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Control de robots moviles mediante visbn omnidireccional
utilizando la geometria de tres vistas

Resumen

Este trabajo trata acerca del control visual de robot reéviDentro de este campo tan amplio de
investigacion existen dos elementos a los que prestarespegial atencion: la visibon omnidireccional y
los modelos geométricos multi-vista. Las camaras omatgdionales proporcionan informacion angular
muy precisa, aunque presentan un grado de distorsiorfisagivio en direccion radial. Su cualidad de
poseer un amplio campo de vision hace que dichas camaasapeopiadas para tareas de navegacion
rob6tica. Por otro lado, el uso de los modelos geométo@srelacionan distintas vistas de una escena
permite rechazar emparejamientos errbneos de casditiasi visuales entre imagenes, y de este modo
robustecer el proceso de control mediante vision.

Nuestro trabajo presenta dos técnicas de control visualgs usadas por un robot moviéndose en
el plano del suelo. En primer lugar, proponemos un nuev@aaépara homing visual, que emplea la
informacion dada por un conjunto de imagenes de refeai@adijuiridas previamente en el entorno, y las
imagenes que toma el robot a lo largo de su movimiento. Cohjeto de sacar partido de las cualidades
de la vision omnidireccional, nuestro método de hominguramente angular, y no emplea informacion
alguna sobre distancia. Esta caracteristica, unida abhée que el movimiento se realiza en un plano,
motiva el empleo del modelo geométrico dado por el tengocal 1D. En particular, las restricciones
geomeétricas impuestas por dicho tensor, que puede setatidca partir de correspondencias de puntos
entre tres imagenes, mejoran la robustez del control exepcéa de errores de emparejamiento. Elinterés
de nuestra propuesta reside en que el método de controkaduptalcula las velocidades del robot a
partir de informacion Unicamente angular, siendo éstig precisa en las camaras omnidireccionales.
Ademas, presentamos un procedimiento que calcula lagaeés angulares entre las vistas disponibles
de manera indirecta, sin necesidad de que haya informaiséal compartida entre todas ellas.

La técnica descrita se puede clasificar como basada en rinfagage-based), dado que no precisa
estimar la localizacion ni utiliza informacion 3D. El mtbconverge a la posicion objetivo sin conocer
la informacion métrica sobre la trayectoria seguida.aRdgunas aplicaciones, como la evitacion de
obstaculos, puede ser necesario disponer de mayor inf@msobre el movimiento 3D realizado. Con
esta idea en mente, presentamos un nuevo método de costral Basado en entradas sinusoidales.
Las sinusoides son funciones con propiedades matembt@asonocidas y de variacion suave, lo cual
las hace adecuadas para su empleo en maniobras de apatoadeierehiculos. A partir de las ve-
locidades de variacion sinusoidal que definimos en nuésefio, obtenemos las expresiones analiticas
de la evolucion de las variables de estado del robot. Adefrsandonos en dichas expresiones, pro-
ponemos un método de control mediante realimentacioestatio. La estimacion del estado del robot
se obtiene a partir del tensor trifocal 1D calculado entrgda objetivo, la vista inicial y la vista actual
del robot. Mediante este control sinusoidal, el robot quadeado con la posicion objetivo. En un
segundo paso, efectuamos la correccion de la profundidatiamte una ley de control definida directa-
mente en términos del tensor trifocal 1D. El funcionanmdeté los dos controladores propuestos en el
trabajo se ilustra mediante simulaciones, y con el objet@sigaldar su viabilidad se presentan analisis
de estabilidad y resultados de simulaciones y de experos&an imagenes reales.



Omnidirectional Visual Control of Mobile Robots using
Three-View Geometry

Abstract

This work investigates the topic of visual control of mobitgbots. Two elements of particular
interest to us within this vast field are the use of omnidioeal vision and multiple-view geometric
models. Omnidirectional imaging provides very accuratgudar information, although it is affected by
significant distortion in the radial direction, and a widddief view, which is advantageous for robot
navigational tasks. Additionally, the geometric modelatieg different views of the environment allow
to reject image feature-matching errors and make the visarglol process more robust.

We present two visual control techniques to be used on a mbweing on the ground plane. First,
we propose a new method for visual homing. The technique @maph reference set of images of
the environment previously acquired at different locadi@nd the images taken by the robot during
its motion. In order to take advantage of the qualities of wiinectional vision, we define a purely
angle-based approach, without requiring any distanceanmdtion. This approach, taking the planar
motion constraint into account, motivates the use of the rifbctal tensor. The additional geometric
constraints enforced by the tensor, which can be computed froint correspondences between three
views, improve the robustness of the method in the preseimoésmatches. The interest of this proposal
is that the designed control scheme computes the robotitretoonly from angular information, being
this very precise information. In addition, we present acpture that computes the angular relations
between all the views even if they are not directly relateddayure matches.

This approach can be classified as image based, given thhenpbse estimation nor 3D infor-
mation are needed. Then, the robot is guaranteed to conterlpe target location without knowing
the metric information about the trajectory followed. Ims®applications, such as obstacle avoidance,
more information about the 3D motion can be needed. Takirmidlea into account, we also present
an omnidirectional visual control method based on sinwditputs. We were motivated by the well-
known mathematical properties of sinusoids and their shmests, which makes them particularly suited
for parking manoeuvres of car-like vehicles. We derive wid! expressions for the evolutions of the
robot’s state variables under the sinusoidal-varying cigls defined in our design, and we propose a
state feedback control law based on those expressions. ¥delmiea way to estimate the state of the
robot (i.e. its position and orientation) from the 1D trifddensor computed between the goal, current
and initial views. This sinusoidal-based control aligns thbot with the target; the depth correction is
carried out in a second step, in which the control law is deftfieectly in terms of the elements of the 1D
trifocal tensor. The performance of the controllers issitated through simulations, and the feasibility
of the proposed approaches is supported by the stabilitysisand the results from simulations and
experiments with real images.
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1 Introduction

We will start off by providing some background and highligltrelevant related research that motivated
and inspired the realization of this work, part of which has published in [1].

