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NICOLÁS
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Control de robots móviles mediante visíon omnidireccional
utilizando la geometŕıa de tres vistas

Resumen

Este trabajo trata acerca del control visual de robot móviles. Dentro de este campo tan amplio de
investigación existen dos elementos a los que prestaremosespecial atención: la visión omnidireccional y
los modelos geométricos multi-vista. Las cámaras omnidireccionales proporcionan información angular
muy precisa, aunque presentan un grado de distorsión significativo en dirección radial. Su cualidad de
poseer un amplio campo de visión hace que dichas cámaras sean apropiadas para tareas de navegación
robótica. Por otro lado, el uso de los modelos geométricosque relacionan distintas vistas de una escena
permite rechazar emparejamientos erróneos de caracterı́sticas visuales entre imágenes, y de este modo
robustecer el proceso de control mediante visión.

Nuestro trabajo presenta dos técnicas de control visual para ser usadas por un robot moviéndose en
el plano del suelo. En primer lugar, proponemos un nuevo método para homing visual, que emplea la
información dada por un conjunto de imágenes de referencia adquiridas previamente en el entorno, y las
imágenes que toma el robot a lo largo de su movimiento. Con elobjeto de sacar partido de las cualidades
de la visión omnidireccional, nuestro método de homing espuramente angular, y no emplea información
alguna sobre distancia. Esta caracterı́stica, unida al hecho de que el movimiento se realiza en un plano,
motiva el empleo del modelo geométrico dado por el tensor trifocal 1D. En particular, las restricciones
geométricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos
entre tres imágenes, mejoran la robustez del control en presencia de errores de emparejamiento. El interés
de nuestra propuesta reside en que el método de control empleado calcula las velocidades del robot a
partir de información únicamente angular, siendo ésta muy precisa en las cámaras omnidireccionales.
Además, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles
de manera indirecta, sin necesidad de que haya informaciónvisual compartida entre todas ellas.

La técnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa
estimar la localización ni utiliza información 3D. El robot converge a la posición objetivo sin conocer
la información métrica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitación de
obstáculos, puede ser necesario disponer de mayor información sobre el movimiento 3D realizado. Con
esta idea en mente, presentamos un nuevo método de control visual basado en entradas sinusoidales.
Las sinusoides son funciones con propiedades matemáticasbien conocidas y de variación suave, lo cual
las hace adecuadas para su empleo en maniobras de aparcamiento de vehı́culos. A partir de las ve-
locidades de variación sinusoidal que definimos en nuestrodiseño, obtenemos las expresiones anaĺıticas
de la evolución de las variables de estado del robot. Además, basándonos en dichas expresiones, pro-
ponemos un método de control mediante realimentación delestado. La estimación del estado del robot
se obtiene a partir del tensor trifocal 1D calculado entre lavista objetivo, la vista inicial y la vista actual
del robot. Mediante este control sinusoidal, el robot quedaalineado con la posición objetivo. En un
segundo paso, efectuamos la corrección de la profundidad mediante una ley de control definida directa-
mente en términos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el
trabajo se ilustra mediante simulaciones, y con el objeto derespaldar su viabilidad se presentan análisis
de estabilidad y resultados de simulaciones y de experimentos con imágenes reales.



Omnidirectional Visual Control of Mobile Robots using
Three-View Geometry

Abstract

This work investigates the topic of visual control of mobilerobots. Two elements of particular
interest to us within this vast field are the use of omnidirectional vision and multiple-view geometric
models. Omnidirectional imaging provides very accurate angular information, although it is affected by
significant distortion in the radial direction, and a wide field of view, which is advantageous for robot
navigational tasks. Additionally, the geometric models relating different views of the environment allow
to reject image feature-matching errors and make the visualcontrol process more robust.

We present two visual control techniques to be used on a robotmoving on the ground plane. First,
we propose a new method for visual homing. The technique employs a reference set of images of
the environment previously acquired at different locations and the images taken by the robot during
its motion. In order to take advantage of the qualities of omnidirectional vision, we define a purely
angle-based approach, without requiring any distance information. This approach, taking the planar
motion constraint into account, motivates the use of the 1D trifocal tensor. The additional geometric
constraints enforced by the tensor, which can be computed from point correspondences between three
views, improve the robustness of the method in the presence of mismatches. The interest of this proposal
is that the designed control scheme computes the robot velocities only from angular information, being
this very precise information. In addition, we present a procedure that computes the angular relations
between all the views even if they are not directly related byfeature matches.

This approach can be classified as image based, given that neither pose estimation nor 3D infor-
mation are needed. Then, the robot is guaranteed to convergeto the target location without knowing
the metric information about the trajectory followed. In some applications, such as obstacle avoidance,
more information about the 3D motion can be needed. Taking this idea into account, we also present
an omnidirectional visual control method based on sinusoidal inputs. We were motivated by the well-
known mathematical properties of sinusoids and their smoothness, which makes them particularly suited
for parking manoeuvres of car-like vehicles. We derive analytical expressions for the evolutions of the
robot’s state variables under the sinusoidal-varying velocities defined in our design, and we propose a
state feedback control law based on those expressions. We describe a way to estimate the state of the
robot (i.e. its position and orientation) from the 1D trifocal tensor computed between the goal, current
and initial views. This sinusoidal-based control aligns the robot with the target; the depth correction is
carried out in a second step, in which the control law is defined directly in terms of the elements of the 1D
trifocal tensor. The performance of the controllers is illustrated through simulations, and the feasibility
of the proposed approaches is supported by the stability analysis and the results from simulations and
experiments with real images.
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1 Introduction

We will start off by providing some background and highlighting relevant related research that motivated
and inspired the realization of this work, part of which has been published in [1].

Vision sensors have been widely used for robot navigationaltasks [2] due to the high amount of in-
formation that can be extracted from them. Omnidirectionalcameras in particular are being increasingly
employed in navigation, aiming to take advantage of their wide field of view. In contrast to what occurs
with their radial information, which is strongly affected by distortion, the angular information provided
by these cameras is rich and precise.

