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ABSTRACT 

 

Previous functional neuroimaging studies of reading in skilled readers, acquired 

dyslexia and developmental dyslexia have all shown that the left ventral occipito-

temporal cortex (vOT) is involved in visual word recognition. Specifically, a region 

in the left posterior occipito-temporal sulcus lateral to fusiform gyrus and medial 

to inferior temporal gyrus has been reported to play an important role. However, 

the precise functional contribution of this area in reading is yet to be fully 

explored.  In this thesis, I empirically evaluated a claim that vOT responds not only 

to bottom-up processing demands of the visual stimuli but is also influenced by 

automatic, top-down non-visual processing demands, as proposed by the 

Interactive Account of vOT functioning.  

The first part of this thesis investigated the functional properties of vOT during 

reading, using functional magnetic resonance imaging.  In the first project, the 

top-down influences on vOT were investigated, teasing apart visual and non-visual 

properties of written stimuli.  In the second project, using the Japanese 

orthography I disentangled a word’s lexical frequency from the frequency of its 

visual form – an important distinction for understanding the neural information 

processing in regions engaged by reading and further explored the interactive 

nature of the vOT responses.  The second part then investigated the anatomical 

basis of these functional interactions between vOT and other cortical regions. I 

used diffusion-weighted magnetic resonance imaging and tractography, the only 

method currently available to identify and measure white matter fibre pathways 

non-invasively and in vivo.  

My research has demonstrated that vOT integrates bottom-up visual information 

and top-down predictions from regions encoding non-visual attributes of the 

stimulus in an interactive fashion.  It also illustrated the putative anatomical basis 

for functional connectivity during reading, which is consistent with the parallel 

cortical visual pathways seen in other primates.  Altogether, the results provide 

strong support for the Interactive Account.   
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1.1. THE SEARCH FOR A VISUAL WORD CENTRE 

 

Reading is everywhere. We use our reading skills not only for novels and stories 

but also for gaining an enormous amount of information in everyday life. Yet, the 

mechanisms that enable this uniquely human skill are still not fully understood. 

Historically, the search for the answer began with 19th century neurologist seeking 

to identify a brain region responsible for visual word forms. A century later, the 

focus of the research had shifted to behavioural accounts of visual word 

recognition by cognitive psychologists and by behavioural neuropsychologists who 

focused on the types of processing (routes to reading) rather than a single brain 

region. More recently, the advances in neuroimaging enabled neuroscientists to 

look for the visual word form centre once again but this time, in vivo. 

 

One of the earliest investigations into the neural substrates of reading was 

conducted by Dejerine (Dejerine, 1891).  He saw a patient who suddenly became 

unable to read or write following a stroke in the left hemisphere. The post 

mortem confirmed a lesion in the inferior part of the left angular gyrus extending 

to the occipital horn of the lateral ventricle and optic radiations. Dejerine deduced 

that the left angular gyrus was the visual word centre and damage to it resulted in 

alexia (inability to read) with agraphia (inability to write) since the patient had no 

access to the visual word forms to associate with incoming written words or inner 

speech. The following year, he started observing another patient who had lost the 

ability to read although his writing was spared (pure alexia, or alexia without 

agraphia).  Shortly before his death, the patient also lost the ability to write 

(Dejerine, 1892). This enabled Dejerine to dissociate the brain regions responsible 

for the two conditions, pure alexia versus alexia with agraphia, on the basis of the 

ages of infarcts at the post mortem. The older lesions were localised in lingual and 

fusiform gyri, cuneus, the tip of the occipital lobe and corpus callosum while the 

fresher infarct was found on the left parietal lobe and left angular gyrus.  To 

Dejerine, this confirmed his earlier hypothesis that the angular gyrus was the 

visual word centre and the damage to this area resulted in alexia with agraphia.  
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He also concluded that the disruption of the connection in the occipitotemporal 

region carrying the visual information from the occipital lobe to the angular gyrus 

was the cause of his patient’s pure alexia. His writing was spared because the 

visual word representations stored in the angular gyrus were intact and could still 

be fed forward to the later stages of the language system. Dejerine’s finding was 

replicated and his interpretation was supported by several subsequent 

neuropsychological studies (e.g., Damasio and Damasio, 1983; Geschwind, 1962; 

Geschwind and Fusillo, 1966; Hinshelwood, 1900). According to the classical 

neurological model of reading (Geschwind, 1965), visual information proceeds 

from the left and right visual cortices to the left angular gyrus where visual words 

are stored. The information is then relayed to the rest of the language system in a 

feed-forward manner (Figure 1.1). 

 

 

 

Figure 1.1: The classical neurological model of language. Visual information proceeds 

from the visual cortex (light blue) to the angular gyrus (green) where visual words are 

stored. These visual word forms are then relayed to the Wernicke’s area (red) to be 

linked with their auditory word forms. Finally these are linked to motor word forms in 

Broca’s area (dark blue) for articulation. Reprinted from Devlin (2009), with kind 

permission from Springer Sciences and Business Media.   

 

Later patient studies, however, were not always consistent with Dejerine’s 

account and demonstrated a problem with his model. For instance, cases of pure 
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alexia following left temporo-parietal, instead of occipitotemporal, lesions were 

reported (Warrington and Shallice, 1980). In addition, more recently it has been 

shown that lesions in the left occipitotemporal region do not always cause alexia 

(Hillis et al., 2005). In order to be consistent with these cases, Dejerine’s account 

would require, as a minimum, additional routes to the visual word centre. More 

problematically however, it has been shown that reading comprehension is not 

typically impaired following lesions in angular gyrus (Price and Friston, 2002), 

calling the role of angular gyrus as the visual word centre into question.  

 

Later patient studies on acquired dyslexia led some researchers to suggest 

multiple processing routes to recognize visual words. Marshall & Newcombe 

(1973) reported three different types of acquired dyslexia in six patients following 

a head injury or missile/gunshot wounds in occipital, temporo-parietal or parieto-

occipital regions. One patient who had a closed head injury (the location is not 

known) and another patient with a missile wound in the left occipital region both 

displayed reading errors that were visually similar to the words presented (e.g., 

“dug” = “bug”; “met” = “meet”). The authors labelled this type “visual dyslexia” 

and explained that errors were perceptual rather than linguistic in origin. A 

further two patients with a missile wounds in their left temporo-parietal regions 

read written words with grapheme-to-phoneme conversion errors (e.g., /k/ = /s/ 

as in “insect” = “insist”; /z/ = /s/ as in “phase” = “face”). This type, “surface 

dyslexia” indicates that the patients are relying on mapping visual input onto its 

corresponding phonological associations albeit unsuccessfully because they 

cannot access the semantic knowledge to judge if the output constitute a real 

word. The final two patients, one with a missile injury in the left temporo-parietal 

region and one with a gunshot in the left parieto-occipital region, displayed lexico-

semantic errors in which the erroneous answers were of the same semantic 

category as the presented word (e.g., “speak” = “talk”; “diamond” = “necklace”). 

This type “deep dyslexia” suggests that the patients have access to the semantic 

content of the visual words without being able to find the phonological 

associations to them. Based on these observations, Marshall & Newcombe 
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proposed that for successful word perception to occur, the visual input must first 

be associated with “visual addresses”, a functional component responsible for 

visual processing, from which it gets associated with both phonological and 

semantic addresses (components) via separate routes before it is articulated. In 

normal readers, both routes are available. However, brain injury can cause one of 

these routes to break down and as a result reading is impaired in a particular 

fashion.  Similar varieties of developmental dyslexia have also been identified 

which are often explained by the separable semantic (lexical) and phonological 

(sublexical) routes to reading (Castles and Coltheart, 1993). Therefore, contrary to 

the classical neurological model of reading, which postulates only single feed-

forward route of information processing, it seems that reading requires 

interactions of multiple routes or processing, each of which can be affected 

independent of the other, whether it is acquired or developmental.  

 

More recently, neuroimaging studies using positron emission tomography (PET) 

and functional magnetic resonance imaging (fMRI) have shown that reading 

typically activates a widely distributed network of regions in occipitotemporal, 

parietotemporal and inferior frontal regions in addition to the visual cortex 

(Figure 1.2). The occipitotemporal region in extrastriate cortex encompasses both 

posterior fusiform gyrus and occipitotemporal sulcus. It is located anterior to V1 

and within the ventral, object recognition pathway (Ungerleider and Mishkin, 

1982). In the monkey, this visual pathway follows the course of inferior 

longitudinal fasciculus from striate to inferior temporal regions then reaches 

ventral frontal cortex via limbic system (Mishkin et al., 1983). The location 

between V1 and inferior temporal cortex makes this region ideal for visual word 

recognition and accessing semantics. As such, this region is considered to be the 

first site of orthographic processing (Cohen et al., 2000).  The parietotemporal 

region, in contrast, is located in the dorsal, object localisation pathway 

(Ungerleider and Mishkin, 1982), anterior to V1. In the monkey this pathway 

follows the course of superior longitudinal fasciculus from striate to inferior 

parietal regions then reaches dorsal frontal cortex via dorsal limbic cortex 
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(Mishkin et al., 1983).  The temporoparietal region is comprised of supramarginal, 

angular and posterior superior temporal regions. Involved in spatial perception 

and visuomotor integration, activation here has been seen during writing tasks 

(Katanoda et al., 2001; Menon and Desmond, 2001; Sugihara et al., 2006) and 

implicated in mapping orthography to phonology (Shaywitz and Shaywitz, 2008) -  

a suitable functional role given the close proximity to the auditory cortex. 

Importantly and interestingly, angular gyrus is not always activated during reading 

(Price, 2000), inconsistent with this region as a visual word centre (Price et al., 

2003) although activation here is correlated with reading skills (Rumsey et al., 

1999). Reading activation here is only observed when greater semantic processing 

is required (Price, 2000; Price and Mechelli, 2005). Supramarginal gyrus has been 

implicated in computation of phonological representations (Joubert et al., 2004; 

Moore and Price, 1999; Stoeckel et al., 2009). Posterior superior temporal regions 

have also been suggested to be involved in phonological processing (Binder and 

Price, 2001; Démonet et al., 2005; Graves et al., 2008; Hu et al., 2010; Wise et al., 

2001). The inferior frontal region is where these two visual pathways converge. It 

encompasses Broca’s area (pars opercularis and pars triangularis) and the ventral 

premotor area. Broca’s area is implicated in cognitive processes such as working 

memory or executive control as well as motor control of speech. Activation here is 

not only dependent on the cognitive task used (Price, 2000), but also sensitive to 

extra-linguistic factors such as the novelty of the task (Raichle et al., 1994). 

Semantic and phonological processing has been attributed to this region too. 
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Figure 1.2: Regions activated during reading. Inferior frontal regions are involved in 

word analysis (semantic and phonological processing) as well as articulation; 

parietotemporal regions are also involved in word analysis and mapping orthography to 

phonology; and occipitotemporal regions decodes visual word forms. Reprinted from 

Shaywitz and Shaywitz (2008), with permission from Cambridge University Press.  

 

Within this network, further functional sub-regions have been identified. For 

instance, a double dissociation between semantic and phonological processing 

has been demonstrated within both the inferior frontal regions and inferior 

parietal lobule. Specifically, greater activation for semantic relative to 

phonological processing is associated with pars orbitalis and pars triangularis (the 

anterior and ventral part of the inferior frontal region) and angular gyrus while 

pars opercularis, premotor cortex (the posterior dorsal part of the inferior frontal 

region) and supramarginal gyrus are implicated in phonological more than 

semantic processing (Devlin et al., 2003; McDermott et al., 2003; Mummery et al., 

1998; Roskies et al., 2001). In addition, evidence appears to suggest that these 

semantic and phonological regions correspond to areas identified for lexical 

(exception words) and prelexical (pseudowords) processing, respectively (Mechelli 

et al., 2005). Although this seems consistent with the dual routes of processing 

implicated in the neuropsychological studies mentioned earlier, it is important to 

emphasise that both of these sets of regions are activated by both types of 

processing - the significant difference in activation between the two types of 

processing is relative, not absolute. That is, separate processing does not 



18 

 

automatically entail separate anatomical routes. Rather, functional dissociation 

seems to arise as the result of differential weight put on separate sets of regions 

within the reading network. 

 

Activations in the reading network are bilateral (Price and Mechelli, 2005) but in 

general left dominant (Binder et al., 1996; Springer et al., 1999). Compared to 

alphabetic orthography, a greater involvement of the right hemisphere has been 

reported for non-alphabetic orthography such as Chinese and Japanese kanji 

(Bolger et al., 2005; Nakamura et al., 2005c; Tan et al., 2000). In particular, 

increased activations in bilateral inferior/middle frontal (Tan et al., 2005; Tan et 

al., 2003) and right occipitotemporal regions (Bolger et al., 2005; Tan et al., 2005; 

Wu et al., 2012) have been associated with reading logographic orthography. 

These findings have typically been attributed to the greater demands on 

visuospatial analyses that are required for visually complex logographic characters 

(Tan et al., 2001). An alternative interpretation is that these effects reflect the 

reading strategy that relied more on visual rather than phonological features, 

which is typical of logographic reading acquisition (Hu et al., 2010), perhaps due 

to the visual complexity and the lack of transparent grapheme-to-phoneme 

conversion rules. Interestingly, these “logographic-specific” activation patterns 

closely match the compensatory system of dyslexic readers of alphabetic 

orthography, which is activated more relative to the controls (Shaywitz and 

Shaywitz, 2008), demonstrating that these effects indeed reflect individual 

differences in reading strategies rather than complex orthographic features 

specific to logographic characters. In turn, it suggests that the reading network is 

universal but the learning environment and cognitive abilities could modify 

reading activation (Hu et al., 2010). It is also important to emphasise that regions 

in the reading network engage not only in reading but also other tasks both 

linguistic such as picture naming or speech comprehension and non-linguistic such 

as object recognition and number processing. 
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Taken together, early neuropsychological and more recent neuroimaging studies 

suggest that there is not a single brain region that is exclusively responsible for 

visual word recognition. Instead, reading seems to arise from a system of multiple 

cortical regions and the pathways linking them. Therefore, while searching for a 

cortical region involved in reading such as a visual word centre may have been a 

good starting point, understanding the reading mechanisms additionally requires 

investigating information flow within an anatomically distributed system. For 

instance, can the early neurological model of reading that postulates solely feed-

forward flow of information explain all reading behaviour in patients as well as 

normal readers? What is the anatomical pathway that makes all the necessary 

communication possible? Answers to these questions are essential if we want to 

fully explain how reading works.  

 

 

1.2. VENTRAL OCCIPITOTEMPORAL (VOT) CORTEX IN READING 

1.2.1. A NEW “VISUAL WORD CENTRE”?  

In recent years, the occipitotemporal region has been attracting attention from 

researchers investigating visual word recognition. In particular, within the ventral 

occipitotemporal (vOT) cortex, a small region in the left hemisphere has been 

consistently found to be activated during tasks that require reading (Herbster et 

al.; Petersen et al., 1988; Price et al., 1996; Price et al., 1994; Rumsey et al., 1997) 

but its exact functional role is still under debate. This region is centred on the 

occipitotemporal sulcus and includes the lateral aspect of the fusiform gyrus and 

the medial aspect of the inferior temporal gyrus. In group studies, vOT’s rostro-

caudal location is approximately y= –50 to –60 in MNI (Montreal Neurological 

Institute) space and is anterior and lateral to V4 (Figure 1.3), although in 

individuals the peak activation for reading in vOT ranges from y= –45 to –70 

(Duncan et al., 2009).  Activation in vOT are automatic to visually presented words 

(Dehaene et al., 2001), reproducible (McCandliss et al., 2003) and found in various 

tasks that involve visual word recognition such as lexical decision (Fiebach et al., 
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2002), semantic decision (Chee et al., 2003b), naming (Cohen et al., 2002), silent 

reading (Kronbichler et al., 2004) and one-back memory task (Hasson et al., 2002). 

Furthermore, activation here is generally greater than in its right homologue 

particularly in alphabetic languages (Seghier and Price, 2011) although some 

studies report that it is bilateral or right-lateralised in Chinese logographs (Bolger 

et al., 2005; Liu et al., 2007; Tan et al., 2005; Wu et al., 2012) and Japanese Kanji 

(Kiyosawa et al., 1995; Law et al., 1991; Sakurai et al., 1992). Intracranial 

recordings (Nobre et al., 1994), magnetoencephalography (MEG) (Cornelissen et 

al., 2009; Salmelin et al., 1996; Tarkiainen et al., 1999) as well as transcranial 

magnetic stimulation (TMS) (Duncan et al., 2010) studies have also all provided 

supporting evidence for reading-related activity in vOT.  

 

 

 

Figure 1.3: Ventral occipitotemporal (vOT) cortex, on an inflated left hemisphere.  vOT is 

centred on the occipitotemporal sulcus (broken white line) and includes the lateral 

aspect of the fusiform gyrus and the medial aspect of the inferior temporal gyrus.  It is 

located at the transition from the occipital (in blue) to the temporal lobe (in green). Also 

shown are the regions of activation for visual word recognition (in red-yellow). 

Abbreviations: cs = collateral sulcus; mt = visual motion area; ots = occipitotemporal 

sulcus; pITG = posterior inferior temporal gyrus; sts = superior temporal sulcus; V1 = 

central field of primary visual cortex; V2 = secondary visual cortex; V4v = ventral 

component of visual area 4. Reprinted from Price and Devlin (2011), with permission 

from Elsevier, copyright (2011).   
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More generally, the region encompassing vOT can be functionally segregated into 

three subdivisions in the posterior-to-anterior direction based on their 

preferential response to different stimuli or types of processing (Price and 

Mechelli, 2005). The middle region (y= –50 to –60) responds to words and 

pseudowords more than false fonts (Herbster et al., 1997) or consonant strings 

(Cohen et al., 2004; Price et al., 1996).  A more posterior region (y= –60 to –70) 

responds to pseudowords more than words (Mechelli et al., 2003) while a more 

anterior region (y= –20 to –50) is implicated in semantic processing (Devlin et al., 

2006a; Moore and Price, 1999; Mummery et al., 1998; Nakamura et al., 2005b; 

Spitsyna et al., 2006).  

 

An important property of vOT activation during reading is that it is not specific to 

a particular language or orthography.  In addition to English, activation here has 

been reported for other alphabetic orthographies such as French (Cohen et al., 

2004), German (Kronbichler et al., 2004), Spanish (Carreiras et al., 2007) and 

Hebrew (Hasson et al., 2002), as well as non-alphabetic orthography such as 

Chinese (Kuo et al., 2003), Korean (Yoon et al., 2005) and Japanese (Ino et al., 

2009; Sakurai et al., 2001). Because the spatial location of vOT corresponds to the 

lesion site implicated in pure alexia (Beversdorf et al., 1997; Binder and Mohr, 

1992; Gaillard et al., 2006; Leff et al., 2001) and activation here is reduced in the 

developmental dyslexia (Shaywitz and Shaywitz, 2008), vOT is thought to play an 

important role in orthographic processing (McCandliss et al., 2003; Price and 

Mechelli, 2005) and features in modern neurological models of reading as the 

new “visual word form area” (Cohen et al., 2000; Cohen et al., 2002).   

 

1.2.2. READING-SPECIFIC ACCOUNTS OF VOT 

Since the importance of vOT in reading was consistently demonstrated, several 

accounts that assume vOT is dedicated to reading have emerged. Perhaps the 

most influential account is the Local Combination Detector model by Dehaene 

and Cohen (Dehaene and Cohen, 2011; Dehaene et al., 2005). It is a model of 
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reading that takes into account the neurophysiology of visual recognition of non-

human primates. The ventral visual pathway has a hierarchical organisation and 

the size of the receptive fields of neurons increases as they ascend the hierarchy, 

as does the visual complexity of the stimuli that they preferentially respond to. 

The LCD model proposes a similar hierarchical organisation in which orthographic 

information is extracted following feed-forward steps that detect progressively 

more complex visual features. Visual information is encoded through a sequence 

of stages, from simple feature detectors located in early visual cortex, to letter 

detectors in V4, to prelexical bigram (letter pairs that comply with the orthotactics 

of a given language) detectors in vOT and then on to whole word detectors 

located even more anteriorly in the temporal lobe (Dehaene et al., 2005). Prior to 

reading acquisition, neurons in vOT are sensitive to visual objects. Through 

experience and learning to read, these neurons are “recycled” and become 

attuned to reading (Dehaene and Cohen, 2007). 

 

In order to elucidate the functional role of vOT, Cohen and colleagues (2000) 

investigated the response to word stimuli presented in either the right (RVF) or 

left (LVF) visual field in split-brain patients with left hemialexia and healthy 

controls.  Both fMRI and event-related potentials (ERPs) were used to define the 

spatial and temporal characteristics of visual information processing.  For fMRI, 

the participants silently read real words and for ERPs, these words were 

contrasted with consonant strings in order to better identify the onset of 

responses associated with lexicality. In both patients and controls, an early 

negativity was found around 150 – 160 ms post-stimulus over the posterior 

electrodes contralateral to the visual field in which the stimuli were presented. 

Spatially, this activation was identified as the inferior occipitotemporal region 

corresponding to V4. The authors concluded that letter strings at this stage are 

still processed in the hemisphere contralateral to the visual hemifield. In contrast, 

a later negativity of 180 – 200 ms post-stimulus was recorded over the inferior 

temporal electrodes only in the left hemisphere, irrespective of hemifield 

presentation. In the patients, the same response was elicited only from the 
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stimulus presented in the RVF. The spatial location of this activation was the left 

middle portion of fusiform gyrus (vOT) and the latency of this component was 

consistent with previously found N170 component sensitive to orthographic 

processing (Nobre et al., 1994; Salmelin et al., 1996; Tarkiainen et al., 1999). Given 

the latency of this effect, Cohen and colleagues proposed that vOT is the first site 

where the orthographic information from the two hemifields is combined. 

Therefore, analogous to Dejerine (1892) designating the angular gyrus to be the 

visual word centre (i.e., the storage of “optical images of words”), they labelled 

vOT as the visual word form area (VWFA) (Cohen et al., 2000).  

 

However, as pointed out by Cohen and colleagues (2002), vOT response to 

orthographic stimuli itself does not necessarily entail that the function of this 

region is orthographic processing. The response to letter strings may simply be 

driven by the fact that letters happen to have the type of visual features that the 

neurons of this region preferentially respond to. In order to determine the 

functional properties of vOT, Cohen and colleagues (2002) further investigated 

whether vOT is sensitive to orthographic regularities using words, consonant 

strings and checkerboards during silent reading/passive viewing and naming tasks. 

They found greater activation for letter stimuli relative to checkerboards and for 

words relative to consonant strings. This was interpreted as vOT being sensitive to 

the letter combinations possible in a given language (orthotactics). Cohen and 

colleagues thus proposed that vOT is attuned specifically to language. Another 

difference between words and consonant strings, namely lexicality, was rejected 

as the explanation since previous findings from their own group as well as others 

demonstrated equal or greater activation for pseudowords relative to words 

(Brunswick et al., 1999; Dehaene et al., 2002; Fiez et al., 1999; Xu et al., 2001), 

which additionally suggested to them that the representation in vOT is essentially 

prelexical (Dehaene et al., 2002).  
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Modality specificity of vOT was also investigated. Dehaene and colleagues (2002) 

found that vOT responded only to written, not spoken, words and pronounceable 

pseudowords. Moreover, Cohen and colleagues (2004) compared written and 

spoken words over two tasks, which were designed to focus on phonological 

(phoneme detection) or orthographic (descender detection) processing, 

respectively. In addition, in order to test the effect of word (conscious) repetition, 

the stimulus was preceded by the same stimulus in half of the trials. They found 

that vOT responded to both novel and repeated written words, regardless of the 

task.  In contrast, for spoken words, novel (unrepeated) stimuli elicited only weak 

activation and there was no activation to repeated ones. Consequently, they 

concluded that that response in vOT was mandatory in the visual modality for 

words and that vOT was a strictly visual (i.e., unimodal) area. According to the 

authors, responses to auditory stimuli only occurred via top-down processing 

when the task required manipulation or mental imagery of orthographic 

representations.  

 

Their next study (Dehaene et al., 2004) led them to identify two sub-regions of 

vOT, each of which responds to different types of information in visual letter 

strings. In this priming study investigating location-invariance of vOT response, 

the target words were primed by unrelated words, the same (repeated) words or 

circular anagrams of the target words (e.g., range/anger). In addition, each prime 

– target pair differed in the typographic case so that the pairs were not visually 

similar (e.g., A/a).  This was done to confirm that their previous finding of case-

invariance of vOT response (Dehaene et al., 2001) was not due to visual 

similarities (e.g., O/o) but rather represented true orthographic information. 

Primes and targets appeared in either the same or different location by one letter 

position (e.g., #RANGE/anger#). They found repetition suppression in a posterior 

location (y= –64 to –68) only when the same letter strings appeared in the same 

location (i.e., the same words in the same location and anagrams in different 

location (e.g., RANGE#/#anger), suggesting this region may contain location-

specific “letter detectors”.  In contrast, in a more anterior region (y= –56), 
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reduced activation was found for the same words in the same or different 

locations, suggesting that this region may store a location-invariant 

representation of visual words. Case-invariance was also replicated for both of 

these sub-regions. These findings motivated Dehaene and colleagues to propose 

that neurons in the occipitotemporal region may be hierarchically organised visual 

feature detectors dedicated to reading that extract progressively more complex, 

abstract information of written stimuli as one moves anteriorly along fusiform 

gyrus.  Moreover, they made the specific claim that within this posterior-to-

anterior gradient, their VWFA (centred on y=-56) contained bigram detectors. 

 

A slightly different reading-specific account of vOT was proposed by Kronbichler 

and colleagues (2004). They argued that the prelexical explanation of vOT 

activation by Dehaene and Cohen was inconsistent with neuroimaging results 

from object recognition studies, which demonstrated a frequency effect in the 

nearby fusiform regions (e.g., van Turennout et al., 2003) and also visual word 

recognition studies, which showed lexicality effects (e.g., Mechelli et al., 2003) as 

well as frequency effects (e.g., Keller et al., 2001; Kuo et al., 2003). These finding 

were problematic to Dehaene and Cohen’s account since lexicality or conceptual 

frequency should not affect vOT activation if representations here are prelexical 

unless they differ in terms of bigram frequency. Kronbichler and colleagues 

therefore investigated vOT responses, parametrically manipulating lexical 

frequency of German words. Pseudowords were included as the least frequent 

condition. Various psycholinguistic factors such as letter length, syllable length 

and crucially, bigram frequency were matched across five word frequency levels 

to ensure that effects would not be driven by differences in prelexical factors. 

Using a silent reading task, they found that the vOT response was modulated by, 

and inversely proportional to, lexical frequency - a property of the whole word. 

Since bigrams are not words, they should not be sensitive to lexical frequency, 

especially when bigram frequency was matched across word frequency levels. 

Therefore, Kronbichler and colleagues suggested that vOT contains orthographic 

patterns (visual words) that serve as recognition units. Greater vOT response to 
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pseudowords relative to words may be due to the fact that pseudowords partly 

activate several existing orthographic patterns of real words, with which they 

share their constituents.  

 

Critically though, lexical frequency is not just the measure of visual familiarity but 

also includes frequency of semantics as well as phonology of lexical entries. 

Similarly, the difference between real words and pseudowords is not limited to 

the visual-orthographic familiarity. Pseudowords lack semantic content and are 

phonologically novel. Therefore, it is possible that the word frequency effect 

found by Kronbichler and colleagues (2004) may in fact reflect these differences in 

these non-visual properties rather than in visual familiarity correlated with lexical 

frequency. In order to address these issues, Kronbichler and colleagues (2007) 

conducted another study in which orthographic familiarity and linguistic 

properties were manipulated. Stimuli were orthographically and 

semantically/phonologically familiar real words (e.g., Taxi), orthographically 

unfamiliar but semantically/phonologically familiar pseudohomophones (e.g., 

Taksi) and orthographically and semantically/phonologically unfamiliar 

pseudowords (e.g., Tazi). Participants were asked to decide if the letter strings 

sounded like an existing word (a phonological lexical decision task). 

Psycholinguistic factors including bigram frequency were matched across 

conditions. They found greater activation for pseudowords relative to real words 

in vOT while there was no significant activation difference between 

pseudohomophones and pseudowords here or anywhere in the left 

occipitotemporal region.  In other words, it was orthographic familiarity that 

differentiated activations in vOT, not semantic/phonological familiarity. 

Kronbichler and colleagues thus concluded that vOT is the site of the 

“orthographic input lexicon” where orthographic word representations, not 

prelexical bigrams, are stored that abstract away from details of the visual form. 

Like logogens (Morton, 1969), entries in this orthographic input lexicon are 

sensitive to experience, with access to less frequent words requiring greater effort 

and therefore resulting in greater activation, consistent with familiarity effects 
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found for objects in bilateral occipitotemporal regions and for faces in the right 

fusiform gyrus.  

 

Their account was supported by a study that replicated their findings with English 

stimuli using a similar design (Bruno et al., 2008) as well as by an fMRI-rapid 

adaptation study (Glezer et al., 2009). In order to look for evidence that neurons 

in vOT are selective for the whole words, rather than prelexical representations 

such as bigrams, Glezer and colleagues (2009) used an fMRI-rapid adaptation 

technique, suggested to better probe neuronal tuning (Jiang et al., 2006).  With 

this technique, the level of BOLD response is considered to reflect the similarity of 

the neuronal populations responding to each of the two successively presented 

stimuli within a trial. Neural response to the second stimulus is suppressed 

relative to the first stimuli and the suppression is greater when the first and 

second stimuli are similar relative to when they are dissimilar. Thus, greater 

response is expected when the two stimuli activate different populations of 

neurons while two stimuli activating the identical populations of neurons results 

in weaker response. Manipulating lexicality (real words, pseudowords) and 

conditions of the prime – target pairs (same, differ by one letter, different), they 

hypothesised that if neurons in vOT are tuned to prelexical representations, the 

vOT response would increase gradually as the difference between the prime and 

the target increases for both real words and pseudowords. In contrast, if they are 

selective to whole real words, then this pattern would be seen only for 

pseudowords but critically, the response for real words should not significantly 

differ between “differ by one letter” and “different” conditions. This was indeed 

what they found in individual’s vOT identified in separate localisation scans. They 

also confirmed that the effects were not driven by the inevitable difference 

between real words and pseudowords, namely the semantic information, by 

conducting an additional control experiment of a similar design including 

semantic relatedness as a factor. Crucially, bigram frequency and trigram 

frequency were matched across conditions in this study. As a result, Glezer and 

colleagues concluded that neurons in vOT are selective to the whole words, 
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compatible with the mental orthographic lexicon postulated in some cognitive 

model of reading (Coltheart, 2004), while still endorsing the kind of hierarchical 

organisation of this region proposed by Dehaene and Cohen.  

 

Like Dehaene and Cohen (Dehaene et al., 2004; Dehaene et al., 2001), Kronbichler 

and colleagues (Kronbichler et al., 2009) also tested whether case-deviant forms 

of real words would affect vOT response.  Unlike Dehaene and Cohen however, 

they used mixed-cases. With a silent reading task comparing real German noun 

forms (e.g., Taxi), case-deviant forms (e.g., TaXi) and letter-deviant forms (e.g., 

Taksi), they found that case-deviant forms elicited increased activation in vOT 

relative to real word forms; and also in right occipitotemporal and left posterior 

occipitotemporal regions relative to both real word and letter-deviant forms. 

Kronbichler and colleagues interpreted their findings as further evidence that vOT 

contains word-specific orthographic representations.  It is important to note 

however, that in contrast, previous PET studies using English words showed no 

effects on vOT responses for real words in mixed- relative to same-cases (Mayall 

et al., 2001; Xu et al., 2001).  Therefore the increased activation could have been 

driven instead by the status of capital letters in German. In German, nouns must 

start with a capital letter. Therefore, the capital letter carries the information that 

a letter string is a noun when it occurs at the beginning, over and above visual and 

other linguistic information it encodes in other alphabetic languages such as 

French or English. In other words, case-deviation means much more than the 

deviation in visual features in German.  If this is correct, then the increased 

activation for case-deviant forms in German is elicited by non-visual information, 

either via top-down processing or because this information is stored for each 

lexical entry in the orthographic input lexicon.  

