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Abstract

Drawing pictures enables humans to represent concepts. Even when an object in

the real world is represented a picture that is not exactly the same as the object,

human beings possess the ability of recognizing the real-world object. We can

also represent concepts by producing motor activities of drawing.

Studies in cognitive neuropsychology have attempted to build models that

can explain the observations made by humans in their drawing-related behaviors.

However, these built models have their limitations; for example, they need to

reproduce the observations because of specific factors, such as individual draw-

ing styles and the non-reproducibility of bodily motions. In contrast to building

models by using top-down approaches, the constructive approach provides an-

other way of investigating complex systems by making models that can replicate

behaviors. In case the system includes the human body, cognitive developmental

robotics typically uses robots to consider the embodiment factors of the human

cognitive systems.

The objective of this study is to understand the aforementioned diversity of

drawing representations by constructing computational systems that can replicate

a human’s abilities of recognition and drawing in a robot. In particular, this study

focuses on two abilities: recognition and drawing. The recognition ability involves

sharing concepts between hand-drawn pictures (called “sketches”) and the visual

information corresponding to the object in the real world (called “photos”). The

drawing ability involves generating bodily motions to depict sketches from the

visual information of the given pictures to be copied (i.e., the depiction target).

These two focused abilities are replicated by functionalities of computational

systems. These systems are constructed to include very little prior knowledge to
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implement the functions because prior knowledge will lead to strong assumptions

when the built system is compared with the human aspects. The recognition sys-

tem is required to recognize both the photo and sketch images using an integrated

image-processing function. The drawing system needs to include visual feedback

from what the system draws and generate bodily motions.

Conventional computational systems of picture recognition or drawing have

been developed based on pre-designed visual processing and path-planning algo-

rithms, such as edge detection or shape primitives. Recently, large-scale neural

networks called “deep learning” models have demonstrated improvements in pic-

ture recognition and generation. These models did not require any explicit design

for the image feature-extraction algorithms or the shape primitives. The func-

tionalities of recognition and generation were acquired through the non-linear

optimization process by using large-scale data.

Even though deep learning models do not require explicit feature designs or

shape primitives, they did not satisfy the requirements of the recognition and

drawing systems. The recognized image was limited to either photos or sketch

images, or they needed to prepare two models for each type of image to construct

a classifier for both images. The drawing systems did not include both the visual

feedback from the canvas and the bodily motion.

To satisfy these requirements, this study proposes to using deep learning and

a robot. The proposed recognition system is built by a convolutional neural

network (CNN) to share concepts between the photo and sketch images. Exist-

ing CNNs could recognize only either the photo or the sketch images because

of the visual-gap between these two types of images and the lack of the large-

scale image datasets of sketches. Psychological studies performed on children’s

drawings have suggested that styles of their hand drawing are influenced by non-

photorealistic media in their lives, such as comics or cartoons. Therefore, this

study proposes to include non-photo-realistic pictures (called “illustrations”) in

the training dataset. The inclusion of illustrations also contributes to the en-

hancement of training datasets because they can be easily crawled on the Web.

Through the experiments to classify the sketch and photo images, the efficiency

of the proposed data argumentation method was confirmed.
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The proposed drawing system consists of a recurrent neural network (RNN)

that is known as one of the neural network models that process sequential data.

According to developmental psychological and neuropsychological studies, drawing-

related cognitive abilities may use integrated visuomotor memory that enables us

to use information about the production process from the static image of a pic-

ture. In fact, we can associate dynamic information to depict what we see by

reusing drawing experiences from the past. In this thesis, RNN is trained to re-

tain the integrated visuomotor memory of the drawing process, which involves a

visual transition from a drawn picture to certain bodily motions. The depiction

ability is realized by an adaptation of its dynamics to generate an appropriate

drawing motion from a static image. In the experiments, the proposed drawing

systems demonstrate the adaptation of the acquired memory using a simulator

and a robot.

This thesis is organized into six chapters. In Chapter 2, the existing studies

are surveyed. First, this chapter introduces psychological and neuropsychological

studies conducted on a human’s drawing ability using a constructive approach.

Then, this chapter describes the computational systems of drawing and picture

recognition. Finally, the problems of these introduced studies are explained.

Chapter 3 explains the proposed approach to construct computational systems

of recognition and drawing. First, the idea of deep learning models called “End-to-

End” is introduced. This idea corresponds to satisfying the requirements to avoid

the elaboration of image feature extraction and shape primitives. Then, other

approaches to satisfy the requirements of recognition and drawing are explained.

In Chapter 4, the experiments on the classification of the photo and sketch

images are explained. These experiments were conducted to confirm that the

proposed recognition system could share the visual information of sketches and

photos by using a single image-processing system. The system was implemented

by using a CNN trained by the novel data argumentation method. This data

argumentation method includes illustration images into the dataset. In the ex-

periment, the efficiency of this method was evaluated by a comparison of the

classification accuracies obtained from several datasets. As a result, the inclusion

of the illustration images improved the classification accuracy. Further, the image

iii



features obtained by the proposed method were analyzed by visualizations.

Chapter 5 gives the details of the experiments conducted to learn the drawing

process. These experiments include two phases. The first phase is to check the

association ability of the drawing system for learning the drawing process in a sim-

ulated environment. The second phase includes experiments that use a humanoid

robot. The simulator experiments suggest that this association mechanism also

enables RNNs to change the drawing scenario depending on the lines added in

advance. Through the experiments using a humanoid robot, the proposed RNN

model demonstrated association ability for drawing simple shapes. Also, another

experiment on learning distorted shape drawings suggested that the proposed

model succeeded in recognizing shapes.

In Chapter 6, the contributions of this study to understand drawing ability

are summarized. Finally, this thesis is concluded by describing the direction that

future research could take.
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Chapter 1

Introduction

1.1 Background

Drawing is a universal medium used to pictorially represent concepts. Pictures

have been used for more than 30,000 years to share concepts [1]. We can interpret

the concept of pictures even if these pictures have been drawn at different times

in history or in different countries. Also, we can explain various concepts by

sketching.

The motivation for this study is to bring clarity in the ambiguity associated

with the visual representations of hand-drawn pictures. Pictures can take many

visual variations as long as they can be interpreted according to the drawer’s

intentions. It is hard to find a visual similarity between a photorealistic image

and pictures. Also, the drawing process is different for each drawer. Figure 1.1

(a) (b)

Figure 1.1: Diversity of pictorial representations of cats. (a) Cats in the real
world. (b) Hand-drawn pictures of cat.
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shows the examples of cats in the real world and the corresponding hand-drawn

pictures. Although all these images represent cats, the pictures do not share any

visual characteristics with photorealistic images. Further, we can depict what we

see by producing motor activities to draw lines on paper or canvas. The produced

drawing process has potentially many variations because of the differences in

styles, the order of strokes, and our body movements. Even if we repeatedly draw

a very simple shape, such as a triangle, the same line will never be reproduced.

Therefore, certain questions arise. How can we share the concepts between hand-

drawn pictures and the information from our visual perception system? How can

we produce a drawing process from our visual information?

A number of studies have investigated the abilities related to interpreting con-

cepts from drawn pictures and producing the drawing process. Many researchers

have noticed that the skills to understand or produce pictures are based on the

fundamental cognitive skills of visual perception or motor planning. Infants start

to draw when they are about one year old [2]. The developmental process of

drawing skills has been discussed as the emergence of the ability to symbolize

and the emergence of the visual perceptions of space or motor skills [3, 4]. The

investigations that explain why we can understand or draw pictures may lead us

to approach unsolved problems of human cognition.

1.2 Cognitive Developmental Robotics

Many psychological studies have tried to explore the fundamental principles re-

lated to understanding and drawing pictures. These suggested principles can

explain the phenomena in experiments of drawing tests. In these studies, picture

understanding and drawing abilities are considered as processes that use repre-

sentations of pictures, symbols, and motions. In this sense, picture understanding

is a process that converts the visual representation of a picture into its symbolic

information (e.g., category). Depicting what we see is also another process that

involves the visual representation of objects, and converts them into lines by using

a series of drawing motions via motor planning [5].

Unlike building principles to explain, building computational systems to repli-
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cate behaviors provides another way of exploring the underlying principles. This is

known as the constructive approach. Investigations of the minimal condition that

can realize the phenomenon enables us to understand the mechanism of complex

systems. Recently, a new interdisciplinary field named cognitive developmental

robotics has been investigating human behaviors related to interactions between

our bodies and the environment [6].

The human’s drawing-related abilities rely on the body of the subject. The

drawing process includes motor planning components that explain the drawing

ability [5, 7]. This fact is confirmed by other studies for exploring the fundamental

rules of drawn shapes [8, 9] or by replicating the drawing process [10]. The

body also affects visual perception. We can imagine how a picture can be drawn

[11], and this imagination is used to work to uncover the drawing process in art

perception [12].

This thesis reports the investigations of hand-drawn picture representations

based on cognitive developmental robotics. In other words, we will try to dis-

cuss the fundamental factors that enable a human’s drawing-related abilities by

constructing computational systems that can replicate the drawing behavior.

1.3 Research Objective and Focus

The objective of this study is to build computational systems that are aimed to

replicate the following two drawing abilities:

• Ability 1: Image Recognition. Sharing what is represented by hand-drawn

sketches and photorealistic images.

• Ability 2: Picture drawing. Producing motor activities that depict the de-

sired picture similar to the depiction target.

“Image recognition” refers to the sharing of concepts between realistic visual rep-

resentations of the real world and hand-drawn pictures. We can interpret what

is represented by a picture drawn by others and by the realistic visual represen-

tation of an object in the real world. Both these interpretations require us to see

the representations and recognize them as concepts. This means that we have a
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(a) (b) (c)

Figure 1.2: Examples of pictures. (a) Study for the Libyan Sibyl by Michelangelo,
1511, Metropolitan Museum of Art, New York. Wikipedia Commons. (b) “Free
Curve to the Point - Accompanying Sound of Geometric Curves” by Wassily
Kandinski, 1925, Modern and Contemporary Art, New York, Wikipedia Com-
mons. (c) The face of a cat drawn by the author.

visual recognition system that can recognize both types of representations even

if it is difficult to find similarities in their visual characteristics. In this thesis,

the term “photo” means a realistic visual image that represents anything in the

real world. “Sketch” indicates non-professional line drawings to represent some

concepts. Figure 1.2 shows a few samples of line drawings. In this study, we have

not considered realistic sketches by professionals (“dessin” shown in Figure 1.2

(a)) and abstract paintings whose concepts are rare concrete objects in the real

world (e.g., Figure 1.2 (b)).

Another focused ability is “picture drawing.” To depict pictures, we need

to produce appropriate motor activities. Specifically, we focus on goal-oriented

drawing processes to depict another given picture. In this case, the drawer rec-

ognizes the depiction target), and produces motor activities of the body that can

generate a set of lines that will finally construct the desired picture. As per the

model suggested by van Sommers [5], the drawer perceives a visual transition of

the drawn picture during the production process so that he or she can flexibly

adapt to changing the motions to follow the unexpected changes in the drawn

picture, such as the drawing errors.

Developing computational systems that can replicate these two abilities also
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contributes to the studies on artificial intelligence. Hand-drawn picture recogni-

tion has been regarded as one of the main tasks for image processing systems.

In computational systems, the image-recognition ability requires us to consider a

function to acquire an invariant image feature between various types of images.

Understanding the drawing ability can help us create machines that can draw pic-

tures like artists or can help artists by interacting through the drawing process.

Calculating motor programs to control a robotic system to follow the desired path

has been the main concern of robotics. However, the method of planning the set

of motions from the visual information of the depiction target is still an open

problem because of the diversity of stroke orderings and human’s bodily motions.

The functionalities of the computational systems should correspond to the

aspects of the focused abilities. The requirements of image recognition system are

summarized as follows:

• Requirement A1: Less prior knowledge of the images feature detection pro-

cess

• Requirement A2: Recognizing both the sketch and the photo

• Requirement A3: Sharing the photo and the sketch representation in the

recognition process

The requirements of the drawing system are as follows:

• Requirement B1: Less prior knowledge of drawn pictures or the motor plan-

ning process

• Requirement B2: Considering image feedback during drawing

• Requirement B3: Considering bodily motions

The requirements A1 and B1 mean assuming less prior knowledge for the im-

plementation of functionalities. In the case of an image recognition system, using

prior knowledge corresponds to an elaboration of the image feature-extraction al-

gorithms. It is also possible to consider the shape primitives or the path-planning

rules to build drawing robots. However, pre-defined algorithms may lead to strong
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assumptions when the built systems are compared with the human cognitive as-

pects.

The image recognition system has to follow other two requirements. This

system is required to recognize both the photo and sketch images (A2). Also,

the recognition algorithm is required to be shared among the two types of images

(A3). This is because the psychological model of drawing suggests that we use the

same process to perceive not only the environment but also the drawn pictures.

A drawing system is required to perceive image feedback from the transition of the

drawn picture to the reuse of the drawing experiences (B2). Feedback also plays

an important role in the drawing process. We adaptively changed the drawing

process by looking at what had been drawn in advance. For example, when a circle

was given in advance, we added a few smaller circles to depict a face. Further,

the drawing process involves generating bodily motions (B3). This requirement

indicates that the system does not directly control the pen, but it controls an

embodiment system that causes the drawing process.

1.4 Problems of Existing Computational Systems

Conventional image recognition systems have been proposed in studies of artificial

intelligence. Researchers have typically used well-designed algorithms to extract

image features, such as edge detection or shape primitives. The extracted features

were input to a classifier to output a category of the image. The recent success

of large-scale neural network models called “deep learning” models have changed

this strategy to construct image classifiers. deep learning models do not require

any elaborations of the image feature-extraction algorithm, but they obtain the

recognition functionality through an optimization process. However, classification

targets of these deep learning models are limited to photorealistic images or sketch

images, or they need to separately train models for each type of image and merge

them into a single classifier.