Homing -i.e. the ability to return to a previously known location after having been moved away from
it- is a fundamental task for a mobile robot. Vision-based homing is often inspired by the mechanisms that
certain animal species, such as insects [3,4], utilize to return to their known home location. Angle-based
homing methods using omnidirectional vision have been proposed, being [5] an early work and [6, 7]
examples of more recent contributions. These are purely feature-based approaches where the angles of
landmarks in the images are used to generate a homing vector.A way to increase the robustness to feature
matching errors of visual homing (and of vision-based robotcontrol techniques in general) is through the
use of the geometric models that relate multiple views of a scene. In this respect, visual control methods
have been presented using the epipolar geometry, which expresses the relations between two views [8],
and the trifocal tensor, which encapsulates the three-viewgeometric constraints [9]. In particular, robot
navigation on the ground plane lends itself to the use of the 1D trifocal tensor, the unique matching
constraint between 1D views of a 2D scene [10]. The 1D trifocal tensor can be computed linearly from
point correspondences, and employed to perform 2D projective reconstruction. It has been used for 2D
robotic localization tasks [11, 12]. The geometric information encapsulated in the 1D trifocal tensor
can also be used directly for control applications [13], or as a tool to estimate the robot’s state or other
parameters of interest.

Some basic goals in the field of control of mobile robots are togenerate smooth, flexible, analyzable
trajectories. Sinusoidal functions are good candidates tofulfill these objectives, owing to their well-
known mathematical properties and characteristic smoothness. Sinusoids have been employed for steer-
ing a class of nonholonomic systems, specifically those which can be expressed in chained form [14].
Trajectories of sinusoidal nature have also been shown to beparticularly suited for parallel parking ma-
noeuvres [15]. The use of sinusoids in these approaches lieswithin the field of motion planning, i.e. they
are open-loop techniques where no feedback control is employed. In [16] some results are presented on
the stabilization of systems in chained form with sinusoids.

The contents of this work are organized as follows: Section 2introduces an angle-based omnidirec-
tional visual homing method employing the 1D trifocal tensor. In section 2.1 we discuss the calculation
of the angles between views from the estimation of the 1D trifocal tensor. We also propose a method for
the resolution of the ambiguities in the estimation of the angles. Section 2.2 presents the procedure for
the computation of all the angular information needed for the homing task. In section 2.3 the designed
control strategy is described.

Throughout section 3 we present a visual method for controlling a mobile robot to a target pose using
sinusoids as velocity inputs. Section 3.1 describes how we model the system to be controlled. Section
3.2 discusses the first step of our control approach, which iswhen the sinusoidal inputs are used. In
section 3.2.1 we derive the open-loop robot trajectories associated with the sinusoidal velocities, while
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Figure 1: Overview of the visual homing control loop (right). Nomenclature and conventions used
throughout the article (left).eAB is the epipole (i.e. the projection of the optical center) ofview B in
view A. αAB is the angle or direction of that epipole, i.e. its angular polar coordinate in view A. The
reference axis for the measurement of the angles is the robot’s axis of orientation (the vertical axis of the
images). The angles are measured counterclockwise and are defined between−π andπ.

section 3.2.2 presents a state-feedback control method based on these trajectories. The second step of
the control method is discussed in section 3.3. In section 3.4 we describe how the state estimation is
obtained from the 1D trifocal tensor. The stability of the two-step control is analyzed in section 3.5.

Finally, the conclusion is given in section 4. The experimental results from the methods presented in
this work can be found in the Appendix.

2 Omnidirectional visual homing

We propose a homing method that makes use of the angular information between omnidirectional views
extracted by means of the 1D trifocal tensor. The three-viewgeometric constraints enforced by this tensor
on the point correspondences make the calculations more robust to outliers when compared to feature-
based methods. Our approach employs only the visual information provided by omnidirectional images
to obtain the angles between the current position and a set ofpreviously acquired reference images taken
at different locations, any of which can be selected as the home (or goal) position. A control law based
on the estimated angles is used to guide the robot to the target. Some nomenclature and conventions
used throughout this document are illustrated in Fig. 1, which also provides an overview of the employed
control loop.
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2.1 Angles from the 1D trifocal tensor

The trifocal tensor is the mathematical entity that encapsulates all the geometric relations between three
views that are independent of scene structure. In particular, the 1D trifocal tensor relates three 1D views
on a plane, and presents some interesting properties; namely, it is the only matching constraint between
1D views, it can be estimated linearly from a minimum of seventhree-view point matches (or five, if the
calibration of the cameras is known [17], and 2D projective reconstruction can be obtained from it.

2.1.1 1D trifocal tensor computation and epipole extraction

The projections of a given point in three 1D views (which we will refer to asA,B andC) on a plane are
related by the following trilinear constraint [10]:

2∑

i=1

2∑

j=1

2∑

k=1

Tijku
A
i u

B
j u

C
k = 0, (1)

whereTijk are the elements of the 2× 2× 2 1D trifocal tensor, T, between the views, anduA, uB and
u
C are the homogeneous coordinates of the projections of the point in each view.T is defined up to a

scale factor and therefore can be calculated, in the uncalibrated case, from a minimum set of seven point
correspondences across the views.

The process we follow to estimateT starts by detecting relevant features in three omnidirectional im-
ages, e.g. by means of the SIFT keypoint extractor [18], and finding matches between them. The angles
(α) of the matched image points, measured counterclockwise from the vertical axis, are converted to a
1D projective formulation, with the corresponding homogeneous 1D coordinates being(sinα, cosα)T .
In this mapping, the distinction between angles differing by π is lost.

Each of the point matches in 1D projective coordinates givesrise to an equation of the form of (1).
If more than seven correspondences are available, we find a least squares solution to the resulting system
of linear equations through SVD. In this process, a robust estimation method (RANSAC) is employed in
order to reject wrong matches.

