

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

언어학박사학위논문

The Construction of a Korean
Pre-Trained Model and an Enhanced

Application on Sentiment Analysis

한국어 사전학습모델 구축과 확장 연구:
감정분석을 중심으로

년 월2021 2

서울대학교 대학원

언어학과 언어학전공

이 상 아

Abstract

The Construction of a Korean Pre-Trained Model and

an Enhanced Application on Sentiment Analysis

Lee, Sangah

Department of Linguistics

The Graduate School

Seoul National University

Recently, as interest in the Bidirectional Encoder Representations from Transform-

ers (BERT) model has increased, many studies have also been actively conducted in

Natural Language Processing based on the model. Such sentence-level contextual-

ized embedding models are generally known to capture and model lexical, syntactic,

and semantic information in sentences during training. Therefore, such models, in-

cluding ELMo, GPT, and BERT, function as a universal model that can impressively

perform a wide range of NLP tasks.

This study proposes a monolingual BERT model trained based on Korean texts.

The first released BERT model that can handle the Korean language was Google

Research’s multilingual BERT (M-BERT), which was constructed with training data

and a vocabulary composed of 104 languages, including Korean and English, and

can handle the text of any language contained in the single model. However, despite

the advantages of multilingualism, this model does not fully reflect each language’s

characteristics, so that its text processing performance in each language is lower

i

than that of a monolingual model. While mitigating those shortcomings, we built

monolingual models using the training data and a vocabulary organized to better

capture Korean texts’ linguistic knowledge.

Therefore, in this study, a model named KR-BERT was built using training data

composed of Korean Wikipedia text and news articles, and was released through

GitHub so that it could be used for processing Korean texts. Additionally, we trained

a KR-BERT-MEDIUM model based on expanded data by adding comments and le-

gal texts to the training data of KR-BERT. Each model used a list of tokens composed

mainly of Hangul characters as its vocabulary, organized using WordPiece algorithms

based on the corresponding training data. These models reported competent perfor-

mances in various Korean NLP tasks such as Named Entity Recognition, Question

Answering, Semantic Textual Similarity, and Sentiment Analysis.

In addition, we added sentiment features to the BERT model to specialize it to

better function in sentiment analysis. We constructed a sentiment-combined model

including sentiment features, where the features consist of polarity and intensity val-

ues assigned to each token in the training data corresponding to that of Korean Sen-

timent Analysis Corpus (KOSAC). The sentiment features assigned to each token

compose polarity and intensity embeddings and are infused to the basic BERT input

embeddings. The sentiment-combined model is constructed by training the BERT

model with these embeddings.

We trained a model named KR-BERT-KOSAC that contains sentiment features

while maintaining the same training data, vocabulary, and model configurations as

KR-BERT and distributed it through GitHub. Then we analyzed the effects of using

sentiment features in comparison to KR-BERT by observing their performance in

language modeling during the training process and sentiment analysis tasks. Addi-

ii

tionally, we determined how much each of the polarity and intensity features con-

tributes to improving the model performance by separately organizing a model that

utilizes each of the features, respectively. We obtained some increase in language

modeling and sentiment analysis performances by using both the sentiment features,

compared to other models with different feature composition. Here, we included the

problems of binary positivity classification of movie reviews and hate speech detec-

tion on offensive comments as the sentiment analysis tasks.

On the other hand, training these embedding models requires a lot of training

time and hardware resources. Therefore, this study proposes a simple model fusing

method that requires relatively little time. We trained a smaller-scaled sentiment-

combined model consisting of a smaller number of encoder layers and attention

heads and smaller hidden sizes for a few steps, combining it with an existing pre-

trained BERT model. Since those pre-trained models are expected to function uni-

versally to handle various NLP problems based on good language modeling, this

combination will allow two models with different advantages to interact and have

better text processing capabilities. In this study, experiments on sentiment analysis

problems have confirmed that combining the two models is efficient in training time

and usage of hardware resources, while it can produce more accurate predictions

than single models that do not include sentiment features.

Keywords: Korean embedding model, BERT, language modeling, multi-

head self-attention, sentiment features, external fusing of models, senti-

ment analysis

Student Number: 2016-30038

iii

Contents

1 Introduction 1

1.1 Objectives . 3

1.2 Contribution . 9

1.3 Dissertation Structure . 10

2 Related Work 13

2.1 Language Modeling and the Attention Mechanism 13

2.2 BERT-based Models . 16

2.2.1 BERT and Variation Models 16

2.2.2 Korean-Specific BERT Models 19

2.2.3 Task-Specific BERT Models 22

2.3 Sentiment Analysis . 24

2.4 Chapter Summary . 30

3 BERT Architecture and Evaluations 33

3.1 Bidirectional Encoder Representations from Transformers (BERT) 33

3.1.1 Transformers and the Multi-Head Self-Attention Mech-

anism . 34

3.1.2 Tokenization and Embeddings of BERT 39

3.1.3 Training and Fine-Tuning BERT 42

3.2 Evaluation of BERT . 47

3.2.1 NLP Tasks . 47

iv

3.2.2 Metrics . 50

3.3 Chapter Summary . 52

4 Pre-Training of Korean BERT-based Model 55

4.1 The Need for a Korean Monolingual Model 55

4.2 Pre-training Korean-specific BERT Model 58

4.3 Chapter Summary . 70

5 Performances of Korean-Specific BERT Models 71

5.1 Task Datasets . 71

5.1.1 Named Entity Recognition 71

5.1.2 Question Answering 73

5.1.3 Natural Language Inference 74

5.1.4 Semantic Textual Similarity 78

5.1.5 Sentiment Analysis . 80

5.2 Experiments . 81

5.2.1 Experiment Details . 81

5.2.2 Task Results . 83

5.3 Chapter Summary . 89

6 An Extended Study to Sentiment Analysis 91

6.1 Sentiment Features . 91

6.1.1 Sources of Sentiment Features 91

6.1.2 Assigning Prior Sentiment Values 94

6.2 Composition of Sentiment Embeddings 103

v

6.3 Training the Sentiment-Combined Model 109

6.4 Effect of Sentiment Features 113

6.5 Chapter Summary . 121

7 Combining Two BERT Models 123

7.1 External Fusing Method . 123

7.2 Experiments and Results . 130

7.3 Chapter Summary . 135

8 Conclusion 137

8.1 Summary of Contribution and Results 138

8.1.1 Construction of Korean Pre-trained BERT Models . . . 138

8.1.2 Construction of a Sentiment-Combined Model 138

8.1.3 External Fusing of Two Pre-Trained Models to Gain

Performance and Cost Advantages 139

8.2 Future Directions and Open Problems 140

8.2.1 More Training of KR-BERT-MEDIUM for Convergence

of Performance . 140

8.2.2 Observation of Changes Depending on the Domain of

Training Data . 141

8.2.3 Overlap of Sentiment Features with Linguistic Knowl-

edge that BERT Learns 142

8.2.4 The Specific Process of Sentiment Features Helping the

Language Modeling of BERT is Unknown 143

vi

A. Python Sources . 157

A.1 Construction of Polarity and Intensity Embeddings . . . 157

A.2 External Fusing of Different Pre-Trained Models 158

B. Examples of Experiment Outputs 162

C. Model Releases through GitHub 165

vii

List of Figures

1 The Process of Training and Fine-tuning BERT 33

2 The model architecture of the Transformer (Vaswani et al. 2017) 35

3 Attention calculation (Vaswani et al. 2017) 36

4 BERT embeddings (Devlin et al. 2019) 41

5 Visualization of Masked Language Modeling 43

6 Visualization of Next Sentence Prediction 44

7 Training loss of KR-BERT . 67

8 Training loss of KR-BERT-MEDIUM 68

9 Comparison of sentiment word matching depending on the

lexicon . 98

10 Visualization of the embedding composition 105

11 Training loss of KR-BERT-KOSAC 110

12 Attention maps for Example (9) 119

13 Attention map for Example (10) 120

14 The structure of our external fusing method 123

15 Training loss of KR-BERT-KOSAC-small 127

16 Training loss of CH-BERT-KOSAC-small 129

viii

List of Tables

1 Confusion Matrix . 51

2 Comparison of MLM performance for KR-BERT according to

vocabulary size . 60

3 Comparison of MLM performance for KR-BERT-MEDIUM

according to vocabulary size 62

4 Composition of the vocabularies 62

5 Details of Korean pre-trained BERT models 64

6 Training performances of KR-BERT and KR-BERT-MEDIUM 68

7 The category of the named entities 72

8 Rule of thumb for interpreting the size of a correlation coeffi-

cient (Hinkle et al. 2003) . 79

9 The model performances for Korean NLP tasks 83

10 The distribution of the polarity tags in KOSAC 93

11 The distribution of the intensity tags in KOSAC 93

12 The distribution of the polarity tags in KNU Sentiment Lexicon 94

13 The alignment of sentiment values in KOSAC and the KNU

lexicon . 97

14 The ratio of sentiment words in the KR-BERT vocabulary . . . 99

15 The ratio of sentiment words in the KR-BERT training data . . 100

ix

16 Training performances of models with different sentiment word

compositions . 102

17 An example of tokens and assigned sentiment values 104

18 Training performances of the models predicting and masking

tokens and sentiment values 108

19 Training performances of KR-BERT and KR-BERT-KOSAC . 110

20 Model performances on sentiment analysis tasks 112

21 Training performances of ablated models 114

22 Task performances of ablated models 115

23 Training performances of KR-BERT-KOSAC-small 126

24 Training performances of CH-BERT-KOSAC-small 128

25 Task performances of externally-fused models 131

x

1 Introduction

Recently, in many areas, people attempt to obtain information by processing

massive text data. Governments get opinions from online forums on how peo-

ple feel about policies, and companies obtain reviews from consumers about

their products from websites. Processing news articles can also help analyze

social phenomena. These datasets are too large for a human to process man-

ually, so such text processing is left to machines. It is with this type of work

that Natural Language Processing (NLP) allows people to obtain and analyze

the information they want through automatic processing from texts.

In NLP, a specific domain or purpose model is trained and produces the

desired outputs for various tasks. Then the outputs are evaluated by how ac-

curately they were produced, which becomes the tasks’ performances. For

example, if a model executes a binary classification problem about product

reviews that predicts whether each review’s stance is positive or negative, the

model first converts the review texts in the training dataset into a proper vec-

tor form that the model architecture can handle. The vector is organized by

various methods, from word frequencies to sentence embeddings. The model

is trained based on these vectors and then predicts the label on the reviews

in the test dataset using a classifier layer, usually located on the last stage

of the model architecture. The classifier calculates the probabilities in which

each review has a positive or negative stance and selects the one with a higher

probability as the model prediction.

1

These machine learning processes obtain remarkable performances using

various word embedding models and linguistic knowledge with neural net-

work models. However, they require a separate dataset for training and eval-

uation for each task and domain, and the datasets should be annotated with

labels for prediction. Moreover, it is not easy to get enough data for all tasks.

Some tasks do not have data published for them, or the data available are very

insufficient and may not have sufficient quality. Data collection and labeling

is expensive for researchers to build on their own since they take a lot of labor

and time. In particular, this problem is more serious when it comes to low

resource languages other than English.

Pre-trained contextualized embedding models, such as ELMo (Peters et al.

2018), GPT (Radford et al. 2018), and ULMFiT (Howard and Ruder 2018),

have been released to mitigate such shortcomings. They are trained based on

large unlabeled texts, having the general purpose of being applied to various

NLP tasks. The texts used for model training are not for a specific task, so

they do not need annotations of task labels. Instead, the model learns gen-

eral linguistic knowledge from the training data on its own through language

modeling, and produces the output language representations, that is, embed-

dings that include the linguistic features it has learned. Thus, the embeddings

constructed from the model contain much more complex and various linguis-

tic phenomena than simple vectors using hand-crafted features such as word

frequencies. Such linguistic phenomena range from lexical information to se-

mantic, syntactic, and pragmatic information, which require a broader context

2

span to process.

The constructed embeddings can be applied to various NLP tasks, with

task-specific classifier layers added on top of the embeddings’ final hidden

states. For each task, the classifier fine-tunes the pre-trained embedding model

according to the task, and the task datasets for fine-tuning do not need to be

too large. Moreover, the general embedding model has good performance in

each task since it contains universal linguistic knowledge.

Amid this trend, Vaswani et al. (2017) released a Transformer architec-

ture using a multi-head self-attention mechanism, and Google Research pro-

vided a contextualized embedding model, BERT (Devlin et al. 2019), based

on the encoders of Transformer. BERT is also a pre-trained language repre-

sentation model like previous models, but it has become a significant turn-

ing point in NLP research by showing state-of-the-art performance in various

tasks in comparison to previous models. Accordingly, many studies have be-

gun to provide BERT-derived works, such as applying BERT to various tasks

or domains, building models for each language other than English, and creat-

ing models that improve BERT’s internal architecture.

1.1 Objectives

The Bidirectional Encoder Representations from Transformers model, BERT

(Devlin et al. 2019), is a contextualized embedding model originally trained

based on English texts and applied to English NLP tasks. It reported much

higher performances than other existing models in several English NLP tasks,

3

but could not be applied to tasks based on other languages. Following this,

however, Google Research released the Multilingual BERT (M-BERT) model,

which is trained based on texts of 104 different languages, including Korean,

English, German, and Finnish. It has the advantage of being able to handle

multiple languages, but it is insufficient for handling all monolingual tasks

well.

(1) 최고의홍콩액션영화였다.

choykouy hongkhong ayksyenyenghwayessta.

“It was the best Hong Kong action movie.”

Example (1) is an excerpt from a Korean Movie Review Dataset1. M-

BERT tokenizes it as below.

최고 ##의홍 ##콩액 ##션 ##영 ##화 ##였다 .

choyko ##uy hong ##khong ayk ##syen ##yeng ##hwa ##yessta .

In this case, the word홍콩 hongkhong “Hong Kong” is split into ‘홍 hong’

and ‘##콩 ##khong’, and 액션영화 ayksyenyenghwa “action movie” is split

into ‘액 ayek,’ ‘##션 ##syen,’ ‘##영 ##yeng,’ and ‘##화 ##hwa.’ The BERT

model splits words into subword units to minimize out-of-vocabulary (OOV)

words. On the other hand, using a model that is trained based on Korean texts

only, the same example is tokenized as below. The tokenization is executed
1https://github.com/e9t/nsmc

4

https://github.com/e9t/nsmc

by the KR-BERT model constructed in this dissertation.

최고의홍콩액션 ##영화 ##였다.

choykouy hongkhong ayksyen ##yenghwa ##yessta .

Here,홍콩 hongkhong “Hong Kong” is not split, maintaining its original

form, and액션영화 ayksyenyenghwa is split into ‘액션 ayksyen “action”’ and

‘##영화 ##yenghwa “movie”.’ Each tokenized unit maintains its meaning and

will function better in combining with surrounding words and modeling the

whole context of a sentence than splitting into subwords such as ‘홍 hong, ##

콩 ##khong, 액 ayk, ##션 ##syen, ##영 ##yeng, ##화 ##hwa,’ which do not

indicate correct meanings themselves.

Therefore, to address these cases and mitigate the shortcomings of the

multilingual model, several studies have constructed monolingual models in

different non-English languages (Antoun et al. 2020; Cañete et al. 2020; Hu-

sein 2018; Kikuta 2019; Kłeczek 2020; Nguyen and Nguyen 2020; Polignano

et al. 2019; Virtanen et al. 2019; Vries et al. 2020). The same research was

also done in Korean, releasing several pre-trained models: ETRI KorBERT2,

SKT KoBERT3, and TwoBlockAI HanBERT4.

Such models have been known to learn linguistic knowledge indepen-

dently, but several studies use additional linguistic features (Huang, Sun, et
2http://aiopen.etri.re.kr/service dataset.php

3https://github.com/SKTBrain/KoBERT

4https://github.com/tbai2019/HanBert-54k-N

5

http://aiopen.etri.re.kr/service_dataset.php
https://github.com/SKTBrain/KoBERT
https://github.com/tbai2019/HanBert-54k-N

al. 2019; Levine et al. 2020; Zhang et al. 2019; Zhou et al. 2020). NLP tasks

associated with the features are improved by applying additional information

to BERT-based models in various ways. There are also such studies in senti-

ment analysis (Ke et al. 2020; Tian et al. 2020).

For sentiment analysis, sentiment features are used, in many cases con-

structed using words including polarity or sentiment words. While there are

many branches of studies such as aspect and emotions for sentiment analysis,

we focus on classifying the binary stance of sentences or documents to pos-

itive or negative. For instance, Example (2) is a film review, and this review

has a positive stance for the film. Here, the reviewer uses expressions such as

웃기고 wuskiko “funny” and 재밌었다 caymissessta “interesting” to give a

positive review of the film, and the reader can understand that the review is

optimistic about the film by referring to these words.

(2) 이영화너무웃기고재밌었다.

i yenghwa nemwu wuskiko caymissessta.

“This movie was so funny and interesting.”

Polarity Label: Positive

In other words, information related to sentiment, such as sentiment words,

will help the stance judgment of sentences, and this will also be applied to

the training, fine-tuning, and prediction of the model. Therefore, it is essential

to select and process additional linguistic information, such as sentiments,

properly.

6

Based on these phenomena as background, this study aims to build a Ko-

rean BERT model so that it functions well in overall NLP tasks, release the

model publicly, and improve the performance of sentiment analysis tasks by

applying additional information or features and additional methodologies to

the model.

In pursuit of this goal, we seek to establish and confirm the following

hypotheses.

1. The Korean monolingual model will better reflect the Korean language’s

characteristics and handle Korean texts better than the multilingual model.

2. Further construction of an expanded Korean model using more exten-

sive and more diverse training data will help process Korean texts and

related NLP tasks.

3. Infusing additional sentiment features to these BERT-based Korean mod-

els will help understand the meaning of the sentences in the datasets of

sentiment analysis by capturing and processing the sentiment informa-

tion required for the tasks.

4. The sentiment features will be better at processing the semantic and

sentiment information of texts when configured using both polarity and

intensity information of words than when using only one.

5. A new methodology that combines the pre-trained model with a newly-

trained model using sentiment features will help processing sentiment

analysis through interactions between the two models.

7

The hypotheses above will be tested in this dissertation indirectly through

experimental results. First, the first hypothesis will be tested by applying the

Korean-specific BERT model trained in this study to several Korean NLP

tasks from various domains and comparing them with other existing Ko-

rean models’ performances. The tasks consist of Named Entity Recognition

(NER), Question Answering (QA), and the detection of similarity or entail-

ment between sentences and sentiment analysis.

We examine the second hypothesis by training an expanded model by

adding data from different sources to the Korean language model’s training

data and comparing its performances on Korean NLP tasks with those of the

original model with smaller training data.

The sentiment features are composed and added to the input embeddings

of the Korean-specific BERT models trained in this study to test the third

hypothesis. In training the sentiment-combined model, the effects of the sen-

timent features are identified through Masked Language Modeling (MLM)

performance, one of BERT’s training subtasks. The model trained with addi-

tional sentiment features is also applied to sentiment analysis tasks and eval-

uated by its performance.

The fourth hypothesis will be examined by an ablation study in which

the model performance is obtained by subtracting each of the polarity and

intensity features that compose our sentiment features from the sentiment-

combined model. Here, the model’s training performance, especially MLM

accuracy and loss, and the performance in sentiment analysis tasks are evalu-

8

ated.

Finally, we test the fifth hypothesis by combining a pre-trained, general

purpose language model and a sentiment-combined model using sentiment

features to apply to sentiment analysis, and compare the performance with

those of the existing single pre-trained models.

1.2 Contribution

We constructed the BERT-based models using Korean training data, which

can be applied to several Korean NLP tasks. Moreover, we released the trained

models through GitHub to make them easy to access and utilize when process-

ing Korean texts. There are not many task data released in Korean, and fewer

are both sufficient in quantity and released publicly. Therefore, providing pre-

trained, generic purpose models will be helpful.

Such Korean pre-trained models will also contribute to the study of theo-

retical linguistics, Korean linguistics, and natural language processing. In aca-

demic fields, more and more computational methods are used, and recently,

texts are analyzed using word embedding models such as Word2vec (Mikolov

et al. 2013) or GloVe (Pennington et al. 2014). However, using sentence-level

embedding models such as BERT would help process the meaning of texts

and linguistic phenomena, using context in a broader range than words and

n-grams, such as sentences or documents.

Additionally, we propose a new method of using a specific set of new fea-

tures for sentiment-related tasks, and release a model which uses this method.

9

We constructed sentiment features using polarity and intensity information

from a Korean sentiment lexicon and trained a sentiment-combined model

using them. We also provide a methodology for externally fusing the Korean

pre-trained language models and sentiment-combined models to apply to sen-

timent analysis tasks. As a result of adding sentiment features and combining

the trained models in a new way, we could improve Korean sentiment analysis

performance.

Furthermore, our novel external sentiment fusing method saves training

time and effort. The basic pre-trained general purpose models are conve-

niently imported without additional training, and the newly-trained sentiment-

combined models are trained using a small-scale architecture, smaller training

steps, and low level hardware. After that, only fine-tuning is needed, and is

done by applying both models to the sentiment-related tasks at the same time.

Doing so shows improved performance over when the models are used alone.

1.3 Dissertation Structure

This chapter presents the research problems of constructing Korean pre-trained,

general purpose, contextualized embedding models for several NLP tasks, and

training sentiment-combined models using related features to improve perfor-

mance on sentiment analysis tasks.

Chapter 2 introduces previous studies, including BERT and the following

BERT-based models improved to construct more effective or efficient sys-

tems. Studies on sentiment analysis are also mentioned, ranging from tradi-

10

tional models using hand-crafted features to neural networks and BERT-based

models.

To explain our approach using BERT, we describe the basic architecture of

the Transformer and BERT in Chapter 3. The process of training, fine-tuning,

and testing BERT models is explained, with popular NLP tasks and standard

evaluation metrics given for them.

Chapter 4 describes the Korean-specific monolingual BERT-based mod-

els trained in this study, with their training data, vocabulary, and parameters.

These training details are compared with those of other existing Korean mod-

els.

Chapter 5 evaluates the models introduced and trained in Chapter 4 by

applying them to various Korean NLP tasks and measuring their performance

against other Korean pre-trained models.

We introduce sentiment features and infuse them to the language mod-

els above to better process the sentiment analysis tasks in Chapter 6. The

sentiment-combined model’s training and task performance is compared to

those of the original models without sentiment features. Moreover, ablation

studies are executed to observe the effects of using the sentiment features and

polarity and intensity information.

Chapter 7 describes a different, new methodology of using sentiment fea-

tures to improve BERT-based models’ performance in sentiment analysis more

clearly. We combine two different purpose models, one for general purpose

use and the other for sentiment analysis, and compare the models’ perfor-

11

mances to verify the effect of the external fusing of different models.

Finally, Chapter 8 summarizes this dissertation’s main findings and dis-

cusses the remaining problems with future directions to improve and expand

our study.

12

2 Related Work

This chapter introduces previous work related to the content of this disser-

tation. First, 2.1 describes language models and previous studies on them.

Additionally, we mention the attention mechanism applied to models for lan-

guage modeling. 2.2 refers to the BERT model on which the models provided

by this study are based. We also introduce the various derivations of BERT,

including Korean-specific and task-specific pre-trained models. In 2.3, we de-

scribe previous studies on sentiment analysis that we address, expanding upon

our Korean-specific BERT models.

2.1 Language Modeling and the Attention Mechanism

A Language Model is a probabilistic model that calculates the probability of

the occurrence of a token in a sequence. The probability is calculated by pre-

dicting a word given the previous words in a sequence, based on conditional

probabilities, as in Equation (1). The equation computes the probability of a

sequence W consisting of words w1,w2, ..., calculating the occurrence proba-

bility of the nth word given the n−1 previous words in the sequence.

P(W) = P(w1,w2,w3, ...,wn) =
n

∏
i=1

P(wn|w1, ...,wn−1) (1)

Here, the sequence with a higher probability is judged to be more proper.

This method can be applied to several fields, including machine translation,

spelling correction, and speech recognition. Traditionally, the n-gram lan-

13

guage modeling method was utilized to limit the number of previous words

used for a word prediction. Its use was limited to counting and modeling

phrases in a training corpus, as it would be hard for such n-gram models to

count longer sequences. Since such language modeling still could not learn

about sentences not included in the training data, neural language models and

word embedding models attempted to model such sentences by training for

the similarities between words (Yoo 2020).

These neural language models project the words’ presence and frequency

information in the form of embedding vectors. Models such as RNNs, LSTMs,

and GRUs execute language modeling based on vectors calculated through

multiple hidden layers. The embedding vectors include relations between words,

including word similarity, since they represent words in more detail with

many figures. Based on this idea, various word embedding models such as

Word2Vec (Mikolov et al. 2013), GloVe (Pennington et al. 2014), and Fast-

Text (Bojanowski et al. 2017) were widely used.

Meanwhile, development into contextualized representation models was

beginning. Such contextualized models learn text representations via language

modeling, mainly based on an AutoRegressive (AR) method, which predicts

a token given the previous tokens in a sequence, as in several of the neural

language models above. Through the AR method, the likelihood of an input

sequence is calculated by multiplying the conditional probabilities of the n-

grams in a sequence.

ELMo (Peters et al. 2018) and GPT (Radford et al. 2018) are trained via

14

the AR method. ELMo obtains the final hidden states of multi-layer LSTMs,

which consider both directions of a sequence, forward and backward, and con-

catenates them to learn bidirectional context information in text sequences.

GPT utilizes a modified version of the decoder of the Transformer architec-

ture. It trains the language model via unsupervised language modeling based

on the AR method’s objective function, and fine-tunes the model using task-

specific labeled datasets.

On the other hand, some models use an Auto Encoding (AE) method for

language modeling. A model, given an input sequence, predicts the same se-

quence to learn text representations. Through the AE method, the language

model obtains the bidirectional contextual information of a sequence with-

out additional concatenation, unlike AR models. BERT (Devlin et al. 2019) is

a representative AE model that predicts the original sequence given a cor-

rupted sequence with masked tokens (Denoising Auto Encoder). BERT is

constructed based on the Transformer (Vaswani et al. 2017), specifically its

multi-head self-attention mechanism.