Vision sensors have been widely used for robot navigatitasks [2] due to the high amount of in-
formation that can be extracted from them. Omnidirecti@maaheras in particular are being increasingly
employed in navigation, aiming to take advantage of thettenield of view. In contrast to what occurs
with their radial information, which is strongly affecteg distortion, the angular information provided
by these cameras is rich and precise.

Homing -i.e. the ability to return to a previously known ltioa after having been moved away from
it- is a fundamental task for a mobile robot. Vision-basethimy is often inspired by the mechanisms that
certain animal species, such as insects [3, 4], utilizettometo their known home location. Angle-based
homing methods using omnidirectional vision have been gged, being [5] an early work and [6, 7]
examples of more recent contributions. These are puretyriedased approaches where the angles of
landmarks in the images are used to generate a homing vAai@y to increase the robustness to feature
matching errors of visual homing (and of vision-based rawouttrol techniques in general) is through the
use of the geometric models that relate multiple views ofemsc|n this respect, visual control methods
have been presented using the epipolar geometry, whiclessgs the relations between two views [8],
and the trifocal tensor, which encapsulates the three-gewmetric constraints [9]. In particular, robot
navigation on the ground plane lends itself to the use of drfocal tensor, the unique matching
constraint between 1D views of a 2D scene [10]. The 1D trifteasor can be computed linearly from
point correspondences, and employed to perform 2D pragaoticonstruction. It has been used for 2D
robotic localization tasks [11, 12]. The geometric infotioa encapsulated in the 1D trifocal tensor
can also be used directly for control applications [13], ®&dool to estimate the robot's state or other
parameters of interest.

Some basic goals in the field of control of mobile robots argetioerate smooth, flexible, analyzable
trajectories. Sinusoidal functions are good candidatdsilfil these objectives, owing to their well-
known mathematical properties and characteristic smestnSinusoids have been employed for steer-
ing a class of nonholonomic systems, specifically those wban be expressed in chained form [14].
Trajectories of sinusoidal nature have also been shown patigularly suited for parallel parking ma-
noeuvres [15]. The use of sinusoids in these approachesitiga the field of motion planning, i.e. they
are open-loop techniques where no feedback control is gmgpldn [16] some results are presented on
the stabilization of systems in chained form with sinusoids

The contents of this work are organized as follows: Sectiortrdduces an angle-based omnidirec-
tional visual homing method employing the 1D trifocal tenda section 2.1 we discuss the calculation
of the angles between views from the estimation of the 1Ddaf tensor. We also propose a method for
the resolution of the ambiguities in the estimation of thgles. Section 2.2 presents the procedure for
the computation of all the angular information needed fertbming task. In section 2.3 the designed
control strategy is described.

Throughout section 3 we present a visual method for coirigph mobile robot to a target pose using
sinusoids as velocity inputs. Section 3.1 describes how weehthe system to be controlled. Section
3.2 discusses the first step of our control approach, whiethisn the sinusoidal inputs are used. In
section 3.2.1 we derive the open-loop robot trajectorie@@ated with the sinusoidal velocities, while
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Figure 1: Overview of the visual homing control loop (rightNomenclature and conventions used
throughout the article (left)e 4 is the epipole (i.e. the projection of the optical centeryiafv B in
view A. aap is the angle or direction of that epipole, i.e. its angulalapgoordinate in view A. The
reference axis for the measurement of the angles is the'sabas of orientation (the vertical axis of the
images). The angles are measured counterclockwise anéfamedibetween-7 andr.

section 3.2.2 presents a state-feedback control methaatl lmasthese trajectories. The second step of

the control method is discussed in section 3.3. In sectidnv® describe how the state estimation is

obtained from the 1D trifocal tensor. The stability of theotgtep control is analyzed in section 3.5.
Finally, the conclusion is given in section 4. The experitakresults from the methods presented in

this work can be found in the Appendix.

2 Omnidirectional visual homing

We propose a homing method that makes use of the angulamafam between omnidirectional views
extracted by means of the 1D trifocal tensor. The three-geametric constraints enforced by this tensor
on the point correspondences make the calculations moustrad outliers when compared to feature-
based methods. Our approach employs only the visual intismprovided by omnidirectional images
to obtain the angles between the current position and a geeweiously acquired reference images taken
at different locations, any of which can be selected as timeeh@r goal) position. A control law based
on the estimated angles is used to guide the robot to thettaBpmme nomenclature and conventions
used throughout this document are illustrated in Fig. 1ctviaiso provides an overview of the employed
control loop.



2.1 Angles from the 1D trifocal tensor

The trifocal tensor is the mathematical entity that enclpes all the geometric relations between three
views that are independent of scene structure. In partidhia 1D trifocal tensor relates three 1D views
on a plane, and presents some interesting properties; ypatriglthe only matching constraint between
1D views, it can be estimated linearly from a minimum of setlere-view point matches (or five, if the
calibration of the cameras is known [17], and 2D project®eonstruction can be obtained from it.

2.1.1 1D trifocal tensor computation and epipole extractia

The projections of a given point in three 1D views (which wé vefer to asA, B andC) on a plane are
related by the following trilinear constraint [10]:

2 2 2

ZZZTijufufukc =0, (1)

i=1 j=1 k=1

whereT;;;, are the elements of the;2 2 x 2 1D trifocal tensor, T, between the views, ang, uP and

u® are the homogeneous coordinates of the projections of tim ipoeach view. T is defined up to a
scale factor and therefore can be calculated, in the umagdith case, from a minimum set of seven point
correspondences across the views.

The process we follow to estimaiéstarts by detecting relevant features in three omnidivaatiim-
ages, e.g. by means of the SIFT keypoint extractor [18], amtirfy matches between them. The angles
(«) of the matched image points, measured counterclockwige the vertical axis, are converted to a
1D projective formulation, with the corresponding homogeuns 1D coordinates beirfgin o, cos o)™
In this mapping, the distinction between angles differiggrlis lost.

Each of the point matches in 1D projective coordinates giigesto an equation of the form of (1).
If more than seven correspondences are available, we firabdguares solution to the resulting system
of linear equations through SVD. In this process, a robughesion method (RANSAC) is employed in
order to reject wrong matches.