After T has been estimated, the epipoles are extracted from it usinga procedure presented in [19]
that we briefly describe next. A 1D homography is a mapping between projected points in two lines
(two of the 1D views, in our case) induced by another line. From the coefficients of the trifocal tensor,
we can directly extract what are known as theintrinsic homographies; for example, the two intrinsic
homographies fromA to B, KAB andLAB, are obtained by substituting the lines defined byu

C =
(1, 0)T anduC = (0, 1)T in (1), yielding

KAB =

[
−T211 − T221
T111 T121

]
, LAB =

[
−T212 − T222
T112 T122

]
. (2)

Now,HA=KABL
−1

AB
is a homography fromA to itself; by definition, the epipoles are the only points

that are mapped to themselves by such a homography, i.e.:eAB = HAeAB andeAC = HAeAC. There-
fore we can calculate them as the eigenvectors of matrixHA; it is important to note, though, that with
this method we do not know which of the other two views (B or C) each of the two recovered epipoles
corresponds to. By mapping this pair of epipoles to the otherviews through the intrinsic homographies,
we finally obtain the six epipoles of the set of three 1D views.
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Figure 2: Four possible 2D reconstructions from the epipoles between two views extracted from the 1D
trifocal tensor (left). The relations between the angles ofthe projections of matched points, such asP1

andP2, in two aligned views are used to resolve the 2D reconstruction ambiguities (right).

2.1.2 Ambiguity resolution

There are three ambiguities that need to be resolved in orderto determine the correct values of the angles
of the 2D epipoles from the values of the epipoles extracted using the 1D trifocal tensor.

Firstly, as mentioned in section 2.1.1, an epipole in a givenview recovered from the 1D trifocal
tensor may be assigned to any of the two other views. This results in two possible solutions in the
assignment of the set of six epipoles between the three views. As shown in [10, 17], both solutions
give completely self-consistent 2D projective reconstructions, regardless of the number of point matches
between the views. This fundamental ambiguity in the 2D reconstruction from three 1D views can only
be resolved through the use of a fourth view, as noted in [11].The method we employ to resolve the
ambiguity operates in the following way: having a group of four views (which we can call A, B, C and
D), we calculate two different trifocal tensors between them; for instance, the tensor relating A, B and
C, and the tensor between B, C, and D. Since the epipoles between B and C must be identical in the two
estimations, by detecting the common (or, in a real situation, the closest) epipoles in these two views we
can disambiguate the assignment of the complete set of epipoles.

The origin of the two other ambiguities lies in the fact that in the mapping of 2D image points to 1D
projective coordinates, the distinction between bearingsdiffering byπ is lost. The angle of a recovered
1D epipole(e1, e2)T is obtained asarctan(e1/e2) in 2D. As a consequence, from the 1D epipole we
can extract two different angles in a 2D view, separated byπ radians. There are, therefore, four possible
solutions for the values of the epipoles between two given views A and B, which may be interpreted as
emerging from two combined reconstruction ambiguities; namely, an ambiguity in the direction of the
translation vector from view A to view B, which accounts for the difference between solutions (a) and
(c) in Fig. 2, and an ambiguity ofπ radians in the orientation of view B, illustrated, for example, by
solutions (a) and (b) in the same figure.

This double ambiguity for a set of two views might be resolvedthrough point reconstruction, but
instead we use a simple method employing only the angles of matched image points. We first choose
one of the two possible values for each angle. We name these selected anglesαs

AB andαs
BA. Although

these two choices are arbitrary, let us suppose, for simplicity, that we have picked the angles so that
both of them are between 0 andπ radians. Our procedure is based on the alignment of the two views,
which is achieved through the rotation of the image points bythe selected angles. This is done simply

8



Table 1: Disambiguation of the angles of the epipoles in two views
B in front of A B reversed (∗) αAB αBA Case in Fig. 2

1 1 αs
AB αs

BA (a)
1 0 αs

AB αs
BA + π (b)

0 1 αs
AB + π αs

BA + π (c)
0 0 αs

AB + π αs
BA (d)

(∗)After alignment of the images using the selected angles,αs
AB andαs

BA.

by subtracting the selected angle from the angular coordinate of every matched image point. Once the
images have been aligned, if the two cameras are pointing in the same direction, the two projections of
any given point in them will lie on the same side with respect to the camera’s axis of orientation, whereas
if the cameras are pointing in opposite directions, the projections will lie on opposite sides of the axis
(Fig. 2). We use a voting procedure integrating the individual results of this test for all the matched
points to determine whether aligning the two cameras using the selected angles leaves them pointing in
the same direction or reversed with respect to one another.

Next, we want to obtain the sign of the scale of the translation from view A to view B, i.e. establish if
B is in front of or behind A. Having the two images aligned and pointing in the same direction (rotating
view B by an additionalπ radians if required) we use the fact that the projections of points in the camera
that is in front will give larger angles, in absolute value, than the projected points in the camera that is
situated behind. This is again illustrated in Fig. 2. For every matched point, we subtract the absolute
values of the angles of its projections in views A and B. We square these results (keeping their sign), in
order to give the more discriminant points a greater weight,and then add them up. If the sum is positive,
A is estimated as being behind B; otherwise, A is in front of B.This result directly gives us the angle
of the epipole in view A, and its combination with the outcomeof the orientation test determines the
value of the angle in view B, as shown in Table 1. Additionally, for every group of three views the joint
consistency of the three results of this two-view disambiguation procedure is checked.

2.2 Reference-set angles computation

The initial stage of our method involves the calculation of the angular relations between the images on
the reference set. This processing can be done off-line and therefore its time consumption is not a critical
issue. The aim is to build and store a matrix containing the angles of the epipoles between every pair of
reference views, for their use during homing.

We will name that matrixM, withM(i, j) = αij being the angle of the epipole of viewj in view i.
All the diagonal elements ofM are defined as zero and the size of the matrix is (n × n), wheren is the
number of reference views.

Relevant features are extracted and matched between every pair of images on the reference set, and
the resulting point correspondences are stored. We then start an estimation procedure that operates as
follows:

• A set of four images (which we can call A, B, C and D) taken in twogroups of three (e.g. A-B-C
and B-C-D) are processed in each step. For each trio of imageswe obtain three-view point correspon-
dences by taking the common two-view matches between them. From a minimum number of seven point

9
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Figure 3: Geometric setting with four views and two known triangles.

matches between the three views in each group, we can calculate two trifocal tensors, and we can finally
obtain the angles of the epipoles in each of the views of the four-image set (section 2.1).

• We run through the complete set of reference images calculating trifocal tensors and estimating
the angles between the views. Whenever there is more than oneestimation of a certain angle available,
we choose the result that was obtained from the largest set ofpoint matches. In addition, since in real
experiments we have found that small sets of correspondences between views tend to produce unreliable
results, a minimum threshold can be set for the number of correspondences, below which the calculation
of the trifocal tensor for a trio of views is not attempted.

• After the preceding stage is finished, we usually end up with an incompleteM matrix, due to the
impossibility to find sets of three-view point matches linking all the positions on the reference set. There
may not be correspondences between images that are far apart; still, groups of adjacent or close images
are likely to provide good sets of matches, and from the angles estimated between them we can calculate
all the missing angles in matrixM. Specifically, if the angles between two given viewsi and j are
unknown (i.e.M(i, j) andM(j, i) could not be obtained in the preceding stage of the algorithm), we
look for a pair of views that are linked with bothi andj, and employ the procedure described in section
2.2.1 to calculate those two angles. By using this method iteratively, all the elements in matrixM can
eventually be worked out.

The geometric consistency of the triangles obtained in every step of the process is checked, in order
to increase the robustness of the results.

2.2.1 Complete solution of four-view sets

In practice, it is usually not possible to find matches acrossall the images. Next, we propose a method
to compute all the angular information using the matches between sets of adjacent or close images. A

10
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geometric setting of the type shown in Fig. 3, where two triangles are known between the locations of
four views, comes up in our method every time we estimate two trifocal tensors from a four-view set.
This section describes the method employed to calculate thetwo unknown angles in this configuration.

We use the notation̂ABC to refer to the angular size (> 0) of the angles in a triangle. Without loss
of generality, we can formulate the problem in the followingterms: all the angles from every view to the
others in the set are known except the angles of the epipoles between views A and D. Therefore all the
angles in the four triangles formed by the set of four views are known, except the ones including both
vertices A and D (represented with dashed lines in Fig. 3). Our objective is to calculate the anglesαAD

andαDA of the epipoleseAD andeDA, which can be directly obtained from the knowledge of the angles
of the triangles at those vertices. We start by applying the law of sines on the set of four triangles (ABC,
ABD, ACD and BCD), which finally yields the following expression

sin ÂBD

sin ÂCD
= KA, (3)

whereKA is a known value given by

KA =
sin ĈBD · sin B̂AD
sin B̂CD · sin ĈAD

. (4)

Using the intrinsic relationship between the three angles at vertex A and applying trigonometric
identities, we can calculate the individual values of the angles in (3). We must, however, take into
account the fact that the location of A with respect to the other three vertices changes the geometry of
the set and, consequently, the relation between the angles at the aforementioned vertex. Therefore, we
need to divide the plane into seven regions, as shown in Fig. 4, to account for these differences. It turns
out that the expression that gives the anglêABD has the same form in all cases (i.e. for all regions), but
the signs of two of its terms, denoted assign1 andsign2, are dependent on the region where A lies

ÂBD = arctan
sign1 ·KA sin(ÂBC)

1 + sign2 ·KA cos(ÂBC)
. (5)

We can easily determine the region in which A is located usingthe known angles of the epipoles in
views B and C, and choose the appropriate values ofsign1 andsign2 as shown in Table 2.

11



Table 2: Values of signs for the different regions in which A may lie
Region of vertex A Relation between angles at vertex Asign1 sign2

Ω1 ÂCD = 2π − ÂBD− ÂBC -1 1

Ω2, Ω5 ÂCD = ÂBD+ ÂBC 1 -1

Ω3, Ω6 ÂCD = ÂBC− ÂBD 1 1

Ω4, Ω7 ÂCD = ÂBD− ÂBC -1 -1

The angle of the epipole of view D in view A is finally obtained as follows

αAD =

{
αAB + ÂBD, if 0 ≤ αBA − αBD < π

αAB − ÂBD, if 0 > αBA − αBD ≥ −π
. (6)

The angle of the epipole in view D of view A (αDA) can be calculated through a completely anal-
ogous process, simply interchanging the roles of vertices Aand D. The results are validated using ge-
ometric consistency checks. By employing the procedure we have just presented, we can calculate the
two unknown angles and thus obtain the complete set of anglesbetween the four views. In addition, this
method is useful for two other purposes within our homing technique:

• In the initial stage, detailed in section 2.2, this method allows to fill in the missing elements in
the matrix of epipole angles, corresponding to pairs of views that could not be linked directly due to the
impossibility to find a sufficiently large set of three-view matches between them.

• During homing, it enables us to obtain all the angles needed to generate the motion commands
employing a minimum number of three views; we only need to compute the trifocal tensor between
the current image taken by the robot and two of the reference images, which reduces the cost of the
algorithm.

2.3 Homing strategy

In this section we describe the strategy designed in order for the mobile robot to perform homing. We
assume the robot moves on the ground plane and has nonholonomic motion constraints. The homing
method is based solely on the computation of the angles between the locations in which a series of
omnidirectional images of the environment were obtained. This group of snapshots consists of the image
taken by the robot from its current position and a set of previously acquired reference images, which
includes an image obtained at the desired target location. The angles between the views on the reference
set have been previously computed and stored, as described in section 2.2. Therefore only the angles
between the robot and the reference views must be worked out during homing.

In every step of the robot’s motion, the camera takes an omnidirectional image, from which key points
are extracted. When sufficient point matches are found between the current and two of the reference
images, the 1D trifocal tensor is calculated as detailed in section 2.1.1. From the tensor, aided by the
knowledge of the angles on the reference set, we can extract the angles between the current and the two
other views. Finally, with the method explained in section 2.2.1 all the angles of the epipoles in all the
views can be computed.

12
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Figure 5: Elements involved and angles employed in the homing strategy. C is the robot’s current
localization, at the coordinate origin (0, 0, 0).G is the goal location.Ri are reference views. Three of
then views on the reference set are depicted as example.

2.3.1 Control law

For every reference viewRi(xi, zi, ϕi) (wherexi, zi andϕi define its position and orientation in the
ground plane), the difference between the angles of its epipoles with respect to the current and goal
locations defines an angular sector of sizeSi = |αiC − αiG|, as illustrated in Fig. 5. We use the average
value of the angular sizes of these sectors to set the linear velocity at which the robot will move toward
the target position

v = kv sign(cosαCG) · 1
n

n∑

i=1

Si, (7)

wherekv > 0 is a control gain. When the target is behind the robot,sign(cosαCG) will be negative,
therefore generating backward motion. As the robot moves closer to the goal, the mean size of the
angular sectors seen from the reference positions will become smaller; thus, the robot’s linear velocity
will gradually decrease and eventually become zero when thetarget is reached.

The direction in which the robot travels is determined by theangle at which the goal position is seen
from the current location, i.e. the angleαCG of the epipoleeCG. The angular velocity of the control law
is given by

ω = kω(αCG − αd
CG), (8)

αd
CG =

{
0 if |αCG| ≤ π

2

π if |αCG| > π
2

, (9)

wherekω > 0 is a control gain. From a minimum number of four reference views, one of which would be
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the view from the target location, the robot will navigate tothe home position. Note that the orientation
in which the robot reaches the target position is not controlled, since, by definition, the purpose of the
homing task is getting to the goal location.

2.3.2 Stability Analysis

In the following, the stability of the control scheme is analyzed by means ofLyapunov’s Direct Method
[20]. We define the candidate Lyapunov function as

V (x, t) =
ρ2

2
+

(αCG − αd
CG)

2

2
(10)

whereρ is the distance between the current and goal positions, andx is the state of the system, determined
by ρ andαCG.

Next, we show that the candidate function (10) is a Lyapunov function when using the proposed con-
trol law. We need to prove thatV is positive definite,V̇ is negative definite andV is radially unbounded.
The functionV is positive definite, given thatV > 0 for all x 6= 0 andV (0) = 0. It is straightforward
thatV (x) is radially unbounded, given thatV (x) → ∞ as‖x‖ → ∞. Next, we prove that the derivative
V̇ (x) is negative definite. The Lyapunov candidate function derivative is

V̇ = ρ ρ̇+ (αCG − αd
CG) α̇CG . (11)

The dynamics of the system as a function of the input velocities are given, using the derivatives in polar
coordinates with the origin at the goal, byρ̇ = −v cos(αCG) andα̇CG = −ω + v sin(αCG)/ρ. Using
the control velocities (7), (8) we obtain

V̇ = −kv ρ sign(cosαCG) cos(αCG)
1

n

n∑

i=1

Si

−kw(αCG − αd
CG)

2 − (αCG − αd
CG)

· sin(αCG)
kv
ρ
sign(cosαCG) · 1

n

n∑

i=1

Si . (12)

By definitionρ ≥ 0 andSi ≥ 0. It is straightforward that the first two terms of (12) are negative definite,
but the last term can be positive. The interpretation is thatthe convergence speed provided by the angular
velocity has to be higher than the linear velocity. Otherwise, the angular error is not corrected fast enough
and the robot will move following spirals around the goal. However, the stability can be guaranteed if
the control gains are selected properly. It is guaranteed that V̇ < 0 if the next inequality holds

|kw · (αCG − αd
CG)| > | sin(αCG)

kv
ρ

· 1
n

n∑

i=1

Si| . (13)

The terms of the right expression are bounded except1/ρ. However, note that
∑n

i=1
Si/(nρ) is

indeed bounded. We can expressSi as a nonlinear function ofρ: sin(Si) = f(ρ,RiG,αRiG); when
ρ → 0 we can approximatesin(Si) ≈ Si and thenSi = ρ f(RiG,αRiG). Therefore, the right part in
(13) is bounded. Then, taking into account the initial valueαCG(0), we can always definekω in such a
way thatV̇ < 0 and the system is globally asymptotically stable.
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3 Sinusoidal input-based visual control

We present a control method based on sinusoidal inputs for a nonholonomic mobile robot. We define our
particular choice of sinusoidal velocities and derive the state trajectories from them through integration.
Using the open-loop expressions of the state variables, we design a state-feedback control law. The state
of the system is estimated from the 1D trifocal tensor between the current view, the initial view and the
target view. The method has two steps: the sinusoidal-basedcontrol part is followed by a second step
consisting in a straight-line trajectory to carry out depthcorrection.

3.1 System model

A nonholonomic robot moving on the ground plane constitutesa dynamical system on which we are
going to perform a control task. The state of this system is defined by the robot’s localization, given by
x = (x, z, φ)T . The origin of the coordinate system is the goal location, given by the localization at
which the target image was obtained, i.e.x3 = (0, 0, 0). The nonholonomic differential kinematics of
the vehicle expressed in state space form as a function of thetranslation and rotation velocities of the
robot(v, ω) is as follows:




ẋ
ż

φ̇


 =




− sinφ
cosφ
0


 v +




0
0
1


ω. (14)

Since the primary information we will extract from the system will be of angular nature, it will be
also useful to express the system’s state and its kinematicsin polar coordinates(ρ, α, φ) as illustrated
in Fig. 6. The lateral and depth coordinates are related to the polar ones throughx = −ρ sinψ and
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z = ρ cosψ, while the alignment error is defined as:α = φ − ψ. The kinematics in polar coordinates
are:




ρ̇
α̇

φ̇


 =




cosα
−1

ρ
sinα

0


 v +




0
1
1


ω. (15)

3.2 Sinusoidal input-based control scheme

Our approach for the first step of the control strategy is based on defining the desired trajectories of the
state variables in a sinusoidal-varying velocity framework. Our proposed open-loop velocities follow a
sinusoidal time variation expressed by:

v = a sin(Ωt) (16)

ω = A · b sin(2Ωt). (17)

We will assume throughout that the angular frequency of the sinusoid (Ω) is set to a constant value.
This is a design parameter whose value will be determined by the time lapse in which we want the
first step of the control to be carried out (given by one half-period of the sinusoid, i.e.T/2 = π/Ω).
A = −sign(v) is a parameter used to set the appropriate sign of the angularvelocity wave so that the
robot trajectories defined in our approach are obtained. We will only discuss the case where the motion
ends ont = T/2, and thereforeA will be equal to -1. For their part,a andb are real values that set the
amplitudes of the sinusoidal velocity waves. In an open-loop scenario,a andb are defined as constants,
but when a feedback control strategy is used, as described insection 3.2.2, these two parameters will be
our control variables. Without loss of generality, we consider the robot’s state att = 0 to be(x0, z0, 0)T .
If the initial orientation of the robot is nonzero, we will compute the starting time(t0 6= 0) of the
sinusoidal velocity waves, which will now run fromt0 to T/2. This will be described in more detail in
section 3.2.2.

