these tasks take from the user as much as possible. At the same time, we want the
user to send as many character samples as possible, so we must also encourage him to
repeat the process. We should then design an interface structure that fulfils all these
requirements.

4.4.2.4 Interface design

For our application, we have opted for a simple and minimal design that follows our
objective of reducing the time for sending samples as much as possible. This type of
design not only improve the user’s navigation flow, but also makes our app more usable
and stylized.

In order to design and visualize the interface structure before the implementation
phase, we created a number of wireframes sketches, which are visual guides that rep-
resent the skeletal framework of a website, app or program. First, we will take a look
at the general proposed structure:

KanjiRecor
Q0 X} m=r 1 @& D ro.'a —_—
——y @
=7 Recon \
Language switch [T
R Rppp—
protmpreget ZFRecon
oo os ms minems dmsen s st atrms dos it
Text with the c——" ——
requested character SN A S A A
—"—-
Yoo o Bp—p—— g oo o |
/ 7 O Jopan O Other country s 7
s sort dars aon e
© Native () Second language O Jopan (O Other country
(O Mouse () Finger \ Form questions O Native O Second language
[—
7 _

Figure 4.11: Wireframe of the web application interface for desktop and mobile devices.
Some annotations were made over the image with pointing arrows for further
clarification. Author’s own creation using Balsamiq tool.

The first thing that someone usually notices from any web application is the title:
KanjiRecon. We decided to name our tool like this after the words Kanji and Recog-
nition, which is the purpose behind collecting character samples publicly. From the
beginning we thought about properly designing an accessible application that adapts

66 EXPERIMENTS AND IMPLEMENTATION

to any device screen (NRF-SYS-05), to the point that the wireframe already included
a mobile version of the website at that time. As we can see, all the application con-
tent is organized in a y-axis column, making it easier to adapt to mobile screens. The
subsequent space left blank in the desktop version margins was planned to be filled
with symmetrical background decorations. The HTML Canvas is placed at the cen-
tre of the interface, as is the most important part of the application, along with a
“clean” button to erase the canvas content. An intuitive addition to this writing in-
terface could be the typical “undo” and “redo” buttons, but, as stated in Chapter 2,
Japanese characters must be written in one go, so this option is discarded. In Chapter
2 we also mentioned the inclusion of a genko yoshi-like grid in the canvas. This way
we may save many operations over the images to centre the characters when creating
our dataset. Apart from this, adding a reference to write the character is very conve-
nient for the user, since it increases the usability of the page. Following the Japanese
topic, a language switch is placed over the tool logo, to change between English and
Japanese. Under said logo we encounter the instructions. We tried to maintain them
as minimal as possible, explaining briefly why we are interested in retrieving character
samples over the internet a which character is being requested for that session. It is
worth saying that this type of design is completely opposite to traditional Japanese
web design, which often included as much information as possible in a given space,
generally growing into visually overloaded websites. This tendency is nowadays chang-
ing on the Japanese internet, though many old websites still keep this style. As one
target public of this tool are Japanese people, it will be interesting to receive feed-
back from them about this topic. Lastly, we have the three form questions just
over the submit button (FR-USR-02). It is interesting to note that originally each
question had only two possible answers, as opposed to the final questions with three
answers. We decided on the content of these questions based on what factors might
most influence the user’s habits and writing style. The final questions are: Where
are you from? (Japan/Other), What is your level of Japanese language? (Na-
tive/Second language/Learner) and What have you used to write the character?
(Mouse/Finger/Stylus pen).

Wireframes can also be used for other things apart from designing the application
interface. User experience designers use wireframes to show navigation paths between
pages. In Figure 4.12, we can see a wireframe that represents our application flow:

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 67

N
AN
Thank you for
POV (S R your collaboration

Press the return
A sans sonns aon sirns button

O Native ® Second language

® Mouse O Finger

The box is empty

........ 9

Please press the
return button to
. 2vme st 2o sor try again

O Native ® Second language

@ Mouse O Finger

O Native O Second language.

(=== (——

—— —

Figure 4.12: Wireframe of the web application navigation flow. A mobile version is used to
save space. Author’s own creation using Balsamiq tool.

This image represents what happens when the user presses the submit button in
different situations. If the inputs are all filled and the canvas has any content, an
acknowledgement modal is triggered with a “Thank you for your collaboration” mes-
sage. As we want to encourage the user to send more samples, the application does
not redirect to any other page, instead, it pops up the modal in the main one, with a
“return” button to close it. This way we transmit the user the feeling of being inside a
cyclical process, instead of redirecting to an endpoint page. On the other hand, if the

canvas is left blank, the server will reject the post and issue a message asking the user
to try again (NRF-SYS-04).

4.4.2.5 Colours, logo and typography

The colour palette we used for our web application have two main shades. Light gray
is the main colour, while Lime green is the accent colour. With these “light colours”
we want to give a floating feel to the interface, along with its plain white background.

68 EXPERIMENTS AND IMPLEMENTATION

Light

Gray
#D3D3D3 #4FCA22
RGB(211, 211, 211) RGB(79, 202, 34)

Figure 4.13: Colour palette of the KanjiRecon tool. Author’s own creation.

The logo of our KanjiRecon tool is featured in the header, being most probably
the first thing any user notice from the app. The design of our logo is inspired by
the fact of KanjiRecon being a bilingual app, featuring texts in English and Japanese.
For that reason, half of the logo is written in Japanese (meaning kanji), and the other
half being an abbreviation of the word “Recognition” in English. This strengthens the
international scope of the application, appealing the public from both Japan and the
rest of the world. The logo also includes the two colour shades of our palette, so it
stays in tune with the rest of the interface.

:-I-I-|—|—|

/ Recon

Figure 4.14: The KanjiRecon logo. Author’s own creation.

This said, our application is after all an open-source tool and therefore our logo can
not be as relevant as the ones from commercial targeted applications. Nevertheless,
having a distinctive symbol is always beneficial for the diffusion of any medium. In
this manner, the public has an easy way to identify a certain element, and perhaps,
share it with their peers, which is exactly what we want.

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 69

The next thing to cover is the typography. We can play with the fact of having
to represent two languages by using a different font for each of them. This way our
application can transmit a different sensation while being in English or Japanese. For
the English texts, we use the Nunito font. Nunito is a sans serif rounded typeface
created by Vernon Adams. With its rounded terminals, a “soft” feeling is transmitted,
which is in line with the light style of the application. For the Japanese texts, we use
the Noto Serif JP font. Noto is a font family created by Google that aims to support
all languages in the world. We use the serif Japanese family to give the app a more
“calligraphic” sensation while it is in Japanese, since handwriting is one of the main
actions performed in the application. Both fonts are used under the Open Font License
and retrieved from the Google Fonts service.

Nunito

The quick brown fox jumps over the lazy dog 14pt
The quick brown fox jumps over the lazy dog 12pt

The quick brown fox jumps over the lazy dog 11pt

The quick brown fox jumps over the lazy dog 10pt

Noto Serif JP

a2 —R—I12X B HARGEDIRDHE W, lapt
A2 a—R—IZ KB HAGEDFEFEDH V. 12p0

AV ¥a—X—ZX D HAGE DS H E V. 11pt

AU E2—X—I1TXDHAFEDOFRDHH WV, 10pt

Figure 4.15: Nunito and Noto Serif JP fonts. The example sentence in Japanese includes
parts in katakana, hiragana and kanji. Author’s own creation.

Moreover, we have to assure any font in the interface to be bigger than 10px to
avoid the graphical density problem in Japanese described in Chapter 2. This way we
guarantee the legibility of the interface and improve the app usability.

4.4.3 Implementation and deployment

In this section, the process of development is detailed step by step, carrying out the
solutions that were outlined in the design section. As stated in the Schedule section
from the Introduction, the app was developed from late March to the end of April. This
is due to the restriction of having to leave a time frame before this thesis’ deadline for
collecting enough character samples (RES-SH-01). We will now explain each step
of the process in the same order that they were developed. After that, the same

70 EXPERIMENTS AND IMPLEMENTATION

will be done with the deployment process. Although a description of each part of
the development will be presented, we will pay special attention to the problems we
encountered, describing their origin and the solution we came up with.

The development has been carried out in my personal desktop computer, using the
Windows 10 operating system. The IDE used was the popular Visual Studio Code,
under an Anaconda Environment, as explained in Chapter 3. The version control
software used was GitHub, along with the GUI client GitKraken. A repository was
created to hold all the material for this thesis, including the whole KanjiRecon code
(NRF-SYS-08).

The first step was to set up the Anaconda Environment. We had already done this
for the ANN models experiments, so installing the specific Python packages for the app
development was the only step left. The most important are: the Flask framework,
PyMySQL, Yaml, OpenCV, JSON, Pillow...etc. As explained in Chapter 3, we used the
conda package manager to install and maintain all of these. Regarding the database, we
used XAMPP with Apache and MySQL for debugging. Before any back-end or server
application function, the first thing to create was a basic HT'ML skeleton file without
any CSS style attached. This page was created to serve as a provisional interface
to communicate with the server. But before that, the canvas was to be correctly
configured. Using the HTML Canvas API, we created a blank 300x300px canvas in
the basic HTML interface. The first basic function we wanted to create was to be to able
to draw anything inside using the mouse. To do this, we needed to detect the mouse
position relative to the canvas. In a newly created Javascript file, we used onmouse
events to detect whether or not the mouse was clicked and whether it was moving or
not. When the canvas is clicked, a line path is initialized. If then the mouse starts
moving, we proceed to detect the mouse position. First, the canvas bounding relative
to the page is determined using a JS build-in function. Now we have two options: we
could use the onmouse property pageX/Y, which returns the mouse position relative
to the top left corner of the whole page, or we could use the property clientX /Y, which
returns the mouse position relative to the top left corner of the visible page at that
moment. The correct option is to use clientX/Y, because in mobile browsers there is
usually a top search bar that is constantly hidden when you move the page, causing
the top left corner to be repositioned. We must then always take the mouse position
relative to the visible page, so these changes do not affect us while drawing. Lastly, we
have to subtract the offset of the canvas calculated before to obtain the correct position
inside the canvas. The line path then follows each obtained position while the mouse
keeps moving. In this state, the canvas drawing input already works, but we had yet
to make sure this would work in mobile devices. For this purpose, each onmouse event
was adapted to similar touch events that also work in touchscreen devices using the
same mouse logic.

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 71

screenX

pageX
clientX

Figure 4.16: Representation of the differences between the pageX/Y and clientX/Y prop-
erties. Image retrieved from webdiz.com.ua (2019)

As planned in the design section, a cross-shaped dashed grid was also added to the
canvas, traced in grey behind the drawing layer. To complete the canvas drawing
tool we also added the functional clean button, though without any style yet. Some
browsers, such as Microsoft Edge, interpret the mouse drawing inside the canvas as a
dragging event, so we must set the property preventDefault to avoid this.

After this, we created the rest of the page form, with the three questions for the
user as radio buttons and the submit button. Now we were ready to start building our
server application and database structure.

A Flask application always starts with the import statements. A route declaration
is used to tell Flask what URL should trigger whatever function we may declare inside.
In our case, we declare a route for our index page, with a condition to detect if we
are handling a GET or POST request. However, we can not implement any logic in
the web server application without having before a database. We set up the database
following the planned structure in the persistence design section, creating the dataset
and classes tables. To start the connection with the database from the server app we
need to know the database properties, such as the user, the password, the host...etc.
We store these properties in a separated YAML file, so they can be easily modified
when we move from our debugging environment to the deployment server.

Following the application usage flow, the first function to implement in the server
app was the display of the requested character. First, we have to know which
characters classes will be included in the dataset we are creating. The dataset definition
is stored in a separated JSON file. This way, the administrator/researcher can modify
the dataset’s character classes at any moment without altering the server app code.
Each time the server app is restarted, its checks for newly added classes in the dataset
definition file, adding them as new records in the classes table. When the server receives
a GET request from the client, it checks with a database query which classes have fewer

72 EXPERIMENTS AND IMPLEMENTATION

records. If it finds more than one class with the same number of records, a random one
is picked. This would be our requested character. This way, the dataset stays always
as balanced as possible. To display this character class on the client-side, we render
the HTML file using the Jinja template engine, which replaces a variable defined in
a special syntax with our character.

After drawing the requested character and marking the answers of the questions,
the next logical step is the sending of the canvas data. This data is stored inside
a hidden field, along with the rest of the radio button fields in the form. When the
submit button is pressed, before sending the POST request to the server, a Javascript
function is used to convert the canvas data into a proper format for the form field. For
this, we use the toData URL method, which converts the canvas content into a data:URI
format. Data:URIs are URLs that allow embedding small files inline in documents. If
the file is textual, the text is simply added to the URL, but in case of having another
format, such as our canvas image, the file is embedded as base64-encoded binary data.
We can choose also the image format to be encoded as a parameter in the toData URL
function. Our canvas content is attached to the hidden field as a PNG image encoded
in base64 format. When the POST request arrives at the server application, the data
is decoded again using the Python base64 package into regular image data, ready for
preprocessing.

A E 2 |

data:ima%\D/%l}:‘ ;basebd iIVBORwIKGgoAAAANSURELgA

AAMgAL, AAACHIK Be AAAFVIIEQYRAN 03dzWic
/\ h&A4dHH+0HMfo Of w0k, A% VEy CU9IVDOUvQ SFC 30 = rHXE
mEWnFs Zb 2 é q+dC Axt% SkOh+RSUgLAAASALAS

AAALAAAALALALALAALALALAAAAAALALAAAGZHONL
BS03mgd+9z2LwUDOkOH] OcBdeBQtEHBmP&lQu/éBErIEk
ECM3HxE]/inP80JYzG59ng8sz 30 dy+uvOgd

(sLdeMSlH2}8/fc@zﬁ+r\’fJ+JDJ85dVr/VMv REda0+kzI13D
sMIrb5=iPZdzn0mYyzlaeeil 2P LOnxyfYEI nkghl 2HMI
[0jsYhY dji02odhVm PP TaHZ0MNMMBEb W31 Hs O MM 30TF 4
2nM0st] h|IhSDVE/SDs2B|E|/IrWéV0b LLBDFTWXZhB?