Conventional computational systems of drawing also require pre-designed al-

gorithms to extract the image features or define simple shapes that will be used

as units to represent complex shapes. Drawing systems with fewer elaborations
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have been investigated in the fields of cognitive developmental robotics or ma-

chine learning for artificial intelligence. However, they also needed to assume the

primitives of shapes or the exploration of the drawing motion that will lead to

nonhuman-like motion planning. Another study using the deep learning model

did not consider any shape primitives, but they did not satisfy the requirements

B2 and B3.

1.5 Overview of Approach

The approach of the proposed study is to introduce visuomotor adaptation to build

computational systems for image recognition and picture drawing. We propose

computational systems that can acquire knowledge for recognition and drawing

not by designing rules of image feature extraction or shape primitives, but by using

learning samples. Adaptation means that the systems change their behavior to

recognize image inputs or generate the motor activities of a robot by reusing the

knowledge obtained in the learning process.

For the machine-learning framework, we use deep learning models. One impor-

tant characteristic of the deep learning model is known as “End-to-End.” This

means that there is no explicit definition of image feature extraction or motor

planning (the requirements A1 and B1). Instead of the designer implementing the

algorithms, the deep learning model obtains functionality through optimization

methods without any constraints of shape primitives or image feature-extraction

algorithms.

The proposed picture recognition system is designed to adapt its classification

experiences to both sketches and photo images. This system is implemented by

using a convolutional neural network (CNN), which is one of the deep learning

models for image recognition tasks. The requirements A2 and A3 are achieved by

a CNN classifier for both the photo and sketch images. The classification target of

CNN was limited to either photos or sketch images because of two reasons. Firstly,

sketch images are very visually different from photo images even if they share the

same concept. Secondly, there is a lack of large-scale sketch image datasets. deep

learning models typically require a number of images to be generalized for various
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inputs. To enable the CNN to classify both the photos and sketch images, we

include non-photorealistic pictures by professionals (i.e., “illustrations”). This

method reflects the effect of picture representations given as comics or animations

in the developmental process of picture recognition.

The picture drawing systems reuse their visuomotor memory to produce the

robot’s motor activities that depict the desired picture image. Humans can as-

sociate motor activities to produce the shown pictures even if they did not draw

these pictures. Psychological studies have suggested that this association ability

is based on the integrated memory of the drawing body motion and the visual in-

formation, including feedback from the drawn pictures. Therefore, we propose

to build computational systems that can self-organize visuomotor experiences

through learning. The association ability of the proposed systems corresponds

to generate goal-oriented drawing behavior. The goal of the association is given

as a depiction target image or as a sequence of images that are part of the drawing

process. Through experiments on a simulator environment, the proposed system

demonstrates that the system can change its behavior to depict a depiction target

image even when the intermediate steps are given by an experimenter. For exam-

ple, the system can add a few lines when the experimenter draws the other lines

in advance. Furthermore, we demonstrate that the proposed approach can be ap-

plied in case a robot draws pictures. The proposed systems are implemented by

recurrent neural network (RNN) models. The proposed RNN models are trained

to generate visuomotor sequences of drawings from the initial hidden state. The

learned sequence consists of image feedback from the drawn picture and the mo-

tion data (requirement B2). The association is implemented by an exploration

process of the RNN’s feature that will decide the produced drawing behavior. The

last requirement (i.e., B3) means that the robotic system needs to be used as a

body. The proposed RNN model does not produce a sequence of pen position but

produces joint angles of a humanoid robot.

1.6 Thesis Organization

This thesis is organized into six chapters as described in Figure 1.3.
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Figure 1.3: Thesis organization
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In Chapter 2, existing studies related to this thesis are reviewed. First, the

history of psychological and cognitive neuroscience that intends to understand

the human’s cognitive aspects of drawing are summarized. Subsequently, existing

studies that tried to understand the drawing ability by constructive approaches

are introduced. Existing computational models for image recognition and drawing

generation are reviewed. This section also describes the recent deep learning

models not for producing drawing motions, but for directly generating images.

Finally, the problems of these introduced computational systems to satisfy the

above-mentioned requirements are also explained.

Chapter 3 describes the approaches to build the computational systems that

can satisfy the requirements. First, the End-to-End learning model using deep

learning is introduced. Then, the approaches to constructing the recognition and

drawing systems are explained.

In Chapter 4, we introduce the experiments on classifying the sketch and photo

images by using the proposed image recognition system. The task of the experi-

ments is designed to confirm that the inclusion of illustration images enhances the

system’s classification accuracy. Also, the image features obtained by the trained

CNN model are visualized. These visualizations explain how the trained CNN

model organizes each type of image for discrimination.

In Chapter 5, several experiments on learning the visuomotor sequences of a

drawing are described. First, simulator experiments were conducted to confirm

the functionality of the proposed system to memorize visuomotor experiences and

associate the drawing motion from a depiction target image or from the image

sequence to be copied. Also, this chapter discusses the association ability when

using a real robot. In the robot experiments, the proposed system was required

to associate a robot’s drawing motion of simple shapes. In the final experiment,

we demonstrate the recognition ability for distorted shapes by reusing memory.

In Chapter 6, the contributions of this study to understand the drawing ability

are summarized. Finally, this thesis concluded by describing the direction of future

studies.
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Chapter 2

Literature Review

This chapter provides a review of the studies for understanding and replicating

the drawing ability of human beings. First, cognitive scientific studies are in-

troduced. Second, the constructive approach to understanding drawing ability

is explained. Then, recent computational systems for hand-drawn picture image

recognition and generation systems are reviewed. Finally, the problems of the ex-

isting computational systems to satisfy the requirements of the proposed system

are explained.

2.1 Understanding Drawing Ability

Until the 20th century, there were very limited studies to investigate the mecha-

nism that enabled humans to understand and draw pictures. Rather than under-

standing the mechanism, the methodology for drawing pictures was documented

as the memo for painters. Leonardo da Vinci, who was an Italian Renaissance

polymath, recorded observations of human emotional expressions, the structure

of the human body, and the depiction of objects for portraits in memo [13].

Through studies of sensory responses to stimuli by esthesiophysiology in the

19th-century [14], Gestalt theory tried to describe the qualities of wholes by in-

troducing self-governing laws. This theory inspired studies on ecological optics by

Gibson [15]. He investigated not only the mechanisms of visual perception systems

for photorealistic images but also the developmental process of children’s drawing

[16]. Gibson’s manner to propose the principles of visual perception affected the

11



art theory by Gombrich [17].

Psychological studies in the 20th century have investigated the developmental

process of a child’s drawings [2, 18, 3]. These studies described the developmental

process of children’s drawings, especially scribbling because unsophisticated mo-

tor skills gradually acquired realism by the introduction of the shape primitives’

semantic knowledge of objects. A theoretical approach to the adult drawing pro-

cess was discussed by Cohen et al. [19]. They explained the factors that led to

the drawing of inaccuracies when we tried to depict what we saw.

Mechanisms of visual perceptions or drawings have been mainly proposed by

the studies on cognitive neuroscience. Researchers have tried to build model cog-

nitive mechanisms that can explain the phenomena caused by drawing disorders

[5, 20]. Drawing tests are used for clinical psychology researchers to measure in-

telligence [21] or constructive apraxia that is a disability of synthetic activities

[22]. In the studies on constructive apraxia, drawing was considered as a process

that involved the construction of motor activities by building the spatial structure

of the depiction target and considering the description of the structure through

semantic systems concerned with word-related representations [7]. The model is

assumed to be a complex system built by the components assigned to each neu-

roanatomical regions. The visual perception process for artworks is discussed in

neuroesthetic studies [23, 24, 25]. They suggested that the sense of beauty is

realized by the organization of neural activities.

Cognitive psychological drawing models follow the study by van Sommers [5]

described in Figure. 2.1. He tried to build models based on Marr’s framework

[26] for deriving the shape information of objects from the image shown in Figure

2.1.

• Primal Sketch (2D): Structure of the intensity value at each point in the

image (edge, blob, bras, etc...)

• 2 1/2-D Sketch: Orientation and rough depth of the surfaces and contours

(surface orientation, depth, distance from viewer, etc.)

• 3-D model representation: Shapes and spatial organization of 3-D shape prim-

itives
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Figure 2.1: Drawing model by van Sommers. Adapted from Fig. 22 in [5].
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Van Sommers added a drawing production component into modules by using

Marr’s framework. The production components are summarized as follows:

• Depiction: Higher-order decisions (types of objects, viewpoints, the levels of

detail)

• Production Strategy: Chunking parts of figures (composition of lines)

• Contingent Planning: Motor planning, such as the ordering of sequences

• Articulation: Starting position, stroke direction, order, circle schematics,

paper contact, geometric grouping, anchoring, and routing planning

• Motor Programming: Motor movements

Van Sommers also considered pathways from the semantic systems to a visual

representation of the object. His model allows us to consider pathways from

each visual component by using Marr’s framework for the drawing production

components. Thus, there are a few variations depending on the drawing scenario.

The model most related to the drawing model proposed in this thesis is “copying

geometric forms.” In this case, the depiction target (i.e., the picture to be copied)

was not 3D objects but simple shapes such as a circle, a square, a triangle, and a

combination of a few of these shapes.

Besides the image of the depiction target, the drawn picture image must be

used in the production process. The model proposed by van Sommers did not

clearly mention (but he did suggest) the existence of a temporary store for later

production; this store was thought to be a memory of the visual representation

(mental imagery) [27].

2.2 Constructive Approach for Drawing Behav-

ior

Besides building concrete models based on the components that can explain the

phenomenon of drawing tests or neural activities, building models to replicate the
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abilities provides another way to explore the underlying principles. By investigat-

ing the minimal conditions that can realize this phenomenon, we can understand

the models better. One example related to the drawing ability is the “Power

Law,” which explains the relationship between the movement speed and the cur-

vature of simple line drawings, as proposed by Lacquaniti et al. [8]. This rule has

influenced other studies of human locomotion [28].

The power law is very simple and makes it possible to easily analyze mathe-

matical characteristics by simulations. Drawing ability consists of a wide range

of cognitive functions; therefore, this rule needs to be more complex when the

model is designed. In fact, the more general principle of human writing makes

us consider not only the points of lines but also the motion of the drawer’s arm.

Wada et al. proposed the minimum jerk principle-based model that could rep-

resent handwritten characters [9]. This study suggested that the characteristics

of the body effect the drawing ability. The embodiment effects in the drawing

are also mentioned in the researches of the developmental process of drawing [3].

The model proposed by Wada et al. is limited to continuous motions and trajec-

tory planning; therefore, this model does not consider the construction process

to acquire the idea of shapes; this model also does not consider how the drawer

interactively revises the trajectory depending on what is drawn.

2.3 Computational Systems of Drawing

Recent developments in the computational theory has allowed us to calculate the

image and the sequential motion data; therefore, it has become possible to build

computation systems to recognize or generate images. Picture recognition systems

have been developed as sketch interface systems [29, 30, 31]. These systems were

intended to accept a human drawing as the user’s command to the software [32].

In this case, a sketch is given as sequences of two-dimensional points. These

points are abstracted to the structure of 3D primitive shapes [33, 34] or directly

used for classification [35, 36, 37] and the beautification of lines [38]. In case the

picture is given as raster images, the features to describe images will be typically

extracted by the edge detector [39, 40]. The extracted features become inputs to
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the recognizer part.

Computational systems of picture production have been investigated as appli-

cations of computational arts or robotics challenges. In the 1980s, Harold Cohen

developed a system to generate artistic images by using a computer program called

ARRON [41]. In its early stages, AARON was developed as a computer program

to produce images. Subsequently, Cohen built printing machines to produce pic-

tures on a canvas. Currently, there are two main methods to produce pictures.

The first method is to directly generate the image data. This method has been

investigated by studies of non-photorealistic rendering [42, 43]. Typically, these

studies have proposed new algorithms to convert the pixels of an input image

into the desired artistic images. In contrast, to calculate the pixels of the output,

other studies on artistic robots have tried to implement systems that can control

robotic plotters to obtain pictures [44, 45, 46]. These systems typically extract

the edges of a given depiction target through a robot’s camera or 3D sensors.

Then, the extracted shape information is converted into a trajectory a brush or

a pen controlled by the robot’s hand. The main problem with this trajectory

generation was the generation of accurate motions to effectively handle contacts

between the tools and the canvas [47, 48]. Image feedback during the production

process was regarded as an input to update the generated trajectory. Some of the

existing systems updated the planned trajectory to consider unexpected changes

of the picture because of complex physical interactions of the contacts that were

difficult to simulate in advance.

Developmental systems for replicating drawing abilities were studied in the

field of cognitive developmental robotics [6] or machine learning for artificial in-

telligence. Mohan et al. proposed a model that was trained to reproduce given

lines as a combination of the assumed primitives of the robot’s motions [49].

Their method employed primitives for handwritten shapes based on the catas-

trophe theory [50]. However, the designing primitives have a strong association

with psychological studies. In fact, it is difficult to show evidence that a human’s

drawing process follows these assumed primitives. Unsupervised training methods

do not assume any concrete primitives of shapes [51], but the obtained drawing

order is not shared with humans.
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2.3.1 Deep learning Models for Drawing

The idea of neural networks originated from a linear model for neural activities

[52]. Minsky showed that the linear model could not be applied to data that

is not linearly separable [53]. This limitation was overcome by introducing a

hidden layer whose parameters were acquired by back propagation [54]. Neural

networks are allowed to have an arbitrary number of hidden layers to maintain

nonlinearity that increases the complexity of the acquired function. However, the

size of networks is limited by the capacity of the calculation process because the

backpropagation process requires computational memory as large as the size of

the networks and larger than the size of the dataset.

Recent developments in computation capacity and the appearance of rich and

large datasets have allowed machine-learning researchers to test larger-scale net-

works. In 2012, Krizhevsky et al. won an image classification challenge using

a CNN [55] that had 60 million parameters [56]. Networks with many hidden

layers came to be called “deep learning” because these layers developed a deep

structure because of the stacking of layers [57]. The success of deep neural net-

works (DNNs) is based not only on the evolution of calculators but also on the

introduction of techniques to avoid the optimization problems of over-fitting and

gradient vanishing, such as batch normalization [58], dropout [59], refinement of

activation function [60], and residual connection [61]. The details of deep learning

models related to this thesis are provided in Appendix A.