When the velocities in (16) and (17) are used, the resulting motion will be smooth, due to both the
choice of a sinusoidal time variation and the fact that the rotational velocity is zero at the points where
the linear velocity is either maximum or zero. For the sake ofsmoothness, safety and feasibility of the
motion commands, higher rotational speeds are associated to intermediate linear velocity values in our
approach. We believe these properties make the proposed open-loop velocities appropriate for their use
on a vehicle with nonholonomic motion constraints.

3.2.1 Open-loop state evolution

In this section we will obtain the analytical expressions for the evolutions of the state variables in an
open-loop scenario under the sinusoidal-varying velocitycommands proposed in section 3.2.

By integrating the sinusoidal velocities given in (16) and (17) over time, we can derive the equations
for the open-loop evolution of the three state variables. Weconsider the robot’s state att = 0 to be
(x0, z0, 0)

T . We will first obtain the time variation of the orientation component:
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φ(t) = φ0 +

∫ t

0

φ̇dτ =

∫ t

0

ωdτ =

∫ t

0

A · b sin(2Ωτ)dτ =
Ab

2Ω
(1− cos 2Ωt). (18)

Once we know howφ evolves with time, we can substitute this result in (14) to obtain the time
variations for the two other state variables. We will first determine the evolution ofx(t), for which we
will use the Taylor series representation ofsinφ:

ẋ(t) = −v(t) sinφ(t) = −a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n+ 1)!
φ2n+1 =

− a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n+ 1)!

(
Ab

2Ω

)2n+1

(1− cos 2Ωt)2n+1 =

− a

∞∑

n=0

(−1)nA2n+1

(2n + 1)!

(
b

Ω

)2n+1

sin4n+3(Ωt), (19)

where the identity:1− cos 2x = 2 sin2 x has been used. We can now obtain the open-loop evolution
of the state variablex in the time interval0 ≤ t ≤ T/2 through integration:

x(t) = x0 +

∫ t

0

ẋ(τ)dτ = x0 +

∫ t

0

−a
∞∑

n=0

(−1)nA2n+1

(2n+ 1)!

(
b

Ω

)2n+1

sin4n+3(Ωτ)dτ. (20)

The integral of the sine function in (20) can be expressed as:
∫

sin4n+3(Ωt)dt = − cos Ωt

Ω
· 2F1

(
1/2,−2n − 1; 3/2; cos2 Ωt

)
,

where2F1 is the Gaussian hypergeometric function:

2F1(α, β; γ;χ) =

∞∑

k=0

(α)k(β)k
(γ)k

χk

k!

with (α)k = α(α + 1)(α + 2) · · · (α + k − 1), (α)0 = 1. It can be easily seen that whenβ is a
negative integer (which is indeed the case for us, sinceβ = −2n− 1) the series has only|β+1| nonzero
terms, i.e.k = 0, ..., β. We finally get to the following expression forx(t):

x(t) = x0 +

[
a cos(Ωt)

Ω
· Γ(b, t, 1)

]t

0

, (21)

where we define:

Γ(b, t,m) =
∞∑

n=0

(−1)nA2n+m

(2n +m)!

(
b

Ω

)2n+m

· 2F1

(
1/2,−2n −m; 3/2; cos2Ωt

)
. (22)
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Thus,x can be exactly determined at any time through the sum of series of infinite terms. Note,
however, that the index of the sums,n, is the index of the Taylor series representation ofsinφ. The
values ofφ will be, at most, in the range[−π, π] (usually, the actual range will be considerably smaller);
therefore, taking only a small number of terms in the sums will suffice to ensure that an accurate solution
is obtained forx(t).

The time evolution of the state variablez can be worked out in an analogous way, through the
integration of the corresponding expression in (14). This time we use the Taylor series expansion of
cosφ.

ż(t) = v cosφ = a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n)!
φ2n = a sin(Ωt) ·

∞∑

n=0

(−1)n

(2n)!

(
Ab

2Ω

)2n

(1− cos 2Ωt)2n =

a

∞∑

n=0

(−1)nA2n

(2n)!

(
b

Ω

)2n

sin4n+1(Ωt), (23)

z(t) = z0 +

∫ t

0

żdτ = z0 +

∫ t

0

a

∞∑

n=0

(−1)nA2n

(2n)!

(
b

Ω

)2n

sin4n+1(Ωτ)dτ. (24)

The integral of this sine function raised to a power depending linearly onn can again be expressed
through a hypergeometric function:

∫
sin4n+1(Ωt)dt = −cosΩt

Ω
· 2F1

(
1/2,−2n; 3/2; cos2 Ωt

)
, (25)

andz(t) has the following open-loop expression:

z(t) = z0 −
[
a cos(Ωt)

Ω
· Γ(b, t, 0)

]t

0

. (26)

Thus, we have obtained the analytical expressions for the trajectories of the three state variables.
Next, we will work out the values ofa andb required, in an open loop scenario, for the state variablesx
andφ to go to zero att = T/2.

Thez state variable is not controlled in the first step of our control scheme, as will be discussed in
section 3.2.2. It can therefore have any arbitrary final value, and this degree of freedom allows us to
choose one among the infinite possible trajectories betweenthe robot’s initial and final configurations. A
convenient way to do so is by setting the maximum value of the orientation component,φmax, that the
robot will achieve during its motion. This can give us a good sense of what the trajectory will be like
(see Fig. 7).

Once we have chosen a value ofφmax, b is readily obtained, since from (18) we can see thatbOL =
Ω · φmax. The functional variation ofω and the assumption thatφ0 = 0 ensure that the final orientation
will be φ(T/2) = 0 regardless of the value ofb. For a given value ofb, i.e. for a given rotational velocity
variation, we can see that there is only one value ofa that will steerx from its initial valuex0 to 0 at the
end of the motion interval. We can determine this value by enforcing the constraint:x(t = T/2) = 0 in
equation (21), which yields:
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aOL =
x0 · Ω

2 · Γ(bOL, 0, 1)
. (27)

3.2.2 Closed-loop control

Since the system will be subject to disturbances (e.g. measurement noise, motion drift and model errors),
in order to perform robust control we need to use a closed-loop control strategy based on state feedback.
We will carry out the control task by adjusting the amplitudes of the sinusoidal velocity waves we are
using as inputs to the system. During closed-loop operation, in every stepi of the motion (i.e. at every
given timeti), the state of the robot will be estimated and the amplitudes(a and b) of the sinusoids
required in order to steer bothx andφ to zero att = T/2 will be computed.