Ay IrEkf+ 7EK) stulmql 2050 ka¥M=CTs /2
D+brsZ b+K/GUsz Tr9wh UuVudvInSKZSlxdeHs Z hBl
rGE TplfYTEABRRHFLY T TR EL< e kDB =g WiDel 3heZ
TL=Hdj GQMkoklPch 2d| BxMxsldPsnViz TdXgRCB0KA
1080a BWS%FQSBXB {5+lkxyEfW2h wvetY Be s dkM
mgErMoyqrbABZ0g SKINaz S0gotMiduLEujHLUuT+Xs

Figure 4.17: Example of canvas drawing with its corresponding base64 encoding. Image
retrieved from m.mkexdev.net (2010)

Once we have reached this point, we can treat the received character as a normal
image, and therefore process it in whatever way we need using OpenCV (RES-SW-01).
One interesting thing about the canvas image is that when encoded, the white space
is interpreted as PNG alpha channel. We need first to fill the transparent space
with plain white. This is done using an OpenCV colour mask. The mask is composed
of every transparent pixel of the image. These pixels will be the ones that will get
replaced by white pixels in the original image.

The next steps to follow would be to erase the grey reference grid lines from
the image and detect if the user has sent an empty canvas or not. At this point, we
ran into an unexpected problem. We found out that empty canvas detection and grid

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 73

removal do not work equally in different browsers. Turns out canvas image data between
browsers is not the same for several reasons. The same canvas element can produce
exceptional pixels on different web browsers, depending on the system on which it was
executed. This happens because web browsers use different image processing engines,
compression levels and hashes. Moreover, operating systems use different algorithms
and settings for anti-aliasing and sub-pixel rendering. Our solution to overcome this
problem is to set colour ranges to include similar colour shades that may vary slightly
between browsers and devices. We can now remove the grey grid lines using other
OpenCV mask, but this time including a range of similar shades of grey.

For the detection of an empty canvas we use an example blank canvas image from
the project files. We only have to subtract the current image from this one to know
whether the image is empty or not. If it turns out that in fact there is no character
on the submitted canvas, the rest of the process is skipped and the HTML is rendered
with a variable that triggers a modal message. Otherwise, we can start to process the
character image for the dataset.

In our case, the application was configured to adapt our images to the MINIST
format, but this could be easily modified to store them in any desired format (NRF-
SYS-01). To adapt each image to the MNIST dataset format, we have to resize them
to a 28x28px size. This is done using the OpenCV INTER,_AREA algorithm. This
method consists on, according to the OpenCV documentation, resampling using pixel
area relation, and is the recommended one for shrinking images. We also keep a copy
of the original image in full size, just in case we need to use other sizes over the sample
images in the future. Once we have both, we create their filename after asking the
database how many records of this class are already registered, so ours will be that
number plus one. The images are saved in the file system using the build-in Python
I/O function open(). We use this instead of the traditional OpenCV’s imwrite because
this last one only supports ASCII characters for the filename, while Python’s open()
supports Unicode. We need this because our filenames include the classes, which are
Japanese characters, hence only present in Unicode.

The final step in the application logic is the record of the character sample in the
dataset table from the database. With this query we store the character image’s path,
along with the answers for the three questions. Once it’s done the server application
calls it a successful POST and proceeds to render the HTML page with the "Thank
you” message modal, as a completion confirmation. While this modal message is open,
all interactions with the page behind are disabled.

At this point, we could say we have the essential part of the application working.
Now we can focus on the interface style and other features. The Flask application
files structure require us to put the CSS files inside an “styles” folder, within the static
files. We created the interface style following the design guide, using the planned colour
palette and typography. Also, this is where we define our media queries to ensure that
the web app is displayed correctly on any screen size. Regarding the language options,
we modified a checkbox using pure CSS to look like a toggle switch, so it can be used

74 EXPERIMENTS AND IMPLEMENTATION

to instantly change between English and Japanese. This localization is handled using
Javascript alone. Finally, we designed the interface decorations to display them on
both sides of the page when the application is showing on a large enough screen. They
consist of a series of symmetrical circles in the colours of the palette with the words
"kanji recognition” in Japanese engraved in white. They adapt to any screen size if it
is wide enough to accommodate them, otherwise they disappear.

English (k=3
7 ; Recon
&5 %! chizdFAOFEE#RD

WEFaY e 7 T3, BAOILFER
5L THMTEE S,

FL— O [H) OxFFRidALTL
AW, 0. HF03-0BRcEL
TEEIEZVy Z LTLEEN,

HY

ZHHEZYS 5T H?

[O)=F:S @ ol

BRI OOEFLRVEEDL H0TT
»?

Ol OB_Fik @b
MFEEH L OMEECE L, ?
®@=wox OfF OFxvIFrv

bt}

i

Figure 4.18: The full-width appearance of the application interface at the time of deploy-
ment (Japanese version).

Once our application is ready to collect character samples for us, we can start the
process of deployment. As we mentioned previously, the application was published
using a shared hosting. We managed our server using cPanel, which is a web hosting
control panel software. Within cPanel, we have available a series of tools and plugins
that facilitate the deployment of our application. We used phpMyAdmin to create and
manage the database. cPanel also provides us with a tool to set up Python applications
using the WSGI server Phusion Passenger. When we create a new instance using this
tool, it also gives us a virtual environment to install any Python package we could

4.4. DEVELOPMENT OF JAPANESE CROWD-SOURCING WEB APPLICATION 75

possibly need. While installing our Flask application, we bumped into a problem
related to the server capabilities (RES-HW-01). Using the Phusion Passenger log files,
we discovered that our application was trying to use more threads than the number
allowed by the hosting. This was solved by limiting the number of threads allowed in
the environment to one. Once we fixed this last problem, the application was ready to

go.
s BAGE English (5F53
S
I%?Recon I%?Recon

Welcome! This is a research project for £5Z2%2 ! TRNEHARBEOXFRFRD
the recognition of Japanese characters. METRI 227 bTT, BADILERE
You can contribute by sending one 5Z L TEMTEET,

haracter of .
character or your own ‘ A WA WA WA W

Please write the character [&] in the
grey box. After that, answer the three
questions below and press 'Submit'.

ZTEERWEE Ak S
TXVET!

:
LG
:

Clean

RaHA s EMLCHOE |
BREECEET .

\““‘

THEZEY S S TT?
HA oo [E

Where are you from?

Figure 4.19: Left: Interface in mobile size (English version) Right: Confirmation modal
with its "Thank you” message (Japanese version).

4.4.4 Testing and validation

Although we already tested the web application in different desktop and mobile devices
using our own local network server, we could not guarantee the proper functioning of it
without the feedback of real users. Thanks to them, the application has been tested on
a good range of devices with different types of touch interfaces. This includes laptops
with touchscreens and iOS devices such as iPhone and iPad Pro using Apple Pencil.
After a few tweaks, every touch input is correctly captured by the canvas.

76 EXPERIMENTS AND IMPLEMENTATION

The texts were translated into Japanese by the author of this thesis, but have been
revised by a Japanese teacher from this same university, without having to make any
correction. Moreover, several Japanese users have used the app and so far no complaints
have been received.

Related with the application texts, we received the suggestion to highlight the re-
quested character because some people tend to skip reading most of the text on the
websites. We therefore chose to change its colour to our lime green, to make it stand
out.

We also got the suggestion to save the form answers between requests for user’s
convenience. This way it would be faster to send more than one character. We im-
plemented this feature using the browser’s sessionStorage, saving the question answers
and the language selection.