 

One important matter that has not been explicitly discussed by this theory is what 

the orthographic input lexicon means at the neuronal level. Given this account, it 

logically follows that individual neurons are “word detectors” that encode each 
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word, analogous to the bigram detectors of the LCD model.  Alternatively, it may 

be that some distributed pattern of neurons collectively encodes a word. These 

patterns would have to be unique and orthogonal so that each word is 

represented by a different pattern.  Any overlapping would inevitably entail that 

each neuron encodes less than a word, which would mean, contrary to their 

claim, that individual neurons in vOT are tuned to prelexical representations as 

proposed by the LCD model.  

 

Any complete accounts of reading at the neuronal level should be universally 

applicable. As mentioned earlier, functional neuroimaging studies have shown 

that non-alphabetic orthographies such as Chinese (e.g., Kuo et al., 2003; Liu et 

al., 2007; Tan et al., 2000; Xue et al., 2006) and Japanese (e.g., Ino et al., 2009; 

Nakamura et al., 2005b; Sakurai et al., 2001) also activate vOT.  Reading-specific 

accounts, however, focus solely on alphabetic orthography and provide little or no 

explanation for how they can be extended to include non-alphabetic scripts. 

Bigrams, for instance, do not even make sense in logographic (Chinese), 

morphographic (Japanese kanji) and syllabographic (Japanese kana) scripts since 

each character often constitute a word or morpheme carrying semantic 

information. Indeed, Dehaene and colleagues (2005) point out that local detectors 

should be selected for “any useful recurrent combination of curves within the 

cell’s receptive field” through perceptual learning (p.338).  Therefore, in Chinese 

neurons might become tuned to semantic or phonological radicals or even whole 

characters.  However, Chinese characters (or Japanese kanji) are visually much 

more complex than bigrams and carry semantic information. Thus, according to 

the LCD model, these must be encoded by larger-size units located more 

anteriorly than the “VWFA”.  In this case, it is unclear what the neurons in 

“VWFA” encode in these orthographies.  In short, the LCD model would require 

orthography-specific modifications to be viable.  While this may be conceivable, 

another challenge is what happens to multi-script orthography such as Japanese 

in which the same words can be written in two different scripts (kanji and kana)?  

Dehaene and colleagues (2005) suggest that the size of the units encoded by 
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neurons in the occipitotemporal region can reflect orthographic transparency and 

go on to state that Japanese kanji (orthographically opaque and visually complex) 

requires larger-size unit than Japanese kana (orthographically transparent and 

visually simple).  The LCD model specifies that abstract orthographic codes are 

recognised through sequential stages detecting progressively more complex visual 

features.  The problem is that the visual features of Japanese kanji and Japanese 

kana are never combined to produce visual codes.  That is, the visual features of 

the two scripts cannot be pooled together to be the input to the next stage in the 

hierarchy.  Therefore, this explanation would require two separate hierarchical 

organisations for each script, which then must interact since Japanese kanji and 

kana do get combined to form a word.  Moreover, a single kanji or kana can also 

be a word. In alphabetic orthography, the LCD model proposes that the whole 

words are encoded at the anterior end of the hierarchy, possibly in the temporal 

lobe while a single letter is located more posteriorly.  It is unclear how this 

explanation could be applied to Japanese.  

 

In contrast, the orthographic input lexicon account is applicable to multi-script 

orthography. Although it is not specified, there could be a single lexical entry for 

each word, irrespective of visual properties of the word.  Alternatively, if the 

postulated lexicon contains word-specific information such as case identity 

(Kronbichler et al., 2009), then this explanation can be extended to allow separate 

entries for the same words written in Japanese kanji and Japanese kana.  

 

The question of generalisability demonstrates a fundamental problem with 

reading-specific accounts: namely, that they seek an explanation within the 

linguistic domain yet they largely ignore non-alphabetic languages.  It seems that 

a successful account of vOT must either accommodate orthographic features from 

both alphabetic and non-alphabetic orthography or depart from linguistic 

explanations altogether.  
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Another serious challenge for reading-specific accounts is that although vOT is 

activated during reading, it also responds to non-orthographic stimuli such as 

pictures of objects (Bookheimer et al., 1995; Moore and Price, 1999; Murtha et 

al., 1999), animals (Chao et al., 1999), meaningless non-objects (Phillips et al., 

2002; van Turennout et al., 2000) and meaningless 2D shapes during colour 

naming (Price and Friston, 1997).  In order to explain this, the LCD model suggests 

that there are distinct populations of neurons that are specific to word and to 

objects within vOT (Dehaene et al., 2002; McCandliss et al., 2003) although this 

cannot be detected with the currently available spatial resolution of fMRI.  More 

recently it has also been shown that although activation in vOT is greater for 

words and pseudowords more than false fonts (Herbster et al., 1997), vOT is 

significantly activated for false fonts too when numbers are used as the baseline 

(Woodhead et al., 2011a).  However, it is unlikely that the LCD model would apply 

the same explanation and postulate a separate set of neurons specific to false 

fonts. 

 

Moreover, thorough examinations of patients with pure alexia following left 

occipitotemporal lesions have shown that their deficits are not specific to reading 

but include non-orthographic tasks such as picture identification (Behrmann et al., 

1998), visual apprehension span and object decisions with fragmented pictures 

(Starrfelt et al., 2009).  This indicates that their problem may be of general visual 

deficits rather than specific to reading.  Therefore, a successful account should be 

able to explain both reading and general visual deficits.  Indeed, it has been 

demonstrated that activation in this region is greater for high relative to low 

spatial frequencies (Woodhead et al., 2011b) and patients with left posterior 

fusiform lesions have reduced sensitivity to high spatial frequency (Roberts et al., 

2012), suggesting a possible common cause for deficits in reading and non-

orthographic processing.  
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Furthermore, activation in vOT for words can increase or decrease relative to 

other orthographic stimuli or pictures depending on the task (Price and Devlin, 

2011).  For instance, a greater vOT response to words relative to consonant 

strings was found during silent reading (Cohen et al., 2002) and this effect was 

interpreted that vOT was sensitive to orthographic rules (i.e., letter 

combinations).  However, during a one-back task, less word-like stimuli also 

elicited greater vOT response than words (Wang et al., 2011b).  Wang and 

colleagues (2011b) used Chinese characters and parametrically manipulated 

phonological and semantic cues (radicals) as well as their left-right configurations 

in order to create a gradient of eight conditions varying in “word-likeness”.  

Contrary to the finding from Cohen and colleagues (2002), activation in vOT was 

inversely related to the word-likeness of the stimuli.  The authors thus concluded 

that the role of vOT is task-dependent, explaining that the one-back task 

increased short-term memory demands for the less word-like stimuli due to the 

absence of phonological or semantic information.  Another example found that 

although vOT activation is generally greater for pictures than words (Price and 

Devlin, 2011), this too depends on the processing demands of the task.  In a study 

in which stimulus type (words, pictures) was crossed with task (colour decision 

[white/yellow], categorisation [natural/artefacts]), Starrfelt & Gerlach (2007) 

found that vOT activation was greater for words relative to pictures during colour 

decision.  Interestingly however, this effect diminished during the categorisation 

task.  According to the authors, the demands for shape processing for pictures 

vary depending on the task as the levels of identification required differs (i.e., 

greater for semantic categorisation than colour decision) whereas they are likely 

to remain constant for words.  As a result, they suggested that vOT is not specific 

to words but the response here reflects shape configuration, which is a common 

process for both words and pictures.  Similarly, vOT response to physically 

different stimuli with identical semantic and phonological information was shown 

to depend on the nature of the task.  Hellyer and colleagues (2011) used numbers 

written with words and digits (e.g., “twenty” vs. “20”) in numerical (odd or even) 

and phonological (if a particular phoneme was present) tasks.  They found that 

during the phonological (i.e., linguistic) task, vOT activation did not differ between 
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words and digits despite their physical differences whereas the words elicited 

greater activation relative to digits during the numerical (i.e., non-linguistic) task.  

There was no effect of stimulus type in the anatomically defined vOT.  Activation 

thus can be modulated not only by the stimulus type but also by the task 

demands. These data are difficult for reading-specific accounts to explain since 

their central claim is that vOT activation is driven by the stimulus, not by the 

nature of the processing. 

 

These findings attest that trying to understand the functional role of a cortical 

region putatively responsible for visual word recognition based purely on the 

stimulus type is not fruitful. Instead, all the evidence suggests that the vOT 

response is the result of interaction of visual stimuli and their non-visual 

properties, which can be further modulated by task demands.  A complete 

account of vOT function should be able to address this issue.  

 

1.2.3. AN ALTERNATIVE ACCOUNT OF VOT 

An alternative neural account, the Interactive Account (Price and Devlin, 2011), 

offers a very different theory of vOT function within a predictive coding 

framework (Friston and Kiebel, 2009; Rao and Ballard, 1999).  According to the 

predictive coding perspective, perceptual inferences involve recurrent 

interactions between bottom-up sensory input via forward connections and top-

down predictions from higher level processing regions via backward connections 

within a hierarchical organisation. Top-down predictions are automatic, based on 

prior experience and sent to predict the response at lower level regions. The 

difference between the prediction and response (prediction error) is then sent to 

higher regions for further inferences until the error is minimised1.  Since fMRI 

                                                           

1
 To minimise prediction error is to minimise free-energy. This is a necessary biological 

characteristic under the free-energy principle (Friston, 2010; Friston and Kiebel, 2009). 
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cannot differentiate between signals originating from forward and backward 

connections, vOT response reflects bottom-up sensory information, top-down 

predictions and the mismatch (prediction error) between the two. According to 

the Interactive Account, vOT represents visual form information and is not 

specialised for written words.  The same vOT neurons that represent spatial 

configurations important to written words also contribute to other visual stimuli 

such as objects, scenes and faces. Reciprocal connections with higher order 

association areas link these visual representations with non-visual properties of 

the stimulus such as its sound or meaning. Thus, in cognitive terms, vOT 

continuously and automatically interacts with other regions during reading, acting 

as an interface between low level visual input and higher level non-visual 

information such as phonology and semantics (Cai et al., 2010; Devlin et al., 

2006a; Hillis et al., 2005; Kherif et al., 2011; Nakamura et al., 2002; Price and 

Friston, 2005; Xue et al., 2006).  There are two crucial differences between this 

account and reading-specific accounts.  First, the Interactive Account is not 

specific to visual word forms.  Since it does not stipulate any stimulus-specific 

representations, this account is consistent with not only vOT activation in 

response to non-orthographic stimuli, but also the aforementioned findings that 

patients with pure alexia due to vOT lesions frequently also demonstrate 

impairments in non-orthographic tasks (Behrmann et al., 1998; Starrfelt et al., 

2009).  Similarly, it means that this account does not require additional 

modification in order to generalise to non-alphabetic orthography.  Second, only 

the Interactive Account proposes that the nature of dynamic processing in vOT is 

of recurrent and automatic interaction of both feed-forward and top-down 

feedback, rather than purely feed-forward.  Therefore, it can also explain task 

effects (see below). 

 

In order to investigate the specific functional contribution of vOT and test the 

predictions from competing accounts of vOT, Devlin and colleagues (2006a) 

conducted a visual masked priming study with fMRI. Specifically, they 

manipulated lexicality, orthographic similarity and semantic relatedness between 
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the prime and the target to investigate whether vOT was sensitive to prelexical 

(the LCD model), lexical (the orthographic lexicon account) or non-visual (the 

interface/Interactive Account) properties. The first experiment tested whether 

repetitions across typographic cases would result in neural priming (reduced 

BOLD signal) over words and pseudowords. This was done to differentiate 

between the LCD model and the other two accounts.  They found that repetitions 

of words (e.g., cabin – CABIN), but not pseudowords (e.g., solst – SOLST), led to 

reduced BOLD signal in vOT, suggesting that the vOT response was not purely 

visual but included processing of non-visual properties (i.e., lexicality).  This result 

is consistent with the orthographic input lexicon account (if there is a single lexical 

entry for each word, irrespective of the surface form of the word) since only 

words have entries in the orthographic lexicon that could prime.  However it is 

problematic for the LCD model because lexicality should not concern the bigram 

detecting neurons and thus the same effect would be expected for words and 

pseudowords.  The second experiment investigated the effects of orthographic 

similarity and semantic relatedness between the prime and the target in order to 

differentiate between reading-specific accounts and the alternative 

interface/interactive explanation. They found neural priming for all 

orthographically related prime-target pairs (e.g., fasten – FAST, corn – CORNER), 

which was attenuated when the pairs were also semantically related (e.g., deadly 

– DEAD).  These findings suggest that vOT is involved in visual feature detecting 

but non-visual properties (semantic relatedness) clearly affect its response, which 

is inconsistent with both of the reading-specific accounts.  Since the orthographic 

lexicon account suggests that different lexical items would be represented by 

separate entries, a lexical item cannot prime any other items however visually 

similar they may be.  As for the LCD model, non-visual properties such as semantic 

relatedness should not matter to the bigram detectors since they are purely visual 

feature detectors.  Based on these findings, the authors suggested that vOT acts 

as an interface, instantiating visual information sent from the visual cortices via 

bottom-up projections and associating it with its higher-order non-visual 

information such as its meaning and pronunciation via top-down connections, 

without stipulating reading-specific representations. 
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In order to investigate whether vOT activation was specific to words, Kherif and 

colleagues (2011) tested repetition suppression and varied stimulus type (words, 

pictures) of primes and targets and relatedness between them (unrelated, 

conceptually identical, semantically related, phonologically related) while 

measuring activation in vOT with fMRI. Even within the same stimulus type, 

physically different stimuli were used for the conceptually identical prime-target 

pairs (cross-case for words and different exemplars for pictures) so that the 

effects would not stem from bottom-up visual differences.  They found repetition 

suppression for conceptually identical but not other prime-target pairs in both 

anterior and posterior vOT, irrespective of stimulus type between the prime and 

the target and whether the prime was masked or unmasked.  That is, they 

replicated previous repetition priming effects for cross-case (not mixed-case) 

words in vOT (Dehaene et al., 2004; Devlin et al., 2006a) and additionally 

demonstrated the same effect in precisely the same region for pictures as well as 

for cross-stimulus types. These results are not compatible with either of the 

reading-specific accounts of vOT since the LCD model would predict repetition 

suppression only for word-word pairs but not for cross-stimulus or picture-picture 

pairs. Similarly the orthographic input lexicon account would predict priming 

effects only for word-word pairs if there is a single lexical entry for each word, 

irrespective of the surface form of the word.  Alternatively, it would predict no 

priming effects for any prime-target pairs if the lexicon contains word-specific 

information such as case identity (Kronbichler et al., 2009), since word-word pairs 

were in different typographic cases.  Since the prime-target pairs were never 

physically identical (even within the same stimulus type), the effect could not 

have been derived from the bottom-up perceptual differences. Anterior vOT is 

implicated in semantic processing (Devlin et al., 2006a; Moore and Price, 1999; 

Mummery et al., 1998; Nakamura et al., 2005b; Spitsyna et al., 2006). Therefore, 

the effect here could be interpreted as arising from the identical semantic 

contents between the prime and the target.  However, given that posterior vOT is 

involved in bottom-up visual feature processing (Devlin et al., 2006a; Szwed et al., 

2009; Xue et al., 2006), the effect in this region cannot be accounted for in the 

same way.  Instead, it is best explained by the Interactive Account, in terms of 
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minimised prediction error. The fact that this effect was found regardless of 

whether the prime was masked or unmasked suggests that it was not a result of a 

conscious strategy but automatic.  When the prime and the target are 

conceptually identical, the prime automatically and efficiently predicts the 

response elicited by the target thereby minimising prediction error.  

 

Another strength of the Interface Account is that it can also explain the data that 

supported reading-specific accounts of vOT, which primarily used orthographic 

stimuli.  The primary argument for the orthographic lexicon account rests on the 

lexical frequency effect.  For high frequency words, the association between the 

visual form and its linguistic properties is stronger than it is for less frequent 

words.  As a result, high frequency words yield less prediction error, which leads 

to less activation.  Similarly, the findings by Glezer and colleagues (2009) above 

can also be explained in terms of top-down predictions.  Words, but not 

pseudowords, engage strong top-down predictions (from semantic and 

phonological areas) since they have been encountered previously.  For real words, 

these top-down predictions induced by the prime are “wrong” when the target is 

a different word, regardless of by how many letters it differs from the prime.  The 

deciding factor is whether the prime successfully predicts the target or not.  

Therefore, prediction error is equally increased between single letter deviations 

and multi-letter deviations.  Consequently, vOT activation does not differ between 

them.  In contrast, for pseudowords the influential factor is the visual similarity 

between the prime and the target since pseudowords induce only weak top-down 

predictions.  Therefore, activation could be increased proportional to the degree 

of physical deviations between the prime and the target.  As for the data that 

supported the LCD model, the same explanation applies to greater activation for 

words relative to consonant strings (Cohen et al., 2002) and case- or location-

invariance of vOT activation (Dehaene et al., 2004).  With regard to pseudowords, 

the two reading-specific accounts reported different results: greater activation 

relative to words during a phonological lexical decision task (Kronbichler et al., 

2004) and no activation difference between pseudowords and words during a 
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repetition detection task (Dehaene et al., 2002).  While each account is not 

consistent with the data that support the other account (see above), the 

Interactive Account can account for both, in terms of task requirements and 

attentional demands.  Specifically, it predicts greater activation for pseudowords 

than words during a linguistic task such as phonological lexical decision, due to 

weaker phonological top-down predictions, which leads to greater prediction 

error.  This difference however, can be attenuated during attentionally 

demanding tasks such as repetition detection since the demands for visual 

processing is higher for pseudowords, due to the lack of/weaker semantic and 

phonological top-down predictions.  The gradations of vOT activation to different 

types of written stimuli during general reading tasks (false fonts < consonant 

strings < high frequency words < low frequency words < pseudowords) can be 

explained by the Interactive Account by the interaction of visual word-likeness 

(greater activation for more word-like stimuli), familiarity (greater activation for 

less familiar stimuli), top-down predictions (greater for more word-like stimuli) 

and prediction error (greater for less familiar stimuli).  During non-linguistic tasks, 

this pattern might be altered because these tasks require different bottom-up and 

top-down processing demands. 

 

 

1.3. TESTING HYPOTHESES 

 

Having examined the existing literature and evaluated the evidence available to 

date, it is clear that in order to deepen our understanding of the specific role of 

this region, it is necessary to test the hypothesis that vOT communicates with 

other regions within the reading network via both bottom-up and top-down 

connections as suggested by the Interactive Account, for both alphabetic as well 

as non-alphabetic orthography.  In addition, if there is evidence for these 

functional interactions, it becomes important to systematically investigate their 

anatomical basis. 
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Although electroencephalography (EEG) and MEG both offer temporal resolution 

at millisecond scale, which may enable separating early bottom-up (feed-forward) 

from later top-down (feedback) processes, if the vOT response is interactive then 

these two processes may not be distinct in time and therefore may not be 

separable based solely on their time courses.  Moreover, even if it was possible to 

separate them, the spatial resolution of EEG and MEG does not allow localisation 

of the signal to a small cortical area such as vOT.  Given that the focus of this 

thesis is on vOT, it would be inappropriate to lose spatial resolution that is 

necessary to identify the region.  Therefore, in order to evaluate both bottom-up 

and top-down influences on vOT activation, functional magnetic resonance 

imaging (fMRI) was used. It is a non-invasive method, which offers sufficient 

spatial resolution to reliably identify signals from vOT.  Given the relatively poor 

temporal resolution of the technique (i.e., seconds rather than milliseconds), it 

was critical to design experiments and stimuli to control for bottom-up influences 

on vOT while manipulating top-down processing demands.   

 

Chapter 3 investigated the two types of top-down effects on vOT, namely task and 

stimuli.  fMRI was used to investigate whether there was evidence that activation 

in vOT was influenced top-down by the interaction of visual and non-visual 

properties of the stimuli during visual word recognition tasks. Participants 

performed two different types of lexical decision tasks that focused on either 

visual or non-visual properties of the word or word-like stimuli. The design 

allowed the investigation of how activation in vOT was influenced by a task 

change to the same stimuli and by a stimulus change during the same task.  Both 

stimulus- and task-driven modulation of vOT activation were found that could be 

best explained by top-down processing of non-visual aspects of the task and 

stimuli. 

Chapter 4 investigated the differential effects of lexical frequency and visual 

familiarity on vOT using a non-alphabetic orthography, namely Japanese, with 

fMRI.  In Japanese, the same word can be written in either morphographic Kanji 

or syllabographic Hiragana and this provided a unique opportunity to disentangle 
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a word’s lexical frequency from the frequency of its visual form – an important 

distinction for understanding the neural information processing in regions 

engaged by reading.  Behaviourally, participants responded more quickly to high 

than low frequency words and to visually familiar relative to less familiar words, 

independent of script.  Critically, the imaging results showed that visual 

familiarity, as opposed to lexical frequency, had a strong effect on activation in 

vOT.  Activation here was also greater for Kanji than Hiragana words and this was 

not due to their inherent differences in visual complexity.  

 

Having investigated the functional properties of vOT, Chapter 5 looked for the 

anatomical basis of functional interactions between vOT and other regions of the 

reading network including Broca’s area and the inferior parietal lobule.  The 

experiment used diffusion-weighted MRI with probabilistic tractography.  Seed 

masks were manually traced within the cortical grey matter for three rostro-

caudal locations along the occipitotemporal sulcus for vOT and the tractography 

algorithm generated the most probable paths.  Additional seed masks in Broca’s 

area, inferior parietal lobule and middle occipital gyrus were also employed in 

further analyses in order to test more specific hypotheses. The results showed 

both direct and indirect pathways between vOT and Broca’s area.  Moreover, vOT 

was found to be anatomically linked to angular gyrus via the vertical occipital 

fasciculus of Wernicke.  In addition, the same parts of middle occipital gyrus were 

seen to send projections to both supramarginal gyrus and vOT.  The results 

suggest that vOT is not the first bifurcation point in the reading network and 

support a model of reading with multiple routes not only from visual to higher-

order language areas but also within the language areas.  

 

Chapter 6 discusses the implications of all the data in this thesis and draws 

general conclusions on the vOT function, its connectivity and its theories. 

Limitations and future directions are also discussed in this section. In addition, a 
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revised neuroanatomical model of reading is proposed, based on the data in this 

thesis.  
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2. GENERAL METHODS 
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In this thesis, Magnetic Resonance Imaging (MRI) was used as the primary 

method. The first two experiments used functional MRI while the third used 

diffusion-weighted MRI. The overview of these methods is briefly described and 

the relevance of these methods to my research questions is discussed in this 

section.  

 

 

2.1. OVERVIEW OF MAGNETIC RESONANCE IMAGING (MRI) 

 

MR signal generation is based on the quantum mechanical property of atomic 

nuclei called spin.  Atomic nuclei are said to possess this property if they have a 

magnetic moment and angular momentum.  While many atomic nuclei possess 

this property, hydrogen-1 is most commonly used with MRI since they are 

abundant in the human body.  The nuclei of hydrogen-1 spin around their own 

axis due to thermal energy and as protons are positively charged, this spinning 

induces magnetic field due to the laws of electromagnetic induction.  As a result, 

these nuclei act like small bar magnets.  In a normal environment, their magnetic 

moments are randomly aligned and therefore there is no net magnetisation.  In a 

strong external magnetic field, however, their magnetic moments align either 

parallel (low-energy state) or antiparallel (high-energy state) to the direction of 

the magnetic field.  There are usually more nuclei in low- than high-energy state 

producing a net magnetisation parallel to the direction of the magnetic field.  This 

is called longitudinal magnetisation.  In addition, the nuclei initiate a secondary 

spin around the direction of the magnetic field (i.e., precession) but are out of 

phase with each other.  The frequency of the precession (called the “Larmor 

frequency”) is proportional to the strength of the external magnetic field and 

depends on the isotope of the atom.  When a radiofrequency (RF) pulse is applied 

at the same frequency as the precession frequency of the nuclei at 90 degrees to 

the magnetic field, the RF energy is absorbed by some of the nuclei in low-energy 

state turning them into high-energy state (i.e., resonance).  The correct amount of 
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RF energy can equate the number of nuclei in low- and high-energy state 

producing an equilibrium and as a result, the net magnetisation vector is flipped 

90 degrees to the magnetic field, resulting in transverse magnetisation that 

precesses in this plane.  The voltage induced here is measured as the MR signal.  

While the RF pulse is on, the spins are in phase.  Once the RF pulse is switched off, 

the MR signal begins to decay as the spins starts to lose their phase coherence 

due to the spin-spin interactions (i.e., decay of transverse magnetisation or T2 

decay) and also due to the inhomogeneities of the external magnetic field (i.e., 

T2* decay).  The net magnetisation returns to the longitudinal plane as the nuclei 

releases the energy absorbed from the RF pulse and return to the low-energy 

state (i.e., recovery of longitudinal magnetisation or T1 recovery).  These 

exponential changes of net magnetisation over time (i.e., relaxation) are inherent 

to the different tissue types and also depend on the environment external to the 

spinning nuclei, namely the field strength.  The T1 relaxation time depends on the 

rate of energy exchange between the nuclei and their environment.  In turn, this 

rate is determined by the size and the density of the molecular structure that 

affect both the efficacy of energy absorption and the speed of molecular motion.  

Water has a long T1 relaxation time (i.e., relatively inefficient in energy exchange) 

as its molecular motion is fast compared to the Larmor frequency.  In addition, 

the water molecules are small and spaced out, which makes it inefficient to 

absorb and dispose of energy.  The T2 relaxation time is determined by the 

density of the molecules, which affects the efficacy of the spin-spin interaction.  

Thus water has long T2 relaxation time as the molecules are spaced out. The T2* 

relaxation time is dependent on the geometric and compositional variations in the 

applied magnetic field due to varying magnetic susceptibility differences such as 

the level of deoxyhaemoglobin in the blood.   

 

MR images are dependent on the density of hydrogen-1 protons in the tissues and 

the contrast made by their relaxation time differences.  Therefore the differences 

in the concentration of water in the tissues contribute to the image.  However, 

these differences must be measured optimally in order to generate sufficient 
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contrast.  An appropriate pulse sequence maximises the difference between the 

contrast parameter of interest (e.g., T1 relaxation time) and the other effect (e.g., 

T2 relaxation time).  This is done by setting the extrinsic contrast parameters such 

as repetition time (TR) and echo time (TE) accordingly.  T1-weighted images 

provide excellent anatomical detail by differentiating between different tissue 

types.  In order to emphasise T1-weighted signal and attenuate T2-weighted 

signal, both the TR and the TE must be short.  In contrast, for T2-weighted images, 

both the TR and the TE are long. T2-weighted scans can also provide excellent 

anatomical detail.  In T2*-weighted images, the contrast is based on the 

differences in the inhomogeneity of magnetic field.  This contrast is generated by 

setting the TR long and the TE to a medium value.  T2*-weighted images can 

reveal subtle magnetic changes due to levels of oxygenation in the blood and thus 

are the primary scan used for functional magnetic resonance imaging.  

 

In this thesis, two sequences were used.  A Fast Low Angle Shot (FLASH) sequence 

was used for acquiring T1 weighted images for detailed anatomical scans and an 

echo planar imaging (EPI) sequence was used for both functional and diffusion 

weighted imaging.  

 

 

2.2. FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

 

In chapters 3 and 4, functional magnetic resonance imaging (fMRI) with blood-

oxygen-level-dependent (BOLD) contrast was used. fMRI is a non-invasive 

neuroimaging method with a reasonable spatial and temporal resolution although 

the fMRI signal is not a direct measure of neuronal activities. 
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The blood oxygen level dependent (BOLD) contrast is based on the magnetic 

susceptibility difference of oxyhaemoglobin and deoxyhaemoglobin. While 

oxyhaemoglobin is diamagnetic and has no net magnetic moment, 

deoxyhaemoglobin is paramagnetic thus distorts the external magnetic field and 

adds to the field inhomogeneity producing a T2*-weighted effect (Pauling and 

Coryell, 1936).  In other words, the relaxation time of blood is dependent on 

oxygenation.  Neuronal activity causes physiological changes such as a regional 

increase in cerebral blood flow, cerebral blood volume and oxygen consumption 

rate (Logothetis, 2008).  As a result, deoxyhaemoglobin decreases, increasing the 

regional signal intensity in T2*-weighted images and manifests as the BOLD signal 

(Ogawa et al., 1992).  These physiological changes take place over much longer 

time (> 10 sec) than the actual neuronal responses (< a second). Therefore BOLD 

signal is an indirect measure of neuronal activities. 

 

The BOLD signal is a measure of physiological changes that are correlated with the 

neuronal activities. While the direct relationship between the BOLD signal and the 

underlying neuronal activities is yet to be fully understood, currently available 

evidence seems to suggest that the BOLD response is approximately linear to the 

underlying neuronal activities and reflects local field potentials (LFPs) in 

perisynaptic activity, rather than the rate of spiking (Berens et al., 2013; Ekstrom, 

2010; Logothetis, 2002, 2003, 2008; Logothetis et al., 2001; Nair, 2005), although 

studies in which the BOLD signal, LFPs and spiking activity dissociate have also 

been reported (see Ekstrom, 2010 for a review).  LFPs arise from both excitatory 

and inhibitory postsynaptic potentials (Berens et al., 2013; Mitzdorf, 1985, 1987).   

As a result, the BOLD signal is a sum of the two and cannot distinguish between 

excitatory and inhibitory processes at the cellular level. 

 

Spatial resolution  

The fundamental point regarding spatial resolution of fMRI is that what is 

achievable is far greater in scale than the site of the neuronal activity to be 
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localised.  The standard spatial resolution of fMRI is around 8-27 cubic millimetres 

and although it has been demonstrated that BOLD signal can be localised within 

1.1mm at 1.5T (Engel et al., 1997), this still contains millions of cells.  In addition, 

the same vascular system feeds large areas of cortex and thus signal from 

neighbouring voxels may be correlated based solely on blood flow.  Typically, a 

voxel of 3x3x3mm contains millions of neurons, axons and glia, all of which 

contribute to metabolic demands.  In addition, there may be large or small blood 

vessels as well as capillaries included in a voxel. The BOLD signal is therefore an 

aggregate of signals from all of these different types of tissue.  

 

Choosing a spatial resolution of fMRI largely depends on the signal-to-noise ratio 

(SNR), which is the ratio of the signal relative to the undesired noise in the 

background.  The SNR is a function of the volume of a voxel.  Therefore, a 

3x3x3mm voxel has more than three times as much SNR as a 2x2x2mm voxel.  The 

appropriate voxel size depends on one’s research question.  For instance, larger 

voxel size (3x3x3mm) may be sufficient for investigating the whole brain whereas 

smaller voxel size is naturally more appropriate for investigating a single region.  

However, although smaller voxel size provides more detailed images, reducing the 

voxel size will lead to a loss of sensitivity.  Relatively small BOLD signal changes in 

response to higher-order processing such as cognitive tasks may not be reliably 

detectible.  In addition to a loss of sensitivity, smaller voxels require longer signal 

acquisition time, which can cause distortions in the images due to T2* decay that 

occurs over a long acquisition period.  In this thesis, the voxel size of 3x3x3mm 

was used for fMRI because both fMRI experiments investigated vOT response to 

different written stimuli during cognitive tasks (lexical decision).  Furthermore, 

since vOT is much larger than 3x3x3mm, it was not necessary to compromise SNR 

to improve spatial resolution further.  
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2.3. DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING (DW-MRI) & 

TRACTOGRAPHY 

 

In chapter 5, anatomical pathways of vOT were investigated using DW-MRI and 

tractography.   

 

2.3.1. DW-MRI 

Diffusion-weighted MRI (DW-MRI) generates images sensitive to the random 

displacement of molecules due to thermal energy that does not require any 

external force.  The speed of diffusion is intrinsic to the medium and determined 

by factors such as temperature, molecular size and the microstructure of the 

environment.  Without structural restrictions, diffusion is isotropic (i.e., the same 

in all directions) and this is the case in the brain grey matter, for instance.  

However, in a tubular environment such as within the brain white matter fibres, 

diffusion is restricted across the direction of the fibres while it is still relatively 

free along the fibres, resulting in anisotropic  (i.e., not isotropic) diffusion.  

Diffusion can be sensitised in MRI to distinctively label tissue microstructure.  

 

DW-MRI utilises strong bipolar gradients that cause phase shift in spins that have 

displaced, resulting in a signal drop due to increased field inhomogeneity.  Spins 

that are restricted due to the environmental structure do not displace.  