2.3.2 Sketch Recognition Models

In the context of deep learning, sketch recognition tasks are often achieved by

CNN models. Yu et al. proposed a multi-scale network to classify sketch images

by considering the ordering of the drawing process [62]. They tuned parameters of

the CNN model proposed by Kerizhevsky et al. and prepared five parameters to

build a huge ensemble network. Image retrieving tasks have also been conducted

using CNN. Sketch image recognition considering the drawing process was also

studied by Sarvadevabhatla et al. [63]. Seddati et al. proposed a CNN-based

framework to find sketch images similar to the user’s sketch image input [64].
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Retrieving photos from sketch images is a more challenging task because of the

large visual gap between these images and photos-a photo image has color and

details that are invariant in the same object. However, sketch images do not have

any color and have less textural information. Sangkloy et al. tried to concatenate

two CNN models that were independently trained to classify each type of image

[65].

2.3.3 Picture Image Generation models

The first image generation by a DNN model is called “autoencoder.” It encodes

input images into low-dimensional image features and decodes them to the input

image [57]. An autoencoder is constructed by stacking many hidden layers of

a feed-forward neural network. The hidden layers are replaced by convolutional

layers to improve the efficiency of image generation by sparse connectivity [66].

The CNN model has recently started being used not only for autoencoding images

but also for sketch image generation from photo images [67] or by the simplification

of rough sketches [68].

The above-mentioned image generation models are trained by loss functions

defined by a norm of the difference between the generation and the target image.

In this case, the generated image tends to have a blurry expression [69]. A solution

to overcome this problem is to avoid calculating the loss value with respect to the

output. Gatys et al. proposed a method to replace the texture representations of

photorealistic images by using another artistic image [70]. Their approach did not

calculate the losses at each pixel but at the intermediate layers of the pre-trained

classification CNN model. Another way to generate high-quality images by CNN

models is adversarial training protocol proposed by Goodfellow et al. [71]. This

protocol requires two CNN models called “generator” and “discriminator.” The

generator network tries to produce images that can fake the discriminator net-

work that adversely penetrates the fake. Radford et al. introduced CNN into an

adversarial network to create a large-scale CNN model for image generation called

“deep convolutional generative adversarial network” (DCGAN) [72]. DCGAN is

applied to a variety of image generation tasks including sketch image generation

[73].
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2.3.4 Drawing Motion Generation Models

Time series data, such as drawing motion, is efficiently handled by RNNs [74]).

The RNN model has feedback in its hidden layer beyond the time step; therefore,

the model retains the sequential memory. One of the problems of RNNs is that

they easily lose memory because the information vanishes by the propagation

process through feedback connections. Hochreiter et al. proposed gates for the

internal state of neurons to avoid memory loss [75]. Their model is called “long

short-term memory” (LSTM). LSTM shows good ability to learn complex time-

series data for language processing [76], image generation from captions [77], and

continuous sequence generation for a reinforcement agent [78].

The RNN-based model for drawing motion generation was studied by Ha et

al. [79]. They proposed an autoencoder model whose encoding and decoding

parts were implemented by LSTM. The model was trained to accept a sequence

of a pen’s position and status, which specified whether the pen touched the paper

or whether the drawing process had ended. The encoded feature of the input

drawing sequence was reconstructed by using another decoder LSTM. Researchers

have also proposed to add a loss to force the encoded feature to form a Gaussian

distribution [80]. After training the model with thousands of human drawing

sequences, the model showed its generalization ability by producing new samples

or by completing a given drawing process.

RNNs have also been used for drawing robots. Mochizuki et al. proposed a

RNN-based model that could improve a robot’s drawing ability through interac-

tions between humans [81, 82]. Their model was inspired by the developmental

process that improved the drawing skills of children. In their experiments, a hu-

manoid agent randomly moved the arm as the researchers observed the position

of the pen. Then, they conducted an incremental imitation learning for drawing

simple shapes.
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2.4 Problems of Existing Computational Systems

of Drawing

2.4.1 Primitive Design

As mentioned in the last chapter, the methodology of algorithm design plays an

important role when a computational system is built to replicate the human’s cog-

nitive systems. Most of the existing computational systems are constructed by

subcomponents that require the elaboration of algorithms or explicit representa-

tion design. Hand-drawn picture recognition systems have required edge detectors

[29, 30, 31] or well-defined shapes primitives [35, 36, 37]. Also, most drawing gen-

eration systems have assumed that the drawn shapes consist of primitives or are

required to detect the edge detection subsystems. The existing robotic systems

use edge detectors to determine the path of a pen [47]. Mohan et al. did not

conduct any explicit shape detection, but they assumed that the drawn shapes

consisted of primitives [49].

The assumption of concretely shaped primitives makes the consequent discus-

sions difficult for comparison with the human’s cognitive aspects. We can design

image classifiers by using the pre-designed edge detectors or shape primitives.

But these pre-designed algorithmic primitives requires us to assume the existence

of the primitives in the human cognitive systems. Also, it is challenging to as-

sume that we use concrete primitive features to depict abstract visual perceptions.

The drawing style is acquired during the developmental process in our childhood;

therefore, the style can have variations according to the individual factors of the

drawers, such as the cultural or development characteristics of drawers [83].

2.4.2 Picture Recognition Systems

CNNs are used to build deep learning models that can recognize both the sketch

and photo images. As reviewed in the last chapter, the recognition targets of the

existing CNN models are limited to either photo images or sketch images. It is

challenging to train a CNN recognizer with multiple types of image. Sangkloy et

al. proposed an integrated CNN model that consisted of two sub-CNN models
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to classify either photo or sketch images [65]. However, there were two image

feature extraction processes according to the image types. The difficulty comes

from the visual difference between the sketch and photo images. Furthermore,

the existing sketch image datasets had very few samples to substantially train

large-scale CNN models. There is an open image database set that has 20,000

pairs of sketch images and photo images [31], but this size is still much less than

other photo image datasets [84, 85].

2.4.3 Drawing Systems

The recent success of deep learning has also contributed to the development of

sketch generation systems without any explicit shape primitive designs. However,

researchers involved in these studies did not consider the visual feedback from

both the drawn picture image and the bodily motion. The RNN model proposed

by Ha et al. did not consider the drawn picture image; therefore, the model does

not accept image input as the depiction target [79]. Also, they did not consider

bodily motion in the generation process of the drawing. The lack of bodily motion

means that the system ignores the effect of embodiment in the drawing process.

Mochizuki et al. conducted drawing experiments using a humanoid robot [81, 82],

but their system did not accept any image feedback.
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Chapter 3

Approach and Methodology

To satisfy the requirements mentioned in Section 1, this study uses the deep

learning and a robot. The requirements for the sketches were as follows:

• Requirement A1: Less prior knowledge of the image-feature detection process

• Requirement A2: Recognizing both the sketch and the photo

• Requirement A3: Sharing the photo and the sketch representation in the

recognition process

The requirements for the drawings were as follows:

• Requirement B1: Less prior knowledge of drawn pictures or the motor plan-

ning process

• Requirement B2: Considering image feedback during drawing

• Requirement B3: Considering body motion

Firstly, the approach to the avoidance of elaborations (A1 and B1) is achieved

by introducing deep learning models. The deep learning model is known to di-

rectly perceive or generate large dimensional, sequential data without any prior

knowledge of them. Two requirements for the image recognition system (A2 and

A3) are satisfied by building a DNN model that can recognize both the sketch

images and the photo images. The requirements (B2 and B3) are achieved by

the adaptation of an integrated memory of the image and motion sequence. This

adaptation process is realized by RNN models.
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3.1 End-to-End Method in Deep Learning

End-to-End is a deep learning model because the model’s algorithm is obtained

by an optimization whose objective function requires a relationship between the

input and output, which specify the ends of the model’s structure. End-to-end

models have been limited to small-dimensional data [55]. However, the recent

developments in the computation capacity and large-scale datasets (i.e., big data)

enable us to build large-scale neural network models by composing many non-

linear components to directly calculate high-resolution images or movies. This

thesis proposes to use End-to-End learning to implement image recognition and

drawing functions. In particular, the image recognition model is implemented by a

CNN. In contrast to the conventional feature extractors for images, CNN acquires

good parameters of convolutional kernels and linear connections by solving the

classification problem via gradient descent. The drawing model is required for

considering the sequential data of the drawing motion and the visual feedback

from the drawn picture. In this case, the model is implemented by using RNN.

The model is trained to generate visuomotor sequences also by gradient descent.

3.2 Data Argumentation to Train Image Classi-

fier

Unlike deep learning models, human beings do not have any difficulty in sharing

the concepts of sketch and photo images. Psychological studies of children’s draw-

ings have suggested that hand drawing styles are influenced by non-photorealistic

media in their life, such as comics or cartoons [86, 87]. In this thesis, the im-

age recognition CNN model is trained not only for sketch and photo images but

also for another type of image called illustration images. Illustration images are

non-photorealistic color pictures as shown in Figure 3.1 (b). Regarding the opti-

mization process of CNN, illustration images also contribute to the argumentation

of the sketch dataset because they can be easily crawled on the Web. The pro-

posed data argumentation method also includes the color transformed version of

the photo and sketch images, rather than the conventional data argumentation
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(a)

(b)

(c)
CNN Category

Figure 3.1: An overview of the proposed approach to construct a computational
system that replicates the recognition ability for sketch and photo images. (a)
Photorealistic images. (b) Professional and colored sketch images (illustration
images). (c) Hand-drawn sketch images.

technique that typically increases the data size by the affine transformation of

images.

3.3 Acquisition of Reusable Visuomotor Mem-

ory of Drawing Experiences

To satisfy the requirements of the picture drawing systems B2 and B3, we intro-

duce the RNN learner to obtain a reusable memory of the drawing. The human’s

ability to draw from a picture by associating motor activities was indicated by

Freyd et al. [88, 11]. Their studies showed that we could use production infor-

mation from a static form such as a picture. The information about a letter’s

production was also used for recognition [89]. Pignocchi suggested that the abil-

ity to acquire this information was key to interpreting artworks [12]. Waterman

et al. suggested that the acquisition of information on how to produce pictures

from an image is based on a memory of the visuomotor experiences of drawings

or letterings [90]. In this study, we propose RNN-based systems that obtain vi-

suomotor memory consisting of visual transitions of the drawn picture as image

sequences and motions.

Figure 3.2 describes the proposed approach to build the computational sys-

tem to obtain memory. In this study, we assume that “association” ability means
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Visuomotor sequences Visuomotor Memory

Associated Sequence

(a)

(b)

Figure 3.2: Visuomotor adaptation for drawing. (a) Training process to acquire
an integrated memory of the drawn picture image and motion. (b) Adaptation of
the memory for associating new drawing sequences.
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to adapt the obtained visuomotor memory of drawing to generate appropriate

another drawing motion to depict a given picture image to be reproduced. To

enable the association ability, the proposed drawing system obtained a memory

that could be used for adaptation. Adaptation means to interactively change the

system’s state to produce motor activities by using the visual feedback and the

depicted target. First, the RNN model was trained to generate visuomotor se-

quences from a learnable space. Each sequence consisted of drawing motions, such

as a sequence of the joint angles of a robot and the corresponding visual feedback

from a drawn picture. Image feedback corresponds to the visual transition of a

canvas or paper. After the training process, we conducted an exploration of a

point in the obtained RNN space. This exploration process tried to minimize the

difference between the drawn picture image and the depiction target. Finally,

the RNN generated the drawing motion by perceiving the image feedback from

the currently drawn picture. Further, the implementation details of RNN are

described in Chapter 5.
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Chapter 4

Classification of Sketch and

Photo Images

4.1 Introduction

This chapter presents experiments to check the efficiency of the data argumen-

tation method for enabling a system to recognize a sketch and a photo. Experi-

ments were performed to evaluate the contributions made to the recognizer by the

pictures drawn by professionals (i.e., illustrations). In the experiments, several

variations of image recognition models using deep learning were evaluated by the

classification tasks on the photo and sketch images. The classifiers were imple-

mented by a CNN, which did not require pre-designed shape primitives or feature

extraction algorithm. The datasets for evaluation consisted of hand-drawn sketch

drawings and photo images.

The rest of this chapter is organized as follows. In Section 4.2, the proposed

data argumentation method is explained. This method is intended to improve the

discrimination accuracy of a CNN model for both the sketch and photo images.

Then, the proposed method is evaluated in experiments by using a CNN model.

Section 4.3 introduces experiments to classify 20 classes of animal images. We

describe the results of the experiments in Section 4.5. Also, we report an analysis

of the image features obtained by the CNN model trained by the proposed method

and discuss the possibility of the proposed method being used for sketch image

retrieval. Finally, this chapter concludes in Section 4.6.
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(a) Illustration

Gray scaled & Edge Enhanced 

(b) Photograph

Gray scaled

Figure 4.1: The proposed method to prepare training dataset for CNN. (a) Il-
lustration images with grayscale and sketch-like variations of images. (b) Photo
images with grayscale variations.

4.2 Data Argumentation Method

Figure 4.1 shows how to prepare a training dataset for CNN. We include illustra-

tion images into the set of photo and sketch images. Illustration images are ex-

pected to work as intermediate visual representations between photos and sketches

because they can be easily collected by image search engines. The added illustra-

tion images included color-transformed versions. We included edge-emphasized

versions of the illustration images to imitate the sketch images. The edges of the

illustration image were extracted by using a canny detector [39]. Furthermore,

the dataset had grayscale images of the photo. The sketch images were drawn by

five Japanese participants.

4.3 Image Classification Experiments

To confirm the proposed data argumentation method, experiments were conducted

for classifying 20 classes of animal images. In these experiments, four CNN mod-

els were evaluated by using four training datasets. To prepare these training

datasets, the source of image types was changed. The discrimination abilities of

the trained CNNs were evaluated by classification accuracies for the untrained

images of photos and sketches.
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Figure 4.2: Examples of the collected images for experiments. (a) Photorealistic
images. (b) Illustrations. (c) Sketch images drawn by humans.
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4.3.1 Details of Datasets

Figure 4.2 depicts a part of the image samples used in the experiments. The

database was created by collecting 27,927 images of animals. These images be-

longed to 20 classes of animal names and were collected by an image search en-

gine. To obtain sketch images for testing, we asked five participants to draw 100

sketches. To input to CNN models, we resized the collected images into color im-

ages of 256 256 pixels. When these images were used for training CNN models,

they were randomly cropped into 227 227 pixels. Note that all the images were

horizontally flipped to increase the number of images in each dataset.

Table 4.1: Training datasets. (A) Illustration-only dataset. (B) Photo-only
dataset. (C) Illustration and photo dataset. (D) Dataset using the proposed
method.

(A) (B) (C) (D)

Photo - - x x
Illustrations x x x x
Photo (Gray) - - - x
Illustrations (Gray) - - - x
Illustrations (Edge) - - - x
Num. of Image 12,734 38,468 51,202 115,138

Table 4.3.1 describes the detail of the four datasets for the experiments. The

first two datasets A and B have only one type of image from the illustration or

photo. Also, the dataset C has both types of images. We prepared the dataset (D)

by using the proposed method. As a test dataset used to evaluate the classification

accuracy of untrained images, we also made a dataset that had 100 images of

sketches and photos.

4.3.2 Training CNNs

We use Alex-net as a deep learning model for the experiments. The architecture

of this model is described in Figure 4.3. This model has five convolutional lay-

ers and corresponding activation functions. The input images are convoluted by

these layers and down-sampled by pooling layers. Finally, the image features are

30



Figure 4.3: Architecture of CNN for experiments

converted to the probability of class by the three fully-connected layers.

The learnable parameters of the model are obtained by a stochastic gradient

descent [91]. The gradients are given by the back propagation algorithm [92],

which is a method for calculating the derivatives of the loss function with respect

to the vectors of the composed, smooth function. The loss function of the model

has cross entropy between the predicted probability of the category and one-hot

representation of class information:

L = −
∑

b

ŷb log yb. (4.1)

Here, ŷb is the category probability of b-th sample, and y is the probability pre-

dicted from the corresponding input. At each iteration, a number of image samples

are randomly picked up from the training dataset. Then, the loss value is calcu-

lated based on Equation 4.1. Finally, the parameters are updated by using the

derived gradients.

All the models were trained for 1400k iterations by gradient descent. At each

iteration, the gradients of the learnable parameters of the models were obtained

by using a mini batch having 100 images. We use Caffe [93] as a framework to

implement the optimization process.
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4.4 Results of Experiments and Discussion

4.4.1 Discrimination Ability for Photos and Sketches

Table 4.2: Classification accuracy on the test dataset. Each line corresponds to
the best score obtained during the training by using one of the datasets.

Dataset Photo Sketch Mixed

(A) Illustrations 26% 41% 33%
(B) Photo 99% 11% 55%
(C) Illustrations and Photo 99% 42% 71%
(D) Proposed Method 99% 76% 85%

The training results of the four CNN models are summarized in Table 4.4.1.

Each line of the table indicates the best classification accuracy during the training

iterations. These accuracies are calculated by using the test dataset that consists

of photo and sketch samples. In case a model is trained using the dataset (A), the

model classified 33% of the test dataset images, and the sketch images were dis-

criminated more successfully than the photo images. When another CNN model

was trained with only the photo images in the dataset (B), the model discrim-

inated among almost all the test photo images, but the accuracy of the sketch

images became worse than the accuracy of the dataset (A). Classifying both the

illustration and the photo improved the accuracy of the sketched images by main-

taining high accuracy for the photo images. Finally, the dataset (D) made by the

proposed method outperformed the other datasets. By adding color-transformed

illustrations and photo images, the accuracy of sketched images was improved.

4.4.2 Acquired Image Features of CNN Models

Also, we analyzed the image features of the trained CNN’s layers by visualizations

using principal component analysis (PCA). PCA was performed on the output of

the fully connected layer, which was second from the output layer when the images

of the training dataset were given as input to the CNN model. Figure 4.4 shows

how the features were gathered concerning the category. The contribution values

were 1.84%, 1.06%, and 0.97%for the first, second, and third layers, respectively.
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PC 1
PC 2

PC 3

PC 1 
PC 2

PC 3

Figure 4.4: Visualization of the image features colored by the category. The image
features were obtained in one of the layers of the CNN model, which was trained
using the proposed method. Two columns corresponded to the same plot from
different angles of the view. The axes indicate the acquired principal components.
Each color of the point corresponds to the category of image.

Photo Photo (gray) Illustration Illustration (gray) Illustration (edged)

(c) fc7(b) fc6(a) pool5

Figure 4.5: Image features of the images categorized as bears. Each column
represents the same plot from a different angle of the view. The color of the plots
indicates the type of image.
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To interpret how the trained CNN model organizes the types of images, we

conducted another visualization process. In this case, the features were obtained

from three consecutive layers after the convolutional layers (see Figure 4.5): (a)

pool5 means the first pooling layer of the model; (b) fc6 indicates the fully con-

nected layer, which is next to the layer (a); and (c) fc7 means second from the

last fully connected layer. These visualization results were obtained by PCA and

Figure 4.4, but the colors corresponded to the types of images. As shown in Fig-

ure 4.4, the features cluster by the types of images at pool5 ((a) in Figure). By

shifting to the deeper layer, they gradually gather and form a single cluster.

We quantitatively evaluated how the image features were gathered. To mea-

sure the distances between each type of image, we used the metric S, which was

the ratio between the two covariances sw and sb:

sw =
1

N

∑

i∈class

∑

mi∈m

(m−mi)
T(m−mi) (4.2)

sb =
1

N

∑

i∈class

(mi −m)T(mi −m) (4.3)

S =
sb

sw
. (4.4)

Here, m is a vectorized image feature; sw is the between-class covariance of the

image features whose mean is indicated as mi; sb corresponds to the within-class

covariance; and m indicates the mean of all the features. We obtain S of the

dimensionally compressed image features depicted in Figure 4.5. In this case, the

class of the image indicated the image type, not the type of animal. Consequently,

S scored 0.53, 0.11, 0.03 at the pool5, fc6, and fc7 layers, respectively. These scores

imply that the obtained features were gradually gathered by shifting the target

layer.

4.5 Discussion and Future Work

Through our experiments, we confirmed that the inclusion of illustration images

contributed to an improvement of the CNN classifiers. These experimental results
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reflect the contributions of culture-specific visual representations for a human’s

sketch recognition ability. However, the scope of the discussions is limited because

the sketch images were drawn by five Japanese participants. In future studies,

it is important to investigate cultural differences and variations across age and

gender.

One way of using the proposed method is by using an application that searches

images by sketching. This kind of application is called “content-based image

retrieval” (CBIR) systems [94]. CBIR systems enable us to find images whose

discriminating metadata do not exist. Instead of using keywords as a query,

CBIR systems require images as the user’s input. The use of hand-drawn sketch

images as queries were investigated for sketch image-retrieval systems [95, 30]. To

measure the similarity between hand-drawn sketch images and the images in the

database, well-elaborated image feature extraction methods have typically been

adopted [96, 30].

The recent success of deep learning has led to the appearance of CNN models

for CBIR systems [97, 98, 99]. Classifying both the sketch and photo images by

using a CNN model is challenging because of the two reasons mentioned in Section

4.2: large visual gap and the lack of large-scale dataset. To overcome the difficulty

in training CNN, Sangkloy et al. proposed the use of two CNNs corresponding

to each type of image [65]. They used a constraint to share the image features

obtained from multiple CNN layers [100]. However, their method required a large

computational memory to train two CNN models. The method proposed can be

simpler than integrating the photo and sketch images because it did not require

multiple CNN models.

4.6 Conclusion of Chapter

In this chapter, we described the experiments on the classification of the sketch and

photo images by using CNN models. The proposed data argumentation method

includes illustration images with color-converted versions into the training dataset

of photo images. The proposed method was evaluated by performing experiments

for discriminating the sketch and photo images of animals into 20 classes. Con-
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sequently, the CNN model trained by the proposed method demonstrated the

best classification accuracy rather than the models trained by other combina-

tions of image types. The classification accuracy was also improved by including

edge-emphasized sketch images. Furthermore, we tried to interpret how the CNN

model organizes each type of image by the visualizations of the intermediate lay-

ers of the model. Finally, a possibility to use the proposed method for sketch

image-retrieval systems was suggested in the last section.
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Chapter 5

Visuomotor Adaptation for

Drawing

In this chapter, several experiments on learning visuomotor drawing sequences are

described. First, the proposed method to construct models based on deep learning

for learning visuomotor sequences are introduced in Section 5.1. In this section,

we also describe the method to enable generate-appropriate drawing motions from

an image by reusing the obtained memory. Section 5.2 explains the experiments

on a simulator environment. These experiments were conducted to demonstrate

the ability of visuomotor adaptation for several scenarios of drawing interactions.

In Section 5.3, the target of the experiments is expanded to the real world by

using a humanoid robot. Finally, this section is concluded in Section 5.4.

5.1 Introduction

In this section, the proposed method to enable visuomotor learning of drawing

experiences is described. First, a visuomotor sequence is defined. Then, the

method for a model based on deep learning to acquire an integrated memory is

explained. After that, a method to reuse the obtained memory is described.
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5.1.1 Visuomotor Sequence of Drawing

In this Section, the drawing process is assumed to be a finite process. The process

X has a sequence of images from the visual feedback received from the drawn

picture and the corresponding drawing action state vector as follows:

X = (x1, x2, · · · , xt, · · · , xT ) (5.1)

xt = (it, at), (5.2)

where it is an image at the time step t = (1, 2, . . . , T ), and at corresponds to the

drawing action state. The drawing action state means the status of the drawer.

For example, in the simulator experiments, the drawing action state means the

position of a pen. In the case of real robots, the state will be a vector that

represents the physical status of the robot, for example, the joint angles. We

assume that all the processes start from the same state. This means that i1 is an

image without any lines, and a1 represents a fixed starting position.

5.1.2 Learning Model

As the time step t increases, the picture is visually altered by drawing actions

until the maximum step T . We present a function to evolve the process as a

forwarding function f [101] as follows:

xt+1 = f(xt). (5.3)

We approximate this forwarding function by a RNN, which is a neural network

model for learning sequential data, by retaining the memory as a state of the

hidden layer. We formalize the RNN function as an appropriated forwarding

function of a given drawing sequence as follows:

xt+1, ht = F (xt, ht−1), (5.4)

where ht is the state of the RNN’s hidden state. To acquire an appropriate approx-

imation of f under a given X, the learnable parameters of the RNN are acquired
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Figure 5.1: Forward propagation of RNN

by an optimization process to minimize the prediction error. The prediction error

means the difference between the predicted state x̂t and the target state x. The

errors at each time step are accumulated into the loss of training L. L is given by

L =
T
∑

t=2

l(x̂t, xt). (5.5)

Here, x̂ is obtained by the forward propagation of RNN, and l is a loss function

which refers to the similarity between x̂t and xt. The input to the RNN model

can be taken from the target state xt or the prediction at the previous step x̂t−1.

When the model is fed the target state for all steps, we call it “open generation.”

Another case is called “closed generation.” In this case, the input to the model

is replaced by the previous prediction. These modes of generation are presented

as follows:

xt =







xt (t = 1)

gitxt + (1− git)x̂t−1 (t > 1),
(5.6)

where git = (1, 0) is the gating value that determines the mode of the forwarding

process. When git = 1 for all t, it means open generation; and when git = 0 for all

t, it is closed mode.

We can consider setting the learnable state of the hidden state at the first step

h̄ as the “initial state.” The initial state is input to the hidden state at the time

step h0. When the RNN model is trained to generate a number of sequences,
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we assume multiple initial states for all the trained sequences. The sequence

generated by the trained RNN model is affected by not only the input state but

also by the initial state [102]. In particular, when the generation mode is closed,

the generated sequence is determined only by the initial state because the first

input is shared.

In this section, the training process of the RNN model was a minimization of

the total loss of all the sequences:

Ltotal =
∑

s

Ls, (5.7)

where Ls is the accumulated loss between the s-th sequence of the target data and

the predicted sequence generated by using the initial state ĥs. The initial states

are updated by gradient descent and other learnable parameters of the model.

5.1.3 Reusing obtained memory

When the system draws a picture after the training process, the forwarding process

of the trained RNN is the open-generation mode, but the model accepts the input

not from the target data but from the current sensory input. The sensory input is

assumed to consist of visual feedback from the drawn picture and the action status

vector. After acquiring the inference from the model, the robot starts drawing

according to the predicted action status.

Adaptation of the obtained visuomotor memory for associating drawing motion

is implemented by a process to explore the initial state that can make the model

draw the expected picture. To explore a good initial state, the gradient descent

method was used. We acquired a sequence by using closed generation from an

initial state vector initialized by using a random or a zero value. Then, the initial

value was updated by the gradients given by the error between the image part of

the generated sequence and the target picture. The error Lexp was accumulated

in part of the time steps as follows:

Lexp =
T
∑

t=2

got l
img (̂it, it), (5.8)
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Figure 5.2: Gating for accumulating loss to explore an initial state

where Limg is a function to measure the similarity between the predicted image

ît, and the image to be associated it. got = (1, 0) is a gating value to determine

whether or not the loss will be accumulated at the time step t.

The gating values for the forwarding process gi to get it and the accumulating

error go are determined by the association scenario, as shown in Figure 5.2. When

the depiction target picture is given as a static image, git is zero for all the steps.

Only at the last step, go is one because the images for the rest of the time steps are

not given; therefore, go = (0, 0, · · · , 0, 1). When the first line is given in advance,

git and got are one at the steps where the given line is drawn. Note that got at the

last step is also one even if the first line is given.

5.2 Simulator Experiments

This section presents experiments to demonstrate the association ability of the

proposed RNN model in a simulator experiment. First, we describe the architec-

ture of the model in 5.2.1. The detail of the simulator environment is presented

in 5.2.2. Subsequently, learning experiments conducted on 30 classes of drawing

sequences are described in 5.2.3. In these experiments, we proposed that the

RNN model demonstrates the ability to associate drawing motion from an image

and another image conditioned by the first given line. In 5.2.4, we compare the

proposed model with a model without vision.
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Figure 5.3: The architecture of the proposed RNN model for simulator experi-
ments. Each box represents a RNN layer. Conv: Convolution2D or Transposed-
Convolution2D with the activation function. Dense: Linear mapping with activa-
tion function. LSTM: Long short-term memory cell.