In order to objectively test the application, we used the Google PageSpeed Insights
tool. PageSpeed Insights reports on the performance of a page on both mobile and
desktop devices, and provides suggestions on how the page may be improved. We
obtained a score of 95 points in the mobile test and 97 points in the desktop test.

http://www.mediotaku.xyz/kanji http://www.mediotaku.xyz/kanji

- 0-49 56-89 == 98-100 (D - 0-49 56-89 = 90-100 (D

Datos de campo — El informe "Experiencia de Usuario de Chrome" no tiene suficientes datos a tiempo
real sobre la velocidad de esta pagina.

Origin Summary — El informe Experiencia de Usuario de Chrome no tiene suficientes datos a tiempo
real sobre la velocidad de este origen

Datos de experimentos a-=

® Primer renderizado con contenido 19s @ Tiempo hasta que esta interactiva 19s

S =
B recon

Datos de campo — El informe "Experiencia de Usuario de Chrome” no tiene suficientes datos a tiempo
real sobre la velocidad de esta pagina.

Origin Summary — El informe Experiencia de Usuario de Chrome no tiene suficientes datos a tiempo 9
real sobre la velocidad de este origen.

Datos de experimentos a-=

Primer renderizado con @ Tiempo hasta que esta interactiva 05s

contenido

indice de velocidad 445 @ Tiempo total de bloqueo oms I indice de velocidad 165 ® Tiempo total de bloqueo oms

@ Largest Contentful Paint 19s Cambios de disefio @ Largest Contentful Paint M 05s @ Cambios de disefio acumulados M 0,016
° acumulados ®

Figure 4.20: Left: Mobile test score Right: Desktop test score. Both tests detail other
speed statistics.

All the project code is stored in its public GitHub repository (under the name
Mediotaku/Kanji-Recognition), so anybody can suggest changes or fork the project.
All the material generated through the app and the project itself is under an open
license CC BY 4.0, whose documentation can be found in the repository (NRF-SYS-
07). This will give the user total liberty in the use of the application and the dataset
material it may generate, even for commercial purposes. Something to note is that we
have already received some requests in the repository asking for instructions on how
to run the project.

4.5. CREATION OF MNIST FORMAT DATASET USING OBTAINED DATA

7

All in all, there are some app styles and behaviours that could be further refined
in the future, but the application in this state already constitutes a minimum vi-
able product that can be used to collect character samples and fulfil the rest of the
objectives of this thesis.

4.5 Creation of MNIST format dataset using obtained

data

In Chapter 2.2.2, we talked about the different subsets of kanji that are present nowa-
days in Japanese society. For our new dataset, we did not have the time frame to
collect thousands of character classes, not to say gather enough samples of each of
them. Therefore, we decided to define a dataset of 100 classes that would correctly
represent the mean of Japanese characters. For this purpose, we used the data provided
by the Matsushita Laboratory for Language Learning from the University of Tokyo.
They have available for download ranking sheets featuring the frequency of Japanese
characters along different domains, such as literary works, internet forums, Humani-
ties, Medicine, Engineering, Medicine, Politics...etc (Tatsuhiko Matsushita (JP: #A™F
), 2014). We took the weighted average of these lists and defined our dataset with,
objectively, the 100 most used characters across all the areas. We can see all the classes

in Figure 4.21, which is a collage created with our own collected samples.

FH vy oz
%
:
]

J
d
~

(W
Ly
(A

=
«
0

K F ¥ &

1
7

[g"
v

B,
k.

77\

9
E

i

¥

(\:-
D

e

/7

.

(]

H

—
\

R

,_
—_
!

D
m

F=—1
=\

¢
}
17
A

F

.

L U
lx 1F
7
2 A

oy
<

N

p

—

i

&

SN

El

w

€l

oA

L) -

\]‘nll/

7

-

-

™
‘.\-+-ll|
L |

Figure 4.21: Every character class present in our dataset represented by one sample. This
collage has been created using the Pillow (PIL) package. Be aware this is not
the actual size of the images inside the dataset.

Up until now, our web application has collected a total of 2137 samples since
its deployment. This leaves us with a dataset of 100 classes, with 20-21 samples for
each class, thanks to the balancing system of our app. But before we could use it for
our experiments, we have to make sure that each sample matches the class that was
requested. Sometimes the users misclick the submit button before correctly writing
the character, other times the written character simply does not match the requested
one. Comparatively, these are a very small percentage of the samples, but still need

78 EXPERIMENTS AND IMPLEMENTATION

to be reviewed for the sake of a better performance. After replacing these errors with
new correct samples, the dataset is ready to be used for experiments. This is not an
exclusive problem of our dataset. For example, while using ETL-8B2 we found some
samples unusable due to visual artefacts generated by scanning problems.

4.6 Testing with model and comparison

In this section, we will see how well can the previously tested models perform using
our dataset. The main differences with the rest are the lower number of samples per
class and the presence in a single dataset of hiragana, katakana and kanji characters.
Also, our dataset contains characters written with very different input methods: mouse,
touchscreen and stylus pen. As we have statistics on the use of each of them, later we
will take a look at these data.

For these tests we used the previous CNN models, because they are the ones that
could give better results. To make our collect images a suitable input for Keras we used
the same technique as with the ETL dataset, shuffling them and slitting 20% of the
dataset for validation. At first, we tried to train the Keras CNN with the same images
we collected, only resized to 28x28px. The results could have been better, as we got
0.874 of training accuracy and 0.8131 of validation accuracy. In reality, the MNIST
dataset images are also inverted to have a black background and white characters. This
is done to further highlight the features of the digits. We therefore followed the same
format by applying a bitwise NOT operation to each image. Once we had every sample
inverted, we repeated the test with Keras CNN, this time obtaining a 17.52% baseline
error, 0.9438 of training accuracy and 0.8248 validation accuracy. We can compare the
results in Figure 4.22. In the first test with the original images, learning takes a few
epochs to take off, perhaps because it is harder to find representative features on them.

If we further test Keras CNN until 50 epochs, we get a decent 13.32% of baseline
error, with 0.9807 of training accuracy and 0.8668 validation accuracy at the last epoch.
These results are featured in Figure 4.23(a). Then, we tested our own CNN, but this
time until 100 epochs. As we can see in Figure 4.23(b), this gave a slightly lower
baseline error of 12.38%.

accuracy

accuracy

4.6. TESTING WITH MODEL AND COMPARISON 79

Baseline Error: 18.69% Baseline Error: 17.52%
—— train_accuracy
0.8 validation_accuracy /\/ /_//_ﬁp
0.8
0.6
0.6 1
=
[*]
e
3
0.4 4 g
0.4
0.2
0.2 A
—— train_accuracy
0.0 validation_accuracy
T T T T T T T T 0.0 ~—— T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch epoch

Figure 4.22: Left: New dataset with Keras CNN, batch of 16 and 20 epochs (original
images) Right: New dataset with Keras CNN, batch of 16 and 20 epochs
(inverted images).

Baseline Error: 13.32% Baseline Error: 12.38%
1.0 A
._Wﬁﬂ/‘f\-\/\'—"'\/\
0.8 1 AT
0.8
0.6
0.6 -
1=
e
=1
g oa
0.4
0.2 4
0.2
—— train_accuracy —— train_accuracy
validation_accuracy 004 - validation_accuracy
0.0 T T T T T T T T T T T T
0 10 20 30 40 50 0 20 40 60 80 100
epoch epoch

Figure 4.23: Left: New dataset with our CNN, batch of 16 and 20 epochs Right: New
dataset with our CNN, batch of 16 and 20 epochs.