Consequently they remain in phase and produce higher signal.  Diffusion 

weighting is controlled by an extrinsic contrast parameter, the b-value measured 

in s/mm2, which controls the gradient strength, gradient duration and the interval 

between the gradients.  Typical b-values lie between 500 and 1000 s/mm2.  Signal 

attenuation is dependent on the apparent diffusion coefficient (a measure of the 

magnitude of diffusion) and b-value.  The image contrast is based on the signal 

attenuation due to diffusion, relative to the signal acquired without diffusion 

weighting (i.e., when b=0).  That is, DW-MRI measures the displacement, but not 

the directionality, of water molecules.  Signal is acquired in many directions so 
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that multiple (possible) directions within a voxel can be measured.  Scans are 

typically repeated and then averaged to increase SNR. 

 

2.3.2. TRACTOGRAPHY 

Tractography is an analytic method that allows visualisation of the white matter 

pathways by integrating voxel-wise diffusion orientations from the DW-MRI data, 

using a fibre-tracing algorithm.  It is important to note that tractography is 

therefore an indirect method to investigate the white matter fibre structures 

since it makes assumptions based on the diffusion profile, not the actual fibre 

orientation.  Moreover, it does not detect synapses and cannot infer 

directionality.  However, the results have been demonstrated to be largely in 

agreement with invasive tracer studies in non-human primates (e.g., Behrens et 

al., 2003a) and also post-mortem dissections of human fibre paths (e.g., Holl et 

al., 2011; Sarubbo et al., 2011) as well as histological findings (Hagmann et al., 

2003), although there are some inconsistencies concerning terminations.  

Nevertheless, validation of one’s tractography results against surgical dissection, 

animal studies as well as prior anatomical knowledge is prudent where possible.   

 

Estimating the local diffusion profile 

After quantifying diffusion with DW-MRI, the first step is to estimate the local 

diffusion profile at each voxel.  Diffusion tensor imaging (DTI), for instance, 

models the local diffusion shape as a 3D tensor and estimates the principal 

diffusion direction (PDD), the direction of least hindrance to diffusion.  A tensor is 

a 3D mathematical model that characterises the diffusion with three eigenvectors 

and their eigenvalues.  The orientation of a tensor is associated with the principal 

eigenvector, which has the largest eigenvalue corresponding to the PDD.  As such, 

DTI is suitable for identifying major white matter bundles.  However, it fails in 

voxels where there is more than one population of fibres such as crossing or 

“kissing” fibres (Figure 2.1).  
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Figure 2.1: Illustration of possible fibre structures, their corresponding tensor 

orientations and the PDDs. Note that the PDDs for parallel and fanning structures are 

the same. Similarly, crossing, kissing and bending structures cannot be differentiated by 

their PDDs.  Adapted from Jbabdi and Johansen-Berg (2011), with permission from Mary 

Ann Liebert, Inc.  

 

DTI cannot correctly model these configurations because the model does not 

assume multiple directions.  As a result, the PDDs may be very different from the 

underlying fibre orientations.  More recently DTI with multiple tensors have been 

used to tackle multiple fibre orientations (e.g., Parker and Alexander, 2005).  

However, multi-tensor models produces superfluous directions when there is only 

single fibre orientation to recover since the model assumes that there are as 

many fibre orientations as the tensors.  Given that the spatial resolution of DW-

MRI is relatively large (2-3mm isotropic voxels), it is probable that a single voxel 

contains more than one fibre direction.  However, the information on the number 

of distinct fibre populations present in a given voxel is rarely available.  Therefore, 

for multi-tensor models to be effective, further techniques that deal with this 

model selection problem are required.  In addition, the currently available 

techniques cannot cope with more than two distinct fibre directions (Seunarine 



51 

 

and Alexander, 2009).  Furthermore, the local diffusion profile is in fact complex.  

As diffusion occurs both along and across the fibre direction, the diffusion profile 

and fibre orientation do not exactly match.  There are also noise and artefacts in 

the data.  These can make the estimate of a single PDD less reliable but crucially, 

with this method, there is no means of measuring how reliable the estimated 

PDDs are.  This is important since a local error can accumulate when estimating a 

continuous path from the local PDDs (the next step; see below), creating a path 

that may not resemble the trajectory of the true fibre structure. 

 

An alternative method, which can tackle these problems, is to estimate the local 

diffusion profile in the form of a distribution of diffusion directions and the 

number of such directions, rather than as a single PDD.  This approach deals with 

uncertainty in DW-MRI by calculating the uncertainty in the measurement of the 

local fibre structure.  In this thesis, the “ball and stick” model was used to 

characterise the local diffusion profile and Bayesian methods were used to 

calculate uncertainty (Behrens et al., 2007; Behrens et al., 2003b).  This two-

component model assumes that diffusion profile belongs to either an anisotropic 

population in and around white matter fibres (the fibre direction) or an isotropic 

one in free water.  The noise is modelled separately.  This model is fitted to the 

DW-MRI data at each voxel and the uncertainty given the assumptions made by 

the model is calculated as posterior density functions (pdfs) using Bayes’ theorem: 

the posterior density [of the parameters, given the data and the model] is 

proportional to the likelihood [of seeing the data given the parameters and the 

model], multiplied by the prior belief [of the parameters given the model].  In this 

fashion, multiple paths can be estimated within a voxel, each of which is 

associated with different certainty.  For this reason, this method is particularly 

robust with multiple-fibre orientations.  

 

Model-free methods that do not make any assumptions on the diffusion forms 

are also available, such as diffusion spectrum imaging (DSI) (Wedeen et al., 2005), 
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Q-ball imaging (Tuch, 2004), spherical deconvolution (SD) (Tournier et al., 2004) or 

persistent angular structure (PAS) MRI (Jansons and Alexander, 2003).  At present 

the accuracy of the subsequent tractography with these methods is considered to 

be better (especially with DSI and PASMRI) than model-based approaches.  

However, the data acquisition requirements are also higher (e.g., a greater 

number of measurements, longer acquisition time, higher b-values) (Seunarine 

and Alexander, 2009), making these difficult or impractical methods to apply, 

given the resources available. 

 

Tractography algorithms 

Once the voxel-wise diffusion profiles are estimated, the final step of tractography 

is to estimate continuous paths using an algorithm using either deterministic or 

probabilistic approaches.  Deterministic tractography begins with a “seed”, a 

starting point (a single voxel) or a mask (a region) and simply tracks sequentially 

through voxels following their PDDs step by step until the stopping criteria are 

met.  Typical stopping criteria are a minimum FA (fractional anisotropy) threshold 

and a maximum degree of curvature.  Consequently, deterministic tractography 

cannot trace through or seed from areas with low diffusion anisotropy such as in 

grey matter.  In other words, it is not possible to determine whether the white 

matter paths identified actually reach the cortical grey matter.  Thus, it is not 

suitable for investigating if two cortical regions communicate with each other.  In 

addition, as mentioned earlier, this method suffers from local modelling errors 

that can accumulate over a distance when joining the PDDs because there is no 

means to measure how accurate the recovered paths are.  

 

In contrast, probabilistic tractography propagates uncertainty through the data.  

Each voxel is represented with a distribution of diffusion directions.  In theory, all 

possible directions need to be integrated into paths.  However, this is not practical 

as the number of possible paths could be astronomical.  This problem is overcome 

by sampling approaches, which repeatedly sample a direction from the probability 
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distribution.  Directions with higher probability are more likely to be sampled than 

those with low probability, effectively integrating all the possible paths with 

correct weight.  In this thesis, Metropolis Hastings Markov Chain Monte Carlo 

sampling method was used to estimate paths.  Moreover, a Bayesian model 

selection technique, automatic relevance determination (ARD), was applied to 

model parameters so that it assessed the most appropriate number of distinct 

fibre orientations at each voxel and ensured that the samples were drawn from 

each of the distinct fibre populations if and only if these parameters were 

supported by the data.  In the absence of such data, these parameters were set to 

zero and did not contribute to the probability.  In other words, with ARD, tracing 

propagates through distinct fibre populations, only if the data suggests that 

multiple fibre orientations exist, which results in better estimation of fibre 

orientations and their certainty. 

 

As with deterministic tractography, probabilistic tractography begins with a seed. 

An important difference is that this can be within the cortical grey matter.  At the 

seed, it draws a sample from the probability distribution, moves a fixed distance 

along this direction and samples again.  This procedure is repeated until it reaches 

the stopping criteria, which are much less strict than those of deterministic 

tractography – typically the edge of the brain or a lenient curvature threshold to 

prevent looping back to the current location.  In other words, there is no 

minimum FA value for a voxel, allowing probabilistic tractography to trace paths 

into the grey matter.  The number of samples is specified by the user.  Larger 

numbers obviously represent the population more accurately.  In practice, many 

studies have used 5000 or fewer (Behrens et al., 2007; Eickhoff et al., 2010; 

Tomassini et al., 2007) and 5000 samples per seed voxel is found to be sufficient 

to reach convergence (http://fsl.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html; 

Carreiras et al., 2009).  Consequently, the two-ROI experiments reported in 

Chapter 5 used 5000 samples while the first, single-ROI analyses used 25000 

samples in order to optimise sensitivity in the absence of further constrains to 

limit the paths. 

http://fsl.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html
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It is also important to emphasise that the continuous paths produced by 

probabilistic tractography are the spatial probability distribution of paths from the 

seed, not the distribution of the paths from the seed (Behrens and Jbabdi, 2009).  

The results (the value) at each voxel is the discretised spatial probability 

distribution, calculated by the number of paths going through the voxel divided by 

the total number of samples (the number of samples multiplied by the number of 

voxels in the seed).  It indicates how probable that a streamline from the seed 

passes through a given voxel.  This means that the probability value is in part 

dependent on the size of the seed masks, which can vary across subjects and the 

voxel size.   It is possible to normalise the inter-subject differences in mask sizes 

by calculating the total number of samples sent out first and then threshold this 

number equally across subjects (e.g., Rilling et al., 2008).  However, this may or 

may not be necessary depending on one’s research question.  For example, 

normalisation is particularly important when there might be quantitative and 

qualitative differences such as across different species (e.g., macaques vs. 

humans), groups (e.g., patients vs. healthy controls) or analyses (e.g., single mask 

vs. multiple masks).  However, normalisation is not always used especially when 

anatomical connectivity between particular regions is of interest.  In this case, 

thresholding can be applied to the number of samples per voxel, rather than the 

total number of samples sent out from a seed mask (e.g., Ciccarelli et al., 2006; 

Ford et al., 2010).   

 

Thresholding is difficult and there is no “gold-standard” at present.  Choosing the 

appropriate percentage requires checking whether it allows anatomically 

plausible paths while it correctly rejects extraneous paths.  Interpreting the 

results is thus largely dependent on one’s anatomical knowledge and as 

mentioned earlier, validating the results against the findings from other methods 

is valuable.  In addition, when additional masks such as target masks are used in 

order to limit the paths, thresholding may not be reported (e.g., Anwander et al., 

2007) since the target masks eliminate both extraneous and irrelevant paths.  In 

the experiments presented in Chapter 5, the threshold of 0.1% of the number of 
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samples per voxel was used without normalisation, after examining the effects of 

various thresholds on the data.  Similar thresholds (0.1 – 0.2% of the number of 

samples per voxel) were used in previous studies (e.g., Devlin et al., 2006b; Ford 

et al., 2010; Heiervang et al., 2006).  

 

The great advantage of probabilistic over the deterministic tractography is the 

ability to trace through areas of low anisotropy such as grey matter or where the 

data are noisy (i.e., areas with high uncertainty).  Therefore, probabilistic 

tractography is more suitable for investigating anatomical connections between 

cortical regions conducted in this thesis.  As the aim of Chapter 5 was to 

investigate the anatomical pathways of vOT, it was vital to be specific about the 

cortical site of the start and/or termination points where the FA is low. 

Probabilistic tractography allows seeding grey matter such as vOT.  Thus it is 

possible to determine whether the pathways recovered actually link vOT and 

other cortical regions thereby confirming that these regions have the means of 

communication.  Seeding white matter near vOT would not produce the same 

results since it cannot differentiate paths linking vOT and other regions from 

those that are physically near but in fact merely “passing-by”.  
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3. INTERACTION OF TOP-DOWN INFLUENCE AND BOTTOM-UP 

INFORMATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A version of this chapter was published as “Top-down modulation of ventral 

occipito-temporal responses during visual word recognition” by Tae Twomey, 

Keith J. Kawabata Duncan, Cathy J. Price & Joseph T. Devlin in Neuroimage (2011) 

55: 1242–1251. 
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3.1. INTRODUCTION 

 

Although cognitive models of reading emphasise the importance of interactive 

processing during visual word recognition, most neuroanatomical models of 

reading have focused on the feed-forward flow of information.  In the classic 

neurological model of reading, as described in Chapter 1, visual input arrives at 

the occipital pole and projects to the angular gyrus where visual word forms are 

stored (Dejerine, 1891, 1892).  These then link to auditory word forms in the 

posterior superior temporal lobe (i.e., Wernicke’s area) and from there to 

articulatory motor patterns in the inferior frontal gyrus (i.e., Broca’s area).  In this 

linear fashion, a written word is recognised, converted into a sound then motor 

pattern, and read aloud.  More recent studies elaborate additional anatomical 

territories (Bitan et al., 2009; Dehaene et al., 2005; Frost et al., 2008; Price and 

Mechelli, 2005), allow for multiple parallel pathways (Devlin, 2009; Mechelli et al., 

2005), and characterise the functional contributions of the component regions 

differently (Shaywitz and Shaywitz, 2008).  Even so, most neural models of 

reading continue to involve an essentially feed-forward, staged processing 

dynamic (Dehaene et al., 2005; Kronbichler et al., 2004). 

 

 

At a behavioural level it is generally agreed that reading requires interaction 

between visual and non-visual properties of the written stimulus. A classic 

example is the “word superiority effect” where there is a perceptual advantage 

for identifying letters in words relative to visually matched letter strings that do 

not form words (Cattell, 1886). Reicher (1969), for instance, used a two-

alternative single letter choice paradigm with masked tachistoscopic displays of 

visual letters, words or anagrams.  Participants were instructed to identify one of 

the two letters that appeared in four-letter words (e.g., WORD), its anagrams 

composing nonwords (e.g., ORWD) or single letters (e.g.,     D).  The performance 

was found to be more accurate for the four-letter words than the other two 

conditions.  The results were replicated by Wheeler (1970).  This phenomenon 

suggests, inter alia, that word recognition is not merely recognition of a set of 
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individual letters but instead implies an interaction amongst letters that form a 

word (Wheeler, 1970).  The fact that letter detection is affected by whether or not 

the stimulus is a word – namely, by information not present in the visual display – 

illustrates that this information is automatically retrieved and fed back to affect 

visual processing (McClelland and Rumelhart, 1981).  Another clear example is the 

finding that when participants make lexical decisions (i.e., decide whether a letter 

string forms a real word), they are slower to reject an item that sounds like a word 

(i.e., pseudohomophones, e.g., “furst”) than one that that does not (e.g., “gurst”, 

McCann et al., 1988).  McCann and colleagues (1988) conducted a visual lexical 

decision experiment with words (“yes” response) and both monosyllabic 

pseudohomophones and nonwords (“no” response).  Within the “no” responses, 

the reaction times for the pseudohomophones were slower and the accuracies 

were lower than the nonwords.  This pseudohomophone effect illustrates that 

automatic retrieval of phonological and/or semantic information that is not 

essential for task performance can nonetheless affect behaviour.  In addition, it 

has been shown that visual word recognition is easier when a word is preceded by 

a semantically related word (e.g., “butter” preceded by “bread”).  This suggests 

that the context provided by the first lexical item, which is not encoded visually, 

supports identification of subsequent words by way of feedback connections 

particularly when the task elicits semantic access as demonstrated with word 

naming (Reimer et al., 2008) or lexical decision (Smith and Besner, 2001).  

Furthermore, this facilitation is not limited to real words but includes nonwords 

that bear visual resemblance to existing real words.  Rosson (1983) compared 

naming latency of words preceded by a word or nonword, which can be either 

semantically related or unrelated (e.g., “SHEEP” preceded by “LAMB” - 

semantically related real words; or by “FAMB” - semantically “related” nonword 

[semantically related nonwords were such that they were visually similar to 

semantically related real words]).  He found that in addition to semantically 

related words, “semantically related” nonwords decreased naming latency of the 

subsequent words.  The possibility that this effect was caused simply by visual 

similarity rather than access to lexical information was rejected following another 

experiment in which pronunciation of nonwords was successfully biased by 
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preceding words that had semantic associations with a related word (e.g., 

nonword “LOUCH” preceded by either “FEEL” to facilitate the pronunciation 

similar to “TOUCH”, or “SOFA” to facilitate the pronunciation similar to “COUCH”).  

Altogether these results were interpreted as evidence for lexical information 

influencing the pronunciation of nonwords. These and other similar observations 

(Frost, 1998) demonstrate the need for feedback connections linking non-visual to 

visual information processing, thus creating an interactive (rather than feed-

forward) system for visual word recognition (Coltheart et al., 2001; Harm and 

Seidenberg, 2004; Jacobs et al., 2003; McClelland and Rumelhart, 1981; Perry et 

al., 2007; Plaut et al., 1996; Rumelhart and McClelland, 1982).  

 

 

Indeed, interaction is an integral part of cognitive and computational models.  The 

interactive activation model (McClelland and Rumelhart, 1981; Rumelhart and 

McClelland, 1982) for instance, assumes perception as an interactive process, in 

which many different levels of processing occur in parallel, both spatially within a 

level and across levels.  For visual recognition, there are visual feature, letter and 

word levels, together with an (unspecified) higher level that provides top-down 

input to these lower levels.  According to this model, our perception is governed 

by the interaction of simultaneous top-down (conceptually driven) and bottom-up 

(data driven) processing (Figure 3.1).  Its successors such as the triangle model 

(Seidenberg and McClelland, 1989) and the dual-route cascading (DRC) model 

(Coltheart et al., 2001) each postulate different routes and mechanisms.  

However, they all share this fundamental assumption of interactivity and maintain 

that this is necessary for their performance to match the observed behaviour. 
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Figure 3.1: The general conception of the interactive activation model. Lines with arrow 

heads indicate excitatory connections and the ones with circular ends indicate 

inhibitatory connections. Interaction occurs both within and across levels. Copyright © 

1981 by the American Psychological Association. Reproduced with permission from 

McClelland and Rumelhart (1981). 

 

It is also important, however, to note that purely feed-forward cognitive accounts 

reject any involvement of top-down feedback and suggests instead that the word 

superiority effect and the pseudohomophone advantage can be explained 

without any interactions (Johnston, 1981; Norris et al., 2000; Paap et al., 1982).  

According to Norris and colleagues (2000), letter information that influences word 

recognition is available from the lexicon itself and is activated by the visual input.   

The word superiority effect, for instance, occurs because information (e.g., 

whether a letter string contains “m”) is fed forward to the decision making stage, 

rather than information regarding the lexicality of a letter string being fed back to 

influence the perception of the stimuli.  Since only real words are in the lexicon, 

this information is available only for words, resulting in the latency advantage for 

words.  At any rate, feed-forward accounts maintain that reading does not require 

any interactions of bottom-up and top-down information but rather follows steps 

of feed-forward processing.  Nevertheless, if this is the case, this effect should be 
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reflected in the neural responses in the regions implicated in the decision making, 

not in the early perceptual stage of processing. 

 

This discrepancy between cognitive interactivity, on the one hand, and feed-

forward (neuroanatomical or cognitive) models, on the other, is particularly 

relevant to theories of ventral occipito-temporal (vOT) cortex functioning during 

reading and can be used to separate competing accounts of vOT.  As described in 

the previous chapter, this region of extrastriate visual cortex is consistently 

engaged during visual word recognition and damage to the area can result in 

severe reading deficits (Behrmann et al., 1998; Cohen et al., 2000; Leff et al., 

2001; Philipose et al., 2007; Starrfelt et al., 2009) and is thought to play an 

important role in orthographic processing (McCandliss et al., 2003; Price and 

Mechelli, 2005).  A detailed account can be found in the preceding chapter, but 

briefly, the LCD model (Dehaene and Cohen, 2011; Dehaene et al., 2005) suggests 

that visual information is encoded through a sequence of stages, from simple 

feature detectors located in early visual cortex, to letter detectors in V4, to 

bigram detectors in vOT, and then on to whole word detectors located even more 

anteriorly in the temporal lobe (Dehaene et al., 2005).  In other words, 

orthographic information is progressively extracted following hierarchical, feed-

forward steps that detect progressively more complex visual features.  Although 

by this account vOT receives primarily bottom-up visual information, the authors 

note that certain attentional manipulations can also provide a top-down signal 

such as when participants are asked to visualise written words (Cohen et al., 2004; 

Cohen et al., 2002).  For example, although auditory words do not typically 

engage vOT (Dehaene et al., 2002; Spitsyna et al., 2006), a recent study found that 

when participants selectively attended to auditory words it produced activation 

within the region (Yoncheva et al., 2010) and the authors suggested that 

participants accessed the orthographic codes associated with the auditory stimuli 

during a challenging auditory task.  This type of strategic attentional control to 

recruit orthographic representations in the absence of visual input, however, is 

fundamentally different from the automatic interactions between visual and non-



62 

 

visual (e.g., phonological or semantic) properties of a visual stimulus such as a 

word.  A clear distinction between these two types of top-down influences is that 

strategic influences are purposely exerted to help perform the task whereas 

automatic top-down influences are involuntary.  Consequently, these influences 

could interfere with task performance, as demonstrated by the 

pseudohomophone effect discussed above.  Another example of automatic 

interaction was demonstrated in the previously mentioned study by Kherif and 

colleagues (2011).  In this study, vOT activation for reading object names was 

suppressed when primed with a masked picture of the same object relative to a 

masked picture of a different object, suggesting that non-visual processing that is 

common to words and pictures (e.g., semantics and phonology) was influencing 

vOT activation.  Crucially, these could not be expectation-driven attentional 

effects because the visual masked priming paradigm precluded subjects from 

having conscious awareness of the primes.  Instead, these priming effects provide 

strong evidence of automatic interactions between the different types of visual 

and non-visual information important for reading words. These interactions are 

the type of top-down processing, carried in the feedback connections, that are 

crucial to cognitive and computational models of reading (Coltheart et al., 2001; 

Harm and Seidenberg, 2004; Jacobs et al., 2003; Perry et al., 2007; Plaut et al., 

1996) but missing from most neuroanatomic models (e.g., Cohen et al., 2002; 

Dehaene et al., 2005; Kronbichler et al., 2004).  An alternative neural model the 

Interactive Account (Price and Devlin, 2011), as previously described, suggests 

that vOT continuously and automatically interacts with other regions during 

reading, acting as an interface associating bottom-up visual form information 

critical for orthographic processing with top-down higher order linguistic 

properties of the stimuli (Cai et al., 2010; Devlin et al., 2006a; Hillis et al., 2005; 

Kherif et al., 2011; Nakamura et al., 2002; Price and Friston, 2005; Xue et al., 

2006).  These non-visual properties are sent into vOT as automatic top-down 

predictions and interact with the bottom-up visual information so that the 

response to the stimuli can be predicted (Price and Devlin, 2011). Thus, vOT 

activation is a combination of top-down prediction, bottom-up sensory 
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information and the mismatch between the two (prediction error).  Unlike the 

feed-forward LCD model, interaction is an integral part of the Interactive Account. 

 

Ideally, evidence for the direction of information flow in the reading network 

requires effective connectivity analyses that measure how activity in one region is 

influenced by activity in other regions.  Such inferences are possible with dynamic 

causal modelling (DCM) of fMRI data (Friston et al., 2003).  However, current 

implementations of this technique can only test the interactions among a limited 

number of regions specified in the model.  DCM therefore relies on knowing, a 

priori, where top down inputs to vOT are coming from.  Without specifying such 

regions, evidence for top-down signals into vOT would be hard to obtain with 

DCM.  Effective connectivity, however, is not the only way to assess top-down 

effects.  Standard fMRI experiments can also be informative when they are 

designed so that the contribution of top-down influence could be teased apart 

from bottom-up responses.  

 

The aim of this study was to investigate whether activation in vOT during visual 

word recognition is influenced by top-down non-visual information.  Participants 

performed two different types of lexical decision tasks that focused attention on 

either visual (i.e., orthographic) or non-visual (i.e., phonological or semantic) 

properties of the stimulus.  In one, participants were asked to decide whether the 

letter string was a real English word or not. Half of the stimuli were words (e.g., 

“brain”) and the other half were pseudohomophones – that is, pronounceable 

nonwords that sound like real words such as “brane.”  When performing this task, 

participants had to focus on the visual properties of the stimuli to make the 

correct response since phonological and semantic properties of the stimuli would 

not differentiate a real word from a pseudohomophone.  In the other task, 

participants were asked to decide whether the letter string on the screen sounded 

like a real word or not.  Half of the stimuli were pseudohomophones (e.g., 

“beest”) and the other half were pseudowords (e.g., “beal”). In this task, 
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participants had to focus on the phonological (and possibly semantic) properties 

of the stimuli to make the correct response since the visual properties of the 

stimuli were insufficient to perform the task as neither type of stimuli was visually 

a word.   

 

 

Unlike previous studies that only used a single task (“Does the item sound like a 

word?” Bruno et al., 2008; Kronbichler et al., 2007; van der Mark et al., 2009), this 

design enabled me to examine two different types of top-down processing, 

namely stimulus-driven and task-driven effects.  Stimulus effects were evaluated 

within task by carefully matching the stimuli on a range of visual properties (see 

below) such that if processing was primarily feed-forward, vOT activation would 

be expected to be comparable across conditions.  If, on the other hand, the region 

also receives feedback from higher order areas, then non-visual properties would 

be expected to significantly modulate vOT activation levels.  Task effects were 

evaluated by holding the stimulus constant and comparing the activations to 

pseudohomophones across tasks.  Feed-forward accounts predict that 

pseudohomophone activations in vOT would either be comparable across tasks 

(as the stimuli were carefully matched) or possibly increased for orthographic 

relative to phonological lexical decisions. In the case of a purely feed-forward 

account, increased activation in vOT during the orthographic relative to 

phonological task could be based solely on increased local processing demands 

without requiring any feedback interactions.  In contrast, increased activation in 

vOT during the phonological relative to orthographic task would indicate greater 

interactions between regions involved in phonological and orthographic 

processing, consistent with feedback connections linking these areas.  Here these 

predictions were tested using functional magnetic resonance imaging. 
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3.2. MATERIAL AND METHODS 

 

Participants 

20 monolingual native English speakers (11M, 9F) participated in this study.  All 

were from the British Home Counties (i.e., southern England) with the same 

regional accent, which was important for consistent pronunciation of nonwords.  

The data from four participants were excluded in total: one subject was excluded 

due to excessive motion inside the scanner (>3mm); one subject was excluded 

due to task performance that was not significantly above chance (i.e., <65% 

accuracy); and two subjects were excluded because unexpected structural 

abnormalities were present in their T1 images.  The ages of the remaining 16 (9M, 

7F) participants ranged from 19 to 43 (M=30).  All were right-handed and none 

reported any history of neurological problems or reading difficulties.  The 

experiment was approved by the NHS Berkshire Research Ethics Committee. 

 

Tasks & Stimuli   

There were two lexical decision tasks that forced participants to attend to 

different aspects of the stimuli. The first task emphasised visual over non-visual 

properties of the stimuli whereas the second emphasised non-visual over visual 

information.  Consequently, these will be referred to as the ‘orthographic’ and 

‘phonological’ lexical decision tasks, respectively.  For both tasks, participants 

viewed a string of letters presented sequentially.  For the orthographic lexical 

decision task, participants were instructed to decide whether the string formed an 

existing English word or not.  For the phonological lexical decision task, 

participants were asked to decide whether the string sounded like an existing 

English word or not (Figure 3.2a).  

 

A behavioural pre-test was conducted with an independent set of 52 (28M, 24F) 

participants to pilot the stimuli and establish baseline performance in a 
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reasonably large sample. The stimuli were provided by Sarah White and the data 

were collected by Caroline Ellis, Odette Mergrin, Stephanie Burnett and Sue 

Ramsden at the Wellcome Trust Centre for Neuroimaging, UCL.  All participants 

were monolingual native English speakers aged 17 to 69 (M=27).  For the 

orthographic lexical decision task, there was no significant difference in accuracy 

between words and pseudohomophones (93.7% vs. 93.1%, t(51)=.50, p=.622) but 

responses to words were significantly faster (779 vs. 1052msec, t(51)=11.37, 

p<.001).  For the phonological lexical decision task, responses to 

pseudohomophones were less accurate than to pseudowords (85.1% vs. 88.9%, 

t(51)=2.02, p=.049) but were significantly faster (1061 vs. 1478, t(51)=10.78, 

p<.001), possibly indicating a speed-accuracy trade-off.  Anecdotally it became 

clear that because the participants in this behavioural pilot study came from 

geographically diverse areas of the UK, different regional accents contributed 

additional variability to the phonological lexical decision task due to different 

pronunciations of nonwords.  Even so, a fairly large sample size ensured an 

adequate estimate of baseline performance.  Given the smaller sample used in 

the fMRI study, I chose to recruit from a more uniform population of accents to 

minimise this variability. 

 

Following the behavioural pre-test, stimuli were revised to exclude ambiguous 

items and the final stimulus set used for the fMRI tasks was comprised of 48 

stimuli in each condition (192 stimuli in total).  Stimuli were all monosyllabic and 

balanced for the number of letters (M=4.5, F(3,188)=1.07, p=.364), frequency of 

single letters (M=281379, F(3,188)=.196, p=.899), bigram frequency (M=1553, 

F(3,188)=1.52, p=.211), trigram frequency (M=258, F(3,188)=1.85, p=.141) and 

orthographic neighbourhood (M=6.1, F(3,188)=.13, p=.943) based on N-Watch 

(Davis, 2005).  For the word condition, the mean frequency per million words of 

British English was 76 as derived from the Celex database (Baayen and 

Pipenbrook, 1995) and the mean familiarity rating was 430 and was calculated 

from the MRC Psycholinguistic Database (Coltheart, 1981).  For each task, the full 

set of 96 stimuli was divided evenly into two runs of 48 trials. For the 
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orthographic lexical decision task, it was ensured that no pairs of a real word and 

its pseudohomophone (e.g., “brain” and “brane”) occurred in the same run in 

order to avoid any priming effects.  A different set of pseudohomophones were 

used in the phonological lexical decision task to ensure that no stimulus was 

repeated across tasks in order to avoid any priming effects and to avoid switching 

response type from “no” (in orthographic task) to “yes” (in phonological task) for 

the identical stimuli.  These two sets of pseudohomophones will be referred to as 

PH1 (orthographic task) and PH2 (phonological task) to emphasise the fact that the 

stimulus sets were independent.  The base words of PH1 and PH2 were balanced 

for frequency (M=59, t(58)=1.10, p=.275) and familiarity (M=457, t(85)=1.40, 

p=.165) to ensure that if differences are observed between pseudohomophones 

across tasks, these are the result of task-differences rather than potential 

psycholinguistic confounds. The order of both tasks and stimulus sets within a 

task were fully counter-balanced across participants.  

 

A mixed block and event-related design was used.  Participants performed a 33s 

block of trials which included both “yes” and “no” responses in a 

pseudorandomised order.  These were separated by 16s blocks of fixation which 

served as an implicit baseline.  Each trial began with a fixation cross presented for 

500msec.  A stimulus was then presented for 200msec, followed by a jittered 

inter-stimulus interval of 1800 – 4800msec (M=3300msec).  Therefore, the 

average trial length was four seconds.  Stimuli were presented in a block of 8 

trials.  Over a run, there were six blocks of task performance and five blocks of 

rest. Therefore, each run lasted 4.85mins and there were a total of four runs (two 

per task).  Responses were made with a button press, using either the index or 

middle finger of their right hand to indicate “yes” and “no”.  The response fingers 

were fully counter-balanced across participants.  The stimuli were projected onto 

a screen and viewed via mirrors attached to the head coil.  Participants practiced 

each task inside the scanner before the main runs began.  No items that were 

used in the practice runs occurred during the main experiment. 
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MRI acquisition 

Whole-brain imaging was performed on a Siemens Avanto 1.5 T MR scanner at 

the Birkbeck-UCL Neuroimaging (BUCNI) Centre in London. The functional data 

were acquired with a gradient-echo EPI sequence (TR=3000msec; TE=50msec; 

FOV=192×192; matrix=64×64) giving a notional resolution of 3×3×3 mm.  Each run 

consisted of 97 volumes and as a result, the four runs together took 19.4 min.  In 

addition, a high-resolution anatomical scan was acquired (T1-weighted FLASH, 

TR=12msec; TE=5.6msec; 1 mm3 resolution).  