After T has been estimated, the epipoles are extracted from it asprgcedure presented in [19]
that we briefly describe next. A 1D homography is a mappingveeh projected points in two lines
(two of the 1D views, in our case) induced by another line.nfrthe coefficients of the trifocal tensor,
we can directly extract what are known as th&insic homographies; for example, the two intrinsic
homographies fromd to B, Kap andLag, are obtained by substituting the lines definedu$y =
(1,0)T andu® = (0,1)T in (1), yielding

2
T Tion T2 Thoo @)

Kap — [ —To11 —Tom ] Lap = [ —T212 —Too2 ] .
Now, HAzKABLglB is a homography fromt to itself; by definition, the epipoles are the only points
that are mapped to themselves by such a homography Ag..= Haeap andeac = Haeac. There-
fore we can calculate them as the eigenvectors of midri it is important to note, though, that with
this method we do not know which of the other two views dr ') each of the two recovered epipoles
corresponds to. By mapping this pair of epipoles to the othewvs through the intrinsic homographies,

we finally obtain the six epipoles of the set of three 1D views.
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Figure 2: Four possible 2D reconstructions from the eppblketween two views extracted from the 1D
trifocal tensor (left). The relations between the anglethefprojections of matched points, suchfas
and P, in two aligned views are used to resolve the 2D reconstrmambiguities (right).

2.1.2 Ambiguity resolution

There are three ambiguities that need to be resolved in twdkatermine the correct values of the angles
of the 2D epipoles from the values of the epipoles extracsiolguthe 1D trifocal tensor.

Firstly, as mentioned in section 2.1.1, an epipole in a gwview recovered from the 1D trifocal
tensor may be assigned to any of the two other views. Thidtsesutwo possible solutions in the
assignment of the set of six epipoles between the three vidvgsshown in [10, 17], both solutions
give completely self-consistent 2D projective recondtans, regardless of the number of point matches
between the views. This fundamental ambiguity in the 2D mstroiction from three 1D views can only
be resolved through the use of a fourth view, as noted in [Thle method we employ to resolve the
ambiguity operates in the following way: having a group afrfeiews (which we can call A, B, C and
D), we calculate two different trifocal tensors betweemthéor instance, the tensor relating A, B and
C, and the tensor between B, C, and D. Since the epipoles éet&and C must be identical in the two
estimations, by detecting the common (or, in a real sitnatioe closest) epipoles in these two views we
can disambiguate the assignment of the complete set oflepipo

The origin of the two other ambiguities lies in the fact thathe mapping of 2D image points to 1D
projective coordinates, the distinction between beariiffering by = is lost. The angle of a recovered
1D epipole (e, ex)” is obtained asrctan(e;/es) in 2D. As a consequence, from the 1D epipole we
can extract two different angles in a 2D view, separated bgdians. There are, therefore, four possible
solutions for the values of the epipoles between two givewsiA and B, which may be interpreted as
emerging from two combined reconstruction ambiguitiesnely, an ambiguity in the direction of the
translation vector from view A to view B, which accounts foetdifference between solutions (a) and
(c) in Fig. 2, and an ambiguity of radians in the orientation of view B, illustrated, for exdepy
solutions (a) and (b) in the same figure.

This double ambiguity for a set of two views might be resolteaugh point reconstruction, but
instead we use a simple method employing only the angles aftred image points. We first choose
one of the two possible values for each angle. We name thésstestangles’, ; andaj 4. Although
these two choices are arbitrary, let us suppose, for siibplithat we have picked the angles so that
both of them are between 0 andradians. Our procedure is based on the alignment of the texesyi
which is achieved through the rotation of the image pointshigyselected angles. This is done simply



Table 1: Disambiguation of the angles of the epipoles in tiews

B in front of A | B reversed<) AR aBA Case in Fig. 2
1 1 i aja (@
1 0 o B apy+m (b)
0 1 aSp+T | agy+T (c)
0 0 aypt+m apa (d)

(x)After alignment of the images using the selected angigg, andaf; 4.

by subtracting the selected angle from the angular coareliobevery matched image point. Once the
images have been aligned, if the two cameras are pointirtgeisame direction, the two projections of
any given point in them will lie on the same side with respedhe camera’s axis of orientation, whereas
if the cameras are pointing in opposite directions, thegqmtapns will lie on opposite sides of the axis
(Fig. 2). We use a voting procedure integrating the indiglduesults of this test for all the matched
points to determine whether aligning the two cameras usiagélected angles leaves them pointing in
the same direction or reversed with respect to one another.

Next, we want to obtain the sign of the scale of the transidtiom view A to view B, i.e. establish if
B is in front of or behind A. Having the two images aligned amihting in the same direction (rotating
view B by an additionat radians if required) we use the fact that the projectionoaitg in the camera
that is in front will give larger angles, in absolute valuegan the projected points in the camera that is
situated behind. This is again illustrated in Fig. 2. Forrgvaatched point, we subtract the absolute
values of the angles of its projections in views A and B. Weasguhese results (keeping their sign), in
order to give the more discriminant points a greater weigihd, then add them up. If the sum is positive,
A is estimated as being behind B; otherwise, A is in front ofTBis result directly gives us the angle
of the epipole in view A, and its combination with the outcoofethe orientation test determines the
value of the angle in view B, as shown in Table 1. Additionaiity every group of three views the joint
consistency of the three results of this two-view disaméaigun procedure is checked.

2.2 Reference-set angles computation

The initial stage of our method involves the calculationhsd aingular relations between the images on
the reference set. This processing can be done off-linetreandfore its time consumption is not a critical
issue. The aim is to build and store a matrix containing thggesnof the epipoles between every pair of
reference views, for their use during homing.

We will name that matrixM, with M (7, j) = «;; being the angle of the epipole of vieiin view i.

All the diagonal elements d¥1 are defined as zero and the size of the matrixis (n), wheren is the
number of reference views.