These results are not bad at all, but not as good as the ones obtained with the ETL
dataset, for example. But why? We can only theorize, but it is most likely due to our
data. As explained in Chapter 4.2, the data is the most important factor to consider
when training an ANN, and ours may not be enough to sustain the problem. Our
dataset contains some hiragana characters that are particularly similar between them,
such as [V] and [¥/] . Some differ in size, like [&] and [&] , and others are even

80 EXPERIMENTS AND IMPLEMENTATION

difficult to differentiate out of context for native speakers, like [—] and [—] (one
is used to lengthen sounds, the other is the number 1). Not to mention the dakuten
and handakuten diacritics variances. Many Japanese students continue to write these
variations wrong even at intermediate levels. Therefore, it is not strange to think that
20 samples may not be enough to correctly generalize these cases.

Regarding the answers to the questions, in Figure 4.24 we present their results
through pie charts with their correspondent percentages.

Where are you from? What is your level of Japanese language? What have you used to write the character?

Japan

Stylus pen

Native

second language

68.0%

Mouse

Others

Student

Figure 4.24: Results of the questions answered by the users about their nationality, language
and form of input. These pie charts have been created with the Matplotlib
package.

These percentages show interesting insights about our users during these months.
It can be highlighted that we have managed to get a significant number of Japanese
users to use the application (15.3%, 326 samples), which, as expected, agrees with the
number of users for whom Japanese is their native language. Of course, some users
may have written more than one character and the actual number of individual users
may be different. It is also interesting to see the minimal presence of stylus pen users
(2.1%), comparatively small but still existing.

Having these subsets of data, we could do some truly interesting experiments. The
problem is that currently these subsets have very different numbers of samples between
them, and, moreover, they are highly imbalanced. For those reasons, such experiments
would be bound to fail, as, again, data is the most important factor in training. Still,
out of curiosity, we have conducted a comparative test using our CNN between the two
subsets with the most similar number of samples: the “mouse” users and the “finger”
users. The results are featured in Figure 4.25.

Finger

accuracy

4.6. TESTING WITH MODEL AND COMPARISON

81

Baseline Error: 56.36%

—— train_accuracy
validation_accuracy

Baseline Error: 88.28%

0.12

—— train_accuracy
validation_accuracy

0.4 4
0.10 -

031 0.08 -

0.06

o
[N]
L
accuracy

0.04 -

0.1 W,
0.02

7

0.0 4
0.00 -
T T T T T

0.0 2.5 5.0 7.5 10.0
epoch

T T T T
175 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

epoch

T T
125 15.0

Figure 4.25: Left: “Mouse” subset with our CNN, batch of 16 and 20 epochs Right: “Fin-
ger” subset with our CNN, batch of 16 and 20 epochs.

As expected, the results have a disproportionate baseline error, yet we can observe
that the mouse subset performs considerably better. This could be mostly due to the
superior number of samples of this subset, but also because characters drawn with the
finger tend to be less defined than those written through other entries.

5 Conclusion

This chapter serves as closure for the whole project. It is made up of 2 different
sections: Section 5.1 presents a comparative report between the objectives met and
those that can be improved, as well as a brief personal conclusion, and Section
5.2 proposes a number of possible improvements, both in terms of future research
and further development of the web application.

5.1 Overview of results

In this thesis, a comprehensive research of the recognition of handwritten Japanese
characters using machine learning techniques has been carried out. After all this time,
we can say that we have covered all the objectives proposed at the beginning of the
project.

During the period of research, every proposed topic has been explored. First, we
covered the basics of OCR and its pipeline. Secondly, we presented a comprehen-
sive description of the Japanese language and its peculiarities referred to the world of
OCR, giving an extensive introduction for starters and, at the same time, providing
unusual information for Japanese-experienced readers. Lastly, the neural networks sec-
tion spans from basic multilayer models to convolutional networks, providing us with
the knowledge needed for the development of the next chapters.

After deeply searching for publicly available Japanese datasets, we used them to
carry out our own experiments, first with pre-build ANN models and afterwards with
our own CNN model based on VGGNet. Using it, we obtained results that outperform
the proposed human recognition rate.

Moving on, we started the development of our crowd-sourcing web application. Fol-
lowing the guidelines of our proposed design guide, we managed to achieve the minimum
viable product status on time and therefore, start collecting new characters samples as
fast as possible.

Finally, during these months the application has gathered a total of 2136 samples,
allowing us to create our own dataset following the MNIST format to carry out our
experiments. Using the acquired knowledge, we could diagnose the model performance
and identify the most probable origin of its issues. Moreover, we were able to look
into the user profiles through the answers statistics, taking note of the potential use of
these subsets for further comparative experiments, provided we had enough data for
both.

83

84 CONCLUSION

Personally, I consider that with this thesis I have learned a great number of new
concepts and technologies that otherwise would not be part of my skills today. On the
research side, I really appreciate having been able to learn from the very bottom the
basic concepts of neural networks to the point of properly understanding their working.
Even in relation to the Japanese language, I learned several facts that I was unaware of
until that moment. On the technology side, this project has taught me a new language,
Python, from absolute zero. Once I learned how to handle it more easily, we stepped
into Flask, which taught me the main concepts of Python web frameworks.

Although some of the concepts were already present in my degree in the form of
subjects such as Web Applications Development (DAW), for the web frameworks part,
or Computer-generated Image and Video (IVC), for the image recognition part, if
it were not for this project, I might not have discovered technologies like Keras or
Tensorflow, since these are not part of the curriculum of the degree.

In general, I am very grateful to this project for giving me knowledge that will not
stay between these pages, but that I will be able to export to my future works.

Finally, I hope that this project has contributed to the approach of different disci-
plines, such as machine learning and the Japanese language, so that in the future they
can together achieve advances that benefit both in their fields.

5.2 Proposal of possible improvements

During the development of the project, a series of ideas have emerged that were not
possible to implement due to our time constraints and because they were outside the
objectives of the project.

On the research side, the next logical step would be to take the lessons learned in
recognizing individual characters and apply them to text recognition. In this way, the
application of contextual techniques such as those explained in Chapter 2.1.2 could
be investigated. Since Japanese is a highly contextual language, the use of dictionary
techniques could greatly improve recognition performance. Of course, this would not
be easy, since before it would be necessary to carry out a segmentation process to
separate some words from others, which is a particularly difficult challenge in Japanese
since there is typically no separation between words.

Besides, taking advantage of this attempt at word-level recognition, the application
of recurrent neural networks and LSTM (Long Short Term Memory) could be inves-
tigated, the advantage of which is that they take into account the information from
previous predictions to inform the current one. This could greatly improve the perfor-
mance of the model, as context can be automatically assumed by the neural network.

On the application side, it is our wish that it continue to be an open-source tool used
by researchers to easily obtain open training data of Japanese language. Although the
dataset is available from its GitHub repository, we believe that the inclusion of a simple
download system in the application itself could further facilitate the process.

5.2. PROPOSAL OF POSSIBLE IMPROVEMENTS 85

Finally, the application’s data balancing system could be improved by including the
parameters of the questions. Although we cannot predict user answers, we can detect,
for example, from what type of device is accessing the application. In this way, if you
were accessing from a mobile device we can deduce that is more likely that you will use
its touchscreen as input, thus we can request the character class written by touchscreen
with fewer samples. This will help reduce the imbalance of the subset, yet the best
solution is to have a similar number of samples between them.

