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Abstract— We consider the problem of bearing-based visual
homing: Given a mobile robot which can measure bearing
directions corresponding to known landmarks, the goal is to
guide the robot toward a desired “home” location. We propose
a control law based on the gradient field of a Lyapunov function,
and give sufficient conditions for global convergence. We show
that the well-known Average Landmark Vector method (for
which no convergence proof was known) can be obtained
as a particular case of our framework. We then derive a
sliding mode control law for a unicycle model which follows
this gradient field. Both controllers do not depend on range
information. Finally, we also show how our framework can be
used to characterize the sensitivity of a home location with
respect to noise in the specified bearings.

I. INTRODUCTION

Assume that a mobile robot, equipped with a camera, takes
a picture of the environment from a “home” location, and
then moves into a new position, from which a new picture is
taken. Assume also that a few landmarks can be detected in
both images. The robot can then compute the bearing (i.e.,
the direction vector) at the current and home locations. In
bearing-based visual homing (Figure 1), we are interested in
finding a control law that guides the robot toward the home
location using only the extracted bearing information.

There is evidence that visual homing is naturally used as
a mechanism to return to the nest by particular species of
insects, such as bees [1] and ants [2], [3]. In robotics, it has
been used to navigate between nodes in a topological map
of an environment [4].

Previous work. In the last fifteen years, a number of
approaches for solving the problem have been proposed in
the literature. The majority of the approaches assumes that
the position of the robot can be controlled directly (i.e.,
there are no non-holonomic constraints) and that a global
compass direction is available (so that bearing directions can
be compared in the same frame of reference). Historically,
the first approach proposed for robotics applications is the
Average Landmark Vector (ALV) method [5], where the
difference of the averages of the bearing vectors at the home
and current locations is used as the control law. This has the
computational advantage of not requiring explicit matching.
However, until now, its convergence has been proved only
empirically.
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Fig. 1: Illustration of the visual homing problem and notation.

Another approach is the snapshot-model, which originated
as a computational model for bees [1] and was first imple-
mented in robotics in [6]. This model matches the bearings
between the two locations, and uses their differences (possibly
weighted with the apparent size of the landmarks) to compute
the control vector. A comparison of some variations of this
approach is given in [7]. Again, there is no theoretical proof
of convergence, and it appears that this strategy works well
only when the landmarks are well distributed [8]. More recent
approaches [9]–[11] use the differences between the bearing
angles instead of the direction themselves, thus removing the
necessity of a global compass direction. While [9] combines
all contributions together, [10], [11] use small groups of
bearings at a time. No proof of convergence is given in [9],
while [10], [11] show that the computed control direction
always brings the robot closer to the home position, although
no global convergence is shown. Moreover, the authors do not
provide a way to decide the scale of the motion. In contrast,
[12] requires a global compass direction and is limited to the
2-D case, but it provides global convergence proofs.

A different line of work considers the problem as an
instance of image-based visual servoing (IBVS) [13]. The
main limitation in this case is that this approach requires range
information. In practice, this information can be approximated
with constant ranges, estimated by creating a map of the
landmarks on-line [8], through the use of adaptive control
[14] or using the relative scale of feature point descriptors [15].
However, even with range information, only local convergence
can be shown. A notable exception in this sense is the
Navigation Function (NF) approach given by [16], [17], which
allows the specification of safety areas (e.g., such that the
target is always visible) and the use of Lagrangian (second-
order) dynamical models. However, it requires planar targets
with known geometry, hence it does not apply to our situation.

Yet another line of work is based on the use of the essential
matrix [18]–[20] from computer vision, which relates the
correspondences between the two views and provides an



estimate of the relative pose between them. This approach
does not require a global compass, but the estimation of
the essential matrix becomes ill-conditioned in degenerate
configurations (e.g., near the target home position), which
need to be detected and addressed separately.

Regarding the use of non-holonomic mobile robots, the
work of [21] extends the IBVS approach to a car-like model,
while [22] extends the ALV approach and [23]–[26] extend
the essential matrix approach to a unicycle model. The same
limitations as the original works apply. An improvement is
given by [27], which uses the 1-D trifocal tensor (an extension
of the essential matrix to three views) to compute the relative
rotation and proposes a globally convergent control law.
However, this work requires correspondences between four
views, and is limited to 2-D bearings.

Paper contributions. In this paper, we make the assumption
that a global compass direction is available. In §III, we
focus on holonomic mobile robots and propose a control law
derived from the gradient of a cost belonging to a carefully
chosen class of functions. We can show that this gradient
does not depend on range information, and we give sufficient
conditions for global convergence to a unique minimizer.
Interestingly, for a specific choice of cost, we recover the
ALV model, thus providing a rigorous proof of its global
convergence (which, to the best of our knowledge, had not
appeared before).Our approach applies to both the 2-D and
3-D cases. In §IV, we propose an extension to the unicycle
model using sliding mode control. We cast this application
as a specific instance of the more general problem of moving
a unicycle along the flow trajectories of an arbitrary gradient
field, using only upper and lower bounds on the differential of
the gradient. Finally, in §V, we show how our optimization
framework can be used to generate heat maps indicating,
for given landmarks, the sensitivity of the homing position
with respect to noise in the specificied bearings. This kind
of analysis has not appeared in any of the works above.

II. NOTATION AND DEFINITIONS

We collect in this sections various notation conventions (see
also Figure 1) and other definitions. We denote as xg ∈ Rd
the coordinates of the home location and as {xi}Ni=1 ∈ Rd
the location of the N landmarks. For a given i ∈ {1, . . . , N},
the bearing direction at a location x ∈ Rd is defined as

βi(x) = di(x)−1(xi − x), (1)

where di(x) contains the range information

di(x) = ‖xi − x‖. (2)

We denote as βgi the home bearing directions, i.e.,

βgi = βi(xg). (3)

We also define the following inner product:

ci(x) = βTgiβi(x). (4)

In order to reduce clutter, when possible, we omit the
explicit dependence on x (e.g., we use βi instead of βi(x)).

We assume that the set of home bearing directions {βgi} is
consistent, i.e., that it exists xg ∈ Rd such that (3) is satisfied
for all i ∈ {1, . . . , N}. Moreover, we assume that they are
non-degenerate, i.e., that the point xg is uniquely determined.
It is easy to see that the bearing directions are non-degenerate
if and only if we have N ≥ 2 points non-collinear with xg
(one bearing constraints the position of xg on a line, and
another bearing fixes a point on this line).

We consider mobile robots governed by a particular case
of affine, driftless dynamical system of the form

ż = h(z)u, (5)

where z represents the state of the system (such as the robot’s
location) and u represents the inputs available for control. In
particular, we will consider the case of a simple integrator
(§III) and of a 2-D unicycle model (§IV).

We formally state the visual homing problem as follows.
Problem 2.1: Given a set of desired bearing directions

{βgi}, define a control law u for (5), using {βi} alone, which
asymptotically drives the robot’s location to xg .

In various places, x̃(t) = x0 + tv denotes a parametrized
line in Rd, where x0, v ∈ Rd are arbitrary. The notation
·̃ indicates a function evaluated along x̃(t), e.g., ϕ̃(t) =
ϕ
(
x̃(t)

)
. Also, we denote as Pv = I − vvT the projection

matrix on the space orthogonal to the normalized vector v.
Finally, given a mapping Φ : Rd1 → Rd2 , its differential

or Jacobian is defined as the matrix DxΦ : Rd2×d1 such that

DxΦv =
d

dt
Φ(x̃)

∣∣∣∣
t=0

(6)

for any choice of v in x̃. This definition coincides with the
usual one as a matrix of derivatives. As it is standard, we
define the gradient of a function ϕ : Rd → R as

gradxϕ = Dxϕ
T . (7)

III. CONTROL OF AN HOLONOMIC ROBOT

We first consider a linear integrator of the form ẋ = u,
i.e., in (5), we choose z = x, where x ∈ Rd represents the
location of the robot, and h = I , the identity matrix. We
define the control u from the gradient of a cost ϕ : Rd → R:

u = − gradxϕ. (8)

To be more specific, given a univariate reshaping function
f : R → R, we define the cost function ϕ as

ϕ =

N∑
i=1

ϕi, ϕi = rif(ci). (9)

Note that ϕ is not defined on {xi}, although it can be
completed by continuity. As we will show later, f can be
chosen such that ϕ is radially unbounded (see [28] for a
definition) and that it has a global minimum at xg and no
other critical points. This will imply global convergence of the
closed-loop system. For the moment, we state the following.



Proposition 3.1: The gradient of (9) is given by

gradxϕ =

N∑
i=1

gradxϕi,

gradxϕi = −f(ci)βi − ḟ(ci)Pβiβgi,

(10)

while its differential is given by

Dxgradxϕ=

N∑
i=1

Dxgradxϕi, Dxgradxϕi = d−1i Hi, (11)

Hi =
(
f̈(ci)(ciβi − βgi)βTgi + (ḟ(ci)ci − f(ci))I

)
Pβi .

(12)
See §A in the Appendix for a proof. Note that, in this
section, we only use (10), while (11) will be used in §IV.
We remark that, although the cost ϕ depends on the range
information {di}, the gradient gradxϕ, and hence the control
law (8), depends only on the bearing directions {βi} and
{βgi}. Regarding the choice of f , we use the following:

Assumption 3.2: The function f : [−1, 1]→ R satisfies:

f(1) = 0, (13)

ḟ(c)

{
≤ 0 and finite for c = 1,

< 0 otherwise,
(14)

f(c) + (1− c)ḟ(c) ≤ 0. (15)
Note that (13) with (14) implies that f is non-negative and

decreasing, thus inducing an ordering of the cosines:

f(c1) > f(c2) if c1 < c2. (16)

We first show that we can use ϕ as a cost for visual homing,
i.e., that it has a global minimizer at the home location.

Lemma 3.3: The function ϕ is everywhere non-negative
and has a unique global minimizer at xg .

Proof: Since di and f(ci) are non-negative, each term
in ϕ is non-negative. It follows that ϕ is also non-negative,
and it is zero iff each term ϕi is zero for all i. From (13), this
implies ci = 1 for all i, that is, the current bearings coincide
with the desired ones, and x = xg .
As we are interested in global convergence, we need to show
that there are no other minimizers. At a high level, due to the
fact that the function ϕ is in general non-convex, we proceed
by showing that the cost is always increasing when evaluated
along lines emanating from xg in arbitrary directions. From
this, we will exclude the presence of unwanted minimizers.
In order to apply this idea on the entire cost ϕ, we first prove
a similar result on each of its terms ϕi.

Lemma 3.4: Define the line x̃(t) = xg+tv, where v ∈ Rd
is arbitrary. Then, the derivative of ϕ̃i(t) = ϕi

(
x̃(t)

)
satisfies

the following. If t = 0 or v = aβgi, a ≤ 0, then ˙̃ϕi ≡ 0.
Otherwise, ˙̃ϕi > 0 for all t > 0, except when v = aβgi,
a > 0, for which

˙̃ϕi

= 0 for t ∈
[
0,
‖xi−xg‖
‖v‖

)
,

> 0 for t > ‖xi−xg‖
‖v‖ .

(17)

The proof of this lemma is somewhat involved, and can be
found in §B of the Appendix. We can now use this result on
the entire cost function ϕ.

Proposition 3.5: The function ϕ has only a global mini-
mizer and no other critical points.

Proof: From Lemma 3.3, xg is a global minimizer.
Consider an arbitrary point x0 6= xg and the curve x̃(t) =
xg + t(x0 − xg) (notice x̃(1) = x0). Then, by linearity,

d

dt
ϕ(x̃)

∣∣∣∣
t=1

=

N∑
i=1

d

dt
ϕi(x̃)

∣∣∣∣
t=1

. (18)

From Lemma 3.4, each term on the RHS of (18) is non-
negative, and, since the bearing directions are non-collinear,
at least one is strictly positive. Hence d

dtϕ(x̃)
∣∣
t=1

> 0,
gradxφ(x0) 6= 0 (from (6)–(7)), and ϕ cannot have a critical
point at x0.

The final ingredient we need for our convergence result is
to show that the trajectories of the closed-loop system alway
lie in a compact set. This is implied by the following.

Proposition 3.6: The function ϕ is radially unbounded.
The proof relies on showing that at least one term ϕi grows
unbounded in any arbitrary direction (see [29] for details).
We then arrive to the following theorem, which represents our
first main result and shows that the control law (8) provides
global asymptotic convergence.

Theorem 3.7: All the trajectories of the closed-loop system

ẋ = − gradxϕ(x) (19)

converge asymptotically to xg .
The solutions to (19) are also known as the gradient flow. This
result follows easily from Propositions 3.6 and 3.5 together
with a standard Lyapunov stability argument.

In practice, we have different options for the function f .
The following proposition lists a couple of them.

Proposition 3.8: These functions satisfy Assumption 3.2:

f(c) = 1− c (20)

f(c) =
1

2
arccos2(c) (21)

Notice that (20) is the simplest function one can think of, and
it is related to the cosine of the angle between the bearings,
while (21) represents the square of the angle itself.

The proof of this proposition (a simple direct calculation),
can be found in [29]. Note that by choosing (20), the gradient
(10) simplifies to

gradxϕ = −
N∑
i=1

βi +

N∑
i=1

βgi, (22)

which is equivalent to the ALV method mentioned in the
introduction. In this case, we do not need to know the exact
correspondences between {βi} and {βgi} (the two sums in
(22) can be computed separately).

IV. SLIDING MODE CONTROL OF A UNICYCLE
In this section, we will extend the results above to a robot

governed by a non-linear 2-D unicycle model of the form (5)
where

z =

[
x
θ

]
, h =

cos(θ) 0
sin(θ) 0

0 1

 , u =

[
ν
ω

]
, (23)



and where x ∈ R2 represents the location of the robot,
θ ∈ (−π, π] represents the orientation of the unicycle, and
ν, ω ∈ R represents the linear and angular velocity inputs,
respectively. Since we make the assumption that a global
compass direction is available, we assume θ to be known.

Our main goal is to make the unicycle follow the flow of
the gradient field of ϕ. More precisely, we will propose a
control law such that, with the model given by (5) and (23),

ẋ = −kν gradxϕ ∀t > T, (24)

for some T <∞. The arbitrary constant kν > 0 fixes the ratio
between the magnitude of the gradient and the speed of the
unicycle. Since we have shown in §III that the flow trajectories
of the gradient field converge asymptotically toward xg , then
(24) implies that x converges toward xg also for the unicycle
model. Note that, if necessary, a second control phase can
then be applied to rotate the unicycle to a desired pose. At
first, this might appear to be an instance of a path-following
problem, where the cart should follow a prescribed trajectory,
and for which solutions already exist. However, in our case,
we have two important differences. First, the path is given
implicitly by the gradient field, and not explicitly. Second, the
cart can follow any flow line, and not only one determined a
priori.

Since the system has two inputs (ω and ν), we will
decompose our analysis in two parts as follows. Define θd
and νd, the desired angle and the desired linear velocity, as

θd = arctan2(g2, g1) (25)
νd = ‖g‖, (26)

where arctan2 is the four-quadrant inverse tangent function
and g =

[
g1 g2

]T
= − gradxϕ.

Then, from (23), condition (24) is equivalent to

θ = θd, ν = νd ∀t > T. (27)

A. Tracking θd
In this section, we assume that ν is given, and focus on

specifying ω to achieve (25). Define the signed angle error

θe = mod (θ − θd + π, 2π)− π (28)

and the Lyapunov function e = 1
2θ

2
e . Note that θe ∈ [−π, π).

The derivative of e is given by

ė = θe(θ̇ − θ̇d) = θe(ω − θ̇d) (29)

where θ̇d is given by1

θ̇d =
1

‖g‖2

[
g2
−g1

]T
ġ =

1

‖g‖2
gT
[

0 1
−1 0

]
ġ

=

N∑
i=1

d−1i
gTSHiẋ

‖g‖2
=
∑
i:ai>0

d−1i |ai| −
∑
i:ai<0

d−1i |ai| (30)

and where

S =

[
0 1
−1 0

]
, ai =

gTSHiẋ

‖g‖2
, ẋ =

[
cos(θ)
sin(θ)

]
ν. (31)

1Recall that ∂ arctan2(x,y)
∂x

= − y
x2+y2 and ∂ arctan2(x,y)

∂y
= x

x2+y2

Note that the quantities {ai} are directly proportional to the
specified linear velocity ν. If we could compute θ̇d exactly,
we could simply choose a control ω in (29) yielding ė < 0
and obtain convergence. However, θ̇d requires the unknown
range information {di}. As an alternative, we will show
convergence only for the trajectories x(t) of our closed-loop
system that satisfy the condition

d−1i
(
x(t)

)
< ρ (32)

for all t greater than some Tx. As it will be clear later,
the bound ρ controls a trade-off between the region of
convergence and the maximum control effort (a similar
condition is also used in [27]).

Sliding mode control design follows two phases. In the
first phase, we choose a so-called switching manifold, which
is a sub-manifold of the state space containing the desired
trajectories of the system. In our case, this is given by
the condition θe(z) = 0, which specifies the gradient flow
trajectories. The second phase is to specify control laws for
the two cases θe(z) < 0 and θe(z) > 0 which bring the state
of the system to the switching manifold in finite time. By
switching between these two control laws, the state of the
system will be maintained inside the switching manifold.

To construct the two control laws, we will exploit the
particular structure of (30) and the bound (32). In practice,
we define the angular velocity control input as

ω =

{
ρ
∑
i:ai>0 ai + kθ = ρ

∑
i:ai>0|ai|+ kθ if θe ≤ 0,

ρ
∑
i:ai<0 ai − kθ = −ρ

∑
i:ai<0|ai| − kθ if θe > 0,

(33)

where kθ > 0 is arbitrary.
Then, by substituting (33) into (29), we obtain

ė = −θe
( ∑
i:ai>0

(d−1i − ρ)|ai| − kθ −
∑
i:ai<0

d−1i |ai|
)

(34)

if θe ≤ 0 and

ė = θe
( ∑
i:ai<0

(d−1i − ρ)|ai| − kθ −
∑
i:ai<0

d−1i |ai|
)

(35)

if θe ≥ 0. In both cases we have

ė = |θe|
d

dt
|θe| ≤ −|θe|kθ, (36)

which implies that d
dt |θe| ≤ −kθ, and hence θe = 0 for

all t > T , where T = |θe(0)|
kθ

(see [28] for details). This
will hold for all the trajectories of the closed loop system
satisfying (32), independently from the specific value of ν
(which, however, needs to be known). Note that, by increasing
ρ, we increase the set of trajectories that satisfy condition (32),
but we also increase the magnitude of the control in (33).

B. Tracking νd
In the previous section, we have given a sliding mode

controller which ensures convergence of θ to θd in finite time.
Therefore, we can give a simple law such that ν = νd when
θ = θd. We propose the following inner product:

ν = −
[
cos(θ) sin(θ)

]
g. (37)



Note that, with this law, the value of ν becomes negative when
the direction of the unicycle is opposite to the one indicated by
the gradient field (i.e., the unicycle can be pushed backward).

C. The closed-loop system

We can summarize the results above in the following
theorem, which represents our second major contribution.

Theorem 4.1: Given a cost ϕ and an arbitrary parameter
ρ > 0, consider the closed loop system given by the unicycle
model (5), (23) with control inputs (33), (37). Let z(t) be
any trajectory of such system where the first two coordinates
x(t) satisfy d−1i (x(t)) < ρ. Then, x(t) converges in finite
time to a curve in the gradient flow of ϕ.

If we use the cost function ϕ from §III, Theorem 4.1
together with Theorem 3.7 provides a solution to the visual
homing problem for the unicycle model, where the region of
convergence which can be made arbitrarily large by changing
ρ. In the simulations, we will show that, in practice, we can
already obtain almost global convergence with a moderate
value of ρ.

D. Chattering and input saturation

A well-known drawback of sliding mode control is the
presence of chattering, where, due to actuation delays (e.g.,
from a discrete-time implementation of the controller) the
state of the system will not exactly fall into the sliding
manifold, but will overshoot it, and the closed loop system
ends up switching between the two sides at high frequency.
Standard ways to reduce the effects of chattering include
augmenting the sliding mode controller with integrators or
approximating the switching law with a “continuous”, high-
gain version [28]. For our particular application, however, we
need also to be able to track the landmarks in the images
from the camera as the robot moves. If the field of view
of the camera is restricted, this might become impossible
when the unicycle turns too fast. In addition, there might
be physical constraints on the maximum speed at which the
unicycle can move. Therefore, our control law should take into
account constraints of the kind |ν| ≤ νmax and |ω| ≤ ωmax.
Fortunately, our control laws are directly proportional to the
magnitude of the gradient, which tends asymptotically to zero.
Therefore, at least in the limit, our control naturally satisfies
these constraints. Potential problems can only arise in the
transient phase. We propose the following substitution:[

ν
ω

]
←
[
ν
ω

]
min{1, |νmax

ν
|, |ωmax

ω
|}. (38)

Intuitively, this amounts to reduce the maximum speed at
which the unicycle tracks the gradient flow lines. Notice
that, since the constraints tends to be satisfied naturally as
the robot approaches the destination, this substitution does
not change the asymptotic behavior of the controller. This
substitution has also the benefit of lessening the effects of
chattering (the state cannot overshoot the sliding manifold
too much).

V. SENSITIVITY ANALYSIS

Until now, we have considered the ideal case where bearing
directions at the home location, {βgi}, are perfectly known.
In practice, these bearings are measured, and might contain
noise. Following our optimization framework, this results in
a deviation of the minimizer of ϕ from the ideal location xg .
Our goal is to relate the magnitude of this deviation with the
magnitude of the noise in {βgi}. This will be used in §VI
to build heat maps indicating what locations are “harder” to
home into for a given set of landmarks.

To start our analysis, let {β∗gi} be a set of desired bearing
vectors and denote as x∗ a minimizer of ϕ(x, β∗gi) (note that
we made explicit the dependency of ϕ on the desired bearings).
From Lemma 3.3, we know that when {β∗gi} = {βgi}, then
x∗ = xg. Formally, our goal is to quantify the variance of
the perturbation in x∗ when {β∗gi} is perturbed around {βgi}.
Since x∗ is a minimizer, we have

gradxϕ(x∗, {β∗gi}) = 0. (39)

Using a first-order Taylor expansion of (39), we obtain

Dxgradxϕ(x∗, β∗gi)vx +

N∑
i=1

Dβgigradxϕ(x∗, β∗gi)vβgi = 0,

(40)
where vx and {vβgi} denote the perturbation in x∗ and
{β∗gi}, respectively. Note that, since β∗gi is constrained to have
norm one, vβgi will be always orthogonal to β∗gi. We model
each vector vβgi as a i.i.d., zero-mean random variable with
covariance matrix E[vβgiv

T
βgi

] = σ2
β(I −β∗giβ∗giT ), where σβ

represents the noise level in the perturbation (notice that this
matrix is singular in the direction β∗gi, due to the orthogonality
of vβgi and β∗gi). Then, we can evaluate (40) at (xg, βgi), and
obtain an expression for the covariance matrix of vx, that is

E[vxv
T
x ] = σ2

βJ
−1
x

( N∑
i=1

JβiJ
T
βi

)
J−Tx , (41)

where Jx = Dxgradxϕ and Jβi = Dβgigradxϕ. In practice,
an expression for Jx is given by Proposition 3.1, while, for
Jβi , we have the following (the proof is similar to the one
of Proposition 3.1).

Proposition 5.1: The differential Dβgigradx is given by

Dβgigradx= −ḟ(ci)I − f̈(ci)(I − βiβTi )βgiβ
T
i . (42)

In order to obtain a more compact representation of the
effect of noise, we will condense the covariance matrix into
a single number, the variance, using σ2

x = tr
(
E[vxv

T
x ]
)
.

The ratio σ2
x

σ2
y

gives a measure of the robustness of the
minimizer of ϕ with respect to the noise in the bearings.

VI. SIMULATIONS

In this section we illustrate the behavior of the proposed
control laws through simulations. We generate a scenario
where we place 10 landmarks at random in a square area
and a target location in the lower left quadrant. We first
test the model considered in §III. We initialize the system
from 9 different locations uniformly distributed in the square



(a) Cosine, equation (20) (b) Angle squared, equation (21)

Fig. 2: Trajectories for the integrator model of §III with our
controller and different choices for f . We also superimpose
the level sets and gradient field of the cost ϕ.

(a) Cosine, equation (20) (b) Angle squared, equation (21)

Fig. 3: Trajectories for the unicycle model of §IV with our
controller. The four different colors represent the four initial
heading directions: north (red), east (blue), south (pink), west
(green). The cost used is the same as in Figure 2.

area, and record the trajectory obtained by integrating the
closed-loop system. Figure 2 show the results obtained using
the functions (20)–(21), together with the level curves and
gradient field of the cost function ϕ. As one can see, the
system converges asymptotically to the home location xg
from all the initial conditions. The trajectories obtained using
(20) appear to be slightly more direct than those obtained
with (21), however the differences are quite minor.

In the second set of experiments we use the same conditions
(landmarks, starting and home locations; cost functions),
but this time we test the model considered in §IV. We test
four initial headings for each starting location. The results
are shown in Figure 3. As before, the model converges
asymptotically to the home location from any initial condition.
When the initial direction of the cart is against the negative
gradient, the controller automatically performs a maneuver
where the unicycle first goes backward while rotating, and
then switches direction to move toward the destination. Notice
also how each trajectory converges to a gradient flow line
(i.e., the tangent of the trajectory approaches the gradient).

In the third experiment, we simulate a complete system in
a corridor-like environment, as shown in Figure 4. We use
LIBVISO2 [30] for visual odometry to compute the global
compass direction. The grey and light blue points are used to
generate features for visual odometry (the light blue points are

Fig. 4: Simulation of a complete system. Grey and blue dots:
points used to generate features for the visual odometry. Red
dots: landmarks. Green box: home location. Blue triangle and
line: actual pose and trajectory of the unicycle. Red triangle
and line: pose and trajectory estimated by visual odometry.

those visible by the camera), while the red points represent
the landmarks. The home location is given by the green box.
The blue triangle and line represent the actual final pose and
the actual trajectory of the unicycle. The red triangle and line
represent those estimated by LIBVISO2. Notice how, even if
the estimation of the translation from visual data fails, our
controller can still drive the unicycle to the correct location.

Finally, we demonstrate the use of the sensitivity analysis
from §VI. In Figure 5 we show the heat maps of log

(
σ2
x

σ2
y

)
corresponding to the configuration of landmarks of Figures 2–
3, together with two other simple configurations. In addition,
we show how the heat maps change when the coordinate of
the bearings are scaled along one of the axes. The reshaping
function used is (20). Generally speaking, it seems to be hard
to qualitatively predict the aspect of the heat map by simply
looking at the bearing configuration. However, we can notice
some trends. First and foremost, as one would expect, the
stability of the homing position quickly decreases outside
a neighborhood of the landmarks. We can notice that the
homing positions evenly surrounded by the landmarks are
among the most stable, as one would expect. However, a little
bit surprisingly, close to each landmark there are areas where
the stability is significantly increased or decreased. Finally,
we can notice that, as the points tend to be collinear, the
stability of home locations along the same line decreases.

VII. CONCLUSIONS

We have presented a new approach to the visual homing
problem using bearing-only measurements, where the control
law is given by the gradient of a cost function and global
convergence is guaranteed. We also developed a sliding mode
controller for a unicycle model which follows the gradient
field line with limited information (lower and upper bounds
on the differential of the gradient). When coupled with the
previous control law, this provides a natural solution to
the bearing-only visual homing problem for the unicycle
model. Our framework allows us also to compute heat maps
indicating the relative sensitivity of different homing location
with respect to noise in the home bearing directions.

In future work, we plan to study more throughly the effect
of the reshaping function f in ϕ, especially for question
regarding robustness to outliers. We will also investigate a
compass-free extension, where the relative rotation between
the current and goal reference frames is estimated through
epipolar geometry and it is used in the cost ϕ. Finally, it



(a) Configuration from Figures 2–3

(b) Square configuration

(c) Triangle configuration

Fig. 5: Examples of heat maps of log
(
σ2
x

σ2
y

)
for various bearing

configurations. White: low sensitivity. Black: high sensitivity.

would be interesting to see whether the same function ϕ
could be used in the framework of [16], [17] allowing the
control of a unicycle with a Lagrangian model.
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APPENDIX

A. Proof of Proposition 3.1

We first compute the gradient by evaluating the function
along a line x̃ and using the definition (6). We will need the



following derivatives (recall that ˙̃x = v).

˙̃
di =

d

dt
‖xi − x̃‖ =

1

2‖xi − x̃‖
d

dt
‖xi − x̃‖2

= −d̃−1i (xi − x̃)T v = −vT β̃i, (43)
d

dt
d̃−1i = −d̃−2i

˙̃
di = d̃−2i vT β̃i, (44)

˙̃
βi =

d

dt
d̃−1i (xi − x̃) = −d̃−1i Pβi(I − β̃iβ̃Ti )v, (45)

˙̃ci = βTgi
˙̃
βi = −d̃−1i vTPβiβgi. (46)

Hence

˙̃ϕi=f(c̃i)
˙̃
di + ḟ(c̃i)di ˙̃ci=vT

(
−f(c̃i)β̃i − ḟ(c̃i)Pβiβgi

)
,

(47)
from which (10) follows.

By reorganizing terms, another expression for gradxϕi is

gradxϕi = (ḟ(ci)ci − f(ci))βi − ḟ(ci)βgi. (48)

For Dxgradxϕ, we will again use definition (6).

d

dt
gradxϕi = (f̈(c̃i)c̃i + ḟ(c̃i)− ḟ(c̃i))β̃i ˙̃ci

+ (ḟ(c̃i)c̃i − f(c̃i))
˙̃
βi − f̈(c̃i)βgi ˙̃ci

= −d̃−1i
(
f̈(c̃i)(c̃iβ̃i− βgi)βTgi + (ḟ(c̃i)c̃i− f(c̃i))I

)
Pβiv

(49)

B. Proof of Lemma 3.4

Step 1) Change of coordinates. To make the derivations
simpler, we make a few coordinate transformations which do
not change the value of ϕ̃i. First, the values of d̃i, β̃i and
c̃i are invariant to a global translation. Hence, w.l.o.g, we
assume xi = 0, i.e., we center our coordinates on the i-th
landmark. Then, we make a global change of scale such that
‖xg‖ = 1 (this is equivalent to multiplying ϕ by a positive
constant, which can be simply undone at the end). Finally,
di and ci are invariant to global rotations. Hence, we choose
a rotation which aligns xg with the first axis and such that
xg and d span the subspace given by the first and second
coordinates. We can then restrict our attention to only the first
two coordinates (2-D case) and we assume xg =