5.2.1 Model Architecture

The model used in the simulator experiments is a RNN with convolutional layers,

as shown in Figure 5.3. The model accepts the input consisting of an image it

and the corresponding drawing action state at. To reduce the dimensionality of

the image input, the convolutional layers are stacked to construct the encoding

part. The encoded image features are concatenated with the feature of the action

state encoded by the dense, connected layer. Then, the recurrent connection layer

determines the output by using the concatenated feature as the input. We use

LSTM [103, 104]) as the recurrent layer. The output of the recurrent layer is split

into the image and action state features. The action state features become the
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predicted action state by the decoding part implemented by a dense, connected

layer. The image decoder part has transposed convolutional layers that accept

the intermediate features of the image encoding part in addition to the previous

layer’s output. The bridge connections between the encoding and decoding part

helps the decoding part to reconstruct the spatial information of the image [105].

The initial state of the recurrent layer is calculated by a dense, connected layer

without bias term:

ht=0 = tanh(W inith̄), (5.9)

where W init is the weight matrix, which is one of the learnable parameters of the

model. We apply this dense connection layer to reduce the dimensionality of the

initial state. The small dimensionality of the hidden layer determines the capacity

of RNN’s memory.

The parameters of the RNN model are optimized by the stochastic gradient

descent (SGD) method that uses the Adam optimizer [80]. The model generates

sequences in the closed mode when it is trained. The implementations of loss

functions for the image and the action state are described in each subsection.

5.2.2 Simulator Environment

The simulator used in the experiments described in this section has the function

of drawing black lines with fixed thicknesses. The simulator gives binary image

data as the image feedback from the canvas. All the drawing processes start from

the center of the canvas. The drawing action state vector consists of the position

of the pen and the binary representation that specifies whether or not the pen

touches the canvas; another binary data specifies whether or not the drawing

process has ended. This representation was introduced by [106], but this study

uses the absolute position of the pen to avoid exceeding the size limits of the

canvas.
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Figure 5.4: Example of the training dataset

5.2.3 Experiments on Associating Drawing Motion From

an Image

Experimental Setting

To demonstrate the visuomotor adaptation ability by using the proposed model,

we conducted experiments on learning 30 classes of drawing samples. Firstly, the

RNN model produced the drawing sequences from the initial state obtained in the

training process. The objective of this experiment was to confirm the forwarding

function obtained by the training process. Then, we checked the visuomotor

adaptation ability in three cases: 1) when completed images were given, 2) when

a completed image with the first line was given, and 3) all the lines excluding the

last line were not given in the trained ordering. In the second case, the model

was required to adapt not only to depict the given image but also to follow the

given line. The final case associated the drawing motions to complete the given

drawing process whose line ordering was unknown.
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Figure 5.4 shows the pictures drawn by the training sample sequences. The

sequences for training the proposed RNNmodel was collected by the experimenter.

These sequences consisted of 30 categories. Pictures that had the same number

of lines (e.g., 3-5 lines) were placed in one category, and the length of all the lines

was less than 100 steps. The image obtained by the simulator it had 128 × 128

pixels.

Training a RNN model for a very long sequence is typically a difficult task be-

cause the gradients of the hidden state become unstable [107]. To enable training

RNN for very long sequences, we split the training task into two sub-tasks that

required two RNN models. We firstly trained a RNN model to learn a single line

(LineRNN). Then, another RNN model was trained to control the LineRNN (Pi-

cRNN). The structures of these RNN models were shared, but they had different

learnable parameters.

LineRNN accepted the input that consisted of the drawn picture image iLt and

the drawing action state at. The drawing action state was the set of pen positions

and the status that specified whether or not the pen was touching the paper:

at = (p1t , p
2
t , q

L
t ), (5.10)

where p1t and p2t are the absolute positions of the pen on the x-y axis. The variable

qLt indicates the status of the pen’s lifting. If qLt = 1, a line will be drawn when

the pen moves following the next position. The variable iLt has information of

only a single line. Therefore, iLt does not include the previous lines in which the

simulator added another line to the canvas.

The optimization loss of LineRNN is given by accumulating the losses of the

image and the action:

LLine =
∑

t

[limg (̂iLt , i
L
t ) + lact(âLt , a

L
t )], (5.11)

where limg is the loss function that accepts the target image iLt and the predicted

image îLt ; l
act is another loss function for the target action state aLt and the pre-

diction ât. These loss functions are defined as follows:
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limg (̂iLt , i
L
t ) = iLt log î

L + (1− iLt ) log(1− îLt ). (5.12)

lact(âLt , a
L
t ) = − logN (p1t , p

2
t |µ̂

1
t , µ̂

2
t , σ̂

1
t , σ̂

2
t , ρ̂t)− qLt log q̂Lt . (5.13)

Here, limg corresponds to the cross-entropy of the binary image between iLt and

îLt ; l
act is given by the negative log likelihood of a bivariate normal distribution

and the cross-entropy of the pen’s status; µ̂1
t and µ̂2

t are the mean values of the

x- and y-coordinates, respectively; σ̂1
t and σ̂2

t are the variances of the x- and

y-coordinates, respectively; and ρ̂t is the covariance is the .

LineRNN has the initial state h̄L for each trained sequence. These initial states

and the learnable parameters are obtained by stochastic gradient descent.

PicRNN also accepts the image and the drawing action status. However, the

input image iPt of PicRNN differs from that for LineRNN. The variable iPt has

previous lines to include the information of line ordering. The drawing action

status for PicRNN aPt consists of the probability of determining whether or not

the drawing process has ended; the initial state of LineRNN h̄L (instead of the

drawing action status) is

aPt = (h̄L
t , q

P
t ), (5.14)

where qPt is the probability of end of the drawing. The loss for training PicRNN

is given as follows:

LPic =
∑

t

[limg (̂iPt , i
P
t ) + lPic(âPt , a

P
t )], (5.15)

where lPic is a loss function of the action status of PicRNN. The value lPic is given

by adding the mean square loss of h̄L and the cross-entropy of the probability.

To train PicRNN, LineRNN should be trained to acquire the initial states

h̄L. In the experiments, the obtained value of h̄L is normalized into the specific

range because the activation function of the PicRNN’s drawing action state is

tanh. When the predicted initial state of LineRNN is given to draw a line, the

state is normalized again by using the artanh function. At the beginning of

the training process of LineRNN, h̄L is initialized by using a zero vector. After
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Table 5.1: Parameters of LineRNN
PART NUM

Image Encoder 4 (conv), 2 (dense)
Image Decoder 4 (conv), 2 (dense)
Action Encoder 1 (dense)
Action Decoder 1 (dense)

RNN 200 cells
Initial State 30 dims

Table 5.2: Parameters of PicRNN
PART NUM

Image Encoder 4 (conv), 2 (dense)
Image Decoder 4 (conv), 2 (dense)
Action Encoder -
Action Decoder 1 (dense)
State Encoder 1 (dense)
State Decoder 2 (dense)

RNN 200 cells
Initial State 10 dims

training LineRNN, PicRNN is trained by using the normalized initial states and

the probability qPt . PicRNN is also allowed to have its initial state h̄P .

The parameters of LinerNN and PicRNN are presented in Tables 5.1 and 5.2,

respectively. We use tanh as the activation function for all the layers excluding

the part for the probability. The probabilities are given by the softmax function.

The position of the pen and value of the image pixels are normalized in the range

(0, 1).

The hyperparameters of Adam Optimizer were α = 0.001 and β1 = 0.75.

First, LineRNN was trained by using all the lines of the dataset. Then, PicRNN

was trained to produce the obtained initial state of LineRNN, the probability of

drawing process, and the picture image. To extend the dataset, we increased the

number of samples by changing the ordering of lines. However, single ordering for

each category was not added to the dataset.

Association of drawing motion was implemented by exploring the initial state
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(a)

(b)

(c)

Figure 5.5: Results generated by the trained RNNs. (a): Ground truth from
the training dataset. (b): Pictures drawn by the model. (c): Predicted drawing
images.

of PicRNN. For each exploration, we initialize 50 candidates of h̄P by using a

normal distribution with zero means and a variance of one. After every 100

updates, half of the worst candidates were replaced by a new normal distribution

whose mean of the better candidates. The candidates were measured by the loss

value of exploration. After exploration, the models drew a picture using the best

candidate.

For the scenario of adaptation, we performed three cases of association: 1)

when the image in the last step was given, 2) when the images in the last step

and the steps of the first lines were given, and 3) when the images in all steps

were given excluding the part of the final line.

The gating values used to obtain the association loss were given by the exper-

imenter. For associating a motion from a picture image in only the last step, we

used gi = (1, 0, 0, · · · , 0) and go = (0, 0, · · · , 0, 1). When the first line was also

given, the gating value was one at t = 2.

Generating from the obtained initial state

Figure 5.5 shows the drawing results obtained by the trained model with one of the

trained initial state values. Figure 5.5 (a) presents the snapshots of the training

dataset. The predicted image sequence and the history of the drawn picture are

shown in Figures 5.5 (b) and (c), respectively. At each step of the PicRNN’s

prediction, LineRNN draws a line by using the initial state predicted by PicRNN.

As shown in the figure, the trained model draws lines in the same order as the
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(a) (b) (c)

Figure 5.6: Results of the initial value exploration. (a) Pictures drawn by the
model. (b) Depiction target of the images. (c) Predicted drawing images at the
final step of the sequence associated with the initial value.

target sequence. Finally, the picture drawn by the model is a picture similar to

the final state of the target sequence.

The association results from the picture images are summarized in Figure 5.6.

We conduct explorations of the initial state of PicRNN for each picture image

shown in Figure 5.6 (b). The loss of exploration is given by the prediction error

between a given depiction target and the image prediction made by PicRNN.

Note that the target picture images are not included in the training dataset. The

model draws pictures that are similar to the given pictures. This suggests that

the proposed model demonstrates the association ability of the drawing process

from a picture image.

To demonstrate the adaptation ability of the association by the proposed

model, other exploration experiments were conducted. Figure 5.7 presents the

drawing process for depicting the images shown in (c). These exploration pro-
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(a)

(b) (c) (d)

Figure 5.7: Results of the initial value regression on sketches starting with a line.
The black lines are given by the experimenter. The red lines are drawn by the
proposed model.

cesses were conditioned by the given first line. In this case, a loss of the initial

state exploration was given by prediction errors at not only the final step but

also the first step when the model drew the first line. Consequently, the picture

images predicted by the model were similar to the given picture image and were

depicted by adding appropriate lines to the first line.

To confirm the generalization ability for line ordering, we conducted initial

value exploration tasks whose results are described in Figure 5.8. This task re-

quires the model to add the last line to the incomplete drawing process. The lines

of the given drawing process are given in an untrained order. The given drawing

process is not trained as well as the other experiments. As shown in Fig. 5.5, the

model adds the last line, which is similar to the ground truth from the untrained

data.

5.2.4 Comparison with RNN Model Without Vision

To clarify the effects of including image feedback, we conducted experiments to

compare the proposed model and RNN without vision. The task was to depict

faces when the first line was given in advance. Further, we also conducted exper-

iments in case an additional line was included in the given sequence. The aim of

adding lines was to confirm the robustness against “noisy” lines. The first line

was given as an outline of the face, and each RNN model was required to depict a
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(a-1)

(b-1)

(c-1)

(d-1)

(a-2)

(b-2)

(c-2)

(d-2)

(a-3)

(b-3)

(c-3)

(d-3)

(a-4)

(b-4)

(c-4)

(d-4)

Figure 5.8: Results of initial value regression on untrained combinations of lines.
Black lines were given by the experimenter. Red lines were the lines drawn by the
model.
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Table 5.3: Parameters of Model
PART NUM

Image Encoder 4 (conv), 2 (dense)
Image Decoder 4 (conv), 2 (dense)
Action Encoder 1 (dense)
Action Decoder 1 (dense)

RNN 256 cells
Initial State 10 dims

face by adding more lines. The noisy lines were placed outside the given outline

in all cases.

Experimental Settings

For the training dataset, we randomly selected 1000 samples from the sequences

of the QuickDraw Dataset [108] in the Magenta project [109]. To reduce the

computation cost to train RNNs, we used only the sequences whose length was

less than 100 steps. To acquire sequences of drawn pictures, we used the simulator

that was used in previous experiments. The images were 64 × 64 binary pixels.

Note that the position of the pen was converted from the relative point to the

absolute point to avoid going beyond the canvas.

As a RNN model to be compared with the proposed model, sketch-rnn by Ha

et al. [79] was used. This model is a variational autoencoder [110] for reconstruct-

ing the drawing process. To accept and generate sequential data, the decoder and

encoder parts were implemented by LSTMs. Ha et al. also reported uncondi-

tional generation by using only the decoder LSTM. In this study, we used only

this decoder LSTM model as the learner of the drawing sequences. This model

reconstructs the drawing sequence that consists only of the pen status. Thus, it

cannot accept visual feedback from the drawn picture. The recurrent layer of the

model had 1024 LSTM cells and five-dimensional latent variable expressions as

the initial state. The model predicted the position of the pen based on multiple

Gaussian distributions, and parameters were presented to control the randomness

of selection. We set this parameter as 0.25 because it produced stable drawing

results.
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The model proposed in this study was implemented by using a RNN model

with image prediction. Unlike what we did in the previous experiments, we did

not split the training task because the trained sequences were short. The loss of

the training process was given as follows:

L∗ =
∑

t

[limg (̂it, it) + lact∗(âLt , a
L
t )] (5.16)

lact∗ = − logN (p1t , p
2
t |µ̂

1
t , µ̂

2
t , σ̂

1
t , σ̂

2
t , ρ̂t)− qt log q̂t. (5.17)

where qt is the probability of the pen status used in sketch-rnn, and qt consists of a

three-dimensional vector. The parameters of the layers are described in Table 5.3.

Associating lines to complete the picture of the face was also done by exploring

the initial state. The exploration loss was given by the prediction error at the final

step and at the steps when the conditional lines were drawn. Fifty candidates of

the initial state were initialized by uniform distribution whose value range was

[−0.1, 0.1]. The candidates were updated by using a normal stochastic gradient

descent with momentum. Note that the candidates were not reinitialized in these

exploration processes.

Results

Figure 5.9 describes the results by of both the sketch-rnn and the proposed model.

Each column of the figure corresponds to the input lines; the pictures are drawn

by sketch-rnn (without vision) and by the proposed method. The initial state

of the proposed method was obtained by explorations for associating the picture

image shown in the upper right side of the “target image”. Each row corresponds

to a different input line. Specifically, the rows from (b-1) to (b-5) indicate the

results of noisy line inputs. As shown in the figure, when the beginning portion of

the process is given by only a single line, both the models draw parts of the face

inside the output line. Facial expressions by sketch-rnn have variations because its

generation process cannot be conditioned by picture images. The pictures using

the proposed model have distortions, but the faces drawn have mostly the same

structure as the depiction target. Sketch-rnn tends to put the parts outside the
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(a-1)

(a-2)

(a-3)

(b-1)

(b-2)
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(b-4)

(b-5)

 Input
lines Sketch-rnn Proposed

Method
Target
Image

Figure 5.9: Results of drawing adaptation to the given input lines. Black lines
are given by the experimenter. Red lines are drawn by the models.

54



given outline in the case of the noisy line input. In comparison with the sketch-rnn

results, the proposed model succeeded in drawing the outline inside.

5.2.5 Discussions for Simulator Experiments

In the simulator experiments, the proposed RNN models demonstrated the visuo-

motor adaptation ability of drawing. The adaptation ability means to associate

appropriate drawing motions from the picture image. This association process is

conditioned by the prediction errors. The functionality of the implemented draw-

ing system includes not only accepting visual feedback from the drawn picture

but also predicting the future state of drawing. The image prediction enables the

models to obtain the error that can be used for exploring the initial state of the

RNN’s hidden layer. In the proposed architecture, the initial state functions as a

conditional input to the system.

The association ability demonstrated in the simulator experiments allows us to

add another condition to determine the model’s behavior. The loss for the initial

value exploration could have been a loss for the picture image not only in the

last step, but also in the steps during the process. In other words, by changing

the exploration loss, the models show flexible adaptation to the given picture

image sequences. First, the model generates all the drawing motions to depict a

given picture image. This situation of association corresponds to remembering the

depiction process and recovering them [90]. By adding image prediction losses,

we can include a more complex association scenario-conditioning by using given

lines. The proposed RNN-based system demonstrated that it could complete the

given process by drawing the final line. Also, the system could change its behavior

depending on the depiction target even if the beginning part of the process was

shared.

In the simulator experiments, we confirmed that the drawing behavior by a

proposed RNN model could be conditioned by using picture images. Although the

original sketch-rnn can reconstruct the given drawing motions by using another

LSTM as the encoder, the condition can be given as raster image data. Fur-

thermore, the experimental results suggest not only the necessity of visuomotor

learning for association but also the possibilities for drawing applications. The ro-
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(b) DNN
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Reconstructed
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Figure 5.10: The architecture of the RNN-based system for robotic experiments
(a) A humanoid robot with a stylus pen. (b) A DNN autoencoder. (c) The RNN
model for modeling visuomotor sequences.

bustness against noisy lines is an important factor to consider while constructing

systems for understanding or helping the drawing process.

5.3 Robot Experiment

In this section, several visuomotor adaptation experiments using a humanoid robot

are described. In the subsection 5.3.1, the implementation of a RNN-based model

for visuomotor sequential learning was given. Subsequently, two experiments on

learning the drawing process of simple shapes were explained. In the subsection

5.3.3, the first experiment that associated drawing motions from a picture image

was described. The second experiment confirmed that the obtained visuomotor

memory could be used for recognizing picture images. Finally, the adaptation

abilities described in this section are discussed in subsection 5.3.5.
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5.3.1 Model Architecture

Figure 5.10 describes the architecture of a RNN-based system for learning a vi-

suomotor sequence of the robot’s drawing process. The use of neural network

models was inspired by multimodal integration learning using autoencoders [111].

An autoencoder is a DNN model for acquiring low-dimensional features by un-

supervised learning. Hinton et al. proposed to construct an autoencoder model

by stacking many layers of feedforward neural networks [57]. Their model can be

applied to large-dimensional data, such as raw image pixels. We use this DNN

autoencoder to acquire the feature of an image from the drawn picture. The RNN

model accepts and predicts the dimensional compressed image feature instead of

the raw image data. This technique reduces the computation cost to optimize the

model parameters.

A DNN autoencoder consists of the encoder e that reduces the dimensionality

of the input it and the decoder d to reconstruct the input from the encoded feature.

The forward propagation of the reconstruction is formalized as follows:

i∗t = d(it) (5.18)

ît = e(i∗t ), (5.19)

where i∗t is a low-dimensional feature of it. Both the encoder and the decoder

are implemented by using a linear map with a sigmoid as the non-linear activa-

tion function. To train this network, we use a truncated Newton-optimization

method [112]. The cost function is defined as the mean square error between the

reconstructed input data ît and the corresponding input it.

To implement the RNN model, we use a continuous time-scale recurrent neural

network (CTRNN) [113]. CTRNN is a RNN model typically used for learning

continuous sequences such as a robot’s motion. The state of the hidden layer of

CTRNN is computed not only by the input but also by its own previous state.

The time responsiveness of the hidden layer is determined by a time constant

value, which is one of the hyperparameters. Specifically, the CTRNN model has

hierarchical connections between hidden layers that have different time constant
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Figure 5.11: Hierarchical connectivity of CTRNN in the case of the closed gener-
ation mode.
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values, as shown in Figure 5.11 (Figure 5.11). The inference by this model x̂t at

the time step t is given as follows:

uF
t = (1−

1

τX
)uX

t−1+

1

τX
(WXX · x̂t−1 +WXF · hF

t−1 + bX)

uF
t = (1−

1

τF
)uF

t−1+

1

τF
(W FX · x̂t−1 +W FF · hF

t−1 +W FS · hS
t−1 + bF )

uS
t = (1−

1

τS
)uS

t−1+

1

τS
(W SS · hS

t−1 +W SF · hF
t−1 + bS),

(5.20)

where uX
t , u

F
t , andu

S
t are the internal states of the hidden layers named IO, CF,

and CS, respectively. The variables x̂t, h
F
t , and hS

t indicate the states of the hidden

layers activated by the nonlinear activation function σ as follows:

x̂t = σ(uX
t ) (5.21)

hF
t = σ(uF

t ) (5.22)

hS
t = σ(uS

t ). (5.23)

The hidden layers each have their time constant value τ . The initial states of

these layers are given as follows:

x̂0 = 0 (5.24)

hF
0 = 0 (5.25)

hS
0 = h̄, (5.26)

where h̄ is a learnable parameter for the s th trained sequence. The model gen-

erates a sequence by using the closed mode, and we give x̂1 = x1 as the initial

59



Figure 5.12: An example of the dynamics of CTRNN with hierarchical connec-
tions. Two sequences are generated from difference initial states.

input.

The time constant values and the hierarchical connectivity between the hid-

den layers makes it possible for the model to organize a complex sequence as a

combination of multiple sequences having different time scales (Figure 5.12). The

generated sequence is determined by the initial state of the CS layer hS
0 = h̄

because the other input to the model is shared. The initial state of CS layer

is allowed to be changed during the training process. Each initial state of CS

corresponds to the trained drawing sequences.

The total loss was calculated by accumulating the loss for all the sequences

to be trained. For the loss function to train the CTRNN model, we used the

gradient descent method. To acquire the gradients of each parameter, the loss

function was calculated for every iteration. The loss function was defined as the

error between the generated sequence and the target data:

L =
∑

s

T
∑

t=2

||xs
t − x̂s

t ||
2
2, (5.27)

where xt and x̂s
t are the states of the s-th learnt visuomotor sequence at the time

step t.

Although CTRNN can remember multiple sequences, its capacity for generat-

ing large-dimensional inputs, such as raw image pixel data, is limited. Also, the

imbalance of dimensionality between the image and drawing action states (joint
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angles) causes poor regression accuracy for low-dimensional data, i.e., the draw-

ing actions. Therefore, we use the dimensionally compressed image feature by the

DNN autoencoder. In other words, the CTRNN is trained to generate the vector

(i∗t , at) instead of (it, at), as xt.

To collect the drawing data for constructing the training dataset, we conducted

a direct teaching experiment. An experimenter held the robot’s arm, and let the

robot move its hand to depict shapes. When the robot’s arm was moving, the

drawn picture image was recorded as a raster image. To capture the images

when the robot was drawing, we used a pen tablet. After collecting the dataset,

the DNN autoencoder was trained to reconstruct all the collected images. Then,

we trained the CTRNN model by using the dimensionally compressed feature of

the trained DNN autoencoder and collected the robot’s joint angle vector as the

drawing action state.

Figure 5.13 describes the overview of the initial state exploration method for

the visuomotor adaptation using the trained models. After training the models,

they can associate the drawing process by reusing the obtained parameters. First,

the encoder part of the trained DNN autoencoder converts the depiction target

image and the image at t = 1 to the dimensionally compressed image features.

Then, we can calculate the loss between the predicted feature produced by the

trained CTRNNmodel and the image feature of the depiction target at t = T . The

new initial state of the CS layer is obtained by back-propagating this prediction

error using recurrent connections. Note that the candidates for the explored states

are initialized by the zero vector, and we use one of the candidates, which gives

the minimum error.

5.3.2 Robot Experimental Setup

The experiments using the proposed models were conducted by using a humanoid

robot NAO [114]. The robot drew a picture using an Intuos pen tablet as shown

in Figure 5.14. The image feedback is acquired by rendering the history of the

pen’s position during the drawing process. The images are rendered as 30 × 30

pixel binary images of single lines whose width was fixed for all sequences. The

pen was attached to the end effector of the robot. To avoid capturing the error
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Figure 5.13: Overview of the initial state exploration. (a) The process to acquire
image features at the first and final step encoded by the DNN autoencoder. (b)
Path of backpropagation through time to calculate the gradient of an initial state
h̄.
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Figure 5.14: Snapshot of the robot experimental setup.
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Table 5.4: The number of collected images and hyperparameters of the proposed
model. IO-CF-CS and DIMS give the dimensions of the layers in CTRNN and
DNN, respectively. DATA refers to the number of images recorded as the training
dataset. TRANS and ROTATED are the numbers of translated and rotated
versions, respectively, of the originally recorded images. Training Iter corresponds
to the number of training iterations.

Param DNN CTRNN
IO 900 15(τX = 1)

DIMS 900-400-180-80-30-10 30(CF, τF = 12), 20(20, τS = 60)
DATA 494 494
TRANS 31940 -

ROTATED 2910 100
Training Iter 100 15000

and breaking the robot, the pen was allowed to move vertically (Refer Appendix

B for further the experimental setting.) In the drawing action state, the five joint

angles of the right hand were recorded at each time step.

5.3.3 Experiments on Robot’s Drawing of Simple Shapes

The first experiment was to demonstrate the visuomotor adaptation ability of

the proposed models. We collected 15 drawing sequences as the training dataset.

These collected sequences consisted of squares, circles, and triangles. All the

pictures were drawn by a single line, and each type had five variations. These

variations shared approximately the same initial starting point. The duration of

the drawing process was approximately between 5 and 10 s for 15 to 50 time steps

of the sequence. All the lines were drawn clockwise.

Table 5.4 describes the experimental settings of the DNN autoencoder and

CTRNN. We followed the model by Noda et al. to design the structure of the

DNN autoencoder. DNN accepts 900 vector data as the input, and the encoder

part gives a ten-dimensional feature of the input. The dimensional structure of the

layers in the decoder and the encoder are shared. Therefore, the decoder gives 900

vector data as the reconstructed input. To avoid the vanishing of gradients with

respect to either modalities, we set the dimensional size of the image feature to be
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step

(a) Drawn Image (Training data)

(b) Drawn Image (Reconstructed by the trained DNN)

Figure 5.15: An example of reconstruction results by the DNN autoencoder. (a)
The picture image sequence sampled from the training dataset. (b) The recon-
structed results.

close to the dimensional size of motion. We trained the DNN autoencoder for 100

iterations by using the dataset of the captured drawn picture image frames. To

avoid overfitting, the size dataset was increased by translation and rotation. The

CTRNN model accepts a vector that includes the ten-dimensional image feature

and the five-dimensional vector of joint angles as the input. The model had

30- and 20-dimensional hidden layers. The sizes of the CTRNN’s hidden layers

were selected from the candidates by checking the generation loss after 15,000

iterations.

Generating Trained Sequences

To confirm that the proposed models remembered the collected visuomotor se-

quences, the trained model generated drawing sequence data by using the param-

eters obtained in the training process. Figure 5.15 provides an example of the

reconstructed picture image sequence generated by the DNN autoencoder. Fig-

ure 5.15 (a) shows the snapshots from one of the drawn picture image sequences

used for training. Figure 5.15 (b) represents the images reconstructed by the

trained DNN autoencoder. As shown in the figure, the DNN model successfully

reconstructed the input data.

The generation results of the CTRNN model are summarized in Figure 5.16.

To obtain the drawn pictures by using the trained models, we reuse the obtained

initial state of the three trained sequences that had different shapes. Figure 5.16
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Figure 5.16: The generation results from the obtained initial state. (a) Images
at the end of the drawing process in the training dataset. (b) Reconstruction
results by the DNN autoencoder. (c) Line drawn when the robot draws using
the motion sequences obtained by CTRNN. The lines are colored by the value of
the normalized value of the speed of the pen tip (d). (e) Normalized joint angle
sequences generated by the CTRNN. The numbers in (c) and (d) correspond to
the corners of the shapes.
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Figure 5.17: The association drawing results of not-trained picture images. (a)
Not-trained images as the depiction target. (b) Reconstructed image (a) obtained
by the trained DNN autoencoder. The robot’s drawing results from the explored
initial state of the slow, hidden layer are given in (c), (d), and (e).

(a) represents the final state of the selected sequences. Figure 5.16 (b) shows an

image of (a) reconstructed by the trained DNN autoencoder. The CTRNN model

generated drawing sequences by using each of the obtained initial states of the

slow, hidden layer (CS). Figure 5.16 (c) presents lines that were drawn by the

robot. Each line is colored by the speeds of the pen tip. This speed was calculated

by the recorded positions of the pen during the drawing process. The value of the

speed is shown in Fig. 5.16 (d). The joint angle sequence to draw lines of Fig.

5.16 (c) is shown in Fig. 5.16 (e). The shape of the drawn pictures maintains the

shape characteristics of the training pictures given in Fig. 5.16 (a).

Associating drawing motion from an image

For obtaining drawing results using the initial state obtained by the explorations,

we allowed the trained CTRNN to generate 45 step sequences. The initial input

x1 was given to the joint angles of the initial pose and the image feature at the

first step of the drawing process. The joint angles of the initial pose were recorded

when the robot’s arm was set to place the pen at the average of the initial points
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of the training dataset.

Figure 5.17 describes the association drawing results. In contrast to the results

of the trained pictures, the pictures drawn by the exploration had distortions at

the edge points. Also, all the lines did not stop at the starting points. We

assume that these drawing errors were caused by the characteristics of CTRNN.

For drawing motions to depict the shapes with edges, CTRNN is required to

generate discontinuous sequences; however, the state of CTRNN’s neural activity

changes continuously. The mismatch between the start and the end points was

also caused for the same reason. The pen was moved in the opposite direction at

the beginning of the process. To reach the start point from the initial position

also involved a discontinuous change of the joint angle trajectory.

Although the drawn lines have the above-mentioned errors, the associated

drawing motions have the same characteristics of the pen tip’s speed as Figure

5.16. The pen tip moves slowly around the corners of the shapes. When the model

associated a motion to draw the circle, the pen stagnated at the right side of the

drawn picture because the learned circle’s drawing motion sequences were shorter

than the other sequences.

Visualizing Feature of Learnt Sequences

Figure 5.18 shows the visualization results of the image features obtained by the

trained DNN autoencoder. To project the ten-dimensional image feature vector

to the 3D space, we use PCA. The axes PC1-PC3 in the figure correspond to the

three principal components whose contribution values are larger than the values

of other components. Each point of the plot indicates a picture image frame. We

found that the sequence of image features for a single drawing process form a line

in the projected space. Further, all these lines shared a common starting point

because the image at the initial time step was the same, that is, white images.

We also visualize the acquired visuomotor features in the CS layer of the

trained CTRNN model, as shown in Figure 5.19. The PCA was used to visualize

the features. The components were selected in the same manner as in the Figure

5.18. The plot in the figure corresponds to the state of the CS hidden layer at each

time step. For the trained DNN, the projected features of the trained CTRNN
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Figure 5.18: Visualization of image features by the DNN autoencoder (Training
dataset). PC1-PC3 are the principal components that mark the three highest
contribution values.
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Figure 5.19: Values of CS when the trained CTRNNmodel generated a visuomotor
sequence from the trained and explored initial states. The two figures share the
same features but are shown from different viewing angles.
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(3) Overdrawing
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Figure 5.20: The training dataset of the distorted shapes. Four shapes are shown:
a circle, a heart shape, a moon, and a triangle. These shapes are distorted in the
four variations.

also form a line for each drawing process. Unlike the case for the DNN, the initial

points of these lines were not averaged because they were allowed to be changed

during the training process.

5.3.4 Experiments on Distorted Shape Recognition

In the previous experiments, the proposed models were required to remember

15 pictures without any explicit distortions. The experiment described here cor-

responds to the case of learning distorted shapes, as shown in Figure 5.20. In

this experiment, we focus on investigating the possibility of replicating a human’s

recognition ability using the robot’s drawing experiments.

As the training dataset, we collected 16 sequences having four sequences for

each shape. The variations of each shape were determined by the degree of dis-

tortions. The vertically and horizontally deformed shapes corresponded to the

size variations. The other distortion types were temporally deformed shapes. As

in the previous experiment, the robot drew the shapes in a clockwise direction

with a single stroke, and the starting points were mostly shared. The length of

the collected sequences was from 30 to 40 steps. The size of the dataset and the
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Table 5.5: The number of collected images and parameters of the proposed models.
IO-CF-CS and DIMS give the dimensions of the layers in CTRNN and DNN,
respectively. DATA means the number of images recorded as the training dataset.
TRANS and ROTATED refer to the number of translated versions and the number
of rotated versions of the originally recorded images, respectively. Training Iter
specifies the number of training iterations.

Param DNN CTRNN
IO 900 13(τX = 1)

DIMS 900-400-180-80-30-8 30(CF, τF = 3), 5(CS, τS = 30)
DATA 631 631
TRANS 40384 -

ROTATED 3786 -
Training Iter 100 15000

hyperparameters of the models are described in Table 5.5.

Comparison of Shape Features

To evaluate the recognizing ability for the distorted shapes, we compared the

distribution of the picture’s features in several cases. The hypothesis for this

comparison was that considering visuomotor data would lead to higher recognition

accuracy as compared with using only the image data to discriminate. To measure

the contribution to the picture-type recognition, we used PCA. The discrimination

ability was measured by changing the input to PCA analysis. The comparison

inputs are summarized as follows:

• IMG-RAW: Raw pixel values

• IMG-DNN: Image features dimensionally compressed by the trained DNN

• IMG-MOT-CTRNN: Initial state of the CTRNN model.

“RAW” in Fig. 5.21 indicates the use of pixel values of the picture to discriminate.

These pixel values are obtained only from the final step of the drawing process,

that is, the drawing process is not considered. The input in this case includes

the translated and rotated images for generalizing the spatial variations and the
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Figure 5.21: The results of PCA analysis. PC1 and PC2 indicate the principal
components whose contribution values are the highest (The values are noted on
the axes). The labels of the plots correspond to the shapes in Figure 5.20, for
example, m-1 indicates the moon (“m”) drawn in the vertically deformed manner
(“1”).

training dataset in the previous experiment. IMG-DNN corresponds to the use of

the image features by a DNN autoencoder trained to use the images of IMG-RAW.

Finally, IMG-MOT-CTRNN means the use of both the DNN autoencoder and

CTRNN models. In this case, the PCA’s input is the initial state of the CS hidden

layer of the CTRNN that was trained by using the robot’s drawing action, which

corresponded to the image feature from the trained DNN autoencoder (IMG-

DNN).

Figure 5.21 shows the results of the PCA analysis that changes the input. In

each case, we chose the two principal components with the largest contribution

values. Each plot indicates the picture in Figure 5.20. The projected features of

IMG-DNN are organized as shapes that are better than IMG-RAW. However, a

few pictures are considered to have shapes similar to IMG-DNN. For example, c-3

and h-3 are located close together. Unlike the IMG-DNN features, the CTRNN

features form clusters based on the similarity of shapes. Although the analysis of

IMG-MOT-CTRNN provided feature structures that were easier to discriminate

than other cases, there were still paired features of different shapes. We found that

these features were paired because of the similarity of the joint angle sequences

learned by the CTRNN model whose values are shown in Figure 5.22.
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Figure 5.22: Generated drawing sequence of the distorted shapes. (a) Recorded
image at the end of the drawing process. (b) Normalized joint angles. The dotted
lines are the angles recorded by direct teaching. Solid lines correspond to angles
generated by the trained CTRNN model.

Table 5.6: Class covariances of features by the comparison inputs.

sw sb S

IMG-RAW 0.18 0.01 0.05
IMG-DNN 0.19 0.03 0.17

IMG-MOT-CTRNN 0.19 0.11 0.56
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To quantitatively evaluate how these features form clusters based on the vari-

ous shapes, the ratio of the covariances were used along with the analysis given in

the last chapter (See Equation 4.2.) In this case the class corresponds the type of

shape. The obtained ratios are described in Table 5.6. The covariance S of IMG-

MOT-CTRNN is large in all cases. In particular, the between-class covariances

sb, which indicate the degree of separation between the types of shapes contribute

to these differences.

5.3.5 Discussion for Robot Experiments

Using the two experiments involving drawing robots, the proposed robot-drawing

system demonstrated visuomotor adaptation ability for associating the motions

from a picture image and recognized shapes. In the experiment on learning simple

shapes, the proposed CTRNN model demonstrated the ability to remember the

training visuomotor sequences of 15 pictures. Further, the association results of

drawing for the not-trained picture images suggested that the proposed system

changed its behavior to generate drawing motions that could produce the given

picture images. However, the pictures drawn by the associated motions had several

distortions in the corners because of the CTRNN characteristics. One solution for

these distortions was to make the drawing sequence longer. The fitting accuracy

by CTRNN was limited by not only the time constant values but also by the time

resolution of the learned sequences. Longer sequences enabled the pen to stop at

a corner, change direction, and then proceed.

In the second experiment on the distorted shapes, the proposed system demon-

strated the best recognition performance in the case of input data modality. This

result suggested that the drawing experience contributed not only to the drawing

ability but also to the recognition ability of shapes. Specifically, the memory of

the drawing experience can be reused for recognition, which is a human’s cogni-

tive functions related to drawing or lettering [88, 11, 12, 90]. Even though the

proposed system replicates the functionality of human’s visuomotor memory, the

replication is limited. For example, the robot experiment confirmed the func-

tionality of the system only in the case of the black-and-white images that use

a single stroke. Further, there were many factors pertaining to the shape, which
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were not considered, such as the size, the direction (clockwise or anti-clockwise),

the location, and the combination of shapes. To enhance the proposed system to

consider these factors also, the capacity of the learners should be improved.

5.4 Chapter Conclusion

In this chapter, we introduced RNN-based models to enable the adaptation of

drawing behavior by reusing the visuomotor memory of drawing. To add memory

to the neural network, the RNN was designed to generate multiple visuomotor

sequences of drawing processes. The drawing process consisted of the drawing

action status and a corresponding image of the drawn picture. The adaptation of

the drawing behavior reusing the obtained memory was implemented by exploring

the RNN’s initial state that determined the generated sequence for closed gener-

ation. The exploration was implemented by using the gradient descent method

to optimize a new initial state that could lead the model to produce the desired

sequence.

The proposed visuomotor adaptation method was confirmed for both the sim-

ulator and the real-robot environments. In the simulator experiments, we demon-

strated that the LSTM-based model could remember hundreds of visuomotor se-

quences for drawing simple pictures. The association experiments suggested that

the proposed model could generate the entire drawing process from the picture

images in several scenarios: a completed picture image, a completed picture image

with the first line given, and an image sequence of not-trained line ordering. Fur-

thermore, the contribution of the picture image was confirmed in the comparison

with another RNN without visualization.

In the robot experiments, the proposed model was applied to a robot envi-

ronment. The drawing action state was replaced by the joint angle vector. A

CTRNN-based model demonstrated the memorizing capacity of the visuomotor

sequence by learning 15 pictures. The association ability was confirmed with a

completed picture image. The final experiment did not focus on the association

to draw, but on recognizing pictures. Consequently, we confirmed that consider-

ing visuomotor memory for drawing led to better performance in recognizing the
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distorted shapes.
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Chapter 6

Conclusion

6.1 Contribution of this Study for Understand-

ing Drawing

The aim of this study was to understand a human’s drawing abilities by con-

structing computational systems. The focused aspect of these abilities was the

diversity of representations regarding the concepts depicted in pictures. In the

case of visually recognizing hand-drawn sketches, the recognizer was required to

share concepts between a hand-drawn sketch and photorealistic images. Also,

hand-drawn sketches were produced by the drawer’s body motion that could have

many variations because of the differences in drawing styles or the low repro-

ducibility of bodily motions. This study investigated these abilities based on the

approach used in cognitive developmental robotics. The computational systems

were constructed to replicate the two focused abilities: recognition and drawing.

These abilities were described by their requirements. Recognition is the ability

to recognize hand-drawn sketches and photorealistic images by a shared visual

processing function. Drawing indicates the ability to produce bodily motions

that could alter the drawn picture into a given target picture by accepting visual

feedback from the picture. As the fundamental requirement, these systems were

required to be constructed based on a limited amount of prior knowledge of the

pictures.

This thesis proposed computational systems for recognition and drawing. These
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systems were implemented by using deep learning and a robot. The recognition

system uses the image classifier of a CNN. A CNN is a deep learning model whose

functionality does not require explicit knowledge of pictures. In this study, we

propose to include sketch images to enable a CNN to discriminate both a sketch

and a photo in contrast to the existing CNN models whose recognition target is

limited to a single image type. The CNN model was trained to classify illustration

images, photos, and color-converted versions. Experiments in the classification of

20 class animal images showed the contribution of illustration images in the train-

ing dataset.

The proposed drawing systems were also implemented by using DNN mod-

els. To enable the generation of sequential data, RNNs were used. This thesis

proposed a RNN model for organizing visuomotor memory of the drawing pro-

cess. The drawing process involves the robot’s motion and images and uses visual

feedback from the drawn picture. The RNN is trained to predict the drawing

motion of the joint angles robot and the image information of the drawn picture.

The drawing ability was realized by an adaptation of the acquired memory. The

behavior of trained RNN can be changed by the optimization process to minimize

the difference between the prediction and the depiction target. In the simulator

experiments, the proposed drawing system demonstrated the ability to associate

the motions from an image. The association ability was also demonstrated in the

robot experiments for learning simple shapes. The proposed RNN model gener-

ated images similar to a humanoid’s drawing motion from an image. Also, other

experiments on distortions suggested that the visuomotor memory contributes to

the recognition of shapes by reusing drawing experiences.

The proposed systems of drawing and recognition demonstrate the aspects

of drawing ability suggested by cognitive science. The contribution of the data

argumentation method shows that adding professional drawings (i.e., illustrations)

leads a CNN classifier to improve the recognition accuracy of the sketch and photo

images. This result reflects the influence of professional drawings in children’s

drawing development. The experiments using the drawing systems suggested that

a visuomotor memory of the robot’s drawing can be acquired by the RNN model.