Bibliography

Aboura, K. (2016, 06). A naive bayes classifier for character recognition..

AIST. (2014). About the etl character database. Retrieved from http://etlcdb.db
.aist.go.jp/ ([Online; accessed July 9, 2020])

Albert Lai. (2018). Gradient descent for linear regression explained. Re-
trieved from https://blog.goodaudience.com/gradient-descent-for-linear
-regression-explained-7c60bc414bdd ([Online; accessed June 26, 2020])

Alexander Amini. (2020). Introduction to deep learning. Retrieved from http://
introtodeeplearning.com/ ([Online; accessed June 21, 2020))

ambs. (2019). Plotting functions with latex tikz. Retrieved from http://null.zbr.pt/
7p=2259 ([Online; accessed June 25, 2020])

Andreas Refsgaard. (2020). Looking inside neural nets. Retrieved from https://

ml4a.github.io/ml4a/looking_inside_neural_nets/ ([Online; accessed June
24, 2020))

Andrew Ng. (2018). Machine learning mooc machine learning course. Retrieved from

https://www.coursera.org/learn/machine-learning ([Online; accessed June
26, 2020))

Baskin, C., Liss, N., Mendelson, A., & Zheltonozhskii, E. (2017, 07). Streaming
architecture for large-scale quantized neural networks on an fpga-based dataflow
platform.

Chart by u/Danilinky. (2019). “hiragana+katakana+basic kanji” printable letter-sized
chart. Retrieved from https://www.reddit.com/r/LearnJapanese/comments/
b0jlyt/i_made_an_allinone_hiraganakatakanabasic_kanji/ ([Online; ac-
cessed June 4, 2020])

Chi-Feng Wang. (2019). The vanishing gradient problem. Retrieved from https://

towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
([Online; accessed July 1, 2020])

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D.
(2018). Deep learning for classical japanese literature. CoRR, abs/1812.01718. Re-
trieved from http://arxiv.org/abs/1812.01718

87

http://etlcdb.db.aist.go.jp/
http://etlcdb.db.aist.go.jp/
https://blog.goodaudience.com/gradient-descent-for-linear-regression-explained-7c60bc414bdd
https://blog.goodaudience.com/gradient-descent-for-linear-regression-explained-7c60bc414bdd
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://null.zbr.pt/?p=2259
http://null.zbr.pt/?p=2259
https://ml4a.github.io/ml4a/looking_inside_neural_nets/
https://ml4a.github.io/ml4a/looking_inside_neural_nets/
https://www.coursera.org/learn/machine-learning
https://www.reddit.com/r/LearnJapanese/comments/b0jlyt/i_made_an_allinone_hiraganakatakanabasic_kanji/
https://www.reddit.com/r/LearnJapanese/comments/b0jlyt/i_made_an_allinone_hiraganakatakanabasic_kanji/
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
http://arxiv.org/abs/1812.01718

88 BIBLIOGRAPHY

Clanuwat, T., Lamb, A., & Kitamoto|, A. (2019). Kuronet: Pre-modern japanese
kuzushiji character recognition with deep learning.

Frangois Chollet. (2015). Simple mnist convnet. Retrieved from https://keras.io/
examples/vision/mnist_convnet/ ([Online; accessed July 27, 2020])

George V Jose. (2019). Useful plots to diagnose your mneural network.
Retrieved from https://towardsdatascience.com/useful-plots-to-diagnose
-your-neural-network-521907fa2f45 ([Online; accessed July 27, 2020])

Grant Sanderson. (2018). But what "is” a neural network? Retrieved from https://
www . youtube. com/playlist?1ist=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi ([On-
line; accessed June 23, 2020])

Grebowiec, M., & Protasiewicz, J. (2018, 09). A neural framework for online recognition
of handwritten kanji characters. In (p. 479-483). doi: 10.15439/2018F140

Gus Polly from Wikimedia. (2016). Correct use of genko yoshi. Re-
trieved from ByGusPolly-ja: :Genkoyoshi.jpg,CCBY-SA4.0,https://commons
.wikimedia.org/w/index.php?curid=51496839 ([Online; accessed June 7, 2020))

How many hidden layers should i use? (n.d.). Retrieved from http://www.faqgs.org/
faqs/ai-faqg/neural-nets/part3/section-9.html ([Online; accessed June 24,
2020])

IEEE. (2008). Especificacion de requisitos segin el estandar de ieee 830. Retrieved from
https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf ([On-
line; accessed July 17, 2020])

Image by FHOD A (2 &) . (2017). THHERIZW S 72007 71 . Retrieved from https://
www . fontkaruta.com/single-post/2017/06/13/ ([Online; accessed June
10, 2020])

Image by HAFEHSR. (n.d.). HEIZHEE DFK. Retrieved from https://www.u
-can.co. jp/shodo/hand_write/study/in_the_life/ ([Online; accessed June 8,
2020])

Image from 7 7 =7 Blog. (2017). Google chrome T¥ font-size % 10pz AN
TH/RIHED css. Retrieved from http://blog.upshare.co.jp/2017/07/3730/
([Online; accessed June 10, 2020])

Image from ZRK4 bot. (2020). T Z X3, Retrieved from https://twitter
.com/hengana_bot/status/1268082512674185218 ([Online; accessed June 16,
2020))

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://towardsdatascience.com/useful-plots-to-diagnose-your-neural-network-521907fa2f45
https://towardsdatascience.com/useful-plots-to-diagnose-your-neural-network-521907fa2f45
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
ByGusPolly-ja:ファイル:Genkoyoshi.jpg,CCBY-SA4.0,https://commons.wikimedia.org/w/index.php?curid=51496839
ByGusPolly-ja:ファイル:Genkoyoshi.jpg,CCBY-SA4.0,https://commons.wikimedia.org/w/index.php?curid=51496839
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-9.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-9.html
https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf
https://www.fontkaruta.com/single-post/2017/06/13/「明朝体はいらない子？」
https://www.fontkaruta.com/single-post/2017/06/13/「明朝体はいらない子？」
https://www.u-can.co.jp/shodo/hand_write/study/in_the_life/
https://www.u-can.co.jp/shodo/hand_write/study/in_the_life/
http://blog.upshare.co.jp/2017/07/3730/
https://twitter.com/hengana_bot/status/1268082512674185218
https://twitter.com/hengana_bot/status/1268082512674185218

BIBLIOGRAPHY 89

Information from Z &XfEX 2 T 7. (2012). Y ONLZSMEXDE XS FFEAH
HLODFE T, Retrieved from https://service.zkai.co.jp/el/course/sakubun
_club/sakubun-kakikata/genkouyoushi.html ([Online; accessed June 6, 2020])

Jason Brownlee. (2016). Overfitting and underfitting with machine learning algo-
rithms. Retrieved from https://machinelearningmastery.com/overfitting-and
-underfitting-with-machine-learning-algorithms/ ([Online; accessed June
28, 2020))

Jason Brownlee. (2018a). Difference between a batch and an epoch in a neu-
ral network. Retrieved from https://machinelearningmastery.com/difference
-between-a-batch-and-an-epoch/ ([Online; accessed June 28, 2020))

Jason Brownlee. (2018b). A gentle introduction to dropout for reqularizing deep neural
networks. Retrieved from https://machinelearningmastery.com/dropout-for
-regularizing-deep-neural-networks/ ([Online; accessed June 28, 2020])