 

Analyses 

Items whose accuracy was below 65% were excluded from all analyses (n=10).  

Reaction times (RTs) were recorded from the onset of the stimulus.  To minimise 

the effect of outliers, median RTs for correct responses per condition per subject 

were used in the statistical analyses (Ulrich and Miller, 1994).  Because the two 

tasks used different types of stimuli (words and pseudohomophones vs. 

pseudohomophones and pseudowords), the experimental design was not 

factorial.  Consequently, the data were analysed using a repeated measures 1×4 

analysis of variance (ANOVA) with Condition as the independent variable.  For the 

behavioural data, accuracy and RTs were the dependent measures.  Where 

Mauchly’s test indicated significant non-sphericity in the data, a Greenhouse-

Geisser correction was applied.  When there was a main effect of Condition, 

planned comparisons used paired t-tests to evaluate differences between the two 

conditions per task to evaluate stimulus effects and between the two 

pseudohomophone conditions to evaluate task effects.   

 

The imaging data were processed using FSL 4.0 (www.fmrib.ox.ac.uk/fsl).  The first 

two volumes were discarded in order to allow for T1 equilibrium.  The data were 

then realigned to remove small head movements (Jenkinson et al., 2002), 

smoothed with a 6 mm full width at half maximum Gaussian kernel, and pre-

whitened to remove temporal autocorrelation (Woolrich et al., 2001).  The pre-

http://www.fmrib.ox.ac/
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processed data from each subject were then entered into a first level statistical 

analysis and modelled as events using a general linear model.  The two main 

regressors corresponded to the correct trials from the two task conditions (per 

task) and these were convolved with a double gamma canonical hemodynamic 

response function (Glover, 1999).  Eight additional regressors-of-no-interest were 

added: i) errors trials (Murphy and Garavan, 2004), ii) six estimated motion 

parameters, and iii) RTs.  It is important to note that the inclusion of RTs in the 

model only accounts for first-order (i.e., linear) effects and therefore higher-order 

(i.e., polynomial) relations between effort (as indexed by RTs) and BOLD signal 

may remain.  Nonetheless, simple correlations between effort and BOLD signal 

were treated as a covariate-of-no-interest in order to model systematic 

differences in effort between conditions seen in the behavioural pilot.  To remove 

low frequency confounds, the data were high-pass filtered with a cut-off point of 

100 seconds.  The contrasts of interest at the first level were the two 

experimental conditions relative to fixation per task.  First level results were 

registered to the Montreal Neurological Institute (MNI)-152 template using a 12 

degree of freedom affine transformation (Jenkinson and Smith, 2001) and all 

subsequent analyses were conducted in the MNI standard space. A second level 

fixed-effects model combined the two first level runs into a single, subject-specific 

analysis (per task) which was then entered into a third level, mixed effects 

analysis to draw inferences at the population level (Beckmann et al., 2003; 

Woolrich et al., 2004).  

 

The first analysis identified areas of activation that were common to all four 

conditions using a linear contrast to compute their mean activity (i.e., [1 1 1 1]) 

and inclusively masked it with each condition relative to fixation at Z>3.1 (i.e., 

masking with [1 0 0 0], [0 1 0 0], [0 0 1 0], and [0 0 0 1]).  A second analysis used a 

1 × 4 ANOVA to identify areas showing significant differences across conditions 

(i.e., a main effect of Condition identified using an F-contrast).  These were 

characterised by plotting the mean effect sizes per condition in a sphere (5mm 

radius) centred on the peak coordinate.   
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Since the primary aim of this study was to investigate the top-down modulation 

on left vOT, an a priori anatomical mask for this region was defined.  The main 

anatomical areas of interest are the occipito-temporal sulcus and adjacent regions 

on the crests of the fusiform and inferior temporal gyri: areas consistently 

activated by visual word recognition tasks (Bitan et al., 2007; Cai et al., 2010; 

Cohen et al., 2000; Devlin et al., 2006a; Duncan et al., 2009; Fiez and Petersen, 

1998; Frost et al., 2005; Herbster et al., 1997; Kronbichler et al., 2007; Price et al., 

1996; Rumsey et al., 1997; Shaywitz et al., 2004; van der Mark et al., 2009).  

Because the precise coordinates vary along a rostro-caudal axis, standard space 

coordinates ranging from X= −30 to −54 and Y= −45 to −70 were used to delineate 

this region.  In addition, the depth of the sulcus coupled with the fact the 

temporal lobe is angled downwards required a range of Z-coordinates as well (Z= 

−30 to −4).  Together these coordinates describe a rectangular prism that 

conservatively encompass the anatomical regions-of-interest but also include 

parts of the cerebellum that were not of interest.  Consequently these were 

manually removed from the mask.  A small volume correction determined that a 

voxel threshold of Z>3.2 corresponded to p<.05 after correcting for the number of 

independent comparisons within the region (Worsley et al., 1996) and this was 

used for all vOT analyses.  With an unconstrained, whole brain search, a corrected 

voxel-wise p-value of .05 corresponded to Z>4.6.  To minimise Type II errors, 

activations present at Z>4.0 are also reported as trends. 
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Figure 3.2: a) Schematised task. Each trial began with a fixation cross presented for 

500msec. A stimulus was then presented for 200msec, followed by a jittered inter-

stimulus interval of 1800 – 4800msec (M = 3300msec). b) Mean accuracy and reaction 

times for all four conditions. An asterisk (*) indicates p<.05. Abbreviations: W = Words 

(orthographic task), PH1 = Pseudohomophones (orthographic task), PH2 = 

Pseudohomophones (phonological task) and PW = Pseudowords (phonological task).  
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3.3. RESULTS 

 

Behavioural results   

The behavioural data (Figure 3.2b) demonstrated significant differences across 

conditions for both accuracy (F(3,45)=11.98, p<.001) and RTs (F(1, 22)=31.90, 

p<.001, with Greenhouse-Geisser correction).  Moreover, Figure 3.2b clearly 

shows evidence of both stimulus- and task-related differences.  In the 

orthographic task, responses to words were less accurate (92% vs. 96%, t(15)= 

2.98, p=.009) but faster (761 vs. 874msec, t(15)= 6.76, p< .001) than responses to 

pseudohomophones.  A similar pattern was present in the phonological task.  

Here, responses to pseudohomophones were numerically less accurate (85% vs. 

89%, t(15)=1.74, p=.102) but significantly faster (956 vs. 1162msec, t(15)=5.30, p< 

.001) than responses to pseudowords.  In other words, like the behavioural pre-

test, these results suggest that participants may have adopted a speed-accuracy 

trade-off within each task.  Therefore, when analysing the imaging data, I 

considered only correct trials and explicitly modelled RTs on a trial-by-trial basis to 

account for these first order, systematic differences between conditions.  In 

addition to these stimulus effects, there was also a significant task effect when 

comparing the pseudohomophone conditions.  Responses were more accurate 

(96% vs. 85%, t(15)= 4.69, p< .001) and faster (874 vs. 956msec, t(15)= 2.32, p= 

.035) when participants made orthographic relative to phonological lexical 

decisions.  In summary, the behavioural results demonstrate both stimulus- and 

task-effects on behaviour, consistent with top-down influences in visual word 

recognition (McCann et al., 1988). 

 

Imaging results: Common system  

I began by identifying the common system of regions activated by all four 

conditions (Figure 3.3).  As expected, there was strong bilateral activation in vOT 

centred on the posterior occipito-temporal sulcus that extended inferiorly into 

lobule VI of the cerebellum.  In addition, there was bilateral activation in the early 
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visual cortices of the calcarine sulcus, in the intraparietal sulcus, the deep frontal 

operculum and at the junction of the inferior frontal and precentral sulci.  There 

was also left hemisphere activation in the pre-SMA, the anterior supramarginal 

gyrus and within sensori-motor cortices that included the omega-knob marker for 

the hand area (Yousry et al., 1997).  In other words, these results correspond 

closely to previous lexical decision studies, validating the success of the task 

(Carreiras et al., 2007; Devlin et al., 2006a; Fiebach et al., 2007; Gold et al., 2006; 

Kiehl et al., 1999; Mummery et al., 1999; Rumsey et al., 1997).  Table 3.1 provides 

the full details of these activations and illustrates that for each region, there is 

activation in each of the four conditions.  Presumably these reflect common 

aspects of the two tasks including not only visual word recognition, but also 

sustaining attention, maintaining a cognitive set and making manual responses.  

 

 

 

 

Figure 3.3: The brain areas commonly activated for all four conditions relative to 

fixation. Activations are thresholded at Z> 3.1 and shown as white areas (outlined in 

black) on two parasagittal slices through the mean structural image of the group in 

standard (i.e., MNI152) space. 
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Table 3.1: Common activations across the four conditions relative to fixation. For each 

peak in the mean activation contrast, its anatomical location, Z-score and standard 

space (i.e., MNI152) coordinate is displayed.  In addition, the Z-score at that peak is 

shown for each of the four individual conditions relative to fixation to illustrate that 

activation was present for all four conditions. 

Region  Z-

score 

Mean peak 

coordinate 

Z-score relative to rest 

  
x y z 

Orthographic Phonological 

W PH1 PH2 PW 

Occipital  

L vOT 11.6 –44 –56 –15 4.5 4.6 5.1 5.1 

R vOT 8.7 45 –63 –13 3.5 3.4 3.3 3.9 

L Calcarine sulcus 9.5 –7 –76 8 4.0 4.4 4.5 4.0 

R Calcarine sulcus 9.2 9 –74 12 4.2 4.3 4.3 3.8 

Parietal  

L Intra-parietal sulcus 10.2 –27 –52 46 3.8 4.1 5.0 4.7 

R Intra-parietal sulcus 9.0 27 –56 47 4.0 4.4 4.8 4.0 

L 
Supramarginal 

gyrus 
10.4 –48 –33 46 3.6 4.0 4.4 3.7 

L Parietal operculum 8.7 –54 –17 18 5.0 3.7 3.4 4.2 

L Postcentral gyrus 10.3 –40 –21 50 3.7 4.0 3.1 3.1 

Frontal 

L Frontal operculum 8.5 –31 24 2 3.7 4.3 4.0 4.2 

R Frontal operculum 9.5 33 25 –3 4.9 4.6 4.5 4.4 

L IFS/PCS junction 11.1 –42 7 26 4.1 4.4 5.2 4.5 

R IFS/PCS junction 9.3 44 5 28 4.2 3.6 3.3 3.6 

L Pre-SMA 10.6 –3 15 45 4.8 5.1 5.6 5.3 

L Precentral gyrus 9.1 –44 –1 40 3.6 4.5 4.1 4.8 

Subcortical 

L Cerebellum (VI) 8.1 –6 –73 –20 3.8 4.5 4.0 4.5 

R Cerebellum (VI) 10.3 21 –52 –22 4.7 4.5 4.6 4.3 

R Cerebellum (VI) 10.1 35 –49 –23 5.3 4.9 4.3 4.7 

R Cerebellum (VI) 8.8 11 –25 –22 4.3 3.9 3.6 4.1 

L Putamen 7.3 –26 –1 0 3.6 3.9 3.8 3.9 

L Thalamus (MD) 8.1 –12 –18 5 3.8 3.9 3.7 4.8 

Abbrev: W=Words (orthographic task), PH1=Pseudohomophones (orthographic task), 

PH2=Pseudohomophones (phonological task) and PW=Pseudowords (phonological task); 

vOT=ventral occipito-temporal cortex, IFS=inferior frontal sulcus, PCS=precentral sulcus, 

SMA=supplementary motor area, MD=mediodorsal nucleus. 
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The critical analysis, however, looked for activation differences across the four 

conditions reflecting the different top-down processing demands.  Areas that 

were significantly affected by Condition were identified from the F-map of the 

one-way ANOVA and fell into two classes.  The first set included ventral occipito-

temporal cortex and pars opercularis (POp) – where activation was increased 

during all conditions relative to fixation.  The second set included the angular 

gyrus, medial prefrontal cortex, and precuneus – areas showing significant 

deactivations.  Although I report the second set of effects for completion, I focus 

on the top-down processing effects in the region of interest (vOT) and in POp 

which showed the same pattern of effects as vOT. 

 

Activations   

The most significant effect in the F-map was located in posterior occipito-

temporal sulcus at [–44, –54, –12; Z=3.5], precisely in the region of the so-called 

“visual word form area” (Cohen et al., 2000; Cohen et al., 2002; but see Price and 

Devlin, 2003).  Figure 3.4a shows the region and illustrates how its BOLD signal 

response profile differed across the four conditions.  Planned comparisons of vOT 

responses revealed that, within both tasks, there were significant stimulus effects.  

In the orthographic lexical decision task, there was greater activation for 

pseudohomophones than for words (t(15)=2.23, p=.041) mirroring the RT pattern.  

In contrast, for phonological lexical decisions the effect sizes went in the opposite 

direction to the behavioural results, with significantly greater activation for 

pseudohomophones than pseudowords, (t(15)=4.42, p< .001).  Finally, the direct 

comparison of the two pseudohomophone conditions revealed significant task-

related differences with greater activation in the phonological than the 

orthographic task (t(15)= 2.70, p= .017), once again mirroring the RT pattern.   

 

This same pattern of activation was also observed in a region of left POp [–51, 

+10, +16], although it was only a trend (Z=4.3).  As in vOT, there was a significantly 

greater activation for pseudohomophones relative to words in orthographic 
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lexical decisions (t(15)=2.92, p=.010), significantly more activation for 

pseudohomophones relative to pseudowords in phonological lexical decisions 

(t(15)=3.01, p=.009) and a significantly more activation for pseudohomophones in 

the phonological task relative to those in the orthographic task (t(15)=4.56, 

p<.001).  In sum, both vOT and POp showed a similar pattern of activation, 

consistent with top-down modulation. 
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Figure 3.4: Regions whose activations differed across the four conditions. Also shown 

are bar plots of the BOLD signal per condition relative to fixation in each region: a) The 

top panel illustrates stimulus- and task-dependent modulation of activation in left 

ventral occipitotemporal (vOT) cortex and left pars opercularis (POp). The BOLD 

response profile in these two regions was essentially identical and did not follow the RT 

profile (Figure 3.2b) and thus could not be explained solely in terms of effort. Note that 

the opercular activation was not part of common activation seen at the junction of the 

inferior frontal and precentral sulci because words, unlike the other three conditions, 

were not significantly activated relative to fixation (Z=1.6); b) The bottom panel 

illustrates significant differences across conditions due to deactivations and are 

consistent with stimulus- and task-independent responses seen in the default network. 

Statistical threshold = p<.05 (* = significant). Activations are thresholded at Z>3.09 and 

only clusters with significant, or nearly significant, activations are shown (i.e., Z>3.2 in 

the vOT region-of-interest or Z>4.0 across the whole brain). 

 

Deactivations   

A very different pattern of significant differences across conditions was observed 

within the left angular gyrus [–42, –65, +47; Z=4.9].  Here, all four conditions 
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showed deactivation relative to fixation, and moreover, the magnitude of the 

deactivation corresponded to the amount of effort required, with the largest 

effects in conditions showing the longest RTs (Figure 3.4b).  The fact that the 

magnitude of the deactivations was greater in conditions with the longest RTs 

despite including RTs as a covariate-of-no-interest in the statistical model 

indicates a non-linear (e.g., higher order) relation between effort and BOLD signal 

reductions.  Two additional areas showing a trend for significant differences 

across conditions also demonstrated deactivations relative to fixation, namely the 

medial prefrontal cortex [–2, +63, +8; Z=4.3] and the precuneus [–4, –65, +29; 

Z=4.1].  Together these three regions are often considered core components of 

the “default mode network” (Binder et al., 1999; Greicius et al., 2003; Mazoyer et 

al., 2001; Raichle et al., 2001; Raichle and Snyder, 2007; Shulman et al., 1997), 

which is consistent with the deactivations relative to fixation observed here.  

Indeed, greater deactivation within the default mode network has even been 

shown to correlate with increasing effort (Lin et al., 2010). 

 

 

3.4. DISCUSSION 

 

The aim of this study was to investigate whether activation in vOT during 

commonly used word recognition tasks was influenced by top-down processing of 

non-visual properties of the visual stimuli. I used words, pseudohomophones and 

pseudowords in two separate lexical decision tasks in order to manipulate the 

processing demands on visual and non-visual aspects of the written stimuli.  The 

findings demonstrated that activation in the left vOT (at x= –44, y= –54, z= –12; 

the precise location of the so-called “visual word form area”) was significantly 

different across the four conditions and the pattern of activation here could not 

be predicted by differences in response times.  In order to characterise the 

observed effect, I begin by discussing the stimulus effects within each task and 

then turn to the task effects seen for pseudohomophones.  
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Accurate performance on the orthographic task required participants to ignore 

non-visual properties of the stimulus and focus instead on its specific visual form 

since all stimuli could be associated with phonological (and semantic) information. 

Here I found greater activation for pseudohomophones relative to words in vOT 

(Figure 3.4), replicating previous studies (Bruno et al., 2008; Kronbichler et al., 

2007; van der Mark et al., 2009).  This finding is difficult to reconcile with a feed-

forward account of progressively larger orthographic detectors (Dehaene et al., 

2005) because words and pseudohomophones were carefully matched for pre-

lexical visual properties such as letter, bigram and trigram frequencies.  As 

previously described, Kronbichler and colleagues (2004) suggested an alternative 

feed-forward hypothesis in which the visual forms of whole words are stored in 

vOT, presumably as word detectors analogous to the bigram detectors proposed 

by Dehaene and colleagues (2005).  By this account, pseudohomophones partially 

activate multiple word detectors yielding greater activation than a single, fully-

active word detector (Kronbichler et al., 2004).  Although consistent with findings 

from the orthographic task, this explanation runs into difficulties explaining the 

results from the phonological task. 

 

The phonological lexical decision task required that unfamiliar visual forms were 

ignored and instead focused on the phonological (and perhaps semantic) 

properties of the letter strings. Here I found a significantly greater activation for 

pseudohomophones relative to pseudowords.  Moreover, this activation 

difference went in the opposite direction to the behavioural difference, effectively 

ruling out effort as a possible explanation and suggesting the difference had to 

relate to processing the stimuli themselves.  According to Kronbichler and 

colleagues (2004), both types of stimuli would be expected to partially activate 

word detectors to similar extents, yielding comparable activation levels for 

pseudowords and pseudohomophones.  Clearly, this was not the case. Instead, 

pseudohomophones produced significantly greater activation than pseudowords 

in vOT despite being matched on their orthographic properties.  As a result, this 

finding suggests that the difference in activation was most likely driven by non-
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visual properties that differentiate the two conditions. Although both are 

pronounceable and therefore have an associated phonological pattern, these 

phonological patterns are only familiar for pseudohomophones where they 

correspond to existing words.  Greater vOT activation may reflect the differential 

cost of integrating these non-visual phonological and semantic properties with 

their visual forms via feedback projections to vOT.  In other words, the finding 

that non-visual properties modulated activation in vOT demonstrates that this 

region does more than relay visual information forward to the language system; it 

interactively integrates bottom-up visual signals with top-down higher order 

information that is not present in the visual stimuli.  

 

Given the theoretical importance of the finding, it is worth noting that two recent 

studies have also found greater vOT activation for pseudohomophones relative to 

pseudowords in a similar task (Bruno et al., 2008; van der Mark et al., 2009).  Both 

studies used a similar phonological lexical decision task (“Does the item sound like 

a word?”), although their stimuli included real words (“taxi”) in addition to 

pseudohomophones (“taksi”) and pseudowords (“tazi”).  In this design, real words 

benefit from a familiar orthographic pattern that facilitates “yes” responses 

relative to pseudohomophones and thus reduces vOT activation, consistent with 

the claim that lexical visual word forms are stored in the area (Kronbichler et al., 

2007). Like the current study, van der Mark and colleagues (2009) reported 

significantly enhanced vOT activation for pseudohomophones relative to 

pseudowords which was also present numerically, but not reliably, in the study by 

Bruno et al. (2008).  This effect, however, is difficult to reconcile within a lexical 

visual word form account (Kronbichler et al., 2007; Kronbichler et al., 2004) 

without positing some form of feedback from non-visual properties of the stimuli 

that modulates vOT activation levels. 

 

Finally, in addition to these stimuli-effects, I observed a significant effect of task 

on vOT activation when the stimuli were held constant, namely greater activation 
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for pseudohomophones during phonological relative to orthographic lexical 

decisions.  This novel finding is at odds with feed-forward accounts that predict 

either: i) no modulation in activations for pseudohomophones across tasks 

because the stimuli are the same in both cases or ii) greater activation for 

orthographic task due to increased orthographic processing demands.  Because 

the stimuli were held constant (i.e., the two tasks used a carefully matched set of 

pseudohomophones), the change in vOT activation cannot be driven by the 

stimuli themselves but must instead be a consequence of the different non-visual 

processing demands required by the two tasks.  For instance, this task effect may 

reflect the additional phonological demands on decoding or assembly which is 

essential for the phonological task but not for the orthographic task (cf. Dietz et 

al., 2005; Hellyer et al., 2011).  In other words, the increase seen during the 

phonological lexical decision task is an index of top-down modulation that is 

consistent with the Interactive Account.  

 

If correct, this hypothesis offers a single, principled explanation for all the current 

findings and is consistent with previous studies whose results are difficult to 

explain without an interactive framework (Cai et al., 2010; Devlin et al., 2006a; 

Kherif et al., 2011).  In both the orthographic and phonological tasks, activation 

for pseudohomophones was greater than for words or pseudowords, respectively, 

indicating increased processing demands.  Presumably, these increased demands 

are caused by the conflicting visual and non-visual properties of 

pseudohomophones (Harm and Seidenberg, 2004).  Pseudohomophones initially 

activate semantic information consistent with their phonological form, although 

this is rapidly suppressed (Harm and Seidenberg, 2004; Lukatela and Turvey, 

1994).  If vOT plays a role integrating this information, then the top-down 

semantic signal will conflict with the bottom-up visual information, requiring 

additional processing to suppress the inappropriate semantic pattern, thus 

increasing activation for pseudohomophones relative to words or pseudowords 

where there is no such conflict.  In other words, it is precisely the integration of 

visual and non-visual information that drives the activation observed in vOT.  In 
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terms of the Interactive Account, pseudohomophones activate strong top-down 

predictions from phonological and semantic regions because they are associated 

with the non-visual properties of their root words (i.e., those of “brain” for 

“brane”).  However, these automatic top-down predictions are incorrect since 

they do not accurately predict the response to the visual input, resulting in a 

mismatch thus greater vOT activation.  This prediction error is then sent forward 

until the error is minimised by suppressing the inappropriate top-down prediction 

and the response is correctly predicted.  In contrast, for words, the top-down 

predictions match the response to the visual input while pseudowords do not 

elicit any mismatching semantic predictions. Therefore unlike 

pseudohomophones, neither words nor pseudowords suffer from a conflict 

between top-down and bottom-up information, which explains the stimulus-

driven effects.  Furthermore, as I found, such conflict will have a greater effect on 

pseudohomophones during the phonological task relative to the orthographic 

task because the phonological task requires greater top-down phonological 

processing while the orthographic task could be performed on the basis of 

bottom-up orthographic processing.  This interactivity between bottom-up visual 

information and top-down linguistic codes easily explains why vOT lateralisation 

follows hemispheric language dominance in individuals (Cai et al., 2010) and can 

also account for non-visual priming effects observed in vOT (Devlin et al., 2006a; 

Kherif et al., 2011).   

 

Could the current findings be explained by cognitive feed-forward accounts such 

as that of Norris et al. (2000)?   According to this hypothesis, apparent top-down 

effects such as word superiority or pseudohomophone effects occur not at the 

level of processing the stimulus, but rather during the decision making process.  

Both functional neuroimaging and lesion-deficit studies with neurological patients 

have consistently associated decision making processes with prefrontal regions 

(Fleming et al.; Walton et al., 2004; Weller et al., 2007), consistent with the 

stimulus- and task-driven modulation I observed in POp.  This explanation runs 

into difficulty, however, accounting for the similar pattern of activation observed 
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in vOT, a unimodal sensory area, unless of course it is due to feedback projections 

from prefrontal regions.  In other words, the fact that effects I observed were 

present in the early perceptual stages of processing is incompatible with a strictly 

feed-forward explanation based on decision making (Norris et al., 2000). 

 

A clear prediction of the Interactive Account is that for integration to occur in 

vOT, it should be functionally connected with other components of the cortical 

language system during reading.  Indeed, previous studies have shown intrinsic 

functional connections linking vOT with Broca’s area (Bitan et al., 2005; Mechelli 

et al., 2005).  Furthermore, recent studies investigating resting-state functional 

connectivity suggest that a strong intrinsic connectivity exists between Broca’s 

area and ventral occipito-temporal regions even during rest (Koyama et al., 2010; 

Smith et al., 2009).  Thus it was of considerable interest that the activation 

pattern in POp, a core region of Broca’s area, matched that in vOT.  This is also 

consistent with Hellyer et al. (2011) in which increased activation in vOT during 

phonological relative to numerical task with orthographical and digital forms of 

numbers was accompanied by an increase in activation in inferior frontal gyrus.  

These observations suggest a possible functional linkage between these regions 

that may contribute to top-down influence on vOT.  Confirmation will require 

evidence of effective connectivity that demonstrates top-down modulation of vOT 

activity by Broca’s area. 

 

Taken together, the current findings demonstrate that activation in vOT during 

reading is influenced by non-visual properties of written stimuli and emphasise 

that interactivity is as important for neural accounts as it is for cognitive and 

computational models (Coltheart et al., 2001; Harm and Seidenberg, 2004; Jacobs 

et al., 2003; McClelland and Rumelhart, 1981; Perry et al., 2007; Plaut et al., 1996; 

Rumelhart and McClelland, 1982).  It is worth noting that this conclusion is not 

specific to reading but rather is in line with a growing literature demonstrating 

that visual object recognition or face processing cannot be a hierarchical, feed-
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forward process either (Bar et al., 2006; Cohen Kadosh et al., 2010; Gazzaley et 

al., 2007; Gilaie-Dotan et al., 2009; Kveraga et al., 2007; Schrader et al., 2009).  

These studies challenge the traditional view of serial, bottom-up visual object or 

face recognition and instead support non-hierarchical mechanisms which 

integrate top-down feedback to influence recognition process (see also Bar, 2003; 

Bullier, 2001; Bullier and Nowak, 1995).  Together these studies highlight a need 

to focus not only on the nature of neuronal representations, but also on the 

dynamics of this information processing.  Critically, this involves elucidating both 

the functional and anatomical connectivity, which will hopefully help to close the 

gap between cognitive and neuroanatomical models of reading.  
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4. LEXICAL FREQUENCY AND VISUAL FAMILIARITY 
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4.1. INTRODUCTION 

 

Of all the world’s languages, Japanese uniquely relies on multiple written scripts 

for its everyday use.  Books, magazines, and advertisements all mix 

morphographic 2  Kanji with syllabographic Hiragana such that no adult text 

consists solely of one script (although some children’s books are written only in 

Hiragana).  As a result, Japanese adults are equally familiar with both scripts and 

many individual words can be written multiple ways.  For instance, a word such as 

“apple” is as common in Hiragana (りんご) as Kanji (林檎).  In many cases, 

however, one form will be more common than the other.  For instance, “mischief” 

is usually written in Hiragana (わんぱく) but sometimes occurs as Kanji (腕白).  

The fact that the same word can be written in different scripts means that 

Japanese offers a unique opportunity to disentangle the frequency of a written 

word (i.e., its lexical frequency) from the frequency of its visual form (i.e., its 

visual familiarity).  Lexical frequency is a measure of how frequently a lexical item 

is encountered.  Thus, it is the frequency of the concept of a word and a property 

of the whole word, regardless of its form.  In contrast, visual familiarity is specific 

to the visual form of a word and the familiarity of its sublexical constituents (e.g., 

individual letters or orthographic neighbours) may also contribute to this factor. 

In alphabetic languages, however, written lexical frequency and visual familiarity 

are essentially the same thing – both measure how frequently a word appears in 

print.  Consequently, much of the literature focuses on lexical frequency as a key 

factor in understanding the nature of the neural information processing in brain 

regions related to reading (Fiebach et al., 2002; Hauk et al., 2008) and/or these 

two terms are used interchangeably (e.g., Kronbichler et al., 2007), despite the 

                                                           

2
 Although Japanese Kanji and Chinese Hanzi characters are visually identical, I use the 

term “morphographic” when referring to Kanji characters because most characters 

function as grammatical morphemes.  I use the term “logographic” for Chinese characters 

since this is the term widely used in the literature, even though the characters too are 

largely morphographic (Rogers, 2005).  In contrast, Hiragana characters refer to individual 

mora, a phonological timing unit that largely corresponds to a syllable in Japanese. 
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possibility that visual familiarity and lexical frequency may have differential 

effects. 

 

This is particularly relevant to theories of the left ventral occipito-temporal cortex 

(vOT).  As previously noted, vOT activation is greater for low than high frequency 

words (Chee et al., 2003b; Hauk et al., 2008; Joubert et al., 2004; Kronbichler et 

al., 2004) and this effect is not limited to alphabetic languages but is also seen in 

non-alphabetic Chinese (Kuo et al., 2003; Lee et al., 2004).  These lexical 

frequency effects are central to the orthographic input lexicon account (Bruno et 

al., 2008; Glezer et al., 2009; Kronbichler et al., 2007; Kronbichler et al., 2004; van 

der Mark et al., 2009).  As described in the previous chapter, this account claims 

that this area stores orthographic word representations since lexical frequency 

inversely modulates vOT response.  Like logogens (Morton, 1969), entries in this 

orthographic input lexicon are sensitive to experience, with access to less 

frequent words requiring greater effort and therefore resulting in greater 

activation.  An alternate explanation for frequency effects in vOT offered by the 

Interactive Account is that they arise from the interaction of bottom-up and top-

down constraints.  Reciprocal connections with higher order association areas link 

visual representations such as words, objects, scenes and faces with non-visual 

properties of the stimulus such as its sound (phonology) or meaning (semantics).  

Non-visual information is sent to vOT as top-down predictions in order to predict 

the response to the visual stimuli.  High frequency written words are more 

familiar visual patterns and thus have more accurate top-down predictions into 

vOT reducing prediction error (the mismatch between the response and the 

predictions) and therefore activation.  In contrast, low frequency words result in 

greater prediction error, increasing the processing demands on vOT and thereby 

increasing the activation (Price and Devlin, 2011).   

 

The aim of the current study was to test this Interactive Account using Japanese 

to differentiate between the frequency of a word and its visual familiarity.  This 
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distinction is not possible in most languages as individual words can only be 

correctly written one way.  For instance, in alphabetic languages like English, it is 

possible to write a word differently (e.g., “brane” for “brain”) but literate readers 

immediately recognise these as incorrectly spelled which is very different from 

seeing two different forms of a correctly spelled word.  Another possibility would 

be to test bilinguals with the same word in different languages (e.g., “米” in 

Japanese and “rice” in English) but again, this is not optimal since the difference in 

script is confounded by a difference in language.  In this example, the semantic 

properties of “米” and “rice” are not identical because unlike the English word, 

the Japanese word means “uncooked rice” and there is a separate word for 

“cooked rice”.  In other words, the “same” words in two different languages often 

are subtly different, confounding differences in their visual form.  Therefore, only 

those languages in which a word can be correctly written in multiple forms suffice 

for dissociating visual familiarity from lexical frequency.  Although Chinese (Hanzi 

vs. Pinyin) and Korean (Hanja vs. Hangul) offer this possibility, in these languages 

only one form is in daily use, making one script much more familiar than the 

other.  Japanese, on the other hand, is unique in its reliance on multiple forms for 

everyday use and therefore provides a fertile ground for testing theories of vOT 

function in reading. 

 

According to the Interactive Account, visual familiarity is expected to strongly 

modulate activation in vOT, consistent with the hypothesis that the region plays a 

more domain-general role in representing visual patterns, of which written words 

are only one example.  Lexical frequency, on the other hand, is predicted to 

interact with visual familiarity such that only low frequency words are affected by 

visual familiarity.  For highly frequent words, vOT will receive sufficiently accurate 

top-down predictions to quickly and accurately match the bottom-up visual 

information regardless of whether the visual form is more or less familiar. In 

contrast, less frequent words will send less accurate top-down predictions to vOT, 

resulting in greater prediction error and increased processing demands.  
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Consequently, activation in vOT for low frequency words will benefit from greater 

visual familiarity.   