Relevant features are extracted and matched between easieyf jmages on the reference set, and
the resulting point correspondences are stored. We thenastastimation procedure that operates as
follows:

e A set of four images (which we can call A, B, C and D) taken in gvoups of three (e.g. A-B-C
and B-C-D) are processed in each step. For each trio of imagesbtain three-view point correspon-
dences by taking the common two-view matches between thesm & minimum number of seven point

9



Figure 3: Geometric setting with four views and two knowangles.

matches between the three views in each group, we can daltwa trifocal tensors, and we can finally
obtain the angles of the epipoles in each of the views of theifnage set (section 2.1).

e We run through the complete set of reference images callogl&tifocal tensors and estimating
the angles between the views. Whenever there is more thaasbingation of a certain angle available,
we choose the result that was obtained from the largest gatiof matches. In addition, since in real
experiments we have found that small sets of corresponddretereen views tend to produce unreliable
results, a minimum threshold can be set for the number oéspondences, below which the calculation
of the trifocal tensor for a trio of views is not attempted.

o After the preceding stage is finished, we usually end up witithnaompleteM matrix, due to the
impossibility to find sets of three-view point matches limgiall the positions on the reference set. There
may not be correspondences between images that are far tplagroups of adjacent or close images
are likely to provide good sets of matches, and from the arggémated between them we can calculate
all the missing angles in matrivl. Specifically, if the angles between two given vieivand j are
unknown (i.e. M (i, 7) and M (j,4) could not be obtained in the preceding stage of the algojitiwve
look for a pair of views that are linked with boitandj, and employ the procedure described in section
2.2.1 to calculate those two angles. By using this methodtitely, all the elements in matrikI can
eventually be worked out.

The geometric consistency of the triangles obtained inyestp of the process is checked, in order
to increase the robustness of the results.

2.2.1 Complete solution of four-view sets

In practice, it is usually not possible to find matches acedlsthe images. Next, we propose a method
to compute all the angular information using the matchewéen sets of adjacent or close images. A

10



Figure 4: Seven regions where point A can be located.

geometric setting of the type shown in Fig. 3, where two tfias are known between the locations of
four views, comes up in our method every time we estimate tif@cal tensors from a four-view set.
This section describes the method employed to calculateMh@nknown angles in this configuration.

We use the notatiorl BC to refer to the angular size>(0) of the angles in a triangle. Without loss
of generality, we can formulate the problem in the followtegms: all the angles from every view to the
others in the set are known except the angles of the epipel@gebn views A and D. Therefore all the
angles in the four triangles formed by the set of four viewes kavown, except the ones including both
vertices A and D (represented with dashed lines in Fig. 3). dbjective is to calculate the angles p
andap 4 of the epipoles 4p andep 4, which can be directly obtained from the knowledge of thelesg
of the triangles at those vertices. We start by applying dedf sines on the set of four triangles (ABC,
ABD, ACD and BCD), which finally yields the following expraesa

sinA/B\D
T = KA7 (3)

sin ACD
whereK 4 is a known value given by

- sinC/'BT?-sin@
sinB/@-sinC’/@.

A (4)
Using the intrinsic relationship between the three angtegegtex A and applying trigonometric

identities, we can calculate the individual values of thgles in (3). We must, however, take into
account the fact that the location of A with respect to theepthree vertices changes the geometry of
the set and, consequently, the relation between the angtee aforementioned vertex. Therefore, we
need to divide the plane into seven regions, as shown in Fig.a&ccount for these differences. It turns
out that the expression that gives the an@E\D has the same form in all cases (i.e. for all regions), but
the signs of two of its terms, denotedsign, andsigns, are dependent on the region where A lies

signy - Ka sin(m)

A/B\D = arctan —.
1+ signy - K4 cos(ABC)

(5)

We can easily determine the region in which A is located usiiregknown angles of the epipoles in
views B and C, and choose the appropriate valueg@f; andsigns as shown in Table 2.

11



Table 2: Values of signs for the different regions in which Aytie

Region of vertex A| Relation between angles at vertex|Asigny | signs
Q ACD =27 — ABD - ABC -1 1
o, Q5 ACD = ABD + ABC 1 -1
Q3, Qg ACD = ABC - ABD 1 1
Oy, Q7 ACD = ABD — ABC -1 -1

The angle of the epipole of view D in view A is finally obtainesifallows
aAB+A/B\D, if 0<apqa—app<m
aAp = 7 : (6)
aap— ABD, if 0>ags—agp > —7

The angle of the epipole in view D of view Ax{ 4) can be calculated through a completely anal-
ogous process, simply interchanging the roles of verticesé D. The results are validated using ge-
ometric consistency checks. By employing the procedure ave fust presented, we can calculate the
two unknown angles and thus obtain the complete set of abgkegeen the four views. In addition, this
method is useful for two other purposes within our homindntégue:

¢ In the initial stage, detailed in section 2.2, this methddved to fill in the missing elements in
the matrix of epipole angles, corresponding to pairs of giéwat could not be linked directly due to the
impossibility to find a sufficiently large set of three-viewatohes between them.

e During homing, it enables us to obtain all the angles needegkherate the motion commands
employing a minimum number of three views; we only need to at® the trifocal tensor between
the current image taken by the robot and two of the referemagés, which reduces the cost of the
algorithm.

2.3 Homing strategy

In this section we describe the strategy designed in ordethéomobile robot to perform homing. We
assume the robot moves on the ground plane and has nonhatonastion constraints. The homing
method is based solely on the computation of the angles ketwee locations in which a series of
omnidirectional images of the environment were obtaindds §roup of snapshots consists of the image
taken by the robot from its current position and a set of pnesly acquired reference images, which
includes an image obtained at the desired target locatibe.ahgles between the views on the reference
set have been previously computed and stored, as descrilssttion 2.2. Therefore only the angles
between the robot and the reference views must be workeduouigchoming.

In every step of the robot’s motion, the camera takes an anaatibnal image, from which key points
are extracted. When sufficient point matches are found lestvilee current and two of the reference
images, the 1D trifocal tensor is calculated as detaileceatien 2.1.1. From the tensor, aided by the
knowledge of the angles on the reference set, we can extraetrigles between the current and the two
other views. Finally, with the method explained in sectioB.2 all the angles of the epipoles in all the
views can be computed.
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Figure 5. Elements involved and angles employed in the hgretrategy. C' is the robot’s current
localization, at the coordinate origin (0, 0, @}.is the goal location.R; are reference views. Three of
then views on the reference set are depicted as example.