[
1 0
]T

.
Step 2) Explicit expressions. Let v =

[
v1 v2

]T
. Under the

previous change of coordinates, we have the following:

x̃ =
[
1 + tv1 tv2

]T
, (50)

d̃i =
√

(1 + tv1)2 + t2v22 , (51)

β̃i = − 1√
(1 + tv1)2 + t2v22

[
1 + tv1
tv2

]
, (52)

βgi = −
[
1 0
]T
, (53)

c̃i =
1 + tv1√

(1 + tv1)2 + t2v22
, (54)

˙̃ci = − tv22√
(1 + tv1)2 + t2v22

3

{
= 0 for t = 0,

< 0 for t > 0,
(55)

vTβgi = −v1, (56)

vT β̃i = − v1(1 + tv1) + tv22√
(1 + tv1)2 + t2v22

, (57)

vTPβiβgi = −d̃i ˙̃ci

=
tv22

(1 + tv1)2 + t2v22

{
= 0 for t = 0,

> 0 for t > 0.
(58)

Note that (58) is follows from (46). Also, from (57) we have

vT β̃i(0) = −v1, (59)
d

dt
vT β̃i = − v22√

(1 + tv1)2 + t2v22
3 < 0, (60)

which implies that vT β̃i is monotonically decreasing for
t ≥ 0, with maximum −v1 at t = 0. Hence, from (56),

vT β̃i ≤ vTβgi. (61)

Step 3) Proof of the bounds. In order to avoid some
negative signs, we will work with − ˙̃ϕ. From (10) and (48):

− ˙̃ϕi = f(c̃i)v
T β̃i + ḟ(c̃i)v

T (I − β̃iβ̃Ti )βgi (62)

=
(
f(c̃i)− ḟ(c̃i)c̃i

)
vT β̃i + ḟ(c̃i)v

Tβgi. (63)

First, consider the case where t = 0. Since vT β̃i(0) =
vTβgi, c̃i(0) = 1, f

(
c̃i(0)

)
= 0, and − ˙̃ϕi reduces to

− ˙̃ϕi(0) = −ḟ
(
c̃i(0)

)
vTβgi + ḟ

(
c̃i(0)

)
vTβgi = 0. (64)

This difference is well defined, since ḟ(1) is finite (see (14)).
Now, consider the case t > 0, and assume that v is not

parallel to βgi. We have two cases depending on sign(vT β̃i).
1) Assume vT β̃i < 0. Intuitively, this condition indicates

that x̃ moves away from xi as t increases. Combining the
last assumption with the non-negativity of f , and property
(14) with (58), we see that (62) is negative.

2) Assume vT β̃i > 0. Intuitively, this condition indicates
that x̃ gets closer to xi as t increases. Note that vT β̃i > 0
implies, from (61), that vTβgi > 0. We will consider two
further subcases depending on sign

(
f(c̃i)− ḟ(c̃i)c̃i

)
.

2a) Assume
(
f(c̃i)− ḟ(c̃i)c̃i

)
< 0. Combining this with

the positivity of vT β̃i, vTβgi and with property (14), we have
that (63) is negative.

2b) Assume
(
f(c̃i) − ḟ(c̃i)c̃i

)
≥ 0. Then, using (61) in

(63), we have

− ˙̃ϕi ≤
(
f(c̃i) + (1− c̃i)ḟ(c̃i)

)
vTβgi. (65)

From property (15), this implies − ˙̃ϕi < 0.
Now we pass to the case v = aβgi, a > 0. Let t0 =

‖xi−xg‖
‖v‖ . We have that x̃(t0) = 0 = xi, i.e., the line passes

through the landmark. For t ∈ [0, t0), we have β̃i ≡ βgi,
c̃i ≡ 1 and f(c̃i) ≡ 0, which implies − ˙̃ϕi ≡ 0 (similarly to
the previous case for t = 0). For t > t0 we have β̃i ≡ −βgi,
and c̃i ≡ −1, which implies

− ˙̃ϕi ≡ −(f(−1) + ḟ(−1)) + ḟ(−1) ≡ −f(−1) < 0. (66)

Finally, we consider the case v = aβgi, a < 0. Intuitively, in
this case x̃ moves exactly opposite xi as t increases. Similarly
to the above, we have β̃i ≡ βgi, c̃i ≡ 1 and f(c̃i) ≡ 0, which
imply ˙̃ϕi ≡ 0.
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