 

Another interesting aspect of Japanese visual word recognition that can be tested 

is the script differences between Kanji and Hiragana.  Previous studies found 

greater vOT activation for Kanji relative to Hiragana during various tasks such as 

reading aloud (Sakurai et al., 2000), size judgement (Ha Duy Thuy et al., 2004), 

lexical decision (Ha Duy Thuy et al., 2004), semantic decision (Nakamura et al., 

2005a) and real word recognition (judging which one of the two stimuli is the real 

word, Ino et al., 2009). These effects are in general interpreted as the 

consequence of visual or semantic differences between the two scripts.  Kanji and 

Hiragana characters are visually quite different as most Kanji characters are 

composed of many strokes, making them visually more complex than Hiragana 

words.  Thus, one of the possibilities of greater vOT activation for Kanji relative to 

Hiragana is the greater demands on visuospatial analysis required for Kanji 

(Dehaene, personal communication, Ino et al., 2009).  This visual feature 

explanation is plausible given that the vOT is located in the extrastriate visual 

cortex and consistent with recent studies on spatial frequency effects in 

occipitotemporal cortex (Mercure et al., 2008; Woodhead et al., 2011b). For 

instance, Mercure and colleagues (2008) investigated the lateralisation of the 

N170 event-related potential (ERP) component, an index of complex visual 

processing, in bilateral occipitotemporal regions using fill-spectrum and spatially 

(high- or low-pass) filtered pictures of faces and words (dominant spatial 

frequency: words > faces). They found that the amplitude of N170 for words 

greater in the left than the right hemisphere; and within the left hemisphere, 

N170 was larger for words than faces. In addition, N170 lateralisation was 

attenuated with low-pass filtered stimuli demonstrating that the left lateralisation 

of words was influenced by spatial frequency. Similarly, Woodhead and colleagues 

(2011b) compared fMRI activation for words, faces and scrambled words and 

faces in order to test the effect of spatial frequency in bilateral occipitotemporal 

regions. The scrambled stimuli were created with sine-wave gratings so that no 
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higher-order information was left in the stimuli that might bias activations.  Their 

analyses showed that the left occipitotemporal region was preferentially activated 

by high more than low spatial frequencies, even without any structure or 

semantic information left in the stimuli (Woodhead et al., 2011b).  Both of these 

studies are compatible with the visual complexity explanation of the stronger vOT 

activation for Kanji relative to Hiragana.  At the same time however, it has also 

been reported that visual complexity did not modulate vOT activation during a 

linguistic task.  Hellyer and colleagues (2011) showed that vOT activation across 

orthographical and numerical forms of the same numbers (e.g., “twenty” vs. “20) 

were equal during a phoneme detection but not numerical task (to decide 

whether a number is odd or even), despite the fact that the former was visually 

more complex than the latter.  While the authors acknowledge that this effect 

may be driven by the difference in the task difficulty, they also offer another 

plausible explanation that the top-down modulation from the phonological 

system is exerted only during the phoneme detection task. This interpretation is 

indeed supported by their finding that left posterior frontal cortex, a region 

implicated in phonological processing, was also strongly activated preferentially 

during the phoneme detection task. These findings question whether the stronger 

vOT activation for Kanji relative to Hiragana during linguistic tasks is purely driven 

by the visual complexity difference. Instead, all these studies suggest that, 

although there may be a perceptual preference for Kanji in vOT given its higher 

spatial frequency than Hiragana, this particular difference may be attenuated 

during linguistic tasks due to the top-down influence from the higher-order 

language systems.  Thus, it is possible that the observed script difference in vOT 

activation during linguistic tasks may not reflect the spatial frequency differences, 

but in fact the differences in their higher-order properties (see below), or the 

combination of the two (cf. Mercure et al., 2008). 

 

Indeed, Kanji and Hiragana strongly differ in terms of their higher-order 

properties.  Single Kanji characters carry some semantic information and some 

even have multiple meanings whereas Hiragana has no semantic values 
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whatsoever.  In many cases the meaning of a Kanji word can be inferred from the 

meaning of the individual Kanji characters in the word. The word for 

“advertisement” (広告) for instance, contains a character that means “wide” (広) 

and “inform” (告). However, at times the meaning of the individual Kanji 

characters in a Kanji word does not correspond to the meaning of the whole 

word.  For instance, in the word for “mischief” (腕白), the first character signifies 

“arm” and the second, “white” when they occur in isolation.  Therefore, in such 

Kanji words, the correct meaning cannot be computed but must be learnt via 

association, ignoring the meaning of each character.  In other words, semantic 

information of each Kanji character in Kanji words can either aid or hinder 

inferring or learning the correct meaning when one encounters a novel or less 

frequent Kanji word.  In highly familiar Kanji words, the meaning of the individual 

characters is not explicitly required. However, reading Kanji words may prompt 

automatic access to all the available semantic information within the words. 

Therefore many researchers suggest that the greater vOT activation for Kanji 

relative to Hiragana is due to the increased reliance on, the greater activation 

induced by or the interference from the lexico-semantic system via the ventral 

route, in which vOT is located (Ha Duy Thuy et al., 2004; Ino et al., 2009; 

Nakamura et al., 2005a; Sakurai et al., 2000).  

 

Yet another possible explanation for greater vOT activation for Kanji relative to 

Hiragana is the differences in phonology between the two scripts. Mapping 

between Kanji characters and their phonology is inconsistent and opaque. Each 

Kanji character is composed of strokes and although some of them can be 

segmented into separate radicals that may provide phonological or semantic cues, 

the pronunciations of Kanji characters are arbitrary and cannot be computed from 

its constituents. Therefore they must be memorised. In addition, most Kanji 

characters have multiple pronunciations and the correct pronunciation is 

dependent on the context in which they appear.  In contrast, the pronunciations 

of Hiragana characters are almost completely regular, transparent and 
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independent of the context. Therefore, these orthographic transparency 

differences could lead to greater vOT activation for Kanji (see below). 

 

Needless to say, the semantic and phonology explanations are not mutually 

exclusive.  Within the Interactive Account framework, both of these semantic and 

phonological effects would manifest as differences in the top-down signals of 

higher-order, non-visual properties.  Therefore, consistent with previous studies, 

the Interactive Account makes one further prediction that vOT activation will be 

greater for Kanji relative to Hiragana. Although the current design cannot 

separate the two effects, greater prediction error for Kanji is expected due to: i) 

the inconsistent mapping between Kanji characters and their phonology as 

opposed to Hiragana words where there is a consistent mapping between 

characters and syllables, ii) the greater associations of Kanji characters and their 

semantics than Hiragana or iii) the combination of the two.  Consequently, the 

magnitude of the BOLD signal is expected to be greater for Kanji than for 

Hiragana.   

 

The current experimental design aimed to evaluate these hypotheses.  

Participants performed a lexical decision task where they decided whether visual 

stimuli represented real Japanese words.  Stimuli were written in either Kanji or 

Hiragana and fully crossed with visual familiarity.  In other words, each word 

appeared twice in the course of the experiment, once in Kanji and once in 

Hiragana.  Half of the words were more commonly written in Kanji while the other 

half were more common in Hiragana.  This design allowed me to look for main 

effects of visual familiarity (high vs. low) and script (Kanji vs. Hiragana) as well as 

their potential interaction.  A second analysis recoded all the words into four sets 

divided according to lexical frequency (i.e., independent of script) and looked for 

frequency effects and their interaction with visual familiarity.  In this fashion, I 

could independently evaluate the effects of visual familiarity and lexical frequency 

on vOT as well as look for potential script differences. 
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4.2. MATERIAL AND METHODS 

 

Participants 

40 native Japanese speakers participated in this study although the data from six 

were excluded due to either excessive motion inside the scanner (i.e., motion 

greater than the dimensions of a voxel; n=3 participants) or due to poor 

performance (i.e., accuracy less than 60% in one or more conditions; n=3 

participants).  Consequently, only data from 34 participants (13M, 21F, aged 21-

62) were included in the final analyses.  Since it was hypothesised that the 

amount of exposure to written Japanese may affect the activation, two groups of 

native Japanese readers were tested: university students in Tokyo with daily 

exposure to written Japanese (n=15, 10M, 5F, aged 21-31) and Japanese ex-

patriots who had lived outside Japan for a minimum of three years and thus had 

reduced exposure to written Japanese in their daily lives (n=19, 3M, 16F, 29-62).3 

The imaging analyses, however, revealed no significant interactions between 

Group (Tokyo vs. London) and any other factor.  As a result, the results presented 

here collapse over Group despite including it as a factor in the analyses to better 

model structured variance in the data.   

 

All participants were native Japanese speakers born and educated in Japan 

through to at least secondary school.  Consequently, all were literate adult 

readers in Japanese familiar with both Kanji and Hiragana.  In addition, all were 

right-handed except for one who was confirmed to be ambidextrous according to 

the Edinburgh Handedness Inventory (Oldfield, 1971).  None reported a history of 

reading difficulties or neurological problems.  Each of the London participants had 

lived outside of Japan, China and Korea (where morphographic or logographic 

scripts are used) for at least for three years (range: 3-34 years, mean=11).  Testing 

                                                           

3
 Subject recruitment and data collection in Tokyo were carried out by Keith Kawabata 

Duncan.   
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in Tokyo was approved by the ethics committees of the Graduate School of 

Medicine, the University of Tokyo (#2968), and the ethics committee of the Brain 

Science Institute, Tamagawa University (C21-4).  In London, ethical approved was 

granted by the NHS Berkshire Research Ethics Committee (06/Q1602/20). 

 

Experimental procedures 

The participants’ task was to view strings of characters and decide whether the 

string formed an existing Japanese word or not.  The task involved 60 words, each 

of which was presented twice – once in Kanji and once in Hiragana.  Half of the 

words are most commonly written in Kanji and the other half are most commonly 

written in Hiragana.  An equal number of nonwords, divided evenly between Kanji 

and Hiragana, were included to ensure adequate task performance.   

 

A trial began with a fixation cross presented for 500msec.  A stimulus (written 

horizontally using the MS Gothic font) was then presented for 500msec, followed 

by a jittered inter-stimulus interval of 1–4 sec (mean = 2.5 sec).  Therefore, the 

average trial length was 3.5 sec.  Stimuli were presented in blocks of 15 trials 

(lasting 57 sec) in a pseudorandomised order which included both “yes” and “no” 

responses.  These were separated by 12 sec blocks of fixation that served as an 

implicit baseline.  Over a run, there were eight blocks of task and eight blocks of 

rest. Therefore, each run lasted 9 minutes and 21 seconds.  There were two runs. 

Responses were made with a button press, using either the index or middle finger 

of their right hand to indicate “yes” and “no.”  The response fingers were fully 

counter-balanced across participants.  The stimuli were projected onto a screen 

and viewed via mirrors attached to the head coil.  Participants practised each task 

inside the scanner before the main runs began.  No items that were used in the 

practice runs occurred during the main experiment. 
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Stimuli 

The word stimuli were obtained from the NTT Japanese Psycholinguistic Database 

(Amano and Kondo, 2003a, b) by identifying 30 words that had a higher visual 

familiarity score when written in Kanji than any other script (including Hiragana, 

Katakana and mixed scripts).  Another set of 30 words was found that had a 

higher visual familiarity score when written in Hiragana than any other script.  The 

Kanji words were then transliterated into Hiragana (“展望”” てんぼう”) and 

the Hiragana words transliterated into Kanji (“とんち”” 頓知”) producing 120 

words (60 written in Kanji, 60 written in Hiragana).  It is important to note that 

while this transcription changes the visual familiarity of the word, the lexical 

frequency of the word remains constant. All words were 2 or 3 characters in 

length when written in Kanji, and between 2 and 6 when written in Hiragana.  The 

resulting word set had four different conditions, each with 30 items (high visual 

familiarity Kanji words, low visual familiarity Kanji words, high visual familiarity 

Hiragana words, and low visual familiarity Hiragana words) corresponding to a 2 × 

2 factorial design with Script (Kanji, Hiragana) and Visual Familiarity (High, Low) as 

factors. 

 

The stimuli were carefully matched along several different dimensions 

summarised in Table 4.1.  These values, from the NTT database (Amano and 

Kondo, 2003a, b), were analysed with a 2 × 2 ANOVA.  Across conditions words 

were matched for mora length (a measure of phonological complexity).  In 

addition, the analysis confirmed the main effect of Visual Familiarity and 

demonstrated that this did not interact with Script. Conceptual familiarity 

(derived by summing familiarity ratings for the visual word and for its auditory 

form) was matched across Script but naturally it was not possible to match across 

Visual Familiarity.  Finally, Hiragana words had significantly more characters but 

fewer strokes than Kanji words, which is an inevitable difference between the 

scripts.  It is worth noting, however, that effects of visual complexity and word 

length are expected to manifest in early visual cortices (Hsu et al., 2011; Mechelli 
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et al., 2000; Tarkiainen et al., 1999) rather than in higher order visual regions like 

vOT.  

 

Table 4.1: Mean psycholinguistic properties per condition for the visual familiarity 

analyses 

 Kanji Hiragana Effect of 

 High Low High Low Script VisFam Interaction 

Mora length* 2.77 3.03 3.03 2.77 
t=1.46 

(p=.145) 
  

Visual familiarity 5.31 3.66 5.21 4.09 0.9 (n.s) 
69.5 

(p<.001) 
2.3 (n.s.) 

Combined 
familiarity 

5.36 3.91 5.25 4.06 0.0 (n.s.) 
64.5 

(p<.001) 
0.5 (n.s.) 

Number of 
characters 

2.00 2.07 3.07 2.90 
77.7 

(p<.001) 
0.2 (n.s.) 1.2 (n.s.) 

Number of 
strokes 

19.17 19.70 7.60 6.63 
217.0 

(p<.001) 
0.8 (n.s.) 0.8 (n.s.) 

*Because the same words were used in the Kanji High and Hiragana Low conditions as 

well as in the Kanji Low and Hiragana High conditions, script-independent measures 

were the same for these conditions.  Consequently, differences were assessed with a t-

test rather than an ANOVA and are marked in italics. 

 

 

The same stimuli were then regrouped according to their lexical frequency – a 

script-independent measure of how often the word occurs in print regardless of 

its visual form (i.e., Kanji or Hiragana).   Lexical frequency values were calculated 

by summing the frequency of the Kanji and Hiragana word forms, taken from the 

NTT database (Amano and Kondo, 2003a, b).  For example, the Japanese word 

pronounced /tembo:/ has a lexical frequency value of 6984, since its written Kanji 

form (“展望”) has a frequency of 6979 and its Hiragana form (“てんぼう” ) has a 

frequency value of 5.  The frequencies for the 60 lexical items were then divided 

into quartiles so that those within the lower quartile (i.e., low frequency words) 

could be compared to those within the upper quartiles (i.e., high frequency 
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words) in order to maximise the distinction between them.   Because the stimuli 

were originally chosen according to their visual familiarity scores across scripts, 

the distribution of the (log of the) lexical frequencies was nearly uniform over the 

60 words.  Note that it proved impossible to fully balance visual familiarity, script 

and lexical frequency into a factorial design, forcing the data to be interrogated in 

two separate analyses.  In order to separate visual familiarity into high and low, 

each lexical item needed to be presented in both scripts.  In contrast, lexical 

frequency was independent of script.  As a result, a full factorial design that 

included Visual Familiarity, Lexical Frequency and Script was impossible to 

generate.  There were no significant differences between high and low frequency 

items in terms of number of mora, number of characters, or total stroke count 

(Table 4.2) 

 

Table 4.2: Mean psycholinguistic properties for the lexical frequency analysis 

 Upper Lower t 

Mora length 2.8 3.1 1.8 (n.s.) 

Lexical frequency 12100 25 4.5 (p<.001) 

Visual familiarity 4.9 4.1 2.6 (p=.011) 

Number of characters 2.5 2.6 0.7 (n.s.) 

Number of strokes 14.0 13.1 0.4 (n.s.) 

 

 

Finally, Kanji nonwords were created by combining random Kanji characters that 

together did not form a word.  These were matched 1:1 with the real Kanji words 

for number of strokes and characters.  Hiragana nonwords were created by 

combining random Hiragana characters that together did not form a word.  These 

were matched 1:1 with the real Hiragana words for number of strokes and 

characters. 
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MRI acquisition 

For the subjects scanned in Tokyo, whole-brain imaging was performed on a 

Siemens 3T MRI scanner at the Brain Science Research Center at Tamagawa 

University.  The functional data were acquired with a gradient-echo EPI sequence 

(TR = 3000msec; TE = 25msec; FOV = 192mm; matrix = 64 × 64) giving a notional 

resolution of 3 × 3 × 3.  For participants in London, whole brain imaging was 

performed on a Siemens 1.5T MRI scanner at the Birkbeck-UCL Neuroimaging 

(BUCNI) centre.  The functional data were acquired with a gradient-echo EPI 

sequence (TR = 3000msec; TE = 50msec; FOV = 192mm; matrix = 64 × 64) giving a 

notional resolution of 3 × 3 × 3.  In both cases, a run consisted of 187 volumes and 

as a result the two runs together took 18 minutes 42 seconds.  In addition, a high-

resolution (1mm3) T1-weighted anatomical scan was acquired for localizing the 

functional data on the individual’s brain anatomy.  

 

Analyses 

In the both the behavioural and imaging data, items whose accuracy was at 

chance (≤ 50%) were excluded from all analyses (n = 9) and only correct trials 

were analysed.  Reaction times (RTs) were recorded from the onset of the 

stimulus and anticipatory responses (i.e., RTs < 300ms) were trimmed (0.05% of 

trials).  To minimise the effect of outliers, median RTs per condition per subject 

were used in the statistical analyses (Ulrich and Miller, 1994).  The behavioural 

data were analysed using a mixed 2 × 2 × 2 analysis of variance (ANOVA) with 

Script (Kanji, Hiragana), Visual Familiarity (High, Low) as within-subject factors and 

Group (Tokyo, London) as a between-subject factor.  Accuracy and RTs were the 

dependent measures.  In addition, the behavioural data were then re-grouped 

into quartiles according to lexical frequency of the stimuli and analysed using a 

repeated-measures 4 × 2 × 2 ANOVA with Lexical Frequency (Upper, Upper 

Middle, Lower Middle, Lower) and Visual Familiarity (High, Low) as within-subject 

factors and Group (Tokyo, London) as a between-subject factor.  
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The imaging data were processed using SPM8 (Wellcome Trust Centre for 

Neuroimaging, London UK, http://www.fil.ion.ucl.ac.uk/spm/). The first four 

volumes in the Tokyo (i.e., 3T) data and two volumes in London (i.e., 1.5T) data 

were discarded in order to allow for T1 equilibrium.  All functional volumes were 

spatially realigned and unwarped to adjust for minor distortions in the B0 field 

due to head movement (Andersson et al., 2001).  They were then normalised to 

the MNI-152 EPI template, maintaining the original 3 × 3 × 3mm resolution.  

Finally, images were smoothed with an isotropic 8 mm full-width half-maximum 

Gaussian kernel.  Time-series from each voxel were high-pass filtered (1/128 Hz 

cut-off) to remove low-frequency noise and signal drift. The preprocessed 

functional volumes were then analysed in two separate GLMs.  One investigated 

the effects of visual familiarity and script while the other investigated the effect of 

lexical frequency and visual familiarity.  In both cases, a first-level, fixed-effects 

analysis combined the two runs from each participant and the estimated effect 

sizes were entered into a second-level, random-effects analysis to estimate the 

population effect.  At the first level, the onsets of stimuli were modelled as delta 

functions convolved with a canonical haemodynamic response function (Glover, 

1999), which provided regressors for the general linear model.  The appropriate 

contrast images, averaged over sessions, were then generated in all subjects for 

each condition versus fixation. 

 

The first analysis included four word conditions (Kanji high visual familiarity, Kanji 

low visual familiarity, Hiragana high visual familiarity and Hiragana low visual 

familiarity), two nonwords conditions (Kanji, Hiragana) and a condition for 

incorrect and excluded trials (Murphy and Garavan, 2004).  Fixation was not 

modelled and served as an implicit baseline.  The four word-relative-to-rest 

contrasts were computed and entered into a second-level, 2 × 2 × 2 ANOVA with 

Script (Kanji, Hiragana), Visual Familiarity (High, Low) as within-subject factors and 

Group (Tokyo, London) as a between-subject factor. I first identified areas of 

common activations for all word conditions using a linear contrast to compute 

their mean activity and inclusively masking it with each condition relative to 

http://www.fil.ion.ucl.ac.uk/spm/
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fixation at p = 0.001.  From this analysis I computed statistical contrasts of the two 

conditions within a factor, inclusively masking them with common activations of 

these conditions at p = 0.05.  

 

The second analysis investigated the effect of lexical frequency independent of 

script.  Here, words were divided into quartiles based on their frequency and 

entered into a second-level, 4 × 2 × 2 ANOVA with Lexical Frequency (Upper, 

Upper middle, Lower middle, Lower) and Visual Familiarity (High, Low) as within-

subject factors and Group (Tokyo, London) as a between-subject factor.  

 

Since the primary aim of the current study was to investigate effects in vOT, an a 

priori anatomical mask for this region-of-interest (ROI) was defined in the same 

fashion as in Chapter 3.  The main anatomical areas of interest were, as before, 

the occipitotemporal sulcus and adjacent regions on the crests of the fusiform 

and inferior temporal gyri: areas consistently activated by visual word recognition 

tasks (Bitan et al., 2007; Cai et al., 2010; Cohen et al., 2000; Devlin et al., 2006a; 

Duncan et al., 2009; Fiez and Petersen, 1998; Frost et al., 2005; Herbster et al., 

1997; Kronbichler et al., 2007; Price et al., 1996; Rumsey et al., 1997; Shaywitz et 

al., 2004).  However, the precise coordinates along a rostro-caudal axis differed 

slightly from the anatomical masks defined in Chapter 3 due to the anatomical 

differences between the Caucasian and Japanese head shapes. The standard 

space coordinates used to delineate this region ranged from X= −36 to −54, Y= −45 

to −66 and Z= −30 to −6.  As in the previous chapter, these coordinates together 

described a rectangular prism that conservatively encompassed the region of vOT 

sensitive to visual word recognition as well as the anatomically adjacent lobule VI 

of the cerebellum.  Because the cerebellum was both anatomically and 

functionally distinct, it was manually removed from the ROI mask.  
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For all imaging analyses, activations were considered significant based on voxel-

level inference of p < 0.05, corrected for multiple comparisons either within the 

ROI (Z > 3.30) or across the entire brain (Z > 4.60).  In order to visualise the 

pattern of activation within a region, I plotted the mean effect size per condition 

within a 5mm-radius sphere centred on the peak coordinate. No inferential 

statistics were based on these effect size plots. 

 

 

4.3. RESULTS 

 

Behavioural results   

The behavioural results are illustrated in Figure 4.1, where the left panel displays 

accuracy scores and the right reaction times.  Within the accuracy data, there was 

a significant main effect of Visual Familiarity (F(1,33)=32.8, p < 0.001), confirming 

that less visually familiar word forms were more difficult.  This was qualified by a 

significant Visual Familiarity × Script interaction (F(1,33)=26.6, p < 0.001), 

indicating that the visual familiarity advantage was significant for Kanji (t(33)=6.6, 

p < 0.001) but not for Hiragana (t(33) = 0.9, p = 0.365, n.s.).  In addition, there was 

a significant main effect of Script (F(1,33)=14.5, p = 0.001) indicating responses to 

Hiragana were more accurate than to Kanji.  The analysis of the reaction time data 

revealed a similar pattern of results.  There was a main effect of Visual Familiarity 

(F(1,33)=37.5, p < 0.001) with responses to less visually familiar forms taking 

longer than those to highly familiar forms (854 vs. 775ms).  This was qualified by a 

significant interaction (F(1,33)=10.1, p=0.003) indicating that familiarity effect was 

larger for Kanji (118ms) than Hiragana (39ms).  The main effect of Script was not 

significant (F(1,33)=2.7, p = 0.106).  
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Figure 4.1: Mean accuracy (left panel) and reaction times (right panel) for four 

conditions. An asterisk indicates significant at p = 0.05 (corrected for multiple 

comparisons).  

 

 

The second behavioural analysis focused on lexical frequency and visual 

familiarity and the data are shown in Figure 4.2.  There was a main effect of 

Lexical Frequency for both accuracy (F(3,99)=35.9, p < 0.001) and RTs 

(F(3,99)=24.4, p < 0.001). From the figure it is clear that the lower the lexical 

frequency, the more difficult the word was with both lower accuracy and longer 

response times.  There was also a main effect of Visual Familiarity for both 

accuracy (F(1,33)=42.5, p < 0.001) and RTs (F(1,33)=88.9, p < 0.001).  In addition, 

there was a significant interaction for RTs (F(3,99)=5.5, p = 0.002), indicating that 

visual familiarity had a greater effect on low relative to high frequency items 

although the interaction for accuracy was not significant (F(3,99)=1.4, p = 0.257).  

This pattern of results remained exactly the same when only the Upper and Lower 

frequency quartiles were included in the ANOVA.  In other words, both lexical 

frequency and visual familiarity strongly affected overall performance of the task.  

The question then becomes: to what extent do these two factors affect activation 

in vOT? 
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Figure 4.2: Mean accuracy (left panel) and reaction times (right panel) for the Lexical 

Frequency × Visual Familiarity analysis. An asterisk indicates significant at p = 0.05 

(corrected for multiple comparisons). 

 

 

Imaging results 

 The first imaging analysis identified brain regions commonly activated by all four 

word conditions, in order to determine whether vOT (among other regions) was 

engaged by both Kanji and Hiragana words, independent of their visual familiarity.  

As expected, vOT was strongly activated bilaterally, centred on the posterior 

occipitotemporal sulcus and extending laterally into inferior temporal gyrus, 

medially onto the crest of the fusiform gyrus and inferiorly into lobule VI of the 

cerebellum.  Other bilateral activations included pars opercularis, the pre-

supplemental motor area (pre-SMA), the intraparietal sulcus, a mid-cingulate 

region, and parts of the basal ganglia.  In addition, there were several activations 

only seen in the left hemisphere including Broca’s complex (i.e., pars triangularis, 

pars orbitalis), the deep frontal operculum, the supramarginal gyrus, and a small 

cluster in the anterior fusiform gyrus (see Table 4.3 for full details).  These results 

are consistent with previous visual word recognition studies conducted in 

alphabetic (Carreiras et al., 2007; Devlin et al., 2006a; Fiebach et al., 2007; Hauk et 

al., 2008) and logographic (Booth et al., 2006; Chen et al., 2002; Fu et al., 2002; Hu 

et al., 2010; Kuo et al., 2003; Tan et al., 2001) languages, indicating a common 

system engaged by visual word processing, independent of script. 
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Table 4.3: Common activation across the four conditions relative to fixation. For each 

region, the standard space (MNI) coordinates of the peak voxel and the Z-score for the 

main effect of words relative to rest at that voxel are shown.  In addition, the final four 

columns display the Z-score for each condition relative to rest at the same coordinate. 

Region Mean peak coordinate Z relative to rest 

 
x y z 

Z-
score 

Kanji 
Hi 

Kanji 
Lo 

Hira 
Hi 

Hira 
Lo 

Frontal 

L pars opercularis –42 8 31 8.19 6.55 7.99 7.80 7.96 

R pars opercularis 45 5 31 6.84 4.22 6.49 5.94 5.18 

L pars orbitalis –39 35 1 6.92 3.19 5.87 6.23 6.88 

L pars triangularis –48 29 19 7.91 5.85 7.41 7.52 7.86 

L frontal operculum –33 20 1 7.76 4.29 6.74 6.38 7.25 

L pre-SMA –6 14 52 7.86 6.41 7.35 7.35 7.69 

R pre-SMA 6 14 52 6.39 3.59 5.27 5.11 6.57 

R cingulate gyrus 6 –7 28 5.41 3.73 4.41 3.96 5.14 

L cingulate gyrus –6 –7 28 5.24 3.39 4.58 3.96 4.76 

Parietal 

R IPS 33 –58 43 6.73 4.61 5.70 5.57 5.83 

L IPS –30 –58 43 7.84 6.31 7.43 7.20 7.63 

L SMG –47 –37 49 7.63 5.81 6.38 7.19 7.67 

Occipital/Temporal 

L vOT –45 –64 –14 8.46 8.12 7.99 7.88 8.17 

R vOT 44 –55 –20 7.42 7.09 6.51 5.65 6.76 

L ITG –60 –43 –14 5.56 4.04 4.47 5.84 5.00 

R ITG 63 –40 –14 4.82 3.41 3.41 4.03 4.61 

L 
anterior  fusiform 
gyrus 

–39 –28 –26 5.62 5.17 5.21 3.44 3.78 

Subcortical 

R cerebellum (VI) 33 –55 –26 8.17 7.81 7.33 7.58 7.98 

L cerebellum (VI) –39 –52 –26 8.01 7.67 7.46 7.27 7.48 

R globus pallidus 12 2 –2 5.40 4.16 4.32 4.37 4.41 

L Putamen –21 5 4 7.69 5.49 6.02 6.41 7.01 

R Putamen 21 5 –2 5.06 3.37 3.55 4.31 5.05 

L Thalamus –9 –13 7 6.76 3.89 5.79 5.77 6.35 

R 
caudate nucleus 
(body) 

21 –10 22 5.16 3.36 5.10 3.19 4.63 
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L 
caudate nucleus 
(head) 

–15 8 13 5.50 3.53 4.46 4.02 5.51 

R 
caudate nucleus 
(head) 

15 8 13 4.91 3.77 3.62 3.29 4.99 

Abbreviations: IPS = intra-parietal sulcus; ITG = inferior temporal gyrus; SMA = 

supplemental motor area; SMG = supramarginal gyrus; vOT = ventral occipito-temporal 

cortex. 

 

Next, I asked whether visual familiarity modulated vOT activation.  The 

comparison of low relative to high visual familiarity items revealed significant left 

vOT activation in the ROI [–45 –58 –11, Z=3.34, p=0.042] and this did not interact 

with Script (Figure 4.3a & b).  Outside of the ROI, the whole brain search revealed 

activation in left pars triangularis, left pars opercularis, and in the frontal 

operculum bilaterally (Table 4.4) – three regions previously associated with low 

relative to high frequency effects in alphabetic languages (Carreiras et al., 2006; 

Fiebach et al., 2002; Kronbichler et al., 2007; Kronbichler et al., 2004).  In each of 

these regions, there was a (non-significant) interaction with Script such that low 

visual familiarity items increased activation for Kanji more than for Hiragana 

relative to high visual familiarity items.  No regions showed significant activation 

for the contrast of high relative to low visual familiarity, even when the statistical 

threshold was lowered to p < 0.001, uncorrected for multiple comparisons. 

 

Table 4.4: Activation for low relative to high visual familiarity.  

Region 
Mean peak 
coordinate 

Z-score 

 x y z Lo > Hi 
Kanji Lo 

> Hi 
Hiragana 
Lo > Hi 

VisFam 
×Script 

L vOT –45 –58 –11 3.34 2.80 1.96 0.95 

L 
pars 
opercularis 

–42 5 31 5.22 5.54 1.61 3.48 

L 
pars 
triangularis 

–42 29 7 4.92 5.00 1.82 2.87 

L 
frontal 
operculum 

–30 29 1 5.06 4.72 2.45 2.24 

R 
frontal 
operculum 

30 20 –5 5.38 5.56 1.89 3.34 
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Next I turned to the effects of lexical frequency.  I contrasted the lowest 

frequency items to the highest in order to maximise the difference in frequency.  

Activation associated with lexical frequency was found in several left frontal 

regions, including pars opercularis, pars triangularis, a region of anterior 

paracingulate sulcus and the right deep frontal operculum (Table 4.5), consistent 

with previous studies (Carreiras et al., 2006; Fiebach et al., 2002; Hauk et al., 

2008; Kronbichler et al., 2004).  In addition, the ROI analysis identified a peak in 

lateral inferior temporal gyrus [–54 –55 –14, Z=4.15, p=0.003] adjacent to, but not 

overlapping, the activation seen in vOT for visual familiarity (Figure 4.3c).  In fact it 

was approximately 1cm lateral to the visual familiarity peak and located in the 

inferior temporal gyrus, rather than the occipitotemporal sulcus.   

 

 

Table 4.5: Activation for Lower > Upper frequency 

Region Mean peak coordinate Z-score 

 x y z  

L pars triangularis –45 26 19 4.65 

L pars opercularis –45 11 28 4.74 

L inferior frontal sulcus –51 17 34 4.74 

L paracingulate sulcus –3 26 46 6.05 

R frontal operculum 30 23 –5 4.67 

 

Within vOT, there was no main effect of Lexical Frequency (Figure 4.3d). There 

was, however, a small peak for the interaction of Lexical Frequency and Visual 

Familiarity at [–45 –64 –8], although this did not reach statistical reliability 

(Z=2.81, p=0.177). Nonetheless, the pattern of activation across conditions 

suggests that visual familiarity modulated low frequency words but not high 

frequency words (see Figure 4.3e).  Words in the middle frequency quartiles 

showed intermediate sized visual familiarity effects.    
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Figure 4.3: a) The overlap of Visual Familiarity (low>high) in blue and Script (Kanji > 

Hiragana) in red at x=–48. b) Bar plot for the BOLD signal per condition relative to 

fixation at x=–45, y=–58, z=–11 (in arbitrary unit), showing Visual Familiarity effect.  c) 

Visual Familiarity effect (low > high) in blue and Lexical Frequency effect (Lower > 

Upper) in green at y=–58.  Also shown are bar plots for the BOLD signal per condition 

relative to fixation at x=–45, y=–58, z=–11 for d) Lexical Frequency and e) Frequency x 

Familiarity interaction.  
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Finally, I turned to the question of whether the different scripts, Kanji and 

Hiragana, influenced vOT activation.  Relative to Hiragana, Kanji produced 

significantly greater activation within vOT (Figure 4.3a & b).  The peak was slightly 

posterior to the visual familiarity peak, although the clusters of activation were 

largely overlapping (Figure 4.3a).  Outside the vOT region-of-interest no significant 

activation was found in the whole brain search. The opposite comparison of 

Hiragana relative to Kanji revealed no significant activation. 

 

To investigate whether the increased activation in vOT for Kanji relative to 

Hiragana effect was driven by the inevitable difference in the visual complexity 

across scripts, a 222 ANOVA with Script (Kanji, Hiragana), Visual Complexity 

(high, low), and Group (Tokyo, London) was run.  Since the two scripts differed in 

both the number of strokes and of characters, the total number of strokes per 

trial was used as the measure of visual complexity.  There was no main effect of 

Visual Complexity nor interaction between Visual Complexity and the other two 

factors within vOT, even at a lenient statistical threshold of p<0.001 uncorrected 

for multiple comparisons.   In other words, there was no evidence that the vOT 

activation observed for Kanji relative to Hiragana was a by-product of the greater 

visual complexity of Kanji words.  Outside of the region-of-interest, high relative 

to low visual complexity was associated with activation in the left calcarine sulcus 

[–15 –94 –5, Z=3.68] and the right lingual gyrus [18 –91 –20, Z=3.90] at a 

threshold of p=0.001 (uncorrected).  

 

 

4.4. DISCUSSION  

 

The aim of the current study was to test whether visual familiarity and lexical 

frequency have separable effects on activation levels in vOT, as predicted by the 

Interactive Account.  The results confirmed that visual familiarity, as opposed to 
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lexical frequency, had a strong effect on vOT activation that was qualified by a 

small (but non-significant) interaction.  Visual familiarity had essentially no effect 

on the most frequent words but a greater effect on the least frequent.  In 

contrast, lexical frequency modulated activation in a region of the inferior 

temporal gyrus lateral to the visual familiarity effect in vOT.  Finally, vOT also 

showed higher activation for Kanji than Hiragana words, although this was not 

due to their inherent differences in visual complexity.  These findings place 

important constraints on understanding the nature of neural information 

processing in the region.   

 

Given that vOT is a region of extrastriate visual cortex, it is perhaps not surprising 

that the region is sensitive to the familiarity of visual patterns. Indeed, a visual 

familiarity effect for faces in vOT has been previously reported (Eger et al., 2005).  

Although written words are a special form of familiar visual patterns, they too 

appear to be sensitive to this basic property of the visual system (Nazir et al., 

2004; Xue et al., 2006; Xue et al., 2008).  Within a predictive coding account, this 

is implemented in terms of more accurate top-down predictions for highly familiar 

visual patterns.  This reduces the prediction error between the top-down and the 

bottom-up signals, reducing the regional BOLD signal.  It is worth noting, however, 

that this visual familiarity effect is likely to be task-dependent and only present in 

tasks that place strong demands on integrating bottom-up visual form 

information with top-down non-visual properties of the stimulus.  In the current 

experiment, linking visual forms to their sound and meaning is important for 

either recognizing them as a word or correctly rejecting them as a nonword.  

Tasks with similar demands on vOT processing such as reading aloud or reading 

for meaning would also be expected to demonstrate greater vOT activation for 

less visually familiar words.  In contrast, one-back tasks or purely perceptual 

decisions may not show a visual familiarity effect for written words because 

neither places significant demands on integrating bottom-up visual and top-down 

non-visual information (Hellyer et al., 2011; Price and Devlin, 2011; Wang et al., 

2011b). 
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Like visual familiarity, lexical frequency would also be expected to modulate the 

accuracy of top-down predictions into vOT. Indeed, in alphabetic languages, 

where there is essentially a single visual pattern per word, lexical frequency does 

affect vOT activation (Chee et al., 2003b; Hauk et al., 2008; Joubert et al., 2004; 

Kronbichler et al., 2004).  In Japanese, however, where a word can be written in 

different scripts, there was no significant main effect of lexical frequency on vOT 

activation and only weak evidence of its interaction with visual familiarity.  For 

highly frequent words, visual familiarity had no effect on vOT activation whereas 

activation for low frequency words was modulated by visual familiarity.  In 

contrast, lexical frequency was found to significantly modulate activation in a 

region of the left inferior temporal gyrus lateral to the area in vOT showing a 

visual familiarity effect.  Previous studies have argued that this is a functionally 

separate region engaged by multi-modal semantic processing rather than by 

visual word forms (Cohen et al., 2004; Moore and Price, 1999) and the current 

results are consistent with this.  

 

Finally, although both Kanji and Hiragana strongly engaged vOT, there was 

significantly greater activation for Kanji relative to Hiragana.  Because Kanji words 

generally have more strokes and fewer characters, they tend to be more visually 

complex than words written in Hiragana.  Supplemental analyses, however, 

showed that the effects of visual complexity manifested in early visual cortices 

rather than in vOT, consistent with most previous studies (Hsu et al., 2011;  

Hellyer et al., 2011; Tarkiainen et al., 1999 but see Szwed et al., 2011 who failed 

to find any significant effects of visual complexity).  Thus, the activation difference 

in vOT is assumed to reflect the different links between the surface form of the 

word and its non-visual properties (semantics and phonology).  Specifically, a 

Kanji word composed of more than one character carries the meaning of the 

whole word as well as its individual characters, which may or may not 

automatically interfere with the meaning of the whole word.  In contrast, a 

Hiragana word is associated with only one meaning (unless, of course, it is 

homophonic).  Moreover, the relation between a Kanji word and its phonological 
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form is largely arbitrary and depends critically on the combination of characters 

present in the word.  Hiragana characters, on the other hand, are nearly 100% 

consistent in their pronunciation with each one representing a one-to-one 

mapping to a mora.  Consequently, the contribution to prediction error from 

semantic and phonological regions to vOT is much less for Hiragana than for Kanji, 

resulting in lower vOT activation.  

 

According to the Interactive Account (Price and Devlin, 2011), all words generate 

top-down predictions that arrive at vOT and support visual forms consistent with 

the word (Devlin et al., 2006a; Kherif et al., 2011).  For instance, a word such as 

“yen” sends top-down predictions to vOT that support its Kanji (円), Hiragana (え

ん), and symbolic (¥) form.  These predictions are highly accurate precisely 

because the word is so common, resulting in essentially equal activation across 

scripts.  In contrast, a less common word such as ”wit” sends less accurate top-

down predictions to vOT supporting both its Hiragana (とんち) and Kanji (頓知) 

forms.  In this case, the fact that Hiragana is the more visually familiar form results 

in less prediction error (and therefore less activation) than the Kanji form.  By this 

account, then, a visual familiarity benefit is principally expected for low, but not 

highly, frequent words – a pattern demonstrated in Figure 4.3e, but only weakly.  

Further studies will be required to establish whether this prediction of an 

interaction between visual familiarity and lexical frequency in vOT is reliable.   

 

Can the current results also be understood in terms of orthographic input lexicon 

accounts that posit specialised representations of whole word orthographic 

patterns?  In its strongest form, entries in the lexicon are truly “lexical” and 

abstract away from visual properties of the word such as capitalisation, font, size 

and even script.  Consequently there is a single lexical entry for a word regardless 

of its script.  Obviously, this version is incompatible with the current findings 

because it cannot explain the activation differences in vOT due to visual familiarity 

nor script.  Some authors have argued, however, that lexical entries in an 
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orthographic input lexicon are specific not only to words but also letter or case 

identities (Kronbichler et al., 2009).  In the case of Japanese orthography, this 

would entail separate entries for the Kanji and Hiragana forms.  By this account, 

the ease of accessing the form would be modulated by one’s experience with the 

pattern (i.e., its visual familiarity), and is consistent with the main effect of visual 

familiarity observed here.  The observed differences in activation for Kanji and 

Hiragana, however, are problematic for accounts that claim vOT is an 

orthographic input lexicon (Glezer et al., 2009; Kronbichler et al., 2004).   If every 

word in an orthographic lexicon has separate Kanji and Hiragana entries and the 

accessibility of each entry depends on its visual familiarity, then Hiragana and 

Kanji should produce equivalent activation unless they differ in terms of visual 

familiarity.  Indeed, some previous experiments that reported greater vOT 

activation for Kanji relative to Hiragana may have confounded script with visual 

familiarity (Ha Duy Thuy et al., 2004; Nakamura et al., 2005a; Sakurai et al., 2000), 

but in the current experiment, visual familiarity was carefully balanced across 

scripts so that Kanji was no more familiar than Hiragana (see also Ino et al., 2009).  

Nonetheless, I still observed a significant increase in activation for Kanji relative to 

Hiragana that may prove a challenge for the orthographic input lexicon account.  

 

The current findings also raise an important methodological point about the use 

of alphabetic scripts in reading research.  For many valid reasons, the majority of 

reading research has been conducted with alphabetic languages and has 

produced considerable advances in the cognitive and neural mechanisms 

underlying reading (Price and Mechelli, 2005; Shaywitz et al., 2004; Ziegler and 

Goswami, 2005).  In addition, it has repeatedly been shown that both alphabetic 

and non-alphabetic scripts such as logographs engage essentially the same 

neuroanatomical system during reading (Booth et al., 2006; Chee et al., 2003a; 

Chee et al., 2000; Chen et al., 2002; Fu et al., 2002; Hu et al., 2010; Kuo et al., 

2003; Tan et al., 2001).  This finding, however, means that inferences drawn 

regarding the nature of regional information processing need to be consistent 

with a range of writing systems (i.e., alphabetic, syllabographic, logographic, etc) 
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in order to explain the common information processing across scripts.  For 

instance, Chinese readers engage a region of left middle frontal gyrus (MFG) more 

strongly than English readers (Tan et al., 2005; Tan et al., 2003) and it is 

theoretically possible that this is due to language-specific neuronal responses.  A 

more parsimonious explanation, however, is that Chinese Hanzi characters 

increase visuospatial working memory demands relative to letters and this 

explanation has the advantage of being consistent with reports of left MFG 

activation in non-linguistic studies of visual working memory (Bledowski et al., 

2010; Kravitz et al., 2011).  Moreover, it offers a principled account for why this 

differential activation disappears in Chinese and English dyslexics (Hu et al., 2010).  

In short, a unified, cross-cultural account of the neural information processing 

underlying reading requires a systematic investigation of a range of different 

languages and scripts.   

 

The current study took advantage of a unique property of the Japanese writing 

system in order to better characterise neural information processing in vOT 

during visual word recognition.  Here I demonstrate a dissociation between lexical 

frequency and visual familiarity not possible in alphabetic languages and use the 

findings to evaluate competing theories of vOT function.  
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5. ANATOMICAL CONNECTIVITY OF VOT 
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5.1. INTRODUCTION 

 

Previous chapters established that vOT responses are the combination of bottom-

up visual information from the primary visual cortex and top-down non-visual 

information from other regions within the language system and that interaction is 

an important aspect of vOT function.  For this interaction to occur, vOT and these 

other regions of the language system should be functionally connected.  That is, 

the neurophysiological responses in these distant regions should be temporally 

correlated, an indication that these regions are functionally interacting.  Indeed, 

Chapter 3 demonstrated that the activation pattern across the experimental 

conditions in POp, a region of Broca’s area implicated in language, mirrored that 

in vOT, suggesting a possible functional link between these regions.  

 

More specifically however, inter-regional interactions can be investigated by 

directly measuring functional connectivity (Friston, 1994).  Previous functional 

connectivity studies have indeed suggested several links between vOT and specific 

regions within the language system.  For instance, Horwitz and colleagues (1998) 

investigated inter-regional correlations between angular gyrus (ANG), a region in 

the classical neurological model of reading, and the visual association areas.  They 

tested both dyslexic and non-dyslexic readers of English using PET with 

pseudowords and low frequency exception words (i.e., real words whose spelling 

does not comply with the orthotactics of English such as “yacht”) in single word 

reading (aloud) tasks. They found that in the left hemisphere, the regional 

cerebral blood flow in ANG was correlated with that in vOT during both 

pseudoword and exception word reading in the normal, but not in the dyslexic, 

readers, suggesting that this functional link is indeed important for reading.  

 

Broca’s area has also been reported to be functionally connected to vOT. For 

instance, Bitan and colleagues (2005) investigated functional connectivity during 

spelling and rhyming tasks on visual stimuli with dynamic causal modelling (DCM, 
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Friston et al., 2003). They found endogenous connections4 (i.e., common to all 

stimulus-types, irrespective of tasks) between vOT and inferior frontal gyrus (IFG), 

partially overlapping Broca’s area.  Endogenous connections between vOT and the 

opercular part of Broca’s area have also been demonstrated with non-alphabetic 

orthography, Japanese kanji and hiragana, in a lexical decision task (Kawabata 

Duncan et al., 2013).  Furthermore, differential functional connections have been 

demonstrated for sub-regions of IFG encompassing Broca’s area and vOT.  Bokde 

and colleagues (2001) divided IFG into two sub-regions: Broca’s area, implicated 

in phonological processing and the orbitofrontal part, implicated in semantic 

processing.  They used words, pseudowords, consonant letter strings and false 

font strings in order to separate semantic processing, which would be required for 

words only, from phonological processing, which would be involved in all stimuli 

except for the false fonts.  Functional connectivity was measured in terms of the 

inter-regional correlation of the BOLD response during a one-back matching task.  

As they predicted, only word stimuli resulted in functional connectivity between 

both of the sub-regions and occipital, occipitotemporal and temporal regions 

including vOT.  In contrast, pseudowords and consonant strings showed 

correlation only between these regions and Broca’s area.  Thus, this study 

suggests that vOT is functionally connected to different parts of IFG depending on 

the cognitive processes induced by the stimuli - Broca’s area during phonological 

processing and the orbitofrontal part during semantic processing.  

 

Similarly, a functional connectivity study using DCM has also found endogenous 

connections between sub-regions of the prefrontal cortex including Broca’s area 

and those of vOT.  Mechelli and colleagues (2005) compared neuronal responses 

for regular words, pseudowords and exception words and tested the hypothesis 

that the differential responses elicited by these different word-types were 

associated with distinct regional couplings within the reading system.  In this 

                                                           

4
 These connections are also referred to as “intrinsic” connections, particularly in older 

papers.  
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study, in addition to the prefrontal cortex, vOT was also divided into three sub-

regions: anterior, middle and posterior, based on their differential functional 

specialisations reported in previous studies.  The details were described in 

Chapter 1 but briefly, the posterior part (y = –60 to –70 in MNI space) responded 

to pseudowords more than familiar words while the reverse was true for the 

anterior part (y = –40 to –50). In contrast, the middle part (y = –50 to –60) was 

constantly activated during visual word recognition and by various written stimuli 

but the pattern of response is complex and also modulated by the task (Price and 

Devlin, 2011). They found an endogenous connection between the anterior vOT 

and the triangular part of Broca’s area, which was also stronger for (i.e., 

modulated by) exception words relative to pseudo and regular words.  They also 

found a functional connection between posterior vOT and dorsal premotor cortex, 

which was stronger for pseudowords relative to exception and regular words. 

Finally, there was a connection between the middle vOT and the opercular part of 

Broca’s area, which was modulated by exception words relative to pseudo and 

regular words.  The finding that the sub-regions of vOT are functionally connected 

to the sub-regions of Broca’s area differently, which is further modulated during 

processing of particular word-type, also suggests that such functional couplings 

might be subserved by different anatomical connections.  

 

Another region that has been shown to be functionally connected to vOT is the 

supramarginal gyrus (SMG). Van der Mark and colleagues (2011) examined 

functional connectivity of vOT in five, posterior-to-anterior sub-regions spanning 

from y = –80 to –30 (in MNI coordinates). The “VWFA” was centred on y = –54. A 

phonological lexical decision task (“does XXX sound like a word?”) with German 

words, pseudohomophones, pseudowords and false font strings was used and 

both dyslexic and non-dyslexic children were tested.  Using seed-voxel correlation 

mapping (Biswal et al., 1995), a method to measure functional connectivity as the 

correlation of time series between the seed voxel(s) and all other voxels, they 

found that only the “VWFA” was functionally connected to typical language areas 

including SMG in the controls.  Similarly, Kawabata Duncan and colleagues (2013) 
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used Japanese kanji and hiragana words and nonwords in a lexical decision task 

and investigated functional connectivity amongst four regions including vOT.  

They found endogenous connections between vOT and SMG (in addition to pars 

opercularis mentioned above).  

 

These functional connectivity studies suggest that vOT is functionally connected 

to Broca’s area and to the inferior parietal lobule (ANG & SMG).  Regardless of 

whether the connections are feed-forward, feedback or interactive, in order for 

distant cortical regions to be functionally connected, there must exist underlying 

anatomical connections that enable such communications between them.  These 

can be i) direct anatomical connections between two regions, ii) indirect via 

another region(s) or iii) indirect via a common input (Friston, 1994). The 

knowledge of the anatomical basis of functional connections is invaluable to our 

understanding of vOT function during reading and carries important implications 

for models of reading. However, currently very little is known about the 

anatomical connectivity of vOT.  

 

In humans, anatomical connectivity studies are traditionally done post-mortem. 

The dissection of human brains for instance, has been widely used to investigate 

both long and short fibres (e.g., Martino et al., 2010a; Martino et al., 2010b; 

Sarubbo et al., 2011; Türe et al., 2000).  Although this method is very informative, 

it is also time consuming and extremely complex since the fibres are often related 

to one another structurally and delineating one fibre system could lead to 

destruction of another (Türe et al., 2000).  In addition, since the procedure 

advances based on one’s assumption on the directions of the fibres, the results 

could also be biased (Axer et al., 2012) and it could lead to erroneous and artificial 

pathways, particularly when crossing fibres are encountered.  Neuronal tracing 

(Oztas, 2003), such as that of Wallerian (anterograde) degeneration, has also been 

used to study connectivity in humans.  An injury to the neuronal cell body can 

cause the distant part of the axon to degenerate towards the terminations.  The 
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extent of these anterogradely degenerating axons can be traced with staining 

methods such as the Nauta method (e.g., Clarke, 1994; Miklossy et al., 1991) on 

histological sections, which can reveal the degenerating axon terminations. 

Although this method can demonstrate regions (terminations) that are 

anatomically linked, it cannot always successfully delineate the pathway between  

them (Schmahmann and Pandya, 2009).  Moreover, since this procedure requires 

a lesion, in human brains its use is limited to the area with naturally occurring 

lesions. Therefore, it does not allow systematic experiments to be conducted.  In 

addition, the limited availability of the brains means that in general these post-

mortem methods are not easily accessible.  

 

Alternatively, non-human primates can be used to study anatomical connectivity. 

One advantage of using monkeys is that it is possible to select any site to test 

one’s specific question.  In order to detect the distribution of degenerating fibres 

for instance, a lesion can be intentionally inflicted in monkeys, which is needless 

to say not permitted in humans. Another procedure, which is limited to non-

human primates, is neuronal tracing using autoradiography (Schmahmann and 

Pandya, 2009).  Radiolabelled tracer is injected into a selected area of the brain of 

living monkeys and the tracer is transported anterogradely by the axoplasmic 

flow.  After a certain period of time, depending on the type of the tracer, the 

animal is then sacrificed and the tissue is analysed using autoradiography.  This 

method can reliably characterise the origin and the terminations as well as the 

neuronal pathways.  

 

Although anatomical connectivity has been studied routinely in non-human 

primates using these invasive methods, the results cannot always be extended to 

humans without caution for a number of reasons.  First of all, there are gross 

anatomical differences between monkey and human brains. Of particular 

relevance to vOT is that while humans have two gyri on the ventral surface of the 

temporal lobe, monkeys have only one. Therefore, the single gyrus medial to the 
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occipitotemporal sulcus could be the homologue of fusiform or parahippocampal 

gyrus.  Indeed, it is sometimes labelled as fusiform gyrus (Petr et al., 1949) while 

others prefer to assign the name parahippocampal gyrus to it (Felleman and Van 

Essen, 1991; Suzuki and Amaral, 1994; Van Hoesen, 1982; Whitlock and Nauta, 

1956).  Moreover, this discrepancy cannot be settled by the cytoarchitectonics 

either.  According to the classic work of Brodmann (1909), the human vOT region 

falls within BA37.  Von Economo (1929) defines the same region as PH5 and more 

specifically, fusiform gyrus as area TF.  Unfortunately, Brodmann’s description for 

BA37 was anatomical and he did not provide sufficient information on distinctive 

cytoarchitectonics to allow a comparative study.  The descriptions of von 

Economo in human brains on the other hand, were well detailed and there are 

some quite striking similarities between the descriptions of human TF and a 

monkey area TF, defined by von Bonin and Bailey (1947), which is located 

medially to the occipitotemporal sulcus.  Specifically, these two areas share the 

following common features: layer II is not very dense in cells; layer III is relatively 

thick with medium-sized pyramidal cells; layer IV has granule cells (although the 

size differ across species); layer V displays a darker middle band with a light band 

on the either side; and finally layer VI has a sharp boundary with the white 

matter.  Furthermore, both regions were more recently subdivided into two 

cytoarchitectonic areas in a similar fashion.  In humans, two novel areas were 

identified within the posterior fusiform gyrus: FG1, which is medially located 

extending on the lateral bank of collateral sulcus; and FG2, which is laterally 

located encompassing the occipitotemporal sulcus (Caspers et al., 2013). The 

monkey area TF was similarly divided into two sub-regions: the medial portion 

TFm and the lateral portion TFl (Suzuki and Amaral, 2003a; Suzuki and Amaral, 

2003b).  Once gagain, there are some notable similarities in these sub-regions 

between the two species.  For instance, in the medial portions FG1 and TFm, layer 

III is homogeneous through the layer and not very dense in cells, and there is no 

                                                           

5
 According to Von Economo (1929) cytoarchitectonics of the posterior segment of the 

temporal lobe resembles that of the parietal lobe. Therefore, this area is labelled as “PH” 

with “P” denoting to the parietal lobe although it is anatomically located in the temporal 

lobe. 
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clear boarder between layers V and VI.  The lateral portions FG2 and TFl both have 

a highly dense layer II with a prominent layer IV and a cell dense layer VI.  These 

similarities certainly raise a possibility that the monkey TF might be homologous 

to the human vOT. However, some reservations remain since they are 

anatomically not the closest match as the monkey TF occupies the medial 

temporal lobe.  

 

Anatomically, the closest match to the human vOT is the monkey area TEO6 

(Bailey et al., 1950; Iwai and Mishkin, 1969; von Bonin and Bailey, 1947) and more 

precisely, its ventral part TEOv that encompasses the posterior occipitotemporal 

sulcus (Kravitz et al., 2013). However, this classification was based on behavioural 

and anatomical evidence such as inter-hemispheric connections that separated 

TEO from both more anteriorly located TE and more posteriorly located OA (Iwai 

and Mishkin, 1969) but crucially, the cytoarchitectural identity of TEO remained 

unclear (Bailey et al., 1950; Iwai and Mishkin, 1969).  Therefore, it is not known 

whether area TEO bears any similarities to the human vOT cytoarchitectonically. 

All in all, the problem is that no studies have directly compared the 

cytoarchitectonics of human and monkey vOT7, unlike the ventrolateral prefrontal 

cortex (Petrides and Pandya, 2002). Therefore, all things considered, it is not 

straightforward to determine the monkey homologue of human vOT on the 

ground of anatomy and cytoarchitectonics at present.  

 

                                                           

6
 In the book “The Neocortex of Macaca Mulatta”, von Bonin and Bailey (1947) state: “the 

fusiform gyrus is covered with a thinner cortex which has distinct differences from TE” 

(p.42). As pointed out by Boussaoud and colleagues (1991), in Bonin and Bailey’s section 

drawings, the posterior TE corresponding to posterior fusiform gyrus is indeed labelled 

with a question mark.  They describe this area as a transitional zone between areas OA 

and TE since it bears general similarity to both of these areas. Only in the 

photomicrograph section, this area is labelled “TEO”.  

7
 The closest comparison made is between the human PH and the monkey TE. According 

to von Bonin and Bailey (1947), no match was found between these regions (von Bonin 

and Bailey, 1947, p.49)   
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There are also functional differences across species.  Crucially, non-human 

primates cannot read.  Therefore, it is impossible to directly compare this function 

across species.  On the other hand, like humans their social interactions rely 

heavily on face recognition which, in humans, is known to engage roughly the 

same part of the fusiform gyrus as reading, but more strongly in the right 

hemisphere (Haxby et al., 2002; Kanwisher et al., 1997).  In monkeys, however, 

face processing primarily activates superior temporal sulcus although more 

recently evidence for face selectivity in the ventral temporal lobe has also 

emerged (Pinsk et al., 2009; Tsao et al., 2008; Ku et al., 2011).  Since function of a 

cortical region is constrained by its anatomical connectivity (Passingham et al., 

2002), functional differences in fusiform gyrus across species might indicate 

different anatomical connectivity. The anatomical connections that mediate 

human reading ability may be different or even absent in monkeys.  Indeed, the 

human prefrontal and temporal association cortices are disproportionately large 

relative to the non-human primates (Rilling, 2006).  The increase in the temporal 

lobe has been found to be mostly in the white matter (Rilling and Seligman, 2002) 

and it is possible that this is the result of the evolution of human language, 

subserving the link between the temporal and frontal lobe (Rilling, 2006).  Given 

these points, the anatomical connectivity that mediates reading, particularly in 

vOT, should be studied in human subjects, in vivo, non-invasively.   

 

The aim of the current study, therefore, was to investigate the anatomical 

connectivity of vOT directly in humans using diffusion-weighted MRI with 

probabilistic tractography – a tool that has become available more recently to 

investigate human anatomical connectivity non-invasively, in vivo.  Specifically, I 

examined whether a direct, cortico-cortical, intra-hemispheric anatomical link 

exists between vOT and the regions for which functional connections are 

implicated: i) Broca’s area, ii) angular gyrus and iii) supramarginal gyrus. In so 

doing, vOT was divided into three rostro-caudal sub-regions given their 

differential response patterns to word-types.  Seed masks were placed within the 

cortical grey matter in these rostro-caudal positions along the occipitotemporal 
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sulcus and the probabilistic tractography algorithm generated the most probable 

paths from the masks to the rest of the brain.  Both left and right hemispheres 

were investigated and hemispheric asymmetries were also examined. The 

analyses took three stages. The first set of analyses looked for cortico-cortical 

pathways from vOT with no further constraints. The second set investigated the 

more specific hypotheses that brain regions functionally connected to vOT are 

linked to vOT via direct cortico-cortical connections.  Additional seed masks 

encompassing such regions were created and utilised in a two region-of-interest 

(ROI) approach.  The final set of analyses investigated the hypothesis that middle 

occipital gyrus may be the common source of input for SMG and vOT, again using 

the two ROI approach. 

 

 

5.2. MATERIAL AND METHODS 

 

Participants 

10 right-handed, healthy volunteers participated in the experiment (6M, 4F).  The 

ages of the participants ranged from 18 to 37 (M=24). No history of 

neuropsychiatric conditions or substance abuse was reported.  All participants 

provided informed consent. The experiment was approved by the Berkshire 

Research Ethics Committee (Reference: 06/Q1602/20). 

 

DW-MRI acquisition 

DW-MRI data were acquired on a 1.5 T Siemens Sonata MRI scanner with 40 

mT/m gradients at the Oxford Centre for Clinical Magnetic Resonance Research by 

Dr. Joseph Devlin.  An echo-planar imaging sequence was used (60 contiguous 

axial slices, 2.5 mm thickness, in-plane resolution of 2.5 mm × 2.5 mm) and three 

sets of data were acquired for each participant.  Each set comprised 3 non-

diffusion-weighted and 60 diffusion-weighted images acquired with a b-value of 
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1000 s/mm2 uniformly distributed across 60 gradient directions. The diffusion 

gradients were uniformly distributed through space using a scheme optimised for 

white matter tractography (Jones et al., 1999).  In addition, a high-resolution 

structural image (3D Turbo FLASH; TR=12 ms; TE= 5.65 ms; flip angle=19°; 1 × 1 × 

1 mm) was also acquired for anatomic localisation.  

 

Tractography 

The data were corrected for eddy currents and small head movements by 

registering them to an initial reference volume (Jenkinson et al., 2002).  The three 

data sets were then averaged to improve the signal-to-noise ratio and the results 

were used to compute 3D probability distributions of fibre direction at each voxel 

(Behrens et al., 2007; Behrens et al., 2003b). Probabilistic tractography (Behrens 

et al., 2003b) was run from several different seed masks using the FMRIB's 

Diffusion Toolbox (FDT 2.0, http://www.fmrib.ox.ac.uk/fsl/fdt).  With this method, 

a pathway starts in a seed voxel.  The spatial probability density function at that 

voxel is randomly sampled and the path moves one step (0.5mm) in the sampled 

direction.  This process is repeated until the path reaches a pre-determined end 

point such as a target region or the edge of the brain where it stops.  The 

individual steps are then integrated into a continuous path.  The same process is 

repeated thousands of times from each voxel in the seed mask to generate an 

empirically-defined set of paths from the seed region. 

 

For all analyses, the tracing continued until i) it reached the edge of the brain; ii) it 

intersected a termination mask (see below) used to prevent paths from “jumping” 

over intervening sulci; or iii) it intersected an exclusion mask (see below) so that 

any inter-hemispheric paths via the posterior corpus callosum and paths that 

travel towards the spine via brain stem, both of which were not of interest, were 

excluded from the analyses.  Moreover, since the tractography algorithm could 

allow tracing of paths that loop back on themselves, a loop check was employed 

to ensure that such paths would be terminated.  Similarly, the angle at which a 

http://www.fmrib.ox.ac.uk/fsl/fdt
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path is allowed to turn (i.e., a curvature threshold) was ±80 degrees, in order to 

avoid anatomically implausible trajectories.  Paths were disregarded if their 

probability of connection did not survive the threshold (see below). 

 

Three different sets of analyses were conducted.  The first set of tractography 

analyses seeded the vOT region to identify paths linking vOT to other brain 

regions.  This set of analyses was blind to any a priori hypotheses about specific 

regions where the paths might terminate.  However, the search was limited to the 

ipsilateral neocortex.  The first tractography analyses used 25,000 samples per 

voxel in the seed mask to represent the population of pathways as accurately as 

possible.  This is a very conservative approach as previous studies typically found 

that 5000 or fewer samples were sufficient to reach convergence (Behrens et al., 

2007; Carreiras et al., 2009; Eickhoff et al., 2010; Tomassini et al., 2007).  Indeed, 

my own analysis with the current data confirmed that although paths traced at 

5000 samples had lower probability and did not extend as far as the paths traced 

at 25,000 samples, when no thresholding was applied they largely overlapped and 

this difference diminished when the same threshold of 0.1% of the number of 

samples from a single voxel was applied (Figure 5.1).  In other words, the results 

were essentially identical with either 5,000 or 25,000 samples, but the latter was 

chosen to optimise sensitivity.  