2.3.1 Control law

For every reference viewR;(x;, z;, ¢;) (Wherex;, z; andy; define its position and orientation in the
ground plane), the difference between the angles of itsobgspwith respect to the current and goal
locations defines an angular sector of skze= |o;c — «;|, as illustrated in Fig. 5. We use the average
value of the angular sizes of these sectors to set the lirdacity at which the robot will move toward
the target position

1 n
v = ky sign(cos acg) - — g S, (7)
n
i=1

wherek, > 0 is a control gain. When the target is behind the robdjn(cos ace) will be negative,
therefore generating backward motion. As the robot moveseclto the goal, the mean size of the
angular sectors seen from the reference positions willinecemaller; thus, the robot’s linear velocity
will gradually decrease and eventually become zero whetatiget is reached.

The direction in which the robot travels is determined bydhgle at which the goal position is seen
from the current location, i.e. the angig: of the epipoleec. The angular velocity of the control law
is given by

w = ky(ace — abg), (8)

a _J 0 if Jacgl <
aCG_{ m if  |aca| > ’ )

ISEINIE

wherek,, > 0is a control gain. From a minimum number of four referencevgieone of which would be
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the view from the target location, the robot will navigatetie home position. Note that the orientation
in which the robot reaches the target position is not coleplsince, by definition, the purpose of the
homing task is getting to the goal location.

2.3.2 Stability Analysis

In the following, the stability of the control scheme is arzad by means dfyapunov's Direct Method
[20]. We define the candidate Lyapunov function as

2 _d 2
Vxt) =2+ (ace — age)” QO‘CG) (10)
wherep is the distance between the current and goal positionsx &ithe state of the system, determined

by p andacq.

Next, we show that the candidate function (10) is a Lyapunoetion when using the proposed con-
trol law. We need to prove thaf is positive definite} is negative definite antf is radially unbounded.
The functionV is positive definite, given that’ > 0 for all x # 0 andV'(0) = 0. It is straightforward
thatV'(x) is radially unbounded, given th&it(x) — oo as||x|| — co. Next, we prove that the derivative
V (x) is negative definite. The Lyapunov candidate function @it is

V =pp+ (aCG — Ofé«G) o - (ll)

The dynamics of the system as a function of the input veleitire given, using the derivatives in polar
coordinates with the origin at the goal, py= —v cos(acg) andacg = —w + vsin(acag)/p. Using
the control velocities (7), (8) we obtain

V o= —k, p sign(cos aca) cos(aca) Z S;

—kuw(ace — abq)? — (ace — Oédcc)

-sin(acg) ky sign(cos acqg) - Z S; . (12)
p

By definitionp > 0 and.S; > 0. Itis straightforward that the first two terms of (12) are atbge definite,

but the last term can be positive. The interpretation isttiatonvergence speed provided by the angular
velocity has to be higher than the linear velocity. Otheeythe angular error is not corrected fast enough
and the robot will move following spirals around the goal.wéwer, the stability can be guaranteed if
the control gains are selected properly. It is guaranteathth< 0 if the next inequality holds

, ky 1
|kw - (aoa — adg)| > |sin(acq) ?U - > Sl (13)
=1

The terms of the right expression are bounded ext¢¢pt However, note thad " , S;/(np) is
indeed bounded. We can expressas a nonlinear function gf: sin(S;) = f(p, R:G, agr,c); when
p — 0 we can approximatsin(S;) ~ S; and thenS; = p f(R;G, ag,g). Therefore, the right part in
(13) is bounded. Then, taking into account the initial vai4g;(0), we can always defink,, in such a
way thatV < 0 and the system is globally asymptotically stable.
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Figure 6: Overview of the sinusoidal-based visual contoalpl (right). Definition of the elements of
our system and the geometric variables employed (let).identifies the goal view, which serves as
the global coordinate systen®’is the robot’s current location, and”is the location of the additional
reference view.

3 Sinusoidal input-based visual control

We present a control method based on sinusoidal inputs fonlaalonomic mobile robot. We define our
particular choice of sinusoidal velocities and derive ttaestrajectories from them through integration.
Using the open-loop expressions of the state variables esigidl a state-feedback control law. The state
of the system is estimated from the 1D trifocal tensor bebhatbe current view, the initial view and the
target view. The method has two steps: the sinusoidal-basetiol part is followed by a second step
consisting in a straight-line trajectory to carry out depdrection.

3.1 System model

A nonholonomic robot moving on the ground plane constit@efynamical system on which we are
going to perform a control task. The state of this system fimdd by the robot’s localization, given by
x = (x,2,¢)T. The origin of the coordinate system is the goal locatiomgiby the localization at

which the target image was obtained, ixg = (0,0,0). The nonholonomic differential kinematics of
the vehicle expressed in state space form as a function dfahslation and rotation velocities of the
robot (v, w) is as follows:

T —sing 0
)= cos ¢ v+ | 0 |w. (14)
1) 0 1

Since the primary information we will extract from the systavill be of angular nature, it will be
also useful to express the system’s state and its kinemiatigslar coordinategp, a, ¢) as illustrated
in Fig. 6. The lateral and depth coordinates are relatedetiar ones through = —psin and
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z = pcos, while the alignment error is defined as:= ¢ — . The kinematics in polar coordinates
are:

p cos 0
@ | = —% sina v+ | 1 |w. (15)
) 0 1

3.2 Sinusoidal input-based control scheme

Our approach for the first step of the control strategy is thasedefining the desired trajectories of the
state variables in a sinusoidal-varying velocity framewdDur proposed open-loop velocities follow a
sinusoidal time variation expressed by:

v = asin(Qt) (16)
w = A-bsin(20). a7

We will assume throughout that the angular frequency of itesgid (2) is set to a constant value.
This is a design parameter whose value will be determinedhbytitne lapse in which we want the
first step of the control to be carried out (given by one helfigd of the sinusoid, i.eT/2 = 7/Q).