The attention mechanism, the basis of the Transformer architecture and

BERT, is a mechanism used to improve neural network models’ performances.

Bahdanau et al. (2015) first provided the method to search for words in a

source sentence relevant to and to be focused on for predicting a target word,

to improve machine translation performance.

Several studies added the attention mechanism to language models to help

them learn linguistic knowledge from texts. Sukhbaatar et al. (2015) proposed

15

an end-to-end memory network based on an RNN, but included layer-wise

weights and divided the RNN output into internal and external outputs. The

internal output considers memory, which is analogous to attention weights,

and the external output corresponds to predicting a label. Daniluk et al. (2017)

applied a key-value attention mechanism, in which the Key and Value parts are

separately considered from the output vector to by neural language models.

Salton et al. (2017) provided an Attentive RNN-LM that applies the attention

mechanism to its inputs, encoded by a multi-layered RNN model.

The attention mechanism has also been applied to improve performance

in various NLP tasks, including: machine translation, text classification, text

summarization, information extraction, semantic tasks including textual en-

tailment and semantic role labeling, syntactic parsing, and sentiment analysis

(Galassi et al. 2020). The detailed processes of computing attention for a se-

quence are explained in detail later in 3.1.1.

2.2 BERT-based Models

2.2.1 BERT and Variation Models

BERT is a contextualized embedding model, which is a refined and improved

version of the encoder part of the Transformer. The model is trained based on

a sizeable unlabeled corpus through bidirectional language modeling to con-

struct language representations that can be applied to several tasks, providing

robust performance in broad fields of NLP. Its training process uses two in-

ternal subtasks: Masked Language Modeling (MLM), in which the relation

16

between the tokens in a sentence is learned; and Next Sentence Prediction

(NSP), where the relation between sentences in a document are modeled.

This BERT model was trained based on English texts, and most of the

BERT-based models described and improved here are also English-based.

Multilingual models that handle multiple languages at a time have also been

released. Moreover, some models have been trained using a specific non-

English language corpus.

Since then, various BERT variation models have appeared. First of all,

there is a trend to construct huge models that use a larger scale architecture

and more parameters than BERT to achieve improved performance. XLNet

(Yang et al. 2019) used additional text to BERT’s training data and consid-

ered permutated sequences to mask and predict all tokens in the text, whereas

BERT masks and predicts only 15% of tokens, accessing the tokens in sen-

tences in sequential order. This makes the model better at learning the depen-

dencies and relations between words and achieve higher performance than

BERT. However, higher hardware specifications are required due to its large

number of calculations.

RoBERTa (Liu et al. 2019), released by Facebook, also used additional

training data and used a dynamic masking method that removed NSP and

improved MLM from BERT’s original training tasks. It does this by mask-

ing different tokens according to its training epoch. It also reported higher

performance than BERT in many tasks while requiring higher hardware spec-

ifications due to its high number of computations.

17

There have also been smaller models developed to try and overcome the

limitations of hardware or the long training times that such huge models re-

quire. DistilBERT (Sanh et al. 2019) is a model that removes token-type em-

bedding and poolers from the BERT model and halves the number of param-

eters calculated by halving the number of layers. It is reported that Distil-

BERT’s performance remained at 97% of BERT’s performance even though

its computation has been reduced.

ALBERT (Lan et al. 2020) reduced the model’s size by applying two

parameter reduction techniques to the BERT model: factorized embedding

parameterization that reduces the number of input layers’ parameters, and

cross-layer parameter sharing. This model suggested Sentence-Order Predic-

tion (SOP) instead of BERT’s NSP task, pointing out that NSP was too easy,

and that it is therefore ineffective as a training task. In SOP, the model judges

a swapped pair of two consecutive sentences as a false example, and this be-

comes a task aimed at capturing the discourse-level coherence of a text.

ELECTRA (Clark, Luong, et al. 2020) performed MLM using a sepa-

rate small generator network through a Generative Adversary Network (GAN)

style methodology, and performed more efficient MLM by determining whether

each token is a corrupted token by using a discriminative model. Here, the size

of the generator model with token corruptions can be reduced, so the number

of calculations is also reduced.

There are also various other models, and most of those models are released

in Facebook’s Transformers library (Wolf et al. 2020), in the form of a pack-

18

age for easy use. In this dissertation, modified Korean-specific models were

trained based on BERT, which is the basis of the various models above.

2.2.2 Korean-Specific BERT Models

The first BERT model for dealing with Korean texts was the multilingual

BERT (M-BERT), which was pre-trained by Google Research using training

corpora of 104 languages and a vocabulary constructed from those languages.

The model applies to tasks for all 104 language. The languages include Ko-

rean, English, German, Arabic, Slovenian, and Turkish, which are chosen as

the languages with the most massive Wikipedia data.

This model is easy to import and produces satisfactory performance across

its languages, but has many disadvantages compared to subsequent mono-

lingual models trained on individual languages’ corpora. The monolingual

models capture the characteristics of a language well and perform better in

downstream tasks. Starting with BERT, the actual English-only model, mono-

lingual models based on German1, Italian (Polignano et al. 2019), Finnish

(Virtanen et al. 2019), Japanese (Kikuta 2019), Spanish (Cañete et al. 2020),

Malaysian (Husein 2018), Dutch (Vries et al. 2020), Arabic (Antoun et al.

2020), Vietnamese (Nguyen and Nguyen 2020), and Polish (Kłeczek 2020)

reported higher performances than multilingual models in various NLP tasks.

Korean-specific models also reported higher performances than M-BERT.

ETRI released KorBERT, which includes morpheme-level and character-level
1https://deepset.ai/german-bert

19

https://deepset.ai/german-bert

models trained using large-scaled training data (23GB) and vocabularies (30,349

morphemes and 30,797 character tokens), and many parameters (110M). The

morpheme-level model used an external part-of-speech tagger to construct

and model the vocabulary using segmented morpheme units as a basic token.

The character-level model tokenized its training data using a similar method to

the WordPiece model, a BERT tokenizer model that combines syllable char-

acters that frequently occur in words.

SKT Brain’s KoBERT is a character-level model that constructed its vo-

cabulary and tokenized texts using the SentencePiece tokenizer (Kudo and

Richardson, 2018). The SentencePiece tokenizer uses the Unigram Language

Model, which examines all possible fractional units in a text and chooses the

unit with the highest probability among them as a token in the vocabulary. The

training data of KoBERT consist of Korean Wikipedia (5M sentences, 54M

words) and news data (20M sentences, 270M words), the vocabulary consists

of 8,002 tokens, and the model has 92M parameters.

HanBERT, released by TwoBlock AI, is a morpheme-level model using

Moran, a self-developed part-of-speech tagger. Moran performs a morpho-

logical analysis using a database composed of about 3 million words and

445,701 words from Wikipedia entries. The training data consists of generic

documents (3 billion sentences, 11.3 billion morphemes, 70GB), and patent

documents (3.7 billion sentences, 15 billion morphemes, 75GB). The vocabu-

lary includes 54,000 tokens and is based on the entries of the Moran database.

We also trained Korean-specific monolingual BERT models in this dis-

20

sertation. First, KR-BERT is a character-level model, and the training data

consists of Korean Wikipedia texts and news articles (20M sentences, 233M

words, 2.47GB). Its vocabulary includes the tokens trained using the Word-

Piece tokenizer of BERT, and some foreign language characters and special

tokens included to deal with casual writings, to form a list of 16,424 tokens.

The model contains 99M parameters. KR-BERT is the basis of the sentiment-

combined models, which will be explained later in this dissertation.

Additionally, based on KR-BERT, we trained an additional KR-BERT-

MEDIUM model with training data expanded in terms of both scale and the

variety of domains covered. We will explain it in detail in Chapter 4.

KorBERT and HanBERT use large-scale training data and vocabularies,

and a large number of parameters, requiring high memory usage and extended

training time. Furthermore, HanBERT and the morpheme-based model of Ko-

rBERT set the basic token unit as a morpheme, and thus it is necessary first to

preprocess all texts used for training and testing the models with external part-

of-speech taggers. This dramatically increases the time, effort, and cost of text

processing. While KoBERT uses a smaller vocabulary and a smaller number

of parameters than KR-BERT for training, its training data size is slightly

larger than that of KR-BERT. Despite the relatively small-scale configura-

tions of KR-BERT, the model reported similar or higher performance than

others in various NLP tasks, such as Movie Review Classification, Named

Entity Recognition, and Question Answering.

21

2.2.3 Task-Specific BERT Models

Applying the BERT model to various NLP tasks, there are several additional

improvements to model fine-tuning for each task. First of all, LIMIT-BERT

(Zhou et al. 2020) infused BERT with syntactic and semantic information,

and modified it to be applicable to multiple linguistic tasks: part-of-speech

tagging, constituent parsing, dependency parsing, and span- and dependency-

level Semantic Role Labeling.

ERNIE (Zhang et al. 2019) is a general-purpose BERT model using entity-

and phrase-level knowledge masking strategies. The model reported slightly

better performance than other models in five major Chinese NLP tasks.

GlossBERT (Huang, Sun, et al. 2019) used gloss knowledge, the sense

definition of words, to perform Word Sense Disambiguation (WSD). They

constructed context-gloss pairs from glosses of all possible senses of words

in WordNet (Fellbaum 1998), and defined the WSD task as a sentence-pair

classification problem.

SenseBERT (Levine et al. 2020) is also an improved BERT-based model

for WSD. The model added Masked Word Sense Prediction to the training

tasks of BERT to predict masked tokens and their WordNet supersenses si-

multaneously. By using word-sense information in the pre-training of BERT,

the model’s lexical understanding is strengthened.

Moreover, some studies have trained models with corpora from certain

domains to make them function well in those fields. BioBERT (Lee, Yoon,

et al. 2019) was initialized with the original BERT model and further trained

22

using biomedical texts (PubMed abstracts and PubMed Central full-text arti-

cles). This model was fine-tuned and performed in tasks such as Named Entity

Recognition, Relation Extraction between named entities, Question Answer-

ing, showing better performance than previous approaches to the tasks.

SciBERT (Beltagy et al. 2019) is a model trained based on scientific publi-

cations (Semantic Scholar) and a vocabulary constructed using the Sentence-

Piece algorithm. The model was applied to NLP tasks such as Named Entity

Recognition, PICO Extraction (a specific entity recognition on clinical trial

paper), Text Classification, Relation Classification (between named entities),

and Dependency Parsings, for texts of the biomedical domain and computer

science domain. It recorded higher performance than BERT on these tasks.

Huang, Altosaar, et al. (2019) and Alsentzer et al. (2019) constructed

domain-specific BERT models trained based on clinical notes. ClinicalBERT

(Huang, Altosaar, et al. 2019) trained a BERT-based model with medical notes

(MIMIC-III Database) and fine-tuned the model with Hospital Readmission

Prediction, which is a clinical task determining the readmission of a patient

within the next 30 days. The model reported higher performance than the

baselines, bag-of-words, and BiLSTM models.

Alsentzer et al. (2019) initialized their BERT-based models from the ex-

isting BERT and BioBERT models, and then fine-tuned them based on the

MIMIC-III Database. The models were evaluated on a MedNLI language in-

ference task and four named entity recognition tasks in the clinical domain,

recording higher performance with the clinically fine-tuned models than the

23

non-clinical basic models in many cases.

2.3 Sentiment Analysis

We performed the Sentiment Analysis tasks here by constructing expanded

Korean-specific BERT-based models with additional sentiment features. There-

fore, we describe the necessary information and previous studies on sentiment

analysis here.

Sentiment Analysis is a field of NLP studies in which a model finds the

opinion, stance, or feelings in a text that its writer possesses on a particular

subject or target. The model is trained based on the text and predicts sentiment

labels for it. Texts subject to sentiment analysis tasks span various domains,

including product or movie reviews and web texts generated by users, includ-

ing texts posted on social network services such as Twitter, Reddit, blogs,

and discussion forums. Sentiment analysis tasks also vary depending on do-

main data and the problem definition, such as phrase-level, sentence-level,

document-level, and aspect-level sentiment classifications. The granularity of

sentiment information also categorizes them into subjectivity classification,

polarity classification, and multi-class sentiment type classification.

Several models have been designed and use features that capture senti-

ment information well. Using proper linguistic features to help with the task

is a trend that has been developing for a long time. The features widely used

include the existence and frequency of words (bag-of-words), certain words

in the text (Benamara et al. 2007; Turney 2002; Wilson et al. 2005), part-of-

24

speech information, parse tree of expressions, and stylistic properties (Rahate

and Emmanuel 2013).

Many studies have used a pre-defined sentiment lexicon as sentiment fea-

tures. A sentiment lexicon is a kind of dictionary, including sentiment orienta-

tion such as the polarity or intensity of words. Sentiment lexicons constructed

in English, the most studied language, include SentiWordNet (Baccianella et

al. 2010), MPQA (Wiebe et al. 2005), and the Big Liu Opinion Lexicon (Hu

and Liu 2004). SentiWordNet contains the degrees of positivity, negativity,

and neutrality (objectiveness) of words annotated for all the WordNet synsets.

MPQA and Bing Liu Opinion Lexicon defined a list of words with positive

and negative polarity, and the former also annotated the intensity of word sub-

jectivity.

Released Korean sentiment lexicons include the Korean Sentiment Anal-

ysis Corpus, KOSAC (Shin et al. 2012), and the KNU Korean Sentiment Lex-

icon2. KOSAC annotated 17,582 sentiment expressions from the Sejong Cor-

pus and news articles. The entries are based on morpheme units, with types

of subjectivity, polarity, intensity, and manner of expressions, and their prob-

ability values annotated to each of them. Among these features, we used the

polarity and intensity values to construct the sentiment features.

The KNU Korean Sentiment Lexicon, released by Kunsan National Uni-

versity, includes 14,843 sentiment words and phrases. The lexicon consists

of positive and negative words from several sources: the results of BiLSTM
2https://github.com/park1200656/KnuSentiLex

25

https://github.com/park1200656/KnuSentiLex

classification on the glosses of the Standard Korean Language Dictionary of

the National Institute of the Korean Language, the translated word lists of

SentiWordNet and SenticNet-5.0, the word list provided by Gim (2004), and

recently popular online abbreviations and emoticons.

Such sentiment values of tokens in a sentence help to predict the sentence-

level sentiment label, as in Example (3), which is an excerpt from a movie

review in the Naver Sentiment Movie Corpus. In Example (3), the tokens유쾌

yukhway “pleasant” and이쁜 ippun “pretty” have an apparent positive stance

on the movie, and 너무 nemwu “very” serves as an intensifier to amplify

the positivity. Therefore, the sentiment values help us to judge this review as

positive.

(3) 너무유쾌하고이쁜영화

nemwu yukhwayhako ippun yenghwa

“a very pleasant and pretty movie.”

Polarity Label: Positive

Traditional studies using features based on sentiment lexicons are as fol-

lows. Teng et al. (2016) built a lexicon-based weighted sum model using prior

sentiment scores from sentiment lexicon features as weights in an LSTM. The

model produced sentence-level sentiment labels.

Qian et al. (2017) modeled the linguistic role of sentiment, negation, and

intensity words to construct the training objectives of an LSTM using lin-

guistic regularizers. The linguistic regularizers allowed the model to predict

26

each position’s sentiment distribution in a sequence according to sentiment,

negation, and intensity words.

Sun et al. (2018) encoded the words from a sentiment lexicon, along with

the dependency and arguments (personal beliefs) in texts, through an LSTM,

and calculated each word’s attentions to act as the weights. They obtained

semantic vectors by computing a weighted sum of the hidden states of words.

Bao et al. (2019) utilized lexicon information to perform aspect-based sen-

timent analysis. They defined five categories of sentiment values to each word

and used them as the features used in LSTM.

Moreover, Li and Caragea (2019) used the sentiment lexicon of Hu and

Liu (2004) and the self-built stance lexicon to encode whether each word in a

sequence is included in either of the lexicons, and vectorized the information.

Some works trained embedding models that help the sentiment encoding

of a text. Tang et al. (2014) provided an extensive version of the embedding

model (Collobert et al. 2011). Another similar model of Fu et al. (2018) ex-

panded the Continuous Bag-of-Words (CBOW) model (Mikolov et al. 2013).

These models used a corrupted embedding method, which masks random

words in a given text span, making the model learn syntactic and semantic

information through language modeling and sentiment information through

annotated polarity labels of the training corpus.

On the other hand, it is known that contextualized embedding models such

as ELMo and BERT encode linguistic information themselves (Pennington

et al. 2014). Such a model can automatically and internally learn linguistic

27

features, including sentiment features, to produce the same or somewhat better

performance than existing models, without hand-crafting features. Therefore,

many studies attempt to improve embedding models mathematically, without

adding features, as in 2.2.1. It is reported that such models learn sentiment

information on their own and produce high performance in sentiment analysis

tasks.

However, several studies added features to BERT models and reported

improved performances in the related tasks. In particular, BERT-based stud-

ies have used additional sentiment information to help to perform sentiment

analysis. SentiLARE (Ke et al. 2020) obtained sentiment polarity informa-

tion from the SentiWordNet dictionary using words and their part-of-speech

tags, and trained new BERT models using word sentiment polarity and part-

of-speech information with pre-defined sentence-level sentiment labels in the

training data. The models were trained based on a review dataset including

sentiment labels (Yelp Dataset Challenge 2019).

They modified BERT’s MLM training task to predict part-of-speech tags

and the sentiment polarity labels of tokens, as well as the masked tokens them-

selves, summing the losses of all these predictions. This allows the model

to capture the implicit relations among sentence-level labels, tokens, and to-

ken information. The models were tested on English sentence-level sentiment

classification datasets and aspect-based sentiment analysis tasks, recording

higher performance than existing models.

SKEP (Tian et al. 2020) is a model that included sentiment words and

28

aspect-sentiment pairs in the model training process. It was based on RoBERTa

since it did not use the NSP task during training. The authors annotated the po-

larity of words in a sequence through the Pointwise Mutual Information (PMI)

method using a few seed words and detected aspects matching the words sur-

rounding the sentiment words.

In this way, they obtained sentiment words and aspect-sentiment pairs, and

then masked and predicted them to calculate separate losses. In particular, for

sentiment words, objectives were organized to predict their positivity based

on final hidden states by performing word polarity prediction. So the model

used three tasks of Sentiment Word Prediction, Word Polarity Prediction, and

Aspect-Sentiment Pair Prediction, and the three losses were combined to form

the final loss. SKEP reported slight improvements over previous state-of-the-

art models and the RoBERTa baseline in sentence- and aspect-level sentiment

classification and opinion role labeling tasks.

Like their studies, this dissertation also used the method of infusing sen-

timent information with BERT. We built sentiment features using a Korean

sentiment lexicon and combined the feature embeddings with BERT’s input

embeddings to train the sentiment-combined models. Although the method of

constructing the BERT input embeddings is similar to that of SentiLARE, our

models do not include pre-trained sentence-level labels and part-of-speech

information. In our models, not only word-level polarity but also intensity

are included as sentiment features. We do not predict the infused token-level

sentiment values during training processes, so additional prediction tasks or

29

losses are not used in our models despite the infusion of sentiment features.

The above models include training from scratch, which requires a lot

of time and cost. We considered a method that is slightly lighter than the

aforementioned models, while also adding features. It combines a sentiment-

combined model, trained on a small scale and in small steps, with an existing

pre-trained model. Then, in the fine-tuning phase for a task, the two mod-

els are optimized simultaneously to perform prediction. It can produce sat-

isfactory task performances while requiring less training time and hardware

resources. We will explain this in detail in Chapter 7.

2.4 Chapter Summary

This chapter introduces previous studies on BERT and variations of models

based on BERT. First, we provided a rough overview of language models,

from traditional n-gram models to contextualized embedding models. We also

describe the attention mechanism applied to the language models to improve

modeling performances.

The BERT-based models described in 2.2 show a trend towards improv-

ing the internal architecture of the model in order to create more effective or

efficient models, towards including models which are newly-trained based on

non-English languages, and towards some studies attempting to improve or

fit the model for specific NLP tasks. Following these lines of development,

we also trained and released a new BERT-based model trained using Korean

texts.

30

In 2.3, we roughly explained the studies on sentence-level sentiment clas-

sification, since we will provide a model applied to sentiment analysis using

sentiment features in this dissertation. We introduced previous works, from

the traditional methodology to the recent BERT-based models. Studies which

added sentiment features to the BERT architecture provided us with our in-

spiration to use these additional features in order to improve the performance

of related tasks.

31

32

3 BERT Architecture and Evaluations

3.1 Bidirectional Encoder Representations from Transform-

ers (BERT)

The Bidirectional Encoder Representations from Transformers model, BERT

(Devlin et al. 2019), is the basic model of this dissertation, which trains on

the context of sentences bidirectionally to produce generic language repre-

sentations that can be applied to various NLP tasks. In other words, the model

analyzes unlabeled texts for training and obtains the sentence embeddings

that reflect meaning and context. Attempts to construct proper text embed-

dings have long been provided through a variety of methods: by using bag-of-

words models, hand-crafted linguistic features, and word embeddings based

on recurrent networks.

Figure 1: The Process of Training and Fine-tuning BERT

Figure 1 shows the process in which the BERT model is trained and ap-

plied to several NLP tasks in the form of a pre-trained embedding model.

33

BERT builds a model that includes text embeddings through training, and the

trained language representations apply just one additional task-specific clas-

sifier layer to downstream tasks to adjust the parameters of the model to the

task. Through this classifier layer, the sentence embeddings produced by the

model are inserted into each task as an input. Accordingly, the model is evalu-

ated on several linguistic tasks on benchmarks such as General Language Un-

derstanding Evaluation (GLUE) (Wang, Singh, et al. 2018) and SuperGLUE

(Wang, Pruksachatkun, et al. 2019), reporting higher performance than other

existing language representation models including ELMo and GPT.

In 3.1, we describe the BERT architecture details: the multi-head self-

attention mechanism and the layers used to implement it, the two subtasks

used for BERT training, and the fine-tuning process.

3.1.1 Transformers and the Multi-Head Self-Attention Mechanism

BERT was designed based on the Transformer architecture of Vaswani et al.

(2017). The Transformer used an attention mechanism to reduce the compu-

tations from those of the existing models based on recurrence or convolution,

and easily calculate the global dependencies between inputs and outputs.

The Transformer consists of a stack of encoders and decoders, as shown in

Figure 2, each of which has multiple stacked blocks, including a multi-head

attention layer and a feed-forward network layer. In Figure 2, the block on the

left represents the encoders, and the one on the right indicates the decoders.

Repetition of the same blocks means that the architecture repeats semantic

34

Figure 2: The model architecture of the Transformer (Vaswani et al. 2017)

analysis on the same sequence, so we can expect that it will be better at grasp-

ing the complex semantics that the sequence contains. BERT is implemented

based on the encoder portion of the Transformer, increasing the number of

layers and improving on the internal system, making it more elaborate.

The encoder of Transformer, which is the basis of BERT, has a stack of

multiple identical layer blocks, and each layer contains two sub-layers: 1) a

multi-head self-attention mechanism layer, and 2) a position-wise fully con-

nected feed-forward network. The former performs the semantic processing

of texts, which is the primary function of the Transformer, and the latter trans-

35

forms the output of the previous encoder layer to the form of the input to the

next encoder layer or to the decoder blocks.

First, an attention mechanism, the main part of the Transformer and BERT,

calculates the degree to which a token attends to the others in a sequence.

Attention is related to the relevance or dependence of tokens, so the more

relevant the tokens are, the greater the value of the attention weights.

(a) Scaled Dot-Product Attention (b) Multi-Head Attention consists of several
attention layers running in parallel

Figure 3: Attention calculation (Vaswani et al. 2017)

To calculate the attention between tokens, three matrices, Query (Q), Key

(K), and Value (V), are obtained by a linear transformation of token sequences.

A Query is composed of a token in a sequence for finding relevance to other

tokens. The remaining tokens in the sequence (apart from the Query tokens)

are used to construct Key and Value matrices to calculate the tokens’ atten-

tion to the Query tokens. The calculated attention functions as an indicator

36

of finding a token relevant to Query among those tokens. Keys and Values

are composed from each token in the sequence, and the former calculates the

probability of relevance between the Query token and the remaining tokens,

while the latter calculates the attention values based on this probability. These

vectors are applied to an attention function using a scaled dot-product, as

inEquation (2), which is visualized in Figure 3a:

Attention(Q,K,V) = softmax(
QKT
√

dk
)V (2)

where dk indicates the dimension of the Key matrix K. This scaled dot-

product attention calculates the dot-product of the Query matrix Q and the

Key matrix K, scales it by dk, and then applies softmax to obtain the weights

on the Value matrix V. This calculation produces the attention weights be-

tween tokens in token sequences. Here, if the token sequences attending to

each other are the same, then this process is a self-attention mechanism. In

other words, each token in a sequence calculates attention weights with the

remaining tokens in the sequence to learn the context information in the se-

quence.

It is more beneficial to model training using different Q, K, and V matri-

ces obtained by multiple transformations than using only one set of linearly

transformed vectors. In other words, the linear projections of Q, K, and V

are performed several times differently, and attention functions are applied to

each of them in parallel. The calculation according to each linear projection

37

corresponds with a single attention head, and the multiple outputs obtained

by this method are concatenated to become the output of the multi-head at-

tention, as in Figure 3b and Equation (3) (Vaswani et al. 2017).

In Equation (3), W o indicates the weight matrix that is assigned to each

attention head headh when concatenating the heads to obtain the final repre-

sentations for a sequence. QW Q
i , KW K

i , and VWV
i represent the weight matri-

ces assigned to the matrices Q, K, and V, where i indicates the calculation in

the case of the ith attention head.

MultiHead(Q, K, V) = Concat(head1, ..., headh)W o

where headi = Attention(QW Q
i , KW K

i , VWV
i)

(3)

The point-wise feed-forward networks, which make up the second sub-

layer of the encoder layer of the Transformer, consist of two linear transfor-

mations and a ReLU activation between them, as in Equation (4) (Vaswani

et al. 2017).

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Here, BERT used GeLU instead of ReLU. This process is applied to each

token in each position of a sequence, named point-wise. The output of the

previous layer, the multi-head attention layer, is processed into the final output

of the block through this feed-forward network layer, which transforms it into

38

the proper form for the input of the next encoder or decoder block.

The two sub-layers described above are connected after performing resid-

ual connections and layer normalization, as in Equation (5) (Vaswani et al.

2017).

output = LayerNorm(x + SubLayer(x)) (5)

Here, the residual connection process helps the layer preserve previously-

learned information and add newly-learned knowledge. Via a simple calcula-

tion, it decreases the load of the additional learning of each layer. The layer

normalization process ensures that the layer values do not change abruptly,

thus speeding up training and improving the generalization of calculated val-

ues.

3.1.2 Tokenization and Embeddings of BERT

BERT’s input includes sentences in raw texts, which are converted to the to-

ken sequences segmented by the WordPiece tokenizer (Schuster and Naka-

jima 2012; Wu et al. 2016). The WordPiece model was created by the Google

Speech Recognition System to resolve the segmentation problems of Korean

and Japanese, dealing with rare words and out-of-vocabulary (OOV) words,

as the model splits words into WordPiece tokens, subword tokens smaller than

words, and uses them as a basic unit. For example, if a word ‘embedding’ is

not included in a model vocabulary, the model can not correctly process the

39

word. However, if the word is split into WordPiece subword tokens, such as

‘em, ##bed, ##ding’, and those are included in the vocabulary, the tokens can

compose their embeddings respectively. Then, the continuous token embed-

dings construct a context between themselves to process a valid meaning. It

would help the model understand and process the meaning of the words and

the sequence rather than treating the OOV word with [UNK], an arbitrary

value for unknown words.

The WordPiece model first constructs an inventory of separate characters,

and then trains a language model with its training data and the inventory to

obtain a final vocabulary by combining the characters and tokens in the inven-

tory in a greedy manner, adding them to the inventory. The combined tokens

are chosen when the likelihood of the model for the training data increases

when the token is added to the inventory. This process is repeated until the

pre-defined word limit is reached, or until the likelihood increase falls below

a certain threshold.

The raw text input composes a sequence with a single sentence or by con-

catenating two sentences from a pair according to the data. BERT then adds

special tokens to the token sequence for training. [CLS] is added to the front

of the token sequence, and the final hidden output of [CLS] includes the com-

pressed information of the sequence for classification tasks. [SEP] tokens are

added to the boundaries of sentences within the sequence.

Example (4) is a tokenized sequence processed by a cased BERT-Base

model, released by Google Research. Two sentences are concatenated with the

40

special tokens [CLS] and [SEP]. The tokens with ‘##’ in front of them are the

non-first pieces of subword tokens split by the WordPiece algorithm, where

the original word was an OOV word. The word ‘shawl’ is not included in the

BERT vocabulary, so it is split into three WordPiece tokens, ‘s,’ ‘##haw,’ and

‘##l.’

(4) original form: Don’t let her get cold, do you hear? Has Heidi a shawl?

tokenized: [CLS] Don ’ t let her get cold , do you hear ? [SEP] Has

Heidi a s ##haw ##l ? [SEP]

The WordPiece tokens in the sequence are assigned integer values accord-

ing to the index defined in the vocabulary, and converted to integer vectors (to-

ken embedding). Also, the learned embeddings indicating segments (bound-

aries) of sentences are constructed (segment embeddings). If a sequence con-

sists of two sentences, the segment embeddings assign 0 to the tokens in the

first sentence, and 1 to the tokens in the second sentence.

Figure 4: BERT embeddings (Devlin et al. 2019)

41

Additionally, since the self-attention mechanism does not include the po-

sition information of tokens in a sequence, positional embeddings are con-

structed to represent each token’s relative position (position embedding). The

positional encoding of each token position is performed through sine and co-

sine functions. BERT’s input embeddings are constructed by point-wise sum-

ming the three embeddings described above, as visualized in Figure 4.

3.1.3 Training and Fine-Tuning BERT

The original English-based BERT model was trained based on a large-scale

corpus, including the BookCorpus (Zhu et al. 2015) and English Wikipedia

texts. The texts are converted to embeddings as described in 3.1.2 and trained

through two tasks: Masked Language Modeling (MLM) and Next Sentence

Prediction (NSP).

MLM is a task for a bidirectional language modeling of tokens in a se-

quence. BERT masks a randomly chosen 15% of tokens from each sequence

and predicts them by language modeling through this task. As an autoencoder

language model, with final hidden states corresponding to the masked tokens,

BERT calculates its cross-entropy loss through softmax for all the candidate

tokens in its vocabulary to predict the original tokens, as in Equation (6).

− 1
MN

N

∑
n=1

K

∑
k=1

M

∑
m=1

(
yk

m,n× log(softmax(xm,n, k))
)

(6)

In Equation (6), M and N represent the number of masked tokens and the

42

number of sequences in the data, respectively. K indicates the number of la-

bels, that is, the candidate tokens in the vocabulary for the masked tokens.

xm,n represents the input embeddings for the mth masked token in the nth se-

quence in the training data. ym,n indicates the target token label for the mth

masked token in the nth sequence in the training data.

However, masking tokens in the training data could create a gap from task

data whose tokens are not masked. Therefore, BERT masks only 80% of the

tokens chosen to be masked, replaces 10% of them with random tokens in the

vocabulary, and uses the unchanged tokens for the remaining 10%. Through

this process, the model learns context information composed of linking tokens

within a sequence.

Figure 5: Visualization of Masked Language Modeling

43

Figure 51 represents the MLM task. In the figure, the input sequence says,

‘[CLS] How do you do ? [SEP] I am not okay . [SEP],’ and the token ‘you’ is

randomly chosen to be masked. This model has set its max sequence length

to 512, and the remaining positions are padded with the [PAD] tokens. BERT

estimates probabilities for all the tokens in its vocabulary to be the correct

answer of the masked token. The upper part of the figure shows selecting the

token ‘you’ as the prediction from the vocabulary candidates since it has the

highest probability.

Figure 6: Visualization of Next Sentence Prediction

On the other hand, NSP is a task designed for learning the relations be-

tween two sentences in a sequence, which cannot be captured by language
1Referring to http://jalammar.github.io/illustrated-bert/.

44

http://jalammar.github.io/illustrated-bert/

modeling in sequences directly. BERT composes a sentence pair by extract-

ing two sentences from each example from its corpus. Here, assume the first

sentence in the sequence as ‘sentence A’ and the second one as ‘sentence B’

for convenience. For each sentence A, 50% of the B sentences are chosen as

the sentence immediately after A in the document, and 50% are chosen to be a

random sentence from the corpus. The model then predicts whether sentence

B is the next sentence of A or not. The hidden states of [CLS], which is the

first token of the sequence, are used for NSP prediction, as described in Fig-

ure 62. The upper part of the figure shows the prediction of ‘NotNext’, with a

probability of 99% that the two sentences are not sequential.

For the NSP task, BERT calculates binary cross entropy loss with the hid-

den states of input sequences, as in Equation (7).

− 1
N

N

∑
n=1

[yn× log(softmax(xn))+(1− yn)× log(1− softmax(xn))] (7)

In Equation (7), N represents the number of sequences in the data. xn rep-

resents the input embeddings for the nth sequence in the training data, and

yn indicates the target label of IsNext or NotNext for the nth sequence in the

training data.

The model calculates losses of the two tasks above and is trained to reduce

them. Here, loss is an indicator of the difference between the correct answer

and the prediction. The smaller the number, the closer the answer and predic-
2Referring to http://jalammar.github.io/illustrated-bert/.

45

http://jalammar.github.io/illustrated-bert/

tion are, which means a better prediction. The model reduces this loss value

to a certain convergence level by repeating the training process for several

steps. The training performance of the BERT model is expressed in the accu-

racies and losses of MLM and NSP. In particular, the global loss of the BERT

training process is obtained by the sum of the MLM loss and NSP loss.

Through these tasks, the model learns various linguistic knowledge, in-

cluding the lexical, syntactic, semantic, and contextual information of texts,

through the internal stacked layers as described in 3.1.1. This contextualized

embedding model captures information in narrow span contexts such as words

at lower layers, and information of wider span such as the relationship be-

tween words at higher layers. The model is expected to learn linguistic knowl-

edge while not using hand-crafted features such as sentence length, word fre-

quencies, and capital letters, which were utilized by traditional approaches.

Various sources have released BERT-like pre-trained models. Google Re-

search provides their TensorFlow-based models at their GitHub3, and Wolf

et al. (2020) collected several released models in the form of a package in

a library called Transformers, based on PyTorch. Appropriate task-specific

inputs and outputs are applied to those models for any downstream task to

fine-tune the models and produce the task results.

The pre-trained models are loaded and further trained for a few steps based

on task datasets to adjust model parameters to fit the task by fine-tuning. Here,

the task datasets include labels to be predicted by the fine-tuned models.
3https://github.com/google-research/bert

46

https://github.com/google-research/bert

A task-specific classifier layer is implemented and applied to the pre-

trained models. For example, BERT’s output representations are extracted in

sequence form and applied to token-level tasks such as sequence tagging or

Question Answering at the task-specific classifier layer. In the classification of

sentiment or relations of sentences, only the embeddings of the [CLS] token

from a sequence are extracted. Then the model calculates task-specific predic-

tion losses using the output representations and the gold-standard labels from

the datasets.

This fine-tuning process is very inexpensive compared to training. Train-

ing can require several days depending on the number of training steps, even

when using a Cloud TPU, while fine-tuning takes only a few hours with GPUs.

3.2 Evaluation of BERT

3.2.1 NLP Tasks

Language models, including BERT-based models, are evaluated by several

NLP tasks related to various linguistic phenomena. Since studies on language

modeling have focused on English corpora, most of the NLP tasks released

consist of English texts. For non-English languages, most task datasets are

composed, collected and annotated similar to those of English tasks. There-

fore, we here introduce major English NLP tasks and their datasets, including

those used for BERT evaluation.

• Acceptability Task: Models predict a binary grammaticality label (gram-

47

matical or ungrammatical) for each English sentence extracted from

published linguistics literature. The Corpus of Linguistic Acceptability

(CoLA) constructed by Warstadt et al. (2019) is commonly used.

• Question Answering

– The Quora Question Pairs (QQP) (Iyer et al. 2017): Models pro-

cess pairs of potential question duplicates and predict if the two

questions are semantically equivalent or not.

– The Stanford Question Answering Dataset (SQuAD) (Rajpurkar et

al. 2016): This corpus consists of question-answer pairs, in which

the question is created based on Wikipedia articles and the answer

is found from the article. Models predict whether the pair of ques-

tion and answer is correctly matched.

– Question Natural Language Inference (QNLI) corpus: This is a

modified version of SQuAD, including annotated question-paragraph

pairs, for which models predict whether the paragraph contains the

answer for the question.

• Sentiment Analysis: Models predict sentiment labels of given sentences

or documents. The Stanford Sentiment Treebank (SST) (Socher et al.

2013) includes movie review texts which are classified as positive or

negative (SST-2) or categorized by five refined classes of subjectivity

(SST-5).

• Paraphrase Detection: With the Microsoft Research Paraphrase Corpus

48

(MRPC) (Dolan and Brockett 2005), models judge whether sentence

pairs of the dataset extracted from news sources are semantically equiv-

alent or not.

• Natural Language Inference (NLI): Sentence pairs composed of a premise

and a hypothesis sentence are annotated with entailment relations be-

tween them, and models predict whether the premise entails or con-

tradicts with the hypothesis or neither. For this task, several datasets

are released: The Stanford Natural Language Inference (SNLI) (Bow-

man et al. 2015), The Multi-Genre Natural Language Inference Cor-

pus (MNLI) (Williams et al. 2018), and The Cross-Lingual NLI Corpus

(XNLI) (Conneau et al. 2018).

• Recognizing Textual Entailment (RTE): The task dataset is constructed

based on news articles and Wikipedia texts, and models predict whether

two sentences in a pair are in an entailment relation, a paraphrase rela-

tion, or neither. The GLUE benchmark evaluates model performances

with the RTE datasets used over several years together: RTE1 (Dagan

et al. 2005), RTE2 (Bar-Haim et al. 2006), RTE3 (Giampiccolo et al.

2007), and RTE5 (Bentivogli et al. 2009).

• Semantic Textual Similarity (STS): This task includes scoring the simi-

larity between two sentences extracted from image captions, news head-

lines, and user forums. The similarity score ranges from 0 (completely

dissimilar) to 5 (completely equivalent), indicating a semantic distance

49

between two sentences’ language representations. Datasets from Se-

mEval 2012-2017 are commonly used.

• Named Entity Recognition (NER): Models predict entity types for each

token in a sequence from a news article corpus, for example, the name

of a person (PER), place (LOC), or organization (ORG). The CoNLL

2003 NER task dataset (Sang et al. 2003) is usually used.

Many of these tasks are also provided by benchmarks such as GLUE

(Wang, Singh, et al. 2018) for easy model evaluation. Referring to these tasks

or directly from these sources, non-English task datasets have been constructed.

Such tasks are also being provided in Korean: Question Answering (KorQuAD),

Natural Language Inference (KorNLI), Semantic Textual Similarity (KorSTS),

Named Entity Recognition (Naver-NER), Movie Review Classification (NSMC),

and Hate Speech Detection (HSD). Some datasets have been collected and

evaluated by each researcher, such as movie review datasets from other sources

and cosmetics product reviews, and were introduced by papers but have not

yet been released. These Korean tasks are described in detail in Chapter 5,

evaluating the performance of Korean pre-trained models.

3.2.2 Metrics

The evaluation metrics commonly used in these NLP tasks include accuracy

and F1 scores, which predict classification performance. Specific metrics may

be used according to the task, but accuracy and F1 score are usually used in

most tasks. It is necessary to consider whether the test dataset’s actual answers

50

match the model’s classification results to explain these two metrics. Table 1

represents a confusion matrix that is composed of the classification of the

model and the actual answers of the dataset.

Table 1: Confusion Matrix

Actual Answers

TRUE FALSE

Model Classifications
TRUE True Positive (TP) False Positive (FP)

FALSE False Negative (FN) True Negative (TN)

From the confusion matrix, four combinations of classification results and

actual answers can be identified as below, of which TP and TN are correct

cases, and FP and FN are incorrect cases of the model prediction.

• True Positive (TP): The model predicts TRUE, and the actual answer is

TRUE. (correct)

• False Positive (FP): The model predicts TRUE, and the actual answer is

FALSE. (incorrect)

• False Negative (FN): The model predicts FALSE, and the actual answer

is TRUE. (incorrect)

• True Negative (TN): The model predicts FALSE, and the actual answer

is FALSE. (correct)

51

Based on the cases above, precision and recall are calculated to produce an

F1 score and accuracy, as in Equations (8-11). The F1 score is calculated by

the harmonic mean of precision and recall (Equation (10)), in which precision

indicates the proportion of True Positive cases out of the total positive cases

which are predicted by the model as TRUE (Equation (8)). Recall represents

the proportion of True Positive cases out of the actual TRUE cases annotated

as gold labels, as in Equation (9).

Precision =
T P

T P + FP
(8)

Recall =
T P

T P + FN
(9)

F1 = 2× Precision×Recall
Precision + Recall

(10)

Accuracy indicates the proportion of correct predictions of the model out

of all cases, as in Equation (11).

Accuracy =
T P + T N

T P + FP + T N + FN
(11)

3.3 Chapter Summary

This chapter describes the BERT model and the encoder part of the Trans-

former, which is the basis of the model proposed in this dissertation, explain-

52

ing the multi-head self-attention mechanism that forms its foundation. More-

over, we mentioned BERT’s input text form and tokenization process and

explained the construction of embeddings based on the tokenized units. We

also summarized BERT training and fine-tuning according to each NLP task

using such embeddings.

In 3.2, we referred to various NLP tasks and their performance as indirect

indicators of the BERT model’s language processing capabilities. We men-

tioned major English NLP tasks, which are the starting point for many non-

English studies. Additionally, the universal measures of assessing such tasks,

accuracy, and F1 scores were described based on the confusion matrix, which

illustrates model predictions with the correct answers from task datasets.

53

54

4 Pre-Training of Korean BERT-based Model

This dissertation proposes a monolingual BERT-based model trained based on

Korean materials. The first released BERT model that handled Korean texts

was Google Research’s multilingual BERT (M-BERT). It is a model that has

trained with texts written in 104 languages, including Korean, English, Ger-

man, Arabic, and Slovenian, and a vocabulary constructed from them, being

able to process texts in all the languages included in the model.

However, this multilingual model has shortcomings when compared to

monolingual models, despite the advantages of its multilingualism. The disad-

vantages of the multilingual model are described in 4.1. This study attempted

to construct a Korean-specific vocabulary and language model so that lin-

guistic knowledge in Korean texts can be better captured to mitigate those

shortcomings. Thus, in experiments observing the models’ performance in

this dissertation in Chapter 5, M-BERT was used as a baseline model.

The main content of this chapter is based on our existing work (Lee, Jang,

et al. 2020a,b).

4.1 The Need for a Korean Monolingual Model

First of all, M-BERT tried to deal with texts in 104 languages at a time and

composed its training data only with Wikipedia texts written in those lan-

guages. The disadvantage of this is that the domain of the training data is

limited to an online encyclopedia. Thus, its linguistic characteristics, includ-

ing words and writing styles, differ from texts of other domains such as books,

55

blog posts, and comments. Training a model with limited data may not suffi-

ciently capture and learn common, various linguistic phenomena. It would be

beneficial to set up various domains and sources for training data to construct

a generic pre-trained language model. Usually, monolingual models, includ-

ing English, organize training data with texts from various domains such as

news articles and books. We also attempted to compose training data from

diverse domains to train Korean-specific models.

The vocabulary of M-BERT contains tokens from 104 languages, while

not including enough numbers and types of tokens of each language. For

instance, M-BERT’s cased model (“BERT-Base, Multilingual Cased”) has

119,547 tokens in its vocabulary, including in that only 3,273 Korean to-

kens (2.74%). The vocabulary covers only 1,187 Korean syllable characters.

Therefore it is hard to judge that Korean texts can be tokenized and processed

by M-BERT properly. In this case, many words will be processed as out-of-

vocabulary (OOV) words and will be assigned random values in the corre-

sponding embeddings.

For example, M-BERT processes Korean words 뱃사람 paytsalam “sea-

man” and춥다 chwupta “cold” as OOV words since its vocabulary does not

include the words. The model could not perform subword tokenization for the

words since it does not have the syllables 뱃 payt and 춥 chwup in its vo-

cabulary. However, such phenomena are not likely to occur in monolingual

models.

In particular, since Korean is an agglutinative language, various word

56

forms are created depending on the combination of word roots, case mark-

ers, and affixes, much more than other languages such as English, which is a

fusional language. Moreover, the word forms are highly likely to change their

form since a combination of graphemes constructs Korean syllables. For ex-

ample, the forms온다 onta “come,”왔다 wassta “came,”와서 wase “come,”

and 올 ol “to come” have different shapes in the form of characters. ‘온 on,

왔 wass,와 wa,올 ol’ all include the meaning of ‘come,’ but in BERT’s vo-

cabulary, it has no choice but to treat them as separate entries.

However, it is not easy to include all forms in a vocabulary. The number

of tokens in the vocabulary will grow indefinitely, considering both the large

number of words and their various forms. If the vocabulary size is too large,

the number of candidate tokens to be predicted in Masked Language Model-

ing during model training grows, requiring longer training time and hardware

cost, depending on the computation workload.

Furthermore, the meaning of words and sentences will not be appropri-

ately processed unless words are split into correct subword units because

of inadequate vocabulary composition. For example, when the word 마셨

다 masyessta “drank” is tokenized, if the tokens 마셨다 masyessta or 마셨

masyess “drank” and ##다 ##ta (suffix) are not included in the BERT vocabu-

lary, this word is split into subwords ‘마ma, ##셨 ##syess, ##다 ##ta.’ If even

the three subwords are not included in the vocabulary, the word is processed as

an OOV word. The subword sequence ‘마ma, ##셨 ##syess, ##다 ##ta’ or the

OOV-processed value [UNK] is unlikely to be understood as ‘drank’ because

57

the form of마셨- masyess-, the minimum unit which contains the meaning of

‘drank’, is not maintained. Although the sequential subword tokens are con-

textually processed to achieve some meaning, which is an advantage of the

WordPiece tokenizer of BERT, it is hard to find the unique meaning of each

split token. Of course, in the case of the [UNK]-processed token, it is harder

to guarantee that it maintains its original meaning.

Therefore, when implementing a Korean-specific model, it is necessary

to properly include small subword units to resolve the OOV problem, and

larger word units to maintain word meaning in its vocabulary at a realistic

rate. Several pre-trained Korean-specific models are now available, and like

most of them, we assumed appropriate vocabulary size limits and constructed

a vocabulary based on the WordPiece tokenizer. Thus, the vocabulary consists

of both single characters and concatenated characters as a subword and word

unit.

4.2 Pre-training Korean-specific BERT Model

In this dissertation, we trained two Korean-specific BERT models, KR-BERT

and KR-BERT-MEDIUM, based on different compositions of training data

and vocabulary. We performed training of these models with the help of a

study (NRF-2017M3C4A7068186) supported by the National Research Foun-

dation of Korea (NRF), in which graduate students in our laboratory per-

formed the preprocessing of training data and vocabulary construction. Both

of the two models use character-level vocabularies based on the WordPiece to-

58

kenizer. Processing texts based on morpheme-level vocabularies and models

such as HanBERT and the morpheme-based version of KorBERT may help re-

flect the agglutinative property of Korean better. However, in that case, all the

texts used for model training and task-specific evaluation should be tokenized

using external part-of-speech taggers, which is very costly in processing time

and hardware requirements. Therefore, we decided to utilize character-level

tokens for our models in this dissertation.

For model training, two tasks of Masked Language Modeling (MLM) and

Next Sentence Prediction (NSP), are used as provided by BERT. By MLM, the

model learns contextual information composed of relations between tokens in

a sequence, and by NSP, it learns the context based on the relations between

sentences in a document.

The training data and vocabulary of each model we implemented are as

follows.

KR-BERT

KR-BERT (KoRean-based BERT pre-trained model) is the main monolin-

gual model we provide. For this model, we extracted texts from the Korean

Wikipedia dump1 using WikiExtractor2, omitting metadata and history for

this model. We also extracted crawled news articles, such as Chosun Ilbo,

JoongAng Ilbo, and Kookmin Ilbo. The total data size is 2.47GB, which con-

sists of 20M sentences and 233M words.
1https://dumps.wikimedia.org/kowiki/latest/

2https://github.com/attardi/wikiextractor

59

https://dumps.wikimedia.org/kowiki/latest/
https://github.com/attardi/wikiextractor

The vocabulary of this model includes 16,424 tokens that are organized

based on this training dataset. We first collected tokens for our vocabulary by

training with the WordPiece model and refining it by uniting different trained

vocabularies to obtain a better and more diverse list of tokens. Then we chose

the list of 10,256 tokens by comparing several models trained using different

vocabularies for 100,000 steps. A model with the vocabulary of 10,256 to-

kens produced the best MLM performance among various vocabulary sizes,

as shown in Table 2.

Table 2: Comparison of MLM performance for KR-BERT according to vocabulary size

Vocabulary size 6,713 8,353 10,256

MLM loss 2.9182556 3.0208275 1.8139153
MLM accuracy 46.80 46.94 63.04

To the 10,256 tokens in the vocabulary, we heuristically added special

symbols frequently used in user-generated Korean textual data and several

other languages (Latin alphabet, Japanese Kana, and Chinese characters) to

include 16,424 tokens. The main work of data preprocessing and vocabulary

construction was carried out by graduate students in our laboratory as part of

the study supported by the NRF.

This model is released on GitHub3 and can be publicly accessed.
3https://github.com/snunlp/KR-BERT

60

https://github.com/snunlp/KR-BERT

KR-BERT-MEDIUM

We experimentally trained an additional model, KR-BERT-MEDIUM, with

the training data expanded from those of KR-BERT. We trially trained an ad-

ditional model, KR-BERT-MEDIUM, with the training data expanded from

those of KR-BERT. Here, the model name has a suffix ‘MEDIUM’, since its

training data are larger than KR-BERT’s original dataset. We have another

additional model, KR-BERT-EXPANDED, for our NRF study, with more ex-

tensive training data expanded from that of the KR-BERT-MEDIUM model,

so the suffix ‘MEDIUM’ is used.

The expanded training data includes Korean Wikipedia, news articles, le-

gal texts crawled from the National Law Information Center, and the Korean

Comments dataset4. This data expansion composes the more extensive train-

ing set with more various domains than those of KR-BERT. The total data

size is about 12.37GB, consisting of 91M and 1.17B words.

This model’s vocabulary size is 20,000, whose tokens are trained based

on the expanded training data using the WordPiece tokenizer. The size is also

chosen by comparing different vocabulary sizes by training separate models

with them for 100,000 steps, and picking the one with the higher MLM per-

formance, as shown in Table 3.

The main work of data preprocessing and vocabulary construction was

carried out by graduate students in our laboratory as part of the NRF study.

4https://github.com/Beomi/KcBERT/releases/tag/TrainData v1

61

https://github.com/Beomi/KcBERT/releases/tag/TrainData_v1

Table 3: Comparison of MLM performance for KR-BERT-MEDIUM according to vocabulary
size

Vocabulary size 20,000 30,000

MLM loss 3.53247164 3.7084162
MLM accuracy 39.48 38.13

Table 4 represents the composition of the vocabularies of KR-BERT and

KR-BERT-MEDIUM compared to that of other existing models. Here, only

BERT-based and character-level models that can deal with Korean texts were

chosen to be compared.

Table 4: Composition of the vocabularies

M-BERT KorBERT KoBERT KR-BERT KR-BERT
-MEDIUM

words
(Hangul)

1,664
(1.39%)

12,047
(39.12%)

4,489
(56.10%)

7,352
(44.76%)

10,585
(52.93%)

subwords
(Hangul)

1,609
(1.35%)

8,023
(26.05%)

2,678
(33.47%)

3,840
(23.38%)

6,203
(31.02%)

symbols
and other
languages

116,170
(97.18%)

10,722
(34.82%)

830
(10.37%)

5,227
(31.83%)

3,207
(16.04%)

special
tokens

5
(0.004%)

5
(0.02%)

5
(0.06%)

5
(0.03%)

5
(0.03%)

total 119,547 30,797 8,002 16,424 20,000

In the table, words and subwords are written in Hangul, in which a whole

word form is mapped to one token (for example,가방 kapang “bag” and멋진

62

mescin “wonderful”) and a subword is composed of more than one sylla-

bles split in a word (for example, ##가 ##ka (subject case marker) and ##

개월 ##kaywel “month(s)”). The group of symbols and other languages in-

cludes Latin alphabets, Japanese Kana, Chinese characters, special symbols,

and emoticons used in Korean texts. Finally, the special tokens indicate the

five tokens used by BERT while text processing: [CLS], [SEP], [MASK],

[UNK], and [PAD].

M-BERT included only a small number of tokens for each language to

cover tokens from 104 languages in a limited-sized vocabulary. So the pro-

portion of Korean characters in that vocabulary is tiny. Other Korean mono-

lingual models allocate most of the entries in their vocabularies to Hangul

tokens, mitigating the disadvantage of M-BERT’s vocabulary composition.

KR-BERT has a vocabulary composition similar to other Korean mod-

els, especially KorBERT, and includes many more symbols and tokens from

foreign languages than KoBERT. This vocabulary will help the trained mod-

els perform NLP tasks containing texts from various domains with different

stylistic properties. User-generated web data such as comments, writings on

online forums, or blog posts are likely to include foreign languages, special

symbols, and emoticons.

The KR-BERT-MEDIUM model’s vocabulary contains a larger propor-

tion of Hangul word tokens than KorBERT and KR-BERT, and more Hangul

word tokens than KoBERT despite its lower proportion of Hangul words. In

general, it can be expected that the proportion of words that are not split into

63

subwords and processed as a token itself is high. There will be many variated

word forms, such as noun + case marker and root + suffix as those tokens. As

examples in 4.1 show, words such as 마셨다 masyessta “drank” and 마시는

masinun “drinking” are not split into ‘마 ma ##셨 ##syess ##다 ##ta’ and ‘마

ma ##시 ##si ##는 ##nun’ and are instead processed as single tokens them-

selves. Each token will better keep its original meaning, helping the model

analyze the meaning of a sequence from the word meaning to the context

of the overall sequence. On the other hand, the ratio of symbols and foreign

characters is low for the size of the vocabulary. Even still, it is not a small

quantity.

Additionally, in Table 5, we present the vocabulary sizes, parameter sizes,

and data sizes for our models, comparing with M-BERT and several previous

studies on Korean pre-trained BERT models.

Table 5: Details of Korean pre-trained BERT models

M-BERT KorBERT KoBERT KR-BERT KR-BERT-MEDIUM

vocabulary
size 119,547 30,797 8,002 16,424 20,000

parameter
size 167,356,416 109,973,391 92,186,880 99,265,066 102,015,010

data size
-

(The Wikipedia data
for 104 languages)

23GB
-

25M sentences,
324M words

2.47GB
20M sentences,

233M words

12.37GB
91M sentences,

1.17B words

KR-BERT attempted to reduce computations by using smaller training

data and vocabulary size, resulting in the parameter size of 99M, the small-

est after that of KoBERT. This model’s training data is very small-scaled,

64

at 2.47GB, about 1/10 of those of the other models. Therefore, it takes less

time to convert raw text files into tokenized forms for BERT training, since

processing time is proportional to the training data’s size. However, its per-

formance is not lower than other models, and even higher in a few tasks. This

will be mentioned again in Chapter 5 through task performances.

In comparison, as a trial to improve performance, KR-BERT-MEDIUM

has collected more text from more diverse domains as training data. Thus,

the training data grew to 12.37GB and the parameter size increased to 102M,

similar to that of the other models. Although tokenizing time and the number

of computations have increased as the data has grown, the expanded model

recorded better task performances, as reported in Chapter 5. Various domains

and a sufficient amount of training data may have had a positive effect on

model training.

The two models we implemented in this dissertation are trained on the

same “Base” scale as the original English-based BERT models. The Base-

scale models include 12 encoder layers, 12 attention heads, and a hidden

size of 768. That is, 12 different attention heads calculate the attention re-

lations between tokens in a sequence separately, and the concatenated results

from all the heads compose the 768-dimensional embeddings. This calcula-

tion is repeated through 12 layers of computing and updating the attention

values. Through this process, the models learn various linguistic knowledge

contained in the texts, including lexical, syntactic, semantic, and contextual

information.

65

KR-BERT is trained for 2M steps with a maximum sequence length (maxlen)

of 512, training batch size of 64, a learning rate of 1e-4, and, following the

original BERT models, uses the Adam optimizer. It took 79.5 hours to train

the model using a Google Cloud TPU v3-8.

Maxlen is the upper limit of sequence length for BERT training. The tok-

enized sequence is truncated if it is longer than the upper limit, and it is padded

by [PAD], a special token of BERT, when it is shorter than maxlen. This is for

convenience for when the sentence vectors of multiple layers inside the model

are calculated in matrix form. Padded tokens are masked when calculating at-

tention weights; thus, they do not affect performance much. However, if the

maxlen is too large, it will affect training speed.

The maximum maxlen value provided by BERT is 512, which we used for

KR-BERT, with 99.99% of sentences in the training data being shorter than

this maxlen. We set the max predictions per sequence to 77, which is 15% of

512, following the original BERT model. This indicates how many tokens per

sequence are masked to be applied to the MLM task.

The batch size represents how many sentences are processed at a time,

which can adversely affect performance if too small. However, setting it too

large can make hardware memory unaffordable and adversely affect model

performance. Therefore, it is set to 64, which is appropriately sized and man-

ageable in our environment.

The steps indicate the units by which model parameters are updated through

information learned in a batch. If this is set larger, the parameter values of the

66

Figure 7: Training loss of KR-BERT

model will be updated more times. In this study, the number of steps was

set to the point when training performance (losses and accuracies of training

tasks) became stable without much change. Figure 7 visualized the change

of loss, a linear combination of MLM and NSP losses, as the model’s global

training performance, according to steps. In the figure, the x-axis represents

the number of steps, and the y-axis indicates training loss.

KR-BERT-MEDIUM is trained for 2M steps with a maxlen of 128, train-

ing batch size of 64, learning rate of 1e-4, and using the Adam optimizer,

taking 22 hours to train the model using a Google Cloud TPU v3-8. Here, as

the maxlen was set to 128, the training time was significantly reduced. 99.01%

of the training data sentences were shorter than this maxlen, so we judged that

truncating the remaining 0.99% of the sentences would cause no issues.

Figure 8 represents the training loss of KR-BERT-MEDIUM. The x-axis

represents the number of steps, and the y-axis indicates the training loss. The

67

sudden drop around the point of 1.5M steps is not exactly explainable, but it is

likely to have accidentally occurred in the process of stopping and resuming

training for an intermediate check.

Figure 8: Training loss of KR-BERT-MEDIUM

Table 6: Training performances of KR-BERT and KR-BERT-MEDIUM

KR-BERT KR-BERT-MEDIUM

global steps 2M 2M
loss 0.9154538 2.6140482
MLM accuracy 77.34 51.75
MLM loss 0.9511529 2.4622557
NSP accuracy 99.50 89.13
NSP loss 0.013327285 0.2479853

Table 6 shows the detailed training performances of KR-BERT and KR-

BERT-MEDIUM. The loss in the table indicates global loss, which is a combi-

nation of MLM and NSP losses. KR-BERT is supposed to have adapted well

to the training data since its size is small (2.47GB), resulting in high MLM

68

accuracy 77.34 and NSP accuracy 99.50 during the training process.

The training data of KR-BERT-MEDIUM are relatively large-scaled and

composed of texts of various domains and styles, and this could have resulted

in lower training performances, especially in MLM. The MLM accuracy of

the model is 51.75, and the NSP accuracy is 89.13, which are much lower than

those of KR-BERT. However, as shown in Figure 8, KR-BERT-MEDIUM’s

training performance had already converged without clear improvement be-

fore reaching 2M steps. Thus, the training process was completed at 2M steps

since the performance gain is small for the effort and resources required for

further training.

However, even though training performance was not as high for the data-

expanded model, this did not prove to be fatal when applied to actual NLP

tasks. In a few tasks, it performed even better than other models. Although

it does not achieve very high performance for its training data, its task per-

formances in Chapter 5 were not inferior. Conversely, if the model training

performance is too high, task performance may actually prove to be low. The

problem of overfitting can occur when models become too familiar only with

their training datasets. Therefore, an assessment of the model will have to

be done through considering performance in diverse areas, not only through

training subtasks but also through several NLP tasks that reflect various lin-

guistic phenomena. We evaluate how well the models trained in this disserta-

tion deal with Korean NLP tasks in Chapter 5.

69

4.3 Chapter Summary

This chapter first mentioned the shortcomings of the M-BERT model as a

multilingual model and explained the need for a monolingual model, espe-

cially a Korean-specific language model. The shortcomings of M-BERT in-

clude that its training data is limited to one domain, and its vocabulary is not

appropriate to capture the linguistic characteristics of each language it covers.

We implemented two Korean monolingual BERT models to mitigate these

shortcomings.

The second part described the Korean language models KR-BERT and

KR-BERT-MEDIUM implemented by this dissertation, and compared the de-

tails of these models and their training process to the existing pre-trained mod-

els. KR-BERT is trained based on smaller training data and vocabulary than

other models, and KR-BERT-MEDIUM is a derivative model of it using an

expanded large-scale training dataset and different vocabulary. We also re-

ported the training performances of the models.

70

5 Performances of Korean-Specific BERT Models

5.1 Task Datasets

Many of the NLP tasks used to evaluate Korean language models include

Korean texts and task-specific labels reflecting various linguistic phenomena,

similar to the English tasks described in 3.2. Datasets such as Naver-NER

for Named Entity Recognition, KorQuAD for Question Answering, KorNLI

and KorSTS for Natural Language Inference and Semantic Textual Similar-

ity, respectively, and corpora for Paraphrase Detection and Sentiment Analy-

sis have been provided. Although not many datasets are publicly provided in

some tasks, many other datasets are collected and annotated on their own in

several studies.

We introduce the tasks we used in this dissertation to evaluate the models

we trained in Chapter 4.

5.1.1 Named Entity Recognition

In Named Entity Recognition (NER), named entities in a sequence are de-

tected, and their categories are classified. ‘Named entity’ usually refers to an

expression with a unique meaning, consisting of one or more words com-

bined, such as personal names, organization names, and numbers. The Naver-

NER dataset1 is mainly used for Korean NER, which was released at the

Naver NLP Challenge 2018, hosted by Changwon National University and

Naver. The category of named entities, which is the classification target, is
1http://air.changwon.ac.kr/?page id=10

71

http://air.changwon.ac.kr/?page_id=10

divided into 14 categories, as in Table 7.

Table 7: The category of the named entities

Named Entity Category Tag Definition

PERSON PER A person’s name (real, imaginary, etc.)
FIELD FLD A field of study, theory, law, etc.
ARTIFACTS WORKS AFW Artificial objects created by human
ORGANIZATION ORG Institutions, organizations, meetings, and talks
LOCATION LOC Regional name, administrative district name, etc.
CIVILIZATION CVL Terms related to civilization and culture
DATE DAT Date
TIME TIM Time
NUMBER NUM Numbers
EVENT EVT A specific event, accident, event, etc.
ANIMAL ANM Animals
PLANT PLT Plants
MATERIAL MAT Metals, rocks, chemicals, etc.
TERM TRM General terms including medical terms, IT terms, etc.

Since the test set is not released publicly, we used the newly-split dataset

of the original training set of 90,000 sentences: 81,000 sentences for train-

ing and 9,000 sentences for testing models. We referred to a released data

split and fine-tuning codes from a GitHub source of Park (2020b), fine-tuning

our models and baseline models, and comparing their F1 scores with those

reported by KoBERT. Since the fine-tuning code is based on PyTorch, the

TensorFlow-based model checkpoints trained in this dissertation were con-

verted to PyTorch models.

72

5.1.2 Question Answering

For Question Answering, a dataset named KorQuAD 1.02, created by LG

CNS AI / Big Data Research Center for Korean Machine Learning Com-

prehension, is commonly used. It is constructed in the same way as that of

Stanford Question Answering Dataset (SQuAD) v1.0, consisting of 10,645

paragraphs and 66,181 question-answer pairs from 1,560 Wikipedia articles.

In each pair, one sentence from a paragraph mapped with a question becomes

the answer to the question. This task is assessed by Exact Match (EM) and

F1 score. EM indicates the rate at which a model correctly matches the actual

answers, not counting punctuation and articles. It is marked as ‘1’ if the pre-

dicted label and the correct answer are precisely equal and ‘0’ otherwise. The

F1 score functions as a partial score, comparing the model predictions and

actual answers in syllables, taking into account the overlap of the answers.

The task dataset includes 60,407 question-answer pairs for the training set

and 5,774 pairs for the validation set. The test set is not publicly released,

so evaluation is performed based on the validation set. The performances of

other existing pre-trained models such as KoBERT and M-BERT performed

by Park (2020a) are also reported based on the validation set. Referring to

the fine-tuning code from the source, we executed the assessment process

producing EM and F1 score results. Since the fine-tuning code is implemented

based on PyTorch, the TensorFlow-based model checkpoints constructed in

this dissertation were converted to PyTorch models.
2https://korquad.github.io/category/1.0 KOR.html

73

https://korquad.github.io/category/1.0_KOR.html

5.1.3 Natural Language Inference

As part of the Natural Language Understanding (NLU) study, task datasets

for Natural Language Inference (NLI) include sentence pairs composed of a

premise and a hypothesis sentence with annotated textual entailments labels.

Based on that, models predict whether the premise entails the hypothesis,

contradicts it, or neither. Thus, the model predicts one of the three labels:

‘entailment’, ‘contradiction’, or ‘neutral.’

• Entailment: Given a premise, the hypothesis is true.

• Contradiction: Given a premise, the hypothesis is false.

• Neutral: Undetermined

For Korean NLI, the KakaoBrain (Ham et al. 2020) benchmark dataset

for Korean Natural Language Understanding provides an NLI dataset named

KorNLI. This dataset is constructed by translating the English NLI datasets

SNLI, MNLI, and XNLI. The training set of KorNLI is composed of the

942,854 translated examples of SNLI and MNLI by machine translation, and

the validation set and the test set include 2,490 and 5,010 examples, respec-

tively, translated from XNLI by expert human translators.

Some problems with this NLI task and its datasets may impact task perfor-

mance. Problems arose from the translation process that may have impacted

model performance for the NLI task since the KorNLI dataset is a translated

version from the English NLI datasets.

74

There are awkwardly translated sentences in Korean that make it difficult

to judge the relationship between sentences in pairs. In particular, the train-

ing set of the KorNLI dataset is constructed by machine translation, so such

problems are more likely to arise. Examples (5) and (6) are extracted from

KR-BERT’s mispredicted cases in the KorNLI dataset.

(5) Premise:타이싱컴패니에가구와은에는 29, 122는도자기를위해.

thaising khemphayniey kakwuwa uneynun 29, 122nun tocakilul wihay.

“29 are for furniture and silver in the Taixing Company and 122 are for

ceramics.”

Hypothesis:자기는가구와은이상이었다.

cakinun kakwuwa un isangiessta.

“The number of porcelain was more than furniture and silver.”

Label: Entailment

In Example (5), it is hard to understand the meaning of the premise sen-

tence. While it can be read that the number of the furniture and silver is

29 and that of ceramics is 122, and therefore that the relation to predict is

‘entailment’, Korean is not usually written in this manner. The sentence does

not include the quantity units usually required in Korean as they may not have

been in the English sentence, and it is not clear that those things exist in the

‘Taixing Company.’ The hypothesis sentence is also awkward in its compari-

son of the quantity of porcelain with those of furniture and silver.

Example (6) is a sample sentence pair which shows another problem with

the translated dataset.

75

(6) Premise:이것은헝가리에새로온사람이고,놀고싶다면시내를운전

으로시내를벗어나야할것이다.

ikesun hengkaliey saylo on salamiko, nolko siphtamyen sinaylul wun-

cenulo sinaylul pesenaya hal kesita.

“This is a newcomer to Hungary, and if you want to play, you’ll have to

drive out of town.”

Hypothesis:마을에는새로운사람들이놀수있는몇개의장소가있

다.

mauleynun saylowun salamtuli nol swu issnun myech kayuy cangsoka

issta.

“There are several places in town where new people can play.”

Label: Contradiction

In Example (6), the problem is that the Korean translation of the premise

sentence is awkward. Also, models will have to know that the meaning of

the token 마을 maul “village” in the hypothesis is the same as that of the

token시내 sinay “downtown” in the premise to predict the relationship of the

pair as ‘contradiction.’ We assume that both tokens were written as ‘town’

in English. However, in some cases, the meaning of the Korean words 시내

sinay and마을 maul can be contrastive, such as in downtown and residential

areas. The language models may predict the relationship of the sentence pair

of Example (6) as ‘contradiction’ or ‘neutral’ depending on how it modeled

the two words’ meaning. Therefore, to consider the sentence relationship in

a pair, the two words should have been translated into the same Korean word

76

when organizing the dataset.

There is also a debate about whether the original English NLI datasets

themselves are appropriate to evaluate the models’ ability of text understand-

ing. The direction of NLI’s determination on the authenticity of the hypoth-

esis sentence given the premise sentence is not likely to be reflected well as

originally intended. The MNLI fine-tuning code released by Google Research

only classifies the entailment relations between sentences as a simple classi-

fier without processing the two sentences’ directionality. In this situation, it is

essential to consider whether a 3-class prediction task, such as that of the NLI,

which is more complicated than other tasks, will be performed and evaluated

well.

Moreover, as Gururangan et al. (2018) and Jiang and Marneffe (2019)

pointed out, the NLI dataset has the problem of predicting the label to some

extent by referring only to the hypothesis sentences without considering premises.

There is a tendency in the hypotheses that, if they include a negation or vague-

ness, they would contradict the premises. If a model has captured and learned

such characteristics of only the hypothesis sentences, there is a risk that the

relationship between the two sentences has not been adequately captured even

if the NLI performance is high.

These problems in the related tasks should be corrected and improved in

the long-term to better reflect the linguistic phenomena the task is intended to

capture.

77

5.1.4 Semantic Textual Similarity

The datasets for the Semantic Textual Similarity (STS) task include sentence

pairs annotated with a similarity score between the two sentences, ranging

from 0 (completely dissimilar) to 5 (completely equivalent). The score indi-

cates the semantic distance or similarity between the vector representations of

the sentences.

We use a dataset named KorSTS, which is provided by the KakaoBrain

benchmark dataset for Korean Natural Language Understanding, as in the Ko-

rean NLI task above. The training set, the validation set, and the test set are

constructed through translation from an English STS dataset, STS-B (Cer et

al. 2017). STS-B contains sentence pairs collected from news articles, video

and image captions, and natural language inference datasets. KorSTS includes

5,749, 1,500, and 1,379 examples in the training set, the validation set, and

the test set, respectively. Performance of models in this task are evaluated by

Spearman’s Rank Correlation Coefficient, one of the metrics indicating the

correlation between two variables.

The Spearman’s Rank Correlation Coefficient (SCC) is a nonparametric

measure of the monotonicity of the relationship between two samples, com-

monly used as a metric for STS. Here, the two samples correspond to the

vector-shaped model predictions and actual labels from the task data. It is

similar to the Pearson product-moment correlation coefficient (PCC), except

the input vectors are transformed to include value rankings. The SCC formula

is represented in Equation (12) (Zwillinger and Kokoska 1999), measuring

78

the correlation between ranks. In the equation, ui and vi represent the rank

of the ith observation in the first and the second samples, respectively, and n

indicates the length of the samples.

rs =

n
n
∑

i=1
uivi−

(
n
∑

i=1
ui

)(
n
∑

i=1
vi

)
√√√√[n

n
∑

i=1
u2

i −
(

n
∑

i=1
ui

)2
][

n
n
∑

i=1
v2

i −
(

n
∑

i=1
vi

)2
] (12)

This value ranges from -1 to 1, in which +1 and -1 indicate an exact mono-

tonic relationship, and 0 represents no correlation between the vectors. The

correlation is interpreted according to its absolute value as in Table 8.

Table 8: Rule of thumb for interpreting the size of a correlation coefficient (Hinkle et al. 2003)

Size of Correlation Interpretation

.90 to 1.00 (-.90 to 1.00) Very high positive (negative) correlation

.70 to .90 (-.70 to -.90) High positive (negative) correlation

.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation

.30 to .50 (-.30 to -.50) Low positive (negative) correlation

.00 to .30 (.00 to -.30) Negligible correlation

The KorSTS dataset includes similar problems to the KorNLI dataset since

it includes the sentences translated from the English STS-B dataset. However,

we suppose that STS would be less impacted by the problems affecting NLI,

because STS determines the similarity between sentence embeddings rather

than an elaborate semantic relationship such as entailment or contradiction.

79

Nevertheless, it is also important to note that translation can affect the model

judgment of the similarity between sentences.

5.1.5 Sentiment Analysis

The most popular dataset for Korean Sentiment Analysis is the Naver Senti-

ment Movie Corpus (NSMC)3, structured around a binary classification prob-

lem of movie reviews. The NSMC dataset has two labels for prediction: posi-

tive and negative, which show the movies’ stance in the review texts. The data

contains 150K reviews for the training set and 50K for the test set, evaluating

models by accuracy. In this dissertation, we extracted 20K reviews from the

training set to utilize as the validation set, and used the remaining 130K re-

views as the training set. Graduate students in our laboratory carried out the

main work of splitting the data.

Additionally, we performed a Hate Speech Detection (HSD) task as part

of sentiment analysis. We used the Korean Hate Speech dataset (Moon et al.

2020), which consists of Korean online entertainment news articles’ com-

ments. The dataset includes 9,381 human-labeled comments: 7,896 for the

training set, 471 for the validation set, and 974 for the test set.

The dataset includes three types of annotations: the type of social bias, the

existence of gender bias, and whether the comment is hate speech, which is

our focus in the hate speech detection problem. There are three labels for hate

speech detection: Hate, Offensive, and None.
3https://github.com/e9t/nsmc

80

https://github.com/e9t/nsmc

• Hate: The comment displays aggressive stances towards individuals or

groups.

• None: The comment does not include any aggressive stances.

• Offensive: In between the two labels, ‘Hate’ and ‘None’; the comment

is not hateful or insulting but may be considered offensive due to poor

taste (e.g., rude expressions and sarcasm).

We used an F1 score for the evaluation metric of this task according to the

public leaderboard4.

5.2 Experiments

5.2.1 Experiment Details

We evaluate the performance of the models KR-BERT and KR-BERT-MEDIUM

implemented in this dissertation based on the tasks described in 5.1, compar-

ing them with those of existing Korean-based models. The baseline models in-

clude the M-BERT model of Google Research, the character-level KorBERT

model of ETRI, and KoBERT of SKT Brain. Other Korean models were also

released, but only those whose token units are syllable characters, not mor-

phemes, were referred to. For M-BERT and KorBERT, we reproduced the

fine-tuned task results using the provided tokenizer, vocabulary, configuration,

and model checkpoints, since M-BERT has no official results on Korean tasks

and KorBERT did not specify the exact datasets used for the reported model
4https://www.kaggle.com/c/korean-hate-speech-detection

81

https://www.kaggle.com/c/korean-hate-speech-detection

performance. In the case of KoBERT, it is distributed through a PyTorch-

based Transformers library, and its task performances are reported by Park

(2020a) and Park (2020b), so we used them for comparison.

We used a Google Cloud TPU v3-8 or GPUs (Tesla V100 GPU, Titan XP,

and a combination of Titan XP and Titan RTX) depending on the situation.

In particular, the Tesla V100 GPUs are supported by the National IT Industry

Promotion Agency (NIPA).

For the task datasets STS, NLI, NSMC, and HSD, we modified and uti-

lized the TensorFlow-based BERT fine-tuning codes released by Google Re-

search so that they can handle the corresponding Korean task datasets. For

these tasks, we used the Adam optimizer, a training batch size of 128, an

evaluation batch size 8, a max sequence length (maxlen) of 128, and a learn-

ing rate of 5e-5, and fine-tuned the models for five epochs over each dataset.

For HSD, we left the performance of KoBERT empty since only the F1 score

of the validation set is reported for the model. The validation set performance

of KoBERT is mentioned in Chapters 6 and 7 when analyzing model perfor-

mances on sentiment analysis.

We assessed the NER and Question Answering (QA) tasks using the PyTorch-

based fine-tuning codes released by Park (2020a) and Park (2020b). Since the

codes require PyTorch-based model checkpoints, we used the released Py-

Torch version model of KorBERT and M-BERT and the PyTorch-converted

versions of KR-BERT and KR-BERT-MEDIUM. We set the experiment pa-

rameters the same as those of Park (2020a) and Park (2020b) for direct com-

82

parison, using a training batch size of 32, an evaluation batch size of 64, a

maxlen of 50, a learning rate of 5e-5, and 50 training epochs for NER, and a

training batch size of 32, an evaluation batch size of 32, a maxlen of 512, and

a learning rate of 5e-5 for question answering (KorQuAD). Here, we left the

KorQuAD result of KorBERT unreported since the fine-tuning code imports

the libraries relevant to the question answering task from the Transformers,

which do not allow using the provided tokenizer of KorBERT.

5.2.2 Task Results

We report the model performances for the Korean NLP tasks described above

in Table 9. Overall, the KR-BERT performances are high in most tasks, and

the expanded model KR-BERT-MEDIUM recorded higher performances de-

pending on the task but showed similar or slightly lower results than other

models in some cases.

Table 9: The model performances for Korean NLP tasks

NER
(F1)

QA
(EM / F1)

NLI
(Acc)

STS
(Spearman
× 100)

NSMC
(Acc)

HSD
(F1)

M-BERT 84.20
(reported)

70.42 / 90.25
(reported) 74.17 73.42 86.82 52.03

KorBERT 87.44 n/a 78.28 77.30 89.81 54.33

KoBERT 86.11
(reported)

52.81 / 80.27
(reported)

79.62
(reported)

81.59
(reported)

89.63
(reported) n/a

KR-BERT 87.10 73.62 / 91.15 77.13 78.70 89.74 54.53

KR-BERT
-MEDIUM 86.15 52.48 / 79.49 75.29 78.34 90.29 57.91

83

For NER, the KorBERT performance is the highest with an F1 score of

87.44, with our KR-BERT F1 score of 87.10 following by a small difference.

The F1 score of KR-BERT-MEDIUM is 86.15, higher than those of KoBERT

and M-BERT. The reported performances of KoBERT and M-BERT refer

to Park (2020b). For QA, KR-BERT recorded the highest EM of 73.62 and

an F1 score of 91.15, followed by M-BERT. The QA result of KR-BERT-

MEDIUM is lower than both while being similar to that of KoBERT. The

reported performances of KoBERT and M-BERT refer to Park (2020a).

In NLI, the reported accuracy of KoBERT (Park 2020c) is the highest at

79.52, followed by KorBERT and KR-BERT, and then by KR-BERT-MEDIUM.

KR-BERT showed an accuracy of 77.13, higher than KR-BERT-MEDIUM,

and the KR-BERT-MEDIUM model recorded higher accuracy than that of

M-BERT. In STS, the reported KoBERT performance (Park 2020c), 81.59, is

the highest value of the Spearman’s Rank Correlation Coefficient (SCC). The

next highest SCC record is 78.70 by KR-BERT, with KR-BERT-MEDIUM

following it with 78.34. These values are higher than those of KorBERT and

M-BERT.

Finally, in the two sentiment analysis tasks, NSMC and HSD, KR-BERT-

MEDIUM reported the highest performances among the evaluated models. In

NSMC, KR-BERT-MEDIUM showed an accuracy of 90.29, and KR-BERT

showed a similar performance to those of KoBERT (Park 2020c) and Ko-

rBERT; all of them are being higher than the M-BERT result. For HSD,

KR-BERT-MEDIUM recorded an F1 score of 57.91, and is followed by KR-

84

BERT, being similar to that of KorBERT and higher than the M-BERT per-

formance.

Based on the results above, we obtained comparable task performances in

general with the KR-BERT model, the primary model in this study. The model

recorded remarkable results in NER, QA, NSMC, and HSD, and showed

adequate performance on the STS and NLI tasks. The differences between

KR-BERT and other Korean models, which we believe contributed to perfor-

mance, are: 1) sufficient training with smaller training data; and 2) the size

and composition of the vocabulary.

First, we trained KR-BERT for 2M steps based on small-scaled training

data. KorBERT’s training dataset is about ten times bigger than our model.

KoBERT is reported to be trained for about 20M steps with their training

data, which is similar in size to ours. HanBERT was trained for 6M steps with

a dataset about 20 times bigger than ours, though it is not used as a baseline

model in this study. The number of steps is related to the training data size

and the number of epochs, as in Equation (13), where one epoch indicates

one cycle of training for the entire dataset. Accordingly, it is expected that if

the training data is small, the model could perform sufficient training for the

dataset with a smaller number of steps. Further, this would lessen the training

time required for the model.

number of steps =
(number of epoch×data size)

batch size
(13)

85

Despite the smaller number of steps and the smaller data size, KR-BERT

recorded MLM accuracy of 77.34, which is higher than that of KoBERT, at

around 75.00. Other models’ training performances are unknown. Task per-

formance, as well as training performance, do not appear to be affected by the

small number of steps. KR-BERT shows better performance in many tasks

than models trained using larger training datasets, and in some tasks, better

than KoBERT, trained for a larger number of steps. This could be the result

of the language modeling of our model being sufficient to learn linguistic

knowledge well from texts.

Moreover, KR-BERT’s vocabulary is similar in composition to KorBERT

but smaller in size, reducing the burden of MLM computation. While our

vocabulary size is slightly larger than that of KoBERT, the proportion of sym-

bols and foreign language letters in our vocabulary is higher than KoBERT’s.

Such vocabulary has undergone heuristic refining processes to include more

Hangul word and subword tokens, and various tokens expected to be used in

various domains. Accordingly, the model could perform adequate processing

for many task datasets, formal and informal, written in different styles. This

is assumed to be why KR-BERT performs well for most of the NLP tasks in

this study.

Moreover, our model’s advantage as a monolingual Korean model com-

pared to M-BERT is that the model only deals with Korean texts and learns

Korean linguistic knowledge, not devoting time and hardware for computation

for other languages. The monolingual vocabulary is also advantageous for the

86

model’s MLM performance since the multilingual model uses all the foreign

language tokens in the vocabulary as the candidate label of masked tokens.

The presence of vocabulary entries and texts of other languages may affect

the multilingual model’s Korean language representation modeling, reducing

performance.

KR-BERT-MEDIUM is an additional model trained as a trial with an ex-

panded version of KR-BERT’s dataset, with a vocabulary composed by the

WordPiece model without any postprocessing. This model recorded compa-

rable performance in NER and STS, the best results in NSMC and HSD, and

performed relatively lower in NLI and QA. In general, the improvement of

performance from KR-BERT is not satisfactory, except for in NSMC and

HSD.

The reason for such performance is that while the training data has grown

in size, the number of steps is still only 2M. While we stopped training, since

the model training loss seemed to converge with less improvement around the

point of 2M steps, it is the same number as KR-BERT, whose training data

is only about 1/4 of KR-BERT-MEDIUM. Further training for more steps

may have been required, given that KR-BERT-MEDIUM’s MLM and NSP

performances are much lower than KR-BERT.

Additionally, the data domains and stylistic properties that compose KR-

BERT-MEDIUM’s training data may have affected its task performances. The

model added legal texts and a comment dataset (accounting for 9.3GB of the

total 12.37GB data) to KR-BERT’s training data, and the sequences included

87

in the comment dataset are likely to be one-sentence comment documents and

short in length. In such cases, BERT would not have correctly performed NSP,

a subtask for learning the relationship between sentences. It may have affected

the performance of the model in QA, NLI, and STS, which are problems of

recognizing the relationship between two sentences in a pair. While the sen-

tence similarities in STS are relatively simple to be processed by estimating

the distance between two sentence embeddings, the relationship between the

sentences in the datasets for QA and NLI are defined as complicated, resulting

in more challenging label prediction.

The comment sequences contain the stylistic properties of informal texts.

Such texts include abbreviations, coinages, emoticons, spacing errors, and

typos, unlike the sentences extracted from news texts, encyclopedias, and

books. The NSMC and HSD data, along with the user-generated subjective

short writings, are expected to have similar stylistic properties to the com-

ment data. In this respect, KR-BERT-MEDIUM would have reported better

results in sentiment analysis than other models.

We assume the diversity of data domains or styles to be a factor influencing

our trial through the expanded model. We can not assert the effect of data

diversity until it is verified by sufficient experiments designed with various

data compositions. Therefore, we sought to focus more on the performance of

our primary model, KR-BERT.

88

5.3 Chapter Summary

In this chapter, we observed the performances of Korean-specific embedding

models described in Chapter 4 using several Korean NLP tasks. In 5.1, we

explained the tasks reflecting varied linguistic knowledge and the details of

them. The tasks tested in this dissertation include NER, QA, NLI, STS, senti-

ment analysis on movie reviews, and hate speech detection.

In 5.2, we provided the experiment details for the NLP tasks, including

their fine-tuning codes and parameters, with a simple description of the base-

line models, namely M-BERT, KorBERT, and KoBERT, and a comparison

of their results. We reported our models’ task performance with those of the

baseline models and analyzed the factors involved in achieving such perfor-

mance, considering model details and properties of training data and task

datasets.

89

90

6 An Extended Study to Sentiment Analysis

We described the Korean-specific pre-trained BERT models trained in this

dissertation and their task performances in Chapters 4 and 5. In this chapter,

we extend our study to apply the models to sentiment analysis using additional

sentiment information. While studies on sentiment analysis include several

branches depending on the span and the target of sentiment expressions, we

consider only sentence-level stance classification in this study. As introduced

in 2.3, several studies have attempted to improve task performance on sen-

timent analysis using various features. We focus on the usage of sentiment

lexicons among the varied sentiment features.

The content of this chapter is based on our existing work (Lee and Shin

2020).

6.1 Sentiment Features

6.1.1 Sources of Sentiment Features

A sentiment lexicon refers to a list of subjective words that have a sentiment

orientation. The sentiment polarity of words is commonly annotated in many

lexicons, and in some cases, additional information such as the subjectivity

and intensity of words are included.

In this dissertation, we considered Korean pre-defined sentiment lexicons,

namely the Korean Sentiment Analysis Corpus (KOSAC) (Shin et al. 2012)

and the KNU Korean Sentiment Lexicon, as a basis for sentiment feature con-

91

struction. We composed sentiment features based on them and constructed the

sentiment embeddings used for model training.

Korean Sentiment Analysis Corpus (KOSAC)

The KOSAC corpus contains 17,582 annotated sentiment expressions from

332 documents and 7,744 sentences from the Sejong Corpus and news arti-

cles. The sentiment expressions include annotations of expressive types, sub-

jectivity types, sentiment targets, nested sources, polarity, intensity on phrases

or words, and sentence-level subjectivity. The annotation of these items is

based on morpheme units, where the word roots, the case markers, and the

suffixes are separated in sequences by part-of-speech tagging.

It is similar to the MPQA corpus (Wiebe et al. 2005), which contains an-

notated sentiment phrases for about 10,000 sentences, and uses them as a gold

standard for sentiment-related tasks. Similarly, KOSAC can also be used as

data for training and verifying models of sentiment analysis.

We utilized the polarity and intensity values assigned to each token in the

KOSAC word list as sentiment features among the various attributes anno-

tated in the corpus. 16,362 morphemes are annotated with polarity and inten-

sity values, and the polarity values include five classes: POS (positive), NEUT

(neutral), NEG (negative), COMP (complex), and None (no polarity value).

COMP has both positive and negative polarity values in one token, such as

in the Chinese character expression ‘幸不幸,’ “happiness and unhappiness”

(Shin et al. 2012). The four intensity values include High, Medium, Low, and

92

None (no intensity value). These values show how strong the sentiment is in

the token. Tables 10 and 11, respectively, show the distributions of the polarity

and intensity values in KOSAC.

Table 10: The distribution of the polarity tags in KOSAC

Tag POS NEUT NEG COMP None Total

frequency
(ratio)

7,367
(45.03%)

1,005
(6.14%)

6,994
(42.75%)

439
(2.68%)

557
(3.40%)

16,362

Table 11: The distribution of the intensity tags in KOSAC

Tag High Medium Low None Total

frequency
(ratio)

2,305
(14.09%)

11,437
(69,90%)

2,089
(12.77%)

531
(3.25%)

16,362

KNU Korean Sentiment Lexicon

This sentiment lexicon is constructed by Kunsan National University, and in-

cludes 14,843 entries of sentiment expressions collected from several sources.

It is reported that the lexicon consists of subjective words representing uni-

versal human feelings rather than those used in specific domains.

The list of positive and negative words was constructed from the following

sources:

• The top 2500 positive and negative words extracted from the BiLSTM

polarity classification results on the words’ glosses in the Standard Ko-

93

rean Language Dictionary of the National Institute of the Korean Lan-

guage

• The list of positive and negative words provided by Gim (2004)

• The list of positive and negative words translated from SentiWordNet

3.0 (Baccianella et al. 2010) and SenticNet-5.0 (Cambria et al. 2018)

• The list of recent popular online abbreviations, coinages, and emoticons

introduced in Wikipedia

Each word in the lists above is based on character units without a refined

tokenization process, and each of them is annotated with the 5-class polarity

values according to the Likert scale: very positive, positive, neutral, negative,

and very negative. Table 12 describes the distributions of the polarity values

in the lexicon.

Table 12: The distribution of the polarity tags in KNU Sentiment Lexicon

Tag Very Positive Positive Neutral Negative Very Negative Total

frequency
(ratio)

2,597
(17.50%)

2,266
(15.27%)

154
(1.04%)

5,029
(33.88%)

4,797
(32.32%)

14,843

6.1.2 Assigning Prior Sentiment Values

We considered three sentiment feature composition options based on the two

sentiment lexicons described above and attempted to choose one of them to

train a sentiment-combined BERT model.

94

1) Using the 3,267 single-morpheme tokens of KOSAC to compose an an-

notated sentiment word list

2) Using the 15,862 single- and multi-morpheme tokens of KOSAC to

compose the sentiment word list

3) Using the 15,862 single- and multi-morpheme tokens of KOSAC and

the 6,542 single-word entries of the KNU lexicon to compose the senti-

ment word list

First, if only the single-morpheme tokens of KOSAC are used, the polar-

ity and intensity values annotated in KOSAC are assigned to the tokens. For

example, a token아름답 alumtap “beautiful” has corresponding polarity and

intensity values ‘POS’ and ‘Medium’ respectively in KOSAC, so these val-

ues are assigned to the token. If a token in a BERT-based vocabulary is not

included in the KOSAC word list, it is assigned the default value ‘None’ for

its polarity and intensity.

On the other hand, considering the second option above, KOSAC contains

many multi-morpheme tokens since the entries in KOSAC result from part-

of-speech tagging such as 똑같 ttokkath “same” + 은 un (an ending). Such

words are concatenated to construct the complete token as똑같은 ttokkathun

“same” and added to our model’s sentiment word list.

We excluded some words as an exception in cases of words including

grapheme-level morphemes, as in 가능 kanung “able” + 하 ha “be” + ㄴ

n (suffix), and cases in which the part-of-speech-tagged form of a word is

95

different from the original form, as in 행복해서 hayngpokhayse “because [I

am] happy” and 행복 hayngpok “happy” + 하 ha “be” + 아서 ase (suffix).

In other words, the concatenated tokens that match with a BERT vocabulary

are added to our sentiment word list, with the ratio of sentiment words out

of the vocabularies represented in Table 14, provided later. In the KNU sen-

timent lexicon case, we adjusted the polarity values and added the estimated

intensity values for each token to obtain the same form of values as KOSAC,

since it only includes the polarity values, which are differently defined from

those of KOSAC. First, we assigned the polarity ‘POS’ to tokens with ‘very

positive’ and ‘positive’ polarity values, ‘NEG’ to tokens with ‘very negative’

and ‘negative’ values, and ‘NEUT’ to tokens with ‘neutral’ polarity values in

the KNU lexicon. The intensity values of ‘very positive’ and ‘very negative’

tokens in the KNU lexicon are assigned as ‘High,’ ‘positive’ and ‘negative’

tokens are assigned as ‘Medium’, and ‘neutral’ tokens are assigned as ‘Low.’

However, it is not likely that such an intensity match is very accurate.

The KOSAC tokens with the polarity value ‘NEUT’ do not necessarily have

low intensity, but may have various intensity values. However, it would be

best to perform such matching of intensity values, since, from an intuitive

perspective, the strength of the subjectivity of neutral tokens is expected to

be lower than those with more evident polarity values such as ‘POS’ and

‘NEG’. Moreover, these prior sentiment values are only the initial values and

will be modified and updated based on contextual information through model

training. Table 13 represents the alignment of polarity and intensity values

96

between the two sentiment lexicons above.

Table 13: The alignment of sentiment values in KOSAC and the KNU lexicon

KNU Tag Very Positive Positive Neutral Negative Very Negative

KOSAC Polarity POS POS NEUT NEG NEG
KOSAC Intensity High Medium Low Medium High

If multi-morpheme tokens in KOSAC and the KNU lexicon entries are

added to our sentiment word list as in the third option above, a variety of

word forms in Korean can be captured and assigned the proper sentiment

values. For example, assume that the shortest word root form좋 coh “good”

is assigned prior sentiment values but not the variated word forms such as좋

은 cohun “good,”좋아서 cohase “because [it’s] good,” and좋지만 cohciman

“[It’s] good, but. . . ” are not included in our sentiment word list. The variated

word forms do not have any pre-defined sentiment values; thus, it will be

hard to perform proper sentiment processing for those tokens and the text

sequences that include the tokens.

However, the multi-morpheme tokens in KOSAC and the words in the

KOSAC lexicon include the variated word forms described above so that the

prior sentiment values defined in those sources can be assigned to the tokens.

Additionally, the KNU lexicon contains the sentiment values for online abbre-

viations, coinages, and emoticons, not included in KOSAC. Such expressions

will help sentiment processing of texts using such words if they are also in-

cluded in BERT vocabularies.

These differences can be visualized, as in Figure 9. A sentiment word list

97

Figure 9: Comparison of sentiment word matching depending on the lexicon

consisting of only single-morpheme tokens assign sentiment values only to

the single-morpheme token좋 coh “good” as in the left of the figure, assigning

the default values ‘None’ to other out-of-vocabulary (OOV) words. However,

the expanded multi-morpheme sentiment word list on the right of the figure

includes the variation forms 좋 coh “good,” 좋은 cohun “good,” and 좋아서

cohase “because [it’s] good,” assigning prior polarity and intensity values to

them.

More matching of sentiment words in BERT vocabularies and training

data would result in a better sentiment understanding and processing of mod-

els based on more accurate sentiment values. Table 14 shows the ratio of sen-

timent words constructed based on the three options above out of the 16,424

98

tokens in the KR-BERT vocabulary, which is the basic model in this disserta-

tion.

Table 14: The ratio of sentiment words in the KR-BERT vocabulary

Sentiment word
composition

KOSAC single
morphemes

KOSAC single
+ multi
morphemes

all KOSAC
morphemes
+ KNU words

Ratio of
sentiment words 2,062 (12.55%) 2,522 (15.36%) 2,634 (16.04%)

If we use only the single-morpheme tokens in KOSAC, 2,062 of 16,424

tokens in the KR-BERT vocabulary are assigned prior sentiment features. 460

tokens are added to this if both of the single-morpheme and multi-morpheme

tokens in KOSAC are used, being matched with 2,522 tokens in the vocabu-

lary. The last option adds 112 more sentiment words to the list, and 2,634

tokens in the vocabulary are assigned polarity and intensity values. Here,

the number of sentiment tokens added by the use of KNU entries is rela-

tively small. This indicates that the sentiment words included in the multi-

morpheme KOSAC tokens and the KNU lexicon overlap significantly, result-

ing in a smaller number of newly-added tokens in our sentiment word list.

We compared the three options of composing our sentiment word list to

decide the range of sentiment words used for sentiment value assignment and

processing in this dissertation. For verification, we compared the ratio of sen-

timent words in the training data of KR-BERT.

99

Table 15: The ratio of sentiment words in the KR-BERT training data

Sentiment word
composition

KOSAC single
morphemes

KOSAC single
+ multi
morphemes

all KOSAC
morphemes
+ KNU words

Ratio of
sentiment words 44.20% 49.71% 50.21%

Table 15 shows the ratio of sentiment words in KR-BERT’s training data

averaged for all the sentences, depending on the lists by adding tokens from

the two Korean sentiment lexicons incrementally. As the ratio of sentiment

words grows, more tokens in the training data are assigned the prior sentiment

values from the lexicons. The model using more sentiment words obtains

more initial token-wise sentiment values expected to help sentiment analy-

sis of sentences or documents.

In the table, the ratio of sentiment words in the training data dramatically

increases when the KOSAC multi-morpheme tokens are added to the senti-

ment word list. However, adding the KNU words to the list does not affect the

ratio much. As also described in Table 14, the sentiment words included in the

multi-morpheme KOSAC tokens and the KNU lexicon overlap significantly,

resulting in a smaller number of new tokens added to our sentiment word list.

Additional adjustment of polarity and intensity values is required when using

the KNU entries, which is not necessarily to be pursued, considering an im-

material increase in the ratio of the sentiment words in the dataset. Therefore,

we did not include tokens from the KNU lexicon in our sentiment word list in

this study.

100

On the other hand, only 15.36% of the KR-BERT vocabulary tokens and

49.71% of tokens in its training data are assigned prior sentiment values from

KOSAC, even if the multi-morpheme tokens are added. So we considered

a method to increase these ratios by applying additional processes to assign

sentiment values to the unmatched tokens, as follows:

• Existing sentiment words maintain their sentiment values.

• BERT special tokens such as [SEP], [CLS], [PAD], [UNK], and [MASK]

are assigned the polarity and intensity values ‘None’ as default.

• Monosyllabic tokens not included in KOSAC are assigned the values

‘None’ for polarity and intensity.

• For the tokens composed of more than two syllables:

– If they are proper nouns, the sentiment values ‘None’ are assigned

to them.

– If they are not proper nouns and consist of Hangul characters, we

apply the Minimum Edit Distance (MED) algorithm based on a

Levenshtein distance, assigning the closest token’s sentiment val-

ues. For each target token, the tokens that start with the same sylla-

ble are preferred among the candidate close to the tokens to process

the variated forms from the same root of words.

This process assigns polarity and intensity values to all the tokens in the

vocabulary and the training data, showing a ratio of sentiment words of 100%,

101

both in the vocabulary and the corpus.

For further comparison, we trained the BERT models based on the KR-

BERT vocabulary and training data using the matched sentiment words con-

structed by using:

1) Only single-morpheme tokens in KOSAC

2) All the single- and multi-morpheme tokens in KOSAC

3) All of the vocabulary tokens processed with the MED method

All three models are trained for 100,000 steps with the Adam optimizer,

a max sequence length of 512, a training batch size of 64, and a learning rate

of 1e-4, and up to 77 tokens in each sequence are masked for each model.

Table 16 compares the training performances of the models.

Table 16: Training performances of models with different sentiment word compositions

Sentiment word
composition

single-morpheme
KOSAC words

KOSAC single
+multiple
morphemes

all the tokens in
the vocabulary

loss 1.2025661 1.5244046 1.3857222
MLM Acc 71.99 68.53 71.30
MLM Loss 1.2265519 1.4288566 1.2460587
NSP Acc 97.50 95.38 95.75
NSP Loss 0.055956222 0.1172123 0.09755086

In the table, the model using the single-morpheme sentiment words in

KOSAC reported the best training performances, while the three models do

not show remarkable differences from each other. Theoretically, the training

102

performance should grow with more sentiment tokens matched in the vocabu-

lary and training data, while the actual performance shows the opposite. Fur-

thermore, training for more steps can lead to this difference increase.

It is only possible to compare such sentiment word composition options in

indirect methods via training task performances, not revealing specific factors

that affected the results. However, we suppose that the word forms that con-

catenated multiple morphemes or matched with other word forms by MED

were not frequent enough in the training data to help the language modeling

of our BERT-based model. Also, the proper nouns that we assigned ’None’ for

polarity and intensity values might not help the model learn linguistic knowl-

edge; the name of a specific person or organization may have other sentiment

values. The additional works we considered to assign the sentiment values to

more tokens in the BERT vocabulary did not significantly affect the model’s

training performances.

Additionally, considering performance gain, using only single-morpheme

tokens in KOSAC as sentiment words is the simplest and most cost effec-

tive method. Therefore, we decided to construct sentiment features based on

the prior polarity and intensity values of single-morpheme tokens included in

KOSAC.

6.2 Composition of Sentiment Embeddings

First of all, we refer to each token’s sentiment values in the vocabulary we

used to train our BERT-based sentiment-combined model. Example (7) is part

103

of an excerpt from the Korean movie review dataset NSMC.

(7) 유치하고완전최악이었음.

yuchihako wancen choyakiessum.

“It was childish and totally terrible.”

Table 17 shows the tokens composing the sentence of Example (7) pro-

cessed by the WordPiece tokenizer and with corresponding KOSAC polarity

and intensity values for each token.

Table 17: An example of tokens and assigned sentiment values

[CLS] 유치 ##하고 완전 최악 ##이 ##었 ##음 . [SEP] [PAD] [PAD]
[CLS] yuchi ##hako wancen choyak ##i ##ess ##um . [SEP] [PAD] [PAD]
[CLS] “childish” “and” “totally” “terrible” “be” “[past]” “[noun suffix]” “.” [SEP] [PAD] [PAD]

polarity None None None NEG NEG POS NEG NEG None None None None
intensity None None None Medium High Medium Medium Medium None None None None

Polarity and intensity information is encoded in the form of an integer

vector composed of indices, whose indices come from the polarity vocabulary

and the intensity vocabulary. For example, assume that we have 5 types of po-

larities, ‘None, POS, NEUT, NEG and COMP’, and this list can be converted

into a list of indices: ‘0, 1, 2, 3, 4.’ If a token in a sequence has a polarity value

of ‘POS,’ then ‘1’ is assigned to that token, and it becomes an element of the

polarity embedding corresponding to that sequence. The intensity values are

also converted into an integer vector in the same manner.

The integer vectors of polarity and intensity values construct the polarity

and intensity embeddings, respectively, in the BERT architecture. The polarity

104

and intensity embeddings are combined with existing token-based input em-

beddings from the BERT model, composed of the sum of the token, position,

and segment embeddings by element-wise summation, as shown in Figure 10.

Figure 10: Visualization of the embedding composition

The figure shows a sequence composed of the two sentences in Example

(8). The WordPiece tokenizer tokenizes the sequence as in the input row on the

top of Figure 10. In this case, if the token영화 yenghwa “movie” is masked

for the Masked Language Modeling (MLM) task during training, the position

is filled with the token ‘[MASK]’ and the corresponding embeddings as in the

figure.

(8) 이영화너무재미있다.참좋았다.

i yenghwa nemwu caymiissta. cam cohassta.

“This movie is hilarious. [I] liked it so much.”

Since we infused sentiment information to existing token embeddings,

which include position and segment information before training, we expect

105

our models to learn and update the pre-assigned polarity and intensity values

of the tokens in the sequence according to context information by language

modeling.

Token Masking and Sentiment Masking

Constructing the embeddings and the BERT-based models based on them, we

do not mask polarity and intensity features but instead allow them to function

as additional clues when performing MLM to train the model. They affect

calculating attention weights as sentiment-related tokens would get relatively

higher attention weights in the sequence.

Ke et al. (2020) included the prediction of sentiment word polarity while

not masking it during the language modeling process of their SentiLARE

models, containing the polarity prediction loss in its training performances.