 

A second set of analyses investigated the more specific hypotheses that brain 

regions functionally connected to vOT such as the supramarginal gyrus (SMG), 

angular gyrus (ANG) and Broca’s area (pars opercularis [POp] and pars triangularis 

[PTr]) are linked to vOT via direct cortico-cortical connections.  These regions 

were chosen based on the literature reporting distinct functional connections 

between vOT and these regions (Booth et al., 2002; Horwitz et al., 1998; Mechelli 

et al., 2005).  A two region-of-interest (ROI) approach was used in which each vOT 

mask was coupled with each non-vOT mask (e.g., anterior vOT & SMG, anterior 

vOT & ANG), resulting in 24 separate analyses (3 vOT regions  4 non-vOT regions 
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 2 hemispheres).  This tractography method traces paths from each of the masks 

and only retains paths that reached the other mask increasing sensitivity by 

considering paths in both directions and minimising the effect of accumulated 

errors.  In addition, as these analyses delineate the paths between the two ROIs, 

the trajectory of the path between them can be more easily identified than a 

single ROI analyses.  Moreover, when both seed masks are placed in the cortical 

grey matter with two ROI approaches, it can be ensured that the traced paths 

reach, rather than pass by, the grey matter.  Since this is a more sensitive method 

than the one used in the first set of analyses, the number of samples traced from 

each voxel was 5000 rather than 25000 used in the first analysis.  

 

 

 

Figure 5.1: Comparison of analyses that used 5000 (red) and 25000 (blue) samples 

seeded from anterior vOT in the left hemisphere in one subject (standard space). Top 

panel shows the results with no thresholds and bottom panel shows the same results 

with the threshold of 0.1% of the number of samples from a single voxel (i.e., 5 for 5000 

samples and 25 for 25000 samples). The difference between the two analyses 

diminishes greatly when thresholding is applied indicating no significant differences in 

the identified pathways. 
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A third set of analyses investigated the hypothesis that middle occipital gyrus may 

be the common input source for SMG and vOT.  A two region-of-interest (ROI) 

approach was used with this set of analyses in which the MOG mask was coupled 

with each of the vOT masks and with the SMG mask, resulting in 8 separate 

analyses ( [SMG & 3 vOT regions]  2 hemispheres).  As with the second set of 

analyses, the number of samples traced from each voxel for the third set of 

analyses was 5000.  

 

Anatomical regions-of-interest 

Anatomical regions of interest were defined on each participant’s high-resolution 

T1 image after translating and rotating this into the standard reference space 

defined by the Montreal Neurological Institute MNI-152 template using a rigid 

body transformation.  These masks were used in the tractography analyses as 

seed regions, as target regions or as constraints such as termination and exclusion 

masks (see below) for tracing.  

 

Ventral occipito-temporal (vOT) masks 

Three rostro-caudal positions along occipitotemporal sulcus were chosen based 

on posterior-to-anterior changes in both functional specialisation (Ben-Shachar et 

al., 2007a; Ben-Shachar et al., 2007b; Mechelli et al., 2005; Mechelli et al., 2004; 

Moore and Price, 1999; Price et al., 2003) and functional connectivity (Mechelli et 

al., 2005; Seghier et al., 2008).  Each mask was manually traced over contiguous 

coronal slices.  The medial edge of the mask was the crest of fusiform gyrus and it 

extended to the crest of inferior temporal gyrus.  This included the lateral part of 

the fusiform gyrus, the entire occipito-temporal sulcus (medial wall, fundus and 

lateral wall), and the medial inferior temporal gyrus (Figure 5.2a).  Where a split 

fusiform gyrus was present (4 out of 20 hemispheres), only the lateral fusiform 

gyrus was used for masking. The most anterior vOT mask encompassed y= –42 to 

–46, the middle vOT mask from y= –52 to –56 and the posterior vOT mask from y= 

–62 to –66 in standard space coordinates. Masks were defined in each 
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hemisphere in each participant.  From the total of 60 masks (anterior, middle, 

posterior vOT in LH and RH), 3 were lost due to unusual gyrification in the form of 

medial-to-lateral sulci that made tracing vOT masks problematic (Figure 5.2b).  In 

addition, in one hemisphere the left middle vOT mask was excluded due to a 

medial-to-lateral sulcus cutting through the location of the seed mask (Figure 

5.2c).  As a result, 29 left vOT masks (10 x anterior, 9 x middle, 10 x posterior) and 

27 right vOT masks (9 x anterior, 9 x middle, 9 x posterior) were included in the 

analyses for a total of 56 seed masks.  
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Figure 5.2: vOT masks. a) From left to right: anterior, middle and posterior vOT are 

masked in yellow, blue and red respectively.  vOT masks included the lateral crest of 

fusiform gyrus and the medial crest of inferior temporal gyrus. b) Unusual gyrification 

(indicated with red ovals) made it impossible to identify the lateral crest of fusiform 

gyrus necessary for masking. c) Interfering sulci. The presence of a sulcus cutting 

through fusiform gyrus at around y = –55 (indicated with green lines) meant masking left 

middle vOT was not possible for this subject. 
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Non-vOT masks   

An additional five cortical territories were anatomically identified: supramarginal 

gyrus, angular gyrus, pars opercularis, pars triangularis and middle occipital gyrus.  

The first four are areas reported to be functionally connected with vOT (Bitan et 

al., 2005; Bokde et al., 2001; Horwitz et al., 1998; Kawabata Duncan et al., 2013; 

Mechelli et al., 2005; van der Mark et al., 2011).  The latter was included in order 

to test the hypothesis that functional connectivity between vOT and SMG resulted 

from the regions receiving a common source of input, namely MOG.  All five 

regions were automatically delineated using Freesurfer’s cortical parcellation tool 

(Desikan et al., 2006; Fischl et al., 2004).  An automated process was employed in 

order to avoid any systematic bias in manually identifying these regions.  Both 

regions of the inferior parietal lobule (SMG and ANG) as well as the subdivisions 

of Broca’s area (POp and PTr) have greater anatomical variability than vOT, which 

is relatively uniform with clear anatomical landmarks.  Specifically, in the inferior 

parietal lobule (IPL), while the sulcus intermedius primus (Jensen sulcus) 

separates SMG and ANG, there is high variability in the presence of additional gyri 

anterior or, more importantly, posterior to SMG (Kiriyama et al., 2009; Naidich et 

al., 1995). These gyral patterns make the boundary between SMG and ANG 

uncertain since it is not always straightforward to see whether such an extra gyrus 

belongs to SMG or ANG. Similarly in the inferior frontal gyrus, there is high 

variability in the configuration of the horizontal and ascending rami of the Sylvian 

fissure (Juch et al., 2005), which together define the subdivision of POp and PTr 

(e.g., V-shape, Y-shape).  Moreover, a diagonal sulcus, whose presence is also 

highly variable (Keller et al., 2007; Naidich et al., 1995), can be mistaken for the 

ascending ramus of the Sylvian fissure.  Consequently, an automated, unbiased 

method was used to delineate these regions.  Specifically, for each subject, first 

the pial surface and the border of the grey and white matter were delineated for 

each non-vOT ROI, based on the anatomical region labels generated by 

Freesurfer.  These were then transformed into volumes and converted into FSL 

space (Figure 5.3).  Next, the space between the pial surface and the grey/white 

border was manually filled in.  Visual inspection found that in some cases the 

results included brain regions that did not belong to the cortical territories to be 



131 

 

delineated or did not include the sections that were required. In such cases, 

manual corrections were made.   

 

 

Figure 5.3: Delineated pial surface (in red lines) and the border of grey and white matter 

(in blue lines) for angular gyrus in LH. The space between the red and blue lines was 

then manually filled in.   

 

 

To ensure that both the manually and automatically defined anatomical masks 

only include grey matter, each participant’s T1-weighted structural scan was 

segmented into grey matter, white matter and cerebro-spinal fluid (CSF) using a 

probabilistic tissue segmentation algorithm (Zhang et al., 2001).  This provides a 

probability that each voxel is grey matter, white matter or CSF with the sum 

totalling 100%.  A whole-brain grey matter mask was generated by selecting all 

voxels that had at least a 20% change of being gray matter.  This was then applied 

to the ROI masks such that only voxels that had a 20% or greater chance of being 

grey matter were included.  In other words, white matter and CSF were 

systematically excluded from all ROI masks.  

 

Finally, in order to minimise erroneous and irrelevant paths in the tractography 

analyses, two additional masks were defined.  First, the tractography algorithm 

often ignores sulci given the relatively large voxel size used in DW-MR images. 

Therefore, when unconstrained, it may identify anatomically impossible tracts 
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such as those going from one gyrus to another by crossing a sulcus (“jumping 

sulci”).  Similarly, paths may run from the ventral surface of the cerebrum into 

cerebellum crossing the interstice.  In order to prevent such paths, sulci in 

occipital and posterior temporal lobes as well as the gap between cerebrum and 

cerebellum were manually traced in each hemisphere.  It was then combined with 

the CSF mask for the whole brain and used as a “termination mask” (Figure 5.4a). 

This ensured that the paths generated by the tracing algorithm were terminated 

when they reach any voxels within this mask and did not continue further.  

Further additions were made in the parietal and frontal lobes when tracts were 

found to cross sulci after the tractography was run.  In other words, the inclusion 

of a termination mask helped to avoid false positive due to the coarse spatial 

resolution of the DWI data (2.5  2.5  2.5mm) relative to the anatomical image 

(1  1  1mm).  Importantly, paths that encounter termination masks contribute 

to the calculation of the connectivity distribution. That is, the paths that have 

eventually been terminated are not deleted and the number of paths that go 

through the voxels is still taken into account in the calculation of the discretised 

spatial probability distribution, which is the number of paths going through the 

voxel divided by the total number of samples (the number of samples multiplied 

by the number of voxels in the seed).  Second, since the aim of the study was to 

investigate the anatomical basis of functional connectivity of vOT with other 

cortical regions within the same hemisphere, inter-hemispheric paths and those 

directed subcortically were irrelevant. Therefore, in order to restrict the 

investigation to cortico-cortical intra-hemispheric connections, masks comprised 

of the midline (i.e., x= 0) and the brain stem at z= –10 were defined and used as 

an “exclusion mask” (Figure 5.4a).  Tracts that reach voxels within this mask such 

as inter-hemispheric paths via corpus callosum and those that travel towards the 

spine via brain stem were completely eliminated and thus did not contribute to 

the connectivity distribution.  
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Figure 5.4: Anatomical masks. a) Termination mask comprised of manually traced sulci 

and CSF mask at y = –61. Also shown is the midline included in the exclusion mask in 

dark orange. The masked brain stem in the exclusion mask is not shown. b) Masks for 

supramarginal gyrus in dark blue, angular gyrus in red and middle occipital gyrus in light 

green at x = –47. STS = superior temporal sulcus. c) Masks for pars opercularis in light 

blue and pars triangularis in orange at x = –44.   

 

 

Thresholding 

Analyses of the tractography results require thresholding to eliminate noise while 

retaining meaningful paths. Thresholds here determine the minimum number of 

pathways going through a single voxel for that voxel to be included in the results. 

 

In the absence of a “gold standard” for thresholding tractography results (details 

in Chapter 2), the vOT single mask analyses were first compared across various 

thresholds in order to examine the effects of thresholding at different levels. 

Figure 5.5 shows the results of a single seed tractography analysis originating in 

anterior vOT in the left hemisphere thresholded at 0, 1, 5, 10, 25 and 50 tracts for 

all subjects.  As can be seen by these comparisons, the difference is minor across 
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thresholds of above 5 whereas even thresholds of 1 or 5 eliminate noise (speckle-

like paths) relative to no threshold.  Therefore, for the vOT single seed analyses, 

the results were thresholded at 25 to reduce noise and maintain a conservative 

estimate of likely pathways.  
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Figure 5.5: Tractography results seeded from anterior vOT in the left hemisphere with 

25000 samples shown on a single parasagittal plane (X= –32) for all subjects (S1-S10) in 

standard space at six different levels of thresholding (0, 1, 5, 10, 25, 50). The basic 

pattern of results remains largely the same over the range of thresholds.  However noise 

(speckle-like paths) can clearly be seen in the lower thresholds (0, 1) but is mostly 

absent for thresholds of 5 or larger. The differences in the results become marginal 

when the threshold is greater than 5.  
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5.3. RESULTS 

 

vOT single seed analyses 

 

The aim of this analysis was to conduct a search for pathways linking vOT to other 

ipsilateral cortical territories.  Tractography from all vOT seed masks generated 

widespread paths terminating in temporal pole areas, middle/inferior occipital 

regions and prefrontal cortex. The trajectories of the inferior longitudinal 

fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were clearly 

delineated.  In addition, a set of local U-fibres within vOT were identifiable.  These 

tracts were seen regardless of the rostro-caudal position or hemisphere of the 

seed.  

 

The paths from each vOT seed mask spread superiorly into the deep white matter 

and laterally into inferior temporal gyrus as well as to the adjacent vOT seed 

masks before travelling to further regions.  This can be illustrated by changing the 

thresholds from high to low since the local connections have higher probability 

than further long-distance connections (Figure 5.6).  
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Figure 5.6: Tractography results seeded from left and right middle vOT seed masks in 

one subject (standard space). The paths (in red) are shown at different thresholds of 

25000, 2500, 250 and 25 in order to illustrate the course of the tracts.  Also shown are 

the vOT seed masks in yellow (ant: anterior vOT; mid: middle vOT and post: posterior 

vOT). Top row: axial views at z = –13; second row: coronal views at y = –54; third row: 

parasagittal views at x = –35 and bottom row: parasagittal views at x = 35.  

 

 

The paths traced from vOT could be seen to take three separate courses.  First, a 

path can be seen running across temporal and occipital lobes, following a 

trajectory inferior to the lateral ventricles (green arrow heads in Figure 5.7a).  At 

the posterior end it reached inferior/middle occipital regions in most cases, 

posterior to the temporoparietal fibre intersection area (TPFIA) described by 
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Martino and colleagues (2013a) where seven white matter tracts intersect (Figure 

5.8).  At the anterior end it reached the temporal pole extensively in most cases in 

its dorsal and ventral, as well as lateral and medial, parts.  This bundle of 

associative fibres was identified in 96% of the cases in RH and 93% in LH. The 

posterior and anterior termination points of this path and the number of cases 

(percentage) in which these were found are listed in Table 5.1.  The trajectory and 

these termination points are consistent with previous anatomical (Crosby et al., 

1962), dissection (Türe et al., 2000) as well as DTI (Catani et al., 2002; Catani et al., 

2003; Wakana et al., 2004; Yeatman et al., 2013) reports of the inferior 

longitudinal fasciculus (ILF) (Catani et al., 2003; Crosby et al., 1962).  
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Figure 5.7:  Paths traced from left posterior vOT in a single subject (standard space) is 

shown in red. There were no systematic differences across the rostro-caudal position or 

hemisphere of the seed masks. The top panel a): IFOF (labelled with yellow arrow 

heads) and ILF (labelled with green arrow heads) can be identified. ILF reaches the 

temporal pole in the anterior and middle occipital gyrus at the posterior end. The 

characteristic curve of IFOF wrapping around the bulb of the occipital horn of the lateral 

ventricle and the putamen can be seen at x = –23. At the posterior end this paths branch 

out superiorly and inferiorly (x = –31) and at the anterior end it reaches orbitofrontal 

cortex. The posterior terminations of IFOF and ILF merge and are difficult to visually 

separate. The paths are thresholded at 25 and the termination points are indicated with 

white circles. The bottom panel b): Local U-fibres (labelled with light blue arrow heads) 

linking three rostro-caudal vOT sub-regions. The locations of anterior, middle and 

posterior vOT seed masks in blue can be easily seen in more lateral slices while the U-

shape of these paths becomes clearer as it moves more medially (at x = –28). The paths 

traced from middle vOT are shown at a higher thresholded at 2500 in order to 

demonstrate the U-fibres. 
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Figure 5.8: The schematic representation of the tracts recovered by diffusion tensor 
imaging tractography, showing the temporoparietal fibre intersection area (TPFIA) in a 
left hemisphere (rectangular box with dotted lines). 1 = Vertical* portion of the superior 
longitudinal fasciculus; 2 = arcuate fasciculus; 3 = middle longitudinal fasciculus; 4 = 
inferior longitudinal fasciculus; 5 = inferior fronto-occipital fasciculus; 6 = optic 
radiations; 7 = tapetum.  Abbreviations: CS = central sulcus; MTG = middle temporal 
gyrus; PCG = precentral gyrus; SMG = supramarginal gyrus; STG = superior temporal 
gyrus. Adapted with permission from Lippincott Williams and Wilkins/Wolters Kluwer 
Health: Neurosurgery 72, ons87-ons97, Martino et al. (2013a), copyright (2013). *In the 
original paper, this tract (1) is labelled as “horizontal” portion, which appears to be an 
error given the orientation of this fibre bundle.  Indeed, the same tract is labelled as 
“vertical segment of the SLF” in another paper (Martino et al., 2011).  

 

 

A second path from vOT courses dorsally and curves forward over the occipital 

horn of the lateral ventricle forming an arch (yellow arrow heads in Figure 5.7a).  

At approximately at the level of anterior commissure, it passes ventrolateral to 

the putamen, within the extreme/external capsule, and proceeds anteriorly 

towards orbitofrontal cortex. In some cases, it then splits in the orbitofrontal 

cortex into anterior, posterior or lateral orbital gyri. The trajectory and 

terminations of this path are consistent with the inferior fronto-occipital 

fasciculus (IFOF), which is suggested to be connected to fusiform gyrus at the 

posterior end (Crosby et al., 1962) and the orbitofrontal cortex at the anterior end 

(Martino et al., 2010a; Sarubbo et al., 2011).  This path was identified in 89% of 

the cases in LH and 93% in RH (Table 5.1).  It is worth noting, that with the current 

resolution of the DTI images (2.5 x 2.5 x 2.5mm), it is impossible to differentiate 

the external and extreme capsules based on the DWI data, but studies in human 
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brains using Klingler’s dissection technique (Klingler, 1935; Klingler and Gloor, 

1960; Ludwig and Klinger, 1956), demonstrate that the IFOF is part of both 

extreme and external capsule (Ebeling and Cramon, 1992; Kier et al., 2004; 

Martino et al., 2011; Türe et al., 2000; Wang et al., 2011a).  Within the frontal 

lobe however, in only a small number of cases did this path terminate in Broca’s 

area, a region implicated to be functionally connected to vOT.  Specifically, only 

13% of the paths terminated in POp and 14% terminated in PTr. 

 

Consistent with a review of the white matter tracts from DTI, anatomical drawings 

and gross dissection photographs (Jellison et al., 2004), these two tracts merge at 

the posterior end.  From there they branch out superiorly towards middle 

occipital regions and ventrally towards inferior occipital and temporal regions 

(Figure 5.7 & Table 5.1). In around half of the cases they also reached angular 

gyrus (56% in RH; 48% in LH), most of which was towards the posterior part of 

angular gyrus where it boarders with the superior part of middle occipital gyrus.  

However, hardly any paths reached supramarginal gyrus (0% in RH; 7% in LH), 

another IPL region implicated to be functionally connected to vOT.   
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Table 5.1:  Single seed analyses. The number (and percentages) of cases in which IFOF 

and ILF were identified are displayed for each hemisphere and each rostro-caudal mask. 

Also shown are the termination points of the paths and their number and percent of 

cases in which these were found. 

Seed masks RH LH 

 ant 
(N = 9) 

mid 
(N = 9) 

post 
(N= 9) 

ant 
(N = 10) 

mid 
(N = 9) 

post 
(N = 10) 

Identified fasciculus 

IFOF 
 

9/9 
(100%) 

8/9 
(89%) 

7/9 
(78%) 

9/10 
(90%) 

7/9 
(78%) 

9/10 
(90%) 

24/27 (89%) 25/29 (86%) 

ILF 

9/9 
(100%) 

9/9 
(100%) 

8/9 
(79%) 

10/1 
(100%) 

8/9 
(89%) 

9/10 
(90%) 

26/27 (96%) 27/29 (93%) 

Terminations 

Orbitofrontal 
cortex 

7/9 
(78%) 

7/9 
(78%) 

7/9 
(78%) 

7/10 
(70%) 

7/9 
(78%) 

9/10 
(90%) 

21/27 (78%) 23/29 (79%) 

Pars Opercularis 

1/9 
(11%) 

2/9 
(22%) 

0/9 (0%) 
0/10 
(0%) 

1/9 
(11%) 

3/10 
(30%) 

3/27(11%) 4/29 (14%) 

Pars Triangularis 

0/9 
(0%) 

1/9 
(11%) 

0/9 
(0%) 

0/10 
(0%) 

1/9 
(11%) 

6/10 
(60%) 

1/27 (3%) 7/29 (24%) 

Angular gyrus 

5/9 
(56%) 

5/9 
(56%) 

5/9 
(56%) 

4/10 
(40%) 

4/9 
(44%) 

6/10 
(60%) 

15/27 (56%) 14/29 (48%) 

Supramarginal 
gyrus 

0/9 
(0%) 

0/9 
(0%) 

0/9 
(0%) 

0/10 
(0%) 

0/9 
(0%) 

2/10 
(20%) 

0/27 (0%) 2/29 (7%) 

Middle occipital 
gyrus 

9/9 
(100%) 

8/9 
(89%) 

8/9 
(89%) 

10/1 
(100%) 

9/9 
(100%) 

10/1 
(100%) 

25/27 (93%) 29/29 (100%) 

Temporal pole 

9/9 
(100%) 

9/9 
(100%) 

9/9 
(100%) 

10/1 
(100%) 

8/9 
(89%) 

9/10 
(90%) 

27/27 (100%) 27/29 (93%) 
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In addition to the long-range association fibres, a set of local U-fibres were also 

identified from each vOT seed mask. These local U-shaped paths become 

identifiable at a higher threshold since it eliminates paths with lower connection 

probability and leaves U-fibres, which have higher connection probability to the 

vOT seeds (Figure 5.7b).  More specifically, they linked adjacent vOT seed masks 

and were located lateral to the ILF, consistent with previous studies (Catani et al., 

2003; Mandonnet et al., 2009).  This local connection is part of the occipito-

temporal projection system, a series of short U-fibres connecting temporal lobe 

with the visual association cortex (Catani et al., 2003; Tusa and Ungerleider, 

1985), distinct from ILF (Catani et al., 2003).   

 

In summary, the first set of analyses that seeded vOT robustly identified the ILF 

that terminated in the anterior temporal pole at the anterior end as well as in the 

middle occipital regions at the posterior end.  It also demonstrated the IFOF in 

most cases, terminating in the orbitofrontal cortex. Moreover, local U-fibres 

linking the adjacent vOT sub-regions were also found.  However, despite claims 

that vOT provides input to higher order association areas such as inferior parietal 

lobule or Broca’s area during reading, evidence for direct anatomical connections 

between these two regions was not strong.  There are two potential explanations: 

it is possible that the current, undirected tractography lacked sensitivity to detect 

these paths or, it may be that vOT is indirectly connected to these regions.  For 

example, the functional link between vOT and SMG (Kawabata Duncan et al., 

2013; van der Mark et al., 2011) may be due to a common driving input such as 

the middle occipital gyrus rather than a direct path between them. Therefore 

additional analyses were conducted to investigate these possibilities.  These took 

advantage of the fact that there were strong prior hypotheses concerning the 

anatomical pathways to enhance detection sensitivity using a hypothesis-driven 

two-ROI approach. 
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Two-ROI analyses 

 

This set of two ROI analyses investigated the more specific hypotheses that brain 

regions functionally connected to vOT such as the supramarginal gyrus (SMG), 

angular gyrus (ANG) and Broca’s area (pars opercularis (POp) and pars triangularis 

(PTr)) are linked to vOT via direct cortico-cortical connections.  

 

vOT and Broca’s area 

Many studies report functional connectivity between vOT and Broca’s area (e.g., 

Booth et al., 2002; Mechelli et al., 2005) and thus it is possible that this is 

mediated by direct anatomical connections linking these regions via IFOF.  Even 

though my first analysis robustly identified the IFOF, there was only weak 

evidence of a path linking vOT to Broca’s area.  Consequently, a second set of 

analyses were conducted to investigate this further.  The two main sub-regions of 

Broca’s area, POp and PTr, were investigated separately and the results provided 

additional evidence for a pathway linking vOT to both POp and PTr.  On the whole, 

the trajectory of the pathways linking vOT to POp and PTr were very similar, both 

taking two separate courses from vOT.  The first pathway had the same trajectory 

as that of the IFOF described earlier (Figure 5.9).  It proceeded from vOT 

anteriorly towards the orbitofrontal cortex, where it appeared to merge with the 

second path (see below) at the level of either the anterior or middle short gyrus of 

the insula before reaching separate parts of POp.  Specifically, the IFOF 

terminated in its ventral portion while the second pathway terminated in its 

dorsal portion (Figure 5.10). For PTr, they travelled slightly further on and merged 

at a slightly more anterior location, dorsomedial to the junction of the anterior 

and superior peri-insular sulci.  In some cases, it then split into PTr and anterior, 

posterior or lateral orbital gyri.  As with POp, the IFOF terminated in the ventral 

and the second path terminated in the dorsal portions of PTr. The second 

pathway proceeded from vOT anteriorly to join the TPIFA, from which it curved 

antero-superiorly forming an arch.  It then continued anteriorly towards the 

frontal lobe at the level superior to the claustrum (consistent with the superior 
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longitudinal fasciculus, SLF) until it merged with the IFOF before terminating in 

the dorsal portions of POp or PTr. There were no systematic differences across 

the rostro-caudal vOT seeds or hemispheres although there was a trend that 

these pathways to be found more in the posterior vOT (Table 5.2).  Dissection 

studies have demonstrated that the superficial layer of IFOF terminates at inferior 

frontal gyrus (POp and PTr) at the anterior end and at posterior basal temporal 

regions including fusiform gyrus at the posterior end (Martino et al., 2010a; 

Sarubbo et al., 2011) and current data showing IFOF between vOT and Broca’s 

area are consistent with this.  In contrast, the second pathway seemed to be a 

combination of distinct fasciculi given its trajectory and is thus likely to be a false 

positive. This path was probably recovered, not as a true path between these 

regions, but as a result of the posterior part of IFOF merging with SLF to around 

the occipital horn of the lateral ventricle where numerous white matter bundles 

intersect (i.e., the TPIFA Martino et al., 2013a).  This view was further 

strengthened by the finding that here were no cases where only the second 

pathway was recovered in the absence of the IFOF at the given threshold. 

 

 

 

Figure 5.9: Tractography results (in red to yellow) for between vOT and posterior PTr in 

one subject (standard apace). The characteristic double-hook-like trajectory of the IFOF 

can be identified as it moves from lateral (x = –44) to medial slices (x = –28) 
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Table 5.2: The number and the percentages of cases showing paths connecting vOT and 

Broca’s area via IFOF. 

  RH LH 

 ant mid post ant mid post 

Pars 
Opercularis 
(30%) 

0/9 3/9 4/9 1/10 3/9 6/10 

7/27(26%) 10/29 (34%) 

Pars 
Triangularis 
(44.5%) 

3/9 5/9 4/9 2/10 4/9 7/10 

12/27(44%) 13/29(45%) 

 

 

 

 

Figure 5.10: The IFOF (yellow arrow heads) and the second pathway (blue arrow heads), 

reaching POp separately, from the tractography results (in red to yellow) for posterior 

vOT and POp in one subject (standard apace). a) The paths entering or exiting the POp 

mask (yellow) separately; the IFOF in its ventral portion and the second pathway in its 

dorsal portion. Shown on a coronal slice, at y = 14. b) Trajectory of IFOF and SLF on the 

parasagittal slice at x = –33. 

 

 

Given the strong possibility that the second pathway, which merged with the IFOF 

in the vicinity of Broca’s area was a false positive, it was crucial to confirm that the 

IFOF independently reached Broca’s area.  Therefore, I investigated this by 

running the same analyses with an additional exclusion mask placed where the 

SLF passed through in order to block the second pathway (Figure 5.11).  If the 

IFOF was indeed reaching Broca’s area via the SLF, these analyses would eliminate 

the IFOF as well as the second pathway since any paths between vOT and Broca’s 
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area that reached the exclusion mask would be discarded.  Consistent with my 

earlier visual inspection, these analyses still recovered the IFOF, but not the 

second pathway, confirming the IFOF between vOT and Broca’s area, independent 

of the SLF.  

 

 

 

Figure 5.11: Comparison of the tractography results between vOT and Broca’s area with 

(in blue to light blue) and without (in red to yellow) an additional dorsal exclusion mask.  

While the original tractography (in red to yellow) resulted in both the IFOF and the 

second pathway via the SLF, the new one with the additional dorsal exclusion mask 

recovered only the IFOF, confirming that this pathway independently reached Broca’s 

area. These are shown with no thresholding in order to demonstrate that this difference 

is not due to the arbitrary threshold.  a) & b): The tractography results for posterior vOT 

and POp in LH. Only the IFOF reaches the POp seed mask (yellow) with the dorsal 

exclusion mask placed at z = 24 to 26 (in green). c) & d): The tractography results for 

anterior vOT and PTr in RH. The dorsal exclusion mask was placed at z = 30 to 31 and y = 

–7 to 8, forming a 90-degree angle seen in a parasagittal slice.  
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vOT and angular gyrus (ANG) 

Connections between vOT and ANG have been implicated since the time of 

Dejerine (1892).  In the first set of analyses, paths were found between these two 

regions in approximately half of the cases. However, since these paths pass 

through the TPIFA (Martino et al., 2013a) where many white matter bundles 

intersect, it was not easy to visually delineate their exact course and determine 

whether the paths were genuine or a false positive. The two-ROI analyses 

between vOT and ANG increased evidence for paths connecting these two 

regions, particularly in the left hemisphere (Table 5.3).  

 

 

Table 5.3: The number and the percentages of cases showing paths connecting vOT and 

angular gyrus. 

 RH LH 

 ant mid post ant mid post 

Angular gyrus 

(82%) 

8/9 7/9 5/9 10/10 7/9 9/10 

20/27(74%) 26/29 (96%) 

 

 

There were two different courses to the recovered paths, the anterior and the 

posterior ones (Figure 5.12a).  Both paths ran vertically between vOT and ANG. 

The anterior one, identified at around y = –48 to –55 travelled anteriorly from vOT 

into the ILF and superiorly into the IFOF and/or the arcuate fasciculus (AF).  At 

around the deep white matter of the ascending posterior segment of the parallel 

sulcus, it then branched dorsolaterally into the ANG in the form of U-fibres linking 

the adjacent areas within ANG (Figure 5.12b).  Given this trajectory, this path is 

likely to be a combination of these separate fasciculi, rather than an independent 

path.  In contrast, the posterior path, identified at around y= –64 to –71, was 

continuous.  From the fusiform and inferior temporal gyri in vOT it travelled 

superiorly towards the posterior portion of angular gyrus (Figure 5.12c).  The 

location and the trajectory of this path is consistent with the vertical (or 
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perpendicular) occipital fasciculus (VOF) of Wernicke, described by early 

anatomists (Crosby et al., 1962; Déjerine, 1895; Gray and Lewis, 1918; Greenblatt, 

1973; Greenblatt, 1976; Herrick, 1915; Larsell, 1951; Wernicke, 1900, 1903) and 

reported in recent DTI studies (Wakana et al., 2004; Yeatman et al., 2013).  This 

white matter bundle connects fusiform gyrus with posterior parietal region 

passing through the front part of the occipital lobe  (Crosby et al., 1962; Gray and 

Lewis, 1918).  However, the number of cases where this path was found in the 

current data was small (Table 5.4).  It was found in the left hemisphere more 

(24%) than the right (7%).  
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Figure 5.12: Paths (red to yellow) recovered between angular gyrus and posterior vOT in 

one subject (standard space) in left hemisphere.  Also shown are the ANG seed mask 

and the posterior vOT seed masks in yellow.  a) There were two different courses to the 

recovered paths: the anterior one at around y = –48 to –55 (light green arrow heads) and 

the posterior one at around y = –64 to –71 (blue arrow heads), shown on a parasagittal 

slice at x = –33.  b) The anterior path reaching ANG in the form of U-fibres linking the 

adjacent areas in ANG at z = 38.  c) The posterior path. This continuous vertical path 

corresponds to the posterior, rather than the anterior, path seen on the parasagittal 

slice (indicated by the green crosshair). 