A = —sign(v) is a parameter used to set the appropriate sign of the angeltzity wave so that the
robot trajectories defined in our approach are obtained. Wemly discuss the case where the motion
ends ot = 7'/2, and therefored will be equal to -1. For their part; andb are real values that set the
amplitudes of the sinusoidal velocity waves. In an opermplscenariog andb are defined as constants,
but when a feedback control strategy is used, as descrilbsettion 3.2.2, these two parameters will be
our control variables. Without loss of generality, we cdesithe robot’s state at= 0 to be(xo, 2o, 0)7 .

If the initial orientation of the robot is nonzero, we will mpute the starting timét, # 0) of the
sinusoidal velocity waves, which will now run frorg to 7'/2. This will be described in more detail in
section 3.2.2.

When the velocities in (16) and (17) are used, the resultiogan will be smooth, due to both the
choice of a sinusoidal time variation and the fact that thatianal velocity is zero at the points where
the linear velocity is either maximum or zero. For the sakembothness, safety and feasibility of the
motion commands, higher rotational speeds are associafetetmediate linear velocity values in our
approach. We believe these properties make the proposedi@pe velocities appropriate for their use
on a vehicle with nonholonomic motion constraints.

3.2.1 Open-loop state evolution

In this section we will obtain the analytical expressionstfte evolutions of the state variables in an
open-loop scenario under the sinusoidal-varying velamityymands proposed in section 3.2.

By integrating the sinusoidal velocities given in (16) atd)(over time, we can derive the equations
for the open-loop evolution of the three state variables. cdesider the robot's state at= 0 to be
(o, z0,0)T. We will first obtain the time variation of the orientationraponent:
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t ¢ ¢
o(t) = o +/0 pdr = /0 wdr = /0 A - bsin(2Q7)dr = %(1 — cos 20)t). (18)

Once we know howp evolves with time, we can substitute this result in (14) téaobthe time
variations for the two other state variables. We will firstestenine the evolution of(¢), for which we
will use the Taylor series representationsof ¢:

. o . o . . (_1)n n _
x@)——ﬂ(ﬂ$n¢@)——1wHKQﬂ-g;ZZ;IEﬁ¢2+1_

0 _1\n 2n+1
— asin(Qt) - Z % (%) (1 — cos 2Qt)* 1 =
n !

nA2n+1 b 2n+1 s
- — in*""(Q 1
az Gt D) <Q) sin (), (19)

where the identity1 — cos 22 = 2sin? 2 has been used. We can now obtain the open-loop evolution
of the state variable in the time intervab < ¢ < 7'/2 through integration:

t nA2n+1 b 2n+1 3
t) = t(T)dr = — in*""(Qr)dr. 20
x(t) fz:o—i-/o z(r)dr x0+/ Z @n T 1 (Q) sin (Qr)dr (20)

The integral of the sine function in (20) can be expressed as:

/ sin®" T3 (Qt)dt = —

where, F is the Gaussian hypergeometric function:

cos Qt

- oy (1/2,—2n — 1;3/2; cos® Qt)

o0 v
k(B
21 (e, B33 x Z
per Ol

with (@) = ala+1)(a+2)---(a + k — 1), (a)o = 1. It can be easily seen that whenis a
negative integer (which is indeed the case for us, sihee—2n — 1) the series has only3 + 1| nonzero
terms, i.e.k = 0, ..., 5. We finally get to the following expression faft):

x®:m+F2§@IWL%; (1)
where we define:
| (L1yn A2ntm /g 20t
L(b,t,m) = Z Gt m)! (5> - 9Fy (1/2,—2n — m; 3/2; cos® Qt) . (22)

n=0
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Thus, z can be exactly determined at any time through the sum ofssefiénfinite terms. Note,
however, that the index of the sums, is the index of the Taylor series representatiorsiafp. The
values ofp will be, at most, in the range-, 7] (usually, the actual range will be considerably smaller);
therefore, taking only a small number of terms in the sumbsuifice to ensure that an accurate solution
is obtained forz(t).

The time evolution of the state variabtecan be worked out in an analogous way, through the
integration of the corresponding expression in (14). Timsetwe use the Taylor series expansion of
COS .

oo n © . \n on
2(t) = vcos ¢ = asin() - Z (=1) $*" = asin(Qt) - Z (=1) <&> (1 — cos 2Qt)*" =

= (2n)! = (2n)! \ 20
1)nA2n b 2n - n
a Z on <Q> sin®" T (Qt), (23)
n n 2n
2(t) = z0 + / Zdr = zp + / Z A2 < b > sin?" T (Qr)dr. (24)

The integral of this sine function raised to a power depemdimearly onn can again be expressed
through a hypergeometric function:

Q
/sin4”+1(fzt)dt = R (1/2,-2m:3/2 0 ) (25)

andz(t) has the following open-loop expression:

t
@cos(@) 1yt oy (26)

Q 0

Thus, we have obtained the analytical expressions for #jectories of the three state variables.
Next, we will work out the values af andb required, in an open loop scenario, for the state variables
and¢ to go to zero at = 7'/2.

The z state variable is not controlled in the first step of our cgnécheme, as will be discussed in
section 3.2.2. It can therefore have any arbitrary final @aknd this degree of freedom allows us to
choose one among the infinite possible trajectories betdeerobot’s initial and final configurations. A
convenient way to do so is by setting the maximum value of tientation component, ..., that the
robot will achieve during its motion. This can give us a goedse of what the trajectory will be like
(see Fig. 7).

Once we have chosen a valueg®f,.., b is readily obtained, since from (18) we can see that =
Q - dmaz- The functional variation of and the assumption thaty = 0 ensure that the final orientation
will be ¢(T'/2) = 0 regardless of the value 6f For a given value o, i.e. for a given rotational velocity
variation, we can see that there is only one value thfat will steerxz from its initial valuex to 0 at the
end of the motion interval. We can determine this value bywanig the constraintz(t = 7'/2) = 0in
equation (21), which yields:

2(t) = zo —
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- 2. F(bOL> 0, 1) ' (27)

aor

3.2.2 Closed-loop control

Since the system will be subject to disturbances (e.g. meamnt noise, motion drift and model errors),
in order to perform robust control we need to use a closed-tmmtrol strategy based on state feedback.
We will carry out the control task by adjusting the amplitad# the sinusoidal velocity waves we are
using as inputs to the system. During closed-loop operatioavery step of the motion (i.e. at every
given timet;), the state of the robot will be estimated and the amplitudeand b) of the sinusoids
required in order to steer bothand¢ to zero at = 7'/2 will be computed.