Referring to this study, we considered some cases of masking and predicting

polarity and intensity, to determine which results in the best training model:

1) Masking and predicting each of the polarity and intensity values in the

masked position

2) Predicting but not masking the polarity and intensity values as in Ke et

al. (2020)

3) Neither masking nor predicting the polarity and intensity values

For the first and the second cases, the losses for token, polarity, and in-

tensity predictions are calculated separately and then linearly combined, as in

106

Equation (14), to compose the MLM loss.

lossMLM = losstoken + losspolarity + lossintensity (14)

We calculated the losses for polarity and intensity in the same way as the

MLM loss described in Equation (6) in Chapter 3. We changed the candidate

tokens for MLM to the candidate polarity and intensity values, respectively.

For polarity prediction, K, the number of labels is set to five, while for in-

tensity prediction, it is set to four. M and N represent the number of masked

tokens and the number of sequences in the data, respectively. xm,n represents

the input embeddings for the mth masked token in the nth sequence in the

training data. ym,n indicates the target label for the mth masked token in the

nth sequence in the training data.

− 1
MN

N

∑
n=1

K

∑
k=1

M

∑
m=1

(
yk

m,n× log(softmax(xm,n, k))
)

(6)

In the third case, at the masked position, only the token is masked and pre-

dicted using embeddings that include polarity and intensity information. So

as Equation (15) shows, the MLM loss is defined by only the token prediction

loss, as of that of the original BERT model.

lossMLM = losstoken (15)

Table 18 compares the performances obtained by training the sentiment-

combined models for 100,000 steps based on the three cases of masking and

predicting the polarity and intensity values. The models are trained using the

107

same training data and vocabulary as KR-BERT, all with the same sentiment

features, based on KOSAC, and with the same parameters, including the usage

of the Adam optimizer, a maxlen of 512, a training batch size of 64, and

a learning rate of 1e-4. All the models are based on the BERT-base model

scale, which consists of 12 encoder layers, 12 attention heads, and a hidden

size of 768, with each of them requiring about 5 hours to train using a Google

Cloud TPU v3-8.

Table 18: Training performances of the models predicting and masking tokens and sentiment
values

Mask and predict
tokens and
sentiments

Mask only tokens
and predict
tokens and
sentiments

Mask and predict
only tokens

loss 3.3182616 1.2344264 1.2025661
MLM token acc 54.27 71.56 71.99
MLM polarity acc 79.17 100.00 n/a
MLM intensity acc 80.92 100.00 n/a
MLM token loss 2.37334 1.2506855 1.2265519
MLM polarity loss 0.50147086 5.346803E-05 n/a
MLM intensity loss 0.4530841 4.3719585E-05 n/a
NSP acc 95.00 97.50 97.50
NSP loss 0.12870333 0.05544886 0.055956222

The loss in the first row indicates the sum of the MLM losses and NSP loss

for each model in the table. The rows for MLM token acc and loss include

the performances for masking and predicting tokens as in the original BERT

models. The rows for MLM polarity acc and loss and MLM intensity acc and

loss indicate the performances for predicting polarity and intensity, which are

108

not defined in the third case.

As the table shows, while NSP performances were similar, MLM perfor-

mances differed between the models. The first and third cases, not masking

polarity and intensity, reported better training performance. We expect that

the polarity and intensity embeddings will help predict the masked tokens as

additional information for language modeling when they are not masked in

that position.

The MLM performances in the first and third cases are similar, while the

prediction accuracy for polarity and intensity is 100%. The perfect prediction

results from the small numbers of polarity and intensity candidates (only 5

and 4, respectively) not impacting model capacity. Therefore, we adopted the

third case for our model training since the first case requires fewer prediction

computations, not affecting performance much.

6.3 Training the Sentiment-Combined Model

We trained a sentiment-combined model using the input embedding constructed

in Figure 10 based on the third case discussed in 6.2. The sentiment features

of the model include single-morpheme tokens and their polarity, and intensity

annotations in KOSAC. This model, named KR-BERT-KOSAC, is available

on GitHub so that public access and application are allowed.

Its training details are the same as those of KR-BERT. We used the same

training data and vocabulary as KR-BERT to train KR-BERT-KOSAC and

trained the model for 2M steps using the Adam optimizer, a maxlen of 512,

109

a training batch size of 64, and a learning rate of 1e-4. The training process

required about 92 hours using a Google Cloud TPU v3-8.

Figure 11 illustrates the model training in the form of training loss, which

converges to a certain level to produce stable performances before reaching

2M steps. In the figure, the x-axis represents the number of steps, and the

y-axis indicates the training loss.

Figure 11: Training loss of KR-BERT-KOSAC

Table 19: Training performances of KR-BERT and KR-BERT-KOSAC

KR-BERT KR-BERT-KOSAC

global steps 2M 2M
loss 0.9154538 0.54173344
MLM acc 77.34 85.15
MLM loss 0.9511529 0.56670845
NSP acc 99.50 99.38
NSP loss 0.013327285 0.02148062

110

Table 19 reports the training performance of KR-BERT-KOSAC com-

pared to that of KR-BERT. The row ‘loss’ indicates the global loss combining

MLM and NSP loss, while the next four rows show the detailed performances

of the two BERT training tasks. In KR-BERT-KOSAC, where the sentiment

features are added to the KR-BERT architecture, MLM performance greatly

improved, and the global training loss decreased even when NSP performance

slightly dropped. Accordingly, we suppose that the prior polarity and intensity

values referring to the Korean sentiment lexicon helped language modeling

during model training, functioning as supplementary information.

This model is released on GitHub1 and can be publicly accessed.

The effect of adding sentiment features to BERT input embeddings can

be observed through sentiment analysis tasks. We fine-tuned and tested our

sentiment-combined model with the sentiment analysis tasks based on the

two datasets for movie review classification (NSMC) and the hate speech de-

tection (HSD) used in Chapter 5. The resulting accuracies and F1 scores of

task predictions are reported in Table 20.

For the task datasets NSMC and HSD, we modified and utilized the TensorFlow-

based BERT fine-tuning codes released by Google Research. The experiment

settings used for these tasks are the same as those we used in Chapter 5. For

both tasks, we used the Adam optimizer, a training batch size of 128, an eval-

uation batch size 8, a max sequence length (maxlen) of 128, and a learning

rate of 5e-5, and fine-tuned the models for five epochs over each dataset.
1https://github.com/snunlp/KR-BERT-KOSAC

111

https://github.com/snunlp/KR-BERT-KOSAC

Table 20: Model performances on sentiment analysis tasks

NSMC HSD
dev acc test acc dev F1 test F1

M-BERT 87.08 86.82 73.39 52.03
KorBERT 90.48 89.81 78.74 54.33

KoBERT n/a
89.63

(reported)
66.21

(reported)
n/a

Park et al. (2019) n/a
89.82

(reported) n/a n/a

KR-BERT 89.86 89.74 78.18 54.53
KR-BERT-KOSAC 90.30 89.82 80.00 53.81

We compared the task performances of KR-BERT-KOSAC with those of

existing models, including KR-BERT. The M-BERT and KorBERT perfor-

mances are our reproduction results using provided vocabularies, tokenizers,

and model checkpoints. The results of KoBERT and Park et al. (2019) are

reported in each source.

Park et al. (2019) is a model that added a self-attention mechanism to

ELMo, recording an accuracy of 89.82 for the test set of NSMC, which was

the highest at that time compared to the traditional models, including CNN

and BiLSTM. KoBERT’s performance is provided as a baseline for testing

other models in Park (2020c), reporting an accuracy of 89.63 for the test set

of NSMC and an F1 score of 66.21 for HSD’s validation set.

KR-BERT-KOSAC tends to improve its performance in sentiment analysis

problems compared to KR-BERT, a model that, while maintaining all other

conditions, does not incorporate sentiment features. The accuracies of KR-

BERT-KOSAC for both the validation set and the test set of NSMC increased,

112

recording a validation accuracy of 90.30. The F1 score for HSD’s validation

set improved to 80.00 from 78.18 of KR-BERT, while that of the test set of

HSD decreased slightly below KR-BERT.

These values are higher than M-BERT’s performance and are higher and

lower than the KorBERT results depending on the task and data split, sum-

marized as similar performances. While it is hard to compare the models in

various perspectives since Park et al. (2019) reported only the NSMC test set

accuracy, our KR-BERT-KOSAC recorded the same accuracy of 89.82 with

them for the same test set.

However, this increase in performance is not satisfactory, even with a

slight drop in some cases, considering the time and hardware costs required to

train KR-BERT-KOSAC from scratch. Thus, we pursued a different method-

ology, described in Chapter 7, to further improve the performance of senti-

ment analysis problems using the sentiment features but with less cost.

6.4 Effect of Sentiment Features

This section attempted to check the effect of adding sentiment features to

an existing BERT model, mainly when processing the sentences with their

sentiment orientations from sentiment tasks.

We trained the ablated models by excluding each of the polarity and inten-

sity features from the KR-BERT-KOSAC embeddings to evaluate the effect

of the two prior sentiment values we obtained from a sentiment lexicon. The

KR-BERT model corresponds to the basic model not using either the polar-

113

ity or intensity embeddings. Keeping the parameters and experiment settings

of the sentiment-combined model unchanged (using the Adam optimizer, a

maxlen of 512, a training batch size of 64, and a learning rate of 1e-4), we

reconstructed the input embeddings including different feature combinations:

the basic BERT embeddings combined with polarity embeddings and with

intensity embeddings.

We trained all the models for 100,000 steps. First, the models show differ-

ences in language modeling ability during training, as in Table 21.

Table 21: Training performances of ablated models

original input
(KR-BERT) + polarity + intensity

+ polarity
+ intensity

(KR-BERT-KOSAC)

global steps 100K 100K 100K 100K
loss 1.7887475 1.239531 1.3644867 1.2025661
MLM Acc 62.69 71.13 70.05 71.99
MLM Loss 1.8145926 1.2727814 1.3349932 1.2265519
NSP Acc 98.00 97.88 98.25 97.50
NSP Loss 0.049355935 0.0560604 0.042528342 0.055956222

In Table 21, the first column shows the training performance of the KR-

BERT model that does not include any sentiment features in its input em-

beddings. The next three columns show the performances of the models that

added polarity features, intensity features, and both polarity and intensity fea-

tures to the basic input embeddings of KR-BERT. The last model, includ-

ing both polarity and intensity embeddings, corresponds to the KR-BERT-

KOSAC model described in 6.3.

114

According to the results, when both of the sentiment features are used in

the model’s input embedding, MLM shows the best performance. Accuracy

drops, and the loss increases when sentiment features are deleted from the

model’s input embeddings, showing the worst performance when both of the

sentiment features are removed. These results prove that the sentiment fea-

tures we used in this study help train our models via language modeling.

Although the NSP performance of KR-BERT-KOSAC was slightly lower

than those of other models, this difference was smaller than the increase in

MLM performance. Therefore, we decided to use both the polarity and in-

tensity features according to the advantage during training the models via

language modeling.

Table 22: Task performances of ablated models

NSMC HSD
dev acc test acc dev F1 test F1

KR-BERT 89.86 89.74 78.18 54.53
+ polarity 89.61 89.34 77.60 54.46
+ intensity 89.85 89.37 78.00 55.84
+ polarity
+ intensity
(KR-BERT-KOSAC)

90.30 89.82 80.00 53.81

We also compared the performance of the ablated models above in senti-

ment analysis tasks. The ablated models combining each of the polarity and

intensity embeddings to the basic BERT input embedding are trained for 2M

steps as in KR-BERT and KR-BERT-KOSAC. Table 22 shows the accuracies

115

on the movie review classification and the F1 scores on the hate speech detec-

tion using the same datasets and experiment settings, as described in 5.2.2.

The first row in Table 22 represents the performance of KR-BERT as the

basic model, not including any of the sentiment features from the KOSAC

lexicon. The next two rows show the performances of the ablated models

trained using only one of either the polarity or intensity features. The last row

includes the performances of KR-BERT-KOSAC from 6.3 for comparison.

First of all, KR-BERT-KOSAC reported higher performances than KR-

BERT in general, except for in HSD’s test set, as observed in 6.3. Its ab-

lated model, including only the polarity embeddings and not the intensity em-

beddings, showed a small decrease in performance, one also lower than that

of KR-BERT-KOSAC. While it is not a significant drop, the model reported

NSMC validation set and test set accuracies of 89.61 and 89.34, and HSD F1

scores of 77.60 and 54.46, respectively.

In the case of the ablated model adding only the intensity embeddings to

original BERT embeddings, the validation set and test set accuracy recorded

89.85 and 89.37 in NSMC, a slight decrease from those of KR-BERT. In

HSD, the model reported a validation set F1 score 78.00, a small drop from

KR-BERT, and a somewhat more apparent decrease from KR-BERT-KOSAC.

The HSD test set F1 score showed 55.84, increased from KR-BERT, and even

higher than that of KR-BERT-KOSAC.

Initially, we expected that there would be some improvement in perfor-

mance, although not as much as KR-BERT-KOSAC, with the ablated models

116

using only one of either the polarity or intensity features. However, the models

with only one of each of the features showed a slight decrease in performance,

lower than KR-BERT-KOSAC, which includes both sentiment features. This

comparison of task performance is an indirect method, so it is not easy to di-

rectly identify how the two sentiment features work when infused into BERT

embeddings. Nevertheless, we can conclude that the polarity and intensity

features interact to improve the model performance when used together.

Additionally, we tried a simple model comparison between KR-BERT and

the sentiment-combined model KR-BERT-KOSAC using attention weights.

The attention weights are calculated during BERT training based on a self-

attention mechanism and indicate the relative importance of tokens in a se-

quence.

Referring to Kovaleva et al. (2019), we visualized attention weights for

each sentence in the form of 2-dimensional attention maps. The attention

weights are from the final layer of each BERT-based model (KR-BERT and

KR-BERT-KOSAC), and we averaged the 12 attention weight matrices from

all 12 attention heads together to get one attention map for one sentence.

Kovaleva et al. (2019) supposed that there would be self-attention patterns

that emphasize the effects of specific linguistic knowledge, and attempted to

verify the patterns of attention weights assigned to specific types of tokens

such as nouns, verbs, subjects, objects, and negative words. They predicted

that the attention maps would show vertical stripes on the specific tokens re-

lated to linguistic features, based on the tokens’ high attention weights.

117

Referring to their approach, we also compared the models, one includ-

ing sentiment features and the other not containing them, by visualizing the

attention weights on the sentiment words in sequences, including sentence-

level sentiment stances. Examples (9) and (10) are sentences exemplifying

the change of attention weights extracted from the NSMC dataset, one posi-

tive and the other negative.

(9) 이거완전재밌다고하더니한번보니재밌군요.

ike wancen caymisstako hatentey hanpen poni caymisskwunyo.

“I heard it’s really amusing, and now that I’ve seen it, [I can say that] it

is fun.”

Polarity Label: Positive

(10) 오글거리고유치하고완전최악이었음. . .

okulkeliko yuchihako wancen choyakiessum. . .

“It was cheesy and childish, and really terrible. . . ”

Polarity Label: Negative

In Figures 12 and 13, both the x-axis and the y-axis represent the sequence

of tokens for each sentence, and the darker cells show higher attention weights

between the tokens. Figures 12a and 13a represent the attention maps of two

example sentences using the KR-BERT model, which does not include senti-

ment features.

First, Figures 12a and 13a show focused attention weights at the final to-

ken [SEP], which indicates the boundary of sentences. These focused weights

118

(a) KR-BERT (b) KR-BERT-KOSAC

Figure 12: Attention maps for Example (9)

on the BERT special tokens such as [SEP] are similar to the vertical patterns

of the attention weights commonly observed and reported by Kovaleva et al.

(2019) and other existing works (Clark, Khandelwal, et al. 2019; Jawahar et

al. 2019). The vertical pattern indicates the darker cells assigned to a specific

token are arranged vertically in the attention map, assigning higher degrees

of attention from other tokens in the sequence to the token. Additionally, they

show relatively high attention weights between neighboring pairs of tokens

by the diagonal line from top left to bottom right in the attention maps, as

in Figures 12a and 13a. This diagonal pattern is also commonly reported in

existing works.

On the other hand, the attention maps obtained by the sentiment-combined

model show different patterns. In Figure 12b, attention weights are relatively

spread, and some specific tokens show higher attention weights. In Example

(9), the word재밌- caymiss- “fun”, used twice, has an explicit polarity value

119

(a) KR-BERT (b) KR-BERT-KOSAC

Figure 13: Attention map for Example (10)

of positive and would have an essential role in classifying the sentence to be a

positive review. It seems that the attention weights around the token are high.

Additionally, Figure 13b also represents the attention maps obtained by

sentiment-infused models. It is a rather extreme example, representing the

pattern of attention weights in Example (10). In the sentence, a token 최악

choyak “terrible” has a polarity value ‘NEG’ and an intensity value ‘High,’

which means that the token shows extreme negativity in its meaning. So the

attention weights assigned to the token are high in this case compared to those

of Figure 13a.

Therefore, we speculated that sentiment-combined models would compute

the attention weights of sentiment words higher in a sequence when sentiment

features are infused into the models. It would help the models perform better

in sentiment analysis tasks.

120

6.5 Chapter Summary

In this chapter, we infused additional sentiment features to the Korean pre-

trained model we described in Chapters 4 and 5, KR-BERT, to improve the

model’s performance in sentiment analysis. First, we constructed sentiment

features based on the released Korean sentiment lexicons. We analyzed the

Korean Sentiment Analysis Corpus (KOSAC) and the KNU Korean Senti-

ment Lexicon and decided to use the polarity and intensity values defined for

the single-morpheme tokens in KOSAC as sentiment features.

In 6.2, we vectorized the tokens’ sentiment values in each input sequence

matched with the sentiment lexicon, and composed the polarity and intensity

embeddings. The two sentiment embeddings are then infused into the BERT

original input embeddings by element-wise summation.

In 6.3, we introduced a sentiment-combined model, KR-BERT-KOSAC,

that is trained based on the sentiment-infused embeddings. We explained the

details of the model and training environments and compared the model per-

formances with other existing models without sentiment features in two sen-

timent analysis tasks, such as movie review classification and hate speech

detection. The performances of KR-BERT-KOSAC are higher than those of

its baseline model, KR-BERT, which does not include sentiment features in

general. However, the performance improvement is not enough concerning

the effort and cost of constructing the sentiment embeddings and training the

model. Therefore, it is necessary to pursue an inexpensive method with better

121

performances to utilize sentiment features with BERT.

Finally, in 6.4, we attempted to analyze the effects of sentiment features

by comparing the performances of KR-BERT and KR-BERT-KOSAC and

visualizing the attention weights of tokens in a sequence computed based on a

multi-head self-attention mechanism. We also performed an ablation study by

training two separate models infusing each of the sentiment features polarity

and intensity used in KR-BERT-KOSAC. In conclusion, we observed that the

models using sentiment features perform better than the models not using

them, and utilizing both polarity and intensity features is better than including

only one of them in the BERT embeddings.

122

7 Combining Two BERT Models

In this chapter, we attempted to improve our model performances in senti-

ment analysis by applying another method of infusing sentiment features into

BERT. The contents of this chapter is based on our existing work (Lee and

Shin 2020).

7.1 External Fusing Method

As a novel method, we provide an External Fusing method that imports dif-

ferent pre-trained BERT-based models separately and combines them to be

fine-tuned and to produce a task result at a time, as visualized in Figure 14.

Figure 14: The structure of our external fusing method

123

For the pre-trained BERT models, we use M-BERT, KorBERT, and the

models we described in Chapters 4 and 5, such as KR-BERT and KR-BERT-

MEDIUM. For the additional sentiment-combined model on the right of the

figure, we trained new models, including models using the sentiment features

described in Chapter 6. Using these models, we load each model’s pre-trained

weights from its checkpoint file at the fine-tuning phase for each downstream

task. The loaded models then draw out the output embeddings, the final hid-

den states, for the input sentences from the task dataset. Each model’s output

embeddings are pooled to the proper form for the task classifier layer, and

each of them then computes the task loss. The two task losses are then linearly

combined as in Equation (16) to be optimized at a time. This combination of

losses is similar to that of combining MLM loss and NLP loss to compose a

global loss during BERT training.

losstask = losspre-trained model + losssentiment-combined model (16)

The combined task loss is then used for the label prediction of the models

for the task. Although this method requires two different pre-trained models,

the method of updating model weights by referring to the task loss remains

the same as the fine-tuning process of original BERT models.

The two models with different properties are expected to improve the

model performance on tasks by interacting with each other through this fusing

method. In particular, the existing pre-trained models report excellent train-

124

ing and test performances in various NLP tasks and will function well as

language models for general purpose use, since they have been trained using

large-scale corpora for many steps when performing language modeling. The

sentiment-combined models work by being specialized for sentiment analy-

sis, showing better performance in relevant tasks, as they include sentiment

features in their embeddings. As these two models have advantages from dif-

ferent perspectives, we attempted to combine them to produce a better overall

model.

For the general pre-trained models, we used the KR-BERT and KR-BERT-

MEDIUM models trained in this dissertation, and M-BERT and KorBERT

were also considered to verify the performance increases when our external

fusing method was applied. These models are expected to have done enough

language modeling on a large dataset to learn context information from text.

While various pre-trained models work well, only a few can deal with Korean

texts, and are implemented based on TensorFlow. Therefore, the models avail-

able to be directly compared with our models are the four listed above. The

performances of externally combined models will be compared with those of

the four pre-trained models, since we have reported the models’ task perfor-

mances in sentiment analysis in Chapter 5.

In this dissertation, we trained two sentiment-combined models, KR-BERT-

KOSAC-SMALL and CH-BERT-KOSAC-SMALL, using different training

data and vocabularies constructed from the data using the WordPiece tok-

enizer.

125

KR-BERT-KOSAC-small

The training settings of KR-BERT-KOSAC-small are the same as KR-BERT-

KOSAC, except for the model scale, as this model is based on a smaller scale

than KR-BERT and KR-BERT-KOSAC. Accordingly, we named the model

with the suffix ‘small.’ The detailed explanation of the model scale is provided

later in this chapter. We used the same 2.47GB training data as KR-BERT, in-

cluding Wikipedia texts and news articles, and the same vocabulary including

16,424 tokens trained and postprocessed based on the data.

We added sentiment features to the input embedding constructed based on

single-morpheme tokens annotated in the KOSAC lexicon, as in KR-BERT-

KOSAC. We trained the KR-BERT-KOSAC-small model using an Adam op-

timizer, a max sequence length of 128, a training batch size of 64, and a learn-

ing rate of 1e-4, for 500K steps with two Tesla V100 GPUs for 70 hours.

Table 23: Training performances of KR-BERT-KOSAC-small

KR-BERT-KOSAC-small

global steps 500K
loss 1.532343
MLM acc 67.63
MLM loss 1.447246
NSP acc 96.38
NSP loss 0.08696271

Table 23 reports the training performance of KR-BERT-KOSAC-small.

The row ‘loss’ indicates the global loss combining the MLM loss and the

126

NSP loss, while the next four rows show the detailed performance of the two

BERT training tasks. Additionally, Figure 15 visualizes the model’s training

losses up to 500K steps. In the figure, the x-axis represents the number of

steps, and the y-axis indicates the training loss.

Figure 15: Training loss of KR-BERT-KOSAC-small

CH-BERT-KOSAC-small

For this model, we used the Korean Comments Dataset1 and the unlabeled

part of the Korean Hate Speech dataset (Moon et al. 2020). Using the letters

from those data names, we named this model with the prefix ‘CH’ (C for

Comments and H for Hate Speech) and the suffix ‘small’, since we trained

the model with a smaller scale, as with KR-BERT-KOSAC-small.

The data’s total size is about 12.7GB with 91M comments, and the senti-

ment features based on the single-morpheme tokens annotated in the KOSAC
1https://github.com/Beomi/KcBERT/releases/tag/TrainData v1

127

https://github.com/Beomi/KcBERT/releases/tag/TrainData_v1

lexicon are infused into the input embeddings of this model. The vocabulary

for this model is constructed based on the training data with the WordPiece

model, consisting of 20,000 tokens.

We trained the CH-BERT-KOSAC-small model using an Adam optimizer,

a max sequence length of 128, a training batch size of 64, and a learning

rate of 1e-4, for 500K steps with two Tesla V100 GPUs for about 70 hours.

Because the datasets used for this model do not have additional document

segmentations and each comment is a document itself, we did not use the

next sentence prediction task during training for this model.

Table 24: Training performances of CH-BERT-KOSAC-small

CH-BERT-KOSAC-small

global steps 500K 1M
MLM acc 52.40 54.02
MLM loss 2.4872837 2.356253

Table 24 reports the training performance of CH-BERT-KOSAC-small at

the points of 500K and 1M steps. For this model, the table includes only MLM

performance since we excluded the NSP task for model training.

With the parameter settings above, both sentiment-combined models are

trained only for 500K steps. This is because, while training the models, their

training losses drop remarkably around 500K steps. Figure 16 visualizes our

CH-BERT-KOSAC-small model’s training losses up to 1M steps, which do

not change much after the point of 500K steps. In the figure, the x-axis rep-

128

resents the number of steps, and the y-axis indicates the training loss. More

steps of training are unlikely to efficiently improve the performance of the

model for the training time.

Figure 16: Training loss of CH-BERT-KOSAC-small

Both models have eight layers of encoders, eight attention heads for the

self-attention mechanism, and a hidden size of 512, the same as those of

medium-scale BERT-based models released by Google Research (Turc et al.

2019). However, we named the scale ‘small’ in this study to avoid confusion

with the names of the other models presented, such as KR-BERT-MEDIUM.

Although a smaller-scaled model is proposed in Turc et al. (2019) origi-

nally for knowledge distillation in environments with limited computational

resources, we applied this smaller scale of model to training models with

sentiment features using less training time and hardware resources. The KR-

BERT-KOSAC model described in 6.3 is a base-scale model with 12 encoder

layers, 12 attention heads, and a hidden size of 768, which takes about 92

129

hours to train for 2M steps using a Google Cloud TPU. On the other hand,

KR-BERT-KOSAC-small and CH-BERT-KOSAC-small are small-scale mod-

els using a maxlen of 128 that take about 70 hours to train using two GPUs.

The fact that the model uses only GPUs is a clear advantage, because GPUs

are more commonplace since they are much less expensive to use and easier

to access than TPUs.