Kitamura, K., Nikaido, M., Michio, Y. N., & Yasuda. (2015). SCFZR#kD 72 O DT T
— &R — A DfENT, an analysis of kanji character database for character recognition.
Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=&ved=2ahUKEwiJ66z2r cHQAhXcA2MBHUPsCvwQF jAAegQIBhAB&url=https
3A%2FY,2Fmeisei.repo.nii.ac. jp%h2F%3Faction),3Drepository_action_common
_download’%26item_id%3D671%26item _no%3D1%26attribute id%3D22%26file
_no%3D1&usg=A0vVaw3Nm_XydRLgZ4GkUo_UeCoZ ([Online; accessed July 9, 2020])

klo uo. (2012). ndimage/morphology - binary dilation and erosion?
Retrieved from http://scipy-user.10969.n7.nabble.com/ndimage-morphology
-binary-dilation-and-erosion-td8567.html ([Online; accessed June 29, 2020])

Lamb, A., Clanuwat, T. Kitamoto, A. (2020). Kuronet: Regularized residual u-nets for
end-to-end kuzushiji character recognition. sn comput. sci. 1, 177 (2020). Retrieved
from https://doi.org/10.1007/s42979-020-00186-z ([Online; accessed June 15,
2020])

Mathworks, by Auralius Manurung. (2016). Elliptic fourier for shape analysis. Re-
trieved from https://www.mathworks.com/matlabcentral/fileexchange/32800
-elliptic-fourier-for-shape-analysis (|Online; accessed June 1, 2020])

Michael Garris. (2019). The story of the mnist dataset. Retrieved from https://
www . youtube. com/watch?v=0KzNUGz21JM ([Online; accessed July 8, 2020])

Michael Nielsen. (2019). Neural networks and deep learning. Retrieved from
http://neuralnetworksanddeeplearning.com/chap6.html ([Online; accessed
July 1, 2020])

https://service.zkai.co.jp/el/course/sakubun_club/sakubun-kakikata/genkouyoushi.html
https://service.zkai.co.jp/el/course/sakubun_club/sakubun-kakikata/genkouyoushi.html
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiJ66z2rcHqAhXcA2MBHUPsCvwQFjAAegQIBhAB&url=https%3A%2F%2Fmeisei.repo.nii.ac.jp%2F%3Faction%3Drepository_action_common_download%26item_id%3D671%26item_no%3D1%26attribute_id%3D22%26file_no%3D1&usg=AOvVaw3Nm_XydRLgZ4GkUo_UeCoZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiJ66z2rcHqAhXcA2MBHUPsCvwQFjAAegQIBhAB&url=https%3A%2F%2Fmeisei.repo.nii.ac.jp%2F%3Faction%3Drepository_action_common_download%26item_id%3D671%26item_no%3D1%26attribute_id%3D22%26file_no%3D1&usg=AOvVaw3Nm_XydRLgZ4GkUo_UeCoZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiJ66z2rcHqAhXcA2MBHUPsCvwQFjAAegQIBhAB&url=https%3A%2F%2Fmeisei.repo.nii.ac.jp%2F%3Faction%3Drepository_action_common_download%26item_id%3D671%26item_no%3D1%26attribute_id%3D22%26file_no%3D1&usg=AOvVaw3Nm_XydRLgZ4GkUo_UeCoZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiJ66z2rcHqAhXcA2MBHUPsCvwQFjAAegQIBhAB&url=https%3A%2F%2Fmeisei.repo.nii.ac.jp%2F%3Faction%3Drepository_action_common_download%26item_id%3D671%26item_no%3D1%26attribute_id%3D22%26file_no%3D1&usg=AOvVaw3Nm_XydRLgZ4GkUo_UeCoZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiJ66z2rcHqAhXcA2MBHUPsCvwQFjAAegQIBhAB&url=https%3A%2F%2Fmeisei.repo.nii.ac.jp%2F%3Faction%3Drepository_action_common_download%26item_id%3D671%26item_no%3D1%26attribute_id%3D22%26file_no%3D1&usg=AOvVaw3Nm_XydRLgZ4GkUo_UeCoZ
http://scipy-user.10969.n7.nabble.com/ndimage-morphology-binary-dilation-and-erosion-td8567.html
http://scipy-user.10969.n7.nabble.com/ndimage-morphology-binary-dilation-and-erosion-td8567.html
https://doi.org/10.1007/s42979-020-00186-z
https://www.mathworks.com/matlabcentral/fileexchange/32800-elliptic-fourier-for-shape-analysis
https://www.mathworks.com/matlabcentral/fileexchange/32800-elliptic-fourier-for-shape-analysis
https://www.youtube.com/watch?v=oKzNUGz21JM
https://www.youtube.com/watch?v=oKzNUGz21JM
http://neuralnetworksanddeeplearning.com/chap6.html

90 BIBLIOGRAPHY

Mikel Bober-Irizar. (2019). The 10 classes of kuzushiji-mnist, with the first column
showing each character’s modern hiragana counterpart. Retrieved from https://
github.com/rois-codh/kmnist ([Online; accessed July 8, 2020])

m.mkexdev.net. (2010). /[html5 silseub] canvas-e geulin geulim-eul imijilo mandeulgi
(original title in korean). Retrieved from https://m.mkexdev.net/106 ([Online;
accessed July 25, 2020])

Nacho Alonso. (2019). squé es un wsgi? Retrieved from https://medium.com/
@nachoad/que-es-wsgi-be7359c6e001 ([Online; accessed July 12, 2020])

Nazanin Delam. (2016). Single-layer —artificial neural mnetworks. Re-
trieved from https://medium.com/@nazanindelam/single-layer-artificial
-neural-networks-a91c£3752a86 ([Online; accessed June 23, 2020])

Nguyen, V., Brooke, J., & Baldwin, T. (2017, September). Sub-character neural
language modelling in Japanese. In Proceedings of the first workshop on subword and
character level models in NLP (pp. 148-153). Copenhagen, Denmark: Association for
Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/
W17-4122 doi: 10.18653/v1/W17-4122

Pranoy Radhakrishnan. (2017). What are hyperparameters ¢ and how to
tune the hyperparameters in a deep neural network? Retrieved from
https://towardsdatascience.com/what-are-hyperparameters-and-how-to
-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a (|On-
line; accessed June 28, 2020))

Qu J., Lu X., Liu L., Tang Z., Wang Y. (n.d.). A method of density analysis for
chinese characters. Natural Language Processing and Chinese Computing. NLPCC
2014. Retrieved from https://link.springer.com/chapter/10.1007/978-3-662
-45924-9_6#citeas ([Online; accessed June 10, 2020])

Sagar Sharma. (2017). Activation functions in neural networks. Re-
trieved from https://towardsdatascience.com/activation-functions-neural
-networks-1cbd9£8d91d6 ([Online; accessed June 25, 2020])

Shi, B., Hou, R., Mazurowski, M., Grimm, L., Ren, Y., Marks, J., .. Lo, J. (2018, 02).
Learning better deep features for the prediction of occult invasive disease in ductal
carcinoma in situ through transfer learning. In (p. 98). doi: 10.1117/12.2293594

S.N. Srihari, G. Srikantan, T. Hong and S.W. Lam. (1996). Research in japanese
ocr, handbook on optical character recognition and document image analysis. World
Scientific Publishing Company. ([Online; accessed June 18, 2020])

https://github.com/rois-codh/kmnist
https://github.com/rois-codh/kmnist
https://m.mkexdev.net/106
https://medium.com/@nachoad/que-es-wsgi-be7359c6e001
https://medium.com/@nachoad/que-es-wsgi-be7359c6e001
https://medium.com/@nazanindelam/single-layer-artificial-neural-networks-a91cf3752a86
https://medium.com/@nazanindelam/single-layer-artificial-neural-networks-a91cf3752a86
https://www.aclweb.org/anthology/W17-4122
https://www.aclweb.org/anthology/W17-4122
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a
https://link.springer.com/chapter/10.1007/978-3-662-45924-9_6#citeas
https://link.springer.com/chapter/10.1007/978-3-662-45924-9_6#citeas
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

BIBLIOGRAPHY 91

S.N. Srihari, T. Hong and Z. Shi. (1997). Cherry blossom: A system for japanese char-
acter recognition. Retrieved from https://cedar.buffalo.edu/japanese/files/
sdiut97.pdf ([Online; accessed June 18, 2020])

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56), 1929-1958. Retrieved from http://jmlr.org/
papers/v15/srivastavalda.html

Sumit Saha. (2018). A comprehensive guide to convolutional neural networks —the eli5
way. Retrieved from https://towardsdatascience.com/a-comprehensive-guide
-to-convolutional-neural-networks-the-elib-way-3bd2b1164a53 ([Online;
accessed June 30, 2020])

Tatsuhiko Matsushita (JP: }A FiEE). (2014). Character database of modern japanese
(cdj) version 2.0. Retrieved from http://wwwl7408ui.sakura.ne.jp/tatsum/
english/databaseE.html#cdj ([Online; accessed July 27, 2020])

Tsai, C. (2016). Recognizing handwritten japanese characters using deep convolutional
neural networks.. Retrieved from http://cs231n.stanford.edu/reports/2016/
pdfs/262_Report.pdf

Ujjwal Karn. (2016). An intuitive explanation of convolutional neural networks.
Retrieved from https://ujjwalkarn.me/2016/08/11/intuitive-explanation
-convnets/ ([Online; accessed June 30, 2020])

Usenet newsgroup sci.lang.japan, maintained by Ben Bullock. (n.d.). sci.lang.japan
frequently asked questions. Retrieved from https://www.sljfaq.org/afag/afaq
.html ([Online; accessed June 8, 2020])

Velek, O., & Nakagawa, M. (2002, 08). The impact of large training sets on the
recognition rate of off-line japanese kanji character classifiers. In (p. 106-110). doi:
10.1007/3-540-45869-7_ 13

W3C Standard for Japanese. (2012). Requirements of japanese text layout. Retrieved
from https://www.w3.org/TR/2012/NOTE-jlreq-20120403/ ([Online; accessed
June 7, 2020])

webdiz.com.ua. (2019). Razmery i prokrutka elementov na veb-stranitse (original
title in russian). Retrieved from http://webdiz.com.ua/glavaé-rabota-s-dom/
razmery-i-prokrutka-elementov-na-veb-straniceb-s/ ([Online; accessed July

25, 2020))

Yani, M., Irawan, S., & S.T., M. (2019, 05). Application of transfer learning using
convolutional neural network method for early detection of terry’ s nail. Journal of
Physics: Conference Series, 1201, 012052. doi: 10.1088/1742-6596/1201/1/012052

https://cedar.buffalo.edu/japanese/files/sdiut97.pdf
https://cedar.buffalo.edu/japanese/files/sdiut97.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www17408ui.sakura.ne.jp/tatsum/english/databaseE.html#cdj
http://www17408ui.sakura.ne.jp/tatsum/english/databaseE.html#cdj
http://cs231n.stanford.edu/reports/2016/pdfs/262_Report.pdf
http://cs231n.stanford.edu/reports/2016/pdfs/262_Report.pdf
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://www.sljfaq.org/afaq/afaq.html
https://www.sljfaq.org/afaq/afaq.html
https://www.w3.org/TR/2012/NOTE-jlreq-20120403/
http://webdiz.com.ua/glava6-rabota-s-dom/razmery-i-prokrutka-elementov-na-veb-straniceb-s/
http://webdiz.com.ua/glava6-rabota-s-dom/razmery-i-prokrutka-elementov-na-veb-straniceb-s/

92 BIBLIOGRAPHY

Yin, F., Wang, Q.-F., Zhang, X.-Y., & Liu, C.-L. (2013). Icdar 2013 chinese handwrit-
ing recognition competition. In (p. 1464-1470).

List of Acronyms y Abbreviations

AD
AIST

ANN
ASCII

BC
CEDAR

CNN
CODH
ETL
GPU
GUI
IDE
IEEE
JEITA

JIS

JP
JSON
LSTM
MICR
ML
MNIST

NIJL
NTT
OCR
OpenCV
PBL

Anno Domini.

National Institute of Advanced Industrial Science
and Technology.

Artificial Neural Network.

American Standard Code for Information Inter-
change.

Before Christ.

Center of Excellence for Document Analysis and
Recognition.

Convolutional Neural Network.

Center for Open Data in the Humanities.
ElectroTechnical Laboratory.

Graphical Processing Unit.

Graphical User Interface.

Integrated Development Environment.

Institute of Electrical and Electronics Engineers.
Japan Electronics and Information Technology In-
dustries Association.

Japanese Industrial Standard.

in Japanese.

JavaScript Object Notation.

Long Term Short Memory.

Magnetic Ink Character Recognition.

Machine Learning.

Modified National Institute of Standards and Tech-
nology.

National Institute of Japanese Literature.

Nippon Telegraph and Telephone.

Optical Character Recognition.

Open Source Computer Vision Library.
Project-Based Learning.

93

94 Li1ST OF ACRONYMS Y ABBREVIATIONS
RELU Rectified Linear Unit.
ROIS Research Organization of Information and Systems.
TFG Trabajo Final de Grado.
TFM Trabajo Final de Master.
WSGI Web Server Gateway Interface.
YAML Originally Yet Another Markup Language, now

YAML Ain’t Markup Language.

	Introduction
	Overview
	Motivation
	Related works
	Proposal and Goals
	Schedule
	Outline

	State of the Art
	Introduction and history of OCR
	The history of OCR: An overview
	The OCR pipeline

	The Japanese language and its recognition challenges
	Standards of Japanese writing
	Relevant written script for Japanese datasets and the Sino-Japanese correlation
	Japanese typesetting and the graphical density

	Introduction to Neural Networks
	Historical background
	The multilayer perceptron model and backpropagation
	Convolutional Neural Networks

	Methodology
	Introduction
	Review of Japanese Characters Datasets available
	Software for Neural Network implementation
	Tensorflow
	Keras
	Python and the Anaconda environment

	Software for Web application development
	Flask and the WSGI server
	PyMySQL
	OpenCV

	Experiments and Implementation
	Introduction
	Multilayer perceptron model for character recognition
	CNN model applied to Japanese datasets
	Development of Japanese Crowd-sourcing web application
	Requirements and specification
	Design guide
	Conceptual design
	Persistence design
	User experience
	Interface design
	Colours, logo and typography

	Implementation and deployment
	Testing and validation

	Creation of MNIST format dataset using obtained data
	Testing with model and comparison

	Conclusion
	Overview of results
	Proposal of possible improvements

	Bibliography
	List of Acronyms y Abbreviations