We would like to control the robot to its target state, i.e. make (x, z, φ) = (0, 0, 0) at the end of the
motion. However, it is well known that the nonholonomic system of a wheeled unicycle mobile robot
modeled in a Cartesian state space representation considered in this work cannot be stabilized to a given
configuration by means of smooth state-feedback control [21].

In our case, it turns out that with the two degrees of freedom we have in the feedback loop (namely,
the values (a andb) of the amplitudes of the sinusoidal velocities) we will only be able to control two of
the robot’s state variables simultaneously. Therefore we can makex andφ go to zero int = T/2, but
we cannot do the same withz. This is why we need to perform a second control step, which wewill
describe in section 3.3, in order to correctz to zero.

Our closed-loop control strategy is based on adjusting the amplitudes of the sinusoidal velocity inputs
in such a way that they respond to the disturbances in the system. If the state of the system at any given
time t, such that0 < t < T/2, is (x(t), z(t), φ(t)), the amplitudes,a andb, of the inputs at that time are
computed by enforcing the constraints that bothx andφmust become 0 int = T/2. For this purpose we
use the previously obtained equations (18) and (21), finallyobtaining the following results:

b(t) =
−φ(t) · Ω
sin2(Ωt)

(28)

a(t) =
x(t) · Ω

cos(Ωt) · Γ(b(t), t, 1) + Γ(b(t), 0, 1)
. (29)

Expressions (28) and (29) are valid for0 < t < T/2. The values ofa andb at t = 0 can be obtained
from the open loop expressions given in section 3.2.1 for thetwo parameters. In addition, botha and
b must be set to 0 att = T/2. This way the singularities in the expressions (28) and (29)are avoided.
Still, we need to ensure that the velocity values will remainwithin reasonable limits; therefore, we will
have to bound them by setting maximum values (amax andbmax) which can be a function of the open
loop amplitudes, and we can also limit their variation between two consecutive stepst andt + ∆t, e.g.
enforcing|a(t+∆t)| ≤ K · |a(t)| and|b(t+∆t)| ≤ K · |b(t)|, withK > 1.

Note that, as already mentioned in section 3.2, our control method can be used for any arbitrary
initial orientation of the robot, i.e.φstart 6= 0. Indeed, if we set a maximum desired value ofφ along the
trajectory,φmax, and considerb as computed using the open-loop expression given in section3.2.1 (i.e.
b = Ω · φmax), then the starting timet0 of the input sinusoids needed for this case can be obtained as:
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Figure 7: Left: Example robot trajectories obtained with the sinusoidal input-based control law. This
law aligns the vehicle with the target pose (which is(0, 0, 0o)). In a second control step, the depth error
is corrected following a straight-line path. Right: Control paths from starting position(−4,−1,−10o)
with |φmax| = 45o, 60o, 90o and120o (top to bottom curves).

t0 =
T

2π
arcsin

√
φstart
φmax

. (30)

φmax must be chosen to have the same sign asφstart and a greater absolute value. This ensures that
the computedt0 will be in the correct range, i.e.0 < t0 < T/2. The sinusoidal inputs will now run from
t0 to T/2 to leave the robot aligned with the target along thez axis. Note that our method can handle
any value ofφstart, even if the robot is initially reversed with respect to the desired final pose, as long
asφmax is chosen to have an appropriate value. Some example trajectories obtained using the sinusoidal
input-based control law are illustrated in Fig. 7. Varying choices of the design parameterφmax result in
paths of different characteristics, as can be seen in the right part of the figure.

3.3 1D trifocal tensor-based depth correction

The first step of our control scheme corrects both the lateralposition and the orientation of the robot.
Thus, at the end of this stage the robot’s state is(0, z2, 0)

1. The correction of the depth coordinate
is performed in the second step of the control. Since in this particular situation the 1D trifocal tensor
elements provide all the information necessary for the control task, we will use them directly in the
feedback loop, without estimating the state of the robot explicitly. Indeed, the trifocal tensor elements
when the state is(0, z2, 0) are as follows:

1In this section, subindexes are used to identify the cameras, being(x2, z2, φ2) the current location and(x1, z1, φ1) the
location of the fixed reference view.(x3, z3, φ3) = (0, 0, 0) is the location of the target view as defined in Fig. 6.
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T1 =

[
−z2 sinφ1 − tz1 − z2 cosφ1

tz1 0

]
, T2 =

[
z2 cosφ1 tx1 + z2 sinφ1

−tx1 0

]
, (31)

where the tensor has been broken down in matricesT1 (representing elementsT1jk) andT2 (repre-
senting elementsT2jk); andtx1 = −x1 cosφ1 − z1 sinφ1, tz1 = x1 sinφ1 − z1 cosφ1 express location
relative to the first camera’s local coordinate system [13].

We want to make the linear velocity of the robot proportionalto the distance to the target. With this
objective in mind, we can initially define it in the followingway:

v = sv ·
√
T111

2 + T211
2 =

√
z22sinφ1

2 + z22cosφ1
2 = |z2|. (32)

In order for the robot to move towards the target,sv, which denotes the sign ofv, must satisfy:sv =
−sign(z2). The sign ofz2 can be readily inferred from the signs ofT111 orT211, sinceφ1 is a known fixed
angle. We also need to take into account the fact that the computed 1D trifocal tensor is obtained up to
scale; therefore, if its elements are to be used for control tasks, they need to be normalized to a fixed scale.
We achieve this by using the following normalization factor: TN =

√
T121

2 + T221
2 =

√
tz12 + tx12 =√

x12 + z12. The linear velocity of the second step of our control, basedon the normalized 1D trifocal
tensor elements, is then as follows:

v = kv · sv ·
√
T111

2 + T211
2

T121
2 + T221

2
, (33)

wherekv is a positive control gain. As for the angular velocity, it ischosen in such a way that it
performs a proportional correction of the orientation error of the robot, i.e.:

w = −kw · φ2, (34)

wherekw is a positive control gain.φ2 is computed in the same way (described in section 3.4) as in
the first step of the control, .