 



151 

 

Table 5.4: The number and the percentages of cases showing VOF between vOT and 

ANG  

RH LH 

ant mid post ant mid post 

0/9 1/9 1/9 4/10 2/9 1/10 

2/27(7%) 7/29(24%) 

 

 

In order to ensure that this is indeed an independent vertical path, these results 

were inspected on the colour-coded orientation map using the original DW-MRI 

images from the same subject (Figure 5.13). This type of display allows the 

diffusion vectors to be represented with the RGB coding: left-right (Red), anterior-

posterior (Green) and superior-inferior (Blue) orientations and the intensity 

corresponds to the fractional anisotropy (FA, brighter = higher). These maps, 

however, normally show the images of the entire brain making it hard to identify 

the exact position of the paths recovered by the tractography. Therefore the 

tractography results were registered to the FA image and used to multiply the 

diffusion vector images, in order to make a “cut out” image of the tractography 

results on the colour-coded orientation map.  This displayed the posterior path 

primarily in blue (the superior-inferior direction), separate from the IFOF and the 

AF, which are in green (the anterior-posterior orientation).  This indicates that the 

posterior path is independent of adjacent IFOF and/or AF, consistent with Wakana 

and colleagues (2004), unlike the anterior path which corresponds to the green on 

this map. 
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Figure 5.13: The colour-coded orientation map showing the results for the two-ROI 

analyses for posterior vOT and ANG in one subject overlaid on the subject’s native 

structural image in diffusion space.  The intensity corresponds to the fractional 

anisotropy (brighter = higher) and the colours indicate the direction of the diffusion: 

left-right (red), anterior-posterior (green) and superior-inferior (blue) orientations.  The 

posterior path can be seen primarily in blue indicating that this runs vertically, separate 

from IFOF and AF, which are in anterior-posterior orientation (green).  

 

 

vOT and supramarginal gyrus (SMG) 

As with ANG, functional connectivity between vOT and SMG has also been 

reported (e.g., Kawabata Duncan et al., 2013; van der Mark et al., 2011).  Direct 

pathways between these regions were hardly observed in the first analyses (0% in 

RH and 7% in LH).  The evidence for such a pathway was still difficult to obtain 

even with two-ROI analyses (Figure 5.14).  The recovered paths first travelled 

from vOT antero-superiorly to join the ILF.  Then it proceeded postero-superiorly 

along the ILF until it reached the occipital horn of the lateral ventricle.  From there 

it briefly travelled antero-inferiorly along the curve of the IFOF before joining the 

AF/SLF.  Finally it took a sharp turn dorsolaterally into SMG.  Although these paths 

were found in 52% in RH and 34% in LH (Table 5.5), they are most likely to be a 

false positive - probably the result of separate fasciculi combined by the 

tractography algorithm, given the trajectory. 
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Figure 5.14: Tractography results for middle vOT and SMG (in red to yellow).  Also 

shown are the SMG seed mask and the middle vOT seed masks in yellow. 

 

 

Table 5.5:  The number and the percentages of cases showing paths between vOT and 

SMG 

RH LH 

ant Mid post ant mid post 

5/9 6/9 3/9 2/10 2/9 6/10 

14/27(52%) 10/29 (34%) 

 

 

 

In order to investigate this, these paths were also inspected in the colour-coded 

orientation map.  As suspected, they demonstrated a mixture of colours indicating 

several different orientations (Figure 5.15).  This suggests that, unlike the case 

above with vOT and ANG, this path is indeed a combination of various paths 

recovered by the tractography algorithm.  This interpretation is also supported by 

the fact that this path is located in the TPIFA, where seven known white matter 

tracts intersect.  Taken together, these observations are sufficient evidence that 

this path is indeed a false positive.  
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Figure 5.15: The colour-coded orientation map showing a typical results for the two-ROI 

analyses for vOT and SMG in one subject, overlaid on the subject’s native structural 

image in diffusion space.  The path between the two regions is in multiple of colours 

indicating that this is comprised of different white matter bundles orientated in 

different directions.   

 

 

In summary, the second set of analyses produced reasonable evidence to suggest 

that there was a direct anatomical link between vOT and Broca’s area via the 

IFOF.  Moreover, it provided further support for the existence of the VOF between 

vOT and ANG.  However, there was no evidence for the direct pathways between 

vOT and SMG. 

 

 

An alternative hypothesis for the functional connectivity between SMG and vOT  

Given the lack of paths between vOT and SMG, it was then hypothesised that 

middle occipital gyrus (MOG) may be the common input source for SMG and vOT, 

which could explain the presence of functional connectivity between vOT and 

SMG (Kawabata Duncan et al., 2013; van der Mark et al., 2011) in the absence of 

direct anatomical connection between them. Therefore, a third set of analyses 

investigated the link between MOG and SMG, as well as MOG and vOT.   
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MOG and SMG   

First, two-ROI analyses with SMG and middle occipital gyrus (MOG) were run. The 

results showed robust paths between these regions in most cases (9 out of 10 

subjects).  These paths run between the lateral surface of SMG and that of MOG 

via the deep white matter where they join the long horizontal part of the superior 

longitudinal fasciculus (SLF) (Figure 5.16), which connects frontal, temporal, 

parietal and occipital lobes (Catani et al., 2002; Crosby et al., 1962; Türe et al., 

2000).  These paths are consistent with the short U-fibres that are part of the SLF, 

which connect parieto-occipital cortex (Catani et al., 2002; Crosby et al., 1962).  

 

 

Figure 5.16: Results for the two-ROI analyses between supramarginal gyrus and middle 

occipital gyrus in RH from a single subject (standard space), shown in an axial slice at z = 

31.  The two seed masks are shown in yellow (SMG = supramarginal gyrus, MOG = 

middle occipital gyrus). 

 

Indeed, this possibility became more probable when these paths were overlaid 

with an additional MOG single seed analysis I ran.  Consistent with the literature 

(Catani et al., 2002; Crosby et al., 1962), these paths lie lateral to longer paths 

running from the occipital to the parietal and then to the frontal cortices (Figure 

5.17).  
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Figure 5.17: Overlay of the tractography results for the MOG – SMG (in red to yellow) 

and a single seed MOG (in blue to light blue) analyses.  The MOG – SMG path is lateral to 

the long paths running from the occipital to the parietal and then to the frontal cortices, 

which corresponds to the SLF. 

 

MOG and vOT 

Even though strong pathways between vOT and MOG were found in the first 

analyses, in order to confirm that it is the same parts of MOG that send 

projections to both SMG and vOT hence the common source of input, additional 

two ROI analyses between vOT and MOG were run.  Strong pathways between 

these regions were found in all cases.  There were no systematic differences 

across the rostro-caudal vOT seeds or hemispheres.  From each vOT seed mask, 

the paths travelled posterosuperiorly joining the ILF towards the middle occipital 

regions.  Having passed the level of the posterior vOT seed mask (approximately y 

= –68 to –71), they then split into inferior and superior parts of MOG. Although 

these paths are consistent with the ILF, they also correspond to the posterior end 

of the IFOF.  Since these fibres merge posteriorly (Jellison et al., 2004), it is not 

possible to determine whether these paths between MOG and vOT belong to the 

IFL or IFOF. Nevertheless, comparing these analyses and the SMG & MOG 

analyses, it can be clearly seen that these paths overlap in the MOG seed mask 

(Figure 5.18).  
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Figure 5.18: The tractography results for SMG and MOG (in red to yellow); and anterior 

vOT and MOG (in blue to light blue), showing the MOG terminations for these pathways 

overlap in both the superior and inferior parts.  

 

To conclude, the third set of analyses revealed robust pathways between MOG 

and SMG as well as vOT.  In addition, it was confirmed that these distinct paths 

were traced to the same parts of MOG, providing support for the hypothesis that 

MOG may be the common input source for SMG and vOT. 

 

 

5.4. DISCUSSION 

 

The aim of this study was to investigate the cortico-cortical pathways linking vOT 

with other regions within the language system and compare these to the 

functional connections seen in visual word recognition.  My main findings were: i) 

a clear path along the inferior longitudinal fasciculus linking vOT with the 

temporal pole extensively and also with the middle occipital gyrus (MOG); ii) a set 

of local U-fibres linking adjacent vOT regions; iii) a path via the inferior fronto-

occipital fasciculus (IFOF) linking vOT with Broca’s area; iv) no direct path linking 

vOT and SMG but the same region of MOG linked to both vOT on the ventral 

surface and SMG more dorsally; and v) a path via the vertical occipital fibres 

linking vOT with the posterior angular gyrus.  In addition, there were no 
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systematic differences in anatomical connectivity across the rostro-caudal sub-

regions of vOT. Finally, although there were numerical differences in the 

probability values of the recovered paths between the left and right hemispheres, 

no systematic hemispheric differences were found from the current analyses.  

 

Consistent with previous reports (Catani et al., 2003; Crosby et al., 1962), the 

current study robustly identified the inferior longitudinal fasciculus (ILF) linking 

vOT with the temporal pole anteriorly and with middle occipital gyrus posteriorly. 

In addition, a set of local U-fibres linking the adjacent areas along the ILF was also 

consistently identified.  These U-fibres, a part of the occipito-temporal projection 

system (Catani et al., 2003; Tusa and Ungerleider, 1985), are widely considered to 

be distinct from the ILF (Catani et al., 2003; Martino et al., 2011).  However, the 

existence of the ILF as a long association fibre bundle, independent of the sets of 

local U-fibres, has also been questioned (Tusa and Ungerleider, 1985).  Tusa and 

Ungerleider (1985) claimed that their dissection of human and monkey brains 

together with autoradiography experiments showed that only local short fibres 

connected the occipital and temporal lobes.  The ILF (long or short) is a part of the 

visual object recognition pathway (Mishkin et al., 1983; Ungerleider and Mishkin, 

1982) and involved in reading and other language functions (Catani and de 

Schotten, 2012).  In any case, this ventral pathway also seems to provide an 

indirect anatomical link between vOT and Broca’s area (Gil-Robles et al., 2013; 

Ashtari, 2012; Mandonnet et al., 2007) in that it connects vOT with the anterior 

temporal lobes which are then linked to Broca’s area via the uncinate fasciculus 

(Ebeling and Cramon, 1992; Kier et al., 2004; Türe et al., 2000).  

 

Another ventral pathway, the inferior fronto-occipital fasciculus (IFOF), was also 

identified in the majority of cases, primarily linking vOT with the orbitofrontal 

cortex.  Subsequent two-ROI analyses that seeded vOT and Broca’s area 

confirmed that this pathway also terminated in Broca’s area.  Both of these 

termination regions are consistent with previous dissection studies of this 
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fasciculus (Martino et al., 2010a; Sarubbo et al., 2011).  This white matter tract is 

considered to be the direct pathway connecting the occipital, posterior temporal 

and orbito-frontal cortex (Catani and Mesulam, 2008; Mandonnet et al., 2007) 

and its involvement in semantic processing has been demonstrated by 

intraoperative direct stimulation (Duffau et al., 2005; Mandonnet et al., 2007). 

Interestingly, a recent study with intraoperative subcortical stimulation 

demonstrated a double dissociation between reading/visual (symbol) recognition 

and picture naming in these two ventral pathways (Gil-Robles et al., 2013). 

Specifically, direct stimulation on the IFOF induced a transient impairment of 

picture naming (semantic paraphasia), sparing reading and symbol recognition 

whereas disturbances of reading (letter-by-letter reading) and symbol recognition 

(unable to describe the identity or the purpose) were elicited by stimulation on 

the ILF with no effect on picture naming.  The results demonstrate that these two 

pathways are functionally dissociable, but the interpretation requires a degree of 

caution.  Picture naming and word reading place slightly different demands on 

their cognitive components (i.e., visual pattern recognition, semantic processing, 

phonological processing, etc) and consequently engage both common and distinct 

neuroanatomical systems (Bookheimer et al., 1995; Mechelli et al., 2007; Price et 

al., 2006; Vandenberghe et al., 1996).  Clearly, further studies are needed to 

investigate which cognitive processes are (at least partially) mediated by these 

fasciculi and also how these fasciculi contribute to specific cognitive processes.  

 

Although a previous study demonstrated different functional connections 

between sub-regions of Broca’s area and rostro-caudal sub-regions of vOT 

(Mechelli et al., 2005), the tractography results did not show these patterns.  The 

pathways between the sub-regions of Broca’s area (POp and PTr) and of vOT were 

in fact very similar.  POp and PTr have been implicated in phonological and 

semantic processing respectively (Devlin et al., 2003; McDermott et al., 2003; 

Roskies et al., 2001).  It is possible that the sub-regions of vOT and Broca’s area 

share the same set of complex anatomical connectivity and such differences in 

functional connectivity are the consequence of transient neuronal couplings 
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between them, which reflects a greater involvement of a particular processing 

required for certain types of word processing.  Another possibility is that the 

differential functional connections reported might reflect indirect anatomical 

connections between the two regions mediated by a different third region, rather 

than direct connections that might not differ across the sub-regions.  Functional 

connections do not necessarily entail direct anatomical connections and direct 

anatomical connections do not deny the existence of indirect ones.  Anatomical 

connections are likely to be much more complex than functional connections that 

can be demonstrated with dynamic causal modelling (DCM) since DCM can only 

test the connections between the regions included in the model.  Different 

functional connections for the sub-regions might reflect separate phonological 

and semantic routes between vOT and Broca via a different third region, 

associated with phonological and semantic processing respectively.  Broca’s area 

has been implicated in unification of phonology, semantics as well as syntax 

(Hagoort, 2005).  It is therefore conceivable that a region that plays such a 

complex functional role has very rich anatomical connections with many cortical 

regions.   

 

Despite the functional connections previously implicated between vOT and SMG, 

a region associated with phonological processing (Joubert et al., 2004; Moore and 

Price, 1999; Stoeckel et al., 2009), no direct pathway was found linking these 

regions even with the two ROI analyses.  This result is in sharp contrast to 

Epelbaum and colleagues (2008), who reported that these regions were linked via 

the arcuate fasciculus (AF).  As with the current study, they used individual’s vOT 

regions as the seed masks and the trajectory of this pathway was in fact very 

similar (Epelbaum et al., 2008, Figure 3, p.967) to the one that I indentified from 

the two-ROI analyses that seeded vOT and SMG.  This path is located in the TPIFA, 

where seven white matter tracts are known to intersect.  As a result, the area is 

one where tractography is particularly prone to false positives and the 

interpretation of the results requires a caution. Indeed, the colour-coded 

orientation map (Figure 5.15) showed this “pathway” to be made up of various 
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orientations, suggesting that there is not a single path linking vOT and SMG.  In 

addition, previous studies agree that the AF does not cover the ventral part of the 

brain (e.g., Catani and de Schotten, 2012; Crosby et al., 1962; Dick and Tremblay, 

2012; Glasser and Rilling, 2008; Martino et al., 2013b; Türe et al., 2000).  Although 

Epelbaum and colleagues attribute this path to mediating top-down influence 

from the parietal lobe to vOT, the current analyses do not support their view.   

 

While there was no evidence of a direct path, there was strong evidence for a 

common area of MOG projecting to both vOT and SMG in parallel.  The analyses 

that seeded MOG and SMG found short U-fibres that are part of the SLF, which 

connect parieto-occipital cortex (Catani et al., 2002; Crosby et al., 1962).  In 

addition, subsequent analyses that seeded MOG and vOT confirmed that the 

same parts of MOG send projections to both vOT and SMG.  This can explain the 

functional connections between vOT and SMG in the absence of the direct 

anatomical connections because they are driven by a common input.  The finding 

that both are linked to the same parts of MOG is consistent with the parallel 

visual pathways seen in non-human primates (Merigan and Maunsell, 1993; 

Mishkin et al., 1983; Ungerleider and Mishkin, 1982). This suggests that the visual 

information is directly sent to SMG from the occipital cortex via these dorsal 

pathways. 

 

An important implication of this is that vOT is not the first bifurcation point where 

the visual input splits to the dorsal and ventral routes.  This suggests that despite 

the consensus that vOT plays an important role on reading, it is not always 

necessary.  If vOT is not the first and central node in the reading network that 

provides input to the rest of the reading system, it may be possible for reading to 

be sustained following damage to vOT because the dorsal route could still 

function independently albeit with some difficulty.  This is consistent with the 

dual neural circuit model of reading, which is based on observations on patients 

with alexia in Japanese kana and/or kanji (Iwata, 1984, 2011; Sakurai, 2004).  This 
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hypothesis proposes that the early visual analysis occurs in the primary visual 

cortex and the visual association cortices including MOG, from which the visual 

information takes dual routes: a dorsal routes (including SMG) and a ventral 

routes (including vOT) during reading.  Under normal circumstances, the two 

routes interact to aid fluent reading.  Therefore damage to either route could 

cause some degree of impairment, which results from the damaged path (or 

nodes on the path) itself and also from restricted interaction with the other intact 

route, depending on the extent and the exact location of the damage.  This can 

explain why temporo-parietal, instead of occipitotemporal, lesions can lead to 

alexia (Philipose et al., 2007; Warrington and Shallice, 1980) and why lesions in 

the left occipitotemporal region do not always result in reading impairment (Hillis 

et al., 2005).  It is also consistent with recent DCM studies investigating multiple 

reading routes that found that reading does not always involve vOT (Richardson 

et al., 2011; Seghier et al., 2012).   

 

In addition, it has an important implication for some cognitive models of reading 

that stipulate a single region corresponding to “orthography”.  If visual 

information splits at the level of MOG, then anatomically one possibility is that 

this early visual area is such a region.  However, this is unlikely given that in non-

human primates, the selectivity of the neurons in the secondary visual cortex (V2), 

in which middle occipital gyrus is located, includes contours, texture, size, 

orientation and spatial frequency (Anzai et al., 2007; Hegdé and Van Essen, 2000).  

In humans, this area is also implicated in processing of shape-edges in illusory 

contours (Seghier and Vuilleumier, 2006).  The LCD model, a reading-specific 

account of vOT, also proposes that the neurons in V2 detect local contours such 

as letter fragments (Dehaene et al., 2005), based on neurophysiological studies of 

object recognition (Riesenhuber and Poggio, 1999; Rolls, 2000).  In other words, 

information processed here is less complex than orthography.  Collectively, it 

strongly suggests that there is not a single region specific to orthography that 

exclusively feeds written information to the rest of the reading network.  
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Finally, the current study identified a possible direct anatomical link between vOT 

and ANG, namely the vertical occipital fasciculus (VOF) of Wernicke.  This pathway 

was also reported in a recent tractography study of vOT (Yeatman et al., 2013).  

However, there are a number of important methodological differences between 

the current results and those of Yeatman and colleagues that are worth 

discussing.  First of all, Yeatman and colleagues used deterministic tractography. 

As discussed in Chapter 2, deterministic approach is less reliable than probabilistic 

algorithm and unsuitable for tracing through areas with low diffusion anisotropy 

such as in grey matter.  Moreover, Yeatman and colleagues placed the seed mask 

in the white matter. Oddly, its exact location was not mentioned in the paper. As 

the authors themselves noted, with such methods it is simply not possible to 

determine whether the recovered paths terminated in the cortical grey matter.  

Instead, it demonstrates, at best, that the pathways “pass within close proximity” 

(Yeatman et al., 2013, p. 151) to the cortical region of interest.  In contrast, the 

current study employed probabilistic tractography, which is able to trace through 

grey matter and the seed masks were placed in the cortical grey matter.  In 

addition, the current study used 60 diffusion directions whereas Yeatman and 

colleagues used 12.  Furthermore, the current study used the tracing step of 

0.5mm, in comparison to Yeatman and colleagues’ 1mm.  All of these differences 

reflect in the uncertainty of tractography and the ability to determine the cortical 

terminations of the recovered paths.  Therefore, the current study provides 

evidence that vOT and ANG were anatomically linked via the VOF, rather than 

suggesting that there is a pathway passing by “in close proximity” to vOT and 

ANG.  

 

This fasciculus is relatively unknown, which is surprising given that its reported 

cortical terminations include vOT and ANG (Crosby et al., 1962; Déjerine, 1895; 

Gray and Lewis, 1918; Greenblatt, 1973; Larsell, 1951; Tilney and Riley, 1921). 

Greenblatt (1973) postulated that the VOF might be a pathway involved in 

reading because it was the only known white matter tract that connected the 

inferomedial occipital and parietal cortex.  However, he later questioned the true 
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identity of this fasciculus (Greenblatt, 1976), pointing out that the location and 

connections were the same as what Krieg (1966; 1973) depicted and described as 

the extreme sagittal stratum.  Although this fasciculus has re-emerged in recent 

tractography studies (Oishi et al., 2008; Wakana et al., 2004; Yeatman et al., 

2013), anatomical nomenclature is built on consensus and deeply related to 

anatomical consistency (Mori, personal communication).  Clearly, further studies 

are required to investigate the existence, location and functional role of this 

fasciculus.  

 

 

Conclusion 

 

The current study investigated the cortico-cortical, intra-hemispheric connectivity 

of vOT that might mediate the functional connections implicated between vOT 

and other regions within the language system in previous studies.  The results 

showed both direct and indirect pathways between vOT and Broca’s area. 

Moreover, vOT was found to be anatomically linked to ANG via the VOF.  While no 

pathway was found between vOT and SMG, the same parts of MOG appeared to 

send projections to both SMG and vOT, which accounts for the functional 

connections in the absence of direct anatomical pathways between these regions. 

Because tractography cannot reveal directionality, it is not possible to determine 

whether the pathways recovered by the tractography algorithm are feed-forward 

or feedback projections. However, most cortical pathways are reciprocal (Kravitz 

et al., 2013; Van Essen and Maunsell, 1983) and there are more backward 

afferents than forward efferent connections (Friston, 2002, 2003, 2005; Friston 

and Price, 2001). Therefore, it is a reasonable assumption that the pathways 

recovered in the current study are bi-directional.  Altogether, these results are 

consistent with the parallel cortical visual pathways seen in other primates and 

support a modified neuroanatomical model of reading with multiple routes, not 

only from visual to higher-order language areas but also within the language 

areas.  
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By delineating these pathways anatomically, we gain a deeper understanding of 

how the nodes of the reading network may interact and can begin to map a basic 

circuitry diagram.  Such a diagram is important since it enables us to understand 

the nature of the inter-regional interactions such as functional connectivity and 

how the system may degrade following a focal damage.  Moreover, it provides a 

better understanding of degenerate systems (i.e., alternative systems that can 

perform the same functions, Price and Friston, 2002) and lays a foundation for 

constructing biologically-informed computational models of reading that would 

exceed the current cognitive models.  
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6. GENERAL DISCUSSION 
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The aim of this thesis was to empirically evaluate a central claim of the Interactive 

Account of vOT functioning that this area responds not only to bottom-up 

processing demands of the visual stimuli but is also influenced by automatic, top-

down non-visual processing demands.  I evaluated this claim both functionally and 

anatomically.  The results provide strong support.  Specifically: 

 

 Activation in vOT was significantly modulated by stimulus changes during 

the same task when low level visual features were held constant 

(Chapters 3 & 4), indicating that vOT activation is influenced by top-down 

processing of non-visual aspects of the stimuli; and it interactively 

integrates bottom-up visual properties with top-down higher order 

information that is not present in the visual stimuli.  

 

 Activation in vOT was modulated by task changes when stimuli were held 

constant (Chapter 3), indicating that vOT activation is influenced by top-

down non-visual processing demands required by the task. 

 

 Visual familiarity, as opposed to lexical frequency, had a strong effect on 

vOT activation (Chapter 4). In contrast, lexical frequency modulated 

activation in a region of the inferior temporal gyrus lateral to the visual 

familiarity effect in vOT.   

 

 Activation in vOT was higher for Japanese Kanji than Hiragana words 

when visual familiarity was held constant and this was not due to their 

inherent differences in visual complexity (Chapter 4).  This suggests that 

the activation difference in vOT reflects the different association between 

the surface form of the word and its non-visual properties. 
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 Anatomical pathways linking vOT to other regions of the neural reading 

circuit were identified, which may underlie these bottom-up and top-

down interactions (Chapter 5).  Critically, the data suggest that vOT is not 

the first bifurcation point in the reading network and provide the 

anatomical basis for biologically-informed computational models of 

reading. 

 

With respect to function, I systematically tested the claim that top-down 

influences significantly affect vOT activation when bottom-up visual properties of 

the stimuli are carefully controlled.  The data strongly demonstrated that vOT 

responses are not solely dependent on visual properties of the stimuli.  Instead, 

non-visual properties such as semantics and phonology automatically interact 

with visual properties of the stimuli.  This is a central claim of the Interactive 

Account and clearly distinguishes it from the LCD model and the orthographic 

input lexicon account, both of which emphasise bottom-up, feed-forward 

processing. In addition, this interaction of visual and non-visual properties need 

not be limited to alphabetic stimuli or even to orthographic visual information, 

and is thus compatible with vOT activation to non-alphabetic word stimuli and 

non-orthographic stimuli.  In other words, the Interactive Account addresses two 

aspects of the reading-specific theories of vOT that are incompatible with the data 

presented in this thesis and elsewhere.  First, activity in vOT is task-dependent 

even when the bottom-up visual properties of the stimuli are carefully controlled 

and second, it is applicable to both alphabetic and non-alphabetic orthography as 

well as non-orthographic stimuli. 

 

With respect to anatomy, I investigated the anatomical basis of functional 

interaction and further demonstrated that contrary to the assumption common of 

most neurological models of reading, vOT is not the central source of written 

input to the rest of the reading system.  Instead, the anatomical pathways that 

mediate interactions between vOT and other cortical regions in the reading 
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network are consistent with the parallel cortical visual pathways seen in other 

primates.  vOT is part of the ventral stream that works together with the dorsal 

stream in parallel.  These pathways are functionally connected, but the nodes in 

the two pathways may not be anatomically directly connected.  These findings 

speak to a revised neuroanatomical model of reading with multiple interactive 

routes, between visual and higher-order language areas as well as within the 

language areas themselves (Figure 6.1). 

 

 

Figure 6.1: Modified neuroanatomical model of reading. Visual information splits from 

middle occipital gyrus (light blue) dorsally to supramarginal gyrus (pink) and ventrally to 

vOT (yellow).  Angular gyrus (green) and vOT are linked directly.  vOT is linked to Broca’s 

area directly as well as indirectly via the temporal pole.  Broca’s area (dark blue) unifies 

the information from both routes for articulation.  Anatomical pathways are shown with 

solid lines (demonstrated in this thesis) and dotted lines (not demonstrated in this 

thesis). The white lines represent the dorsal pathway and the black lines represent the 

ventral pathway (the red line belongs to neither). Double arrowheads indicate that 

information flow via these pathways is bi-directional.  Abbreviations: SLF = superior 

longitudinal fasciculus; UF = uncinate fasciculus; IFOF = inferior fronto-occipital 

fasciculus; VOF = vertical occipital fasciculus; ILF = inferior longitudinal fasciculus.  
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This model is fundamentally interactive and the connections linking the nodes are 

bidirectional.  In contrast to older neuroanatomical models, this model mirrors 

cognitive models, where interactivity is a fundamental property necessary to 

explain a wide range of behavioural data. Moreover, it is consistent with 

interactive nature demonstrated in the monkey neurophysiology and 

neuroanatomy literature (Kravitz et al., 2013). This model has at least two 

alternative routes from visual cortex to articulation, each of which is specialised 

for a different aspect of visual processing, consistent with parallel cortical 

pathways in the monkey (Ungerleider and Mishkin, 1982).  These two pathways 

unite in Broca’s area where integration of lexical information takes place 

(Hagoort, 2005).  This is broadly consistent with cognitive models that emphasise 

a semantic route (ventral) and a single orthography-to-phonological route (dorsal) 

such as the distributed connectionist model by Seidenberg & McClelland (1989), 

rather than those which stipulate two routes for orthography-to-phonological 

conversion (lexical and sub-lexical) as in the dual route cascading model by 

Coltheart and colleagues (2001). 

 

Furthermore, although vOT plays an important role in this model, it is not as 

central as it is in older models where it feeds the orthographic information to the 

whole reading system.  This has an important implication as briefly noted in 

Chapter 5.  Specifically, vOT is not the site of lexical or prelexical orthographic 

representations.  Instead, vOT’s contributions to reading are such that it helps 

recognise familiar orthographic patterns and link them with their higher order 

properties.  The direct link to the temporal lobe areas is most likely to be involved 

in semantics and the indirect links to supramarginal gyrus is expected to concern 

phonology.  Higher order properties from these regions are sent into vOT via 

predictive coding mechanisms by top-down backward connections. 

 

Both functional and anatomical data presented in this thesis point to the same 

broad conclusion: neither vOT function nor its connectivity is specific to reading 
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but they parallel visual object recognition and face processing (Bar et al., 2006; 

Cohen Kadosh et al., 2010; Gazzaley et al., 2007; Gilaie-Dotan et al., 2009; Kravitz 

et al., 2013; Kveraga et al., 2007; Schrader et al., 2009).  Both the LCD model and 

the orthographic input lexicon account are built on the assumption that vOT is the 

first and essential node in the reading network and plays a reading-specific role.  

As such, they are not compatible with the majority of the data presented in this 

thesis.  The Interactive Account, on the other hand, is not specialised for written 

words and proposes that the vOT response is the combination of bottom-up 

sensory information, top-down predictions from higher order processing areas 

and the mismatch between the two.  All the data in this thesis are consistent with 

the Interactive Account. 

 

 

Limitations & Future directions 

 

Needless to say, this revised model is not yet complete. In order to fully 

understand the reading system during normal function, which will then aid the 

understanding of its break down due to neurological diseases and developmental 

dyslexia, other important regions need to be investigated both functionally as well 

as anatomically and integrated into the model.  These would include other cortical 

areas such as left inferior/middle frontal regions where activation is increased 

during semantic word matching in dyslexic populations across alphabetic and non-

alphabetic orthographies (Hu et al., 2010); the right hemisphere where activation 

is often associated with non-alphabetic orthography (Mei et al., 2013; Nakamura 

et al., 2005c; Tan et al., 2000); left superior temporal sulcus, which is involved in a 

reading pathway that does not include vOT (Richardson et al., 2011; Seghier et al., 

2012); and sub-cortical regions such as the putamen, which is also suggested to 

play an important role in reading (Seghier and Price, 2010).  In addition, further 

investigations of functional contributions of anatomical pathways such as the 

inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (as seen in 

Chapter 5) will be valuable.  
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Investigations of top-down influences on vOT would ideally involve an 

investigative method with millisecond temporal resolution and sub-millimetre 

spatial resolution such as current source density (CSD) analysis (Schroeder et al., 

1998).  CSD samples neuronal electrical signals separately from each cortical layer, 

allowing one to separate feed-forward signals entering mostly layer IV from 

feedback signal entering outside layer IV (Van Essen and Maunsell, 1983).  

Moreover, the temporal resolution of the methodology allows the observation of 

the precise timing of these signals.  Unfortunately, a non-invasive method for 

human investigation that offers this combination of temporal and spatial 

resolution is currently not available.  Therefore, in this thesis, it was not possible 

to uncover fine-grained temporal and spatial characteristics of top-down 

influences. 

 

With regard to anatomical investigations, DW-MRI and tractography are rapidly 

advancing.  As noted in Chapter 2, model-free methods such as diffusion 

spectrum imaging (Wedeen et al., 2005) and persistent angular structure (PAS) 

MRI (Jansons and Alexander, 2003) will provide better accuracy of tractography 

than model-based approaches.  However, currently the data acquisition 

requirements are higher with these techniques (e.g., a greater number of 

measurements, longer acquisition time, higher b-values) and the computation 

time is also longer (Seunarine and Alexander, 2009).  Therefore, these are difficult 

or impractical methods to apply, given the resources available for research 

purposes at present.  Similarly, fitting more complex, biologically plausible models 

that include additional parameters to the diffusion profile (e.g., NODDI, neurite 

orientation dispersion and density imaging, Zhang et al., 2012) would provide 

more detailed information about the microstructure of tissues.  However, these 

techniques are still in their infancy and further assessment is required before they 

are in routine (clinical) use (Zhang et al., 2012).  These options will undoubtedly 

help us better understand the structures of the reading pathways such as the 

vertical occipital fasciculus when they become more reliable and/or accessible.   
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Finally, as demonstrated in Chapter 4, the importance of using non-alphabetic 

orthographies in reading research needs to be emphasised.  The neural 

information processing underlying reading requires a systematic investigation of a 

range of different languages and scripts since the evidence points to the common 

reading network regardless of orthographies.  In particular, the uniqueness of the 

Japanese orthographic system is extremely useful in providing valuable 

information required for a deeper understanding of this complex system (e.g., 

Iwata, 2011; Sakurai, 2004).   
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