We would like to control the robot to its target state, i.e.ksar, z, ) = (0,0,0) at the end of the
motion. However, it is well known that the nonholonomic gystof a wheeled unicycle mobile robot
modeled in a Cartesian state space representation cagsiaethis work cannot be stabilized to a given
configuration by means of smooth state-feedback contrgl [21

In our case, it turns out that with the two degrees of freed@hawve in the feedback loop (namely,
the values ¢ andb) of the amplitudes of the sinusoidal velocities) we will pble able to control two of
the robot’s state variables simultaneously. Therefore avernaker and¢ go to zero int = T'/2, but
we cannot do the same with This is why we need to perform a second control step, whichwile
describe in section 3.3, in order to corredb zero.

Our closed-loop control strategy is based on adjustingri@itudes of the sinusoidal velocity inputs
in such a way that they respond to the disturbances in thersydf the state of the system at any given
timet, such thabd < ¢t < T/2,is (z(t), z(t), ¢(t)), the amplitudesg andb, of the inputs at that time are
computed by enforcing the constraints that bo#nd¢ must become 0 in = 7'/2. For this purpose we
use the previously obtained equations (18) and (21), firddtgining the following results:

—9(t) - 0
bt = sin?(Qt) (28)
alt) = z(t) - Q .
cos(Q2t) - T'(b(t),t,1) + T'(b(t),0,1)

Expressions (28) and (29) are valid fox ¢ < 7'/2. The values ofi andb at¢ = 0 can be obtained
from the open loop expressions given in section 3.2.1 fortleeparameters. In addition, bothand
b must be set to O at= 7'/2. This way the singularities in the expressions (28) and &8)avoided.
Still, we need to ensure that the velocity values will remaithin reasonable limits; therefore, we will
have to bound them by setting maximum values . andb,...) which can be a function of the open
loop amplitudes, and we can also limit their variation betw&vo consecutive stepsandt + At, e.g.
enforcing|a(t + At)| < K - |a(t)| and|b(t + At)| < K - |b(t)|, with K > 1.

Note that, as already mentioned in section 3.2, our contethod can be used for any arbitrary
initial orientation of the robot, i.ep.+ # 0. Indeed, if we set a maximum desired valuesadlong the
trajectory, ¢,.q., and consideb as computed using the open-loop expression given in se8tibf (i.e.

b = Q- dmaz), then the starting timeg, of the input sinusoids needed for this case can be obtained as

(29)
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Figure 7: Left: Example robot trajectories obtained witk #inusoidal input-based control law. This
law aligns the vehicle with the target pose (which(s0, 0°)). In a second control step, the depth error
is corrected following a straight-line path. Right: Comtpaths from starting positiof—4, —1, —10°)
With |pmaz | = 45°, 60°, 90° and120° (top to bottom curves).

T star
to = o arcsin 4 | % (30)

®maez MUSt be chosen to have the same signgg.: and a greater absolute value. This ensures that
the computed, will be in the correct range, i.€. < ty < 7'/2. The sinusoidal inputs will now run from
to to T'/2 to leave the robot aligned with the target along thaxis. Note that our method can handle
any value ofp:.,-+, €ven if the robot is initially reversed with respect to thesided final pose, as long
asomage 1S Chosen to have an appropriate value. Some example tragecbbtained using the sinusoidal
input-based control law are illustrated in Fig. 7. Varyirgices of the design parametgy,,,. result in
paths of different characteristics, as can be seen in thé payt of the figure.

3.3 1D trifocal tensor-based depth correction

The first step of our control scheme corrects both the lafasition and the orientation of the robot.
Thus, at the end of this stage the robot’s statélis:»,0)1. The correction of the depth coordinate
is performed in the second step of the control. Since in thrsiqular situation the 1D trifocal tensor
elements provide all the information necessary for the robiéisk, we will use them directly in the
feedback loop, without estimating the state of the robotieitly. Indeed, the trifocal tensor elements
when the state i§), 22, 0) are as follows:

!In this section, subindexes are used to identify the camewiag (2, 22, ¢2) the current location anf:, z1, ¢1) the
location of the fixed reference vieWrs, z3, ¢3) = (0, 0, 0) is the location of the target view as defined in Fig. 6.
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T, = —zgsingy  —t,1 — 2908 P1 } Ty — [ ZoCOS 1 tp1 + z9sin ¢ (31)

1251 0 _tatl 0 ’
where the tensor has been broken down in matricegrepresenting elements ;) andT2 (repre-
senting element$y;;); andt,; = —x1 cos ¢1 — 21 sin 1, t.1 = 1 sin¢; — 21 cos ¢1 express location

relative to the first camera’s local coordinate system [13].
We want to make the linear velocity of the robot proportiomaihe distance to the target. With this
objective in mind, we can initially define it in the followingay:

V= 5y \/T1112 + Top1? = \/2228111 ¢1% + 29208 ¢ = |29 (32)

In order for the robot to move towards the targgt, which denotes the sign of must satisfy:s,, =
—sign(zz). The sign ok, can be readily inferred from the signsBf;; or 7511, sinceg; is a known fixed
angle. We also need to take into account the fact that the etmddD trifocal tensor is obtained up to
scale; therefore, if its elements are to be used for corasils, they need to be normalized to a fixed scale.
We achieve this by using the following normalization factby, = \/T1212 + Tho1? = \/td? +tnl=
Vx1? + 212. The linear velocity of the second step of our control, basethe normalized 1D trifocal
tensor elements, is then as follows:

[T1112 + To112
v==FKy-Sy- %, (33)
Th121% + To01

wherek, is a positive control gain. As for the angular velocity, itclsosen in such a way that it
performs a proportional correction of the orientation egfthe robot, i.e.:

w = _kw . ¢27 (34)

wherek,, is a positive control gaing, is computed in the same way (described in section 3.4) as in
the first step of the control, .