3.4 State estimation through the 1D trifocal tensor

In order to perform the feedback control defined in section 3.2.2, we need to estimate the state of the
robot in every step of its motion. We will only use omnidirectional visual information for this purpose.
In section 2.1 we described the way in which the relative angles between three views can be extracted
from the 1D trifocal tensor, using the epipoles. We will compute these angles from a set of three views;
namely, the target view, the current view and a third view which can be given by the start image. A
priori information can be used to disambiguate between alternative solutions. Once we know the angles
between the views, it is straightforward to work out the angular coordinatesα andφ of the robot’s state
representation in polar form.

However, since the trifocal tensor is defined up to an unknownscale, distance estimations cannot
be directly extracted from it. In order to compute distance parameters, we will initially need to use
the derivatives of the known angles. These are rather noisy estimates; in order to avoid using them
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during control, we will take advantage of the fact that we have three views forming a triangle and a fixed
reference distance between two of them.

We defined as the fixed distance between the initial (or reference, in a more general sense) position
and the target position (see Fig. 6).d is related to the state variableρ and the angular sectorsγ andβ
through the law of sines:

ρ = d · sin(γ)/ sin(β). (35)

This expression can be used ifβ > 0, which will be true as long as the robot does not cross the line
joining the reference and goal locations during its motion.Before the control task is started, the robot
performs an initial motion whose objective is to computed. This is done using (35) and the dynamics of
the system in (15). The following expression is obtained:

d =
sin β

sin γ
· ψ̇

v sinα
. (36)

We can estimate the derivative ofψ as: ̂̇ψ = (ψ(t + ∆t) − ψ(t))/∆t. The initial motion executed
prior to the control task must be such that the robot does not cross the line joining the reference and goal
positions, thus ensuringβ > 0 andγ > 0. In addition, the robot must not move in the direction towards
the target, in order to ensurėψ 6= 0 andsinα 6= 0. It is straightforward to generate a motion fulfilling
these conditions, since from the computation of the trifocal tensor, we know the angles between the three
locations at all times. We must also select this prior motionso that during the subsequent control stage
the robot will not cross the line between the initial and goallocations, in order for (35) to be usable.

During the initial motion we can obtain a number of estimatesof d using (36) and compute their
average, until we achieve a sufficiently stable value. At that point, the control phase can start.ρ is
computed during control using (35), andx, the position variable we use in the feedback control loop, is
obtained asx = −ρ sinψ.

3.5 Stability analysis

Next we will analyze the stability of both steps of the control method.

3.5.1 First step

Under the sinusoidal input-based control law defined in the first step of our method, the system is non-
autonomous and finite-time, running fromt = t0 to t = T/2. Classical stability analysis primarily
studies the asymptotic behavior of systems, and therefore its results and conclusions are not directly
applicable in our case [22]. However, we can still use Lyapunov analysis [23] to illustrate the stability
properties of the system under our control law.

We define the following Lyapunov-candidate function:V = 1

2
(Px2 + φ2), whereP is a positive

real number. This is a positive definite and radially unbounded function, for analogous reasons as those
stated for the function used in section 2.3.2. Under the closed-loop control law of the first step of our
method, the derivative of this function is as follows:

V̇ = xẋ+ φφ̇ = −P · x2 · Ω · F (φ, t) + 2φ2Ωcot(Ωt), (37)
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Figure 8: Graphical stability analysis from equation (38).The regions of stability are displayed in white.
The curves represent three sample trajectories of the variableφ, which are contained in the stability area.

whereF (φ, t) = sinΩt · sinφ/[cos(Ωt) · Γ(b(t), t, 1) + Γ(b(t), 0, 1)]. The stability requirement is
that in order forV to be a Lyapunov function,̇V must be negative during the system’s operating time
interval (0 < t < T/2). The conditionV̇ < 0 finally yields the following inequality:

Px2 >
2φ2 cot(Ωt)

F (φ, t)
. (38)

Sincex 6= 0, when the right side of (38) has a positive bound, we can always select a suitable value
of P so that the inequality holds. Figure 8 shows the regions where the right side of (38) has a positive
bound, along with the variation ofφ in three typical system trajectories, with|φmax| = 45o, 60o and
90o. Unless strong disturbances are present, the system will bestable, since the trajectories sit inside the
stability regions.

3.5.2 Second step

For the stability analysis of the second step of our control (in which x = 0) we define the following
positive definite, radially unbounded Lyapunov-candidatefunction: V = 1

2
(z2 + φ2). Its closed-loop

derivative is as follows:

V̇ = zż + φφ̇ = z · v cosφ+ φ · w = z · −z√
x12 + z12

cosφ− kw · φ22. (39)

It is straightforward to see that (sinceφ has small values and thereforecosφ is positive) the two terms
of equation (39) are negative, and consequently the system under the control law of the second step is
asymptotically stable.
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4 Conclusion

We have presented a method for omnidirectional visual homing to be used on a robot moving on the
ground plane. The visual information is provided by a set of omnidirectional reference images, and the
1D trifocal tensor is the tool used to estimate the angular information, being this information very precise.
We have presented a method to compute all the angular relations between the views even if there is no
direct matching information between them. The designed control law employs these angular relations
to guide the robot to the target location. The stability of this control law has been analyzed and the
experimental evaluation shows the feasibility of the proposed technique. The computational cost of the
proposed method is low, and the speed of its implementation is mainly limited by the time consumption
of the feature extraction process. The method can be directly applied in settings where stored image
databases are available. In addition, it can be robust to changes in the environment, as long as sufficient
features between images can be matched.

We have also proposed a method for sinusoidal input-based visual control of a mobile robot. From
the definition of the desired sinusoidal-varying velocities, we have derived analytical expressions for the
evolutions of the state variables of the robot. In addition,we have presented a state feedback control law
based on these expressions and a method to estimate the robot’s state from the 1D trifocal tensor. The
control technique we have proposed is two-step. First, the sinusoidal-based part of the control aligns the
robot with the target; then, the depth coordinate is corrected, employing the 1D trifocal tensor elements
directly. The stability of both control steps has been analyzed. Simulations have shown the smoothness
of the motions generated with this approach as well as its potential to withstand state noise and motion
drift.
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