Since the existing generic pre-trained models are imported, there is no

need for additional training for them, and the new smaller-scale models with

sentiment features can be trained using less hardware in a shorter time for

fewer steps. After that, only a fine-tuning process is required, achieved by

applying both models to the downstream tasks simultaneously. The small-

scale sentiment-combined models trained for 500K steps report an apparent

increase in task performance when combined with existing general BERT-

based models, as shown in 7.2.

7.2 Experiments and Results

We report the test results for the validation set and test set of two sentiment

analysis tasks, the movie review corpus, NSMC, and the hate speech dataset,

HSD, in Table 25. The ‘+’ operation between the two models means exter-

nal fusing. For example, the row that includes ‘+ CH-BERT-KOSAC-small’

below the ‘KR-BERT-MEDIUM’ row reports the task performance of a com-

bination of KR-BERT-MEDIUM and CH-BERT-KOSAC-small models.

As in Chapter 6, for the task datasets NSMC and HSD, we modified and

130

utilized the TensorFlow-based BERT fine-tuning codes released by Google

Research. We used the Adam optimizer, a training batch size of 128, an eval-

uation batch size 8, a max sequence length of 128, and a learning rate of 5e-5,

and fine-tuned the models for five epochs over each dataset.

Table 25: Task performances of externally-fused models

NSMC HSD
dev acc test acc dev F1 test F1

M-BERT 87.08 86.82 73.39 52.03
+ KR-BERT-KOSAC-small 89.34 89.03 75.00 54.23
+ CH-BERT-KOSAC-small 89.39 89.18 80.22 55.63

KorBERT 90.48 89.81 78.74 54.33
+ KR-BERT-KOSAC-small 90.75 90.49 77.70 55.64
+ CH-BERT-KOSAC-small 91.00 90.68 79.34 57.49

KR-BERT 89.86 89.74 78.18 54.53
+ KR-BERT-KOSAC-small 90.51 90.12 78.97 55.52
+ CH-BERT-KOSAC-small 90.60 90.53 78.90 56.28

KR-BERT-MEDIUM 90.90 90.29 81.93 57.91
+ KR-BERT-KOSAC-small 91.21 90.89 82.25 57.74
+ CH-BERT-KOSAC-small 90.93 90.81 83.63 58.90

In general, and especially clearly in the models based on M-BERT, Ko-

rBERT, KR-BERT, and KR-BERT-MEDIUM, both sentiment analysis tasks

show higher performance when external fusing methods are applied. In movie

review classification (NSMC), when the sentiment-combined models are com-

bined with M-BERT, they show about 3%p performance improvement. Kor-

BERT and the two models we trained in this dissertation, KR-BERT and KR-

BERT-MEDIUM, also work better with the sentiment-combined models. In

131

particular, when KR-BERT-MEDIUM is combined with KR-BERT-KOSAC-

small, the accuracies produced are the highest ever released up to November

2020, with 91.21 for the validation set and 90.89 for the test set. We also ob-

tained high accuracies above 90 in the cases where KR-BERT-MEDIUM is

combined with CH-BERT-KOSAC-small, and KR-BERT is combined with

either of the two sentiment-combined models.

For the hate speech detection task, the externally fused models show much

larger improvements from the baseline models. For example, M-BERT, com-

bined with the CH-BERT-KOSAC-small model, reports a validation set F1

score of 80.22, which is about 7%p higher than the baseline using M-BERT

only (73.39). KorBERT performance also increased when combined with the

sentiment-combined models. While the validation set F1 score slightly de-

creased when KR-BERT-KOSAC-small was attached KorBERT, the test set

F1 score of the combination improved, and with the CH-BERT-KOSAC-small

model added, both the validation and test sets reported increased F1 scores.

KR-BERT and KR-BERT-MEDIUM also improved their F1 scores when com-

bining the sentiment-combined models with them.

On the other hand, in HSD, there are slight differences in performance

between using KR-BERT-KOSAC-small and CH-BERT-KOSAC-small mod-

els for external fusing with baseline models. When the CH-BERT-KOSAC-

small model is combined, the performance improved abruptly compared to

when the KR-BERT-KOSAC-small model is combined, or when the base-

line model is used alone in general. In NSMC, the KR-BERT-KOSAC-small

132

and CH-BERT-KOSAC-small models do not show a significant difference in

performance. This is most likely because the training data of the CH-BERT-

KOSAC-small model consists of comments on news articles, and is therefore

more similar to the Hate Speech dataset in stylistic and sentiment properties.

Such comments are expected to include the stylistic properties of informal

texts, and contain a writer’s subjectivity and emotion in the text owing to

the domain characteristics. Therefore, a model trained with those texts would

have an advantage in tasks of sentiment analysis.

The domain composition of KR-BERT-KOSAC-small’s training corpus is

similar to other existing BERT-based models. Its training data include Wikipedia

texts and news articles whose sentences are relatively formal and refined. On

the other hand, most Korean sentiment tasks are classification problems on

user-generated web comments, including more informal texts. Such text in-

cludes abbreviations, coinages, emoticons, spacing errors, and typos. Some

of these characteristics function to express a writer’s subjectivity and emotion

in the text. The comments data we used for CH-BERT-KOSAC-small consist

of comments on news articles, which include these characteristics, and makes

the data likely to include the commenter’s opinion and sentiment. The exam-

ple sentences below represent such differences between formal and informal

texts.

(11) 22일제주를제외한전국에서미세먼지비상저감조치가발령된다.

22(isipi)il ceycwulul ceyoyhan cenkwukeyse misey menci pisang cekam

cochika pallyengtoynta.

133

“Emergency fine dust reduction measures will be issued across the coun-

try except for Jeju on the 22nd.”

(12) 볼매녀넘유쾌잼나고이뻐요!!!♡

polmaynye nemyukhway caymnako ippeyo!!!♡

“The more I see her, the more attractive she is! She is so cheerful, funny,

and pretty!!!♡”

Example (11) is an excerpt from a news article included in the training

data of KR-BERT, while Example (12) is a sentence extracted from the hate

speech dataset (Moon et al. 2020) used for sentiment analysis in this study.

The former is written in very refined form to inform, and the latter is a com-

ment freely written and expresses the judgment of a woman in a very informal

language.

In Example (12),볼매녀 polmaynye is an abbreviation of a phrase mean-

ing “a woman who becomes more attractive as she continues to be seen,” and

넘유쾌 nemyukhway is an abbreviated form of a phrase indicating “so de-

lightful.” 잼나고 caymnako is an abbreviation meaning “[It’s] fun, and. . . ”.

These forms reveal the idea that the writer wants to represent in a compressed

and effective manner. Special symbols such as ‘♡’ are also examples of a

compressed means that indicate that the writer is friendly to the target.

These stylistic properties are hard to find in texts such as Wikipedia, books,

and news articles, while they mainly appear in texts such as web corpora,

messenger texts, and comment datasets written freely by the general public.

So we constructed an additional model, CH-BERT-KOSAC-small, with train-

134

ing data only including informal texts. We suppose that this property of the

corpora may help to perform sentiment-related tasks.

From the results above, we can conclude that the models fused with the

sentiment-combined model perform better than the single baseline models.

Additionally, training the sentiment-combined models on a smaller scale with

fewer steps does not adversely affect how the performance increases and re-

quires less training time and fewer resources.

7.3 Chapter Summary

In this chapter, we considered a novel method of infusing sentiment features

to the sentiment analysis of BERT-based models while using less training

time and hardware cost. The external fusing method we propose in this chap-

ter combines an existing pre-trained BERT model with a sentiment-combined

model we trained in the phase of fine-tuning to perform the tasks at a time.

The former is a base-scaled general-purpose language model trained for many

steps, and thus performs well in various NLP tasks. The latter is expected to

function well in sentiment-related tasks using its sentiment features. Combin-

ing these two models with different advantages will allow them to interact and

perform the task better.

In 7.2, we verified that the combination of models obtains better perfor-

mance generally in sentiment-related tasks, such as movie review classifica-

tion and hate speech detection. This external fusing method reduces overall

processing time and hardware cost, since we import the existing generic pre-

135

trained models and train a small-scale sentiment-combined model for a few

steps.

136

8 Conclusion

In this dissertation, we trained Korean-specific BERT-based sentence embed-

ding models that include contextualized language representations. First, we

composed a vocabulary based on 2.47GB of training data consisting of Ko-

rean Wikipedia texts and news articles, and trained a KR-BERT model to

perform several Korean NLP tasks. We also trained one more Korean BERT-

based model KR-BERT-MEDIUM based on training data expanded by adding

comments data and legal texts to the existing KR-BERT training data.

We also composed sentiment features using polarity and intensity values

assigned to each token in a sequence based on a Korean sentiment lexicon and

reconstructed the BERT input embeddings, infusing the features into them.

Accordingly, we trained a sentiment-combined model, KR-BERT-KOSAC,

and applied it to sentiment analysis.

Additionally, we proposed a novel method to infuse sentiment features

into BERT-based sentiment analysis. Through our external fusing method, a

general-purpose pre-trained BERT model and a sentiment-combined model

are imported respectively, and combined when fine-tuning in sentiment anal-

ysis tasks. For the generic pre-trained model, we used various BERT-based

models such as M-BERT, KorBERT, and the models we trained in this dis-

sertation. The sentiment-combined model includes the small-scale models,

KR-BERT-KOSAC-small and CH-BERT-KOSAC-small, which we trained

for fewer steps in Chapter 7. This method effectively and efficiently utilizes

sentiment features requiring less training time and computation costs.

137

8.1 Summary of Contribution and Results

8.1.1 Construction of Korean Pre-trained BERT Models

We trained BERT-based models with training data composed of Korean texts

that can be applied to several Korean NLP tasks, including Named Entity

Recognition, Semantic Textual Entailment, Question Answering, and Senti-

ment Analysis. We obtained improved or comparable performances with our

models in many of the tasks than those of other existing models.

Some of the implemented models (KR-BERT and KR-BERT-KOSAC) are

released on GitHub so that users can easily access and utilize them when pro-

cessing Korean texts. There are not many task datasets publicly available in

Korean, and fewer of them are sufficient, though some of them are now begin-

ning to be released. Thus, pre-trained models applied to a wide range of NLP

tasks will help for low-resource tasks. Such models could also contribute to

theoretical linguistics and Korean linguistics since they are gradually applying

various NLP methodologies, including word embedding models.

8.1.2 Construction of a Sentiment-Combined Model

We built sentiment features with sentiment information annotated in the Ko-

rean Sentiment Analysis Corpus, KOSAC, and combined them with BERT

input embeddings to compose a sentiment-combined model. Model compar-

isons demonstrated that they perform better in language modeling and senti-

ment analysis when sentiment features are infused.

138

We also observed the effects of both the polarity and intensity features

through ablation studies on language modeling and sentiment analysis. By

comparing the performances of ablated models, which do not contain either

one or neither of the sentiment features, with those of KR-BERT-KOSAC,

which contain both of the sentiment features, we confirmed that utilizing both

polarity and intensity features is better than in other cases.

Moreover, the sentiment-combined model we implemented, KR-BERT-

KOSAC, is released on GitHub for public access.

8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and

Cost Advantages

In this dissertation, we proposed a method of externally fusing an existing pre-

trained model and a sentiment-combined model. At this time, the two models

are combined by loading different vocabularies and pre-trained checkpoint

files, and summing the losses obtained by each model during the fine-tuning

process.

In particular, new models with sentiment features can be implemented us-

ing less hardware and shorter training time by training with a smaller scale and

fewer steps. Therefore, given a pre-trained model, the external fusing method

only requires lightweight training of a sentiment-combined model, and a sim-

ple model combination in the fine-tuning process. It allows our novel senti-

ment fusing method to save on training time and effort. Additionally, in most

pre-trained models, the externally combined models recorded improved per-

139

formance in sentiment analysis than when the pre-trained models performed

alone.

8.2 Future Directions and Open Problems

8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance

The KR-BERT-MEDIUM model using the expanded training data based on

KR-BERT is trained for 2M steps, as with KR-BERT. However, the size of the

expanded training dataset is more than ten times larger than that of KR-BERT.

Therefore, more training steps for KR-BERT-MEDIUM would be necessary

to observe whether the model reports improved language modeling and senti-

ment analysis performances. For example, HanBERT reported that the model

is trained for more than 5M steps, and KoBERT has been trained for around

20M steps, according to their loss graphs.

While not included in this study, we compared the training performances

and task results obtained at 1M and 2M steps of training KR-BERT-MEDIUM.

The model showed a converged training loss value before 2M steps, between

1M and 2M steps, not showing a significant difference in performance be-

tween 1M and 2M steps. However, the model’s visualized training losses are

not very flat, including a little upward and downward movement, as in Fig-

ure 8.

The task performances also reported that the model worked better at 2M

steps than at 1M steps in all the NLP tasks described in this dissertation.

Therefore, it may be worth observing whether task performance improves and

140

converges while training the models for further steps. If sentiment-combined

models are added to those improved models by external fusing, task perfor-

mance would increase and be stable.

8.2.2 Observation of Changes Depending on the Domain of Training Data

We assumed first that as training data for a model grows in quantity and

its composition of domains, the model’s task performance would increase.

However, KR-BERT-MEDIUM had higher performance than KR-BERT only

in a few tasks. Moreover, when KR-BERT-KOSAC-small and CH-BERT-

KOSAC-small are combined with baseline pre-trained models in our exter-

nal fusing methodology, performance increases are different from each other.

Both have improved results, but in most cases, CH-BERT-KOSAC-small has

a more significant performance increase. A common fact in these two obser-

vations is that the domains that make up the training data of the models being

compared are different.

We supposed that a model trained with data that includes informal textual

characteristics would work well in a task consisting of similar data. Much of

the data added to KR-BERT-MEDIUM are based on informal texts, which

is stylistically similar to user-generated texts, such as the NSMC and HSD

datasets. Therefore, KR-BERT-MEDIUM performed better on NSMC and

HSD than other tasks, and the CH-BERT-KOSAC-small model contributed

more than the KR-BERT-KOSAC-small model in tasks.

It would be worth organizing models according to the training data domain

141

and observing how they work in different tasks. The result analysis will help

determine the configuration of training data to implement an improved pre-

training model.

8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT

Learns

In this study, we infused additional sentiment features into BERT to better per-

form in sentiment-related tasks. However, contextualized embedding models

such as ELMo and BERT learn various linguistic phenomena included in their

training data themselves (Pennington et al. 2014). The linguistic phenomena

learned by the models may already contain the sentiment information of each

token and the contexts in which they were formed in a sequence, so that the

sentiment features we constructed may have been redundant.

It is not yet clear whether this is the case, as it is a block box problem,

since it is impossible to analyze such models by directly investigating the

inside of the system. However, considering the performance improvement of

the previous studies that infused the linguistic features into contextualized em-

bedding models, we judged that utilizing additional features would help the

model’s function. Several studies have attempted to probe into how contextu-

alized embedding models such as BERT internally capture linguistic phenom-

ena in terms of its encoder layers and attention heads (Clark, Khandelwal, et

al. 2019; Hewitt and Manning 2019; Jawahar et al. 2019). Referring to these

studies, justifying the composition of features through such methodologies

142

would improve the models.

8.2.4 The Specific Process of Sentiment Features Helping the Language Model-

ing of BERT is Unknown

We supposed that the addition of sentiment features would help improve the

model for the language modeling process during training and relevant task

performances. However, this is an indirect judgment from the language mod-

eling performances, and from the task results of models with additional sen-

timent features and the basic pre-trained models without them. The language

modeling process is also an area of the black box problem that is impossi-

ble to judge and analyze directly. Nevertheless, this problem also should be

resolved, considering different methods that can probe the impact of features

during language modeling in as much detail as possible through indirect meth-

ods.

143

144

Bibliography

Alsentzer, Emily et al. (2019). “Publicly Available Clinical BERT Embeddings”. In:

Proceedings of the 2nd Clinical Natural Language Processing Workshop. Min-

neapolis, Minnesota, USA: Association for Computational Linguistics, pp. 72–

78.

Antoun, Wissam, Fady Baly, and Hazem Hajj (2020). “AraBERT: Transformer-based

Model for Arabic Language Understanding”. In: LREC 2020 Workshop Lan-

guage Resources and Evaluation Conference 11–16 May 2020, p. 9.

Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani (2010). “SentiWordNet

3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Min-

ing”. In: Proceedings of the Seventh International Conference on Language Re-

sources and Evaluation (LREC’10). European Language Resources Association

(ELRA).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine

Translation by Jointly Learning to Align and Translate”. In: Proc. of the 3rd

ICLR.

Bao, Lingxian, Patrik Lambert, and Toni Badia (2019). “Attention and Lexicon Reg-

ularized LSTM for Aspect-based Sentiment Analysis”. In: Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics: Student

Research Workshop. Association for Computational Linguistics, pp. 253–259.

Bar-Haim, Roy et al. (2006). “The second pascal recognising textual entailment chal-

lenge”. In: Proceedings of the second PASCAL challenges workshop on recognis-

ing textual entailment. Vol. 6. 1. Venice, pp. 6–4.

Beltagy, Iz, Kyle Lo, and Arman Cohan (2019). “SciBERT: Pretrained Language

Model for Scientific Text”. In: EMNLP. eprint: arXiv:1903.10676.

Benamara, Farah et al. (2007). “Sentiment analysis: Adjectives and adverbs are better

than adjectives alone”. In: Proceedings of ICWSM conference.

145

arXiv:1903.10676

Bentivogli, Luisa et al. (2009). “The Fifth PASCAL Recognizing Textual Entailment

Challenge.” In: Proceedings of TAC 2009.

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Informa-

tion”. In: Transactions of the Association for Computational Linguistics 5, pp. 135–

146. ISSN: 2307-387X.

Bowman, Samuel R. et al. (2015). “A large annotated corpus for learning natural lan-

guage inference”. In: Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing (EMNLP). Association for Computational Lin-

guistics.

Cambria, Erik et al. (2018). “SenticNet 5: Discovering Conceptual Primitives for

Sentiment Analysis by Means of Context Embeddings”. In: Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana,

USA, February 2-7, 2018. AAAI Press, pp. 1795–1802.

Cañete, José et al. (2020). “Spanish Pre-Trained BERT Model and Evaluation Data”.

In: PML4DC at ICLR 2020.

Cer, Daniel et al. (2017). “SemEval-2017 Task 1: Semantic Textual Similarity Multi-

lingual and Crosslingual Focused Evaluation”. In: Proceedings of the 11th Inter-

national Workshop on Semantic Evaluation (SemEval-2017). Vancouver, Canada:

Association for Computational Linguistics, pp. 1–14.

Clark, Kevin, Urvashi Khandelwal, et al. (2019). “What Does BERT Look At? An

Analysis of BERT’s Attention”. In: BlackBoxNLP@ACL.

Clark, Kevin, Minh-Thang Luong, et al. (2020). “Pre-Training Transformers as Energy-

Based Cloze Models”. In: Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Association for Computa-

tional Linguistics.

Collobert, Ronan et al. (Feb. 2011). “Natural Language Processing (Almost) from

Scratch”. In: Journal of Machine Learning Research 12, pp. 2493–2537.

146

Conneau, Alexis et al. (2018). “XNLI: Evaluating Cross-lingual Sentence Represen-

tations”. In: Proceedings of the 2018 Conference on Empirical Methods in Natu-

ral Language Processing. Association for Computational Linguistics.

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2005). “The PASCAL recognis-

ing textual entailment challenge”. In: Machine Learning Challenges Workshop.

Springer, pp. 177–190.

Daniluk, Michał et al. (2017). “Frustratingly short attention spans in neural language

modeling”. In: arXiv preprint arXiv:1702.04521.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding”. In: Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers). Association for

Computational Linguistics, pp. 4171–4186.

Dolan, William B and Chris Brockett (2005). “Automatically constructing a corpus

of sentential paraphrases”. In: Proceedings of the Third International Workshop

on Paraphrasing (IWP2005).

Fellbaum, Christiane (1998). WordNet: An Electronic Lexical Database. Bradford

Books.

Fu, Peng et al. (2018). “Learning sentiment-specific word embedding via global sen-

timent representation”. In: Proceedings of the AAAI Conference on Artificial In-

telligence. Vol. 32. 1.

Galassi, Andrea, Marco Lippi, and Paolo Torroni (2020). “Attention in Natural Lan-

guage Processing”. In: IEEE Transactions on Neural Networks and Learning Sys-

tems.

Giampiccolo, Danilo et al. (2007). “The third pascal recognizing textual entailment

challenge”. In: Proceedings of the ACL-PASCAL workshop on textual entailment

and paraphrasing. Association for Computational Linguistics, pp. 1–9.

147

Gim, Eunyeong (2004). “A Study on the Korean Emotion Verb”. PhD thesis. Chon-

nam National University.

Gururangan, Suchin et al. (2018). “Annotation Artifacts in Natural Language Infer-

ence Data”. In: Proceedings of the 2018 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 2 (Short Papers). Association for Computational Linguistics,

pp. 107–112.

Ham, Jiyeon et al. (2020). “KorNLI and KorSTS: New Benchmark Datasets for Ko-

rean Natural Language Understanding”. In: arXiv preprint arXiv:2004.03289.

Hewitt, John and Christopher D. Manning (2019). “A Structural Probe for Finding

Syntax in Word Representations”. In: Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers). Association

for Computational Linguistics, pp. 4129–4138.

Hinkle, Dennis E., William Wiersma, and Stephen G. Jurs (2003). Applied Statistics

for the Behavioral Sciences. Houghton Mifflin.

Howard, Jeremy and Sebastian Ruder (2018). “Universal Language Model Fine-

tuning for Text Classification”. In: Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Associ-

ation for Computational Linguistics, pp. 328–339.

Hu, Minqing and Bing Liu (2004). “Mining and summarizing customer reviews”. In:

Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 168–177.

Huang, Kexin, Jaan Altosaar, and Rajesh Ranganath (2019). “ClinicalBERT: Model-

ing Clinical Notes and Predicting Hospital Readmission”. In: arXiv:1904.05342.

Huang, Luyao, Chi Sun, et al. (2019). “GlossBERT: BERT for Word Sense Disam-

biguation with Gloss Knowledge”. In: Proceedings of the 2019 Conference on

148

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Associa-

tion for Computational Linguistics, pp. 3507–3512.

Husein, Zolkepli (2018). Malaya, Natural-Language-Toolkit library for bahasa Malaysia,

powered by Deep Learning Tensorflow. https : // github . com /huseinzol05 /

malaya.

Iyer, Shankar, Nikhil Dandekar, and Kornel Csernai (2017). First Quora Dataset Re-

lease: Question Pairs. URL: https://data.quora.com/First-Quora-Dataset-

Release-Question-Pairs (visited on 04/03/2019).

Jawahar, Ganesh, Benoıt Sagot, and Djamé Seddah (2019). “What Does BERT Learn

about the Structure of Language?” In: Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics. Association for Computational

Linguistics, pp. 3651–3657.

Jiang, Nanjiang and Marie-Catherine de Marneffe (2019). “Evaluating BERT for nat-

ural language inference: A case study on the CommitmentBank”. In: Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). Association for Computational Linguistics, pp. 6086–6091.

Ke, Pei et al. (2020). “SentiLARE: Sentiment-Aware Language Representation Learn-

ing with Linguistic Knowledge”. In: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, pp. 6975–6988.

Kikuta, Yohei (2019). BERT Pretrained model Trained On Japanese Wikipedia Arti-

cles. https://github.com/yoheikikuta/bert-japanese.

Kłeczek, Dariusz (2020). “Polbert: Attacking Polish NLP Tasks with Transformers”.

In: Proceedings of the PolEval 2020 Workshop. Institute of Computer Science,

Polish Academy of Sciences.

149

https://github.com/huseinzol05/malaya
https://github.com/huseinzol05/malaya
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/yoheikikuta/bert-japanese

Kovaleva, Olga et al. (2019). “Revealing the Dark Secrets of BERT”. In: Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). Association for Computational Linguistics, pp. 4365–4374.

Lan, Zhenzhong et al. (2020). “ALBERT: A Lite BERT for Self-supervised Learning

of Language Representations”. In: arXiv: 1909.11942 [cs.CL].

Lee, Jinhyuk, Wonjin Yoon, et al. (2019). “BioBERT: a pre-trained biomedical lan-

guage representation model for biomedical text mining”. In: Bioinformatics. ISSN:

1367-4803.

Lee, Sangah, Hansol Jang, et al. (2020a). “A Small-Scale Korean-Specific BERT

Language Model”. In: Journal of KIISE 47.7.

— (2020b). “KR-BERT: A Small-Scale Korean-Specific Language Model”. In: ArXiv

abs/2008.03979.

Lee, Sangah and Hyopil Shin (2020). “A Method of Infusing Additional Features into

Pre-Trained BERT Models for Sentiment Analysis”. In: Proceedings of Korea

Software Congress 2020.

Levine, Yoav et al. (2020). “SenseBERT: Driving Some Sense into BERT”. In: Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics. Association for Computational Linguistics, pp. 4656–4667.

Li, Yingjie and Cornelia Caragea (2019). “Multi-Task Stance Detection with Sen-

timent and Stance Lexicons”. In: Proceedings of the 2019 Conference on Em-

pirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP). Association for

Computational Linguistics, pp. 6299–6305.

Liu, Yinhan et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Ap-

proach”. In: arXiv preprint arXiv:1907.11692.

150

https://arxiv.org/abs/1909.11942

Mikolov, Tomas et al. (2013). “Efficient estimation of word representations in vector

space”. In: arXiv preprint arXiv:1301.3781.

Moon, Jihyung, Won Ik Cho, and Junbum Lee (2020). “BEEP! Korean Corpus of On-

line News Comments for Toxic Speech Detection”. In: Proceedings of the Eighth

International Workshop on Natural Language Processing for Social Media. As-

sociation for Computational Linguistics, pp. 25–31.

Nguyen, Dat Quoc and Anh Tuan Nguyen (2020). “PhoBERT: Pre-trained language

models for Vietnamese”. In: Findings of the Association for Computational Lin-

guistics: EMNLP 2020, pp. 1037–1042.

Park, Cheoneum et al. (2019). “Korean Movie Review Sentiment Analysis using Self-

Attention and Contextualized Embedding”. In: Journal of KIISE 46, pp. 901–908.