3.4 State estimation through the 1D trifocal tensor

In order to perform the feedback control defined in sectidh23.we need to estimate the state of the
robot in every step of its motion. We will only use omnidiriedial visual information for this purpose.
In section 2.1 we described the way in which the relative esletween three views can be extracted
from the 1D trifocal tensor, using the epipoles. We will cartgothese angles from a set of three views;
namely, the target view, the current view and a third viewchihian be given by the start image. A
priori information can be used to disambiguate betweemrata’e solutions. Once we know the angles
between the views, it is straightforward to work out the daguoordinatesy and¢ of the robot’s state
representation in polar form.

However, since the trifocal tensor is defined up to an unkneeale, distance estimations cannot
be directly extracted from it. In order to compute distaneeameters, we will initially need to use
the derivatives of the known angles. These are rather nagnates; in order to avoid using them
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during control, we will take advantage of the fact that weentiiree views forming a triangle and a fixed
reference distance between two of them.

We defined as the fixed distance between the initial (or reference, irgergeneral sense) position
and the target position (see Fig. G).is related to the state variabfeand the angular sectofsand
through the law of sines:

p=d-sin(y)/sin(B). (35)

This expression can be usedjif> 0, which will be true as long as the robot does not cross the line
joining the reference and goal locations during its motiBefore the control task is started, the robot
performs an initial motion whose objective is to compditd his is done using (35) and the dynamics of
the system in (15). The following expression is obtained:

d:sinﬂ' P (36)

siny wsina’

We can estimate the derivative ofas: ¢ = (1(t + At) — 1(t))/At. The initial motion executed
prior to the control task must be such that the robot doesnossdhe line joining the reference and goal
positions, thus ensuring > 0 and~ > 0. In addition, the robot must not move in the direction tovgard
the target, in order to ensute # 0 andsin o # 0. It is straightforward to generate a motion fulfilling
these conditions, since from the computation of the trifeeasor, we know the angles between the three
locations at all times. We must also select this prior mosiorthat during the subsequent control stage
the robot will not cross the line between the initial and doahtions, in order for (35) to be usable.

During the initial motion we can obtain a number of estimaiég using (36) and compute their
average, until we achieve a sufficiently stable value. At @i@nt, the control phase can stan. is
computed during control using (35), amdthe position variable we use in the feedback control losp, i
obtained as: = —psin ¥.

3.5 Stability analysis
Next we will analyze the stability of both steps of the cohtmethod.

3.5.1 Firststep

Under the sinusoidal input-based control law defined in ttst $tep of our method, the system is non-
autonomous and finite-time, running from= ¢, to t = T'/2. Classical stability analysis primarily
studies the asymptotic behavior of systems, and thereteresults and conclusions are not directly
applicable in our case [22]. However, we can still use Lyapuanalysis [23] to illustrate the stability
properties of the system under our control law.

We define the following Lyapunov-candidate functiov: = %(Pa:2 + ¢?), where P is a positive
real number. This is a positive definite and radially unbagshflinction, for analogous reasons as those
stated for the function used in section 2.3.2. Under theeddsop control law of the first step of our
method, the derivative of this function is as follows:

V=gi+dp=—P 2> Q- F(¢,t) + 2¢*Q cot (1), (37)
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Figure 8: Graphical stability analysis from equation (3B)e regions of stability are displayed in white.
The curves represent three sample trajectories of theblariawhich are contained in the stability area.

whereF'(¢,t) = sinQt - sing/[cos(2t) - I'(b(2),t,1) + I'(b(t),0,1)]. The stability requirement is

that in order forV to be a Lyapunov functionl” must be negative during the system’s operating time
interval 0 < ¢t < 7'/2). The conditionl” < 0 finally yields the following inequality:

2¢2 cot(Qt)
F(¢,1)
Sincex # 0, when the right side of (38) has a positive bound, we can awgalect a suitable value
of P so that the inequality holds. Figure 8 shows the regions evtter right side of (38) has a positive
bound, along with the variation af in three typical system trajectories, with,,..| = 45°,60° and
90°. Unless strong disturbances are present, the system vathlbde, since the trajectories sit inside the
stability regions.

Pz? > (38)

3.5.2 Second step

For the stability analysis of the second step of our controlhich x = 0) we define the following
positive definite, radially unbounded Lyapunov-candidatection: V' = %(z2 + ¢?). Its closed-loop
derivative is as follows:

V=zit+ddp=rz vecosp+¢ w=z- cos ¢ — ky - 2. (39)

—Z
Va2 + 212
It is straightforward to see that (singehas small values and therefates ¢ is positive) the two terms

of equation (39) are negative, and consequently the systefarihe control law of the second step is
asymptotically stable.
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4 Conclusion

We have presented a method for omnidirectional visual hgriinbe used on a robot moving on the
ground plane. The visual information is provided by a setrohwlirectional reference images, and the
1D trifocal tensor is the tool used to estimate the angufarination, being this information very precise.
We have presented a method to compute all the angular reddbietween the views even if there is no
direct matching information between them. The designedroblaw employs these angular relations
to guide the robot to the target location. The stability af tbontrol law has been analyzed and the
experimental evaluation shows the feasibility of the psmgabtechnique. The computational cost of the
proposed method is low, and the speed of its implementagiomainly limited by the time consumption
of the feature extraction process. The method can be diraptlied in settings where stored image
databases are available. In addition, it can be robust teggsin the environment, as long as sufficient
features between images can be matched.

We have also proposed a method for sinusoidal input-basecontrol of a mobile robot. From
the definition of the desired sinusoidal-varying velodtiere have derived analytical expressions for the
evolutions of the state variables of the robot. In additisa,have presented a state feedback control law
based on these expressions and a method to estimate this sibtd from the 1D trifocal tensor. The
control technique we have proposed is two-step. First,ithessidal-based part of the control aligns the
robot with the target; then, the depth coordinate is coetoemploying the 1D trifocal tensor elements
directly. The stability of both control steps has been aredy Simulations have shown the smoothness

of the motions generated with this approach as well as itsnpiad to withstand state noise and motion
drift.
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