The visuomotor memory acquired in these systems enabled the robot to associate
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the drawing motion from an image and to recognize pictures by considering the

drawing experiences. These results of visuomotor memory corresponded to the

phenomena indicated by experimental psychology: the ability to generate motor

activities to depict another picture and the use of dynamic information to produce

pictures in picture recognition.

6.2 Limitation and Future Studies

One limitation of the proposed systems is the variations in the pictures. This

study assumed that drawn pictures are black and white images that have a few

lines. The property of lines is fixed in contrast to pictures drawn by different

types of tools, such as brushes, pencils, or pens. The proposed recognition system

could discriminate any type of image as long as these images could be given as

raster images. A technical problem to improving the recognition system was the

size of the dataset. However, as mentioned in Section 4, the existing dataset of

the picture or the illustration was smaller than the dataset of the photo images.

The drawing system may also require many drawing experiences if we wish to

extend the drawing tools. Further, we did not consider erasing any part of the

drawn picture. In this case, the transition of the tools used needs to be discussed.

Another limitation is the variety of depicted concepts. In the experiments on

image recognition and drawing, the pictures were intended to represent a single

concept. However, we could depict complex concepts that included some concepts.

For example, a scenery would include many objects, such as a house, a tree, and

humans. In addition, sometimes the drawer required to repeat the drawing of

windows of a house. To recognize or depict complex visual concepts, the idea

of primitives may be considered. In fact, drawing is considered as the ability

to construct visual concepts [7]. One way enhancing the recognition target is to

consider that these complex pictures will be discriminated not as a probability of a

single category, but as sentences (e.g., a cup is on the desk). The drawing system

will require decomposition and composition of drawing experiences. In this case,

the drawing model is required to select primitives of visuomotor memory obtained

by drawing experiences and compose them by considering the description of what
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the model intends to draw.

Finally, one aspect that future studies can consider is a combination of the

recognition and drawing systems. This combination will realize the depiction of

photorealistic images. A possible implementation of this combination is to use

the feature of the input photo image in the intermediate layer of CNN in the

recognition system. This feature can be input to RNN in the drawing system as

an initial state of the generation process. The acquisition of the functionalities to

process the photo image and generate corresponding drawing motion will require

a dataset of the paired photos and the robot’s drawing processes.
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Appendix A

Neural Networks

This chapter is written for readers who are not familiar with neural networks.

First, this chapter introduces the basic idea of deep neural networks (DNNs).

Then, several variations of neural network models are explained.

The idea of the neural networks originated from a model of the neuron made by

McCulloch and Pitts in 1943 [52]. This idea led to more nonlinear models having

many neurons that increased the ability to approximate a probability density

function. The ability of the approximation depended on the number of parameters

that could be changed by the optimization process. The number of parameters

could be increased by stacking the calculation unit having learnable parameters

and a nonlinear function. The model with these stacked units is called Feedforward

Neural Network (FNN), which has “layers” as its unit.

Figure A.1 shows an FNN model with three layers including the input as the

first layer. The output of this model h2 is obtained by calculating the activation

value of each layer as follows:

Figure A.1: A feedforward neural network model
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h1 = σ1(W 1 · h0 + b1) (A.1)

h2 = σ2(W 2 · h1 + b2), (A.2)

where W 1 and W 2 are the matrices of the first and second layers, respectively;

b1 and b2 are the vectors of the learnable parameters for the first and second

layers, respectively. The activation value of the second layer h1 is given by the

nonlinear function σ1 that accepts the linear combination of the input h0. The

output of the model corresponds to the activation value of the third layer whose

activation process is that of the second layer. The learnable parameters Wandb

are obtained by the optimization process that minimizes an objective function

to measure how much the model can give the desired data. For example, the

objective function is cross-entropy between the probability estimated by the model

and the corresponding target data whose format is often given by the one-hot

vector (0, · · · , 0, 1, 0, · · · , 0). The optimization process is implemented by using

the backpropagation method [74]. This method provides a way of calculating the

derivation of the objective function with respect to each trainable parameters by

applying the chain rule. For example, the derivation of W 2 is given as follows:

∂L

∂W 2
=

∂L

∂h2

∂h2

∂u2

∂u2

∂W 2
, (A.3)

where u2 = W 2 · h1 + b2 is the linear combination at the third layer, and L refers

to the objective function. By using these derivations, each parameter will be

updated by the following gradient descent:

θi+1 = θi − α
∂L

∂θi
, (A.4)

where θi indicates a parameter at the i th iteration step. The parameter is up-

dated to decrease the objective function. The size of a step is controlled by a

hyperparameter called the learning rate.

The backpropagation method allows us to stack more than three layers to

increase the complexity of the approximated function. Honrik showed that FNNs

could become universal approximators when there were enough layers [115]. An
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Figure A.2: A deep neural network model

FNN with many layers is known to have difficulty in optimization because of the

instability of the gradient values during the backpropagation process [92]. Many

methods have been proposed to improve the optimization efficiency of FNNs with

many layers [58, 80, 116]. These methods could be investigated by using the power

of the processor and the computational memory.

FNNs with many layers have recently been called DNNs [57, 117]. The ap-

pearance of DNNs enables developers to input large-dimensional data without any

feature-extraction process. For example, conventional image classifiers acquired

pre-designed algorithms to extract invariant features, such as edge information

[118]. Instead of the extracted features, the DNN accepts normalized pixel values,

and the feature extraction process is acquired through the optimization process

[55, 56]. Also, a DNN can regress large-dimensional data so that it can behave as

a generative model [72].

DNN for image generation or recognition attempts to employ sparse connec-

tivity to process large-dimensional data by using few parameters. Convolution

operations are used to calculate a linear combination of the input image data. A

layer using the convolution operation is called “convolutional layer.” The DNN

using the convolutional layer is often called convolutional neural network (CNN).

The calculation process of the convolutional layer is given as follows:

y = σ(W ∗ x+ b), (A.5)

where Wandb are trainable parameters used for the acquisition of a linear map

of the input x; σ refers to the activation function to obtain the output y; and

∗ indicates the convolution operation. For example, u = W ∗ x for the two-

dimensional image x is also the two-dimensional data whose value at (i, j) is
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Figure A.3: A recurrent neural network model

given by

u(i, j) =
∑

m

∑

n

W (m,n)x(i−m, j − n). (A.6)

When the convolution operation is applied, it is possible to skip some indices of the

spatial dimension of x. To apply every two pixels in each dimension of x means u

becomes downsampled x. Downsampling is required when the output dimension

is much smaller than the input. Another popular method to downsample the

spatial dimensionality is “pooling,” which attempts to choose the specific pixel

value within the desired space [119]. Similar to defining downsampling by skipping

indices, upsampling can also be defined. In this case, the order of the convolution

operation is backward, thus u = x ∗W .

One solution to build learners of sequential data is to employ RNNs that can

retain memory beyond the specific time steps [120]. To retain memory, RNN

has feedback between its layers. A simple RNN model is depicted in Figure A.3.

This model accepts the sequential input x = (x1, x2, · · · , xt, · · · xT ) to obtain the

output yt through the hidden layer and retains the memory as ht. The output is

given as follows:

ht = σH(WHX · xt +WHH · ht−1 + bH) (A.7)

yt = σO(W Y H · ht + bY ), (A.8)

where W are the weight matrices, and σ refers to the activation functions. The

state of ht is decided not only by the input x but also by the value of h at the

previous step. At the first step, h0 can take any vector expression, but it is
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usually given as a zero vector or as learnable parameters; h0 is sometimes called

the initial state. The behavior of RNN is sensitive to the initial states so that

we can implement a variety of behaviors into a single model [102]. The learnable

parameters of RNN are optimized by gradient descent and FNN and CNN.

Continuous time series data, such as a robot’s motion, can be efficiently trained

in the RNN model whose output value changes continuously. A continuous time-

scale recurrent neural network (CTRNN) is a RNN whose hidden layer’s state

changes its internal state [113]. Internal state means the state before applying the

activation function. The internal state of the CTRNN’s hidden layer is given as

follows:

τ u̇ = −u+WHX · x+WHH · h+ bH . (A.9)

By replacing u̇ by ut+1−ut

∆t
and considering τ ← τ

∆t
, t ← t + 1, we obtain the

following:

ut = (1−
1

τ
)ut−1 +

1

τ
(WHX · xt +WHH · ht−1 + bH). (A.10)

Then, the state of hidden layer ht is calculated as follows:

ht = σH(ut). (A.11)

The above-mentioned simple RNN can be considered as a specific case of

CTRNN whose τ is one; τ functions as a time constant value that determines

the response characteristics against the input’s change. Figure A.4 shows the

output of a CTRNN model whose weight matrix is one. If the value of the input

sequence xt changes suddenly at t = 10 from zero to one, the model’s output

gradually reaches one. The reaching speed is determined by tau. A small tau

value provides a faster CTRNN response to the input.

Discontinuous sequences, such as the probability transition of words in sen-

tences, attempt to be processed by RNN with the gating functions. The gating

function was introduced to solve the vanishing gradient problem because of the

feedback connection in its hidden layer [107]. The challenges of this problem led

to the creation of many variations of RNNs. LSTM is a RNN that has the gating
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Figure A.4: The state of CTRNN by using various time constant values

Input gate

Forget gate

Output gate

Identity or activation function
Weight and activation function

Element-wise addition
Element-wise multiplication

Figure A.5: Hidden layer of LSTM
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function of controlling the gradient flow in the hidden layer [75].

Figure A.5 describes the forwarding process of LSTM’s hidden layer. This

layer gives ht by applying the gating functions with trainable variables for the

input xt as follows:

it = σ(W IX · xt +W IH · ht−1 + bI) (A.12)

ft = σ(W FX · xt +W FH · ht−1 + bF ) (A.13)

ot = σ(WOX · xt +WOH · ht−1 + bO) (A.14)

gt = F (WGX · xt +WGH · ht−1 + bG) (A.15)

ct = ftct−1 + itgt (A.16)

ht = otF (ct), (A.17)

Here, σ is a sigmoid function whose range is [0, 1], and F andG are other activation

functions, such as tanh. The gating functionality corresponds to the element-wise

multiplication of Equations A.17 and A.17. These gating values are determined

by the input state and the previous state.
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Appendix B

Robot Experiment Hardware

Setup

This chapter provides the details of the robot experiments given in Chapter 5.

For a robot platform, the humanoid robot NAO was used. Figure B.1 shows the

experimental setup. The robot was positioned on the Wacom pen tablet holding

a stylus pen. To avoid capturing errors, the robot was fixed to the pen tablet

through a metal plate whose design is described in Figure B.3. The pen was

also attached to the robot’s hand to avoid any unexpected movement by using an

adapter, as shown in Figure B.2. This adapter allowed the pen to move vertically

when it was pushed against the tablet.
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Figure B.1: The setup for robot experiments

(a) (b)

Figure B.2: The robot hand with the pen adapter
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Appendix C

Embodiment Informatics

The author has been supported by a scholarship program called the Graduate

Program for Embodiment Informatics by the Ministry of Education, Culture,

Sports, Science, and Technology (MEXT). This program proposes embodiment

informatics as an interdisciplinary field of mechanical engineering and informatics.

This combination of subjects is expected to bring forth new studies to create

computational systems that have an embodiment driven by the cutting edge of

intelligent systems. This chapter explains the methodology of this thesis as a

study of embodiment informatics.

Mechanical engineering and informatics attempt to formulate phenomena dif-

ferently. Mechanical engineering typically represents a phenomenon as a physical

system in continuous space, such as the kinematics of robots. However, infor-

matics attempts to use a discrete system of symbols. For example, a controlling

system for a moving robot can be implemented by a system that can solve kine-

matics problems to move the robot to the desired direction. When we want to

control this robot according to the commands given by a user, the system needs

to include a sub-system that converts the given route into a series of commands

for the controller. In this case, a behavior of the robot is represented as a sequen-

tial data of position, velocity, or acceleration of the mass points. However, the

behavior can also be written as an oriented graph.

One of the keys of letting mechanical engineering and informatics exist together

in an intelligent system for humans is to determine how to design the interactions

of the representations given by each field. This interaction limits the system’s
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intelligence. To control a moving robot, it is important to determine how the

sub-system interprets the user’s commands and converts them into other types of

representations to be used in the controller. The design methodology may depend

on what we want to do using the system, but it is challenging in general because

of the diversity of symbols in the world [121]. The command “Go there” can lead

to many possible moves depending on the interactions between the system and

user.

The main problem resolved in this thesis is the diversity associated with pic-

tures depicted by humans. The diversity lies in three types of representations:

symbol (name or category), image, and the drawing process. A category “bear”

can have any variations of drawn bears and all of them would be regarded as bears.

Even the same depiction target shown can be drawn by many different processes.

The methodology adopted in this thesis is to consider the drawing process as a

visuomotor adaptation process. In this sense, the drawn picture corresponds to

the goal of the process. The process to solve the diversity of the symbol and

the image was implemented as two computational processes to convert from one

of these representations to another. The process from the image to a symbol

was replicated by the functionality acquired by training DNNs. Another process

from the symbol to an image is implemented by exploring the drawing process

by minimizing the prediction error of the drawn picture. The diversity ways of

drawing an image is taken as visuomotor sequences learned by a recurrent neural

network (RNN). The computational theory a combination of discrete and con-

tinuous representations of drawing is achieved by using the flexibility of neural

networks (NNs). In general, NNs can be optimized to approximate the variations

of probability functions that are not limited to classification or regression. An NN

can be seen as a converter between different representations.

One problem that can be understood by embodiment informatics for human

system interactions is the social behavior of the system. Social behavior means

the way the system affects communications among agents who have own repre-

sentation systems. For example, the idea of beauty plays a role in interactions

between many styles and persons who judge whether the work is good or not.

This does not deny the studies for understanding the sense of beauty defined by
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cognitive sciences [122, 25]. Besides the cognitive aspects, we need to consider the

cultural backgrounds and the consent among different viewers. Other human be-

lief systems should also be discussed with multiple agents who share each system

to solve his or her problems in the real world.
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