Park, Jangwon (2020a). KoBERT-KorQuAD. https : / / github . com / monologg /

KoBERT-KorQuAD.

— (2020b). KoBERT-NER. https://github.com/monologg/KoBERT-NER.

— (2020c). KoELECTRA. https://github.com/monologg/KoELECTRA/tree/

master/finetune.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “GloVe: Global

Vectors for Word Representation”. In: Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, pp. 1532–1543.

Peters, Matthew et al. (2018). “Deep Contextualized Word Representations”. In: Pro-

ceedings of the 2018 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers). Association for Computational Linguistics, pp. 2227–2237.

Polignano, Marco et al. (2019). “AlBERTo: Italian BERT Language Understanding

Model for NLP Challenging Tasks Based on Tweets”. In: Proceedings of the

151

https://github.com/monologg/KoBERT-KorQuAD
https://github.com/monologg/KoBERT-KorQuAD
https://github.com/monologg/KoBERT-NER
https://github.com/monologg/KoELECTRA/tree/master/finetune
https://github.com/monologg/KoELECTRA/tree/master/finetune

Sixth Italian Conference on Computational Linguistics (CLiC-it 2019). Vol. 2481.

CEUR.

Qian, Qiao et al. (2017). “Linguistically Regularized LSTM for Sentiment Classifi-

cation”. In: Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Association for Computational

Linguistics, pp. 1679–1689.

Radford, Alec et al. (2018). “Improving language understanding with unsupervised

learning”. In: Technical report, OpenAI.

Rahate, Rohini S and M Emmanuel (2013). “Feature selection for sentiment analysis

by using svm”. In: International Journal of Computer Applications 84.5, pp. 24–

32.

Rajpurkar, Pranav et al. (2016). “Squad: 100,000+ questions for machine compre-

hension of text”. In: arXiv preprint arXiv:1606.05250.

Salton, Giancarlo, Robert Ross, and John Kelleher (2017). “Attentive language mod-

els”. In: Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pp. 441–450.

Sang, Tjong Kim, Erik F., and Fien De Meulder (2003). “Introduction to the CoNLL-

2003 Shared Task: Language-Independent Named Entity Recognition”. In: Pro-

ceedings of the Seventh Conference on Natural Language Learning at HLT-

NAACL 2003, pp. 142–147.

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter”. In: arXiv preprint arXiv:1910.01108.

Schuster, M. and K. Nakajima (2012). “Japanese and Korean voice search”. In: 2012

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 5149–5152.

152

Shin, Hyopil et al. (2012). “Annotation scheme for constructing sentiment corpus

in Korean”. In: Proceedings of the 26th Pacific Asia Conference on Language,

Information, and Computation, pp. 181–190.

Socher, Richard et al. (2013). “Recursive deep models for semantic compositionality

over a sentiment treebank”. In: Proceedings of the 2013 conference on empirical

methods in natural language processing, pp. 1631–1642.

Sukhbaatar, Sainbayar, Jason Weston, Rob Fergus, et al. (2015). “End-to-end memory

networks”. In: Advances in neural information processing systems 28, pp. 2440–

2448.

Sun, Qingying et al. (2018). “Stance Detection with Hierarchical Attention Network”.

In: Proceedings of the 27th International Conference on Computational Linguis-

tics. Association for Computational Linguistics, pp. 2399–2409.

Tang, Duyu et al. (2014). “Learning Sentiment-Specific Word Embedding for Twitter

Sentiment Classification”. In: Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers). Association

for Computational Linguistics, pp. 1555–1565.

Teng, Zhiyang, Duy-Tin Vo, and Yue Zhang (2016). “Context-Sensitive Lexicon Fea-

tures for Neural Sentiment Analysis”. In: Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing. Association for Computa-

tional Linguistics, pp. 1629–1638.

Tian, Hao et al. (2020). “SKEP: Sentiment Knowledge Enhanced Pre-training for

Sentiment Analysis”. In: Proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics. Association for Computational Linguistics,

pp. 4067–4076.

Turc, Iulia et al. (2019). “Well-Read Students Learn Better: On the Importance of

Pre-training Compact Models”. In: arXiv: 1908.08962 [cs.CL].

153

https://arxiv.org/abs/1908.08962

Turney, Peter D. (2002). “Thumbs up or thumbs down? Semantic orientation applied

to unsupervised classification of reviews”. In: Proceedings of the 40th annual

meeting of the Association for Computational Linguistics. Association for Com-

putational Linguistics, pp. 417–424.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural

Information Processing Systems. Vol. 30, pp. 5998–6008.

Virtanen, A. et al. (2019). “Multilingual is not enough: BERT for Finnish”. In: ArXiv

abs/1912.07076.

Vries, Wietse de, Andreas van Cranenburgh, and Malvina Nissim (2020). “What’s so

special about BERT’s layers? A closer look at the NLP pipeline in monolingual

and multilingual models”. In: Findings of EMNLP, pp. 4339–4350.

Wang, Alex, Yada Pruksachatkun, et al. (2019). “SuperGLUE: A Stickier Bench-

mark for General-Purpose Language Understanding Systems”. In: arXiv preprint

1905.00537.

Wang, Alex, Amanpreet Singh, et al. (2018). “GLUE: A Multi-Task Benchmark and

Analysis Platform for Natural Language Understanding”. In: Proceedings of the

2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-

works for NLP. Association for Computational Linguistics, pp. 353–355.

Warstadt, Alex, Amanpreet Singh, and Samuel R. Bowman (2019). “Neural Network

Acceptability Judgments”. In: Transactions of the Association for Computational

Linguistics 7, pp. 625–641.

Wiebe, J., T. Wilson, and Claire Cardie (2005). “Annotating Expressions of Opin-

ions and Emotions in Language”. In: Language Resources and Evaluation 39,

pp. 165–210.

Williams, Adina, Nikita Nangia, and Samuel Bowman (2018). “A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference”. In: Proceed-

ings of the 2018 Conference of the North American Chapter of the Association

154

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers). Association for Computational Linguistics, pp. 1112–1122.

Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann (2005). “Recognizing Contex-

tual Polarity in Phrase-Level Sentiment Analysis”. In: Proceedings of Human

Language Technology Conference and Conference on Empirical Methods in Nat-

ural Language Processing. Association for Computational Linguistics, pp. 347–

354.

Wolf, Thomas et al. (2020). “Transformers: State-of-the-Art Natural Language Pro-

cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Nat-

ural Language Processing: System Demonstrations. Association for Computa-

tional Linguistics, pp. 38–45.

Wu, Yonghui et al. (2016). “Google’s neural machine translation system: Bridging the

gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144.

Yang, Zhilin et al. (2019). “XLNet: Generalized Autoregressive Pretraining for Lan-

guage Understanding”. In: Advances in Neural Information Processing Systems.

Vol. 32. Curran Associates, Inc., pp. 5753–5763.

Yoo, Won Joon (2020). Introduction to Deep Learning for Natural Language Pro-

cessing, Wikidocs. URL: https://wikidocs.net/book/2155 (visited on 12/28/2020).

Zhang, Zhengyan et al. (2019). “ERNIE: Enhanced Language Representation with

Informative Entities”. In: Proceedings of the 57th Annual Meeting of the Associ-

ation for Computational Linguistics. Association for Computational Linguistics,

pp. 1441–1451.

Zhou, Junru et al. (2020). “LIMIT-BERT : Linguistics Informed Multi-Task BERT”.

In: Findings of the Association for Computational Linguistics: EMNLP 2020.

Association for Computational Linguistics, pp. 4450–4461.

155

https://wikidocs.net/book/2155

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-Like Visual

Explanations by Watching Movies and Reading Books”. In: The IEEE Interna-

tional Conference on Computer Vision (ICCV).

Zwillinger, Daniel and Stephen Kokoska (1999). CRC standard probability and statis-

tics tables and formulae. Crc Press.

156

Appendices

A. Python Sources

A.1 Construction of Polarity and Intensity Embeddings

The polarity and intensity embeddings are constructed by the code below and

then added to the existing input embeddings ‘output.’ The variable ‘output’

is the sum of input token embeddings, segment (token type) embeddings, and

position embeddings. ‘polarity ids’ and ‘intensity ids’ are the vectors consist-

ing of polarity and intensity indices, respectively, assigned to each token. The

way of constructing the polarity embeddings and intensity embeddings is the

same as that of BERT’s original segment embeddings.

Algorithm 1: Construction of polarity and intensity embeddings

import tensorflow as tf

...

input shape = get shape list(input tensor, expected rank=3)
batch size = input shape[0]
seq length = input shape[1]
width = input shape[2]

...

if use polarity:
if polarity ids is None:

raise ValueError(”‘polarity ids‘ must be specified if”
”‘use polarity‘ is True.”)

polarity table = tf.get variable(
name=polarity embedding name,

157

shape=[polarity vocab size, width],
initializer=create initializer(initializer range))

flat polarity ids = tf.reshape(polarity ids, [−1])
polarity one hot ids = tf.one hot(flat polarity ids, depth=polarity vocab size)
polarity embeddings = tf.matmul(polarity one hot ids, polarity table)
polarity embeddings = tf.reshape(polarity embeddings,

[batch size, seq length, width])
output += polarity embeddings

if use intensity:
if intensity ids is None:

raise ValueError(”‘intensity ids‘ must be specified if”
”‘use intensity‘ is True.”)

intensity table = tf.get variable(
name=intensity embedding name,
shape=[intensity vocab size, width],
initializer=create initializer(initializer range))

flat intensity ids = tf.reshape(intensity ids, [−1])
intensity one hot ids = tf.one hot(flat intensity ids, depth=intensity vocab size)
intensity embeddings = tf.matmul(intensity one hot ids, intensity table)
intensity embeddings = tf.reshape(intensity embeddings,

[batch size, seq length, width])
output += intensity embeddings

...

A.2 External Fusing of Different Pre-Trained Models

At the fine-tuning and testing phase for each NLP task, two pre-trained models

and the tokenizers based on their vocabularies are loaded to process the task

sequences. Each task sequence is tokenized and processed by two models

separately to obtain pairs of token vectors (input ids and input ids kosac). For

158

all the variables, the suffix ‘token’ is for the general-purpose BERT model,

and the suffix ‘kosac’ is for the sentiment-combined model.

Algorithm 2: Construction of polarity and intensity embeddings

import tensorflow as tf

...

def create model(bert config token, bert config kosac, is training, input ids, input mask,
segment ids, polarity ids, intensity ids, labels, num labels, use one hot embeddings,
input ids kosac, input mask kosac, segment ids kosac, polarity ids kosac,
intensity ids kosac):
”””Creates a classification model.”””

model token = modeling token.BertModel(
config=bert config token,
is training=is training,
input ids=input ids,
input mask=input mask,
token type ids=segment ids,
use one hot embeddings=use one hot embeddings)

model kosac = modeling kosac.BertModel(
config=bert config kosac,
is training=is training,
input ids=input ids kosac,
input mask=input mask kosac,
token type ids=segment ids kosac,
use one hot embeddings=use one hot embeddings,
polarity ids=polarity ids kosac,
intensity ids=intensity ids kosac)

output layer token = model token.get pooled output()
output layer kosac = model kosac.get pooled output()

hidden size token = output layer token.shape[−1].value

159

hidden size kosac = output layer kosac.shape[−1].value

output weights token = tf.get variable(
”output weights token”, [num labels, hidden size token],
initializer=tf.truncated normal initializer(stddev=0.02))

output bias token = tf.get variable(
”output bias token”, [num labels], initializer=tf.zeros initializer())

output weights kosac = tf.get variable(
”output weights kosac”, [num labels, hidden size kosac],
initializer=tf.truncated normal initializer(stddev=0.02))

output bias kosac = tf.get variable(
”output bias kosac”, [num labels], initializer=tf.zeros initializer())

one hot labels = tf.one hot(labels, depth=num labels, dtype=tf.float32)

with tf.variable scope(”loss”):
if is training:

I.e., 0.1 dropout
output layer token = tf.nn.dropout(output layer token, keep prob=0.9)

logits token = tf.matmul(output layer token, output weights token, transpose b=True
)

logits token = tf.nn.bias add(logits token, output bias token)
probabilities token = tf.nn.softmax(logits token, axis=−1)
log probs token = tf.nn.log softmax(logits token, axis=−1)

per example loss token = −tf.reduce sum(one hot labels * log probs token, axis
=−1)

loss token = tf.reduce mean(per example loss token)

if is training:
I.e., 0.1 dropout
output layer kosac = tf.nn.dropout(output layer kosac, keep prob=0.9)

logits kosac = tf.matmul(output layer kosac, output weights kosac, transpose b=

160

True)
logits kosac = tf.nn.bias add(logits kosac, output bias kosac)
probabilities kosac = tf.nn.softmax(logits kosac, axis=−1)
log probs kosac = tf.nn.log softmax(logits kosac, axis=−1)

per example loss kosac = −tf.reduce sum(one hot labels * log probs kosac, axis
=−1)

loss kosac = tf.reduce mean(per example loss kosac)

logits = logits token + logits kosac
probabilities = probabilities token + probabilities kosac
per example loss = per example loss token + per example loss kosac
loss = loss token + loss kosac

return (loss, per example loss, logits, probabilities)

...

161

B. Examples of Experiment Outputs

This section presents examples from the NLP task datasets we used in this

study. For all the examples below, the model prediction labels are produced

by KR-BERT fine-tuning.

Named Entity Recognition

Text:
기자:체코프라하에서서향으로 4km떨어진작은강호와르자시내가도처에서
모여든집사람들로떠들썩합니다 .
kica: cheykho phulahaeyse sehyangulo 4km ttelecin cakun kangho walucasinayka
tocheeyse moyetun cipsalamtullo ttetulssekhapnita .
“Journalist: A small river lake, Warsasina, four kilometers west of Prague, the
Czech Republic, is buzzing with housewives from all over the place.”

Gold Label: CVL-B LOC-B LOC-B O NUM-B O O O LOC-B O O O O O

Model Prediction: CVL-B LOC-B LOC-B O NUM-B O O O O O O O O O

Question Answering

Question:
엑스박스 360의물품중별도로판매되고있는것은?
eyksupaksu 360uy mwulphwum cwung pyeltolo phanmaytoyko issnun kesun?
“Which of the Xbox 360 items are sold separately?”

Gold Label:액세서리 aykseyseli “accessories”
Model Prediction: 다양한 액세서리를 tayanghan aykseyselilul “a variety of ac-
cessories”

162

Natural Language Inference

Sentence 1:
그는그들이북쪽으로올라갔다고말했다.
kunun kutuli pwukccokulo ollakasstako malhayssta.
“He said they went up north.”
Sentence 2:
그는그들이남쪽으로내려갔다고했어요.
kunun kutuli namccokulo naylyekasstako haysseyo.
“He said they went south.”

Gold Label: Contradiction

Model Prediction: Contradiction

Semantic Textual Similarity

Sentence 1:
한여자가양파를자르고있다.
han yecaka yangphalul caluko issta.
“A woman is cutting onions.”
Sentence 2:
한여자가두부를자르고있다.
han yecaka twupwulul caluko issta.
“A woman is cutting tofu.”

Gold Label: 1.800

Model Prediction: 2.4379761

163

Movie Sentiment Classification

Text:
심심할때보면딱좋은영화

simsimhalttay pomyen ttak cohun yenghwa
“a perfect movie to watch when bored”
Gold Label: Positive

Model Prediction: Positive

Hate Speech Detection

In the case of Hate Speech Detection, the gold labels for the test dataset are

not released. The test performance for this task is only obtained by the official

leaderboard.

Text:
선남선녀너무이쁘다ˆˆ
sennamsennye nemwu ipputaˆˆ
“Good looking men and women. They are so pretty. ˆˆ”
Model Prediction: None

164

C. Model Releases through GitHub

KR-BERT

https://github.com/snunlp/KR-BERT

165

https://github.com/snunlp/KR-BERT

KR-BERT-KOSAC

https://github.com/snunlp/KR-BERT-KOSAC

166

https://github.com/snunlp/KR-BERT-KOSAC

국문초록

한국어사전학습모델구축과확장연구:감정분석을중심으로

최근 트랜스포머 양방향 인코더 표현 (Bidirectional Encoder Representations

from Transformers, BERT) 모델에 대한 관심이 높아지면서 자연어처리 분야에서

이에기반한연구역시활발히이루어지고있다.이러한문장단위의임베딩을위

한모델들은보통학습과정에서문장내어휘,통사,의미정보를포착하여모델링

한다고알려져있다.따라서 ELMo, GPT, BERT등은그자체가다양한자연어처리

문제를해결할수있는보편적인모델로서기능한다.

본 연구는 한국어 자료로 학습한 단일 언어 BERT 모델을 제안한다. 가장 먼

저 공개된 한국어를 다룰 수 있는 BERT 모델은 Google Research의 multilingual

BERT (M-BERT)였다.이는한국어와영어를포함하여 104개언어로구성된학습

데이터와 어휘 목록을 가지고 학습한 모델이며, 모델 하나로 포함된 모든 언어의

텍스트를처리할수있다.그러나이는그다중언어성이갖는장점에도불구하고,

각 언어의 특성을 충분히 반영하지 못하여 단일 언어 모델보다 각 언어의 텍스트

처리 성능이 낮다는 단점을 보인다. 본 연구는 그러한 단점들을 완화하면서 텍스

트에포함되어있는언어정보를보다잘포착할수있도록구성된데이터와어휘

목록을이용하여모델을구축하고자하였다.

따라서본연구에서는한국어Wikipedia텍스트와뉴스기사로구성된데이터

를이용하여 KR-BERT모델을구현하고,이를 GitHub을통해공개하여한국어정

보처리를위해사용될수있도록하였다.또한해당학습데이터에댓글데이터와

법조문과 판결문을 덧붙여 확장한 텍스트에 기반해서 다시 KR-BERT-MEDIUM

167

모델을학습하였다.이모델은해당학습데이터로부터WordPiece알고리즘을이

용해 구성한 한글 중심의 토큰 목록을 사전으로 이용하였다. 이들 모델은 개체명

인식,질의응답,문장유사도판단,감정분석등의다양한한국어자연어처리문제

에적용되어우수한성능을보고했다.

또한 본 연구에서는 BERT 모델에 감정 자질을 추가하여 그것이 감정 분석에

특화된모델로서확장된기능을하도록하였다.감정자질을포함하여별도의임베

딩모델을학습시켰는데,이때감정자질은문장내의각토큰에한국어감정분석

코퍼스 (KOSAC)에대응하는감정극성(polarity)과강도(intensity)값을부여한것

이다.각토큰에부여된자질은그자체로극성임베딩과강도임베딩을구성하고,

BERT가기본으로하는토큰임베딩에더해진다.이렇게만들어진임베딩을학습

한것이감정자질모델(sentiment-combined model)이된다.

KR-BERT와 같은 학습 데이터와 모델 구성을 유지하면서 감정 자질을 결합

한 모델인 KR-BERT-KOSAC를 구현하고, 이를 GitHub을 통해 배포하였다. 또한

그로부터학습과정내언어모델링과감정분석과제에서의성능을얻은뒤 KR-

BERT와비교하여감정자질추가의효과를살펴보았다.또한감정자질중극성과

강도값을각각적용한모델을별도구성하여각자질이모델성능향상에얼마나

기여하는지도확인하였다.이를통해두가지감정자질을모두추가한경우에,그

렇지않은다른모델들에비하여언어모델링이나감정분석문제에서성능이어느

정도향상되는것을관찰할수있었다.이때감정분석문제로는영화평의긍부정

여부분류와댓글의악플여부분류를포함하였다.

그런데위와같은임베딩모델을사전학습하는것은많은시간과하드웨어등

의 자원을 요구한다. 따라서 본 연구에서는 비교적 적은 시간과 자원을 사용하는

간단한 모델 결합 방법을 제시한다. 적은 수의 인코더 레이어, 어텐션 헤드, 적은

168

임베딩 차원 수로 구성한 감정 자질 모델을 적은 스텝 수까지만 학습하고, 이를

기존에 큰 규모로 사전학습되어 있는 임베딩 모델과 결합한다. 기존의 사전학습

모델에는 충분한 언어 모델링을 통해 다양한 언어 처리 문제를 처리할 수 있는

보편적인기능이기대되므로,이러한결합은서로다른장점을갖는두모델이상

호작용하여 더 우수한 자연어처리 능력을 갖도록 할 것이다. 본 연구에서는 감정

분석문제들에대한실험을통해두가지모델의결합이학습시간에있어효율적

이면서도,감정자질을더하지않은모델보다더정확한예측을할수있다는것을

확인하였다.

키워드:한국어문장임베딩모델, BERT,언어모델링,멀티헤드셀프어

텐션,감정자질,모델외적결합,감정분석

학번: 2016-30038

169

	1 Introduction
	1.1 Objectives
	1.2 Contribution
	1.3 Dissertation Structure

	2 Related Work
	2.1 Language Modeling and the Attention Mechanism
	2.2 BERT-based Models
	2.2.1 BERT and Variation Models
	2.2.2 Korean-Specific BERT Models
	2.2.3 Task-Specific BERT Models

	2.3 Sentiment Analysis
	2.4 Chapter Summary

	3 BERT Architecture and Evaluations
	3.1 Bidirectional Encoder Representations from Transformers (BERT)
	3.1.1 Transformers and the Multi-Head Self-Attention Mechanism
	3.1.2 Tokenization and Embeddings of BERT
	3.1.3 Training and Fine-Tuning BERT

	3.2 Evaluation of BERT
	3.2.1 NLP Tasks
	3.2.2 Metrics

	3.3 Chapter Summary

	4 Pre-Training of Korean BERT-based Model
	4.1 The Need for a Korean Monolingual Model
	4.2 Pre-Training Korean-specific BERT Model
	4.3 Chapter Summary

	5 Performances of Korean-Specific BERT Models
	5.1 Task Datasets
	5.1.1 Named Entity Recognition
	5.1.2 Question Answering
	5.1.3 Natural Language Inference
	5.1.4 Semantic Textual Similarity
	5.1.5 Sentiment Analysis

	5.2 Experiments
	5.2.1 Experiment Details
	5.2.2 Task Results

	5.3 Chapter Summary

	6 An Extended Study to Sentiment Analysis
	6.1 Sentiment Features
	6.1.1 Sources of Sentiment Features
	6.1.2 Assigning Prior Sentiment Values

	6.2 Composition of Sentiment Embeddings
	6.3 Training the Sentiment-Combined Model
	6.4 Effect of Sentiment Features
	6.5 Chapter Summary

	7 Combining Two BERT Models
	7.1 External Fusing Method
	7.2 Experiments and Results
	7.3 Chapter Summary

	8 Conclusion
	8.1 Summary of Contribution and Results
	8.1.1 Construction of Korean Pre-trained BERT Models
	8.1.2 Construction of a Sentiment-Combined Model
	8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and Cost Advantages

	8.2 Future Directions and Open Problems
	8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance
	8.2.2 Observation of Changes Depending on the Domain of Training Data
	8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT Learns
	8.2.4 The Specific Process of Sentiment Features Helping the Language Modeling of BERT is Unknown

	Bibliography
	Appendices
	A. Python Sources
	A.1 Construction of Polarity and Intensity Embeddings
	A.2 External Fusing of Different Pre-Trained Models

	B. Examples of Experiment Outputs
	C. Model Releases through GitHub

<startpage>14
1 Introduction 1
 1.1 Objectives 3
 1.2 Contribution 9
 1.3 Dissertation Structure 10
2 Related Work 13
 2.1 Language Modeling and the Attention Mechanism 13
 2.2 BERT-based Models 16
 2.2.1 BERT and Variation Models 16
 2.2.2 Korean-Specific BERT Models 19
 2.2.3 Task-Specific BERT Models 22
 2.3 Sentiment Analysis 24
 2.4 Chapter Summary 30
3 BERT Architecture and Evaluations 33
 3.1 Bidirectional Encoder Representations from Transformers (BERT) 33
 3.1.1 Transformers and the Multi-Head Self-Attention Mechanism 34
 3.1.2 Tokenization and Embeddings of BERT 39
 3.1.3 Training and Fine-Tuning BERT 42
 3.2 Evaluation of BERT 47
 3.2.1 NLP Tasks 47
 3.2.2 Metrics 50
 3.3 Chapter Summary 52
4 Pre-Training of Korean BERT-based Model 55
 4.1 The Need for a Korean Monolingual Model 55
 4.2 Pre-Training Korean-specific BERT Model 58
 4.3 Chapter Summary 70
5 Performances of Korean-Specific BERT Models 71
 5.1 Task Datasets 71
 5.1.1 Named Entity Recognition 71
 5.1.2 Question Answering 73
 5.1.3 Natural Language Inference 74
 5.1.4 Semantic Textual Similarity 78
 5.1.5 Sentiment Analysis 80
 5.2 Experiments 81
 5.2.1 Experiment Details 81
 5.2.2 Task Results 83
 5.3 Chapter Summary 89
6 An Extended Study to Sentiment Analysis 91
 6.1 Sentiment Features 91
 6.1.1 Sources of Sentiment Features 91
 6.1.2 Assigning Prior Sentiment Values 94
 6.2 Composition of Sentiment Embeddings 103
 6.3 Training the Sentiment-Combined Model 109
 6.4 Effect of Sentiment Features 113
 6.5 Chapter Summary 121
7 Combining Two BERT Models 123
 7.1 External Fusing Method 123
 7.2 Experiments and Results 130
 7.3 Chapter Summary 135
8 Conclusion 137
 8.1 Summary of Contribution and Results 138
 8.1.1 Construction of Korean Pre-trained BERT Models 138
 8.1.2 Construction of a Sentiment-Combined Model 138
 8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and Cost Advantages 139
 8.2 Future Directions and Open Problems 140
 8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance 140
 8.2.2 Observation of Changes Depending on the Domain of Training Data 141
 8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT Learns 142
 8.2.4 The Specific Process of Sentiment Features Helping the Language Modeling of BERT is Unknown 143
Bibliography 145
Appendices 157
 A. Python Sources 157
 A.1 Construction of Polarity and Intensity Embeddings 157
 A.2 External Fusing of Different Pre-Trained Models 158
 B. Examples of Experiment Outputs 162
 C. Model Releases through GitHub 165
</body>

