8 research outputs found

    Control de robots móviles mediante visión omnidireccional utilizando la geometría de tres vistas

    Get PDF
    Este trabajo trata acerca del control visual de robot móviles. Dentro de este campo tan amplio de investigación existen dos elementos a los que prestaremos especial atención: la visión omnidireccional y los modelos geométricos multi-vista. Las cámaras omnidireccionales proporcionan información angular muy precisa, aunque presentan un grado de distorsión significativo en dirección radial. Su cualidad de poseer un amplio campo de visión hace que dichas cámaras sean apropiadas para tareas de navegación robótica. Por otro lado, el uso de los modelos geométricos que relacionan distintas vistas de una escena permite rechazar emparejamientos erróneos de características visuales entre imágenes, y de este modo robustecer el proceso de control mediante visión. Nuestro trabajo presenta dos técnicas de control visual para ser usadas por un robot moviéndose en el plano del suelo. En primer lugar, proponemos un nuevo método para homing visual, que emplea la información dada por un conjunto de imágenes de referencia adquiridas previamente en el entorno, y las imágenes que toma el robot a lo largo de su movimiento. Con el objeto de sacar partido de las cualidades de la visión omnidireccional, nuestro método de homing es puramente angular, y no emplea información alguna sobre distancia. Esta característica, unida al hecho de que el movimiento se realiza en un plano, motiva el empleo del modelo geométrico dado por el tensor trifocal 1D. En particular, las restricciones geométricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos entre tres imágenes, mejoran la robustez del control en presencia de errores de emparejamiento. El interés de nuestra propuesta reside en que el método de control empleado calcula las velocidades del robot a partir de información únicamente angular, siendo ésta muy precisa en las cámaras omnidireccionales. Además, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles de manera indirecta, sin necesidad de que haya información visual compartida entre todas ellas. La técnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa estimar la localización ni utiliza información 3D. El robot converge a la posición objetivo sin conocer la información métrica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitación de obstáculos, puede ser necesario disponer de mayor información sobre el movimiento 3D realizado. Con esta idea en mente, presentamos un nuevo método de control visual basado en entradas sinusoidales. Las sinusoides son funciones con propiedades matemáticas bien conocidas y de variación suave, lo cual las hace adecuadas para su empleo en maniobras de aparcamiento de vehículos. A partir de las velocidades de variación sinusoidal que definimos en nuestro diseño, obtenemos las expresiones analíticas de la evolución de las variables de estado del robot. Además, basándonos en dichas expresiones, proponemos un método de control mediante realimentación del estado. La estimación del estado del robot se obtiene a partir del tensor trifocal 1D calculado entre la vista objetivo, la vista inicial y la vista actual del robot. Mediante este control sinusoidal, el robot queda alineado con la posición objetivo. En un segundo paso, efectuamos la corrección de la profundidad mediante una ley de control definida directamente en términos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el trabajo se ilustra mediante simulaciones, y con el objeto de respaldar su viabilidad se presentan análisis de estabilidad y resultados de simulaciones y de experimentos con imágenes reales

    Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model

    Full text link
    We consider the problem of bearing-based visual homing: Given a mobile robot which can measure bearing directions with respect to known landmarks, the goal is to guide the robot toward a desired "home" location. We propose a control law based on the gradient field of a Lyapunov function, and give sufficient conditions for global convergence. We show that the well-known Average Landmark Vector method (for which no convergence proof was known) can be obtained as a particular case of our framework. We then derive a sliding mode control law for a unicycle model which follows this gradient field. Both controllers do not depend on range information. Finally, we also show how our framework can be used to characterize the sensitivity of a home location with respect to noise in the specified bearings. This is an extended version of the conference paper [1].Comment: This is an extender version of R. Tron and K. Daniilidis, "An optimization approach to bearing-only visual homing with applications to a 2-D unicycle model," in IEEE International Conference on Robotics and Automation, 2014, containing additional proof

    Photometric visual servoing for omnidirectional cameras

    Get PDF
    International audience2D visual servoing consists in using data provided by a vision sensor for controlling the motions of a dynamic system. Most of visual servoing approaches has relied on the geometric features that have to be tracked and matched in the image acquired by the camera. Recent works have highlighted the interest of taking into account the photometric information of the entire image. This approach was tackled with images of perspective cameras. We propose, in this paper, to extend this technique to central cameras. This generalization allows to apply this kind of method to catadioptric cameras and wide field of view cameras. Several experiments have been successfully done with a fisheye camera in order to control a 6 degrees of freedom (dof) robot and with a catadioptric camera for a mobile robot navigation task

    An optimization approach to bearing-only visual homing with applications to a 2-D unicycle model

    Get PDF
    Abstract-We consider the problem of bearing-based visual homing: Given a mobile robot which can measure bearing directions corresponding to known landmarks, the goal is to guide the robot toward a desired "home" location. We propose a control law based on the gradient field of a Lyapunov function, and give sufficient conditions for global convergence. We show that the well-known Average Landmark Vector method (for which no convergence proof was known) can be obtained as a particular case of our framework. We then derive a sliding mode control law for a unicycle model which follows this gradient field. Both controllers do not depend on range information. Finally, we also show how our framework can be used to characterize the sensitivity of a home location with respect to noise in the specified bearings

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore