
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2022

Distributed Robotic Vision for Calibration, Localisation, and Mapping Distributed Robotic Vision for Calibration, Localisation, and Mapping

Brendan James Halloran

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F1492&utm_medium=PDF&utm_campaign=PDFCoverPages

Distributed Robotic Vision for Calibration,
Localisation, and Mapping

Brendan James Halloran

This thesis is presented as required for the conferral of the degree:

Doctor of Philosophy

Supervisor:
Dr. Prashan Premaratne

Co-supervisor:
Dr. Peter James Vial

The University of Wollongong
School of School of Electrical, Computer, and Telecommunication Engineering

August, 2021

This work © copyright by Brendan James Halloran, 2022. All Rights Reserved.

No part of this work may be reproduced, stored in a retrieval system, transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
permission of the author or the University of Wollongong.

This research has been conducted with the support of an Australian Government Research
Training Program Scholarship.

Declaration

I, Brendan James Halloran, declare that this thesis is submitted in fulfilment of
the requirements for the conferral of the degree Doctor of Philosophy, from the
University of Wollongong, is wholly my own work unless otherwise referenced or
acknowledged. This document has not been submitted for qualifications at any
other academic institution.

Brendan James Halloran

November 10, 2022

Abstract

This dissertation explores distributed algorithms for calibration, localisation, and
mapping in the context of a multi-robot network equipped with cameras and on-
board processing, comparing against centralised alternatives where all data is trans-
mitted to a singular external node on which processing occurs. With the rise of
large-scale camera networks, and as low-cost on-board processing becomes increas-
ingly feasible in robotics networks, distributed algorithms are becoming important
for robustness and scalability. Standard solutions to multi-camera computer vision
require the data from all nodes to be processed at a central node which repres-
ents a significant single point of failure and incurs infeasible communication costs.
Distributed solutions solve these issues by spreading the work over the entire net-
work, operating only on local calculations and direct communication with nearby
neighbours.

This research considers a framework for a distributed robotic vision platform for
calibration, localisation, mapping tasks where three main stages are identified: an
initialisation stage where calibration and localisation are performed in a distrib-
uted manner, a local tracking stage where visual odometry is performed without
inter-robot communication, and a global mapping stage where global alignment and
optimisation strategies are applied. In consideration of this framework, this research
investigates how algorithms can be developed to produce fundamentally distributed
solutions, designed to minimise computational complexity whilst maintaining excel-
lent performance, and designed to operate effectively in the long term. Therefore,
three primary objectives are sought aligning with these three stages.

The first goal is the development of a robust calibration and localisation algorithm
for the initialisation of the multi-robot platform. Two methods are proposed. The
first utilises one-dimensional calibration performed locally at each node to estab-
lish the focal lengths and other internal camera parameters, then the 3D points
observed in the world are aligned between nodes to construct a vision graph and
perform neighbourhood-based optimisation, and finally the local estimates of relat-
ive localisation are brought into global consensus with a message-passing algorithm.
Evaluations demonstrate that it has comparable performance to the equivalent cent-
ralised algorithm. The second method addresses shortcomings in the prior method:

iv

v

constraints on the motion of the calibration object and the validity of the global
objective function. An improved algorithm for general-motion multi-camera one-
dimensional calibration and localisation is proposed with better numerical condi-
tioning and simplified nonlinear optimisation. Alternating direction method of mul-
tipliers is employed to separate the global optimisation objective into local objectives
that can be aligned using a message-passing algorithm. Experimental evaluation on
synthetic and real data demonstrates high accuracy in centralised and distributed
networks, showing superior performance in estimation of focal lengths and extrinsic
parameters.

The second goal is the development a visual odometry method that is suitable for
use in the second stage, aiming to be highly accurate, computationally efficient, and
utilising a data-type suitable for the inter-robot pose estimates required for the third
stage. Direct methods in visual odometry are highly accurate and efficient, however,
not suitable for wide-baseline matching where they instead rely on the robust feature
descriptors used in indirect methods. A hybrid direct-indirect approach is proposed
that incorporates sparsely-evaluated binary feature descriptors of keypoints into the
direct visual odometry pipeline using a pseudo-gradient based on Hamming weights.
The performance of this algorithm is evaluated on real data, with results showing
that the primary method improves significantly upon similar methods. The final
goal is to address the convergence speed and accuracy for distributed algorithms for
use in the first and third stage of the framework. Gaussian belief propagation is
an effective message-passing algorithm for performing inference on graphs, provid-
ing approximate inference on graphs with cycles. It has been shown that faster
convergence using edge-weights improves accuracy, however, existing methods for
edge-weight selection rely on global information. An empirical method for edge-
weight selection based on node degree is proposed for small-world networks. This
method is evaluated on a simplified localisation problem and demonstrates greatly
improved convergence speed and accuracy, with more significant improvements seen
in larger networks.

Evaluations of the proposed methods show that accuracy at these various stages
of the pipeline have been improved, with the distributed algorithms showing similar
performance to centralised counterparts and improved performance compared to
prior methods. This validates the pipeline as a basis for a distributed robotic vision
platform capable of calibration, localisation, and mapping.

Acknowledgements

There are a huge number of people that I would like to thank for their endless
support over the years. First and foremost, I would like to thank Dr Prashan
Premaratne for his guidance and advice towards my work. It is his encouragement
to pursue this degree that has led me to this moment. Furthermore, the School of
Electrical, Computer, and Telecommunication Engineering and the entire University
of Wollongong have been tremendously supportive over the years. I was provided
with a welcoming and supportive community through my time working on this
degree. I would also like to thank my family and, in particular, my parents who
gave me so much reinforcement over the years and provided endless proofreading.
Finally, I would like to thank Bec for her encouragement, even when things were
most difficult.

vi

Contents

Abstract iv

Acknowledgments vi

List of figures xi

List of tables xiii

List of abbreviations and symbols xv

1 Introduction 1
1.1 Overview . 1
1.2 Research motivation and problems 3
1.3 Research questions . 5
1.4 Research objectives . 6
1.5 Structure of the dissertation . 7
1.6 Publications . 8

2 Literature review 11
2.1 Summary of contributions . 11
2.2 Introduction . 12

2.2.1 Motivation . 12
2.2.2 Organisation . 13

2.3 Calibration and localisation . 14
2.3.1 Calibration problem statement 14
2.3.2 Camera calibration algorithms 15
2.3.3 Multi-camera calibration and localisation 28
2.3.4 Summary and open problems 31

2.4 Visual odometry and visual SLAM 33
2.4.1 VO and SLAM paradigms . 33
2.4.2 Generalised keyframe VO and SLAM architecture 43
2.4.3 Summary and open problems 60

vii

CONTENTS viii

2.5 Distributed calibration, localisation, and SLAM 73
2.5.1 Distributed camera sensor networks 73
2.5.2 Distributed consensus algorithms 77
2.5.3 Distributed calibration and localisation 89
2.5.4 Distributed multi-robot visual odometry and SLAM 92
2.5.5 Summary and open problems 100

2.6 Chapter summary and proposed framework 102
2.6.1 Applications to the present work 104

3 Distributed one-dimensional camera calibration and localisation
with Gaussian belief propagation 106
3.1 Summary of contributions . 106
3.2 Introduction . 107

3.2.1 Related Work . 108
3.2.2 Contributions . 108

3.3 Preliminaries . 109
3.3.1 Camera sensor networks as Markov random fields 109
3.3.2 The pinhole camera model . 110

3.4 One-dimensional camera calibration 110
3.4.1 Zhang’s One-dimensional calibration algorithm 111
3.4.2 Improvements to Zhang’s Method 113

3.5 Initialising the distributed network 113
3.5.1 Connecting the vision graph 114
3.5.2 Estimating extrinsic parameters 115
3.5.3 Cluster-based bundle adjustment 115

3.6 Gaussian belief propagation . 116
3.6.1 Frame alignment . 118

3.7 Experiments and results . 119
3.7.1 Simulating the one-dimensional calibration 119
3.7.2 Simulating the distributed localisation 119
3.7.3 Evaluation on real data . 121

3.8 Summary . 123

4 Robust one-dimensional calibration and localisation of a distrib-
uted camera sensor network 124
4.1 Summary of contributions . 124
4.2 Introduction . 125

4.2.1 Related work . 126
4.2.2 Contributions . 127

4.3 Preliminaries . 127

CONTENTS ix

4.3.1 The pinhole camera model . 127
4.3.2 The one dimensional calibration object 129
4.3.3 Camera sensor networks as Markov random fields 129

4.4 Multi-view calibration with one-dimensional objects 130
4.4.1 De França’s one dimensional calibration with general motion . 130
4.4.2 Our improvements to the one-dimensional calibration 133

4.5 Calibrating a distributed camera sensor network 135
4.5.1 General consensus alternating direction method of multipliers 135
4.5.2 Gaussian belief propagation 136
4.5.3 Adapting 1D calibration for distributed processing 137

4.6 Experimental results . 140
4.6.1 Simulation data . 140
4.6.2 Real data . 146

4.7 Summary . 148

5 Direct visual odometry with binary descriptors 151
5.1 Summary of contributions . 151
5.2 Introduction . 152

5.2.1 Related work . 153
5.2.2 Contributions . 153

5.3 Preliminaries . 154
5.3.1 Notation . 154
5.3.2 Direct visual odometry . 155
5.3.3 Multi-channel and descriptor-based Lucas-Kanade 156

5.4 Direct tracking with binary features 156
5.4.1 The Census and Rank transforms 156
5.4.2 Estimating gradients and descent direction 157
5.4.3 Extending to arbitrary binary descriptors 159
5.4.4 Rank approximations . 160
5.4.5 Implementation details . 160

5.5 Evaluations . 161
5.6 Summary . 166

6 Optimising edge weights for distributed inference with Gaussian
belief propagation 168
6.1 Summary of contributions . 168
6.2 Introduction . 169

6.2.1 Related Work . 169
6.2.2 Contributions . 170

6.3 Preliminaries . 171

CONTENTS x

6.4 Gaussian belief propagation . 172
6.4.1 Message reweighting . 173

6.5 Optimising weights for small-world networks 174
6.5.1 Small-world generation . 174
6.5.2 Uniform optimal weights . 175
6.5.3 Non-uniform weights . 177
6.5.4 Comparison of the weighting methods 177

6.6 Application to factor graph localisation 178
6.7 Application to distributed calibration 181
6.8 Summary . 182

7 Conclusions and future work 183
7.1 Overview . 183
7.2 Research summary . 184
7.3 Future work . 187

Bibliography 190

List of figures

1.1 A distributed robotic vision network as an undirected graph. 2
1.2 The three main stages of the distributed multi-robot system. 5

2.1 The three main stages of the distributed multi-robot system. 13
2.2 The pinhole camera model. 15
2.3 Geometry of self-calibration. 17
2.4 The multi-stage self-calibration process. 19
2.5 Types of calibration objects used in 3D calibration. 20
2.6 Distortion models in camera calibration. 21
2.7 The 3D calibration process. 22
2.8 The 2D calibration process. 24
2.9 Types of planar objects used in 2D calibration. 24
2.10 One dimensional calibration objects. 26
2.11 The 1D calibration process. 27
2.12 Comparison between direct and indirect methods. 37
2.13 Camera types in visual odometry. 38
2.14 A generic keyframe SLAM framework. 45
2.15 The local tracking process in indirect systems. 46
2.16 The local tracking process in RGB-D systems. 47
2.17 The local tracking process in direct systems. 47
2.18 The local mapping thread. 48
2.19 Comparison of feature keypoint detection. 51
2.20 Local mapping in indirect systems. 52
2.21 Local mapping in direct systems. 53
2.22 An example scene showing loop closure. 56
2.23 A full factor graph representation of a SLAM map. 59
2.24 Vision and communication graphs for a CSN. 74
2.25 Example network performing average consensus. 78
2.26 Message propagation in belief propagation. 83
2.27 One iteration of distributed optimisation with ADMM. 87
2.28 A framework for a distributed SLAM. 104

xi

LIST OF FIGURES xii

3.1 The one-dimensional calibration object. 110
3.2 Example distributed network estimating the principle spherical co-

ordinates. 114
3.3 Example network estimating extrinsic parameters between neighbours.116
3.4 Message propagation process shown for example distributed network. 117
3.5 Relative error of intrinsic parameter. 119
3.6 The ground truth layout for one trial of our simulation. 120
3.7 The error between the distributed and centralised algorithms. 121
3.8 Example images from the experimental test. 122

4.1 The general-motion one-dimensional calibration object. 129
4.2 Improved calibration procedure. 131
4.3 Full distributed algorithm. 137
4.4 Jacobian sparsity of bundle adjustment. 139
4.5 The ground truth layout for one trial of our simulation. 141
4.6 Average error without final bundle adjustment. 142
4.7 Average error with final bundle adjustment. 143
4.8 Average processing time for each algorithm. 145
4.9 Average errors and processing times in second and third tests. 145
4.10 Average errors and executions times in fourth simulation. 146
4.11 Relative error with message loss. 147
4.12 Example images from the experimental test. 148

5.1 Various Census transform-related descriptors. 157
5.2 Percentage of valid moves between Census descriptors. 158
5.3 The cost surface of a translated section of the image. 160
5.4 Example stereo pair from New Tsukuba dataset [267]. 161
5.5 Example images from the KITTI dataset used for evaluation [268]. . . 162
5.6 Estimated paths using first set of descriptors. 162
5.7 Estimated paths using second set of descriptors. 163
5.8 Error per frame in estimations of relative poses. 164
5.9 Translation and rotation errors for between frames. 166

6.1 An example Markov random field. 171
6.2 Average RMSE relative to unweighted RMSE. 176
6.3 Optimal weights for different connectivities. 177
6.4 Optimal values for ρ0 and kρ. 177
6.5 Average RMSE, relative to unweighted, for different weighting systems.178
6.6 Factor graphs and SLAM. 179
6.7 Example result of using weighted GaBP. 180

LIST OF FIGURES xiii

6.8 Relative reduction in RMSE for different numbers of robots. 180

List of tables

2.1 Visual odometry and SLAM, with their main paradigms. 42
2.2 Comparison of the tracking thread in Keyframe SLAM. 62
2.3 Comparison of the mapping thread in Keyframe SLAM. 66
2.4 Comparison of the loop closure and optimisation thread. 71

3.1 Ideal intrinsics from camera data-sheets (in pixels). 122
3.2 Ground truth for centre distances and y-axis rotations. 122
3.3 Relative difference to ground truth and ideal results. 123

4.1 Ideal intrinsics from camera data-sheets (in pixels). 147
4.2 Ground truth for centre distances and y-axis rotations. 147
4.3 Relative difference to ground truth and ideal results. 148
4.4 Average execution time on real data. 148
4.5 Experimental measurements for each camera. 149

5.1 Number of channels, bytes per channel, and RMSE. 165
5.2 Execution time for different parts of the algorithm. 165
5.3 Comparison to state of the art. 166

6.1 Comparison of Chapter 3 GaBP to uniform and non-uniform weights. 181
6.2 Comparison of Chapter 4 GaBP to uniform and non-uniform weights. 181

xiv

List of abbreviations and symbols

Abbreviations

ADMM Alternating direction method of multipliers

BA Bundle adjustment

BCA Brightness consistency assumption

BP Belief propagation

BRIEF Binary robust independent elementary features

BRISK Binary robust invariant scalable keypoints

CSN Camera sensor network

DCA Descriptor consistency assumption

DIAC Dual image of the absolute conic

EAP Edge-appearance probability

EKF Extended Kalman filter

FABMAP Fast appearance-based mapping

FAST Features from accelerated segment test

FC-LK Forwards-compositional Lucas-Kanade

FOV Field-of-view

GaBP Gaussian belief propagation

GBP Generalised belief propagation

IAC Image of the absolute conic

IC-LK Inverse-compositional Lucas-Kanade

ICP Iterative closest point

IMU Inertial measurement unit

xv

xvi

KF Kalman filter

KLT Kanade-Lucas-Tomasi

LK Lucas-Kanade

LLS Linear least-squares

LM Levenberg-Marquardt

MAP Maximum a posteriori

ML Maximum likelihood

MMSE Minimum mean-squared error

MRF Markov random field

NBP Non-parametric belief propagation

NLLS Nonlinear least-squares

ORB Oriented FAST and rotated BRIEF

PGO Pose-graph optimisation

PnP Perspective-n-point

RANSAC Random sample consensus

RGB-D Red, blue, green, depth

RMSE Root-mean-squared error

SfM Structure from motion

SIFT Scale-invariant feature transform

SLAM Simultaneous localisation and mapping

SURF Speeded up robust feature

TRW-NBP Tree-reweighted non-parametric belief propagation

VIO Visual inertial odometry

VO Visual odometry

Symbols

b
(t)
i (·) The belief at node i for time t

E The edges in an undirected graph

G An undirected graph

xvii

∇I The image gradient

J A Jacobian matrix

K The intrinsic camera matrix

m A 2D image point

m
(t)
i→j(·) A message from node i to node j at time t

M A 3D world point

M A projective reconstruction of a 3D world point

Ni The neighbours of node i

P The inverse-variance of a GaBP message or belief

P A camera matrix

P A projective matrix

Q The mapping of components between vectors

r A residual vector

R A rotation matrix ∈ SO(3)

S A normalisation scaling matrix

t A translation vector

T A transformation matrix ∈ SE(3)

u0 Camera principal point x coordinate

v0 Camera principal point y coordinate

V The vertices in an undirected graph

w(·) A warp function

x A measurement or estimation vector

y The Lagrangian multiplier vector

z A random vector being estimated

α Focal length along the x-axis

β Focal length along the y-axis

γ Skew between optical axes

µ The mean of a GaBP message or belief

ξ The Lie-algebra representation of a pose ∈ se(3)

xviii

π(·) The camera projection function

ρ A message weight

Σ Variance

ϕi(·) The node potential for node i

Φ A feature descriptor

ψij(·) The edge potential between node i and j

ω The image of the absolute conic

ω∗ The dual image of the absolute conic

Chapter 1

Introduction

Contents
1.1 Overview . 1

1.2 Research motivation and problems 3

1.3 Research questions . 5

1.4 Research objectives . 6

1.5 Structure of the dissertation 7

1.6 Publications . 8

1.1 Overview

Distributed computer vision algorithms are a novel approach to making large cam-
era sensor networks (CSNs) and robotics platforms more robust and scalable. A
CSN is a spatially distributed network of camera nodes which fuse their image data
such to provide a number of advantages over single-view computer vision. CSNs can
be deployed over a large area for wider coverage that could be required for disaster
response and security applications, and they also can provide multiple viewpoints
which can be exploited for three-dimensional scene analysis and gives redundancy
against occlusion [1]. Traditional approaches to computer vision on CSNs utilise
centralised algorithms which rely on a central node to process data from all other
nodes [1, 2]. In battery powered and wireless applications it can be difficult and
expensive to communicate with a central node, particularly in larger systems [2].
Additionally, this central node bears the risk of a single point of failure [3]. This pro-
motes the need for distributed algorithms, where a network of functionally identical
nodes perform local computations that can be incorporated into a global consensus
without the need for any centralised processing.

1

1.1. OVERVIEW 2

Figure 1.1: A distributed robotic vision network represented as an undirected
graph, with robots as nodes and edges corresponding to communication capabil-
ities.

With the increasing popularity of unmanned aerial vehicles, as well as the reducing
cost of powerful single-board computers such as the Raspberry Pi, these distributed
algorithms are being increasingly desirable for robotic vision applications. A single
vision-enabled robot can perform tasks such as calibration and localisation [4], which
then enables higher-level tasks such as visual odometry or simultaneous localisation
and mapping (SLAM) that can be utilised for the exploration and mapping of an
unknown environment [5]. With the addition of more robots, the exploration be-
comes collaborative if the robots are able to share a common understanding about
the world and their collective goals [6]. As with the general case of CSNs, central-
ised approaches to these multi-robot tasks results in a fragile system. Therefore,
distributed robotic visual algorithms are crucial for the development of advanced
multi-robot platforms and applications. Consider the network of vision-enabled ro-
bot nodes given in Figure 1.1, where the ability to communicate between nodes is
represented by an undirected graph [1–3, 7]. Each node is unable to communic-
ate with all other nodes, instead only having a small number of direct neighbours.
Therefore, the implementation of any robotic vision tasks must be done by combin-
ing local processing at the nodes and communication with those direct neighbours.
Using such an approach, algorithm for multi-robot calibration [7], localisation [8],
visual odometry, and SLAM can be implemented [9].

Calibration and localisation are the crucial first steps for CSNs which then en-
ables the many higher-level tasks to be done and involves using constraints on the
scene to determine the camera model parameters and the relative poses between
cameras [4]. Calibration comes in many different formats which have strengths
and weaknesses based on their use cases. Calibration algorithm can be classified

1.2. RESEARCH MOTIVATION AND PROBLEMS 3

based on the calibration object that they use: 3D [10–12], 2D [13], 1D [14, 15], or
self-calibration [16–18]. 2D calibration is highly flexible in most cases, however, in
multi-camera situations the calibration object can self-occlude at wide angles and
therefore 1D calibration and self-calibration can be more appealing. Localisation is
generally done in tandem with the calibration procedure as the information from the
calibration object reveals this pose information, however, once the camera model is
determined localisation can also be performed solely based on arbitrary correspond-
ences between cameras [19]. Specifically for the case of calibrating and localising
distributed CSNs, most approaches utilise self-calibration due to the flexibility it
has in viewing angles of each camera [7, 8].

Once the calibration has been established, higher-level tasks such as visual odo-
metry and SLAM can be be performed. Visual odometry is an iterative process
of estimating pose information between subsequent images from the camera as the
robot moves throughout a scene, then using those poses to reconstruct a map of
the scene [5]. These two processes are called tracking and mapping [20]. SLAM
expands upon this for long-term operation by identifying when a location has been
revisited and relocalising when tracking is lost [21–23]. There are a wide array of
methodologies for SLAM, however, the type considered most closely in this work
is keyframe-SLAM, where images are periodically elevated to ‘keyframe’ status and
information is accumulated in those keyframes to improve tracking accuracy and effi-
ciency [20]. For distributed multi-robot SLAM systems, the most common approach
is to build upon the underlying single-robot SLAM systems by adding features of
map alignment and merging [6, 24] as well as global optimisation [25–27] that are
implemented using a range of distributed processing algorithms [2].

Research in the field reveals a common trend of applying distributed algorithms
to a consistent pipeline of calibration, localisation, and SLAM to produce robust
distributed robotic vision systems [9, 28].

The remaining sections of this chapter are organised as follows: Section 1.2
presents the motivation and problems to be addressed, Section 1.3 asks the research
questions that have arisen from the motivation and open problems, Section 1.4 states
the objectives for the work addressing these questions and problems, Section 1.5 out-
lines the structure of the thesis, and finally Section 1.6 details the publications that
have been produced over the course of this study.

1.2 Research motivation and problems

Distributed algorithms have been successfully applied to many problems such as
flocking [29], formation control [30], and sensor fusion [31]. Much work over the
last decade has also gone into adapting distributed algorithms to computer vision

1.2. RESEARCH MOTIVATION AND PROBLEMS 4

tasks, such as camera calibration [7], localisation [8], and visual tracking [32]. The
importance of large-scale CSNs has been noted by many researchers, particularly
in security and surveillance in buildings and public spaces, disaster response, robot
coordination, and mapping of large environments [1, 5, 32, 33]. Radke states that
in these large CSNs “the sheer number of cameras now feasible in a visual sensor
network may preclude the use of a centralized algorithm” [3]. Song et al. write
that there are additional problems with centralised algorithms including bandwidth
constraints and security concerns [1]. They write, “...the cameras would have to act
as autonomous agents... At the same time, however, the decisions of the cameras
need to be coordinated so that there is a consensus about the task.” Olfati-Saber
identified the importance of these algorithms being robust to changing topologies
and time delays [34]. Considering a network of mobile agents, he states “Since the
nodes of the network are moving, ... communication links can fail simply due to the
existence of an obstacle... [or] new links between nearby agents are created because
the agents come to an effective range of detection.” Furthermore, realistic wireless
networks will have time-delays between the communicating nodes and therefore need
to be engineered so as not to be fragile to these delays [35]. With regard to limitations
on communication and computational complexity, particularly for SLAM, Cadena et
al. [5] identified that, “[a] relatively unexplored issue is how to adapt existing SLAM
algorithms to the case in which the robotic platforms have severe computational
constraints. This problem is of great importance when the size of the platform is
scaled down, e.g., mobile phones, micro aerial vehicles, or robotic insects. Many
SLAM algorithms are too expensive to run on these platforms.”

Reviewing the significant trends in the application of distributed algorithms to
these robotic vision tasks, a framework for a multi-robot system performing SLAM
can be identified as adhering to the three stages given in Figure 1.2. Firstly, an
initialisation is performed to establish the calibration and initial localisation, then
local visual odometry is performed at each node without the need to involve other
robots, and finally global alignment and optimisation of the map is performed.
Distributed algorithms are used in the first and third stages, whilst the second stage
operates in the same manner as single-robot algorithms.

From this, a number of open problems and issues with current solutions can be
identified:

• Existing distributed calibration techniques almost exclusively rely on self-
calibration, which is not able to determine the scale of the scene for its local-
isation.

• Many distributed calibration and localisation techniques either do not involve
the intrinsic parameters or do no optimise over an easily identifiable global

1.3. RESEARCH QUESTIONS 5

Initialisation Local tracking Global mapping

Local Robot

Initialisation Local tracking Global mapping

Neighbouring Robots

Figure 1.2: The three main stages of a distributed multi-robot system performing
calibration, localisation, visual odometry and SLAM. Inter-robot communication
is done during the first and third stages where distributed algorithms are applied.

objective for the full set of parameters.

• Distributed SLAM systems rely on indirect SLAM methodologies for the local
tracking and do not take advantage of computationally efficient direct meth-
odologies.

• Existing direct SLAM methodologies do not natively rely on data-types suit-
able for inter-robot alignment and so compute such data solely for wide-
baseline matching, which can be seen as wasteful use of computational re-
sources.

• Convergence speed and accuracy is crucial for distributed algorithms, however,
many techniques for accelerating convergence and improving accuracy rely on
global information about the network that would not necessarily be known at
a given robot node.

1.3 Research questions

This research aims to improve the applicability of distributed computer vision to
robotic networks with on-board processing in the undertaking of calibration, local-
isation, and SLAM by addressing the following questions:

Firstly How can a robotic camera sensor network perform and maintain calibration,
localisation, and higher-order tasks such as SLAM in an entirely distributed
manner?

Secondly How can these algorithms be made to operate effectively within the con-
straints of low-cost on-board processing?

Thirdly Can a consistent framework be established for a distributed SLAM system
from initialisation to long-term operation?

1.4. RESEARCH OBJECTIVES 6

In addressing the first question, this study will analyse (a) how centralised al-
gorithms can be adapted to distributed networks, and (b) how the tasks can be
re-framed to produce fundamentally distributed solutions. Also, in response to the
second question, this dissertation explores (c) how algorithms can be made to min-
imise the computational complexity required for each local node whilst (d) main-
taining robustness both locally and over the entire network. Finally, to address the
third question, this study will evaluate (e) distributed solutions to various stages
of a calibration, localisation, and SLAM pipeline as well as (f) local single-node
solutions to aspects of the pipeline that support the distributed components.

1.4 Research objectives

These questions and problems give rise to a number of objectives that contribute
towards performing calibration, localisation, and SLAM on a distributed robotic
vision system. The primary objective is to investigate algorithms relating to this
overall pipeline, enhancing the ability for robotic vision networks to complete those
key tasks. To answer those stated questions, the following objectives have been
accomplished:

• The investigation of research trends in the areas of calibration, localisation,
visual odometry, and SLAM with a focus on the applicability of various al-
gorithms to distributed systems.

• The development of calibration and localisation algorithms that are suitable
for multi-camera and distributed systems.

• The development of a fundamentally distributed localisation algorithm that
can serve as a highly accurate initialisation for a multi-robot SLAM system,
providing known scale.

• The adaption of the direct visual odometry process to robust feature descriptors
to produce a hybrid method that is efficient for low-cost hardware whilst main-
taining the ability for wide-baseline matching.

• The improvement of direct visual odometry methods with regard to their ro-
bustness to lighting changes.

• The development of a method for choosing edge-weights in an undirected graph
that improve convergence of Gaussian belief propagation in small-world net-
works.

• The application of accelerated Gaussian belief propagation to localisation and
pose graph optimisation for improved accuracy.

1.5. STRUCTURE OF THE DISSERTATION 7

1.5 Structure of the dissertation

The remaining sections of the dissertation are organised into the following chapters:

Chapter 2 provides an overview of research in the areas of calibration, localisa-
tion, visual odometry and SLAM for robotic vision platforms, with particular
consideration for how distributed algorithms can be used to solve these prob-
lems for a network of robots. The various types of calibration and localisation
are considered by the calibration objects that are utilised and how they can
be applied to multi-camera systems. The related problems of visual odo-
metry and SLAM are discussed with relation to a generalised keyframe-SLAM
framework and the competing paradigms for solving the various sub-problems.
Then, three groups of distributed algorithms are discussed and related to cal-
ibration, localisation, visual odometry and SLAM. The major trends and open
problems are identified and related to the subsequent work presented in this
dissertation.

Chapter 3 presents a method for distributed calibration and localisation of a cam-
era sensor network based on one-dimensional calibration and Gaussian belief
propagation. This method calibrates each camera node locally based on ob-
servations of a 1D calibration object which are observed at all nodes. The
point-cloud of estimated world points at each node is then used to initialise
a lattice-structured graph for neighbourhood-based bundle adjustment, then
the localisation estimates are brought into global consensus using Gaussian
belief propagation.

Chapter 4 improves upon the method presented in Chapter 3 by performing a
general-motion one-dimensional calibration and localisation across all nodes
and producing a global bundle adjustment, rather than a neighbourhood-based
one, using the alternating direction method of multipliers applied to a small-
world network with the distributed averaging step performed using Gaussian
belief propagation.

Chapter 5 presents a method for single-robot visual odometry that has been de-
signed to take advantage of the computation efficiencies of direct methods
coupled with the ability to perform wide-baseline matching that is provided
by the robust feature descriptors of indirect methods. This is done by per-
forming spare calculation of binary descriptors which are then used in direct
image alignment based on a pseudo-gradient. The purpose of this is to provide
a visual odometry method that is suitable for the low-powered hardware that
would be used in a distributed robotic vision network whilst still utilising the
data-types suitable for multi-robot SLAM.

1.6. PUBLICATIONS 8

Chapter 6 analyses the problem of determining edge-weights for Gaussian belief
propagation in a manner that only utilises local information. This is considered
for small-world networks, which are a common naturally occurring network
type that can be seen as an interpolation between random graphs and lattice
graphs. An empirical method is derived for optimal edge-weights based on the
average node-degree across the network as well as the local node-degree at a
given node. This is then shown to improve convergence speed and accuracy
for a simplified version of the multi-robot localisation problem.

Chapter 7 summarises the propose methodologies and considers their relation to
the overall framework of performing visual SLAM on a distributed multi-robot
network. Future research directions are also discussed.

1.6 Publications

The publications outlined below are the direct result of the research presented in
this dissertation done as a part of the Doctor of Philosophy program undertaken at
the University of Wollongong:

• B. Halloran et al., ‘Distributed one dimensional calibration and localisation of
a camera sensor network,’ in Proceedings of ICIC 2017: Intelligent Comput-
ing Theories and Application, D.-S. Huang et al., Eds., Springer International
Publishing, 2017, pp. 581–593, isbn: 978-3-319-63312-1. doi: 10.1007/978-

3-319-63312-1_51.
This paper presents a distributed algorithm for the calibration and localisa-
tion of a camera sensor network. Robust calibration is performed at each
node using a one-dimensional calibration object consisting of collinear points
moving about a single fixed point. Next, each node builds a vision graph and
performs cluster-based bundle adjustment utilising the 3D points of the calib-
ration object. Finally, the local estimates are brought to global consensus using
Gaussian belief propagation. The benefit of this method is that it provides a
flexible and accurate method of metric calibration and localisation to known
scale for a distributed network of cameras.

• B. Halloran et al., ‘Optimizing edge weights for distributed inference with
gaussian belief propagation,’ in Proceedings of ICIC 2018: Intelligent Comput-
ing Theories and Application, D.-S. Huang et al., Eds., Springer International
Publishing, 2018, pp. 46–59, isbn: 978-3-319-95930-6. doi: 10.1007/978-3-

319-95930-6_6.
This paper analyses the process of using Gaussian belief propagation for per-
forming inference and distributed averaging on a distributed sensor network.

https://doi.org/10.1007/978-3-319-63312-1_51
https://doi.org/10.1007/978-3-319-63312-1_51
https://doi.org/10.1007/978-3-319-95930-6_6
https://doi.org/10.1007/978-3-319-95930-6_6

1.6. PUBLICATIONS 9

Gaussian belief propagation only provides approximate values when used on
cyclic graphical structures, as is the likely case in a robotic network, how-
ever, faster convergence generally leads to more accurate results. Choosing
appropriate edge-weights for fast convergence often relies on global informa-
tion on the structure of the network. This research investigated an empirical
method for determining edge-weights using only local information, specifically
for small-world networks. This leads to faster and more accurate convergence.

• B. Halloran et al., ‘Single and multi-channel direct visual odometry with binary
descriptors,’ in Proceedings of ICIC 2019: Intelligent Computing Methodolo-
gies, D.-S. Huang et al., Eds., Springer International Publishing, 2019, pp. 86–
98, isbn: 978-3-030-26766-7. doi: 10.1007/978-3-030-26766-7_9.
This paper presents a method for robust visual odometry that incorporates
binary descriptors into the direct image alignment pipeline through a pseudo-
gradient based on the Hamming weights of the descriptors. This produces
a direct method that is more robust to lighting changes in the scene. Fur-
thermore, although the computation of descriptors is more computationally
expensive than operating on raw image values, as is the normal procedure in
direct methods, this method still has the computational savings of avoiding
feature descriptor matching. Instead, the method results in implicit corres-
pondences.

• B. Halloran et al., ‘Robust one-dimensional calibration and localisation of
a distributed camera sensor network,’ Pattern Recognition, vol. 98, 107058,
pp. 1–12, 2020. doi: 10.1016/j.patcog.2019.107058.
This paper extended the previous work looking at calibration and localisa-
tion with one-dimensional objects in a distributed camera sensor network. A
general-motion multi-view one-dimensional calibration methods was used to
initialise local estimates at each camera node, then a vision graph was initial-
ised to a small-world network structure. Finally, a combination on alternating
direction method and multipliers and Gaussian belief propagation was used to
perform a distributed global bundle adjustment across all nodes. This method
improved upon the prior method by relaxing constraints on the calibration ob-
ject and ensuring that the final optimisation had a consistent global objective
function.

In addition, the following joint publications list contributions made during the
undertaking of the Doctor of Philosophy program:

• I. J. Kadhim et al., ‘A comparative analysis among dual tree complex wavelet
and other wavelet transforms based on image compression,’ in Proceedings of

https://doi.org/10.1007/978-3-030-26766-7_9
https://doi.org/10.1016/j.patcog.2019.107058

1.6. PUBLICATIONS 10

ICIC 2017: Intelligent Computing Theories and Application, D.-S. Huang et
al., Eds., Springer International Publishing, 2017, pp. 569–580, isbn: 978-3-
319-63312-1. doi: 10.1007/978-3-319-63312-1_50

• Q. Al-Shebani et al., ‘Co-simulation method for hardware/software evaluation
using xilinx system generator: A case study on image compression algorithms
for capsule endoscopy,’ in Proceedings of 2018 12th International Conference
on Signal Processing and Communication Systems (ICSPCS), IEEE, 2018,
pp. 1–4. doi: 10.1109/ICSPCS.2018.8631737

• C. Shiranthika et al., ‘Realtime computer vision-based accurate vehicle count-
ing and speed estimation for highways,’ in Proceedings of ICIC 2019: Intelli-
gent Computing Methodologies, D.-S. Huang et al., Eds., Springer International
Publishing, 2019, pp. 583–592, isbn: 978-3-030-26766-7. doi: 10.1007/978-

3-030-26763-6_56

• I. J. Kadhim et al., ‘Comprehensive survey of image steganography: Tech-
niques, evaluations, and trends in future research,’ Neurocomputing, vol. 335,
pp. 299–326, 2019, issn: 0925-2312. doi: 10.1016/j.neucom.2018.06.075

• P. Premaratne et al., ‘Optimization of low-speed dual rotor axial flux generator
design through electromagnetic modelling and simulation,’ in Proceedings of
ICIC 2021: Intelligent Computing Theories and Application, D.-S. Huang et
al., Eds., Springer International Publishing, 2021, pp. 786–801, isbn: 978-3-
030-84522-3. doi: 10.1007/978-3-030-84522-3_64

https://doi.org/10.1007/978-3-319-63312-1_50
https://doi.org/10.1109/ICSPCS.2018.8631737
https://doi.org/10.1007/978-3-030-26763-6_56
https://doi.org/10.1007/978-3-030-26763-6_56
https://doi.org/10.1016/j.neucom.2018.06.075
https://doi.org/10.1007/978-3-030-84522-3_64

Chapter 2

Literature review

Contents
2.1 Summary of contributions 11

2.2 Introduction . 12

2.3 Calibration and localisation 14

2.4 Visual odometry and visual SLAM 33

2.5 Distributed calibration, localisation, and SLAM 73

2.6 Chapter summary and proposed framework 102

2.1 Summary of contributions

• Reviews state-of-the-art algorithms applicable to each stage of the multi-robot
framework discussed in this thesis, highlighting research gaps and open prob-
lems, and applies those findings to the given framework.

• Thoroughly reviews the calibration and localisation problem for single cameras
and multiple cameras, discussing solutions according to object-type and the
related distortion models involved. Then, identifies the strengths and weak-
nesses of various calibration methods in their application to the initialisation
of the multi-robot framework.

• Presents a generalised framework for visual odometry and SLAM, reviewing
how a wide range of algorithms fit into this framework whilst utilising different
paradigms and technologies. Then, identifies how these trends suit the local
and global mapping steps of the multi-robot framework, as well as the research
gaps in each paradigm.

• Explores how calibration, localisation, and SLAM algorithms are extended
to distributed robotics platforms through the graphical interpretation of the

11

2.2. INTRODUCTION 12

network and the use of distributed algorithms, and examines the open problems
in adapting these algorithms to be distributed in nature.

2.2 Introduction

This chapter provides an overview of the state-of-the-art research and trends in
the robotic vision areas of calibration, localisation, visual odometry, and SLAM.
Of particular interest is the multi-robot case where graphical methods can be used
to produce distributed consensus algorithms that solve these challenging problems,
following the multi-robot framework shown in Figure 1.2.

Calibration is the necessary initialisation step for many vision applications which
enables metric understanding of the scene. In the single camera case this involves
the intrinsic parameters of the camera such as focal length and principle point, where
as in the multi-camera case the extrinsic parameters or localisation becomes much
more important. The problems of calibration and localisation can be solved using
special calibration objects that are placed in the scene or by leveraging constraints
on the scene itself. For robotic vision, localisation provides an initial state of the
robot and the intrinsic calibration allows the relationships between views of the
robot to be understood.

Mobile robotics platforms rely on the more challenging localisation problems of
visual odometry and SLAM. These are two closely related problems of continu-
ous localisation and scene reconstruction. Although the calibration and localisation
problem can provide an initial state for the robot or robots, localisation needs to be
updated as a robot moves throughout the scene. Visual odometry solves this using
static constraints of the scene to determine motion between views. For SLAM, the
algorithms of visual odometry are robustified by relying more heavily on the recon-
struction of the scene to improve localisation, detect when locations are revisited,
or to detect and correct localisation failures.

These algorithms can be extended to distributed multi-robot scenarios, where
each robot works with its neighbours to achieve a globally consistent understanding
of the scene without the use of a central processor. This involves considering the
underlying algorithms, such as average consensus and belief propagation, exploring
graphical representations of camera sensor networks, and reviewing how this has
been used to produce distributed approaches to the four key problems.

2.2.1 Motivation

The motivation of the literature review presented in this chapter is to is to analyse
the wide range of algorithms that can be used to implement the various stages of the

2.2. INTRODUCTION 13

Initialisation Local tracking Global mapping

A B

C

Figure 2.1: The three main stages of a distributed multi-robot system performing
calibration, localisation, visual odometry and SLAM. Inter-robot communication
is done during the first and third stages where distributed algorithms are applied.

distributed multi-robot calibration, localisation, visual odometry, and SLAM frame-
work given in Figure 1.2. From the point of view of a single robot, this framework
is related to the three main sections of this chapter is Figure 2.1. Part A, relating
to the initialisation, is discussed through an analysis of calibration and localisation
algorithms; part B, covering the local tracking and global mapping components,
relates to the discussion on visual odometry and SLAM algorithms; and part C,
involving the inter-robot communication, is discussed through an analysis of dis-
tributed algorithms and their relationship to robotic vision.

2.2.2 Organisation

Based on these motivations, this chapter is broken into three main sections — cal-
ibration and localisation, visual odometry and SLAM, and multi-robot distributed
algorithms. Calibration and localisation are discussed in Section 2.3. In this sec-
tion, the general calibration problem statement is introduced, as well as the dif-
ferent classes of calibration algorithms ranging from the use of three-dimensional
objects to self-calibration. The strengths and weaknesses of these algorithms are
then discussed in relation to their use in multi-camera systems. The more challen-
ging problems of visual odometry and SLAM are discussed in detail in Section 2.4.
Fristly, the core paradigms of VO and SLAM are introduced, then the many state-
of-the-art algorithms are categorised according to these paradigms, and finally they
are analysed according to a generalised keyframe SLAM architecture. Section 2.5
applies the problems of multi-robot calibration, localisation, visual odometry, and
SLAM to distributed networks. This is done by introducing the graphical represent-
ation of camera sensor networks and the core underlying algorithms for distributed
processing, then exploring how these have been applied to the present problems.
Finally, Section 2.6 ties these areas of research together and discusses how this work
has influenced the novel work presented in this dissertation. This is explored through
the presentation of a framework for a distributed multi-robot vision system capable
of calibration, initial localisation, and SLAM.

2.3. CALIBRATION AND LOCALISATION 14

2.3 Calibration and localisation

Calibration is the crucial first step in vision systems which allows metric 3D inform-
ation to be attained from images. In the single-camera case, calibration aims to
determine the intrinsic parameters of the camera which relate to the focal length,
principal point, skew, and lens distortion inherent to the camera. This process might
also localise the camera’s position and orientation with respect to some known points
in the scene, known as its extrinsic parameters. In the multi-camera case, individual
intrinsic calibrations are sought for each camera as well as all extrinsic parameters
that define the cameras’ positions and orientations relative to each other. This calib-
ration and localisation process provides an initial state that is crucial in higher-order
vision tasks, with visual odometry and visual SLAM being of particular interest in
this chapter.

This section reviews the major work in the field of calibration and localisation
and its application to distributed camera systems, with the motivation of finding
suitable algorithms for the first component identified in Figure 2.1. Section 2.3.1
introduces the calibration and localisation problem statement. Section 2.3.2 dis-
cusses the basic algorithms that are employed – 3D calibration, 2D calibration, 1D
calibration, and self-calibration. These four categories of algorithms have different
complexities, strengths, weaknesses, and use-cases which inform the situations that
they are often used. Section 2.3.3 expands on this information and looks at how
these calibration paradigms are applied to multi-camera systems, both stereo camera
pairs with known baselines as well as n-view systems with unknown extrinsic para-
meters. It is in these multi-camera systems where the localisation problem becomes
fundamentally a part of the overall calibration. Finally, Section 2.3.4 summarises
these findings and highlights the open problems related to this thesis.

2.3.1 Calibration problem statement

The goal of camera calibration and localisation is to determine the parameters that
define how a point in 3D space is projected into the image plane of a camera to
produce a pixel coordinate or 2D point. A standard camera is usually modelled
using the pinhole camera model, given in Figure 2.2. In this model a point in space
is denoted as M = [X, Y, Z]T and its image is m = [x, y]T , which are sometimes
given in homogeneous form as M̃ = [X, Y, Z, 1]T and m̃ = [x, y, 1]T respectively. The
image point m is given by the intersection of the optical ray between the 3D point
M and the camera centre C with the image plane. To compute this intersection,
first the 3D point is transformed from the world coordinate frame into the camera
frame by the extrinsic parameters of rotation, R ∈ SO(3), and translation, t ∈ R3.
This transformed 3D point is then projected into the image plane according to

2.3. CALIBRATION AND LOCALISATION 15

Figure 2.2: The pinhole camera model, where a 3D world point M is projected
to 2D image point m according to intrinsic parameters α, β, and (u0, v0), as well
as extrinsic parameters t and R.

the intrinsic parameters of the x- and y-axis focal lengths α and β, the principal
point (u0, v0), and the skew between the image axes, γ. This transformation and
projection is given in Equation 2.1, with the intrinsic parameter matrix K being
defined in Equation 2.2. In modern cameras, the skew is usually assumed to be zero
and left out for simplification.

m̃ ≃ PM̃ = K[R|t]M̃ (2.1)

where K =

α γ u0

0 β v0

0 0 1

 (2.2)

For the calibration of a single camera, the extrinsic parameters are assumed to
be the identity [R|t] = [I|0], where I is a 3× 3 diagonal identity matrix. Therefore,
the only parameters to be estimated are the intrinsic parameters. However, if the
single camera needs to be calibrated and localised in an existing work space then
it becomes necessary to determine the extrinsic parameters relative to some known
fixed points. For the case of multiple cameras, all cameras need to be localised with
respect to each other and only one camera is assumed to be at the origin of the
world coordinate system.

2.3.2 Camera calibration algorithms

The most popular calibration algorithms fall into four categories – 3D calibration,
using a calibration object that provides known points in 3D space; 2D calibration,
using an object where all the points lie on a plane; 1D calibration, where the calibra-
tion object is a set of points along a line; and self-calibration, which is unstructured

2.3. CALIBRATION AND LOCALISATION 16

and relies on correspondences being extracted from multiple views. Much of the
foundations of camera calibration have been long established, however, this does
not mean it is a solved problem. As will be seen, all four categories of calibration
discussed in this section have novel new research being actively pursued and inter-
esting problems to be solved. This includes applying the well understood algorithms
to new and modern domains, such as in the case of self-calibration; applying modern
approaches to improve accuracy, such as in the case of 2D calibration; and refine-
ment of the underlying algorithm for use with fewer restrictions, such as with 1D
calibration.

Self-calibration without calibration objects

Although most calibration methods to be discussed in this section make use of
calibration objects, calibration is possible without the use of any such object, referred
to as self-calibration or auto-calibration. A drawback of this is that the scale of the
scene cannot be determined; a scene that is twice the size but also twice as far
away would appear exactly the same. However, a benefit of this is that it can
be applied to image sequences that were not taken with calibration in mind and
therefore lack anything that can be used as a calibration object. The basic case for
camera self-calibration requires at least N ≥ 7 point correspondences across M ≥ 3

images, between which the camera has undergone general motion. An important
concept used here is the image of the absolute conic (IAC), ω = K−TK−1, and its
inverse the dual image of the absolute conic (DIAC), ω∗. These are point and line
conic representations, respectively, of the projection into a given image plane of
the complex conic located on the plane at infinity. Whilst not an actual view-able
concept, self-calibration methods use constraints from epipolar geometry to compute
and decompose these values into the intrinsic calibration matrix. This geometry
is shown graphically in Figure 2.3. Point correspondences allow the fundamental
matrix F and epipoles, e and e′, for each image pair to be determined, which can
be accurately estimated through well know approaches such as from Hartley [19,
45]. These are then used to apply constraints on the DIAC with what is referred
to as the Kruppa equations, given in Equation 2.3, which relate the epipoles and
fundamental matrix via the DIAC. Once the DIAC is estimated and decomposed
into the intrinsic parameters, the extrinsic parameters can be estimated from the
essential matrix using the method of Hartley [46].

[e′]×KKT [e′]T× ≃ FKKTFT (2.3)

There are a variety of ways to solve the self-calibration problem — all of which
are closely related. The first comes from the work of Faugeras et al. [16] which uses

2.3. CALIBRATION AND LOCALISATION 17

Figure 2.3: Geometry of self-calibration. Ω∞ is the absolute conic which is
located on the plane at infinity, Π∞. Its projection onto a camera with centre
C is ω (respectively with C′ and ω′). M∞ is a point at infinity on the absolute
conic and projects to m∞ and m′

∞. e and e′ are the epipoles on the left and right
images respectively and correspond to the intersection between the line from C
to C′ and each image plane. If each camera has the same intrinsic parameters,
then ω = ω′.

the Kruppa equations directly. Each image pair provides two linearly independent
Kruppa equations for the five unknowns of the intrinsic parameters, and therefore
three images are sufficient to solve the calibration. However, the Kruppa equations
are polynomials of degree two and cannot be solved directly. Faugeras et al. used
numerical continuation on five of the six equations to find the 32 possible solutions,
then used the sixth to reject spurious estimations. Although their method is compu-
tationally expensive, they argue that it is preferable to nonlinear least squares due
to the instability of the non-convex problem. This was followed up by the work of
Luong and Faugeras [17] who expressed the polynomials of the Kruppa constrains
based on an analysis of the properties of the essential matrix between two views.
Overall, their method is very similar to the former, using the continuation method
to find all 32 solutions to five equations. They improve the robustness by finding all
solutions to all six combinations of five equations, then find the best from each list
using a distance measurement, and finally find a single solution based on an average.
Drawbacks of their method are that it is computationally expensive and only feas-
ible with the minimal set of three images. It is also difficult to express constraints
on the intrinsic parameters, such as the focal lengths being positive. Finally, their
method is sensitive to noise.

There are alternative forms of the self-calibration problem that rely on different
constraints. Triggs [47] derived a similar constraint to the Kruppa equations, instead
based on the relationship between the DIAC and the absolute quadric, which is

2.3. CALIBRATION AND LOCALISATION 18

equivalent to the absolute conic but reduces the complexity of the problem. Their
method allows additional constraints to be applied directly to the initial estimation,
rather than relegating such constraints to a final bundle adjustment. Pollefeys and
Van Gool [18] suggest a stratified approach consisting of three steps. Firstly, a
projective reconstruction is estimated based on the infinite homography, that is the
homography between image planes for points on the plane at infinity, which can
be estimated from the fundamental matrix. Next, the projective calibration can be
upgraded to an affine one by identifying the plane at infinity, and finally a metric
calibration can be achieved from the affine calibration by using linear constraints
between the infinite homography and the DIAC. Although the first and third steps
are simpler than alternative methods, the second step relies on nonlinear constraints
for the plane at infinity, which introduces similar issues to the nonlinear steps in the
other algorithms discussed.

There are also a range of self-calibration algorithms that are based on specific
motions of the camera or specific structures of the scene. Hartley [48] presented a
method for cameras undergoing pure rotation which allows for constraints applied to
the infinite homography. Armstrong et al. [49] derived a method that can determine
metric calibration up to a two-fold ambiguity in scenes where the camera undergoes
planar motion. Their method took advantage of constraints on the trifocal tensor,
which is an image triplet analogue of the fundamental matrix. Both of these methods
are interesting due to the fact that they rely on motion sequences that are degenerate
for the Kruppa equation-based methods [50, 51]. The critical motion sequence that
is inherent to self-calibration is pure translation, which is avoided in the method
of Armstrong et al. [49] by allowing on-plane rotation, however, pure rotation
and motion on a sphere are additional critical motion sequences specifically for the
Kruppa equations [51].

One of the most straight-forward approaches to self-calibration can be seen in the
multi-stage method of Gao and Hadha [52] which was later refined by Köhler [53].
The method is summarised in Figure 2.4 and first estimates the focal lengths under
the assumption that they are the same in each direction and the principal point is
at the centre of the image, then estimates the actual ratio of focal lengths, thirdly
estimates the actual principal point, fourthly refines the focal lengths individually,
and finally refines all parameters together. Each stage of the algorithm uses the
results of the earlier state as a starting point. The initial assumptions of unity aspect
ratio and principal point at the centre of the image are usually close enough to the
true value that they do not result in excessive error. This multi-stage approach can
be applied to any of the constraints mentions so far, however, both Gao and Hadha
as well as Köhler rely on nonlinear least squares with a cost function enforcing the
equal singular value constraint of the essential matrix. This method greatly improves

2.3. CALIBRATION AND LOCALISATION 19

Determine
fundamental

matrices F for
each image pair.

Estimate focal
length assuming
principal point

at centre
and unit

aspect ratio.

Estimate aspect
ratio assuming
principal point

at centre.

Estimate
principal point.

Estimate
individual

focal lengths.

Joint refinement
of all intrinsic
parameters.

Figure 2.4: The multi-stage self-calibration process from point correspondences
across at least three images, to joint refinement of intrinsic parameters. Each stage
replaces some of the prior assumptions with the output of the previous stage.

the stability of the nonlinear estimation by limiting what is refined at a given time
and improving initial estimates for each refinement, however, a drawback is that it
requires repeated application of nonlinear refinement which can be computationally
expensive.

Although much of the foundational work on self-calibration was established in the
1990s and early 2000s, the field is still highly active with attention being given to
domain specific issues that introduce further complications or degenerate motions.
For example, in many situations distortion of the camera, the modelling of which
will be discussed further in the following section, can cause ambiguities in the calib-
ration. The predominantly forward motion seen in SLAM applications results in an
ambiguity as to whether the disparity between matched points is due to depth or
radial distortion. Zhuang et al. [54] proposed a solution to this issue based on deep
learning with a ResNet-34 architecture. Although actual SLAM footage doesn’t have
perfectly pure forward motion, their tests demonstrate that their learning approach
estimated radial distortions much closer to the ground truth than the geometric
method. Similarly, pan-tilt-zoom camera systems can have significant amounts of
radial distortion that complicates calibration. Zhang et al. [55] also applied a deep
learning approach to improve the calibration of such cameras with significant distor-
tion and changing focal lengths, although, their approach relies on the assumptions
of unity aspect ratio and principal point at the centre of the image. Tang et al.
[56] applied self-calibration to the domain of pedestrian tracking where the pedes-
trians are modelled as poles of constant height moving across a flat plane. Using
constraints on this model, they were able to identify the ground plane, horizon line,
and vanishing points, which could be used to perform self-calibration. They used an
evolutionary optimisation procedure to minimise reprojection error on points on the
ground plane as well as optimising the distortion parameters to minimise variance in
the heights of pedestrians over time. Overall, there is an interesting trend of solving
issues relating to distortion and domain-specific camera or motion types, although
current solutions still frequently rely on many assumptions to solve their problems.

2.3. CALIBRATION AND LOCALISATION 20

(a) A calibration object of
three perpendicular planes.

(b) A calibration object of
two perpendicular planes.

(c) A calibration object of a
single plane that undergoes a
known translation.

Figure 2.5: Types of calibration objects used in 3D calibration. Two or three
perpendicular planes are often used, as in (a) and (b) respectively. A single plane
can be used if photographed at two different locations separated by a known
translation, as in (c).

Three-dimensional calibration objects

Much research has been done between the 1970s and 1990s in the intersection of the
fields of close-range photogrammetry and computer vision in producing high-quality
calibration for camera models that include both the aforementioned pinhole model
as well as a range of distortions that can be present due to the geometry of the
camera lens. Early work on this, which provides extremely accurate estimations,
uses a 3D calibration object; that is, an object whose geometry provides a set of
known points in 3D space. The calibration object is often in the form of two or
three orthogonal planar checker-board patterns, such as in the work of Brown [10]
or Heikkila and Silvén [11], or a single planar checker-board pattern that under-
goes a known displacement between subsequent images as in the work of Tsai [12].
Examples of these types of calibration objects are represented in Figure 2.5, where
a variable amount of planar checker-board patterns provide the known 3D points
through edge detection.

In either of these scenarios the set of know 3D points can be extracted by perform-
ing corner detection on the images and are used to build a set of linear constraints
according to Equation 2.1 on the vector p which contains the elements of the projec-
tion matrix P. This produces a pair of constraints given in Equation 2.4 that can be
stacked for each image points, solved, and decomposed according to the direct linear
transformation method of Abdel-Aziz and Karara [57] to extract the intrinsic para-
meters as well as the extrinsic parameters relative to the coordinate frame defined
by the calibration object.[

Xi Yi Zi 1 0 0 0 0 xiXi xiYi xiZi xi
0 0 0 0 Xi Yi Zi 1 yiXi yiYi yiZi yi

]
p = 0 (2.4)

2.3. CALIBRATION AND LOCALISATION 21

(a) The effects of radial distortion. The solid
line is the undistorted points and the dashed
lines are distorted radially in a positive or
negative direction.

(b) The effects of tangential distortion. The
point is rotated about the distorted centre,
along the dashed line.

Figure 2.6: Distortion models are usually reduced down to a combination of
two types – radial and tangential. Radial distorts towards or away from the
distortion centre based on distance from the centre, and tangential distorts about
the distortion centre.

The 3D calibration problem begins with this linear step performed on the basic
non-distorted pinhole camera model and is then usually followed by a nonlinear
refinement to minimise the reprojection error between the observed corners and
their expected projections based on the known 3D point locations according to a
nonlinear model that includes various types of distortion. A range of distortion
models have been considered in literature, which generally reduce down to radial
and tangential components which are both modelled by power series. These different
types of distortion include:

• Radial distortion which distorts the ideal image points away from or towards
the distortion centre due to imperfect radial curvature of the lens.

• Decentring distortion which causes both radial and tangential distortion
due to misalignment of the lens with the image sensor.

• Thin prism distortion which also causes both radial and tangential dis-
tortion due to imperfections in lens design or assembly, such as a slight tilt
between lens elements.

In the literature, these different causes of distortion are reduced to two power
series for the combined radial and tangential distortion effects which are demon-
strated graphically in Figure 2.6. The radial component can be seen in models
presented by Brown [10], Tsai [12], Weng et al. [58], and Heikkila and Silvén [11].

2.3. CALIBRATION AND LOCALISATION 22

Extract 2D
points from

corners.

Estimate P
using (2.4).

Decompose into
K, R, and t.

Refine with
distortion model

using (2.5).

Figure 2.7: The 3D calibration process from input image(s) of checker-board
patterns, to refinement of intrinsic, extrinsic, and distortion parameters.

Tsai omits the tangential component due to its insignificance compared to the radial
component. Although Brown, Weng et al., and Heikkila and Silvén include tangen-
tial components in their distortion models, they all state that its effect is very small;
Heikkila and Silvén found that tangential distortion was five to seven times smaller
than radial distortion. The parameters to the power series modelling these two types
of distortion are found using nonlinear least squares which optimises jointly for the
pinhole model parameters and distortion parameters. This is most often done for
the two most significant terms in each series. Representing these four terms in total
by the four-vector ρ, this optimisation problem is written as in Equation 2.5.

{K∗,R∗, t∗, ρ∗} = argmin
{K,R,t,ρ}

N−1∑
i=0

1

2
||mi − π(Mi;K,R, t, ρ)||22 (2.5)

From this, the full 3D calibration procedure can be summarised as a four-step
process, given in Figure 2.7. Firstly, the image points corresponding to the known
3D points are extracted from the image (or images in the case of the displaced
planar object) by means of edge detection. Secondly, the linear system of Equation
2.4 is solved using these points to determine the projection matrix P. Thirdly, the
projection matrix is decomposed into the intrinsic parameter matrix K and extrinsic
parameters R and t. Then finally, the pinhole model parameters are refined and
the distortion parameters are estimated using the nonlinear refinement process of
Equation 2.5.

Although these methods provide extremely high-quality calibration results, as is
needed in close-range photogrammetry, there are drawbacks that limit their use in
modern computer vision and robotic vision. The high quality calibration object is
often expensive and difficult to use in comparison to the newer methods that will be
discussed shortly, and many modern applications do not need the accuracy provided
by them. A part of their difficulty in use stems from the smaller range of viewing
angles that the calibration objects support; that is, the object becomes self-occluded
at wider angles. As such, the 2D calibration method discussed next is the far more
popular method in computer vision.

2.3. CALIBRATION AND LOCALISATION 23

Two-dimensional calibration objects

Two-dimensional calibration is based on the work of Zhang [59] as well as Sturm and
Maybank [60], and is one of the most popular and widely used forms of calibration
due to its ease of use and incorporation into popular programming libraries and
software platforms such as OpenCV [61] and Matlab [62]. Here, the calibration
object is a single planar checker-board pattern that is observed at a number of
arbitrary orientations. The method works based on the fact that it is equally valid
to interpret the images of the planar object at arbitrary poses as if the object is
stationary and instead the camera is moving. Therefore, they use the constraint
that the planar object is on the XY -plane at Z = 0. This allows the third column
of the rotation matrix to be removed, rewriting Equation 2.2 as the reduced form
given in Equation 2.6.

m̃ ≃ H

XY
1

 where H = K
[
r1 r2 t

]
≃

[
h1 h2 h3

]
(2.6)

Similar to 3D calibration, the observations build a linear system of equations
which in this case is solved for the IAC that is then decomposed into the intrinsic
parameters. In this case, the linear system of equations is build based on the con-
straints given in Equation 2.7, which are due to the fact that the columns of the
rotation matrix are orthonormal.

h1K
−TK−1h2 = 0

h1K
−TK−1h1 = h2K

−TK−1h2

(2.7)

Once the intrinsic parameters are known, the homography for each view can be
fully determined and used to find the extrinsic parameters for each observation.
Again, as with 3D calibration, distortion can be determined from a separate lin-
ear system of equations followed by a joint nonlinear refinement of all estimated
parameters. In 2D calibration, the nonlinear least squares refinement computes
the reprojection error over all of the N planar points across M views, as given in
Equation 2.8.

{K∗, ρ∗,R∗
j , t

∗
j} = argmin

{K,ρ,Rj ,tj}

M−1∑
j=0

N−1∑
i=0

1

2
||mij − π(Mi;K,Rj, tj, ρ)||22 (2.8)

The 2D calibration procedure can be summarised by Figure 2.8. Firstly, a checker-
board pattern is attached to a planar surface and imaged at a few arbitrary orient-
ations, then the homography of each view is calculated. Each homography is used

2.3. CALIBRATION AND LOCALISATION 24

Take images of
pattern at a few

orientations.

Extract
2D points

from corners
per image.

Estimate Hj

for each view.

Use (2.7) to
constrain K,
and find all
Rj and tj.

Refine with
distortion model

using (2.8).

Figure 2.8: The 2D calibration process from input image(s) of planar checker-
board patterns, to refinement of intrinsic, extrinsic, and distortion parameters.

(a) A checker-board calibra-
tion plane.

(b) A fiducial marker calib-
ration plane [63].

(c) A series of coded patterns
for an active calibration plane
(digital display) [64].

Figure 2.9: Types of planar objects used in 2D calibration. The basic algorithm
uses the checker-board pattern seen in (a), however, fiducial markers (b) or active
calibration (c) targets allow for image clipping and partial occlusion.

as constraints on the IAC which is decomposed to K which allows Rj and tj to be
determined from Hj. Finally, a similar nonlinear refinement as in the 3D case is
performed with the inclusion of a distortion model.

One of the great strengths of this algorithm is its ease-of-use. Computer vision
applications that require metric calibration generally favour 2D calibration as it
simply requires a checker-board pattern to be printed out and attached to a flat
surface such as a clip board. Then, using freely available software, the calibration
parameters of a camera are able to be quickly determined in a mostly automated
process. There has been some work in improving the usability and accuracy of 2D
calibration even further through the use of fiducial markers or active calibration
targets. Fiducial markers are artificial landmarks that aim to facilitate high-quality
and automatic point localisation, even with image clipping and partial occlusion.
Active targets, on the other hand, are where digital displays are used as the planar
object. Depictions of these two different types of planar pattern in contrast to the
standard checker-board pattern can be seen in Figure 2.9.

One popular form of fiducial marker is ARTag which is a square pattern com-
prised of 8× 8 bi-tonal cells where a two cell border of solid colour (black or white)
facilitates blob detection and the inner 4× 4 block encodes the unique ID of a given
marker [65]. These markers have been specifically designed for fast detection and
homography calculation with low false positive, false negative, and inter-marker

2.3. CALIBRATION AND LOCALISATION 25

confusion rates, as well as resistances to issues with illumination change, partial
occlusion, and perspective changes. Fiducial markers have been utilised in 2D cal-
ibration in work such as that done by Fiala and Shu [66], where the markers are
placed on a plane much like the the checker-board object. In their work, each marker
provides four points towards the calibration problem. A similar approach was taken
by Atcheson et al. [67] who used markers much like ARTag that were printed in
alternating background colours, creating essentially a checker-board pattern with
embedded fiducial markers. A similar approach was taken by Daftry et al. [63]
who used circular fiducial markers laid out in a regular grid on a planar base. The
benefits of using fiducial markers are that individual points in the pattern can be
localised even in cases where the pattern is clipped at the image border or partially
occluded by objects in the scene. The former benefit is particularly useful in that
it allows calibration points to be taken close to the image border and corners where
distortion is the greatest.

An example of using active targets in 2D calibration is seen in the work of Schmalz
et al. [64] where the authors use a digital display as the planar object. They propose
to fill the entire field-of-view of the camera with the screen and then use a series
of coded patterns to uniquely identify each pixel. Similar to the case with fiducial
markers, this method allows points near the image corners to be utilised to more ac-
curately estimate the distortion parameters. Their method sees a five-fold reduction
in reprojection error compared to using a standard checker-board pattern. Although
they discuss the similar benefits between active targets and fiducial markers, they
do not directly compare the accuracy of the two classes of methods. They argue
that their method has comparable ease-of-use as the basic checker-board pattern due
to the ubiquity of digital displays, however, their method assumes that a camera
can be positioned to have its field-of-view filled. Comparatively, the methods using
fiducial markers have the exact same ease-of-use as the checker-board pattern with
the added benefit of automatic image acquisition whenever a defined target is in
view.

One-dimensional calibration objects

Calibration with a one-dimensional object is another method also proposed by Zhang
[14] shortly after his work on two-dimensional calibration, however, this form has
not seen as wide adoption. 1D calibration involves an object of at least N ≥ 3

collinear points with known distances where one point is fixed, A, about which the
other two move, B and C, shown in Figure 2.10. The point C is the midpoint, with
the ratios between overall length and distance to either end given as λA and λB,
respectively. The corresponding image points are a, b, c, respectively. This method
uses constraints on the cross-products between the points on the line, giving the

2.3. CALIBRATION AND LOCALISATION 26

Figure 2.10: One dimensional calibration, using an object comprised of three
collinear points, shown at two orientations. The rotation between the two orient-
ations occurs about a fixed point.

relative depth β in Equation 2.9, to build a linear system of equations that can
be solved for the IAC based on the constraint in Equation 2.10, where zA is the
unknown depth of the fixed point. The problem has 5 unknowns for the intrinsic
parameters, 3 more for the fixed point, and an additional 2 per image defining the
line. In return, there are 2 constraints provided by the observation of the fixed point
and a further 3 per image based on observations of the remaining points. Therefore,
this method requires at leastM ≥ 6 observations in order to solve for the calibration.

β =
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
(2.9)

z2A(ã+ βb̃)TK−TK−1(ã+ βb̃) = L2 (2.10)

As with 3D and 2D calibration, this process is usually followed by a separate
linear estimation of distortion parameters and then jointly refined with nonlinear
optimisation. This nonlinear least squares problem optimises the reprojection error
of the N ≥ 3 collinear points across M ≥ 6 views, refining the intrinsic parameters,
distortion parameters, as well as the estimated 3D positions of the calibration object
points in each observation. The objective function is given in Equation 2.11. The
full procedure is given in Figure 2.11.

{K∗, ρ∗,A∗,B∗
j ,C

∗
j} = argmin

{K,ρ,A,Bj ,Cj}

M−1∑
j=0

1

2
(||aj − π(A;K, ρ)||22

+ ||bj − π(Bj;K, ρ)||22 + ||cj − π(Cj;K, ρ)||22) (2.11)

2.3. CALIBRATION AND LOCALISATION 27

Take images
of collinear

points at a few
orientations.

Extract 2D
points from

blobs per image.

Estimate
K−TK−1

from points
using (2.10).

Decompose
into intrinsic
parameters.

Refine with
distortion model

3D points
using (2.11).

Figure 2.11: The 1D calibration process from input images of collinear points,
to refinement of intrinsic, extrinsic, and distortion parameters.

Zhang further extended the method to show it was possible to solve with only
observations of the two moving points by calculating the location of the unseen fixed
point. In fact, his work shows a small improvement in accuracy when estimating
the fixed point rather than observing it, which he attributed to the elimination of
human error in both annotating the fixed point as well as holding the fixed point in
place. The critical motions of this algorithm have been analysed by Hammarstedt
et al. [68] finding that calibration fails if the motion of the object lies on a cone; the
authors suggest that a ‘zig-zag’ motion is ideal for ensuring successful calibration.

The base algorithm for 1D calibration has stricter constraints on motion than for
2D and 3D calibration which work against its adoption over that of the far more
popular 2D. However, there has been some work in improving the base algorithm and
relaxing these constraints. Wu et al. [69] analysed the allowable motion patterns for
successful calibration from a geometric standpoint and found that the ‘fixed’ point
was, in fact, able to move as long as that motion was constrained to a plane. They
achieved this in practice by observing the calibration pattern at various locations
and orientations whilst lying on a flat surface. This approach, however, eliminates
some benefits that 1D has over 2D; the 1D object normally doesn’t self-occlude at
wide angles like the 2D pattern, but if it is resting on a fixed planar surface then it
has the same occlusion properties as the 2D case. Qi et al. [70, 71] suggest that the
most feasible manner to realise this relaxation is by tossing the object in the air,
allowing it to move in parabolic motion under gravity. They found that only the
‘fixed’ point needs to be constrained to the plane, and if it is the centre of gravity,
then it will be constrained to the planar surface of the parabolic motion. Although
this form of motion is far simpler in practice compared to that of Wu et al., the
authors found that it had about five times the error comparatively in estimations
on synthetic data. A reason for this is that these geometric methods ultimately rely
on the estimation of vanishing points, which are highly susceptible to noise, and
the method of Qi et al. has a greater likelihood of small angles of rotation between
pattern observations which negatively affects the vanishing point estimations.

There has also been some work on improving the numerical stability and accuracy
of Zhang’s base algorithm. De França et al. [72] utilised the normalisation tech-
nique of Hartley [45] to reduce the effects of noise, then improved the speed of the
non-linear refinement stage by adopting a partitioned Levenberg-Marquardt optim-

2.3. CALIBRATION AND LOCALISATION 28

isation. Their approach improved both the accuracy and speed of the algorithm,
however, they only demonstrated its application to Zhang’s original algorithm and
not to the geometric versions with relaxed fixed-point constraints of Wu et al. [69]
and Qi et al. [71]. Shi et al. [73] and Wang et al. [74] both also focused on improv-
ing Zhang’s form of the algorithm with different methods of estimating the relative
depth. Shi et al. formulated an alternative similarity-invariant calculation of the
relative depth, which they argue does not need nor benefit from the normalisation of
de França et al. Wang et al., on the other hand, applied the normalisation directly
to the estimation of the relative depth, rather than to the overall measurement mat-
rix. Both authors then used a robust error model from the relative depth estimation
to weight the linear algorithm for further improved accuracy. These improvements
mean that Zhang’s form of the algorithm sees more accurate calibration than the
variants with relaxed constraints on the fixed-point, resulting in a choice between
ease-of-use and accuracy. However, similar improvements could be explored for the
formulation of Qi et al. to reduce disparity between the methods.

2.3.3 Multi-camera calibration and localisation

Multi-camera calibration involves determining the intrinsic parameters for a num-
ber of different cameras simultaneously, whilst also estimating a globally consistent
localisation. The localisation is of particular importance in multi-camera systems
because most computer vision tasks cannot take advantage of multiple views without
knowing the relative transformation between said views. Each of the types of calibra-
tion discussed in the single camera case can be applied to multi-camera systems with
different strengths and advantages as well as additional considerations to whether
all of the cameras in the network have overlapping or non-overlapping fields-of-view
(FOV).

The usage of self-calibration across multiple views is the most common choice
in the general case where scene scale is not required due to the straight forward
nature of the application. The general form of the Kruppa equations does not
require that each image be associated with the same intrinsic parameters. Therefore,
rather than having a single moving camera, this method allows for a number of
stationary cameras with varying intrinsics taking a single view each can be used
to achieve calibration. Pollefeys et al. [75] showed that the minimal constraint for
successful self-calibration with varying parameters is that the skew is zero, which is
a safe assumption in modern cameras. They demonstrated successful multi-camera
self-calibration from at least eight views using the absolute quadric method first
suggested by Triggs [47]. By adopting further assumptions of unity aspect ratio and
the principal point being at the centre of the image they were able to find an initial

2.3. CALIBRATION AND LOCALISATION 29

linear estimate with only two views which could later be refined with nonlinear
optimisation. Lourakis and Deriche [76] found similar results using the Kruppa
equations. They also were able to perform multi-camera self-calibration with at
least eight stationary views, or with only two views given the same assumptions
for an initial estimate that was then refined. These methods are fairly straight-
forward, achieve good accuracy, and are simple to use in multi-camera systems due
to no issues with occlusion of a calibration object. However, as mentioned they are
unable to determine the scale of the scene and therefore any extrinsic localisation is
only determined up to a similarity.

More recent work on multi-camera self calibration has explored situations with
more limiting constraints. Brückner and Denzler [77] outlined a method aimed at
pan-tilt-zoom cameras with limited correspondences where they use a probabilistic
method to determine FOV overlap and actively rotate the cameras to achieve bet-
ter pairwise overlap. This also greatly improves the consistency of a global scale
estimate. Whilst this scale is not the true scale of the scene, it is crucial for it to be
consistent between views for subsequent computer vision applications to be success-
ful. Sun and Xu [78] also explored multi-camera self-calibration with limited FOV
overlap. Instead of relying on feature point correspondences between views, they
track correspondences of a moving object across multiple images from each view
separately. The intrinsic self-calibration is performed locally and then the camera
is localised with regard to a coordinate frame attached to the moving object. The
object’s visibility in the different views allows a globally consistent localisation to
be achieved. Continuing the trend of self-calibration with limited correspondences,
Vasconcelos et al. [79] considered the case where an uncalibrated camera is being
added to an existing calibrated and localised network. The standard method would
rely on triple correspondences where a feature point seen by the new camera is
matched with points in at least two other views. Their method instead used sep-
arate pairwise correspondences against each of the other views, which was a much
more practical requirement in scenes with limited overlap.

Multi-camera calibration utilising 3D or 2D calibration objects is less popular
than self-calibration due to the fact that the calibration objects can self-occlude
quite easily at wide angles. However, there has been some novel work at limiting
the impact of this issue. Shen et al. [80] produced an interesting approach to 3D
calibration that utilised a world globe as the calibration object. Mathematically,
their approach is more similar to Zhang’s 1D calibration [14] as they use points
on the surface of the globe to estimate the centre and utilise constraints on estim-
ated poles through the globe. The use of the globe rather than the perpendicular
planes of standard 3D calibration means that the object can be easily viewed from
all directions. 2D calibration has also seen adaption to multi-camera systems with

2.3. CALIBRATION AND LOCALISATION 30

attention to non-overlapping FOVs and self-occlusion issues. Liu et al. [81] con-
sidered a system of two cameras without overlapping FOVs and designed a flexible
calibration target comprised of two planar checkerboards separated by a known and
constant rigid tansformation. This allowed each camera to view one of the sub-
targets which were each used for standard 2D calibration. This was extended by
Xia et al. [82] who designed the multi-checkerboard object to be re-configurable for
more flexible arrangement of the non-overlapping cameras and then used a method
using a single calibrated camera and fiducial markers to accurately determine the
rigid transformation between the sub-targets of a given configuration. Zhao et al.
[83] also considered non-overlapping FOVs in designing a method where separate
cameras were calibrated using 2D calibration individually, but each camera had a
planar fiducial marker attached to it that could be viewed by an additional calib-
rated support camera which was used to determine the global localisation. These
methods resolve issues with occlusion and non-overlapping FOVs, however, their re-
liance on additional calibrated cameras limits their use. Feng et al. [84] considered
just the issue of self-occlusion of the calibration object in multi-camera systems and
designed a planar calibration object which was a flat pane of glass with the check-
erboard pattern printed on one side. This allowed the object to be viewed from
both sides by an array of cameras. One issue that they needed to solve was that the
cameras on the back side of the object were viewing the pattern under refraction
through the glass which would lead to less accurate calibration. They solved this
by modelling this refraction in their calibration problem for the affected cameras.
There is still the problem of self-occlusion for cameras at wide angles with respect
to the calibration object, however, as the object is moved and rotated arbitrarily
this would only affect some of the cameras at a time and not all images seen by a
given camera.

Calibration with one-dimensional object is also appealing for multi-camera calib-
ration due to fewer issues with self-occlusion compared to the case of viewing the
2D calibration pattern from wide angles. It also has advantages over self-calibration
as the calibration object is able to provide a known scene scale, producing metric
localisation. A drawback to 1D calibration that can dissuade its use is the con-
straint of the fixed-point, which can be difficult to achieve in practice. However,
this constraint can be eliminated entirely in multi-camera calibration setups. The
first instance of multi-camera calibration and localisation using a free-moving 1D
object was presented by Kojima et al. [85], however, their method required a ‘refer-
ence’ camera with known intrinsic parameters. Their approach computes the infinite
homography between the reference camera and a target camera based on vanishing
points of the 1D object, and then uses knowledge of the intrinsic parameters of the
reference camera to determine the intrinsic parameters of the target camera as well

2.3. CALIBRATION AND LOCALISATION 31

as its orientation. Finally, constraints on the 1D object are used to determine the
the position of the target camera. Although this algorithm allows for free motion of
the calibration object, the need for a calibrated base camera limits the scenarios in
which it can be used and reliance on computation of vanishing points is highly sus-
ceptible to noise as has been mentioned with regard to other algorithms. This work
was followed up by Wang et al. [86] who removed the need for a calibrated reference
camera. Their method also computes the infinite homography from vanishing points,
but instead of using known parameters to decompose the infinite homography they
instead use it to compute an affine projection matrix which provides an ‘affine’ cal-
ibration. This affine calibration is then ‘upgraded’ to Euclidean metric calibration
using constraints on the 1D object. The remaining issue of relying on vanishing
points was later remedied in work by de França et al. [87] by instead calculating the
infinite homography from the fundamental matrix and epipoles. This method has
much greater stability in the presence of noise than methods using vanishing points.
A remaining issue in the approach of de França et al. is that they perform two sep-
arate stages of non-linear refinement which can slow down the algorithm, and the
first of which relies on constraints that are not directly geometrically meaningful.

Self-calibration and 1D calibration adapt the best to multi-camera systems with
overlapping fields of view. Although there have been a number of methods discussed
for 2D calibration in such systems, they are not as flexible. Self-calibration only re-
quires enough of an overlap for point correspondences, however, it does require eight
cameras if only zero skew is assumed or two cameras if assumptions are also made
for aspect ratio and principal point. Despite this, those assumptions are usually
close enough to the true values that bundle adjustment will converge correctly. In
multi-camera systems, the only requirement for 1D calibration is that the cameras
can all view the calibration object for at least the minimal number of observations.
2D calibration, on the other hand, still exhibits a degree of self-occlusion at wide
angles even with the improvements discussed above. Overall, if the metric scale of
the scene is not required then self-calibration is an excellent choice for multi-camera
systems, and if metric scale is needed for the application then 1D calibration is
necessary and preferable to the other methods using calibration objects.

2.3.4 Summary and open problems

The key findings of this section relate to the types of calibration and their applic-
ability to multi-camera systems. The four classes of algorithms discussed are 3D,
seen in the work of Brown [10] and Tsai [12]; 2D, from the work of Zhang [59]; 1D,
also from Zhang [14]; and finally self-calibration, which has been seen in many forms
including the work of Faugeras et al. [16]. 3D calibration is the least common used

2.3. CALIBRATION AND LOCALISATION 32

in robotic vision due to its relative inflexibility. 2D calibration is definitely the most
widely adopted for this field due to the simplicity of printing off a checkerboard
pattern and affixing it to a flat object, as well as its inclusion in software and librar-
ies such as Matlab and OpenCV. Self-calibration is also widely popular in robotic
vision due to its ease of use. In scenarios with a mobile camera where the scene
provides effective feature points, self-calibration is highly effective; however, a clear
drawback is the lack of scene scale which can immediately disqualify it as an option
in certain applications. The final class of methods discussed was 1D calibration,
which is still a highly active area of research, although, does not yet have the wide
adoption of 2D and self-calibration. Compared to 2D calibration, the creation of
a ‘calibration wand’ is clearly not as trivial as the checkerboard pattern, however,
once a suitable calibration object is procured the method does enjoy the same ease
of use. Overall, for use in single-camera systems, 2D calibration and self-calibration
stand ahead as the most common choices. This changes, however, in multi-camera
systems — self-calibration is still a common choice due to ease-of-use, but 2D cal-
ibration loses favour due to self-occlusion of the calibration object at wide angles.
Both 2D and 3D calibration operate best when observing keypoints predominantly
from the front, whereas multi-camera systems can often have much wider camera
angles. It is in this scenario where 1D calibration gains multiple strengths: firstly,
the multi-camera system allows constraints on the motion of the calibration object
to be relaxed, allowing for full general motion; and secondly, the nature of the calib-
ration object removes any issues with self-occlusion, allowing cameras to observe the
keypoints from all directions. It is for these reasons that the two best candidates for
calibration in multi-camera systems are self-calibration and 1D calibration, however,
multi-view 1D calibration is still an active area of research that does not yet have
algorithms that are as straight-forward nor widely adopted. These open problems
relating to the present work can be summarised as follows:

• Current one-dimensional calibration algorithms offer a choice between ease-of-
use and accuracy; however, alternative formulations can be explored to reduce
the disparity between the two methods.

• Novel types of calibration objects, such as cubes, globes, and double-sided
planes, can alleviate self-occlusion issues.

• Multi-camera calibration algorithms, particularly one-dimensional ones, are
still an active area of research that do not yet have as straight-forward ap-
proaches as the alternative algorithms with adoption in popular software plat-
forms and programming libraries.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 33

2.4 Visual odometry and visual SLAM

Visual odometry is the problem of tracking a robot’s motion over a trajectory by
estimating the relative poses between each image frame from a camera attached to
the robot and building a map from these images and poses. Visual simultaneous
localisation and mapping (visual-SLAM) is an extension of this problem where the
long-term consistency of the map is also a priority of the system. This section
explores some of the main contributions to the fields of visual odometry and SLAM
and how these works relate to each other. This is done both from the point of view of
major paradigms as well as through the lens of a general keyframe-based framework
which is becoming the de facto standard. Section 2.4.1 discusses nineteen significant
VO and SLAM implementations from the past 15 years by categorising them in four
ways – whether they are labelled as VO or SLAM, how they fit into the direct
vs indirect paradigms, whether they utilise their input images in a dense or sparse
manner, and what types of input data they accept. Section 2.4.2 then explores these
implementations in greater detail by applying them to a keyframe SLAM framework.
This involves dividing the problem into three threads with different responsibilities
and sub problems, then discussing how each algorithm solves a subset of these
problems. From this, one can see that the algorithms that are labelled as visual
odometry generally implement a smaller subset of the problems than those labelled
as full SLAM systems. The motivation of this is to identify suitable paradigms,
algorithms, and approaches for the second component of Figure 2.1. A summary of
these findings and the related open problems is then given in Section 2.4.3.

2.4.1 VO and SLAM paradigms

Visual odometry and SLAM can generally be categorised in four main ways - whether
the algorithm is VO or SLAM, direct versus indirect formulations, dense versus
sparse image usage, and which types of cameras and inputs they support. As for
labelling an algorithm VO or SLAM, this generally comes down to what range
of features are implemented particularly relating to long-term success, with visual
odometry implementing a subset of the features found in SLAM. Considering the
next two categorisations, there are four possibilities - indirect and dense, direct
and dense, indirect and sparse, or direct and sparse. The latter two are the more
common methods seen in modern algorithms. Concerning the fourth categorisation,
these are not mutually exclusive and it is common to see state-of-the-art systems
being expanded to support as many input types as possible. The types of input data
looked at here are monocular cameras, stereo camera systems, RGB-D colour and
depth cameras, omni-directional or fisheye cameras, and IMU data. Additionally,
we consider whether a system supports semantic labelling of the global map. A

2.4. VISUAL ODOMETRY AND VISUAL SLAM 34

summary of this information can be seen in Table 2.1.

Visual odometry or SLAM?

As mentioned, visual odometry aims to estimate relative poses between images and
SLAM aims to provide long-term consistency to the resulting map. Although there
is no hard-and-fast definition for visual odometry and SLAM that draws a clear
line where one ends and the other begins, there is a modern trend for different
systems to more clearly fall into one category or the other. The general consensus
is that visual odometry systems are more concerned with the local pose estimates
frame-to-frame, or keyframe-to-keyframe. In some purely VO systems, the map is
only a means-to-an-end for consistent local poses. Although VO systems might use
keyframe-based designs and have local optimisation, often of both the poses and
the map, they do not have systems in place to deal with long-term accumulation of
drift. SLAM systems, on the other hand, use relocalisation features to gracefully
handle tracking loss, loop detection and closure to eliminate drift when revisiting
already mapped locations, expensive global optimisation to improve the consistency
of all estimations, and map reuse to allow multi-session mapping.

It should be noted, however, that not all SLAM systems implement all of these
features and not all VO systems omit them. In Table 2.1, each system has been
labelled based on how the authors refer to their own work. This does mean that some
of the older algorithms that are referred to as SLAM implement a similar feature-set
to some of the more recent algorithms that are referred to as VO, revealing a trend
in modern SLAM systems to rely on a wider array of long-term mapping features.
This is shown in more detail in Section 2.4.2, where a general keyframe-based visual
SLAM architecture is given in Figure 2.14 and is analysed with respect to each of
the discussed algorithms, which is summarised in Tables 2.2-2.4 where blank spaces
can be clearly seen for algorithms that do not implement the relevant features.

Earlier works such as MonoSLAM [88], Parallel Tracking and Mapping (PTAM)
[20], Dense Tracking and Mapping (DTAM) [89], and KinectFusion [90] are all re-
ferred to by their authors as SLAM systems despite lacking features such as reloc-
alisation and loop closure, and PTAM being the only algorithm amongst those four
that implements a global optimisation in the form of bundle adjustment. Further
contrast can be seen between MonoSLAM and the Multi-state Constraint Kalman
Filter (MSCKF) of Mourikis and Roumeliotis [91], the latter of which is identified as
a VO algorithm despite both algorithms being based on somewhat similar extended
Kalman filters (EKF) designs with similar levels of features.

The contrast between VO and SLAM can also be seen between Large-scale Direct
SLAM (LSD-SLAM) [92] and Direct Sparse Odometry (DSO) [93] which have very
similar designs. Both are keyframe-based direct methods with the main change

2.4. VISUAL ODOMETRY AND VISUAL SLAM 35

between them being that DSO has moved to a sparse formulation and included an
affine lighting model. However, the difference that makes the former a SLAM system
and the latter a VO system is that LSD-SLAM builds a graphical representation of
the keyframes and uses OpenFABMAP [22] to detect loops which are added for pose-
graph optimisation [94]. This loop closure feature extends the operating lifetime of
the map by reducing drift and thereby elevates the algorithm to the classification
of SLAM. Similar constrast can be seen in a comparison between KinectFusion and
later algorithms such SLAM++ [95] and ElasticFusion [96]. All three algorithms
are based on iterative closest point (ICP) optimisation of point clouds from RGB-D
cameras, however, KinectFusion only has local tracking features with nothing to
maintain the long term consistency on the global map. SLAM++ maintains the
map by comparing the local portion with fragments of older portions as a form of
loop closure, and ElasticFusion uses an appearance-based lookup to detect these
loop closures. Therefore, by a modern standard one might classify KinectFusion as
simply VO in comparison to these newer algorithms that can confidently be called
SLAM.

From these comparisons it can be seen that it is the addition of some or all of relo-
calisation, loop closure and global optimisation features with the goal of producing
a long-term globally consistent map that elevates a VO algorithm to SLAM.

Direct vs indirect

The distinction between direct and indirect methods relates to the underlying frame-
to-frame or frame-to-keyframe tracking method, illustrated in Figure 2.12, and has
significant ramifications on most facets of the VO or SLAM system. Indirect meth-
ods are the more traditional formulation and involve the extraction of an interme-
diate data-type which is then matched to form correspondences between images,
whereas direct methods use and align the raw image data itself to determine the
poses. These two formulations lead to fundamentally different pipeline details.

Indirect methods, also called feature-based methods or geometric methods, most
commonly have three stages to tracking. Firstly, feature points are robustly detected
and descriptors are extracted in each frame, then feature descriptors are matched
between frames to form correspondences, and finally these correspondences are used
in a geometric approach to determine the pose. Most indirect methods detect fea-
tures using algorithms such as the Harris corner detector [97], the Shi-Tomasi corner
detector [98], or the FAST feature detector [99]. Systems that make use of ORB fea-
tures, like ORB-SLAM [100], generally make sure of the associated feature detector
which is an orientated FAST detector [101]. Once the feature keypoints have been
detected the descriptors need to be extracted. Many systems such as MonoSLAM
[88], PTAM [20], and SVO [102] use simple image patches as feature descriptors,

2.4. VISUAL ODOMETRY AND VISUAL SLAM 36

whereas systems such as ORB-SLAM [100] and parts of BASALT [103] use robust
ORB descriptors which are more resistant to lighting, scale, and rotation changes
between images [101]. These features are then matched either by guided search or
nearest neighbour comparisons in order to determine correspondences and then used
in a perspective-n-point RANSAC algorithm to determine the pose [104].

Direct methods, on the other hand, don’t involve any intermediate representation
of the image – they use the image intensities themselves. This can be seen in
systems such as DTAM [89], LSD-SLAM [92], ROVIO [105], and DSO [93] where
whole-image alignment is used to determine the pose beteen camera frames. This is
generally done using the Lucas-Kanade algorithm which iteratively refines the pose
required for a template image to register photometrically with another image using
a Gauss-Newton gradient descent approach [106]. One limitation with the Lucas-
Kanade approach is that depth values are required in one of the images in order to
warp the pixels from one view to the other to compare intensity values. To determine
these values, DTAM initialises using a standard feature-based approach, however,
LSD-SLAM and DSO avoid the issues entirely by initialising with a random depth
map high variance and allowing the system to ‘snap’ to a particular scale in the first
few frames.

Not all methods fall neatly into these two paradigms, however. Semi-direct Visual
Odometry (SVO) [102] is an example of an approach that has aspects of direct
and indirect methods. In SVO, direct methods are used first to produce an initial
estimate of the pose between the image frames, then indirect methods are used to
extract features and match them to sub-pixel locations based on that initial estimate.
This allows the system to determine feature correspondences which can be used
in traditional bundle adjustment. Another group of SLAM systems that cannot
cleanly be labelled with the above definitions include KinectFusion [90], SLAM++
[95], and ElasticFusion [96]. These systems are RGB-D SLAM algorithms that
can be labelled indirect in that they involve an intermediate representation of the
images as point clouds, however, their methods of aligning point clouds using Gauss-
Newton ICP is more similar to the direct pipeline than the feature-matching indirect
pipeline. In fact, ElasticFusion involves a joint refinement that aligns the point
cloud geometrically and photometrically, and can be considered a hybrid approach
like SVO – albeit a very different style hybrid approach.

As can be seen in Table 2.1, most VO and SLAM systems can be considered either
indirect or direct, although with some utilising aspects of both in a hybrid manner.

Dense vs sparse

The density of the VO or SLAM system refers to how much of each input image is
used. Dense methods utilise every pixel of the image and rely on having the per-pixel

2.4. VISUAL ODOMETRY AND VISUAL SLAM 37

(a) Direct methods. (b) Indirect methods.

Figure 2.12: Direct methods relate points implicitly by a warp which is refined
by minimising the error between raw pixel values. Sparse direct methods are
indicated by the points of the shape, while dense direct methods are indicated by
the entire shape. Indirect methods find correspondences through robust feature
matching and use RANSAC to find the pose in the presence of outliers.

computational time fast enough to achieve real-time performance. Sparse methods,
on the other hand, strive for real-time performance by only using the best selection
of pixels.

Earlier forms of direct methods were predominantly dense. DTAM [89] is dense
in both its image alignment and depth map estimation, which are both formulated
as optimisation problems. LSD-SLAM [92] can be considered as semi-dense in that
it uses all pixels that it is able to, however, it does reject many pixels during its
depth map building stage. A key strength of these methods is that they are able to
use information in all regions of the image regardless of the presence of textures or
corners. This means that these dense and direct methods can be superior in certain
scenes and environments where feature-based methods would struggle to find enough
keypoints to match. RGB-D SLAM methods such as KinectFusion [90], SLAM++
[95], and ElasticFusion [96] are also dense in their formulation. They use their depth
images to generate a point cloud with a vertex for every pixel, then determine poses
by patching this point cloud to the global one.

Sparse methods are more common due to the huge computational savings afforded
by only processing a small number of points in each image. This has been the case
for most feature-based indirect methods, with early systems like MonoSLAM [88]
and PTAM [20] both use very few features with the former having 12 features
maintained in the map and the latter initially only relying on a 50 point search for
correspondences. More modern systems such as ORB-SLAM [100] work on 1000-
2000 corner points per image, but this is still hundreds to thousands times fewer
than dense methods. Most modern direct methods have also moved towards using
more sparse approaches per frame. DSO [93], for example, aims to register 2000
points between images which are chosen to be both well distributed across the image
and have high gradients relative to their local region. SVO [102] also uses sparse
approaches to both its direct and indirect components.

Although one of the arguments for dense direct methods was that sparse feature

2.4. VISUAL ODOMETRY AND VISUAL SLAM 38

(a) Monocular camera.

b

(b) Stereo camera pair.

(c) RGB-D camera. (d) Omni-directional or fish-eye cam-
era.

Figure 2.13: Camera types include monocular cameras which provide a single
view, stereo camera pairs which provide two views separated by a known baseline,
RGB-D cameras which provide a single colour image view and a depth map, and
omni-directional camera which provide a single but very wide field of view.

selection based on corners would fail in low-texture environments, modern sparse
direct methods generally still claim to have this advantage as their point selection is
usually designed to sample from low-texture regions as well as high-texture regions
to ensure that the points have good coverage across the image. For example, in
DSO [93] the point selection scheme iteratively reduces the gradient threshold until
it gets enough points with a good distribution. While dense direct methods use all
high- and low- texture regions, sparse direct methods can utilise all regions where
as feature-based sparse methods can only utilise high-texture regions.

Input types

The VO and SLAM systems looked at in this section have input type including
monocular cameras, stereo cameras systems, RGB-D cameras, omnidirectional or
fisheye cameras, and IMU sensors. The monocular camera is the most common
camera type seen in the systems looked at here, with most systems that support
multiple input types starting as monocular only and adding stereo, RGB-D, or IMU
support later on. A comparison of these camera types is given in Figure 2.13

Monocular cameras are the most popular cameras seen in VO and SLAM, mainly
due to their availability at high quality and low cost in commodity hardware as well
as their ease-of-use. A monocular camera is inherently a bearing sensor, meaning
that it cannot determine the distance to any objects from a single frame but instead

2.4. VISUAL ODOMETRY AND VISUAL SLAM 39

only that the object lies on a line from the camera’s optical centre. In order to
gain a sense of depth, monocular systems require temporal-stereo match – that is,
correspondences across frames at different times which should provide some amount
of parallax. In feature-based monocular methods, such as in ORB-SLAM [100], 3D
locations of points can be determined by triangulating the explicitly matched fea-
tures once the pose has been estimated. In direct methods, such as LSD-SLAM [92]
or DSO [93], correspondences are searched for along epipolar lines after estimating
the pose which reveals the depth. Most monocular VO and SLAM methods need to
alternate between estimating the pose and determining depths or 3D points.

Stereo cameras are able to determine depth much more easily. These systems use
pairs of cameras that are separated by a known baseline, which allows for corres-
pondences to be found by simply scanning along the images horizontally for a match
and using the known baseline distance to infer the depth. Not only is this depth
map more readily available than in monocular systems, but the known baseline also
allows the depth to be known to a scale. In monocular systems, an object that is
twice the size of another but also twice as far away will look the same. This means
that unless an object of known scale is used to calibrate the system then the system
will need to run at some arbitrary scale factor. A further issue for monocular sys-
tems from this is that scale drift can be difficult to detect. This issue was partially
solved in LSD-SLAM by estimating similarity transforms between keyframes to ac-
count for the drift [92], but the issue was completely eliminated by adding a stereo
camera pair to their system to provide known scale [107]. This is a common trend
in VO and SLAM seen in some of the most popular systems such as LSD-SLAM
[92], DSO [93], and ORB-SLAM [100] where their initial formulations are designed
for monocular systems and must manage and account for the unknown scale and
drift, then later work expands the systems to include stereo cameras as an input
[107–109].

A related input type to the stereo camera pair is the RGB-D camera. These cam-
eras use structured IR light which is projected into the scene and the reflected back
to a sensor which allows per-pixel depth of a known scale to be directly estimated
[110]. They can be used in a similar way to stereo cameras, but also allow for a
unique approach to VO. The approach similar to stereo camera pairs can be seen
in ORB-SLAM2 [109] where the authors develop their model to treat the two input
types as the same. The way that they do this is by preprocessing the input and
using the RGB-D depth map to produce a virtual stereo coordinate that would have
been found through point matching between a stereo camera pair. This allows the
remainder of their system to be agnostic to the specific input type. RGB-D cam-
eras open up more opportunities than simply an alternative to stereo camera pairs,
however. Their dense depth maps allow for the generation of per-pixel point clouds

2.4. VISUAL ODOMETRY AND VISUAL SLAM 40

which forms the basis of the tracking methods seen in KinectFusion [90], SLAM++
[95], and ElasticFusion [96]. In these systems, the depth map is used to generate a
vertex and normal in the camera frame for each pixel. These point clouds are fused
into the global map and concurrently the pose of the camera is determined by align-
ing the local and global clouds using a Gauss-Newton ICP alignment. A weakness of
both these usages of RGB-D cameras is that the structured-light methods of depth
map estimation can be made ineffective by bright light sources such as in outdoor
usage and is also limited, for example, to a 1-4m range [110].

A further camera type found in the algorithms discussed in this section is that of
omnidirectional and fisheye cameras which have fields of view (FoV) above 180° and
up to 360° One of the limitations of standard cameras, which is particularly seen in
feature-based methods, is the loss of accurate tracking when the view is dominated
by texture-less regions. Direct methods remedy this by utilising all parts of the
image so that the texture-less regions can still contribute some amount to tracking
accuracy. Omnidirectional cameras instead aim to solve this issue by having more of
the scene in view at a given time, hoping that this means suitably-textured regions
remain visible throughout the tracking. Whilst monocular, stereo, and RGB-D cam-
era systems generally use the pinhole camera model for projection, omnidirectional
cameras need an alternative model. For omnidirectional SVO [111], the authors
adopt the model of Scaramuzza et al. [112] which models the projection function as
a polynomial. Omnidirection LSD-SLAM [113] and DSO [114] instead use the uni-
fied omnidirectional camera model proposed in the former which projects Euclidean
camera coordinates first onto a unit sphere and then into the image plane. The
advantage of their model is that the inverse projection function can be expressed in
a closed-form.

In addition to different camera types, systems can also be built to utilise IMU
data in what is referred to as visual-inertial odometry (VIO). Much like how a ste-
reo or RGB-D camera system provides more direct information about scene depth,
the inclusion of IMU data provides more direct information on the actual odometry
itself. This odometry, however, is uncertain to a degree and is therefore fused with
the visual-based estimations. One such approach to VIO is seen in MSCKF [91]
which keeps a state vector comprised of a sliding window of poses from the IMU.
A new snapshot of the IMU augmented to the state vector for every new frame
and features are tracked in each frame to find point tracks. These tracks are used
in the update step of the filter once the feature point has gone out of view. An
alternative approach to VIO is referred to as tightly-coupled and is where error
terms from the visual system and the IMU are used together in a joint optimisation
problem, utilising all correlations between different terms. This is more computa-
tionally expensive, but is increasingly being used in modern systems. VIO systems

2.4. VISUAL ODOMETRY AND VISUAL SLAM 41

such as OKVIS [115], ROVIO [105], VI-DSO [116], ORB-SLAM3 [117], BASALT
[103], and Kimera [118] all use tightly-coupled VIO formulations. Despite all of
these algorithms having vastly different visual odometry bases, they all ultimately
use optimisation for tracking in which they can directly insert the IMU error for a
joint optimisation problem.

A summary of this wide range of input types is seen in Table 2.1, showing that
many systems cover a multitude of these types and paradigms. A singular entry is
given in the table for systems that have initially been presented using monocular
cameras and later expanded to support stereo, RGB-D, or omnidirectional cameras.
A new entry is given, however, if the later addition was to covert it to a VIO sys-
tem. As mentioned, it is a common trend for VO and SLAM systems to initially
be designed solely for monocular camera setups and then be later expanded for
further input types. This is due to the prolific availability of high quality commod-
ity monocular cameras. However, as these systems become mature it is beneficial
to solve the issues of monocular cameras, namely unknown scale and reliance on
temporo-stereo depth, by introducing these more sophisticated input types.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
42

Table 2.1: Visual odometry and SLAM systems, with their main paradigms. Classification as VO or SLAM is based on how the authors
refer to their own systems. Systems whose original work was extended to accept additional input types without any other major changes
have been included as singular entries, except for changes from visual to visual-inertial systems.

Input Types

Method Type Paradigm Density Mono Stereo RGB-D Omni IMU Semantics Source

MonoSLAM [88, 119] SLAM Indirect Sparse ✓ - - - - - [120, 121]∗

PTAM [20, 122, 123] SLAM Indirect Sparse ✓ - - - - - [124]
DTAM [89] SLAM Direct Dense ✓ - - - - - [125]∗

KinectFusion [90] SLAM Indirect Dense - - ✓ - - - [126]∗

MSCKF [91, 127] VO Indirect Sparse ✓ ✓ - - ✓ - [128, 129]∗

SLAM++ [95] SLAM Indirect Dense - - ✓ - - ✓ -
LSD-SLAM [92, 107, 113, 130] SLAM Direct Dense ✓ ✓ - ✓ - - [131]
SVO [102, 111] VO Hybrid Sparse ✓ ✓ - ✓ - - [132]
ORB-SLAM [100] SLAM Indirect Sparse ✓ - - - - - [133]
ElasticFusion [96] SLAM Hybrid Dense - - ✓ - - - [134]
OKVIS [115] VO Indirect Sparse ✓ ✓ - - ✓ - [135]
ROVIO [105, 136] VO Direct Sparse ✓ - - - ✓ - [137]
ORB-SLAM2 [109] SLAM Indirect Sparse ✓ ✓ ✓ - - - [138]
DSO [93, 108, 114] VO Direct Sparse ✓ ✓ - ✓ - - [139]
VI-DSO [116] VO Direct Sparse ✓ ✓ - - ✓ - [140]∗

DSM [141] SLAM Direct Sparse ✓ - - - - - [142]
ORB-SLAM3 [117, 143] SLAM Indirect Sparse ✓ ✓ ✓ ✓ ✓ - [144]
BASALT [103] SLAM Indirect Sparse - ✓ - - ✓ - [145]
Kimera [118] SLAM Indirect Sparse ✓ ✓ - - ✓ ✓ [146]
∗ Open source implementation provided by different author.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 43

2.4.2 Generalised keyframe VO and SLAM architecture

Visual odometry and SLAM systems can be divided into two types of architectures –
filter-based and keyframe-based. A filter-based design processes each incoming frame
and incorporates this into an incremental estimation of the state, which combines
both the localisation and mapping, using various filters such as EFKs or particle
filters. Keyframe-based designs instead periodically assign a new frame as a ‘key-
frame’ which is then used as a reference for subsequent frames. Non-keyframes are
tracked relative to the most recent keyframe or a set of active keyframes and then
have their mapping data incorporated into the keyframes. This process reduces the
computational complexity of any local or global optimisation processes which are
performed only on the keyframes and are done to refine both the motion and the
structure. Keyframe SLAM is also known by a few alternative names – fixed-lag
smoothing, generally named so in comparison to filter SLAM which updates its state
every frame; optimisation-based SLAM, due to the keyframes being used to make
nonlinear optimisation tractable; or graph SLAM, due to the fact that the keyframes
are most often used as nodes in a pose-graph representation of the map.

A modern keyframe-based approach operates with three threads; a tracking thread
which has real-time requirements to initialise and determine the pose of a new frame
before the next arrives, a local mapping thread which controls keyframe logic and
initialises map points based on the tracking result, and a global mapping thread for
loop closure and refinement which manages the long-term consistency of the map.
The first two threads are common in most VO systems, whereas the third thread
contains the features that elevate a system to that of SLAM. There is also sometimes
a fourth thread if more expensive forms of global optimisation are included as this
can take a substantial amount of time and would otherwise block the progress of
other aspects.

PTAM [20] was the first to divide the tracking and mapping stages into two
separate threads. The reasoning for this was that tracking needs to be done on a
per-frame real-time basis, however, mapping was a slower and more computationally
expensive process that did not need to be done in real-time. The introduction of
the third thread has been seen in more robust SLAM systems which perform loop
closure, relocalisation, and expensive global optimisation. These steps can be even
more computationally expensive and are done on data over a larger time-frame and,
therefore, can be separated from the tracking and local mapping.

A graphical overview of this general keyframe-based VO or SLAM architecture
is given in Figure 2.14, with the major steps in each thread given. The tracking
thread takes each incoming frame, extracts any intermediate data representation
that might be used in the case of feature-based methods, associates this data with

2.4. VISUAL ODOMETRY AND VISUAL SLAM 44

the current keyframe, calculates and refines a local pose estimations, and finally de-
cides whether the new frame should become a new keyframe. In the local mapping
thread any frames marked as new keyframes are added to the active set and frames
not destined to be keyframes are instead optionally used to refine this set. The local
mapping thread then manages the creation and removal of landmark points from
the active set and performs a local optimisation before determining if any keyframes
should be deactivated, dropped, or marginalised. Finally, the global mapping thread
is in charge of managing the pose-graph representation of the map, detecting loop
closures, optimising the pose-graph, and performing any other global optimisation.
Some systems separate global bundle adjustment due to its computationally expens-
ive nature. The global map can also be utilised for relocalisation if tracking is lost,
however, this might be a part of the tracking thread or a part of the global mapping
thread but block the tracking thread. As mentioned in Section 2.4.1, the distinc-
tion between VO and SLAM is usually decided based on the inclusion of long-term
mapping features from the right half Figure 2.14.

The pipeline of a filter-based approach can be usefully compared to the pipeline
of a keyframe-based approach, however, there are some differences that should be
noted to make the comparison meaningful. Firstly, in most filter-based methods the
current pose and active landmarks are managed in the state vector which usually
leads to a combined tracking and mapping stage. Although some aspects of this
combined tracking and mapping might be separated out, it does mean that filter-
based approaches don’t use the same threaded structure. Secondly, most filter-based
methods only track the current pose of the robot which is incremented with each
new frame and, therefore, lack a concept of a keyframe all together. This is not
universally the case, however, and some filter-based methods track a window of
poses with which they use very similar logic to keyframe-based methods as to when
poses enter and leave this window.

The remainder of this section compares the features of the systems given Table 2.1
based on major sections of the architecture given in Figure 2.14. This comparison
is summarised in tabular form in Tables 2.2-2.4.

Local tracking

The most basic function of visual odometry is to determine the pose of the latest
image frame with respect to a prior frame. In keyframe VO and SLAM, this is with
respect to either the latest keyframe or a window of active keyframes. It is in this
stage of the pipeline that the paradigm distinction between direct and indirect has
the most significance.

The traditional indirect method involves finding point correspondences which are
then used to determine the pose. The way in which the correspondences are de-

2.4. VISUAL ODOMETRY AND VISUAL SLAM 45

Frame

Data Extraction
and Association

Pose Estimation

Pose Optimisation

Keyframe
Policy Decision

T
r
ac

k
in

g

Keyframe Insertion
or Refinement

Map Point
Management

Local Optimisation

Keyframe Culling
or Marginalisation

L
o
c
a
l

M
a
pp

in
g

Tracking Loss
Relocalisation

Pose Graph
Management

Loop Closure

Pose Graph
Optimisation

G
lo

ba
l

M
a
pp

in
g

Global Bundle
Adjustment

Visual Odometry SLAM

Figure 2.14: A generic keyframe SLAM framework, divided into three (or option-
ally four) threads. The tracking thread operates at frame-rate, the local mapping
thread operates on keyframes, and the global mapping thread has the lowest pri-
ority in terms of real-time operation. If global BA is included, it can be separated
into its own thread due to the processing time required.

termined is dependent on how the points to be matched are represented. A common
feature point representation is simple image patches. Methods such as MonoSLAM
[88] and MSCKF [91] use gated searches for image patch descriptors compared us-
ing normalised cross-correlations, whilst PTAM [20] uses similar image patches that
are instead compared with zero-mean sum of squared differences (SSD). More re-
cent methods that use image patches as feature descriptors tend to instead de-
termine correspondences using the Kanade-Lucas-Tomasi feature tracker approach
which aligns the patches iteratively using gradient descent on the photometric er-
ror between windows [98, 147, 148]. Methods that use this approach include SVO
[102], BASALT [103], and Kimera [118]. Many indirect methods instead use robust
feature descriptors such as SIFT [149], SURF [150], BRISK [151], BRIEF [152], or
ORB [101] descriptors. These descriptors are designed to efficiently describe the
local region surrounding a keypoint in a manner that remains consistent after scale,
rotation, or small lighting changes. Such features are compared using Euclidean
distance for vector-based features and Hamming distance for binary features, and
correspondences can efficiently be determined using approximate nearest-neighbour
approaches [153]. Once these different approaches have been used to obtain a set
of correspondences, most systems then proceed to determine the pose using the
Perspective-n-Point (PnP) algorithm with Random Sample Consensus (RANSAC)

2.4. VISUAL ODOMETRY AND VISUAL SLAM 46

Frame

Keyframe

Point
Selection

Feature
Extraction

Feature
Matching RANSAC

Pose-only
Bundle

Adjustment
Pose

Figure 2.15: The local tracking process in feature-based indirect systems, de-
termining the pose between a new frame and an earlier frame or keyframe.

[104]. This process assumes that some percentage of the correspondences are falsely
matched outliers and repeatedly solves the PnP problem with a random selection
of points then tests how many of the full set of points agree with the estimate. The
process continues until either a sufficient percentage agree or else it takes the best
estimate from a fixed number of tests. This estimate is then usually refined through
a nonlinear least squares problems that optimises the pose by minimising the repro-
jection error between the matched features and the projections of their triangulated
3D points, which is essentially a single-pose bundle adjustment [154]. This process
is summarised in Figure 2.15.

An alternative approach to tracking taken by dense RGB-D systems involves the
alignment of point clouds in order to determine new poses. In an RGB-D system,
each new frame provides both a colour image and a depth image and, based on the
calibration of the camera, this depth image can be projected out to create a per-pixel
point cloud. The pose of the camera can be determined by aligning the local point
cloud with a reconstructed view of the global map or a previous local map using
a gradient descent Iterative Closest Point (ICP) algorithm. KinectFusion [90] does
this by generating a vertex map from the depth map and then filtering over this to
generate a normal map. These maps are built into a pyramid using different pyramid
levels of the depth map which allows for it to be aligned with the corresponding maps
from the previous frame in a coarse-to-fine approach. SLAM++ [95] follows a similar
method, however, they semantically label their global map by fitting meshes with
known objects and it is this global map that is projected into the last frame against
which the vertex and normal map is aligned. They argue that provides a higher
quality representation of the scene at early stages in tracking when KinectFusion’s
map is still incomplete. ElasticFusion [96] is another system that follows a similar
approach to the previous two, however, they use what they refer to as a ‘surfel’
which combines a vertex, normal, colour, weight, radius, and timestamp. Therefore,
their ICP process is done as a joint geometric and photometric alignment. This local
tracking procedure is summarised in Figure 2.16.

Direct methods take a single-step approach of directly aligning the current frame
with a previous one. This is done using the iterative Lucas-Kanade (LK) algorithm
[147], which is usually done with the more computationally efficient formulations
of either Forward Compositional LK (FC-LK) or Inverse Compositional LK (IC-

2.4. VISUAL ODOMETRY AND VISUAL SLAM 47

Frame

Depth
Map

Global
Map

Vertex and
Normal

Calculation

ICP Point
Cloud

Alignment
Pose

Figure 2.16: The local tracking process in RGB-D systems, determining the
pose between the point cloud of a new frame and that of the global map. Some
methods, such as ElasticFusion [96], utilise photometric data from the image frame
in the ICP alignment.

Frame

Keyframe

Keyframe
Depth Map

Point
Selection

Lucas-
Kanade
Image

Alignment

Pose

Figure 2.17: The local tracking process in direct systems, determining the pose
between a new frame and an earlier frame or keyframe.

LK) methods given by Baker and Matthews [106]. These methods involve warping
a template image, usually the reference keyframe, into the current frame accord-
ing to the current estimate of a rigid-body transformation as well as an already
estimated depth map. The method uses gradient descent to optimise the transform-
ation estimation by minimising the photometric error of the raw intensity. DTAM
[89] is one such algorithm that performs a dense coarse-to-fine FC-LK alignment
to determine poses. LSD-SLAM [92] also performs a semi-dense coarse-to-fine FC-
LK alignment, however, they use variance-normalised photometric error propagated
from the depth map estimation. They also use rigid-body transformation in frame-
to-keyframe tracking and a similarity transform for keyframe-to-keyframe tracking.
DSO [93] departs from the previous two approaches in two main ways; firstly, they
moved to a sparse formulation that selects 2000 evenly spread but high gradient
points, and secondly, they applied an affine lighting model to reduce the effect of
brightness inconsistency between corresponding pixels. SVO [102] is a hybrid ap-
proach that begins with a sparse version of the alignment done in DTAM, but then
uses a KLT feature tracker to gain subpixel correspondences that are then used in
the standard indirect method. The general direct tracking method is summarised
in Figure 2.17.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 48

Frame

Pose

New
KF?

Add to
Active Set

Refine
Active Set

Yes

No

Manage
Active
Points

Local Map
Optim-
isation

Cull
Keyframes

Local Mapping

Figure 2.18: The local mapping thread from the point of view of keyframe
creation and culling, which are highlighted in blue. The rest of the local mapping
process includes either adding to or refining the active set of keyframes, managing
active points, and local optimisation.

Keyframe policies

The defining feature of keyframe SLAM is that it performs optimisation on key-
frames. That is, only a subset of frames are elevated to keyframe status which form
both the window of poses and associate structures included in local optimisation as
well as nodes in the graphical structure used in pose graph optimisation and global
optimisation. Each VO and SLAM system has its own logic relating to when a
keyframe is created from a frame, and also has logic for when a keyframe is culled.
Culling can involve simply dropping it from the system, marginalising it out, or
removing it from the active window but keeping it for possible reactivation later.
These processes of creating and culling keyframes essentially bookend the local map-
ping thread, as demonstrated in Figure 2.18. The possibility of creating a keyframe
is tested on a per-frame basis; if it is successful the frame is added to the active
set and incorporated into the map, and if it is unsuccessful then the non-keyframe
is often used to refine map point estimates related to the active set. The test for
culling of any keyframes is often done after local map optimisation, but might be
performed as a combined step with keyframe creation as soon as the active set has
exceeded its target size.

Not all of the systems considered here use keyframes; their analysis in the given
keyframe SLAM framework is simply a means to compare them to those systems
that do. The EKF-based SLAM systems including MonoSLAM [88], MSCKF [91],
and ROVIO [105] all incorporate every new frame into the filter state. However, the
way that MSCKF tracks a window of poses in its state is similar to the keyframe
logic of other systems, particularly in that it doesn’t simply remove the oldest state
when the window is full but instead removes a third of the poses equally spaced in
time. This could be considered as a keyframe policy where all frames are keyframes
and culling is done to maintain a good temporal spread. Similarly, the dense RGB-D
SLAM methods of KinectFusion [90], SLAM++ [95], and ElasticFusion [96] all fuse

2.4. VISUAL ODOMETRY AND VISUAL SLAM 49

every image frame into the global map and lack any feature like a keyframe.
Keyframe creation is often done based on factors such as number of frames since

last keyframe, time elapsed, distance travelled, rotation undertaken, covisibility of
pixels or active points with previous keyframe, or visibility of map points in the
current frame. PTAM [20] adds a new keyframe once at least twenty frames have
elapsed since the last keyframe creation, but also only if the tracking on the new
frame is good and the camera has moved a minimum distance. ORB-SLAM [100]
similarly inserts a keyframe when at least twenty frames have elapsed, but they
also test for whether the current frame tracks less than 90% of the points in the
reference keyframe. The authors also state that they insert new keyframes as fast
as possible because they also have a mechanism to cull redundant keyframes. SVO
[102] has a similar visibility requirement to ORB-SLAM, however they base theirs
on the visibility of 3D map points rather than points in the previous keyframe.
OKVIS [115] uses a combination of these two approaches; they insert a keyframe
if the hull of projected landmarks fills less than 50% of the image or if fewer than
20% of keypoints are matched in the latest frame. Like with PTAM’s keyframe
creation based on distance, other systems also follow a similar approach. LSD-
SLAM [92] has separate limits for distance travelled and rotation undertaken, which
can be thought of as serving the same purpose as the visibility-based decisions of the
previously discussed systems. DSO [93] does the same translation-based decision,
but replaces the rotation with a direct comparison of field-of-view overlap. They
also create new keyframes when there has been a significant change in exposure
time. A final useful measure in keyframe creation is the real time elapsed since
the last keyframe. This differs from number of frames elapsed as it is more of
a consideration of VIO systems. In VI-DSO [116], they point out that the IMU
pre-integration between keyframes becomes more inaccurate as time passes, so they
make sure that a keyframe is created at least every 0.5 seconds. This is also done in
ORB-SLAM3’s visual-inertial version [143] where they ensure keyframes are never
more than 0.5 seconds apart.

The other aspect to keyframe management is when to remove a keyframe from
either the active window or the system entirely. This can be done by dropping
the data, deactivating it for later, or marginalising it out. MSCKF, for example,
upon reaching its frame limit drops one third of the frames once all of their fea-
ture observations have been utilised and an EKF update has been done. DSO, in
comparison, performs marginalisation on the keyframe before removing it from the
active window. Firstly the points in the frame are marginalised, then the frame itself
is marginalised. They drop any terms relating to points that would adversely affect
the sparsity of the Hessian. When choosing which keyframe to marginalise, they
don’t simple remove the oldest keyframe. Instead they test for covisibility and aim

2.4. VISUAL ODOMETRY AND VISUAL SLAM 50

to have good coverage across 3D space. DSM [141] is a SLAM system that uses sim-
ilar methods to DSO, however, as it uses pose graph optimisation and loop closure it
does not want to marginalise out keyframes as they leave the active window. What
it does instead is temporarily drop older keyframes, but then reactivates them for
loop closures. ORB-SLAM also does not marginalise out old keyframes due to their
usage in the pose graph, however, it does detect and discard redundant keyframes
that have 90% of their points visible in at least three other keyframes.

Point policies

Each sparse system has its own method for determining which points in an image
get used. Dense systems do not consider this because they always use the full image,
however, in sparse systems the goal is to use the points that will lead to the best
tracking.

Many of the systems discussed in this section select their points using the Harris
corner detector [97], Shi-Tomasi corner detector [98], or the FAST feature detector
[99]. The Harris and Shi-Tomasi corner detectors score pixels based on the eigen-
values of their second-moment matrices, allowing the selection of points where the
image has the most change in all directions. These points are considered suitable for
feature extraction as they are the most distinctive between images regardless of scale
and rotation changes. The FAST feature detector aims to find these corners through
a simplified approach that instead uses a small number of pixel comparisons. These
three corner detectors are among the most common used in SLAM, however some
systems that rely on ORB features instead use the ORB feature detector [101]. The
ORB detector uses a modified FAST feature detector that finds the best points from
FAST by computing the Harris score, then also computes an orientation by finding
the intensity-weighted centroid of the local area. A comparison of Harris corners,
Shi-Tomasi corners, and FAST features is given in Figure 2.19.

Some direct methods have a very different approach to selecting which points to
use. A weakness of corner detectors is that they return very few candidate points in
images of flat or low-texture regions. Sparse direct methods have their roots in dense
direct methods which seek to utilise all of the image to avoid the issues associated
with low-texture regions, so these methods aim for a good spread of points across
the image regardless of texture level. However, they do still aim to have most of
their points in the high-texture regions. This can be seen in DSO [93] and related
methods. Their approach is to divide the image up into a grid based on how many
points are sought and then select the point in each block with the highest gradient
over a threshold. They do this iteratively while lowering the threshold to get some
points that are in the low-texture regions.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 51

(a) Example image. (b) Harris corner keypoints high-
lighted.

(c) Shi-Tomasi corner keypoints high-
lighted.

(d) FAST feature keypoints highlighed.

Figure 2.19: Comparison of feature keypoint detection for Harris corners, Shi-
Tomasi corners, and FAST features.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 52

Keyframe 2D-2D KF-KF
Data Association

Tracked
Point?

Refine point
with new 3D-2D

association.

Triangulate new
map point from
2D-2D track.

Cull excessive
or poorly

tracked points.

Yes

No

Figure 2.20: Local mapping in indirect systems. Feature points in a new key-
frame are associated with older keyframes. If they relate to an existing 3D map
point the association refines the estimate, if it is a new map point then that is
triangulated from the point track.

Local mapping

The mapping stage is where the point data from a frame or keyframe is incorporated
into the global map once the relevant pose has been determined by the tracking stage.
Most keyframe VO and SLAM systems alternate between tracking and mapping,
however, it is not necessarily a one-to-one alternation. Instead, the mapping is done
in a separate thread without real-time requirements. The local mapping itself is one
of a handful of responsibilities of the mapping thread, which also includes keyframe
and map point management as well as local optimisation.

Indirect feature-based methods generally use the correspondences and pose to de-
termine 3D point locations. SVO [102], ORB-SLAM [100], OKVIS [115], BASALT
[103], and Kimera [118] triangulate the 2D-2D correspondences and add the res-
ulting 3D points to the global map. SVO does this once the associated variance
is sufficiently low, whereas ORB-SLAM first does a local bundle adjustment for all
points in the current keyframe. This process is summarised in Figure 2.20, showing
new 2D-2D correspondences leading to new points and correspondences with points
already on the map being used for refinement.

Direct methods don’t have explicit correspondences from their pose tracking and
therefore need to perform a guided search. These methods generally parameterise
the map by inverse depth. That is, rather than storing the map as a set of 3D points
in the global reference frame, they instead store it as the inverse depth at a given
pixel corresponding to the 3D point. Since the 2D coordinates of these reference
points are fixed, this means that during bundle adjustment only one parameter per
map point needs to be refined. This inverse depth is often found by performing
epipolar searches that provide constrained correspondences. Although PTAM [20]
is an indirect method and initialises the map with a RANSAC approach like other
similar methods, when it is searching for already mapped points the map is projected
into the current frame and a gated epipolar search is performed around the expected

2.4. VISUAL ODOMETRY AND VISUAL SLAM 53

Keyframe

Non-keyframe

Project prior
points and

depths.

Epipolar search
to create/update
depth hypotheses.

Activate
successfully

mapped points.

Figure 2.21: Local mapping in direct systems, such as DSO [93]. A map point
is represented by a depth hypothesis associated with an image point. Depth hy-
potheses are created through 1D epipolar searches, which are then used to narrow
the search range when later refining those searches. Keyframes are initialised by
projected points from older keyframes.

location. LSD-SLAM [92] attempts to perform epipolar searches for every pixel in
the keyframe against new frames, however, it aborts early if the gradient isn’t of
a sufficient quality. It also limits the search range to twice the variance if the
given keyframe point already has a depth hypothesis. DSO [93] performs a similar
search, but it then refines the match with an iteration of gradient descent which is
similar to the subpixel correspondence relaxation seen in the KLT tracker of SVO.
DTAM [89] is different to other direct methods in that it formulates the dense depth
map estimation as a primal-dual minimisation of a regularised photometric cost. A
process similar to that found in LSD-SLAM and particularly DSO is summarised
in Figure 2.21. New keyframes can be initialised by projecting prior depths into
the new frame, then subsequent non-keyframes are used to create and update depth
hypotheses from the epipolar search. DSO also activates a subset of the successfully
tracked points for use in local optimisation.

The local mapping stage of dense RGB-D methods is different to other indirect
and direct methods. It involves fusing the local point cloud into the global point
cloud map. KinectFusion [90] does this by optimising over a volumetric truncated
signed distance function to fuse the surfaces together. ElasticFusion [96] does this
fusion simply by bringing the colour and depth maps of the live frame into close
alignment with the global map and associating these points with the global surfels.
SLAM++ [95] has a fairly different approach where they leverage their semantic
labelling. Their map is comprised of known objects and meshes which are aligned
with the live point cloud through an active search and then verified by repeating
ICP alignment back into the live camera view.

Local map optimisation

Keyframe VO and SLAM systems often have a local window of keyframes which
represent the ‘active’ portion of the map which undergoes local optimisation. Each
incremental tracking estimation and local mapping process introduces an accumu-
lation of error in the system that causes it to drift, which is greatly reduced by

2.4. VISUAL ODOMETRY AND VISUAL SLAM 54

optimising over a number of keyframe poses and structure. As keyframes are added
and removed from the active region this can be seen as a sliding-window optimisation
and is done in the form of local bundle adjustment or pose-graph optimisation.

Local bundle adjustment is the most common form of this optimisation which
is done by minimising the reprojection error of the map points. This is generally
of the form given in Equation 2.12 where ξ is a pose in the set of keyframes F ,
X is a 3D map point in the set of map points X , xij is the feature location in
keyframe i associated with map point j, obs(·) is the set of keyframes in which
a given map point has been observed, and π(·) projects a 3D map point into the
keyframe. As can be seen, the reprojection error is the error between where the point
is projected into the image and the associated feature location, which is usually less
than one pixel. Although many full SLAM systems avoid performing global bundle
adjustment due to the prohibitive processing time it can often take, many systems
including VO systems perform local optimisation. By only optimising over the
motion and structure of a small window of keyframes the accuracy of the estimation
can be greatly improved without the excessive processing time. PTAM [20], through
introducing the mapping thread and keyframe concepts, enabled the idea of local
BA on the active window. In their approach, they have two sets of keyframes;
the most recent keyframes and the next set of most recent keyframes before them,
numbered at three and seven respectively in their example. The latter set has
their parameters fixed and the former set has its motion and structure refined using
estimations from both sets. The approach seen in SVO [102] performs three steps of
BA. They first perform pose-only BA on the newest keyframe, then structure-only
BA on its map points, and finally a full local BA on the motion and structure of the
newest keyframe and all nearby keyframes. ORB-SLAM [100] also does local BA on
an active window, however, they also include any keyframes that are co-visible with
the active window.

{ξ∗i ,X∗
j | i ∈ F , j ∈ X} = argmin

{ξi,Xj}

∑
j∈X

∑
i∈obs(j)

1

2
||xij − π(Xj; ξi)||22 (2.12)

This local BA is also done in VIO systems, however, these systems jointly min-
imise reprojection error and IMU error. This can be seen in OKVIS [115] and
BASALT [103], which both optimise over windows of the most recent keyframes.
ORB-SLAM3 [117] uses the same approach as the earlier ORB-SLAM, including
co-visible keyframes to those of the active window, however in its VIO mode it also
performs the joint minimisation of reprojection error and IMU error.

Closely related to the standard form of bundle adjustment seen in feature-based
methods is the photometric bundle adjustment found in direct methods. While
standard geometric BA is minimising reprojection error, photometric BA is minim-

2.4. VISUAL ODOMETRY AND VISUAL SLAM 55

ising the photometric error. It is essentially an expanded form of the direct tracking
problem, here instead being optimised for both pose and structure for a window of
keyframes. Conversely, the direct tracking problem can be seen as pose-only photo-
metric BA being performed between only two frames. This optimisation problem is
given in Equation 2.13. Using mostly the same notation as Equation 2.12, the dif-
ference here is that instead of optimising 3D map points this optimises a depth map,
D, associated with a keyframe. Additionally, I is an image, Ω is the set of tracked
points in a keyframe, and w(·) warps a point from one image to another according
to the pose of the keyframe and depth of the point. Therefore, this problem is using
the error between corresponding pixel intensities across all frames that the tracked
pixel has been observed. DSO [93] performs this sliding-window photometric BA
on its active window which is simply the set of most recent keyframes. DSM [141]
uses a similar approach, however they also include older reactivated keyframes from
their loop closure.

{ξ∗i , D∗
i | i ∈ F} = argmin

{ξi,Di}

∑
i∈F

∑
x∈Ωi

∑
j∈obs(x)

1

2
||Ii(x)− Ij(w(x; ξi, Di(x)))||22 (2.13)

There are alternative methods used to perform local optimisation. ElasticFu-
sion [96] performs local map maintenance by searching for short-term loop closures
through comparisons of the local portion of its map to older portions. Alternatively,
Kimera [118] performs factor graph optimisation on a local graph that is separate
from its global map.

Loop closure and relocalisation

Two of the most common features that lead to long-term map accuracy and elevate
VO systems to be considered SLAM are loop closure and relocalisation. These two
features are closely related and often implemented in the same way – although not
always. Loop closure refers to the recognition that two places separated in time are
spatially the same place, which allows for constraints to be added to the global map
that eliminates the drift that might have occurred in the time between those two
poses. This process is illustrated in Figure 2.22. Relocalisation is essentially the
same process but done in a different context; when tracking is lost for any reason
a SLAM system will attempt to find the best keyframe with which to reestablish
tracking.

One of the most common forms of loop closure is done with appearance-based
methods such as bag-of-visual-words. These methods require a ‘code-book’ that
is generated offline based on clusters of the desired feature type learnt from an

2.4. VISUAL ODOMETRY AND VISUAL SLAM 56

(a) Example scene with ground truth path. (b) Estimated path and map before loop
closure.

(c) Estimated path and map after loop clos-
ure.

Figure 2.22: An example scene showing loop closure. The estimation of the
path and point cloud of the map have inaccuracies and drift over time. The
ground truth is show in (a). In (b), the red crosses show two points that are the
same location, and the grey map points are points that have been re-detected at
different locations. After loop closure in (c) the two points are identified as the
same location, allowing the path and map to be updated.

2.4. VISUAL ODOMETRY AND VISUAL SLAM 57

image set similar to the domain in which the SLAM system will operate. This
allows the online SLAM system to efficiently represent images as bags of these
code-words which are based on code-word occurrence but not their location in the
image. Images can therefore be compared probabilistically across appearance-space
and be robustly matched even with significant changes to lighting [155]. Popular
implementations of bag-of-visual-words include FAB-MAP 2.0 [21], openFABMAP
[22], and DBoW2 [23]. LSD-SLAM [92] utilises openFABMAP for its loop detection
and adds these constraints to its global pose graph. This reveals one limitation
seen in direct methods where feature-based methods are still required for long-term
map accuracy. ORB-SLAM [100] and Kimera [118] both use DBoW2 for their loop
closure which is built around the ORB descriptors that they both use for other
parts of their SLAM pipelines. For a given keyframe ORB-SLAM uses DBoW2
to find other keyframes that are more similar to it than its least similar co-visible
keyframe. The potential matches are then accepted as loop closures when three
co-visible keyframes are proposed. Kimera verifies its potential matches through
geometric means in its front-end tracking.

There are many alternative methods for loop closure. SLAM++ [95] detects loops
by matching fragments of its global point cloud map with other regions of its full map
using predictive ICP. DSM [116] has a basic form of loop closure where it reactivates
earlier keyframes into its active window if it predicts that they will fill in gaps in the
field of view of the current keyframe. Their method, however, assumes that the drift
in the loop is not significant enough to push the keyframe out of the predicted field
of view. BASALT [103] also has a simple form of loop closure where ORB features
are extracted and matched between keyframes which allows the addition of edges
to the pose graph which are statistically independent to the KLT feature tracking
done in its front end. These systems all have loop closure features that are more
similar to the standard tracking methods than the appearance-based loop closure
commonly seen.

Relocalisation is often implemented in much the same manner as loop closure.
When tracking is lost in a SLAM system the relocalisation module is initiated to
find a suitable keyframe with which to reestablish tracking. In SLAM++, when
tracking is lost a new local map is generated. Once this map becomes large enough
it is tracked against the global map in the same way that fragments of the global
map were used for loop closure. ORB-SLAM also has similar loop closure and
relocalisation methods with their DBoW2 database allowing for the current frame
to be matched against candidate keyframe in appearance-space.

Not all relocalisation methods are based on the loop closure methods in a given
system. LSD-SLAM [92] attempts to reestablish tracking against well-connected
keyframes at random and then tests the neighbours of a successful candidate to

2.4. VISUAL ODOMETRY AND VISUAL SLAM 58

see if they are a better match. DSO [93] does not have a loop closure mechanism,
nor a global relocalisation mechanism, but it does implement a simple form of local
relocalisation. If tracking is lost in DSO, then a large number of motion models with
differing amounts of translation and rotation are tested as the initial hypothesis for
its standard tracking procedure on the coarsest pyramid level and the model that
produces the least error is taken as the correct pose.

Pose-graph and global optimisation

An important factor in making the SLAM map accurate in the long term is to
utilise all estimates, including any relocalisation or loop closure terms, to perform
some kind of global optimisation. This optimisation can come in two forms – bundle
adjustment or pose-graph optimisation. One could perform the same kind of bundle
adjustment done on the active window except globally for all poses and structure,
however, this is extremely time consuming and often intractable. A much more
feasible method is to perform pose-graph optimisation which refines only the poses
based on the relative estimates at each keyframe.

For global bundle adjustment the cost term is comprised of error in re-projection
of the 3D landmarks into each keyframe for the geometric case, as given in Equation
2.12, or photometric error between the intensity of a landmark in its reference frame
compared to any other frames in which it has been located, as given in Equation
2.13. Bundle adjustment then seeks to refine the set of all poses and landmarks by
minimising this error. The main difference for these two equations to their use in
local optimisation is that for global optimisation the set of keyframes F includes all
keyframes rather than just the active window. This process is extremely computa-
tionally intensive and is usually avoided. It can be made somewhat more tractable
by performing pose-only BA where only the pose is refined using the same error
terms. Pose-graph optimisation is closely related to BA, however, the error term is
constructed differently. Here, the problem is represented by a factor graph and the
error comes from the disagreement between the current global pose estimates and re-
lative pose measurements between keyframes. A representation of this factor graph
representation of the full SLAM problem is given in Figure 2.23. The poses at each
keyframe, landmark positions, and intrinsic calibration are represented as nodes, and
the relative measurements between nodes are factors represented by small squares.
Like with pose-only BA, pose-graph optimisation usually only includes the nodes re-
lated to keyframe poses and the factors between them. This optimisation problem is
expressed in Equation 2.14, again using the same notation as in Equations 2.12-2.13,
with E being the set of all edges in the graph and ∆ξ being a relative pose between
two nodes. These relative poses correspond to the edge factors in Figure 2.23 – the
u factors for poses between two immediate neighbour nodes and the c factors for

2.4. VISUAL ODOMETRY AND VISUAL SLAM 59

Figure 2.23: A full factor graph representation of a SLAM map. ξ1-ξ3 are poses
of the robot at times 1 to 3, X1 and X2 are landmarks seen by the robot at various
times, and K is the intrinsic calibration of the robot’s camera. p represents a prior
factor, u1 and u2 are factors between poses. v1-v4 are factors between the robot
poses, landmarks, and camera projection. c1 is a loop closure factor between
non-immediate poses. Pose-graph optimisation only optimises for the robot pose
nodes and only considers the u and C factors between them.

poses between nodes in loop closures. In a system where the pose-graph is a tree,
perhaps due to a lack of loop closures and keyframes only being connected with their
direct predecessor, there would be no disagreement between relative measurements
and the pose-graph would start at its optimum value. However, once we introduce
loop closures and added edges based on co-visibility, then the system has the almost
certain opportunity for disagreement. One can think of pose-graph optimisation as
using the edges on the graph as springs which pull the poses in various directions
until they are in the lowest energy state – the state where relative measurements
agree the most.

{ξ∗i | i ∈ F} = argmin
{ξi}

∑
(i,j)∈E

1

2
||ξi∆ξij − ξj||22 (2.14)

As mentioned, global BA is a time-consuming procedure and, therefore, most sys-
tems that have a form of global optimisation rely instead in pose-graph optimisation.
This can be seen in systems such as SLAM++ [95], LSD-SLAM [92], ORB-SLAM
[100], and Kimera [118]. Later versions of ORB-SLAM, ORB-SLAM2 [109] and
ORB-SLAM3 [117], also include global BA. To prevent this expensive procedure
from blocking other features of their SLAM system, they perform this global BA
entirely in its own thread. Furthermore, since loop closure can add edges to their
graph which alters the optimum that the BA is working towards, they abort and
restart the global BA whenever a new loop closure is identified. BASALT [103] also
performs global BA based on ORB features that are extracted and matched entirely
separately to the KLT matched image patch features used by their tracking and

2.4. VISUAL ODOMETRY AND VISUAL SLAM 60

mapping subsystems.

2.4.3 Summary and open problems

This section has revealed a number of trends in the field. The two main paradigm
splits in VO and SLAM are those between direct versus indirect methods, and
between dense versus sparse methods, although, there exist examples of hybrid
methods with features of direct and indirect methods as well as methods that fall
on a spectrum between dense and sparse. The differentiation between direct and
indirect methods is one of the aspects of the field that receives the most attention
currently, with some of the most popular direct methods including LSD-SLAM [92]
and DSO [93], and one of the most popular indirect methods being ORB-SLAM
[100]. Indirect methods present a number of advantages over direct methods due to
the use of easily identifiable features that allow matching across wide baselines as
well as different mapping sessions. One of the disadvantages of indirect methods is
that the detection of features, calculation of feature descriptors, and their matching
is computationally expensive and therefore limits the hardware in which the SLAM
systems can be used. This is addressed by direct methods that operate directly
on the raw images or some primitive feature type close to the raw image, with
matching being done through whole image alignment. Direct methods replace many
of the computationally expensive components of indirect methods with more efficient
alternatives and can operate in featureless scenes, however, they lose the ability to
match along wide baselines and often have to resort to indirect methods for loop
closure and relocalisation. Sparse direct methods such as DSO [93] are amongst the
most efficient options available, whereas indirect methods such as ORB-SLAM [100]
amongst the most feature-rich and robust options. Although there are examples of
hybrid methods that utilise portions of direct and indirect methods, such as SVO
[102], there is a need for research that aligns the two paradigms more closely. As it
currently stands, the utilisation of indirect qualities within direct algorithms for wide
baseline matching or loop closure requires the dedicated detection, computation, and
matching of features which wastes the computational savings of direct methods if
such features are not utilised elsewhere.

This section also presented a general keyframe-SLAM framework that identified
the three, or optionally four, threads that comprise a full SLAM system, with VO
systems focusing on the first and second threads. Relating this to the direct versus
indirect paradigm split, the key components of a direct system generally focus on
the tracking and local mapping thread. Considering the most feature-complete full
SLAM direct method, LSD-SLAM, the qualities that make it ‘direct’ are mostly
found in the tracking thread, whereas the pose graph optimisation is agnostic to the

2.4. VISUAL ODOMETRY AND VISUAL SLAM 61

direct-indirect distinction and the loop closure relies on an indirect feature-based
method, using FAB-MAP.

From this analysis, a number of open problems have been identified:

• Direct components can be incorporated into loop closure and relocalisation
that could be similar to the point cloud matching methods seen in KinectFu-
sion [90] and ElasticFusion [96].

• Since full direct SLAM methods calculate feature descriptors for loop closure,
one could incorporate such features into the direct alignment pipeline to ro-
bustify that component without relying on the comparatively more expensive
feature matching of indirect methods.

• The suitability of direct methods for wide-baseline matching should be ex-
plored to understand how this compares incorporating feature descriptors.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
62

Table 2.2: Comparison of the tracking thread concept in Keyframe SLAM for different systems.

Method Point Selection Data Type Data Association Tracking
MonoSLAM Shi-Tomasi corner detector. Image intensity patches. Normalised cross-correlation. EKF containing latest pose and

landmarks in state, with
constant motion model.

PTAM FAST feature detector with
Shi-Tomasi scores, as well as
edglets.

Image intensity patches. Zero-mean SSD. Motion model followed by
pose-only local bundle
adjustment.

DTAM Dense intensity image. Raw intensity image. Direct image alignment. Pyramid Lucas-Kanade image
alignment, first rotation then full
pose.

KinectFusion Dense RGB-D. Vertex and normal-based surface
derived from RGB-D images.

Direct geometric alignment of
surface.

ICP minimisation of the error
between a predicted surface
projection of the global 3D
reconstruction with the observed
vertex and normal map.

MSCKF Shi-Tomasi corner detector. Image intensity patches. Cross-correlation. EKF containing window of poses
but no landmarks in state, with
constant motion model.

SLAM++ Dense RGB-D. Vertex and normal-based surface
derived from RGB-D images.

Direct geometric alignment of
surface.

ICP Gauss-Newton alignment of
depth and normal map between
live camera and predicted view
based on current map.

LSD-SLAM Semi-dense intensity, all points
with successful depth hypotheses.

Raw intensity image. Direct image alignment. Keyframe-based Lucas-Kanade
with variance weighted residuals.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
63

Table 2.2: (Continued)

Method Point Selection Data Type Data Association Tracking
SVO FAST feature detector and

gradient-based.
Image intensity patches. Kanade-Lucas-Tomasi feature

tracker.
Sparse Lucas-Kanade whole
image alignment followed by
Kanade-Lucas-Tomasi feature
tracker to relax correspondences
to sub-pixel locations, finally
pose-only local bundle
adjustment.

ORB-SLAM ORB feature detector. ORB descriptor. Hamming distance between
descriptors.

Constant motion model leading
to guided correspondence search,
followed by bundle adjustment.

ElasticFusion Dense RGB-D. Vertex and normal-based surface
derived from RGB-D images.

Direct photometric and
geometric alignment of coloured
point cloud.

Joint ICP geometric and
photmetric alignment between
the current frame and depth map
with a predicted view.

OKVIS Harris corner detector. BRISK descriptors orientated
with gravity.

Hamming distance between
descriptors.

RANSAC on 3D-2D landmark
correspondences, followed by
RANSAC on 2D-2D
correspondences with respect to
latest keyframe.

ROVIO Shi-Tomasi corner detector. Pyramidal multi-level image
intensity patches.

Direct image alignment. Fully robo-centric EKF with
robot position and relative
landmarks as state.

ORB-SLAM2 ORB feature detector. ORB descriptor. Hamming distance between
descriptors.

Constant motion model leading
to guided correspondence search,
followed by bundle adjustment.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
64

Table 2.2: (Continued)

Method Point Selection Data Type Data Association Tracking
DSO Candidate points are chosen to

be well spaced in image and have
high gradient, activated points
are successfully tracked and
spread in 3D space.

Raw image intensity with affine
lighting model.

Direct image alignment. Keyframe-based
forward-compositional
Lucas-Kanade image alignment
with affine lighting model.

VI-DSO Candidate points are chosen to
be well spaced in image and have
high gradient, activated points
are successfully tracked and
spread in 3D space.

Raw image intensity with affine
lighting model.

Direct image alignment. Keyframe-based
forward-compositional
Lucas-Kanade image alignment
with affine lighting model, then
associated with a pre-integrated
IMU residual.

DSM Candidate points are chosen to
be well spaced in image and have
high gradient, activated points
are successfully tracked and
spread in 3D space.

Raw image intensity with affine
lighting model.

Direct image alignment. Keyframe-based
forward-compositional
Lucas-Kanade image alignment
with affine lighting model.

ORB-SLAM3 ORB feature detector. ORB descriptor. Hamming distance between
descriptors.

Constant motion model leading
to guided correspondence search,
followed by bundle adjustment.

BASALT FAST feature detector. Image intensity patches for
initial tracking and ORB
descriptors for later refinement.

Kanade-Lucas-Tomasi feature
tracking for image patches,
Hamming distance on descriptor
for ORB features.

Correspondences from feature
tracker produce a reprojection
error combined with IMU error
terms that are jointly optimised,
with initial estimate from the
IMU.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
65

Table 2.2: (Continued)

Method Point Selection Data Type Data Association Tracking
Kimera Shi-Tomasi corner detector. Image intensity patches. Kanade-Lucas-Tomasi feature

tracking.
Feature tracker finds
correspondences between frames
and across stereo pairs, which
are used in 5- and 3-point
RANSAC respectively. A term
from the IMU rotation can also
be incorporated.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
66

Table 2.3: Comparison of the mapping thread concept in Keyframe SLAM for different systems.

Method Local Mapping Map Point Type Local Optimisation Keyframe Creation Keyframe Culling
MonoSLAM 2D search for initialised

features in a gated region
based on predicted location.

3D - - -

PTAM Map initialised with 5-point
stereo RANSAC, then map
points found by fixed range
epipolar searches.

3D Windowed local bundle
adjustment on keyframes.

Time since last keyframe as
well as distance.

-

DTAM A dense depth map is build
through primal-dual
optimisation of a
photometric cost function
with regularisation term.

Inverse depth - Visibility of pixels from
previous keyframe in
current frame.

-

KinectFusion A depth frame with an
associated pose is fused into
the global 3D reconstruction
with a volumetric truncated
signed distance function.

3D - - -

MSCKF Mapped locations of tracked
points are refined with a
structure-only bundle
adjustment.

Inverse depth EKF update step based on
finalised feature tracks.

All frames contribute a pose
to the state vector.

When the keyframe limit is
reached a third of the active
frames are culled, equally
spaced in time.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
67

Table 2.3: (Continued)

Method Local Mapping Map Point Type Local Optimisation Keyframe Creation Keyframe Culling
SLAM++ Candidate objects are fused

into the global map using
ICP alignment. New meshes
are fitted to unexplained
regions in the map with an
active search.

3D Object - - -

LSD-SLAM A depth map is build using
small-baseline SSD epipolar
searches constrained by
existing hypotheses.

Inverse depth - Distance and rotation limit
since last keyframe.

-

SVO Feature tracks are
triangulated and added to
global map once variance is
sufficiently low.

3D Pose-only bundle
adjustment, then
structure-only, then full
local bundle adjustment.

3D map point visibility in
current frame.

-

ORB-SLAM Feature tracks are
triangulated and refined in
local bundle adjustment on
all points in current
keyframe.

3D Local bundle adjustment on
window of keyframes
co-visible with current
active keyframe.

Pixel visibility between
keyframe and current frame,
as well as number of frames
since last keyframe.

Keyframes are culled based
on redundant visibility of
map points at the given
scale or finer.

ElasticFusion The depth map is fused
with active portions of the
global map during the joint
photometric and geometric
alignment which estimates
the pose.

Surfel Short-term local loop
closures by attempting
registration of active
portion of map with inactive
portions.

- -

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
68

Table 2.3: (Continued)

Method Local Mapping Map Point Type Local Optimisation Keyframe Creation Keyframe Culling
OKVIS Triangulation of 2D-2D

correspondences not yet
associated with landmarks,
both across stereo pairs and
temporally with previous
images.

3D Local bundle adjustment
with joint re-projection and
IMU error terms.

Latest keyframe key-point
visibility and global
landmark visibility in
current frame.

Oldest keyframe
marginalised.

ROVIO Successfully tracked features
from direct alignment are
kept in EKF state as long as
they have good statistics.

Inverse depth EKF update including
intensity error of tracked
image patches.

- -

ORB-SLAM2 Feature tracks are
triangulated and refined in
local bundle adjustment on
all points in current
keyframe.

3D Local bundle adjustment on
window of keyframes
co-visible with current
active keyframe.

Pixel visibility between
keyframe and current frame,
as well as number of frames
since last keyframe.

Keyframes are culled based
on redundant visibility of
map points at the given
scale or finer.

DSO A depth map is build using
small-baseline SSD epipolar
searches followed by fixed
iterations of Gauss-Newton
refinement.

Inverse depth Windowed photometric
bundle adjustment on active
keyframes.

Field of view overlap with
current keyframe,
translation since last
keyframe, and large changes
in exposure time.

Hard limit on number of
active keyframes, old
keyframes marginalised
based on visibility and
keeping them well spread in
3D space.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
69

Table 2.3: (Continued)

Method Local Mapping Map Point Type Local Optimisation Keyframe Creation Keyframe Culling
VI-DSO A depth map is build using

small-baseline SSD epipolar
searches followed by fixed
iterations of Gauss-Newton
refinement.

Inverse depth Windowed joint
photometric bundle
adjustment, with IMU error
term, on active keyframes.

Field of view overlap with
current keyframe,
translation since last
keyframe, and large changes
in exposure time.

Hard limit on number of
active keyframes, old
keyframes marginalised
based on visibility and
keeping them well spread in
3D space.

DSM A depth map is build using
small-baseline SSD epipolar
searches followed by fixed
iterations of Gauss-Newton
refinement.

Inverse depth Windowed photometric
bundle adjustment on active
keyframes.

Field of view overlap with
current keyframe,
translation since last
keyframe, and large changes
in exposure time.

Hard limit on number of
active keyframes, keeping
them spread in 3D space.
Keyframes are also
activated/deactivated based
on co-visibility with current
keyframe.

ORB-SLAM3 Feature tracks are
triangulated and refined in
local bundle adjustment on
all points in current
keyframe.

3D Local bundle adjustment on
window of keyframes
co-visible with current
active keyframe.

Pixel visibility between
keyframe and current frame,
as well as number of frames
since last keyframe.

Keyframes are culled based
on redundant visibility of
map points at the given
scale or finer.

BASALT Points are mapped as a unit
vector and inverse depth in
the host keyframe they were
first observed based on
correspondences.

Inverse depth Local bundle adjustment
tightly coupled with IMU
error term, done with
respect to active keyframes
and m recent frames.

Keyframes are created if a
frame has landmarks
initialised within it.

Older keyframes are
marginalised as new frames
become keyframes.

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
70

Table 2.3: (Continued)

Method Local Mapping Map Point Type Local Optimisation Keyframe Creation Keyframe Culling
Kimera Triangulation of feature

tracks to 3D vertices that
are used to generate a 3D
mesh.

Mesh Factor-graph solved at each
keyframe.

Time since last keyframe
and visibility of features.

-

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
71

Table 2.4: Comparison of the loop closure and optimisation thread concept in Keyframe SLAM for different systems.

Method Relocalisation Loop Closure Global Optimisation
MonoSLAM - - -
PTAM - - Global bundle adjustment.
DTAM - - -
KinectFusion Manual user alignment of current depth map

with the depth map of the most recent
known pose.

- -

MSCKF - - -
SLAM++ A new local graph is created when tracking

is lost, then matched to the global map once
it is large enough.

Loops are detected by matching fragments of
the global graph with the full graph in the
same process as relocalisation.

Pose graph optimisation.

LSD-SLAM - OpenFABMAP appearance-based matching
of keyframes in pose graph.

Pose graph optimisation.

SVO - - -
ORB-SLAM DBoW2 appearance-based matching of

current frame to keyframes followed by
RANSAC pose estimation.

DBoW2 appearance-based matching of
current keyframe to past keyframes followed
by RANSAC pose estimation of loop closure
and updated pose graph optimisation.

Pose graph optimisation.

ElasticFusion - Global loop closure by appearance-based
lookup of randomised fern encoding
database, local loop closure by registering
active map with inactive map.

Optimisation of a deformation graph.

OKVIS - - -
ROVIO - - -

2.4.
V

ISU
A

L
O

D
O

M
E

T
R
Y

A
N

D
V

ISU
A

L
SLA

M
72

Table 2.4: (Continued)

Method Relocalisation Loop Closure Global Optimisation
ORB-SLAM2 DBoW2 appearance-based matching of

current frame to keyframes followed by
RANSAC pose estimation.

DBoW2 appearance-based matching of
current keyframe to past keyframes followed
by RANSAC pose estimation of loop closure
and updated pose graph optimisation.

Pose graph optimisation as well as global
bundle adjustment which is aborted and
restarted if a new loop closure makes it
invalid.

DSO - - -
VI-DSO - - -
DSM - Old keyframes are reactivated based on

estimated co-visibility with the active
keyframe as well as how well the candidate
inactive keyframe ‘fills in the gaps’ in the
projects of active keyframes into the latest
keyframe.

-

ORB-SLAM3 DBoW2 appearance-based matching of
current frame to keyframes followed by
RANSAC pose estimation.

DBoW2 appearance-based matching of
current keyframe to past keyframes followed
by RANSAC pose estimation of loop closure
and updated pose graph optimisation.

Pose graph optimisation as well as global
bundle adjustment which is aborted and
restarted if a new loop closure makes it
invalid.

BASALT - A separate system of detecting and matching
ORB features is used to add loop-closure
constraints between keyframes.

Global bundle adjustment is performed on
the separately detected and matched ORB
features, with the inclusion of an addition
nonlinear factor recovery term.

Kimera - DBoW2 appearance-based matching of
current keyframe to past keyframes followed
by pose graph optimisation.

Pose graph optimisation.

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 73

2.5 Distributed calibration, localisation, and SLAM

The foundation of distributed robotic vision lies in distributed computing and con-
sensus. Distributed computer vision is generally achieved through the use of meth-
ods such as average-consensus, belief propagation, and distributed optimisation.
These algorithms involve viewing the network as a graphical model where cameras
are nodes and their relationships to other cameras are edges. Whilst research into
these algorithms has often only considered static graphs, there has been significant
work in investigating the effects of switching topologies, time-delays, and non-ideal
edges. The motivation of this section is exploring how the algorithms of the previ-
ous sections can be adapted to distributed networks, filling in the third component
identified in Figure 2.1.

Section 2.5.1 first looks at the use of graphical representations of camera sensor
networks through the vision graphs and communication graphs, with a range of
useful properties of the graph defined. The problem of determining the topology of
these graphical representations is also explored. Then in Section 2.5.2, research
is discussed dealing with the distributed algorithms of average-consensus, belief
propagation, and distributed optimisation, looking at the foundational work in each
area as well as the wide range of applications each type of algorithm has seen.

Applying this knowledge, Section 2.5.3 looks at the use of the graphical CSN
framework discussed in Section 2.5.1 and the distributed algorithms discussed in
Section 2.5.2 to perform multi-view calibration and localisation algorithms in dis-
tributed camera sensor networks, looking at how these distributed algorithms are
applied to the data association, linear systems, and non-linear refinements of the
various problems. Section 2.5.4 then looks at how these methods are applied to
distributed multi-robot SLAM, discussing which parts of the SLAM pipeline have
been adapted to distributed processing and in which ways. Finally, Section 2.5.5
summarises these findings and the open problems that have been identified.

2.5.1 Distributed camera sensor networks

Applications of calibration, localisation, VO, and SLAM to distributed CSNs are
most often formulated as collections of consensus problems on undirected graphs.
This is where the cameras are modelled as nodes and connections between them
are modelled as edges. Radke, Tron and Vidal [3, 8, 33], Devarajan et. al. [7,
156–158], and Song et.al [1] take the approach of modelling distributed CSNs as two
separate undirected graphs, a communication graph, GC = {V , EC}, and a vision
graph, GV = {V , EV }. For both of these graphs V = {1, . . . , N} is the set of all
camera sensor nodes, EC ⊆ V × V is the set of edges containing (i, j) ∈ EC pairs
of nodes that are able to communicate directly, and EV ⊆ V × V is the set of

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 74

Communication Graph Vision Graph

1

2 3 4 5

6

7

1

2 3 4 5

6

7 1

2 3 4 5

6

7

Figure 2.24: Comparison of the vision graph (left) and communication graph
(right) for a CSN (centre).

edges containing (i, j) ∈ EV pairs of camera nodes with overlapping fields of view.
Additional useful properties of these graphs are the set of neighbours of a node,
Ni = {j ∈ V : (i, j) ∈ E} for either EC or EV , the degree of a node, di = |Ni|, and
the maximum degree of a graph, ∆G = max

i=1,...,N
{di}.

The vision graph and communication graph can be significantly different, as can
be seen in Figure 2.24 where the communication graph is determined by physical
distance in this simplified representation and the vision graph is determined by suf-
ficient overlap of field-of-view. Most computer vision algorithms are designed based
on the vision graph whilst leaving consideration of the communication graph for im-
plementation. Radke distinguishes purely distributed algorithms as those which only
rely on local decisions based on information from their immediate neighbours, with
the primary design goal being to approach the results obtained by fully centralised
algorithms [3].

The first step in most distributed computer vision applications is the determina-
tion of the vision graph – a process referred to as topology estimation. This comes
in two types; overlapping vision graphs where the majority of cameras share a sig-
nificant portion of the field-of-view with neighbours and non-overlapping where the
cameras do not share fields-of-view. This problem is very similar to the multi-camera
localisation problem discussed in Section 2.3.3, however, instead of estimating rigid-
body transformations between cameras the goal is to infer edges between camera
nodes on the graph if sufficient overlap of field-of-view exists or, in the case of
non-overlapping cameras, if the cameras have related entry and exit points.

Techniques for non-overlapping estimation are generally based around tracking
moving targets whose relative visibility is used to infer the edges. An early imple-
mentation of this was done by Makris et al. [159], where entry and exit points for a
camera’s field-of-view are automatically learnt and then edges between nodes on the
vision graph are inferred as targets move between views. Rather than finding corres-
pondences between specific targets, they instead match the rates of targets leaving
one view and entering another and use a probabilistic model to infer the relation-
ships between the ‘blind’ spots between cameras. Marinakis and Dudek [160] used
a similar approach with a non-discriminative model to infer the topology through

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 75

Monte Carlo expectation maximisation where they model the non-overlapping scene
with nodes for the cameras as well as additional nodes representing sources/sinks
from and to which agents travel in the environment outside the field of view. They
also include a delay model that accounts for the differing number of agents in the
scene as well as agents that take different lengths of time to travel between views.
Zou et al. [161] also developed a method based on entry and exit between views,
but used facial recognition to track targets across camera nodes rather than previous
techniques which relied on known targets. They argue that using overall appearance
of a target can have problems if different targets are wearing similar clothes or if ap-
pearance changes due to different lighting, whilst facial appearance should be more
discriminative and consistent. Farrell et al. [162] developed an interesting higher-
order Bayesian framework that not only learnt the adjacency, but also the likelihood
that a target will traverse a particular edge. Whilst the earlier discussed methods
were applied to networks of 6-9 cameras, this method was aimed at medium sized
networks of 10-1000 cameras. Farrell and Davis [163] later improved upon these
tracking-based methods using an information-theoretic appearance model to weight
the targets based on distinctiveness. These non-overlapping methods are generally
designed for stationary CSNs, such as surveillance networks, where it is reasonable
to rely on large numbers of moving targets throughout the scene. Although robotic
vision applications can have regions and periods of no overlap, the cameras are usu-
ally not stationary and can only rely on the presence of moving targets in specific
applications.

For overlapping estimation there is a wider variety of approaches taken including
tracking, object detection and feature point matching. Kulkarni et al. [164] used
object detection with time-stamped images of a reference object being compared to
determine regions of overlap. Instead of assuming that there are moving targets in
the scene, as is the case for most non-overlapping methods, the authors manually
insert a reference object into the scene at random locations which can be observed
simultaneously in overlapping networks. Although simple for their small CSN, this
method quickly becomes complicated as the network grows in size. On the other
hand, this method can be done at the same time as multi-camera calibration and
localisation if the reference object can act as a calibration object. Alternatively,
Avidan et al. [165] proposed a method based on wide-baseline stereo matching of
feature points between views to directly determine edges. They initially look at this
from a centralised perspective where all comparisons are made at a single processor
that has access to all information, however, they expand this to a distributed imple-
mentation where feature points are only shared along edges of the communication
graph. In this case, if a node determines that two of its neighbours can see the same
points it can share that knowledge which allows edges that do not appear on the

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 76

communication graph to be found on the vision graph. Cheng et al. [166] employed
a similar approach with what they refer to as ‘feature digests’. A fixed number of
feature points are selected from each image, based on distinctiveness and spatial
distribution, and compressed using principal component analysis. These feature di-
gests are broadcast throughout the network for stereo matching to form edges on
the vision graph. Unlike Avidan, Cheng’s method requires the feature digest to be
sent to every node and therefore isn’t highly scalable. However, feature digests are
a novel approach to reducing the communication load, and a combination of the
two algorithms would be interesting to see. Van den Hengel et al. [167] proposed a
contrasting estimation method which they refer to as exclusion. Rather than build-
ing up evidence for an edge, they instead assumed that the vision graph is fully
connected and used contradictory evidence to prune edges, homing in on the correct
topology. They argue that this process requires much less data than building up
evidence, however, this assumption is specific to the expected connectivity of the
network.

There has also been a number of methods for overlapping networks that utilise
motion in similar manners to the non-overlapping case. Mandel et al. [168] and
Ermis et al. [169] both used coherent motion between views to form vision graph
edges. The method of Mandel et al. assumes that all camera nodes can communicate
with all others, however, with sufficient routing along the communication graph this
is not a necessity. Their method is based on coherent motion of foreground regions,
with overlap inferred from a probabilistic analysis of simultaneous activity in image
regions. Their method does not utilise specific mobile targets moving between views
like the non-overlapping method, but simply considers the occurrence of motion as
an event that is compared to other views. The method of Ermis et al. uses activify
features which they define as the occupancy duration of foreground pixels. Their
method works well in networks where the cameras have significantly different views
as the corresponding pixels should still be occupied for a similar duration despite
the direction from which the object is observed. Also similar to non-overlapping
methods, Esterle et al. [170] produced a vision graph as a by-product of tracking in
which they used a socio-economic model where camera nodes buy and sell ownership
of the targets and use an auction system to maximise their utility. The intention
of their method is to manage responsibility of tracking targets, however, the vision
graph is built based on the ‘market activity’ by adding links when a trade occurs.
This method of vision graph formation is novel as one of very few topology estimation
algorithms with robustness to changing topologies.

As can be seen, the vast majority of methods discussed are all built around net-
works that are static at the time of topology estimation and often require one or
many moving targets throughout the scene. Alternative to the moving target, al-

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 77

gorithms such as that suggested by Kulkarni et al. [164] instead use a manually
placed reference object and others still rely on static scene constraints. These kinds
of algorithms pair well with the calibration and localisation task which is also gen-
erally performed with static positions. If using a calibration method that utilises a
calibration object then a method like Kulkarni et al. [164] can be used, whereas if
self-calibration is being performed then methods such as those of Avidan et al. [165]
or Cheng et al. [166] could be used. In a mobile robotic vision application, such
as VO or SLAM, this vision graph formation could be seen as a continuous process
that finds and updates the vision graph as motion changes the field of view overlap.

2.5.2 Distributed consensus algorithms

Utilising these graphical representations of distributed CSNs, robotic vision prob-
lems such as calibration, localisation, VO, and SLAM are then implemented using
consensus algorithms that operate on these graphs. Three such types of distributed
consensus algorithms are average consensus, belief propagation, and distributed op-
timisation. Average consensus allows each node to compute the average of estimates
across a number of nodes using a control law that is based only on the exchange
of information between direct neighbours. This simple algorithm can be extended
to more complicated cases that allows the solving of linear and even nonlinear sys-
tems. Belief propagation is a similar class of algorithm that involves message passing
between direct neighbours and is used to perform inference for probabilistic prob-
lems on graphs. Finally, distributed optimisation is a group of methods that allow
the objective function of an optimisation problem to be split according to what
information is available locally at each node under simple communication protocols.

Average consensus

One of the most common types of distributed algorithm is that of average consensus,
which achieves consensus by utilising only local computations and data sharing with
direct neighbours. Consider a network where each node has a local measurement
or estimate xi ∈ R relating to the same quantity and the desired consensus value
is the average of these measurements given by Equation 2.15. Average consensus
computes this value based on the fact that the equilibrium point of Equation 2.16
is equal to Equation 2.15, with zi(t) being the state of node i at time t and ϵ ≤ ∆−1

G

is the step size. At each time step, the current value at a node is augmented by its
‘disagreement’ with neighbouring nodes. It was demonstrated by Olfati-Saber and
Murray [171] that after each update average of the values across all nodes remains
unchanged, however, the disagreement at each node and the global disagreement are
reduced. Therefore, each node will converge towards the global average value. An

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 78

1

2

4

5

2.3

2.7

2.3

4.7

3

3

3

3

...

Figure 2.25: An example network performing average consensus with four nodes
and ε = 1/3. The initial state of the system at time t = 0 is shown on the left.
At each time-step, the nodes change their value based on their disagreement with
their neighbours according to Equation 2.16. At each time-step, the global average
value across all nodes remains the same. Each node converges to this average value.

example of average consensus is shown in Figure 2.25 for a network of four nodes
and ε = 1/3. In this case, it takes 27 iterations until the nodes converge on the
average value to four significant figures.

x̄ =
1

N

N∑
i=1

xi (2.15)

zi(t+ 1) = zi(t) + ε
∑
j∈Ni

(zj(t)− zi(t)), zi(0) = xi (2.16)

This algorithm can be trivially extended to multivariate data xi ∈ Rn, as well
as used to perform distributed linear algebra. Tron and Vidal [2] show that in a
system where each node has a local measurement matrix Ai ∈ Rni×m and meas-
urement vector bi ∈ Rni , one can solve linear least squares problems Ax = b for
the global measurement matrix A = [AT

1 , . . . ,A
T
N]

T and global measurement vector
b = [bT

1 , . . . ,b
T
N]

T using Equations 2.17 and 2.18. This, in turn, can be solved using
the multivariate form of Equation 2.16. They also demonstrate a similar approach
for calculating singular value decomposition and nullspace estimation.

1

N
ATA =

1

N

N∑
i=1

AT
i Ai (2.17)

1

N
ATb =

1

N

N∑
i=1

AT
i bi (2.18)

There has been significant investigation into the stability of these consensus al-
gorithms in networks of switching topologies and time-delays in communication,
which is highly important for robotic vision applications. Early work by Olfati-Saber
et al. [35, 171] addressed these two problems separately. For switching topologies,

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 79

it was found that on undirected graphs for any time tk before convergence, average-
consensus could handle occasionally disconnected topologies as long as the graph
became fully connected again at some point in [tk,∞). For time-delays, they found
that the convergence occurred as long as the delays remained under an upper bound
inversely proportional to the algebraic connectivity of the graph. That is, the fewer
the edges on the graph, the more robust it was to the effects of time-delays. Ren
and Beard [172] found that convergence could be achieved on switching topologies
as long as the union of all the directed interaction graphs contained a spanning-
tree. Rabbat et al. [173] designed an improved average-consensus algorithm that
converged faster on switching topologies than previous algorithms by implement-
ing a so-called ‘fair’ loss function. Xiao and Wang, Sun et al., and Lin and Jia
all analysed convergence on systems that have both switching topologies and time-
varying time-delays [174–176]. Using Lyapunov stability analysis and linear matrix
inequality methods, they found that the convergence occurred as long as the union
of graphs along a bounded period of time contained a spanning-tree. Chen et al.
[177] developed a variation of average-consensus called corrective consensus which
was more robust to switching topologies and packet losses by recording the rate of
change at each iteration and broadcasting this during “corrective iterations”. There
has also been work on leader-based consensus tracking, where average-consensus is
used to make a switching distributed network converge on a leader node’s changing
state. Su and Huang [178], and Chen et al. [179] found that tracking could be
performed on fully connected switching networks if the control gains were properly
chosen. Xu et al. [180] had similar results to the two previous, but noted that per-
formance could be improved by additionally tracking the estimated tracking error
of each node’s neighbours. Wen et al. [181] also noted the importance of dwell time,
however their design didn’t require all graphs in the switching topology to be fully
connected, given sufficient communication rate.

There has also been work on some novel changes to the basic average consensus
algorithm, such as in the work of Seyboth et al. [182] which presented an interesting
‘event-triggered’ average consensus where broadcasts are only sent to neighbours
once the current local estimate and last broadcast value become sufficiently dif-
ferent, greatly reducing communication costs. Nowzari and Cortes, and Li et al.
improved this design by removing any requirement for global knowledge of algeb-
raic connectivity of the network [183, 184]. Zuo and Tie [185] increased robustness
to external disturbances through a non-linear analysis, and Hadjicostis et al. [186]
improved robustness to packet loss through the exchange of running sums which
helped detect discrepancies between nodes.

One of the earliest applications of average consensus was on the problem of flock-
ing, where a number of mobile agents align their heading directions. Jadbabaie et

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 80

al. [187] considered the model of Vicsec et al. [188] with a network of mobile agents
that were modelled as points or particles on a plane each with the same speed but
different headings. They then considered the neighbours of an agent to be those
within a certain radius and have each agent update its heading to be the average
of itself and its neighbours. The authors demonstrate the convergence occurs des-
pite the network’s changing topology. In their formulation of flocking, the specific
value to which the nodes converge is not the average of the initial state but in-
stead dependent on the edges as the network evolves. They do demonstrate ‘leader
following’, however, where one node can retain its value which will force all other
nodes to converge to it. This does not work in the case where more than one node
attempts to be the leader and is not a truly distributed algorithm. Savkin [189]
analysed a discrete version of this model and showed that all nodes will converge to
a value and if the network remains connected, then all nodes will have converged
to the same value. Olfati-Saber [29] presented a number of flocking algorithms that
aimed to adhere to three flocking rules of cohesion to a flocking centre, separation
between nodes, and alignment of velocity. Their first algorithm met all three goals
but only remained as a single connected graph in a narrow set of initial states, whilst
their second algorithm solved this issue by introducing a ‘group objective’ term that
has similar effect to the leader following of Jadbabaie et al. Their final algorithm
introduced a third term for obstacle avoidance where obstacles are modelled as an
additional type of agent. Their work showed that this group objective is important
to prevent the network from fragmenting into several smaller graphs with different
consensus values. This is not general to all average consensus problems, as it is due
to the fact that the connectivity of the graph is determined by the states that are
attempting to converge.

Further and more advanced robotics applications of average consensus include
formation control, coverage control, and task assignment. Formation control is sim-
ilar to flocking, particularly when compared to the flocking with a group objective
shown by Olfati-Saber [29]. Lin et al. [190] first considered a protocol where nodes
communicate with only the next node ‘above’ them according to assigned numbers.
They showed that since this protocol could converge to a point in the absence of
collision, then it could also be used for formation control with added displacement
goals at each node. They then expanded this to the model more common in flocking
where nodes had edges based on proximity and demonstrated that the same was
true. One difference to the flocking algorithms discussed above is that rather than
each node approaching the average of all its neighbours, the authors used the dis-
agreement between nodes like in Equation 2.16. This allowed them to know that
the value converged upon was the centroid of the starting values. Muhammad and
Egerstedt [191] also analysed the range-based connectivity model of flocking for con-

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 81

sideration in formations, demonstrating that a number of geometric properties could
be inferred from the connections of the graph without actually knowing the positions
of individual nodes. Cortes et al. [192] consider a very similar problem to formation
control, designing a distributed algorithm for multi-vehicle task assignment that
ensures optimal coverage for a remote sensing task. The authors consider dividing
a space up using Voronoi diagrams based on the locations of mobile robots. They
then present distributed gradient descent algorithms that seek uniform distribution
of the robots across the environment.

There has also been work on general approaches to sensor fusion and filtering,
which has significant applications in robotic vision and SLAM. Xiao et al. [31]
demonstrated that average consensus could be used to implement maximum like-
lihood sensor fusion for linear systems by expanding Equations 2.17 and 2.18 to
incorporate covariance. Like with other linear systems solvable by average con-
sensus, this requires that all estimates and covariances are separable between nodes,
however, in such a situation the problem is able to converge on networks of changing
topology as long as the union of all infinitely occurring graphs is connected, even if
individual graphs are not. They demonstrate this under two weighting schemes —
maximum degree weights, which require global knowledge of the number of nodes in
the system, and metropolis weights, which do not. The ability of the latter to con-
verge is important because the upper bound on step size ϵ ≤ ∆−1

G given for Equation
2.16 does technically rely on global information, whereas the metropolis weights do
not. Olfati-Saber and Shamma [193] expanded the use of average consensus into
the domain of tracking changing signals with their introduction of consensus filters.
They had each node track the signal by minimising both the disagreement between
nodes on the current value as well as the disagreement between the current value
and new measurements, effectively acting as a low-pass filter. They were also able to
implement a similar control law for a high-pass filter and therefore a band-pass filter.
This was used by Spanos et al. and Olfati-Saber to introduce Kalman Consensus
Filters (KCF), which use ‘micro-Kalman Filters’ at each node and bring local be-
liefs into global consensus using the average-consensus low-pass and band-pass filters
[194, 195]. Their first implementations performed consensus on the measurements
and covariances used as inputs to the state estimation of the update stage mean-
ing that each node would calculate the same estimates, however, Olfati-Saber later
demonstrated that superior performance was seen by instead performing consensus
afterwards on the differing state estimates [196]. In analysing these KCFs, Olfati-
Saber found that the optimal form of the problem was not scalable in the number of
nodes due to correct covariance propagation ideally requiring all-to-all connections,
however, this was solved by deriving an approximation to the covariance that is
scalable in the number of nodes and was demonstrated to be a stable alternative.

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 82

These KCFs and general approaches to sensor fusion and filtering are highly ap-
plicable to robotic vision as many of the fundamental implementations of SLAM,
such as MonoSLAM [88] or MSCKF [91], utilise extended Kalman filters and, as was
discussed in Section 2.4.2, VO and SLAM are often interpreted as filtering problems.

Average consensus is one of the most fundamental algorithms for distributed com-
puting and is used to some degree in almost every distributed computer vision ap-
plication. These consensus algorithms are extremely useful in solving a wide range
of optimisation problems on systems that have limited communication abilities. By
only operating on the disagreement between an estimate at a node and the estimates
at neighbouring nodes, global averages can be determined which can then be used
to perform a wide range of operations including flocking, formation control, linear
algebra, and filtering. All of these operations have direct applications to robotic
vision tasks, such as the linear systems in calibration and the filtering often used in
SLAM.

Belief propagation

Another consensus algorithm is the message-passing algorithm of belief propagation
(BP), first proposed by Pearl for performing inference on probabilistic graphical
models [197]. The original form was developed for operation on directed graph
representations of inference problems, however, the generalised form functions on a
range of graph types including factor graphs and Markov random fields (undirected
graphs). Applying the problem to the undirected graphical structures discussed in
this chapter, each node has a measurement zi as is the case with average consensus.
These are interpreted as random variables with node distributions ϕi(zi) and edge
distributions between nodes i and j as ψij(zi, zj). At each iteration, nodes send
messages m(t)

i→j(zj) to neighbours regarding knowledge of that node’s variable(s)
comprising of the ‘sum-product’ of the potentials with messages from the previous
iteration (excluding the message from the receiving node), shown in Equation 2.19
where Ni \ j means the neighbours of node i excluding node j. This process is
demonstrated visually in Figure 2.26 showing how the receiving node does not have
its previous messages incorporated into the message sent to it. The node’s belief
about its own variable b(t)k (zi) is the product of the node potential and all incoming
messages from that time instant, shown in Equation 2.20. Pearl showed that on
acyclic graphs, such as spanning trees, the beliefs were guaranteed to converge to
the exact marginal value. However, loopy graphs don’t always converge and only do
so to approximate values.

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 83

mt-1

 ld→j

mt-1

 l3→j

mt-1

 l2→j

mt

 j→k

l
2

l
3

l
d

j
k

l∈ N
j
\k

.
.
.

Figure 2.26: Message propagation in belief propagation, where the message sent
to a target node is comprised of the earlier messages received at the sending node,
except that received from the target node.

m
(t)
i→j(zj) ∝

∫
zi

ϕi(zi)ψij(zi, zj)
∏

k∈Ni\j

m
(t−1)
k→i (zi)dzi (2.19)

b
(t)
k (zi) ∝ ϕi(zi)

∏
k∈Ni

m
(t)
k→i(zi) (2.20)

Murphey et al. [198] showed that loopy BP can converge for a number of cyc-
lic graph structures, looking at a range of graphical structures common to various
problems across different fields, include image processing. They found that whilst os-
cillations did occur on a number of structures, accurate results were seen on graphs
of widely varying sizes with differing amounts and sizes of loops. Yedidia et al.
[199] reformulated a generalised belief propagation which had greater performance
on loopy graphs, demonstrated on regular lattice graphs. Their method formulates
the messages as between regions of the graph rather than just on individual nodes.
Of particular interest to the distributed processing considered in this chapter, Weiss
and Freeman [200] extended BP to work with continuous-variables with Gaussian
distributions. Their Gaussian belief propagation (GaBP) was quite simple in that
each message only comprised of two scalar values for the mean and variance. This
form of the algorithm is capable of computing maximum likelihood and maximum
a posteriori estimation, however, the algorithm is still only approximate on loopy
graphs. They provide a number of sufficient conditions for GaBP to produce exact
means on loopy graphs and find, similar to results with other forms of BP, that
faster convergence results in more accurate variance. Relating this algorithm to
average consensus, Moallemi and Van Roy [201] considered the situation described
above where each node had a single scalar measurement with the goal of determining
the average using GaBP. They demonstrated that convergence can be improved by

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 84

introducing an attenuation factor that prevents the variance estimates from going
out of control. This attenuation factor affects both the convergence speed as well
as the final accuracy. They explored how this parameter can be chosen based on
the graph structure with goals of convergence to within a defined accuracy. Using
their results, the range of distributed algorithms discussed relating to average con-
sensus could be equivalently implemented with GaBP. Olfati-Saber et al. [202] also
explored the relationship between BP and average consensus by re-deriving the BP
messages and beliefs from the average consensus control law, relating the necessary
attenuation factor to the step size ε in Equation 2.16. Alternatively, Ihler et al. pro-
posed non-parametric belief propagation (NBP) [203], a particle-based method with
arbitrary distributions being represented by mixtures of Gaussians. This required
more memory than GaBP, but can represent non-Gaussian distributions.

A number of authors have explored the convergence properties of GaBP and NBP
in order to find improvements for the approximate inference on loopy graphs as
well as finding situations that can provide exact inference. Johnson, Malioutov
and Willsky [204, 205] provided a framework for analysing GaBP based on ‘walks
on a graph’ in Gaussian graphical models, with the correlation between variables
being related to the sum of all walks between the two variables. This allowed them
to derive a condition for convergence based on the spectral radius of the matrix
describing the graph. On the convergence of GaBP, Su and Wu, and Du et al. [206–
209] found that convergence was exponential for positive semi-definite information
matrices at initialisation. These conditions, however, only describe convergence of
the Gaussian mean whereas the variance is not guaranteed convergence in these
conditions. Exploring the speed of convergence for NBP, Sudderth et al. [210]
demonstrated that performance could be improved for the marginalisation of its
non-Gaussian distributions through importance-weighted sampling of the message
particles to ensure that processing power is focused on the most probable regions
of the distribution. Savic et al. [211] also improved the performance of NBP using
a ‘tree-reweighted’ method, where the graph edges were weighted by the frequency
that the edge appears the set of all spanning-trees for the graph’s topology. This
method of improving convergence speed and accuracy through message weighting
is also applicable to GaBP, similar to the attenuation factor used by Moallemi and
Van Roy [201].

These belief propagation algorithms can be applied to a wide range of problems
— general BP to discrete probabilistic problems, GaBP to problems with continu-
ous random variables that can be modelled as Gaussian, and NBP to continuous
random variables of more arbitrary distributions. Kschischang et al. [94] showed
that the ‘sum-product’ quality of BP related it to a wide range of similarly arranged
problems including fast Fourier transform and Kalman filtering. They demonstrated

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 85

that such problems were equivalent across their contexts and could be interpreted
as factor graphs, therefore implementing them efficiently using BP, however, they
did not demonstrate such problems being solved in a distributed manner. There
have, on the other hand, been a range of applications directly to distributed sensor
networks. Olfati-Saber et al. [202] reinterpreted the belief propagation algorithm as
a type of average consensus, demonstrating how a distributed network of sensors can
be employed for distributed hypothesis testing. The relationship between average
consensus and the various forms of belief propagation demonstrates the parallels
between algebraic problems and probabilistic problems. Utilising NBP, Ihler et al.
[203] demonstrated how the localisation problem could be solved where an array of
sensor nodes in a 2D environment have noisy measurements of the distances between
certain nodes, as well as where some nodes have noisy absolute measurements of
their own position. Modelling the noise as mixtures of Gaussians, they formatted
the maximum a posteriori (MAP) estimation of all positions as an inference prob-
lem that could be solved with message passing. Since NBP messages are collections
of numerous particles, as in standard particle filtering, sampling techniques were
required to combine the messages and produce new collections of particles at each
stage. In their example simulations, they demonstrated that the NBP method was
close in accuracy to the centralised MAP estimate with the advantage of being much
more computationally efficient on larger networks of around 100 sensor nodes.

There has been extensive research into GaBP and its application to distributed
networks. Shental et al. [212] demonstrated how GaBP could be used to solve
linear systems of equations of the form Ax = b where A is a symmetrical matrix.
By building a undirected graph where the edges are represented by the off-diagonal
entries in A, GaBP was employed to solve for A−1b without the need for matrix
inversion. This is different to the average consensus method of solving linear systems
of equations by finding ATA and ATb at each node then performing the matrix
inversion locally at each node. In the average consensus case, each node had a
‘slice’ of the problem, whereas in this case, the graph structure is described by
A. They were able to show that the Gaussian distributions converged to exact
means, although approximate variances, when A was diagonally dominant. As was
the case discussed with average consensus, the ability to solve linear systems of
equations in a distributed manner opens up the possibility to solve a wide range of
distributed problems. Bickson et al. [213] used this process to implement a minimum
mean-squared error (MMSE) linear detector for the multiuser problem, and later
demonstrated that a distributed Kalman filter could be implemented using two
passes of their MMSE estimator [214]. In both of these problems, the symmetrical
information matrix was interpreted as the structure of the undirected graph. Bickson
et al. [213] also followed a similar approach to implement a distributed support vector

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 86

machine for classification and regression. These three examples of GaBP-based
distributed algorithms were demonstrated as methods for efficiently computing the
solutions in a centralised system, separating problems for parallel processing, as well
as solving the problems in networks of distributed processing nodes.

This wide range of research has made belief propagation an extremely well under-
stood distributed algorithm with a versatile range of forms useful for many types
of problems. As will be discussed in Section 2.5.1, belief propagation has found
important use in a number of distributed computer vision applications. Similar to
average consensus, the ability to calculate linear systems of equations in a distrib-
uted manner through only local information and messages with direct neighbours
opens up a range of possibilities. In fact, belief propagation provides an interesting
probabilistic interpretation to the many applications of average consensus.

Distributed optimisation

There are a range of methods for solving optimisation problems in distributed sys-
tems where the global objective function can be separated into a number of local
objective functions. Consider the objective given in Equation 2.21 where each node
i in a system has some local objective fi and variable xi ∈ Rn. The goal of the
optimisation is to jointly minimise all local objective functions whilst maintaining
the constraint that all nodes agree. That is, all local xi are equal to some variable
z. In a distributed system, it is clearly desirable to have each node optimise its local
objective locally and use a consensus algorithm to ensure that all node reach and
agree on the global minimum.

minimise f1(x1) + . . .+ fN(xN) (2.21)

s.t. xi − z = 0

This problem is often represented using an augmented Lagrangian function that
includes an augmentation factor that enforces the constraint further [215]. The aug-
mented Lagrangian for Equation 2.21 is given in Equation 2.22, where the first term
of the sum is the local objective function, the second term involves the Lagrangian
multiplier y, and the third term is the augmentation factor that enforces the agree-
ment of each local variable to the global consensus value. As can be seen, just as
the local objectives are separable across the nodes, so too is the augmented Lag-
rangian. Not all distributed optimisation methods utilise the augmentation factor,
such as in dual decomposition, however, there are many similar and often equivalent
proximal methods that do include this factor which affords greater robustness to the

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 87

Minimise
Lρ(x, z,y)

locally at each
node w.r.t. xi.

Compute z
using a distrib-
uted average
across all xi.

Add residual
between z

and xi to yi.

Figure 2.27: One iteration of distributed optimisation with ADMM using the
Lagrangian function given in Equation 2.22. Each iteration consists of a local
optimisation, a distributed average, and a local addition.

algorithms [216].

Lρ(x, z,y) =
N∑
i=1

fi(xi) + yT
i (xi − z) +

ρ

2
∥xi − z∥22 (2.22)

The Lagrangian given in Equation 2.22 is given in the form utilised by one such
proximal method, alternating direction method of multipliers (ADMM) [215]. In
ADMM, the problem is solved in three stages: firstly the Lagrangian is minimised
for x, then for z, and finally an update is performed for y. In this algorithm, z can
be interpreted as enforcing the consensus constraint and y measures the cumulative
cost of disagreement. In fact, the z-update step reduces to a distributed average over
all xi and the y-update step simply involves adding the current residual between xi

and z to the current yi. Therefore, the algorithm is done using a local optimisation, a
distributed average, and a local addition, as shown for one iteration in Figure 2.27,
producing an entirely distributed algorithm for appropriate objectives. Although
this description has been given specifically for ADMM, it can be shown that this
holds close relation to other methods such as forward-backward splitting, Dogulas-
Rachford splitting, Split Bregman and alternating Split Bregman algorithms, and a
variety of other proximal splitting methods [217, 218].

These proximal splitting methods have been applied to a range of problems in a
similar manner to average consensus to produce a number of distributed estimators.
Rabbat et al. [173] considered how dual decomposition, a similar decomposition
method that excludes the augmented factor, can be used to solve general optim-
isation problems that are split over the nodes in an undirected graph where links
between nodes were unreliable. They also demonstrated that average consensus
could be derived from their framework in the case where the objective is to minim-
ise the sum of squares and demonstrated the resilience of this average consensus to
link failures in the network. Schizas et al. [219] used a similar approach with ADMM
to develop a range of robust estimators for deterministic signals, assuming that each
node in an undirected graph has a measurement vector and that the graph is fully
connected. They considered the problem of distributed estimation with designs for
maximum likelihood estimators (MLE), in systems with known probability dens-

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 88

ity functions, and best linear unbiased estimators (BLUE), for systems with known
linear measurement models. Rather than have all nodes estimate the consensus
variable z, they only estimated it at ‘bridge nodes’ which were selected such that all
regular nodes have a bridge node as a neighbour and all nodes that are separated
by one hop share a common bridge node neighbour. This reduced the amount of
communication required whilst still allowing the consensus variable to be calculated.
They demonstrated that their estimators were resilient to communication noise as
well as quantisation error. In further work, Schizas et al. [220] expanded their ap-
proach to random signals as well as non-stationary signals. They presented both
maximum a posteriori (MAP) estimator and a linear minimum mean squared er-
ror (LMMSE) estimator. For the distributed MAP estimator, it was derived in the
same manner as their ML estimator with the main difference being the inclusion
of a prior. They also use the same methodology to develop a distributed Kalman
filter and smoother for tracking a non-stationary signal. Compared to the average
consensus-based methods of Olfati-Saber [195] and Spanos et al. [194], their method
is capable of tracking fast-changing signals.

Proximal methods have also been applied to computer vision applications for
both the ability to produce distributed algorithms as well as their excellent conver-
gences and performance qualities. Eriksson and Isaksson [221] demonstrated that
proximal splitting could be used to solve pseudo-convex L∞ problems in multi-view
geometry, particularly discussing the problems of triangulation and structure from
motion. They used the split Bregman algorithm to develop their method, however,
this resulted in essentially the same iterates that ADMM would. Their primary
goal was to demonstrate that proximal splitting methods produce efficient, scalable
and straight-forward implementations of multi-view geometry problems, particu-
larly structure from motion. In a continuation of this work, Eriksson et al. [222]
developed a method for bundle adjustment with extremely high tolerance to outliers.
They used proximal splitting methods to produce a least quantile of squares (LQS)
estimator for an implementation of bundle adjustment with a theoretical breakdown
point of 50% outliers. They demonstrated it working better than Tukey and Huber
M-estimators for 15% outliers on two datasets. Finally, Eriksson et al. [223] demon-
strated that these proximal splitting methods could result in a bundle adjustment
algorithm that was suitable for parallel or distributed processing. By dividing up
the structure from motion problem by disjoint partitions of images, their splitting
method resulted in two sub-problems. The first was separable across the image
partitions and the second was separable across the 3D world points. This allowed
each of the sub-problems to be solved in a distributed manner. Their work on differ-
ent facets of bundle adjustment with proximal methods demonstrated the multiple
benefits of these methods. They firstly showed that proximal methods produced al-

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 89

gorithms with excellent convergence properties, even for non-convex problems, they
then showed that highly robust estimators could be developed in much more compu-
tationally feasible ways, and finally they demonstrated how proximal methods lead
to robust distributed algorithms.

Distributed optimisation using proximal algorithms provides a clear framework
for developing distributed algorithms across networks of nodes in a manner that
has a well defined global objective function. As can be seen, it has been applied
in a range of areas resulting in competitive robust estimators when compared to
alternative distributed algorithms as well as robust and distributed computer vision
algorithms. There has already been a number of applications of ADMM and other
proximal methods to the problem of localisation through the bundle adjustment
algorithm.

2.5.3 Distributed calibration and localisation

Distributed calibration and localisation of a camera sensor network is where the
methods of multi-camera calibration that have been discussed are applied to a dis-
tributed CSN. In this case, there is no central node available to perform the full
calculations and, therefore, the various distributed algorithms discussed in Section
2.5.2 are required to spread the calculation over each of the nodes. Some of the work
in this area focuses on the full calibration and localisation problem by computing
both intrinsic and extrinsic parameters, whereas other work focuses instead only on
the localisation problem of the extrinsic parameters with the assumption that the
camera is intrinsically calibrated ahead of time.

There has been much more work in the general task of distributed calibration
and localisation. Early work used pairwise matched feature points and performed
self-calibration locally at each node, which was then aligned into a global solution
using average consensus. Devarajan and Radke [157, 158] presented a method using
self-calibration based on the absolute quadric method of Triggs [47]. They connect
each node to its neighbours in a cluster and perform a local self-calibration. Global
agreement of the extrinsic calibration is achieved by aligning frames across the vis-
ion graph edges through a separate nonlinear least-squares problem that finds the
transformation that best aligns two point clouds. They use unique identifiers to
determine which node will act as the ‘basis’ for this transformation, in effect placing
the lowest identified node at the origin of the coordinate system. They later expan-
ded on their method by using belief propagation to improved the consistency of the
local self-calibration estimations [156]. After their frame alignment process, they
made sure that neighbours agreed on all parameters that they mutually estimated
in the local stage through the message passing algorithm of belief propagation which

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 90

determines the maximum likelihood estimation. Bringing the extrinsic calibration
into global consensus is crucial for distributed computer vision as it prevents errors
from accumulating and propagating throughout the system. Choudhary et al. also
proposed a method for self-calibration of a distributed CSN using multi-layered be-
lief propagation, specifically applying this to pan-tilt cameras. Their method divides
the network into fully connected groups of three cameras where each camera in the
clique estimates the parameters for all three cameras. They also discuss how the
pan-tilt cameras can be actively controlled so that they belong to different cliques
over the course of the calibration to facilitate the exchange of information over the
entire network. This means that each camera node will have estimates for a number
of other nodes that will not be perfectly consistent, which is where multi-layered
belief propagation is used to bring these estimates into consensus across the entire
network. They use a similar method to Devarajan and Radke for aligning coordinate
frames, focusing on aligning cliques first.

An alternative form of distributed self-calibration was proposed by Elhamifar and
Vidal [224] who considered the case of propagating calibration throughout a distrib-
uted CSN using the methods of self-calibration over a spanning tree of the network.
They demonstrate that the nonlinear system of two camera self-calibration reduces
to a straight forward linear system when one of the cameras has know intrinsic
parameters. Therefore, along a spanning tree network, each uncalibrated node can
easily determine its own intrinsic parameters and the extrinsic parameters relative
to its calibrated neighbour. This propagates the calibration from a single calibrated
camera out across the network towards the leaf nodes. By reducing the problem to
a linear one, this opens up the possibility of using this type of algorithm on sub-
stantially lower-power hardware which is appealing for distributed robotic CSNs,
however, the requirement for an already calibrated camera does limit its applica-
tion. This is similar to the method of Vasconcelos et al. [79] discussed previously,
where a new uncalibrated camera can be added to a network of calibrated cameras
and have that calibration propagated to it. Their method relied on pairwise cor-
respondences with at least two calibrated neighbours, whilst Elhamifar and Vidal’s
method only assumes that a single camera is calibrated. The method of Vasconcelos
et al. can be equally applied to a distributed network as a centralised one as it only
requires communication with those two direct neighbours.

Much of the work on calibration in distributed CSNs has focused on solely ex-
trinsic calibration with the assumption that the intrinsic parameters are known. As
mentioned in the discussion on self-calibration of a single camera, once the intrinsic
parameters are known it is fairly simple to determine the extrinsic parameters. For
the single-camera case these are the locations and orientations of each images from
the moving camera, however, for the multi-camera case this is the localisation of

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 91

each different camera. For self-calibration, once the intrinsic parameters are known
the essential matrix between two views can be estimated in the same manner as the
fundamental matrix [19], then this can be decomposed into the extrinsic parameters.
For distributed CSNs, the estimations at each node might not be consistent or the
sharing of such information might be too excessive to allow for these simple methods
and, therefore, a variety of alternative distributed extrinsic calibration algorithms
have been developed.

An early method for distributed localisation was presented by Mantzel et al. [225]
for segments of networks that are sufficiently connected, which they refer to as micro-
clusters. Their method requires that the network be comprised of fully-connected
triangles that are connected to other triangles by at least two common nodes. Their
method has one camera act as the origin of the coordinate frame and assumes that
the distance to the second camera is one, estimating the extrinsic parameters of the
second camera using the essential matrix decomposition method. From here, each
camera estimates its own extrinsic parameters using point correspondences once it
has two fully localised neighbours. Due to the connected nature of the micro-cluster,
all nodes will eventually be localised. A drawback of this method is that it does not
work for parts of the network that are not sufficiently connected.

Calibration objects have been utilised to improve the performance of some dis-
tributed methods. A method by Barton-Sweeney et al. [226] sees camera nodes with
LEDs attached that are used to identify a given node in the field of view of another
node. Therefore, each node can be localised using epipolar geometry, either from the
fundamental matrix when two nodes both observe a common third node, or directly
when two nodes also observe each other. Kurillo et al. [227] localised from pairwise
point correspondences and epipolar geometry, with metric scale determined from a
calibration object comprised of LEDs separated by a known length. Correspondences
are also used to determine weighted adjacency on the vision graph, with Dijkstra’s
algorithm used to find the optimal paths on the vision graphs to transform local
extrinsic estimations into a globally consistent localisation. Medeiros et al. [228]
utilise pairwise correspondences of a moving object to perform relative extrinsic cal-
ibrations between neighbouring nodes, with known distances on the moving object
being used to provide metric scale. To achieve consensus in a common reference
frame, an information weighted average consensus is used with a given node trans-
forming its local estimates into the coordinate frame of the neighbour with which
it is currently communicating if that neighbour has a lower ID. At the end of this
process, the nodes should all be in the same reference frame with agreement over
common parameters. An interesting method by Pollok and Monari [229] localised
a distributed CSN with non-overlapping FoVs by utilising the output of a SLAM
algorithm run on a mobile camera passing through the same area. They rely on

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 92

a keyframe-based SLAM algorithm to provide both a point cloud representation of
the scene as well as information rich keyframes. Each fixed camera to be localised
chooses keyframes that are most similar and determined its extrinsic parameters
relative to the pose of the mobile robot at that frame. All of these methods utilise
their calibration objects or prior information to simplify the problem and achieve
a globally consistent localisation, with Kurillo et al. and Medeiros et al. deriving
known metric scale from their constraints.

Tron and Vidal performed distributed localisation using matched feature points [8,
33]. They used average-consensus based gradient decent to perform optimisation on
the manifold of SE(3) poses. Ambiguities in the solution are solved by separating
the problem into three steps — first rotations are made globally consistent, then
translation and scene scale estimates, then finally all parameters are optimised.
Their work is novel in showing how an algorithm as simple as average-consensus
can be used to apply strict mathematical constraints on a complex optimisation
problem.

As can be seen, the majority of these algorithms are based on self-calibration
or epipolar geometry rather than any of the object-based calibration methods dis-
cussed prior. For the extrinsic-only methods where the intrinsic parameters are
already known, this is the most straight-forward approach, even when metric scale
is required, as it is fairly trivial to impose constraints of known lengths on such
methods. This was seen in the calibration objects of Kurillo et al. and Medeiros
et al. This, however, is not as simple when metric scale is require and the intrinsic
parameters are not known. The methods discussed here that include estimation of
intrinsic parameters either rely on self-calibration or the propagation of calibration
from one or many already-calibration cameras.

2.5.4 Distributed multi-robot visual odometry and SLAM

Distributed multi-robot visual odometry and SLAM involves systems of multiple
robots where each are running a local on-board VO or SLAM algorithm whose map
is combined with or aligned to the other robots in the system through distributed
process, such as the consensus methods discussed in Section 2.5.2, done so without
the use of a centralised processor. There is substantial overlap between some of
these methods and the distributed localisation (extrinsic calibration) discussed in
Section 2.5.3, however, there are two main differences. Firstly, the localisation is
continuous meaning that each node is moving and has multiple poses associated with
it over time. Secondly, the localisation itself is just one aspect of the VO and SLAM
pipeline that was discussed in Section 2.4.2, with map consistency, map alignment,
loop closure, and relocalisation also being important features that need integrating

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 93

into a distributed multi-robot system. In this section, some of the features of a
centralised multi-robot SLAM system are discussed in how they related to map
division that can be applied to distributed systems. Then various approaches to
distributed map alignment and merging are discussed. Following this, methods
for performing the localisation and bundle adjustment in a distributed manner that
includes all connected robots are discussed and related to the distributed localisation
seen in Section 2.5.3 and the distributed filters seen in Section 2.5.2. Finally, to tie
these various approaches together, some notable full distributed SLAM systems are
discussed.

Related aspects of centralised multi-robot SLAM

There are a range of centralised multi-robot approaches that have applicable features
which can be useful for consideration in distributed systems. C2TAM [230] is an
example of a centralised multi-robot SLAM system where a large portion of the
processing is done on a cloud server. This method is built upon PTAM [20] which was
the first SLAM system to separate the mapping and tracking processing into different
threads. C2TAM takes this further and does the tracking thread locally on the robot
but separates the mapping thread to a cloud server with the optimised map being
downloaded to the robot after changes. The authors initially consider just the single-
robot case where the expensive global bundle adjustment and map maintenance is
done by the cloud server, however, for the multi-robot case, as well as the case where
a single robot operates on different maps at different times, map fusion is done on the
cloud and when an overlap is detected each robot downloads the new combined map.
The authors argue that the centralised solution to map building and optimisation
allows significantly larger amounts of data to be leveraged and for the full raw
keyframes from all robots to be retained. This method demonstrates a similar
approach as could be taken for distributed SLAM, with the tracking thread, or VO
front-end, being done in the usual single-robot manner but the global mapping being
separated into a distributed process. Similarly, Dong et al. [231] proposed a SLAM
method that has qualities of centralised and distributed processing. The authors
differentiate between full-SLAM, where map data is shared, and pose-SLAM, where
only relative measurements between robots is established, with their focus being
on multi-robot pose-SLAM. They demonstrate a 2D laser scanner SLAM system
based on expectation maximisation (EM) where each robot solves for a subset of
the graph based on their local pose-to-pose measurements and relevant inter-robot
relative measurements. To obtain inter-robot correspondences, they use feature-
base matching where scans from the robots are broadcast to all other robots in
an assumed all-to-all wireless network, meaning that initially they are solving the
centralised correspondence problem at all nodes. Despite this, they demonstrate

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 94

the separability of the problem that can be solved in an entirely distributed manner
that does not have all-to-all connections.

Another similar aspect of centralised systems that shows strong applicability to
the distributed problem is the use of submapping algorithms for parallel out-of-core
optimisation. Grisetti et al. [232] proposed a method for pose graph optimisation
that uses multiple levels of ‘coarseness’, with the lowest level representing the original
input and each level above that having nodes that represent subgraphs of the lower
level. New measurements are added to the lowest level and either join an existing
subgraph or start a new one. If it starts a new subgraph, the corresponding node is
added at a higher level and so on up to the coarsest level. Optimisation is always
done starting at the top of the hierarchy and the subgraphs corresponding to higher
level nodes are only optimised on lower levels if their parent node is sufficiently
changed. Although their method focuses on minimising the amount of fine-detail
optimisation required, it also opens up the possibility of subgraph optimisation being
performed at a separate processor for parallel processing. Similarly, Ni and Dellaert
[233] proposed a method for partitioning the SLAM factor graph into a hierarchical
structure using nested dissection where base nodes were optimised separately using
a bottom-up approach. Furthermore, Zhao et al. [234] proposed a method for
performing the inverse operation, submap joining, where they showed that it can
be reduced to a linear least squares problem combined with frame transformations
to produce a binary tree ‘divide and conquer’ method. This approach was highly
efficient, however, the results differ from the global optimal solution. One can see
how these submap approaches that allow for parallel optimisation of different parts
of the graph could be applied to a distributed system where the global map is
agreed upon through a distributed process, then partitioned so that each node can
optimise a local portion, then distributed optimisation can be used to recombine the
partitioned map.

Distributed map alignment and merging

An important aspect of distributed multi-robot SLAM that differentiates it from
standard single-robot SLAM is the need to align and merge the various maps gen-
erated locally at each robot. Some systems utilise the merged maps to maintain a
copy of the full global map locally at each robot node, whereas other systems only
retain minimal information about the alignment and merging and instead focus on
augmenting the local map with this information. The goal of having aligned and
merged maps is that this allows the exploration of the robot system to be performed
collaboratively.

Some of the early methods for map alignment and merging were done for col-
laborative SLAM systems that used rendezvous manoeuvres to assist the alignment

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 95

process. Fox et al. [6] discussed cooperative exploration of multiple robots in a
distributed setting where map merging occurred on a network of limited commu-
nication that provided each robot with access to a shared map for use in frontier
exploration. Assuming that partial overlap exists between pairs of robots, their
method had each robot explore until they are able to communicate with another
robot at which point they exchange sensor data to estimate their relative positions,
with rendezvous manoeuvre performed to verify this estimation hypothesis. Suc-
cessful hypotheses are used to align and merge the maps that result in each robot
becoming a part of a cluster that eventually spans the global map, and as robots
join this cluster they are able to participate in the cooperative frontier exploration.
Their method uses a particle filter approach for the tracking and relative estima-
tions, and a graph-SLAM approach for map merging. Zhou and Roumeliotis [24]
also designed a map alignment and merging system that includes rendezvous man-
oeuvres, with their method build around EKF-SLAM. In a similar manner to that
of Fox et al., pairs of robots take bearing and distance measurements of each other
to determine relative locations and, if successful, transform their state vector and
covariances into a common frame and then combine their EKFs. Duplicate land-
marks are combined using a nearest neighbour search. These two methods rely on
a handful of assumptions. Firstly, they assume that the communication bandwidth
can support transmitting their full maps; secondly, they assume that the system is
free to perform rendezvous manoeuvres; and finally, they assume that each robot
is capable of obtaining these relative measurements. With these very reasonable
assumptions, the procedure to align and merge maps is straightforward. However,
it is also interesting to consider how alignment and merging can be done without
such assumptions.

Research has been done into methods that do not rely on those assumptions,
which results in a less straightforward solution. Birk and Carpin [235] considered
the case where the robots were unable to obtain relative measurements of each other
and instead needed to register their maps in an alternative way. Their method used
Gaussian random walks with an image similarity metric applied to 2D occupancy
grids. This essentially treated the maps to be aligned and merged as images to be
registered. The robots explore until their local maps are sufficiently large and then
they attempt to register these occupancy grid maps with the other robots. Lazaro et
al. [236] also considered map merging under fewer assumptions, focusing on commu-
nication bandwidth with a method for multi-robot map alignment and collaborative
SLAM where ‘condensed measurements’ are transmitted instead of full local maps.
When two robots are within communication range for the first time, they exchange
their most recent laser scans and last N nodes of their graph. This allows each ro-
bot to align maps using a RANSAC procedure and then maintain an understanding

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 96

of what node of the neighbouring robots it shares factor with. Using this inform-
ation, all subsequent messages between robots are of the ‘map maintenance’ type
and only contain a condensed version of the map with only the nodes with which
the receiving robot shares factors. Aragues et al. [237] proposed a method based
on average consensus that similarly relied less on communication ability and robot-
to-robot measurements, however, their method also introduced a number of new
assumptions. In their method, each robot builds and maintains its own local map
independently and then periodically uses average consensus to construct a global
map with the other robots. The local map is still retained and used for further
local mapping and fusion to avoid ‘double counting’ of such information. The global
map is found through average consensus using the assumption that all robots are
operating with aligned reference frames and have no robot-to-robot measurements.
By expressing the map in the information filter form, the rows and columns of the
information matrix relating to poses can simply be broadcast between robots to form
the global map and the remaining lower right portion relating to observed features
can be computed using average consensus tracking. As mentioned, this method re-
lies heavily on the robots having the same frame of reference at the beginning of
operation.

These different approaches to map alignment and merging allow SLAM algorithms
at each node to have their local graphs combined into a consistent global graph, or
gain an understanding of how their local graph relates to a possible global graph.
Through this, the local SLAM can be leveraged to perform cooperative exploration
across the multiple robots and efficiently explore a given environment. This can
be seen as a first step towards a fully distributed SLAM, in that the majority of
the SLAM algorithm is the same as the single-robot case with the addition of a
distributed alignment and merging step.

Distributed optimisation and bundle adjustment

Another aspect of distributed VO and SLAM is the global optimisation operations
that occur, which can include pose graph optimisation and bundle adjustment. In
the single-robot case, these are done over the poses of the robot over the course
of its trajectory. In the multi-robot case, this is done over multiple trajectories as
well as inter-robot measurements that relate the trajectories to each other. This
is also closely related to the multi-view localisation problem discussed in Sections
2.3.3 and 2.5.3 with the main difference that each node has a trajectory of different
poses associated with it, some of which have relationships to the poses of other
trajectories.

The various distributed multi-view localisation problems that have been discussed
are directly relevant to distributed pose graph optimisation. This problem has been

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 97

addressed using the range of consensus methods that have been mentioned so far.
Average consensus was utilised by Tron and Vidal [8] to develop a gradient decent
algorithm for optimisation on Riemannian manifolds. Since the problem was sep-
arable across each camera node, it was able to be efficiently solved using average
consensus and a three-stage process refining rotations first, then positions, then the
full poses. Belief propagation was also used for multi-node localisation in the work
of Ihler et al. [203] where edges between nodes represent distance estimates and the
problem was solved effiently using nonparametric belief propagation. Furthermore,
proximal methods have also been used to solve the full distributed bundle adjust-
ment problem, as seen in the work of Eriksson et al. [223] where the demonstrated
separation for parallel processing such that the subproblems that can be computed
independently. This results in two steps to each iteration, the first is separable over
disjoint partitions of images and the second is separable over the 3D points being
tracked. These three different approaches to distributed pose graph optimisation
and bundle adjustment could be directly applied to the case where multiple nodes
correspond to the trajectory of a robot.

There has also been substantial research into developing methods explicitly for
the multi-robot collaborative localisation problem. Nerurkar et al. [238] performed
bundle adjustment using the conjugate gradient method which produced a distrib-
uted algorithm. Conjugate gradient solves the linear least squares update step of
each non-linear optimisation iteration through an iterative process rather than in-
verting the Hessian. Their formulation allows each robot to compute only the parts
of this inner iteration that relate to itself and then that is communicated to neigh-
bours. Their method has only one robot pool the results for one of the steps and
communicate the update back to the other robots, however, that is not strictly
speaking distributed. On the other hand, most purely distributed approaches would
compute this update at all nodes, which would be a minimal change to their al-
gorithm. Knuth and Barooah [25] proposed a method for pose graph optimisation
that was similar in construction to that of Tron and Vidal [8] by using optimisation
on Riemannian manifolds, however, their solution is much closer to the centralised
solution. They assume that each robot has an estimate of its current location as well
as some number of inter-robot relative pose measurements. Robots communicate
these two values to their neighbours where they are incorporated into a local pose
graph optimisation that refines for just the local robot’s pose. This method does not
have the robots refine estimates of the poses of neighbours and therefore does not
require any form of consensus. They then further extended their method to work
with a range of inter-robot measurements beyond relative pose, including rotation,
translation, distance, and bearing measurements [26]. Choudhary et al. [27] de-
veloped a method for pose graph optimisation that was more directly a distributed

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 98

approach to the centralised objective function, with a focus on exchanging minimal
information. They use a two stage approach that first estimates the rotations for a
relaxed linear least squares problem and then estimates the full poses using a Gauss-
Newton iteration, reducing the problem to two linear systems is a similar manner
to how Tron and Vidal separated the problem into three stages. They demonstrate
that this problem can be distributed across the robots, where each linear system is
solved by the iterative Gauss-Seidel method separated by the block structure of the
problem, resulting in an average consensus-like approach.

These methods demonstrate how the VO and SLAM pipeline can be adapted
from the single-robot case to the multi-robot distributed case through the pose
graph optimisation or bundle adjustment stages. Combined with map alignment
and merging, this provides the necessary building blocks for distributed collaborative
SLAM.

Full distributed SLAM systems

Features such as map alignment and merging, distributed bundle adjustment or pose
graph optimisation, inter-robot loop closure, and relocalisation allow a single-robot
visual odometry or SLAM system to become a fully-fledged distributed collaborative
SLAM system. There have been a range of systems that deliver this complete
SLAM feature-set, and their design choices highlight the necessary priorities of such
systems. These priorities include communication constraints, global consistency,
and managing information flow to avoid ‘double counting’ of measurements.

One form of distributed collaborative SLAM was DDF-SAM proposed by Cun-
ningham et al. [28] whose method had three main modules: a local VO module that
tracks the robot and produces a graphical map, a map alignment and merging mod-
ule that communicates condensed maps to neighbours, and a distributed pose graph
optimisation module that operates on neighbourhoods. Their neighbourhood maps
are highly condensed factor graphs that only involve data relating to landmarks,
greatly reducing the data required to be sent between robots. These landmark-only
condensed maps are shared between robots so that each robot can combine them for
neighbourhood optimisation. Since each condensed graph was linearised in different
reference frames, the combined graph maintains their separate frames and relates
them by ‘neighbourhood frame’ landmark nodes which introduce a number of equal-
ity constraints to the overall optimisation problem. The separation between the full
local graph and neighbourhood graph is important to ensure that ‘double counting’
does not occur. This is where measurements from one node are sent to another
and incorporated into the receiving node’s estimates which ultimately affects meas-
urements communicated back to the original node, over-weighting the influence of
those measurements. This, however, means that robots need to maintain two graphs

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 99

and that the optimisation over the neighbourhood cannot be utilised by the local
map. They later address these problems in DDF-SAM 2.0 [9], where the condensed
neighbourhood map is used to augment the full local map with the introduction of
subtractive ‘anti-factors’ introduced to counter the effect of double counting.

Paull et al. [239] proposed a similar distributed SLAM system that was de-
signed specifically for autonomous underwater vehicles which operate in an ex-
tremely communication-constrained environment. Condensed graphs are generated
in a similar manner to Cunningham et al. [28], however, the poses to be marginal-
ised out is determined by the last successful communication event. Therefore, the
subsequent pose information is retained and sent. Furthermore, graph sparsification
techniques are utilised to minimise the amount of data required to communicate
compared to the normally dense marginalisation matrix. All measurements are de-
signed to be relative to the last successful transmission so that packet loss does not
impact consistency of the graph. Like with DDF-SAM, double-counting is avoided
by only transmitting locally acquired data.

There has also been recent research on distributed visual SLAM methods that are
specifically designed around indirect inter-robot estimations from visual features.
Cieslewski et al. [240] presented a method that finds these indirect measurements
in a similar manner to loop closure in single-robot visual SLAM. Inter-robot cor-
respondences are first established using place recognition on compact whole-image
descriptors, then if a correspondence is established the relative pose can be computed
from the visual data association. To minimise communication for place recognition,
each robot will only send its descriptor to a single other robot based on pre-assigned
descriptor ranges, however, to propagate this throughout the network the receiving
robot keeps this descriptor and can use it as a reply to another robot in a later place
recognition operation. A downside of their method, however, is that all-to-all con-
nections between the robots is assumed. Their approach to distributed optimisation
is to adopt the approach of Choudhary et al. [27] and use a distributed Gauss-Seidel
algorithm applied to a two-stage linear relaxation of the pose graph optimisation
problem. In a similar manner, Lajoie et al. [241] proposed DOOR-SLAM which has
many of the same features, however, has a much stronger focus on outlier rejection
for inter-robot loop closures. For place recognition, the same whole-image descriptor
method of Cieslewski et al. is used, however, rather than communicating this to a
single robot based on pre-assigned descriptor ranges all descriptors accrued between
communication events is sent to the target robot when a rendezvous event occurs.
The relative pose estimation is then made based on visual features and verified us-
ing RANSAC with an inlier threshold. Their distributed pose graph optimisation is
also based on the two-stage distributed Gauss-Seidel approach of Choudhary et al.
Additionally, during the pose graph optimisation, spurious inter-robot loop closures

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 100

are rejected if they are identified as outliers when checked for pairwise consistency.
These methods demonstrate how distributed collaborative SLAM can be construc-

ted from the framework of a standard single-robot visual odometry or SLAM system
with the addition of a number of distributed data sharing and consensus-based fea-
tures. One such feature is a map alignment, merging, or sharing method that allows
local map data to be integrated into the estimations of other nodes, such as in the
condensed factor graph maps of Cunningham et al. [28] or in the visual feature
loop closure systems of Cieslewski et al. [240]. The other main consensus-based
feature is distributed optimisation such as the approach of Choudhary et al. [27].
The prevalent theme of how these systems are designed is managing communication
constraints whilst still allowing the effective sharing of data throughout the system.

2.5.5 Summary and open problems

Through the exploration of distributed algorithm and their application to calibra-
tion and SLAM, this section has identified some key insights into current distributed
calibration and SLAM systems. The three main categories of distributed algorithms
considered were average consensus, belief propagation, and proximal splitting meth-
ods for distributed optimisation. Average consensus was most useful when the com-
munication component was reduced to a simple average, however, work such as
was seen in that of Tron and Vidal [8] demonstrated how robust global objectives
could be achieved through average consensus methods. Belief propagation is de-
signed around inference on graphical representations of the problem, but it has been
shown that it can be interpreted as an average consensus problem. The results
achieved through belief propagation are only approximate on loopy graphs, how-
ever, belief propagation has fast convergence properties when it is able to converge
and it has been shown that the faster it converges the more accurate these approx-
imations are [201]. Proximal splitting methods provided a class of powerful and
highly general meta-algorithms for deriving distributed algorithms with clear non-
linear global objectives and excellent convergence properties for problems where the
objective was separable across the graph. These methods provided a more straight-
forward approach to distributed optimisation problems than average consensus or
belief propagation, however, they do ultimately rely on distributed averaging and
therefore would include one of the two alternatives as a component of the overall
algorithm.

Regarding calibration, the majority of current distributed calibration and local-
isation algorithms are built around self-calibration only. Furthermore, most of the
algorithms focused only on the localisation component of the problem. The work of
Devarajan and Radke [157] is an example of a complete distributed calibration and

2.5. DISTRIBUTED CALIBRATION, LOCALISATION, AND SLAM 101

localisation system, and it would be interesting to see similar approaches taken for
methods that utilise a calibration object such that metric calibration to a known
scale is possible. A drawback to their method is that they ultimately take the dis-
tributed average of the local objectives through Gaussian belief propagation, which
is not equivalent to a global bundle adjustment objective. Therefore, it would be be-
neficial to see an alternative algorithm that utilises the average consensus approach
of Tron and Vidal [8] for the full calibration problem or, perhaps more straight-
forward, the application of proximal splitting methods to ensure a correct global
objective.

Regarding distributed SLAM methods, the areas of focus for distributed pro-
cessing include map alignment and merging, pose graph optimisation and global
bundle adjustment. Map alignment and merging is generally done by estimating re-
lative poses from the partial overlap of the maps, which can be created through ren-
dezvous manoeuvres, then merging corresponding points through nearest-neighbour
or feature matching methods, as was seen in the work of Fox et al. [6] and Zhou
and Roumeliotis [24]. Distributed pose graph optimisation and bundle adjustment
is generally done in two ways: firstly, by exchanging information with direct neigh-
bours to allow a reduced form of the problem to be constructed locally on the
neighbourhood only, as was seen in the work of Knuth and Barooah [25], or by
leveraging the separability of the optimisation problem to reduce it to iterations of
local optimisation problems and distributed averages, as seen in the work of Tron
and Vidal [8] and Choudhary et al. [27]. Applying these distributed methods to
the full SLAM system, the common approach is to build upon the standard single-
robot SLAM framework, similar to that discussed in Section 2.4.2, with the addi-
tion of map alignment, merging, pose graph optimisation, and bundle adjustment
approaches, as seen in DDF-SAM [9] where any local VO system that produces a
factor graph map can be utilised. There is still room for the development of holistic
distributed SLAM systems that utilise homogeneous data-types and methodologies
to more tightly integrate the underlying single-robot VO with the overall distributed
SLAM, such as utilising the underlying loop closure and multi-map methodologies
of ORB-SLAM [100] for inter-robot alignment and map merging with the global
bundle adjustment objective being distributed in an approach like that of Tron and
Vidal [8] or Choudhary et al. [27].

From this section, the following open problems related to the pipeline of this thesis
can be identified:

• Feature-based vision graph estimation could be done by combining the reduced
communication load of feature digests and the limited communication events
of a communication graph-based.

2.6. CHAPTER SUMMARY AND PROPOSED FRAMEWORK 102

• Vision graph formation based on calibration objects or as a continuous process
produced by the coherent motion of SLAM is worth exploring.

• Existing distributed calibration and localisation methods are generally based
on self-calibration. Exploration of similar 1D approaches could yield more
accurate methods that provide scene scale.

• Distributed optimisations for SLAM currently involve trade-offs between com-
munication constraints and effective sharing of crucial data.

• Distributed SLAM systems do not take direct advantage of the underlying
SLAM algorithms, but are build on top of them in an interchangeable way.

2.6 Chapter summary and proposed framework

This chapter has analysed the breadth of research in the areas of calibration, localisa-
tion, visual odometry, and SLAM, as well as their applications to distributed robotic
networks. Section 2.3 explored the tightly coupled problems of calibration and loc-
alisation, also referred to as intrinsic and extrinsic calibration, both in the context
of individual cameras and multi-camera networks. This explored the rich history of
the field and the various calibration objects, or lack of calibration objects, that have
been the basis of numerous methods. Section 2.4 explored the development of visual
odometry and SLAM systems over the years, what the difference are between the
two classes of algorithms, as well as what technologies and paradigms are commonly
utilised. This section developed a generalised framework for keyframe-based VO and
SLAM, exploring how different algorithms implement the key components required,
as well as what components are optionally included. Section 2.5 brought these areas
of consideration together in their application to distributed networks. Firstly, the
structure of a distributed camera sensor network was defined, then a number of key
algorithms that form the basis of distributed processing were presented, and finally
specific work on distributed calibration, localisation, visual odometry, and SLAM
were explored both in relation to the base algorithms that were presented in Sections
2.3 and 2.4, as well as with regard to the underlying distributed processing meth-
odologies that were presented. In this section, the key findings from the previous
sections are summarised with a focus on the overall trend and avenues for future
work, then they are related to a general framework for a distributed robotic SLAM
system that informs the work presented in subsequent chapters.

Section 2.3 explored the different types of calibration and their application to
multi-camera systems. Self-calibration is popular due to the lack of a calibration
object; however, it is unable to determine the scale of a scene without additional in-

2.6. CHAPTER SUMMARY AND PROPOSED FRAMEWORK 103

formation. With regard to calibration objects, 3D objects are designed to a high pre-
cision, but this introduces complexity and is generally unsuitable for multi-camera
systems; 2D objects are much more flexible but still have some self-occlusion issues;
and 1D objects remove these issues in multi-camera systems but have not yet seen
as wide adoptions, mainly due to the sheer simplicity of the 2D calibration object.
For these multi-camera systems, 1D and self-calibration were identified as the most
suitable. However, open issues were identified relating to the formulation of the
1D calibration problem, simplification for the end-user, and the potential of novel
calibration object types.

Section 2.4 discussed the two main paradigm splits in the areas of VO and
SLAM, direct versus indirect, and dense versus sparse, also discussing the range
of algorithms that don’t fall neatly into these distinctions. Indirect methods are
more robust for matching between wide baselines and different mapping sessions;
however, direct methods allow for more computationally efficient methods. Sparse
methods similarly offer greater computational efficiency, while dense methods utilise
a greater portion of the image frames. The other main component of Section 2.4 was
the application of a generalised keyframe SLAM framework to the many algorithms
discussed, identifying the two local threads that were important to VO algorithms
and the additional one or two threads used in full SLAM systems. The analysis of
this section identified open problems and opportunities for future research relating to
bridging the gap between direct and indirect methods: introducing direct compon-
ents to the loop closure and relocalisation procedures, utilising feature descriptors
in direct pipelines, and examining the use of direct matching for wide baselines.

Section 2.5 explored the fundamental distributed algorithms that have been used
to create distributed implementations of calibration, localisation, VO, and SLAM.
Average consensus is a method that is most useful for linear systems, however, com-
plicated global objectives have been successfully implemented using this approach.
Belief propagation has its strengths in inference problems but has significant over-
lap with average consensus. Distributed optimisation, on the other hand, reveals
opportunities for highly complex nonlinear objectives to be distributed across many
nodes. Section 2.5 also explored the application of these algorithms to calibration,
localisation, VO, and SLAM. For calibration, self-calibration has received most of
the focus with implementations based on both average consensus and belief propaga-
tion. Regarding SLAM, implementations generally apply the relevant distributed
algorithms to components of map alignment and merging, pose graph optimisation,
and global bundle adjustment.

2.6. CHAPTER SUMMARY AND PROPOSED FRAMEWORK 104

Calibration

Localisation

Initialisation

Pose Estimation

Keyframe Management

Local Loop Closure
and Relocalisation

Local Optimisation

Local VO

Map Alignment
and Merging

Global Loop Closure
and Relocalisation

Pose Graph
Optimisation

Global Bundle
Adjustment

Global Mapping

Robot i

Calibration

Localisation

Initialisation

Pose Estimation

Keyframe Management

Local Loop Closure
and Relocalisation

Local Optimisation

Local VO

Map Alignment
and Merging

Global Loop Closure
and Relocalisation

Pose Graph
Optimisation

Global Bundle
Adjustment

Global Mapping

Robot j ∈ Ni

A

B

C

Figure 2.28: A framework for a distributed SLAM system built around an un-
derlying single-robot VO algorithm. Calibration and localisation is done in a
distributed manner to provide a known static initialisation, then local VO is per-
formed without communication, and finally the local estimates are brought to
global alignment through distributed methods.

2.6.1 Applications to the present work

The research and trends discussed in this chapter have shown that a general dis-
tributed full SLAM system with included calibration and static localisation can
be viewed with the framework given in Figure 2.28, which is an extension of the
framework introduced in Figure 1.2 in Section 1.2. As can be seen, communication
between neighbouring robots is done during the initialisation for the purposes of
calibration and consistent static localisation. Following this, each robot performs
local VO corresponding to the methods discussed in Section 2.4, which is done in the
standard single-robot manner without communication to neighbours. Then, for the
global mapping stage, neighbour-based communication and distributed algorithms
are utilised to bring the system into global consensus.

2.6. CHAPTER SUMMARY AND PROPOSED FRAMEWORK 105

This leads to the identification of three main problems that are the focus of sub-
sequent chapters. Firstly, relating to problem (A) in Figure 2.28, the problem of
distributed calibration and localisation as a suitable initialisation is considered in
Chapters 3 and 4. Most distributed calibration and localisation algorithms are based
on self-calibration, and often only focus on the extrinsic calibration. In Chapter 3,
the adaption of a method similar to Devarajan and Radke [157] is considered for
use with 1D calibration, as this provides metric calibration to a known scale using
a form of calibration that does not have issues with self-occlusion of the calibration
object. Chapter 4 then improves upon this system by utilising the general motion
multi-view 1D calibration of de França et al. [87], however, in a more simplified form
that condenses the nonlinear optimisation to a single stage, then improving the dis-
tributed consensus algorithm by utilising ADMM with Gaussian belief propagation
to split the global objective function into local objectives combined through dis-
tributed averaging. Next, relating to problem (B), a single-robot visual odometry
method is considered in Chapter 5 with the goals of combining the computation
efficiency of direct methods with the wide-baseline matching possibilities of indirect
methods. This is designed to produce a method that can run on the lower-powered
hardware that would be found on-board on robotic vision platforms whilst ensuring
that the local and distributed data-types remain homogeneous. Finally, consider-
ing problem (C), Chapter 6 explores a method of accelerating the convergence of
Gaussian belief propagation through edge-weights such that distributed pose graph
optimisation utilising that class of distributed algorithms can have higher accuracy
results.

Chapter 3

Distributed one-dimensional camera
calibration and localisation with
Gaussian belief propagationa

Contents
3.1 Summary of contributions 106

3.2 Introduction . 107

3.3 Preliminaries . 109

3.4 One-dimensional camera calibration 110

3.5 Initialising the distributed network 113

3.6 Gaussian belief propagation 116

3.7 Experiments and results 119

3.8 Summary . 123

3.1 Summary of contributions

• One-dimensional camera calibration is used to provide an initial intrinsic cal-
ibration at each camera node in a distributed CSN.

• Observations of the calibration object points are compared and used to ini-
tialise a undirected vision graph to a regular lattice structure.

aChapter adapted from “B. Halloran et al., ‘Distributed one dimensional calibration and local-
isation of a camera sensor network,’ in Proceedings of ICIC 2017: Intelligent Computing Theories
and Application, D.-S. Huang et al., Eds., Springer International Publishing, 2017, pp. 581–593,
isbn: 978-3-319-63312-1. doi: 10.1007/978-3-319-63312-1_51”

106

https://doi.org/10.1007/978-3-319-63312-1_51

3.2. INTRODUCTION 107

• Comparisons of 3D world points between close neighbours are used to determ-
ine an initial estimate for relative poses.

• Local neighbourhood-based bundle adjustment is performed and brought into
global consensus using Gaussian belief propagation.

• Evaluations are done on simulated and real data, demonstrating that the dis-
tributed algorithm performs similarly to a centralised counterpart across a
range of noise levels.

3.2 Introduction

This chapter explores a suitable initialisation stage for the three-stage distributed
robotic vision pipeline presented in Figures 1.2 and 2.28, which has the overall goals
of accurate calibration, localisation, and mapping.

Calibration and localisation of a CSN is an important first step for many higher-
level computer vision tasks, allowing 3D information to be derived from 2D images.
Extensive work has gone into studying calibration and localisation, however, most
multi-view solutions require a centralised processor with access to data from all
camera nodes, whilst existing distributed algorithms are generally slower and don’t
recover the scale of the scene due to their reliance on self-calibration. Distributed al-
gorithms are becoming increasingly important in CSNs where centralised processing
is not resistant to node failure and communication with a central node can be ex-
pensive, such as in battery powered applications. This promotes the need for a
simpler distributed algorithm that can accurately calibrate and localise a CSN to
known scale.

The most common calibration method is ‘2D’ calibration, where each camera
observes a planar checkerboard pattern at several arbitrary orientations [59]. This
method is popular due to its simplicity, however, it’s not suitable for large CSNs
due to the planar pattern’s self-occlusion at wider angles. Another popular method
is ‘self-calibration’, which does not use a calibration object, but rather relies on
constraints in the scene [17]. Here, each camera matches feature points from a
static scene and solves the structure from motion (SfM) problem to calibrate and
localise each node. This method is more suited to large CSNs than 2D calibration
as there is no self-occlusion, however, it is more computationally complex and only
calibrates and localises the system up to an unknown scale, which is insufficient for
many applications.

The calibration method being utilised in this chapter is known as ‘1D’ calibration,
which involves observing three or more collinear 3D points where two of the points
are moving and one remains fixed [15]. This method also doesn’t have self-occlusion

3.2. INTRODUCTION 108

problems compared to 2D calibration and determines the scale of the scene compared
to self-calibration. The other major component of our algorithm is Gaussian belief
propagation (GaBP) [197, 242]. Here, each node on a probabilistic graph sends its
neighbours messages based on initial potentials and current belief, which iteratively
form new beliefs until the convergence. GaBP models the variables as Gaussian
distributions, such that each message is simply two scalars representing the mean
and variance of the density [200].

These features are combined to provide a distributed calibration and localisation
algorithm that can accurately initialise a robotic vision platform, being suitable for
use in the first stage of the pipeline being discussed in this dissertation.

3.2.1 Related Work

First proposed by Zhang, 1D calibration has received many improvements to greatly
improve its accuracy [15]. Hammarstendt et al. simplified the closed-form solution
of the problem and analysed critical configurations to identify the classes of mo-
tion that successfully solved the calibration [68]. Other researchers have relaxed
the fixed-point constraint to allow for planar motion or motion under gravity for
the calibration object [69–71]. De França et al. improved calibration accuracy by
normalising the image points to improve numerical conditioning [72] and Shi et al.
improved accuracy with a weighted equation based on orientation of the 1D object
and the relative projective depths [73]. Recently Wang et al. demonstrated that
a linear matrix inequality (LMI) relaxation algorithm could replace the non-linear
optimisation, speeding up the algorithm [243]. There have also been improvements
that allow for general motion of the 1D object in multi-view systems, however, the
results are not yet as accurate as fixed-point methods [85–87].

There has also been work on distributed calibration algorithms, generally based on
self-calibration. Devarajan et al. proposed a method that operates on a vision graph,
which models the system as a Markov random field (MRF) where edges represent
overlap in the fields of view [157, 158]. In their method, each node builds a cluster
with its neighbours and performs SfM on these clusters. They later brought these
estimates to global consensus through belief propagation [7, 156]. Tron and Vidal
proposed an algorithm whereby pairwise pose estimates of a CSN were brought
to alignment using an average consensus-based gradient descent algorithm which
operated on the Riemannian manifold of the poses [8, 33].

3.2.2 Contributions

The proposed algorithm in this chapter consists of modelling the network as an MRF.
Firstly, robust local 1D calibration is performed at each node to estimate the intrinsic

3.3. PRELIMINARIES 109

parameters of the local node as well as the 3D points of the calibration object. The
structure of the calibration object and the estimated 3D points are then utilised
to construct a regular lattice-structured vision graph based on nearest-neighbours
rotation-wise and a cluster-based bundle adjustment is performed such that each
node obtains estimates of their cluster’s extrinsic parameters. Finally, Gaussian
belief propagation is used to align the estimates into global consensus. This produced
two versions of the algorithm: a centralised version where each node performs the
local calibration then a global bundle adjustment is performed, and a distributed
algorithm where each node instead performs the cluster-based bundle adjustment
with direct neighbours and the distributed consensus algorithm is used for alignment.
Experimental tests were performed to compare these two alternatives, verifying that
the distributed algorithm does not result in significant losses in accuracy.

The remainder of the chapter is organised as follows: Section 3.3 reviews the
preliminaries for the graph and camera models; Section 3.4 describes the local 1D
calibration algorithm; Section 3.5 explores the vision graph construction and the
initialisation of pose estimates; Section 3.6 describes the application of Gaussian
belief propagation; Section 3.7 presents the experimental results and analyses the
performance; and finally, Section 3.8 summarises and concludes the chapter.

3.3 Preliminaries

In Section 2.3.1 the camera calibration problem was introduced and in Section 2.5.1
the representation of a CSN as two undirected graphs was introduced. However,
in the following section, the important aspects of these preliminary concepts are
reintroduced for clarity.

3.3.1 Camera sensor networks as Markov random fields

Section 2.5.1 introduced the communication graph, GC = {V , EC}, and the vision
graph, GV = {V , EV }. In this chapter, the algorithms proposed operate entirely on
the vision graph, however, knowledge of the communication graph would be required
for implementation on a physical system. This chapter assumes that the ability
is available to route information across the communication graph to the required
neighbour on the vision graph. For the vision graph, EV ⊆ V ×V is the set of edges
containing (i, j) ∈ EV pairs of camera nodes with sufficiently overlapping fields of
view. We denote the direct neighbours of node i as Ni = {j ∈ V : (i, j) ∈ EV } and
the degree of a node is given by di = |Ni|. Figure 2.24 in Section 2.5.1 demonstrates
the relationship between the fields of view and the vision graph.

3.4. ONE-DIMENSIONAL CAMERA CALIBRATION 110

A

B0

C0

Bi

Ci

O0

O1

OM

a
0

c
0i

b
0i

c
00

b
00

a
1

c
1i

b
1i

c
10

b
10

a
M

c
Mi

b
Mi

c
M0

b
M0

Figure 3.1: The one-dimensional calibration object shown at two positions, and
its projections into three cameras.

3.3.2 The pinhole camera model

Considering the 2D point on the image plane m = [x, y]T as a projection of the
3D world point M = [X, Y, Z]T , we represent these in homogeneous form as m̃ =

[x, y, 1]T and M̃ = [X, Y, Z, 1]T respectively. The projection of the 3D world point
into the image plane to produce the 2D image point is given by

m̃ ≃ K[R|t]M̃, where K =

α γ u0

0 β v0

0 0 1

 . (3.1)

The extrinsic parameters R and t are the rotation and translation of each camera
in the world coordinate system. In the intrinsic matrix K, α and β are scale factors
along the x- and y-axes of the image, (u0, v0) is the principal point, and γ is the
skew which is normally assumed to be zero.

3.4 One-dimensional camera calibration

Firstly, local calibration is performed at each node to determine the intrinsic para-
meters and 3D world points. A one-dimensional calibration object consisting of
three collinear points is used, where one of the points is fixed. The input to the
algorithm is the image points taken of the calibration object at N different orient-
ations, rotated arbitrarily about its fixed point. These images are taken from M

camera nodes, as shown in Figure 3.1.

3.4. ONE-DIMENSIONAL CAMERA CALIBRATION 111

3.4.1 Zhang’s One-dimensional calibration algorithm

The calibration algorithm used in this chapter is based on that proposed by Zhang
[15] with two improvements. Firstly, the fundamentals of the algrithms are presen-
ted. Consider the three collinear 3D world points A, B, and C, where A is a fixed
point and C lies between A and B at a known distance. The known length between
A and B is given by

L = ||B−A||2. (3.2)

The point C is found using the known ratios of λA and λB,

C = λAA+ λBB. (3.3)

The 3D points are defined to be in the camera coordinate system such that [R|t] =
[I|0]. Therefore, the corresponding image points ã, b̃, and c̃ are simply related to
their respective 3D world points by the intrinsic matrix and some unknown projective
depths:

A = zAK
−1ã (3.4)

B = zBK
−1b̃ (3.5)

C = zCK
−1c̃. (3.6)

Substituting these expressions into Equation 3.3 and rearranging allows us to
relate the projective depths of the points at either end of the calibration object
using

zB = −zA ·
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
. (3.7)

Then, by substituting this relationship and the world point projections of Equa-
tions 3.4 to 3.6 into Equation 3.2, the expression for the length of the calibration
object is given in Equation 3.8

z2Ah
TK−TK−1h = L2 (3.8)

where h = ã+
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
b̃.

Now, consider the vector Ω = [ω0 ω1 ω2 ω3 ω4 ω5]
T which is taken from the unique

elements of the symmetrical image of the absolute conic,

ω = K−TK−1 =

ω0 ω1 ω3

ω1 ω2 ω4

ω3 ω4 ω5

 .

3.4. ONE-DIMENSIONAL CAMERA CALIBRATION 112

If we define hi = [hi,0 hi,1 hi,2] for each image i and x = zAΩ, then we can write
Equation 3.8 for each image of the calibration object as

vix = L21 (3.9)

where vi =
[
h2i,0 2hi,0hi,1 h2i,1 2hi,0hi,2 2hi,1hi,2 h2i,2

]T
.

In Equation 3.9, an appropriately sized vector of ones is given by 1. For N images,
each instance of Equation 3.9 is stacked to get theN×6 matrix V = [v0 v1 . . . vN−1],
which produces the linear least squares problem for x given by

Vx = L21. (3.10)

This equation is solved for x using linear least squares, then the intrinsic para-
meters and projective depth of the fixed point, zA, can be determined by Cholesky
decomposition of x. Following this, the projective depth of the moving end, zB, can
be determined for each image based on Equation 3.7 and therefore the full set of 3D
world points can be determined using Equations 3.4 to 3.6.

Finally, these estimated parameters can be refined using nonlinear optimisation.
However, the objective that was given in Equation 2.11 can be simplified using the
constraints of the calibration object. The optimisation in Equation 2.11, discussed in
Section 2.3.2, refines 8+6N parameters with five parameters for the intrinsic matrix,
three for the location of the fixed point, and six further points for the location of
points Bi and Ci for each image i. Instead, the number of parameters can be reduced
to 8+2N by encoding the two moving points by the spherical coordinates θi and ϕi

according to the relationship

Bi = A+ L

sin θi cosϕi

sin θi sinϕi

cos θi

 . (3.11)

This results in the nonlinear minimisation problem given in Equation 3.12, where
πA, πB, and πC are the functions projecting points A, B, and C respectively into
the image plane according to K, using spherical coordinates for B and C.

{K∗,A∗, θ∗i , ϕ
∗
i } = argmin

{K,A,θi,ϕi}

N−1∑
i=0

1

2
(||ai − πA(A;K)||22

+ ||bi − πB(θi, ϕi;K)||22 + ||ci − πC(θi, ϕi;K)||22) (3.12)

3.5. INITIALISING THE DISTRIBUTED NETWORK 113

3.4.2 Improvements to Zhang’s Method

The algorithm presented in this chapter utilises two major improvements based
on the work of de França et al. [72] as well as Shi et al. [73]. To improve the
numerical conditioning of the linear least squares calibration problem, image data
can be normalised using a transformation matrix S based on the image size to
obtain the normalised homogeneous image points m̂, with the inverse transformation
being applied to the resulting parameters K̂ to recover the non-normalised intrinsic
parameters.

m̂ = Sm̃

K = S−1K̂

where S =

2/width 0 −1
0 2/height −1
0 0 1

Then, to further improve the quality of the linear least squares estimation, a

weighting system can be used based on the relative projective depths from Equation
3.7 as well as the distance between image points ai and bi.

βi =
λA(ãi × c̃i) · (b̃i × c̃i)

λB(b̃i × c̃i) · (b̃i × c̃i)

wi =
||ai − bi||2

β2
i

For the N images, the weighting matrix is defined as the diagonal matrix W =

diag(w1, w2, . . . , wN). Using this, the linear least-squares problem in Equation 3.10
is replaced with the weighted and normalisation version in Equation 3.13.

WVx = W(L21) (3.13)

3.5 Initialising the distributed network

At this point in the algorithm, each node has independently determined their own
intrinsic parameters based on their observations of the same calibration object points
as the other camera nodes. The estimations of these 3D world points can now be
used to initialise the vision graph and estimate the extrinsic parameters between the
camera nodes.

3.5. INITIALISING THE DISTRIBUTED NETWORK 114

1

2

3

4

5

(a)

1

(b)

5

(c)

Figure 3.2: Example distributed network of at least five cameras, shown connec-
ted in a lattice with the four nearest neighbours in (a). Each camera estimates the
principle spherical coordinates by averaging each calibration object observation.
This is shown from the point-of-view of (b) Camera 1, and (c) Camera 5.

3.5.1 Connecting the vision graph

Now that the intrinsic parameters and 3D points are estimated, the vision graph of
the system is initialised to determine the neighbours of each node. The vision graph
is an undirected graph with cameras as nodes and edges representing an overlap in
fields of view. Since all cameras are viewing the same object, we could assume a
fully connected vision graph, however an overly connected graph can prevent the be-
lief propagation from converging. We limited these connections to the four nearest
neighbours based on spherical coordinates. Each node j calculates its ‘principal
spherical coordinates’ from the spherical coordinates of each calibration object ori-
entation i by averaging all θij and ϕij, and then the closest four neighbours in
rotation-wise sense are determined from the difference between principal spherical
coordinates. [

Θj

Φj

]
=

1

N

N−1∑
i=0

[
θij

ϕij

]
(3.14)

If the cameras are arranged around the calibration object with roughly even spa-
cing, this results in a regular lattice graph with each node connected to the two
nodes either side, as shown in the example of Figure 3.2.

3.5. INITIALISING THE DISTRIBUTED NETWORK 115

3.5.2 Estimating extrinsic parameters

The estimated calibration object points are also used to determined relative poses
between camera nodes. A node considers its neighbours on the vision graph as a
cluster centred about itself and calculates the poses of the cluster, relative to itself,
by comparing the calibration object world points. Firstly, it calculates the centre of
gravity, Gj of the world points for each node in its cluster,

Gj =
1

3N

N−1∑
i=0

(Aj +Bij +Cij).

To find the rotation and translation between node j and a neighbouring node
k ∈ Nj, we find the covariance, Σ between the points of the two nodes and apply
singular value decomposition.

Σjk =
3N−1∑
i=0

(Mij −Gj)(Mik −Gk)
T = UDVT , for M ∈ {A,B,C}

Rjk = VUT

tjk = −RjkGj +Gk

Using this comparison of calibration object world points, shown in Figure 3.3,
each node now has a local estimate of the relative poses between itself and its four
neighbours that comprise its local cluster.

3.5.3 Cluster-based bundle adjustment

Each node j has estimates for the poses of all nodes k ∈ Nj relative to itself, which we
now refine using bundle adjustment. Like the local calibration stage, the number of
parameters to be optimised is minimised by utilising the structure of the calibration
object. In addition to the three parameters for the fixed point estimated at node j,
Aj, the moving points Bij and Cij are again parameterised by spherical coordinates
θij and ϕij as in Equation 3.11. Also, the poses require three translation variables
and three Euclidean angles. Therefore, the number of parameters to be optimised
for each cluster is 3 + 2N + 6dj, where dj is the number of neighbours of node j.
This cluster-based bundle adjustment is given by

{R∗
jk, t

∗
jk,A

∗
j , θ

∗
ij, ϕ

∗
ij} = argmin

∑
k∈Nj∪{j}

N−1∑
i=0

1

2
(||aik − πA(Aj;Rjk, tjk,Kk)||22

+ ||bik − πB(θij, ϕij;Rjk, tjk,Kk)||22 + ||cik − πC(θij, ϕij;Rjk, tjk,Kk)||22).

3.6. GAUSSIAN BELIEF PROPAGATION 116

1

2

3

4

5
[R|t]

G

(a)

1

G1

(b)

5

G5

(c)

Figure 3.3: The example network of Figure 3.2 estimating extrinsic parameters
between neighbours by comparing calibration object observations and the centre
of gravity G. A top-level view is given in (a), with the point-of-view of Camera 1
shown in (b) and Camera 5 shown in (c).

It is important to note that each node is operating on slightly different data: the
estimations of the fixed point and spherical coordinates are based on the locally
acquired image points, and therefore, each local bundle adjustment will arrive at
similar but different values. It is these values that need to be brought into global
consensus.

During this stage, we also estimated the covariance, ΣM , that will be required
by the Gaussian belief propagation. Using covariance estimates for the input image
point data, Σm, we propagated this through the bundle adjustment Jacobian J

with mean-squared error EMS using Equation 3.15 where (.)+ is the Moore–Penrose
pseudo-inverse.

ΣM = (EMS(J
TΣ−1

m J))+ (3.15)

3.6 Gaussian belief propagation

We now model the true state of each node j as a random vector zj, containing the
extrinsic parameters of the local node and its cluster k ∈ Nj, producing a 6(dj + 1)

vector. xj is the noisy observation of zj obtained from the bundle adjustment. We
wish to estimate zj from all xj by marginalising the joint density

p(zj|x0, ...,xM−1) =

∫
(zk,k ̸=j)

p(z0, ..., zM−1|x0, ...,xM−1)dzk.

3.6. GAUSSIAN BELIEF PROPAGATION 117

1

2

3

4

5

Figure 3.4: The message propagation process described in Figure 2.26 shown for
the example distributed network of Figures 3.2 and 3.3. An example message is
sent from Camera 3 to Camera 5 containing information that Camera 3 received
in the previous iteration from Cameras 1, 2, and 4.

This joint density can be factorised into node potentials ϕj and ψj,

p(z0, ..., zM−1) ∝
∏
j∈V

ϕj(zj)
∏

(j,k)∈E

ψjk(zj, zk).

This problem can be solved using the belief propagation algorithm that was
presented in Section 2.5.2. Belief propagation is the name given to Pearl’s message-
passing algorithm which can perform inference on graphs [197]. This algorithm
provides exact inference on trees, although it still performs accurately on loopy
graphs [200]. It is an iterative algorithm where messages m(t)

j→k(zk) are sent from
node j to node k across edges at every iteration t.

m
(t)
j→k(zk) ∝

∫
zj

ϕj(zj)ψjk(zj, zk)
∏

l∈Nj\k

m
(t−1)
l→j (zj)dzj (3.16)

Here, Nj \ k means all neighbours of j except k. That is, the outgoing messages
are the product of incoming messages from the last iteration, excluding that from
the message target, combined with the potentials and marginalised over variables
not common to both nodes. Figure 3.4 shows this process visually for the camera
network, as an extension to Figure 2.26 in Section 2.5.2, showing that all messages
received at the sending node, except from the target node, are incorporated into a
new message.

The belief at iteration t is similar in construction to the messages, however, it is

3.6. GAUSSIAN BELIEF PROPAGATION 118

simply the product of the node potential and all messages from that iteration.

b
(t)
j (zj) ∝ ϕj(zj)

∏
k∈Nj

m
(t)
k→j(zj)

In Gaussian belief propagation, the random variables are assumed to be Gaussian
densities, with node potentials, messages and beliefs modelled as two scalars – mean
and inverse-variance. The node potential mean, µjj, is the noisy measurement from
the bundle adjustment while the node potential inverse-variance, Pjj, is the diag-
onal of the covariance. In our algorithm, the edge potentials are selector functions
which only select the common variables between the two nodes. The messages from
Equation 3.16 now have the form

P
(t)
j→k = Pjj +

∑
l∈Nj\k

P
(t−1)
l→j

µ
(t)
j→k = (Pjjµjj +

∑
l∈Nj\k

P
(t−1)
l→j µ

(t−1)
l→j)/P

(t)
j→k

and the belief has the form

P
(t)
j = Pjj +

∑
k∈Nj

P
(t−1)
k→j

µ
(t)
j = (Pjjµjj +

∑
k∈Nj

P
(t−1)
k→j µ

(t−1)
k→j)/P

(t)
j .

Once the belief means at each node converge, we take this as the estimate for all
zj and thus the global consensus for the localisation.

3.6.1 Frame alignment

The nodes initially have the pose estimates for their cluster in their own coordinate
frames, and therefore cannot converge to a meaningful value. As such, we need all
pose measurements to be aligned. To do this we give each node an arbitrary unique
identifier. The lowest numbered node is taken as the basis node, b, and all pose
measurements of its neighbours, j ∈ Nb are aligned to its frame, using node b’s
estimate of j’s pose. As each node becomes aligned to the basis, this is propagated
to its unaligned neighbours.

3.7. EXPERIMENTS AND RESULTS 119

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Noise Level (pixels)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
e
la

ti
v
e
 E

rr
o
r

(%
)

Relative Error in Calibration Due to Noise

Alpha

Beta

Gamma

u
0

v
0

Figure 3.5: Relative error of intrinsic parameter estimation for one-dimensional
calibration across Gaussian noise levels up to 2 pixels.

3.7 Experiments and results

In this section, firstly a centralised variant of the algorithm is tested on simulated
data to evaluate the performance on the underlying calibration algorithm, then this
is compared to the fully distributed algorithm to verify that solving the problem in
this way does not degrade the accuracy, and finally real images are used to compare
the results against alternative algorithms.

3.7.1 Simulating the one-dimensional calibration

We first simulated a camera with scale factors α = β = 655px, zero skew, and
principal point at the centre of the 1024× 768px image. The calibration object was
simulated to be 20cm in length with the fixed point located at A = [0 0 75]T cm.
Image points for the object were then generated at 100 different orientations by
sampling θ in [0, π

4
] and ϕ in [0, 2π] with uniform distribution. We calculated the

average error across 200 independent trials for each level of Gaussian noise with
zero mean and σ between 0.1 to 2.0 pixels. We measured the relative error for all
parameters with respect to α, giving |∆α/α|, |∆β/α|, |∆γ/α|, |∆u0/α|, |∆v0/α|, as
proposed by Triggs [244]. The results are shown in Figure 3.5, with errors staying
below 5% at two pixels of noise. Calibration object detection from a real camera
generally show less than one pixel of noise, and therefore should perform at below
2% error for intrinsic parameters.

3.7.2 Simulating the distributed localisation

Next, we performed a simulation of the full algorithm. In this experiment, we used
the same intrinsic parameters as previous and similarly used a 20cm calibration

3.7. EXPERIMENTS AND RESULTS 120

Figure 3.6: The ground truth layout for one trial of our simulation, using ten
cameras nodes.

object with A = [0 0 75]T cm uniformly sampled 100 times for each trial from θ in
[0, π

4
] and ϕ in [0, 2π]. Our cameras were located in a mostly circular fashion on

the xy-plane around the fixed point and spaced 2π/M apart at distances uniformly
sampled from [75, 95]cm. For our experiment, we used the number of camera nodes
as M = 10. The cameras were initially directed towards the fixed point but had
their y-axis rotations perturbed by a uniform sampling of [−5◦, 5◦]. Once again, we
took the average error of 200 trials at each noise level from 0.1 to 2.0 pixels. An
example ground truth layout from our simulation is shown in Figure 3.6, with the
cameras shown located about the world points. In these simulations, our method
of constructing the vision graph resulted in each node being connected to its two
neighbours either side.

In our simulation, we first performed the local intrinsic calibration and used the
estimates of the calibration object to construct our vision graph. We then performed
cluster-based bundle adjustment followed by Gaussian belief propagation until con-
vergence. Our criteria for convergence was that the proportional change in belief
|btj−bt−1

j |/btj was less than 0.0001 for all nodes. We found that convergence occurred
in between 12 and 40 iterations for all trials.

The error metric we used for the localisation was that employed by Devarajan
and Radke [156], using the error in position as ||∆C|| and error in orientation as
2
√
1− cos∆θ, where ∆θ is the relative rotation between the ground truth and es-

timated value. We averaged these errors across all nodes and trials for each noise
level and compared the values to the errors of a centralised global bundle adjust-
ment. The position errors in the distributed and centralised algorithms can be seen

3.7. EXPERIMENTS AND RESULTS 121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Noise (pixels)

0

2

4

6

8

10

12

14

16

18

A
v
e

ra
g

e
 E

rr
o

r
(c

m
)

Comparison of Distributed and Centralised Position Errors

Distributed Algorithm

Centralised Algorithm

(a) The position error for noise levels using
the distributed and centralised algorithms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Noise (pixels)

0

0.05

0.1

0.15

0.2

0.25

A
v
e

ra
g

e
 R

o
ta

ti
o

n
 E

rr
o

r

Comparison of Distributed and Centralised Rotation Errors

Distributed Algorithm

Centralised Algorithm

(b) The rotation error for noise level using
the distributed and centralised algorithms.

Figure 3.7: The error between the distributed algorithm for optimising and align
localisation compared to a centralised global bundle adjustment, shown across
Gaussian noise levels up to 2 pixels.

in Figure 3.7a, while the equivalent rotations errors can be seen in Figure 3.7b.
As can be seen from Figure 3.7, the centralised algorithm only performed slightly

better than the distributed algorithm across all noise levels. The reason for the
difference is that the centralised algorithm is optimising over a joint global objective,
whereas the distributed algorithm optimises over a number of different local sub-
objectives that are then brought into consensus with essentially a variance-weighted
distributed average. This means that the two overall objectives are not completely
equivalent. The results, however, show that the benefits of the distributed algorithm,
such as being resistant to single node failure and being scalable without causing
communication bottlenecks, are achievable without substantial degradation to the
quality of the localisation. Furthermore, at up to two pixels of noise the error in
both translation and rotation gradually increases, showing no clear point of sudden
failure. This highlights that the algorithm remains reliable in noisy environments.

3.7.3 Evaluation on real data

Finally, the performance of the algorithm was verified on real data using a network
of ten Raspberry Pi 3 computers with camera modules. The ‘ideal’ intrinsic para-
meters were taken to be those from the respective data-sheets as given in Table
3.1. Although these are not exact ground truth values, modern cameras are man-
ufactured to a high enough standard that this provides a suitable baseline. Due to
this lack of a ground truth, the root-mean-squared reprojection error (RMSE) was
also compared between the image points and the reconstructed world points. The
cameras were arranged in an arc, with their centre distances and rotations relative
to camera 0 reported in Table 3.2. The calibration object was 205mm long, with
three equidistant 40mm balls used as points. The dataset contained 30 images of the

3.7. EXPERIMENTS AND RESULTS 122

Table 3.1: Ideal intrinsics from camera data-sheets (in pixels).

Camera α β cu cv

Cameras 0-4 634 634 320 240
Cameras 5-7 612 612 320 240
Cameras 8-9 501 501 320 240

Table 3.2: Ground truth for centre distances and y-axis rotations, relative to
Camera 1.

Camera 1 2 3 4 5 6 7 8 9

Distance (mm) ±0.5mm 134 263 399 519 638 752 895 1064 1228
Rotation (deg) ±0.5° 9 14 20 26 31 40 48 48 62

(a) 1D calibration object (b) 2D calibration object

Figure 3.8: Example images from the experimental test showing the scene with
a 1D and 2D calibration object.

calibration object where it was visible to all ten cameras, with the vision graph con-
structed using the two nearest neighbours either side as determined by the method
of Section 3.5.1.

The intrinsic and extrinsic parameters were calculated firstly using the 1D al-
gorithm without the improvements of Section 3.4.2, then the improved centralised
algorithm, as well as the distributed version of the algorithm. This was also com-
pared to the 2D calibration of Zhang [13]. Example images from the dataset for
each calibration type are shown in Figure 3.8, with results shown in Table 3.3.

As can be seen from the results in Table 3.3, the original 1D calibration algorithm
does not perform as well as the ubiquitous 2D calibration algorithm, however, the
improvements discussed in Section 3.4.2 bring these two types of calibration more
in-line with each other. Furthermore, extending the 1D algorithm to its distributed
form maintains a similar accuracy to the centralised version. This demonstrates that
the distributed 1D calibration algorithm achieves the goal of providing a simple cal-
ibration algorithm with comparable quality to the most common alternative whilst

3.8. SUMMARY 123

Table 3.3: Relative difference to ground truth and ideal results averaged per
algorithm, and RMS reprojection error.

Algorithm α β cu cv T Ry RMSE

2D [13] 0.63% 0.75% 1.15% 1.02% 2.65% 2.90% 0.126px
1D [15] 2.24% 1.04% 1.99% 2.74% 4.20% 3.25% 0.572px
1D Improved 0.89% 0.93% 1.51% 2.56% 4.03% 3.11% 0.481px
1D Distributed 1.07% 1.04% 1.59% 2.78% 4.21% 3.15% 0.486px

being usable at wide angles in a distributed network. The performance of the al-
gorithm is comparable to the simulation results in the range of 0.5 − −1 pixel of
noise, demonstrating that there is still room for adequate performance in camera
systems affected by even higher levels of noise.

3.8 Summary

In this chapter, we have presented a distributed algorithm for camera sensor network
calibration and localisation with known scale. The motivation for this was to provide
a robust initialisation stage for the distributed calibration, localisation, and mapping
pipeline presented in Figures 1.2 and 2.28. The design goal for this initialisation
stage was to use a calibration method that is able to determine the scale of the
scene without introducing issues of calibration object self-occlusion. Therefore, one-
dimensional calibration was chosen.

Our method models the network as a Markov random field based on a vision
graph. Following the one-dimensional calibration performed locally at each node,
a vision graph was constructed based on rotation distance between nodes. Then,
the relative extrinsic parameters between neighbouring nodes were estimated from
the comparison between estimated calibration object world points and were optim-
ised locally with cluster-based bundle adjustment. These estimates are brought to
a globally accurate consensus through Gaussian belief propagation on the vision
graph. Our method was shown to be comparable to centralised calibration and
bundle adjustment whilst having the advantages of distributed algorithms, namely
resistance to node failure and scalability. Although the widely-used 2D calibration
has higher accuracy in its result, we have brought the 1D calibration method closer
in performance whilst being in a distributed setting where the use of the 2D method
is less suitable.

From this, it can be seen that a suitable initialisation stage for the distributed
robotic vision pipeline has been proposed.

Chapter 4

Robust one-dimensional calibration
and localisation of a distributed
camera sensor networka

Contents
4.1 Summary of contributions 124

4.2 Introduction . 125

4.3 Preliminaries . 127

4.4 Multi-view calibration with one-dimensional objects . . 130

4.5 Calibrating a distributed camera sensor network 135

4.6 Experimental results . 140

4.7 Summary . 148

4.1 Summary of contributions

• An improved version of the distributed one-dimensional calibration and local-
isation algorithm is proposed, using general-motion one-dimensional calibra-
tion and distributed optimisation.

• Normalisation is applied to the projective 3D reconstructions in general-motion
one-dimensional camera calibration to improve the numerical stability of the
linear estimation.

aChapter adapted from “B. Halloran et al., ‘Robust one-dimensional calibration and localisation
of a distributed camera sensor network,’ Pattern Recognition, vol. 98, 107058, pp. 1–12, 2020. doi:
10.1016/j.patcog.2019.107058”

124

https://doi.org/10.1016/j.patcog.2019.107058

4.2. INTRODUCTION 125

• A more geometrically meaningful bundle adjustment is introduced to replace
the multiple stages of nonlinear optimisation in the original method, improving
accuracy and computational efficiency.

• Due to the general-motion of the calibration object, the vision graph is initial-
ised from covisibility of the object, rather then the lattice graph used previ-
ously.

• The global bundle adjustment objective of the centralised algorithm is split
into local objectives at each node using alternating direction method of multi-
pliers which are brought into global consensus using Gaussian belief propaga-
tion.

• Extensive testing is done on synthetic and real data.

• Results show that the centralised algorithm has superior performance to the
original algorithm, self-calibration, and 2D calibration for a number of intrinsic
parameters and the extrinsic localisation.

• The distributed algorithm achieves similar accuracy to the centralised al-
gorithm for all parameters.

4.2 Introduction

This chapter explores an improved version of the calibration and localisation method
discussed in Chapter 3, providing a better initialisation stage for the three-stage
distributed robotic vision pipeline presented in Figures 1.2 and 2.28, which has the
overall goals of accurate calibration, localisation, and mapping.

Calibration and localisation of a camera sensor network (CSN) enables higher-level
computer vision tasks by allowing metric 3D information to be attained from 2D
images. Most multi-view calibration algorithms use a central processor with access to
data from all camera nodes, which can encounter communication issues in large CSNs
and represents a single point of failure. With low-cost on-board processing becoming
increasingly feasible for robotic vision applications, such as networks of micro aerial
vehicles, distributed processing can ensure robustness and scalability. This promotes
the need for a simple calibration and localisation algorithm for distributed CSNs.

The most popular calibration algorithm is Zhang’s ‘2D’ calibration using a planar
pattern seen at arbitrary orientations [13] which works on various camera models
[245, 246]. Unfortunately, in a large CSN, the pattern self-occludes when viewed
at wide angles. Alternatively, ‘self-calibration’ doesn’t use any pattern, instead
using structure from motion (SfM) [17, 79]. While suited for large CSNs, it is

4.2. INTRODUCTION 126

computationally complex and cannot determine scene scale. This chapter utilises
‘1D’ calibration [15], where collinear points are seen at arbitrary orientations. This
work also uses Gaussian belief propagation (GaBP), a message passing algorithm
for aligning local estimates in a distributed network [200], and alternating direction
method of multipliers (ADMM), a method of splitting optimisation problems for
distributed processing [215].

These features provide an improved distributed calibration and localisation al-
gorithm that can accurately initialise a robotic vision platform, resulting in a better
initialisation stage for the pipeline discussed in this dissertation.

4.2.1 Related work

The original 1D calibration algorithm of Zhang [15], as utilised in Chapter 3, was
described for a single camera and constrained the calibration object to rotate about
a fixed point, however, research has relaxed this to allow for planar motion and
motion under gravity [70]. Accuracy and speed of this algorithm has also been
improved using normalised image points and a partitioned Levenberg-Marquardt
refinement [72], information weighted algorithms [74], and replacing non-linear op-
timisation with convex relaxation [243]. Full general motion of the calibration object
has been achieved in multi-view CSNs, originally requiring a reference camera that
was already calibrated [85], and later without this requirement based on vanishing
points [86], robust perspective factorisation [247], and then fundamental matrices
[87]. Our method improves the accuracy of the latter algorithm using two stages of
normalisation and a single global bundle adjustment (BA).

Our method also utilises belief propagation, originally for inference on trees [197],
and later extended to loopy graphs [198] and continuous variables [200]. Most dis-
tributed calibration algorithms use self-calibration, with Devarajan et al. modelling
the CSN as a Markov random field (MRF) where each node performs local SfM which
is aligned with belief propagation [7]. Tron and Vidal brought pairwise CSN pose
estimates to alignment with average consensus-based gradient descent on Rieman-
nian manifolds [8]. There is also a range of work on distributed localisation for
dynamic robots under changing topologies using methods such as dynamic average
consensus [248], fusion of relative measurements [249], robust control laws [250],
and Kalman filter-based collaborative localisation [251]. Furthermore, Eriksson et
al. have demonstrated splitting BA across processors using proximal splitting, sim-
ilar to ADMM [223]. Graphical models have wide use in BA [252] and localisation
[253], and similar to the distributed case need to ensure consistent poses along graph
cycles [254]. Our method uses a combination of ADMM and GaBP to optimise the
localisation over an MRF.

4.3. PRELIMINARIES 127

4.2.2 Contributions

Our motivation was to develop a simple and robust calibration technique for ad-
hoc CSNs, particularly for inexpensive micro aerial vehicles that might be replaced
or swapped often, where it could be easily run to provide a quick initialisation
to a known scale for a dynamic localisation algorithm such as in [249]. General
motion 1D calibration is well suited to a CSN due to the lack of self-occlusion
at wide angles, however, such algorithms don’t yet have comparable accuracy to
other calibration algorithms. Furthermore, distributed processing is being used to
ensure the algorithm is highly scalable. From this motivation, the primary goal of
this chapter is to produce a robust initialisation stage for the pipeline presented in
Figures 1.2 and 2.28.

As a basis for our work we have used the calibration and localisation algorithm
of de França [87]. However, we have used normalised image points and projective
3D reconstructions to improve the accuracy of key linear estimations. Then, we
have introduced a more geometrically meaningful non-linear refinement to replace
all non-linear refinement of the previous method. Next, to adapt this algorithm to a
distributed network for alignment with ADMM and GaBP we have taken additional
steps. We have operated on neighbourhood-based node clusters to perform the
calibration separately at each camera. We then used ADMM to split the global
bundle adjustment objective into locally-computable steps. Finally, we align each
iteration of the ADMM process using an application of GaBP that considers frame
alignment and an error model.

The chapter is organised as follows: Section 4.3 introduces the preliminaries of
the camera model, calibration object, and distributed network. Section 4.4 describes
the 1D calibration algorithm and our improvements, and Section 4.5 adapts this to
a distributed network. Section 4.6 provides experimental results on simulated and
real data, and Section 4.7 concludes the chapter.

4.3 Preliminaries

In Section 2.3.1 the camera calibration problem was introduced and in Section 2.5.1
the representation of a CSN as two undirected graphs was introduced. However,
in the following section, the important aspects of these preliminary concepts are
reintroduced for clarity.

4.3.1 The pinhole camera model

Different to Section 3.3, this chapter expresses the multi-view pinhole model more
explicitly and discusses greater detail regarding the parameterisation of poses. Fur-

4.3. PRELIMINARIES 128

thermore, projective reconstructions are utilised in this chapter.
Consider a network of K + 1 ≥ 2 camera nodes with node 0 at the origin of the

world coordinate system. Each node k has an intrinsic matrix Kk and extrinsic
matrix [Rk|tk], and takes N images of M points, m = [x, y]T , a projection of the
3D world point M = [X, Y, Z]T . These have homogeneous forms m̃ = [x, y, 1]T and
M̃ = [X, Y, Z, 1]T respectively. The jth image point of the ith image for node k is
related to its corresponding world point by

m̃kji ≃ Kk[Rk|tk]M̃ji, where Kk =

[
αk 0 uk
0 βk vk
0 0 1

]
. (4.1)

Here, ≃ signifies equality to a scale factor. Extrinsic parameters Rk and tk are
rotation and translation of the camera, with [R0|t0] = [I|0]. We have x- and y-axis
focal lengths αk and βk, and (uk, vk) as the image principal point. The combined
camera projection matrix is P,

Pk = Kk[Rk|tk], P0 = K0[I|0]. (4.2)

We use the minimal Lie-algebra representation of [R|t] with ξ = (ω, ν)T ∈ se(3),
related by the exponential map of Equation 4.3 with corresponding inverse mapping
logSE(3)(·), and use [v]× for the cross-product matrix [v]×x = v × x.[

R t
0 1

]
= expse(3)(ξ̂) (4.3)

where ξ̂ =

[
[ω]× ν
0 0

]
The correspondences (m0ji ↔ mkji) for nodes 0 and k can be used to find the

fundamental matrix Fk, epipole ek, and projective matrices, P0 and Pk, which are
related to the camera matrices of Equation 4.2 by a transform Tk [19].

P0 = [I|0] = P0Tk, Pk = [H|ẽk] = PkTk (4.4)

where H = [ẽk]×Fk

Tk = µk

[
K−1

0 0
wT

k wk

]
(4.5)

Here, µk is a scale factor and Wk = [wT
k wk]

T is the plane at infinity for the
projective coordinate system of this pair. Triangulating [19] the (m0ji ↔ mkji)

matches with P0 and Pk produces projective reconstructions,Mkji

m̃kji ≃ PkM̃kji, and m̃0ji ≃ P0M̃kji. (4.6)

4.3. PRELIMINARIES 129

Figure 4.1: The general-motion one-dimensional calibration object as it appears
to various camera nodes.

4.3.2 The one dimensional calibration object

The 1D calibration object, used to determine camera matrices Pk, consists of M ≥ 3

collinear points seen at N ≥ 5 arbitrary displacements by each camera, as shown in
Figure 4.1, providing each node with MN image points. This is contrasted with the
structure presented in Figure 3.1 in Chapter 3, where the calibration object required
a fixed point. The cameras require overlapping fields of view such that the M points
of the calibration object are present in at least 5 images in common with camera 0.
The known object length and ratios between points is given in Equations 4.7–4.8.

L = ||M1i −M2i|| (4.7)

Mji = λ1jM1i + λ2jM2i, for 3 ≤ j ≤M. (4.8)

4.3.3 Camera sensor networks as Markov random fields

As in Chapter 3, the ad-hoc network of K + 1 camera nodes is described by an
undirected vision graph, G = {V , E}, where V = {0, ..., K} is the set of camera nodes
and E ⊆ V×V is the set of edges with (i, j) ∈ E pairs of nodes with overlapping fields
of view. We denote the direct neighbours of node i as Ni = {j ∈ V : (i, j) ∈ E},
with degree di = |Ni|. Figure 2.24 in Section 2.5.1 demonstrates the relationship
between the fields of view and the vision graph.

4.4. MULTI-VIEW CALIBRATION WITH ONE-DIMENSIONAL OBJECTS 130

4.4 Multi-view calibration with one-dimensional ob-

jects

In this section we briefly describe the multi-view 1D calibration algorithm of de
França, then we detail our three improvements to this method. We present a flow-
chart of the full algorithm in Figure 4.2.

4.4.1 De França’s one dimensional calibration with general

motion

Firstly, we describe the three linear least-squares (LLS) problems and two non-linear
refinements of the original algorithm. The first two LLS problems are run for nodes
0 and k, whilst the third is run for all remaining nodes. For the original derivation
we refer the reader to [87].

The first projective plane at infinity

The first LLS system finds the projective plane at infinity between nodes 0 and k,
Wk, using Equation 4.9, which is stacked (M − 2)N times for the system of linear
equations in Equation 4.10. Here, the inputs are the projective reconstructions,
Mkji, as well as the ratio of lengths between world points along the calibration
object, λ1j and λ2j for 3 ≤ j ≤M , which is solved for Wk.

uT
kjiWk = 0 (4.9)

where uT
kji = M̃k1i +

λ1j(Mk1i ×Mkji).(Mk2i ×Mkji)

λ2j(Mk2i ×Mkji).(Mk2i ×Mkji)
M̃k2i.

UT
kWk = 0 (4.10)

where Uk =
[
uT
k30 uT

k31 ... uT
kji ... uT

kMN

]
Image of the absolute conic

The second LLS problem relates the plane at infinity to the image of the ab-
solute conic (IAC), ωk = µ2

kK
−T
0 K−1

0 , where µk is a homogeneous scale factor.
This is a 3 × 3 symmetric matrix that is represented in a vector form, Ωk =

4.4. MULTI-VIEW CALIBRATION WITH ONE-DIMENSIONAL OBJECTS 131

Start

Input MNK correspondences
(m0ji ↔ mkji) for a 1D pattern of
M ≥ 3 points seen at N ≥ 5 dis-

placements by (K + 1) ≥ 2 cameras.

Estimate projective matrices Pk for
each camera from matrices Fk using
Eq. (4.4), and triangulate projective
reconstructionsMkji from Eq. (4.6).

Normalise projective points
Mkji using Eqs. (4.23)–(4.25).

Determine the projective plane at
infinity for first pair W1 with Eq. (4.10).

Normalise image points mkji

using Eqs. (4.20)–(4.22).

Find intrinsics of first cam-
era K0 using Eq. (4.11).

Find camera matrices P0 and P1 for first
pair using K0, W1 and Eqs. (4.4)–(4.5).

Estimate 3D reconstructions of point
correspondences Mji using Eq. (4.14).

Refine estimates of K0, W1,
and Mji with Eq. (4.17).

Remaining
uncalibrated

cameras?

Determine the projective plane at
infinity Wk using Eqs. (4.15)–(4.16).

Refine estimates of Wk with Eq. (4.18).

Find full camera matrix Pk us-
ing K0, Wk and Eqs. (4.4)–(4.5).

Decompose all camera matrices Pk into
intrinsics Kk and extrinsics [Rk|tk].

Perform global refinement on all Kk,
Rk, tk, and Mji using Eq. (4.26).

Output camera matrices Pk for
(K + 1) cameras and the recon-
structions Mji of MN 3D points.

Stop

No

Yes

Figure 4.2: Improved calibration procedure, with our novel additions highlighted
in blue and the no-longer needed non-linear refinements steps shown in red with
dashed lines.

4.4. MULTI-VIEW CALIBRATION WITH ONE-DIMENSIONAL OBJECTS 132

[
ω11 ω12 ω22 ω13 ω23 ω33

]T
, to solve the 2MN linear equations,

[
dk00 ... dkji ... dkMN

]T
Ωk =

[
L11 ... Lji ... LMN

]T
(4.11)

where dkji =

[
g21 2g1g2 g22 2g1g3 2g2g3 g23
q21 2q1q2 q22 2q1q3 2q2q3 q23

]T
(4.12)

Lji =
[
λ21jL

2 λ22jL
2
]

gkji = (ηkjim̃0ji − ηk2im̃02i)

qkji = (ηk1im̃01i − ηkjim̃0ji)

ηkji =
Zkji

M̃T
kjiWk

. (4.13)

In Equation 4.12, gn and qn are the nth entries in gkji and qkji, and in Equation
4.13 Zkji is the depth ofMkji, withM = [X Y Z]T . The inputs to the LLS problem
in Equation 4.11 are the image points, projective reconstructions, calibration object
length and Wk, with the output being the IAC which is decomposed into K0. We
can now upgrade our projective matrices and reconstructions to Euclidean camera
matrices and world points with Equations 4.4–4.5 and

M̃ij ≃ TkM̃kji. (4.14)

Remaining projective planes at infinity

The final LLS problem, repeated for all remaining cameras, finds the inverse pro-
jective plane at infinity, W̄k =

[
w̄T

k w̄k

]T . We also use Pk = [PAk|Pbk] with left
3× 3 matrix PAk and right 3-vector Pbk.[

Ψk00 ... Ψkji ... ΨkMN

]T
W̄k =

[
ψk00 ... ψkji ... ψkMN

]T
(4.15)

where Ψkji = [m̃kji]×PbkM̃
T
ji

ψkji = −[m̃kji]×PAkK0Mji

Wk =
[
(1/w̄k)w̄

T
kK

T
0 (1/w̄k)

]T
(4.16)

In Equation 4.15, the inputs are the image points, projective matrices, Euclidean
world points, and intrinsic matrix K0. Its output, W̄k, is related to Wk by Equation
4.16 and used in Equation 4.5 to find the remaining camera matrices.

Non-linear refinement

The original algorithm also had two non-linear least-squares (NLLS) refinements to
improve accuracy assuming image point noise; the first refined the result of Equa-

4.4. MULTI-VIEW CALIBRATION WITH ONE-DIMENSIONAL OBJECTS 133

tion 4.11 with Equation 4.17 and the second refined the result of Equation 4.15
with Equation 4.18. These are minimised with a curve-fitting algorithm, such as
Levenberg-Marquardt [255].

1∑
k=0

N∑
i=1

M∑
j=1

||mkji − π′
kji(K0, W1, M1i, θi, ϕi)||2 (4.17)

K∑
k=2

N∑
i=1

M∑
j=1

||mkji − π′′
kji(Wk ; K0, Mji)||2 (4.18)

In Equations 4.17–4.18, π′
kji and π′′

kji are the reprojection of Mji into the image
of node k using Equations 4.1–4.2, getting Pk from K0 and Wk with Equations
4.4–4.5. In Equation 4.17 all parameters of π′

kji are refined, whereas in Equation
4.18 only Wk is refined. We reduce the number of parameters in Equation 4.17 by
parameterising the collinear calibration points Mji for 2 ≤ j ≤M by θi and ϕi,

Mji = M1i + λ2jL

[
sin θi cosϕi

sin θi sinϕi

cos θi

]
. (4.19)

4.4.2 Our improvements to the one-dimensional calibration

We have improved the method of Section 4.4.1 by normalising the image points and
projective reconstructions for the LLS problems, and replacing the NLLS problems
with a global BA. These changes are shown in Figure 4.2.

Normalising the image points and projective peconstruction

Noise in the image point data affects the estimation of the IAC in Equation 4.11.
From Hartley [45], a transformation of input data can improve LLS solutions affected
by noise, which has seen success in other calibration algorithms [72, 74]. The main
constraint between the image points and IAC being exploited by Equation 4.11
is given in Equation 4.20 [19]. Applying some transformation to the 2D points,
S2D in Equation 4.21, we can satisfy this constraint with a transformed IAC, ω̂,
corresponding a transformed intrinsic matrix K̂0, and can recover the original K0

using 4.22.

m̃T
0jiωm̃0ji = 0 (4.20)

m̂kji = S2Dm̃kji (4.21)

m̂T
0jiS

−T
2DωS

−1
2Dm̂0ji = m̂T

0jiω̂m̂0ji = 0

ω̂ = S−T
2DK−T

0 K−1
0 S−1

2D = K̂−T
0 K̂−1

0

K0 = S−1
2DK̂0 (4.22)

4.4. MULTI-VIEW CALIBRATION WITH ONE-DIMENSIONAL OBJECTS 134

Similarly, the estimation of the projective plane at infinity between P0 and Pk,
Wk, significantly affects estimations of K0 and Tk, used in the Euclidean recon-
structions Mij and in Equation 4.15. Considering the constraint between Wk and
M̃kji, given by Equation 4.23 [19], if we transform the projective 3D points with
S3D in Equation 4.24, we continue to satisfy the constraint with the transformed
Ŵk, related back to the original Wk by Equation 4.25.

WT
k M̃kji = 0 (4.23)

M̂kji = S3DM̃kji (4.24)

WT
k S

−1
3DM̂kji = ŴT

k M̂kji = 0

Wk = ST
3DŴk (4.25)

Normalising these sets of data to have centroids at zero and average value in
each direction

√
2 improves stability [45]. Therefore, using this transformation for

Equation 4.21, we perform the procedure of Section 4.4.1 by replacing m̃ with m̂

and recover the actual values of K0 with Equation 4.22. Similarly for Equation 4.24,
we perform the procedure of Section 4.4.1 replacing M̃ with M̂, and recover Wk

with Equation 4.25. We see in Section 4.6 that this second normalisation greatly
improves results.

Global bundle adjustment

We further improve this with a final BA stage, which applies NLLS refinement to
all intrinsic, extrinsic, and world point parameters, globally minimising reprojection
error [154]. Although we already have two refinement stages, world points have
only been refined with respect to the first camera pair and the camera parameters
subsequent nodes have only been refined indirectly through the planes at infinity.
Global BA directly imposes more geometric meaning to our refinement. The cost
function for this stage is

K∑
k=0

N∑
i=1

M∑
j=1

||mkji − πkji(Kk, ξk M1i, θi, ϕi)||2. (4.26)

where πkji reprojects the point Mji onto the image of node k using Equations 4.1–4.2
and θi and ϕi from Equation 4.19. Although refining a large number of parameters,
(10K + 5M + 4), the prior normalisation techniques generally reduce global error
such that this is relatively fast, as will be shown in Section 4.6.

4.5. CALIBRATING A DISTRIBUTED CAMERA SENSOR NETWORK 135

4.5 Calibrating a distributed camera sensor network

For use in an ad-hoc network, we adapted our improved 1D calibration algorithm to
perform distributed processing using a combination of ADMM and GaBP. In this
section, we first introduce consensus with ADMM and GaBP, then present our work
to adapt the problem to this framework.

4.5.1 General consensus alternating direction method of mul-

tipliers

Consider the objective of finding the vector of variables z ∈ Rn that minimises a
sum of objectives f1(x1)+ ...+ fK(xK) separable in xk, where xk ∈ Rnk corresponds
to a subvector of z by some mapping of components Q(k, l). Using the notation
(z̃k)l = zQ(k,l), consensus between local variables and the global vector is achieved
when xk = z̃k [215]. That is,

minimise
z,x1,··· ,xK

K∑
i=1

fk(xk)

subject to xk − z̃k = 0, k = 0, ..., K.

(4.27)

For ADMM we express this problem with the augmented Lagrangian of Equa-
tion 4.28, with Lagrangian multiplier yk ∈ Rnk and diagonal penalty matrix Λk =

diag(λk1, ..., λknk
) with all λkl > 0 and ∥r∥2Λ = rTΛr [215],

LΛ(x, z,y) =
K∑
k=0

fk(xk) + yT
k (xk − z̃k) +

1

2
∥xk − z̃k∥2Λk

. (4.28)

ADMM solves Equation 4.27 by iterating over equations Equations 4.29–4.31.

x
(t+1)
k := argmin

xk

(fk(xk) + y
(t)T
k (xk − z̃

(t)
k) +

1

2
∥xk − z̃

(t)
k ∥

2
Λk
) (4.29)

z(t+1)
q :=

∑
Q(k,l)=q(y

(t)
k)l + λkl(x

(t+1)
k)l∑

Q(k,l)=q λkl
(4.30)

y
(t+1)
k := y

(t)
k + Λk(x

(t+1)
k − z̃

(t+1)
k) (4.31)

Considering the sum of related components of y we get,∑
Q(k,l)=q

(y
(t+1)
k)l :=

∑
Q(k,l)=q

(
(y

(t)
k)l + λkl((x

(t+1)
k)l − z(t+1)

q)
)

=
∑

Q(k,l)=q

(
(y

(t)
k)l + λkl(x

(t+1)
k)l

)
− z(t+1)

q

∑
Q(k,l)=q

λkl.

4.5. CALIBRATING A DISTRIBUTED CAMERA SENSOR NETWORK 136

Substituting in the definition of zq from Equation 4.30 we get
∑

Q(k,l)=q(yk)l = 0

after the first iteration. This reduces each zq to a penalty-weighted average,

z(t+1)
q :=

∑
Q(k,l)=q λkl(x

(t+1)
k)l∑

Q(k,l)=q λkl
. (4.32)

The joint global minimum of all local objective functions is found by iteratively
solving Equations 4.29 and 4.31 using only local data and Equation 4.32 with a
distributed average. We used a global and local component for λkl = λglobalλlocal,kl

where λlocal,kl was inverse variance from our error model. Global components cancel
out for Equation 4.32 giving a variance-weighted average.

4.5.2 Gaussian belief propagation

We can interpret the distributed variance-weighted average of Equation 4.32 as a
probabilistic problem where all (xk)l for Q(k, l) = q are noisy measurements of true
state zq. As in Chapter 3, this can be solved by considering the joint density in
Equation 4.33 with node potentials ϕi and edge potentials ψij. Node potentials ϕk

represent local evidence for z, and edge potentials ψki are discussed in Section 4.5.3.
The pairwise joint density in Equation 4.33 ignores the effect of the first camera
pair on subsequent estimations, but this effect is minor. Here i, j, and k are node
indices.

This is solved using belief propagation by passing messages m(t)
i→j(zj), given in

Equation 4.34, from node i to node j across edges (i, j) ∈ E at every iteration t. The
belief at each iteration, given in Equation 4.35 converges towards a global estimate
for zi. Section 3.6 outlines the relationship between the problem formulation and
belief propagation in greater detail.

p(z̃0, ..., z̃K) ∝
∏
k∈V

ϕk(z̃k)
∏

(k,i)∈E

ψki(z̃k, z̃i) (4.33)

m
(t)
k→i(z̃i) ∝

∫
z̃k

ϕk(z̃k)ψki(z̃k, z̃i)
∏

j∈Nk\i

m
(t−1)
j→k (z̃k)dz̃k (4.34)

b
(t)
k (z̃k) ∝ ϕk(z̃k)

∏
j∈Nk

m
(t)
j→k(z̃k) (4.35)

Different to Chapter 3, this chapter uses the form of Gaussian belief propagation
of Moallemi and Van Roy [201] with attenuation parameter β, solving Equation 4.32
using Gaussian densities for each zq represented by inverse-variance P and mean µ,

4.5. CALIBRATING A DISTRIBUTED CAMERA SENSOR NETWORK 137

Start

Input MN
image points for
M ≥ 3 points
seen at N ≥ 5
displacements.

Vision
graph con-
struction.

Data
exchange

with
neighbours.

Improved
1D cal-
ibration.

ADMM
and GaBP
refinement

and
alignment.

Output globally
aligned camera
matrices Pi and
Pj for j ∈ Ni.

Stop

Camera i

Start

Input MN
image points for
M ≥ 3 points
seen at N ≥ 5
displacements.

Vision
graph con-
struction.

Data
exchange

with
neighbours.

Improved
1D cal-
ibration.

ADMM
and GaBP
refinement

and
alignment.

Output globally
aligned camera
matrices Pj and
Pk for k ∈ Nj.

Stop

Camera j ∈ Ni

Figure 4.3: Full distributed algorithm, shown for two camera nodes. Commu-
nication between nodes at various stages is shown by double-lined arrows.

with messages given by Equations 4.36–4.37 and belief by Equation 4.38.

P
(t)
k→i = (Pkk +

∑
j∈Nk\i

P
(t−1)
j→k)/(1 + (Pkk +

∑
j∈Nk\i

P
(t−1)
j→k)/β) (4.36)

µ
(t)
k→i = (Pkkµkk +

∑
j∈Nk\i

P
(t−1)
j→k µ

(t−1)
j→k)/(Pkk +

∑
j∈Nk\i

P
(t−1)
j→k) (4.37)

µ
(t)
k = (Pkkµkk +

∑
j∈Nk

P
(t)
j→kµ

(t)
j→k)/(Pkk +

∑
j∈Nk

P
(t)
j→k) (4.38)

We do this for each component of z taking µkk from (xk)l with Pkk its inverse
variance. The converged µt

k is the consensus value of zq used in the next iteration of
ADMM. Standard GaBP only converges to an approximate mean for loopy graphs,
and the more common method for computing Equation 4.30 is average consensus
which does produce the correct mean [35]. However, due to the attenuation para-
meter this form of GaBP does produce the actual mean within a desired tolerance
at a faster rate than average consensus [201]. It is for this reason that we compute
Equation 4.32 in this manner.

4.5.3 Adapting 1D calibration for distributed processing

Using these concepts, we adapted the calibration to a distributed network. This
involved building a vision graph, performing local calibrations at each node, then
refining and aligning the local estimates using ADMM and GaBP with a robust
error model. The full process is shown in Figure 4.3.

Vision graph for cluster-based calibration

For the vision graph, assuming good temporal synchronisation, we assign an edge
between cameras when they share a sufficient number of observations. The min-

4.5. CALIBRATING A DISTRIBUTED CAMERA SENSOR NETWORK 138

imum number is 5, however a higher threshold improves accuracy. Nodes exchange
observations with neighbours to perform the 1D calibration locally, excluding final
BA. Each node considers itself as ‘Camera 0’ and computes the extrinsic parameters
for its neighbours relative to itself.

Local and global objective functions

The global BA objective is given in Equation 4.26. The corresponding local BA
actually performed at each node is the same but on a subset of cameras and within
the node’s local frame. We use indicator variable wkli equal to one if neighbouring
cameras k and l both observed calibration object displacement i and zero otherwise,
and we use superscript k to denote a local estimation at node k, initially differing
from corresponding values at different nodes.

fk(xk) =
∑

l∈Nk∪k

N∑
i=1

M∑
j=1

wkli||mlji − πlji(Kk
l , ξ

k
l Mk

1i, θ
k
i , ϕ

k
i)||22 (4.39)

The global objective is the sum of the local objectives, which is to substitute
fk(xk) into Equation 4.27. Here, xk is a vector containing all parameters being
estimated locally. Assuming that the neighbours of node k are k + 1, · · · , k + dk to
simplify notation and using ak

l = [αk
l , β

k
l , u

k
l , v

k
l], we have

xk = [ak
k, · · · , ak

k+dk
, ξkk+1, · · · , ξkk+dk

,Mk
11, θ

k
1 , ϕ

k
1, · · · ,Mk

1N , θ
k
N , ϕ

k
N]

T . (4.40)

Compared to Equation 4.26, the data from each node k is now being repeated
in each of its neighbours, so to keep these two objectives the same we down-weight
residuals by setting all non-zero wkli to (dl + 1)−1.

Frame alignment and error propagation

There are two remaining issues with the distributed refinement and alignment.
Firstly, nodes have measurements of world points and neighbour’s poses in their
local frame. To align these estimates we cannot just average them, but must use a
node’s current beliefs on its neighbour’s poses in the edge potentials when receiving
messages. Therefore, nodes send these messages in their local frame but the target
nodes transform them into their own frame. Consider a message sent from node k
to i about the pose of node j, which corresponds to ξkj and has the basis frame of
k denoted by Bk. Node i wants to compare this to its local estimate ξij in basis Bi

and must use its current belief about the pose of k corresponding to ξik. That is,

m
(t)
k→i(ξj)Bi

= m
(t)
k→i(ξj)Bk

◦ b(t)i (ξk). (4.41)

4.5. CALIBRATING A DISTRIBUTED CAMERA SENSOR NETWORK 139

K0K1 ξ1 · · ·Kk ξk · · ·KK ξKM11 θ1 ϕ1 · · ·M1i θi ϕi · · ·M1NθN ϕN
m01

...
m0i

...
m0N

m11

...
m1i

...
m1N

...
mk1

...
mki

...
mkN

...
mK1

...
mKi

...
mKN

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.4: Jacobian sparsity of bundle adjustment, with mki =
[mT

k1i · · ·mT
kMi]

T for brevity.

where ◦ denotes composition, ξkj ◦ ξik = logSE(3)(expse(3)(ξ
k
j)expse(3)(ξ

i
k)).

Secondly, as this is a non-convex problem, ADMM is not guaranteed to converge
to the global minimum, but instead a local minimum or not converge at all. We
can improve convergence by incorporating a robust error model for the variance-
weighted average for Equation 4.32. We assumed zero-mean additive Gaussian
noise with variance σ2 for our image points and transformed this into parameter
error through back-propagation then into frame-aligned messages with forward-
propagation. Nodes have a 2NM(dk+1)×2NM(dk+1) diagonal covariance matrix
Σm = diag(σ2) for image points m. To get parameter covariance xk, Σxk

we back-
propagate through the reprojection function πlji in Equation 4.39 whose Jacobian J

has the sparsity pattern shown in Figure 4.4. This back-propagation has the form of
Equation 4.42 where (.)+ is the Moore–Penrose pseudo-inverse. For each variable in
xk its inverse-variances Pkk in Equations 4.36–4.38 is the associated diagonal value
of Σxk

.
Σxk

= (JTΣ−1
m J)+ (4.42)

We also consider error propagation for the alignment of messages in Equation
4.41, where we need to forward-propagate the inverse-variance P . Taking a second
order approximation, we can propagate the covariance of an se(3) pose by its adjoint
[256], giving Equations 4.43–4.44. We do an equivalent transform for world points,

4.6. EXPERIMENTAL RESULTS 140

where the adjoint is simply R.

µ
(t)
k→i(ξj)Bi

= µ
(t)
k→i(ξj)Bk

◦ µ(t)
i (ξk) (4.43)

P
(t)
k→i(ξj)Bi

= [Adj(ξk)P
(t)
k→i(ξj)

−1
Bk

Adj(ξk)T + P
(t)
i (ξk)

−1]−1 (4.44)

where Adj(ξ) =
[
R [t]×R
0 R

]
Full refinement and alignment process

The full process of refining and aligning the local calibration estimates iterates as
follows until convergence:

1. Each node k finds x(t+1)
k from Equation 4.29 with fk(·) from Equation 4.39. As

with [223], we only do one of this minimisation iteration per outer iteration.

2. z̃
(t+1)
k is found for Equation 4.32 using the GaBP procedure.

(a) If any GaBP message corresponds to a pose or world point, it is trans-
formed between communicating frames by Equations 4.43–4.44.

3. Each node updates its Lagrangian multiplier y
(t+1)
k by Equation 4.31.

Nodes initialise z̃
(0)
k = x

(0)
k and y

(0)
k = 0. As mentioned, the local component of

the penalties is determined from the inverse variance λlocal,kl = (Σxk
)l. Additionally,

we found good performance using the scheme from [223] where λglobal is updated
each iteration as λ(t+1)

global = (1 + η)λ
(t)
global for λ(0)global = 10−3 and η = 0.01. We also

found fast convergence with β = 104.

4.6 Experimental results

We ran simulations to test the effects of noise, pattern displacements, number of
calibration points, compared centralised and distributed algorithms, and explored
the effect of message loss. Then, we verified these results on real images.

4.6.1 Simulation data

Simulations had ten cameras with α = β = 655.0px and principle point at the centre
of the 1024 × 768px image. Each camera faced outwards evenly across an arc for
z > 0 of a circle of 2.7m radius centred at (0, 0,−2.5)m, further translated in each
axis by [−0.1, 0.1]m and perturbed about their y-axis by [−π/18, π/18] radians with
uniform sampling. A 20cm calibration object had M1i = [X1i, Y1i, Z1i]

T sampled
uniformly from a concentric arc of radius of 3.5m, with rotations θi ∈ [π/6, 5π/6]

and ϕi ∈ [π, 2π] radians. An example layout is given in Figure 4.5. Error in intrinsic

4.6. EXPERIMENTAL RESULTS 141

Figure 4.5: The ground truth layout for one trial of our simulation, using ten
cameras.

parameters was measured relative to the correct α, and errors in extrinsic parameters
were relative to their true values. We used an equidistant three-point calibration
object in all tests but the third, and 30 pattern displacements in all but the second.
All simulations were run in MATLAB for Windows using a 3.4GHz Intel i7-6700
CPU.

Firstly observing noise, we tested the algorithm without normalisation (NN), 2D
normalisation only (2D), 3D normalisation only (3D), and full normalisation (FN).
These were repeated with (NLLS) and without (LLS) NLLS of Equations 4.17–4.18,
then with (BA) and without (NBA) the final BA, producing sixteen configurations
each tested for 1000 trials on synthetic data corrupted by 0.1 to 2.0px of Gaussian
noise. Results are shown in Figure 4.6 and 4.7, and average processing time in
Figure 4.8.

The results shown in Figure 4.6 without the final BA stage demonstrate the effects
of the two types of normalisation as well as the NLLS step. The two worst perform-
ing variants were LLS-NN-NBA and LLS-2D-NBA, with their similar performance
demonstrating that the 2D normalisation had little effect. Comparatively, the LLS-

3D-NBA and LLS-FN-NBA resulted in more accurate results across all noise levels.
Again, their similar results show that the 2D normalisation was having little effect.
With the introduction of the NLLS step, NLLS-NN-NBA andNLLS-2D-NBA had
better performance than the LLS variants of LLS-3D-NBA and LLS-FN-NBA at
low levels of noise but not at high levels of noise. This shows that the 3D normal-
isation step is more effective across a range of noise levels whether with or without
the NLLS step, however, the quality of the NLLS refinement degrades with noise if
the 3D normalisation is excluded. This has implications in robust long-term opera-

4.6. EXPERIMENTAL RESULTS 142

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(a) Relative error in α

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(b) Relative error in β

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(c) Relative error in cu

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(d) Relative error in cv

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-3

10
-2

10
-1

10
0

10
1

A
v
e

ra
g

e
 E

rr
o

r
(%

)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(e) Error in translation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-NBA

LLS-2D-NBA

LLS-3D-NBA

LLS-FN-NBA

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

(f) Error in rotation

Figure 4.6: Average error in 1000 trials for algorithms without final bundle
adjustment.

4.6. EXPERIMENTAL RESULTS 143

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-2

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(a) Relative error in α

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-2

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(b) Relative error in β

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-2

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(c) Relative error in cu

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-2

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(d) Relative error in cv

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-3

10
-2

10
-1

10
0

10
1

A
v
e

ra
g

e
 E

rr
o

r
(%

)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(e) Error in translation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 E
rr

o
r

(%
)

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

(f) Error in rotation

Figure 4.7: Average error in 1000 trials for algorithms with final bundle adjust-
ment.

4.6. EXPERIMENTAL RESULTS 144

tion of the algorithm on real-world camera systems where accumulation of dirt on
the lens would result in noisy images, showing that the 3D normalisation would be
crucial in such a use-case. These results show that the NLLS of Equations 4.17 and
4.18 as well as the 3D normalisation of Equation 4.24 greatly improved accuracy,
whereas the effect of the 2D normalisation of Equation 4.21 was minor, suggesting
that the plane at infinity estimation is quite susceptible to noise.

BA had the greatest effect, bringing all tests except LLS-NN-BA and LLS-2D-BA

to a similar results. These two LLS variants have a clear failure point after BA at
1.2px of noise suggesting that without at least one of either the 3D normalisation or
the NLLS refinement then the original estimate prior to BA has too much error and is
susceptible to falling into a local minimum. This demonstrates that for robust long-
term operation where accumulation of dirt would result in higher levels of effective
noise that 3D normalisation or NLLS refinement is needed in combination with BA.

The execution times shown in Figure 4.8 show the effects of the two types of
refinement when combined with the two types of normalisation. When using no
normalisation or 2D normalisation with only one of either NLLS or BA the execu-
tion time grows fairly quickly with noise level due the greater number of iterations
required before the LM stopping condition is met. Applying only the BA to the LLS
solution with 3D normalisation present in either LLS-3D-BA or LLS-FN-BA also
has the execution time grow noticeably with error level, but at a much slower rate.
This shows that the 3D normalisation cuts down the number of iterations required
by BA substantially. With the combination of NLLS refinement with either 3D nor-
malisation present or the final BA then the NLLS stage remains fairly constant in
execution time across all noise levels. Overall, for noise below 1.5px, it was faster to
apply our improvements but skip Equation 4.17 and Equation 4.18 without much
loss in accuracy.

Therefore, the results both in noise and execution time show that combining 3D
normalisation with the final BA but without the NLLS step is the best choice for
application on lower-powered hardware for long-term use.

The second simulation differed the number of pattern displacements, varying from
10 to 100 with a constant 1.0px of Gaussian noise. The errors and processing times
for 1000 trials are given in Figure 4.9a. The third simulation varied the number of
points on the calibration object between 3 and 7 at 1.0px of Gaussian noise, with
results reported in Figure 4.9b. Both these tests saw a linear increase in processing
time, with increasing pattern displacements having a greater effect on accuracy
compared to more calibration points, however this sees diminishing returns.

Next, six alternatives were compared to evaluate the distributed algorithm —
the improved centralised (LLS-FN-BA) and equivalent distributed (LLS-FN-BA-

DIST) algorithms, the original centralised (NLLS-NN-NBA) [87] and equivalent dis-

4.6. EXPERIMENTAL RESULTS 145

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

0

10

20

30

40

50

60

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

NLLS-NN-NBA

NLLS-2D-NBA

NLLS-3D-NBA

NLLS-FN-NBA

LLS-NN-BA

LLS-2D-BA

LLS-3D-BA

LLS-FN-BA

NLLS-NN-BA

NLLS-2D-BA

NLLS-3D-BA

NLLS-FN-BA

Figure 4.8: Average time for each algorithm to complete at different noise levels.

10 20 30 40 50 60 70 80 90 100

Pattern Displacements

0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v
e
 E

rr
o
r

(%
)

2

4

6

8

10

12

14

16

18

20

22

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

NLLS FN BA,

NLLS FN BA,

NLLS FN BA, c
u

NLLS FN BA, c
v

NLLS FN BA, T

NLLS FN BA, R

Time

(a) Relative error and average execution times
for different numbers of displacements

3 4 5 6 7

Number of Points

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
e
la

ti
v
e
 E

rr
o
r

(%
)

5

10

15

20

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

NLLS FN BA,

NLLS FN BA,

NLLS FN BA, c
u

NLLS FN BA, c
v

NLLS FN BA, T

NLLS FN BA, R

Time

(b) Relative error and average execution times
for different numbers of points

Figure 4.9: Average errors and processing times for 1000 trials in second and
third tests.

tributed (NLLS-NN-NBA-DIST), as well as the distributed self-calibration of Deva-
rajan et al. (0D-DIST) [7]. We also considered a centralised algorithm with only
the global BA distributed with ADMM across the outer summation, not requiring
frame alignment (ADMM-ONLY). Results are presented in Figure 4.10, showing that
our centralised and distributed algorithms are similarly accurate, both much bet-
ter than the original algorithm and slightly better than the self-calibration. Also
the distributed per-processor execution time is much lower. The unimproved dis-
tributed algorithm was less accurate than its centralised counterpart and at higher
noise levels was even slower per node due to being caught in NLLS, showing the
need for normalisation. Finally, the ADMM centralised solution performed roughly
the same as our centralised algorithm. This was not truly distributed since all but
the BA was computed centrally, but shows the effects of ADMM and pairwise GaBP
on the accuracy.

Finally, the effect of message-loss was tested on the best performing distributed

4.6. EXPERIMENTAL RESULTS 146

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e

la
ti
v
e

 E
rr

o
r

(%
)

NLLS NN NBA,

NLLS NN NBA,

LLS FN BA,

LLS FN BA,

LLS-FN-BA-DIST,

LLS-FN-BA-DIST,

NLLS-NN-NBA-DIST,

NLLS-NN-NBA-DIST,

0D DIST,

0D DIST,

ADMM ONLY,

ADMM ONLY,

(a) Relative error for focal length paramet-
ers

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

R
e
la

ti
v
e
 E

rr
o
r

(%
)

NLLS NN NBA, c
u

NLLS NN NBA, c
v

LLS FN BA, c
u

LLS FN BA, c
v

LLS-FN-BA-DIST, c
u

LLS-FN-BA-DIST, c
v

NLLS-NN-NBA-DIST, c
u

NLLS-NN-NBA-DIST, c
v

0D DIST, c
u

0D DIST, c
v

ADMM ONLY, c
u

ADMM ONLY, c
v

(b) Relative error for principal point para-
meters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

10
-1

10
0

10
1

10
2

10
3

R
e

la
ti
v
e

 E
rr

o
r

(%
)

NLLS NN NBA, T

NLLS NN NBA, R

LLS FN BA, T

LLS FN BA, R

LLS-FN-BA-DIST, T

LLS-FN-BA-DIST, R

NLLS-NN-NBA-DIST, T

NLLS-NN-NBA-DIST, R

0D DIST, T

0D DIST, R

ADMM ONLY, T

ADMM ONLY, R

(c) Relative error for extrinsic parameters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Additive Gaussuan White Noise (px)

0

2

4

6

8

10

12

14

A
v
e
ra

g
e

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

NLLS-NN-NBA

LLS-FN-BA

LLS-FN-BA-DIST (per node)

NLLS-NN-NBA-DIST (per node)

0D DIST (per node)

ADMM ONLY

(d) Average execution time for each al-
gorithm

Figure 4.10: Average errors and executions times for 1000 trials in fourth sim-
ulation — comparing original algorithm, improved algorithm and distributed im-
plementation.

algorithm (LLS-FN-BA-DIST). Although this algorithm operates on the assump-
tion that messages for the distributed alignment are effectively routed to the correct
node, in real-world situations it is possible that a message might not arrive due to
time delays and a range of environmental factors. Therefore, the relative error was
measured at a constant 1.0px of Gaussian noise with the percentage of messages lost
varying from 0% to 50%, with results shown in Figure 4.11. As can be seen, the
error in each parameter increases steadily as the message loss increases, however, the
algorithm is fairly tolerant of low levels of message loss with minimal effects below
15%.

4.6.2 Real data

Finally, we verified our algorithm on real data using ten Raspberry Pi 3s and camera
modules. ‘Ideal’ intrinsic parameters from the data-sheets are given in Table 4.1.
Although not precisely ground truth values, modern cameras are of high enough
quality that this is a decent baseline for comparison. Due to this lack of a ground
truth for intrinsics, we also compared root-mean-squared reprojection error of the

4.6. EXPERIMENTAL RESULTS 147

0 5 10 15 20 25 30 35 40 45 50

Message Loss (%)

0

2

4

6

8

10

12

14

16

R
e

la
ti
v
e

 E
rr

o
r

(%
)

c
u

c
v

T

R

Figure 4.11: Relative error for the distributed algorithm at 1.0px of Gaussian
noise and differing levels of message loss.

Table 4.1: Ideal intrinsics from camera data-sheets (in pixels).

Camera α β cu cv

Cameras 0-4 634 634 320 240
Cameras 5-7 612 612 320 240
Cameras 8-9 501 501 320 240

reconstructed world points. The cameras were in an arc, with centre distances and
rotations relative to camera 0 reported in Table 4.2. The calibration object was
205mm long, with three equidistant 40mm balls used as points. For the distributed
algorithm the vision graph was determined by common visibility of the calibra-
tion object at 90 pattern displacements, a minimum of 30 visible at each camera.
We compared the original algorithm [87], and our centralised and distributed al-
gorithms. We also compared this to 2D calibration with NLLS [13], and distributed
self-calibration [7]. Example images are shown in Figure 4.12.

A summary of results is given in Table 4.3, with full results in Table 4.5. We used
the same error metrics as the simulations. As the self-calibration cannot determ-
ine scene scale, it’s average translation was scaled to the average ground truth for
comparison. Our improved algorithm estimates the extrinsic parameters noticeably
better than 2D calibration in many parameters and has much higher accuracy than

Table 4.2: Ground truth for centre distances and y-axis rotations, relative to
Camera 0.

Camera 1 2 3 4 5 6 7 8 9

Distance (mm) ±0.5mm 134 263 399 519 638 752 895 1064 1228
Rotation (deg) ±0.5° 9 14 20 26 31 40 48 48 62

4.7. SUMMARY 148

(a) 1D calibration object (b) 2D calibration object (c) 0D calibration scene

Figure 4.12: Example images from the experimental test showing the three types
of calibration object (or lack thereof).

Table 4.3: Relative difference to ground truth and ideal results averaged per
algorithm, and RMS reprojection error.

Algorithm α β cu cv T Ry RMSE

2D [13] 0.63% 0.75% 1.15% 1.02% 2.65% 2.90% 0.126px
1D de França [87] 2.21% 0.45% 1.76% 3.28% 1.15% 2.49% 0.468px
0D Distributed [7] 0.90% 0.88% 1.65% 2.37% 1.38% 2.46% 0.223px
1D Improved 0.46% 0.60% 1.47% 2.30% 0.46% 2.01% 0.187px
1D Distributed 0.59% 0.68% 1.35% 2.60% 0.56% 2.00% 0.171px

the original 1D algorithm. We can also see that the centralised and distributed
algorithms again performed comparably.

The execution time analysis seen in Figure 4.10d was also repeated for the real
data, shown in Table 4.4. As can be seen, the per-processor execution time is much
lower for the distributed algorithm, allowing the processing to be effectively spread
over a number of low-powered processors.

4.7 Summary

We have proposed a 1D calibration and localisation algorithm well-suited for low-
cost distributed ad-hoc camera networks. This is presented as an improved version

Table 4.4: Average execution time for the different configurations of the calibra-
tion algorithm when applied to real data.

Algorithm Time (s)

NLLS-NN-NBA 8.31
LLS-FN-BA 7.49
ADMM-ONLY 7.47
NLLS-NN-NBA-DIST (per node) 2.92
LLS-FN-BA-DIST (per node) 0.87
0D-DIST [7] (per node) 1.17

4.7. SUMMARY 149

Table 4.5: Experimental measurements for each camera across the four al-
gorithms

Algorithm Camera α β cu cv T (mm) Ry (deg)

2D [13]

0 636.63 639.51 324.63 236.25
1 642.54 645.40 322.67 217.29 140.01 8.51
2 631.15 632.36 316.80 244.20 270.21 14.17
3 633.86 636.21 325.26 240.43 407.95 19.69
4 635.23 637.52 317.66 231.35 532.15 25.94
5 609.56 611.83 317.96 239.26 652.40 29.02
6 608.37 610.58 297.71 249.33 767.39 39.00
7 607.71 609.90 328.45 247.75 914.94 46.69
8 504.06 506.51 312.57 235.20 1091.23 48.99
9 508.76 510.71 310.71 239.62 1262.31 59.43

1D de França [87]

0 643.58 632.58 311.76 258.55
1 650.44 637.25 314.320 250.03 133.98 8.38
2 648.69 634.65 316.11 265.23 259.69 14.32
3 652.60 637.51 322.26 260.19 393.81 19.60
4 656.64 641.55 319.45 248.14 514.70 25.93
5 626.07 609.55 333.07 272.05 630.44 30.32
6 623.09 609.14 327.01 275.94 740.91 41.39
7 618.05 606.45 360.86 264.67 881.84 49.04
8 513.21 501.73 324.32 253.22 1050.17 49.38
9 509.33 501.13 337.48 250.29 1208.76 61.89

0D Distributed [7]

0 623.43 623.97 323.17 258.66
1 627.64 634.67 327.42 241.41 137.12 8.35
2 639.80 624.25 325.22 264.75 265.34 14.51
3 630.11 631.94 330.46 260.18 402.43 19.98
4 633.73 627.13 322.13 246.36 527.85 26.29
5 611.56 613.34 338.25 262.10 642.41 29.49
6 606.29 608.58 316.06 261.17 766.54 40.71
7 604.02 608.80 347.73 259.05 899.08 47.60
8 493.53 492.49 311.27 247.60 1086.95 48.46
9 505.77 494.97 330.69 243.91 1244.85 60.97

1D Improved

0 631.91 629.76 323.89 256.64
1 634.56 633.11 325.74 241.28 135.74 8.46
2 630.63 629.26 325.53 263.59 263.27 14.36
3 633.09 631.67 328.75 256.97 399.84 19.52
4 635.85 635.14 323.62 244.86 522.99 25.82
5 608.08 606.11 335.34 263.97 641.12 30.16
6 606.70 606.09 318.61 264.39 753.70 40.57
7 603.51 603.43 349.49 258.50 897.65 48.13
8 500.22 498.30 314.69 247.15 1068.53 48.47
9 501.70 500.90 328.51 243.12 1232.11 61.30

1D Distributed

0 630.39 629.10 323.56 258.23
1 635.27 635.31 326.86 240.81 134.66 8.59
2 631.20 629.74 327.09 262.80 262.36 14.41
3 628.96 628.11 326.55 259.62 399.82 19.71
4 632.08 637.05 323.28 247.86 521.24 25.99
5 603.57 607.26 336.87 265.26 643.72 30.28
6 606.87 607.38 318.28 268.07 758.54 41.07
7 604.97 604.14 347.03 260.94 900.30 48.37
8 501.61 498.39 315.35 249.20 1074.02 49.28
9 501.63 499.06 323.94 245.42 1232.24 61.62

4.7. SUMMARY 150

of the algorithm proposed in Chapter 3, addressing the main issues of the fixed-point
constraint on the motion of the calibration object and the ambiguous global objective
of the bundle adjustment. In addressing these issues, an improved initialisation stage
for the pipeline being discussed in this dissertation has been proposed.

Whilst there are many popular calibration methods, namely 2D and self-calibration,
ours has a number of advantages. The lack of self-occlusion of the calibration object
suits larger CSNs, the general motion makes it simple to use, and it can determine
scene scale. Our contributions were to improve an existing 1D algorithm with better
numerical conditioning and global BA. We do not consider radial distortion, but this
can be done with the process of [13]. We also adapted the algorithm to a distrib-
uted network with global consensus using ADMM and GaBP with frame alignment.
The algorithm requires at least two cameras taking five images each of a calibration
object with at least three collinear points. We found minimal improvement beyond
three points, and 30-40 images per camera provided good results.

Simulations showed that 3D normalisation greatly improved accuracy due to re-
ducing the transferred effect of error in fundamental matrices. Global BA also sig-
nificantly improved accuracy, removing the need for the other NLLS. Experimental
results showed that the centralised and distributed variants of our algorithm were
more accurate than 2D calibration for four of six parameters tested, and five out
of six compared to the original 1D algorithm. We also saw that normalisation was
important for convergence of the distributed solution. This distributed solution has
benefits of resistance to node failure and scalability. Our algorithm provides highly
accurate results, is simple to use, and is well suited to CSNs. In the future we plan to
adapt the distributed localisation component of this algorithm to further problems
such as visual odometry and SLAM, and further explore distributed approaches to
bundle adjustment.

From this, it can be seen that an improved initialisation stage for the distributed
robotic vision pipeline has been proposed.

Chapter 5

Direct visual odometry with binary
descriptorsa

Contents
5.1 Summary of contributions 151

5.2 Introduction . 152

5.3 Preliminaries . 154

5.4 Direct tracking with binary features 156

5.5 Evaluations . 161

5.6 Summary . 166

5.1 Summary of contributions

• Considering the Census transform and Rank transform, a Lucas-Kanade-based
visual odometry algorithm is developed that determines gradient and descent
direction using Hamming weights of descriptors.

• The algorithm is extended to BRIEF, ORB, and BRISK descriptors, treating
the entire robust descriptor as a single channel.

• An alternate form is explored that splits the descriptor into multiple channels.

• Evaluation is done on real data, with consideration of accuracy and computa-
tional time with sparse point selection.

aChapter adapted from “B. Halloran et al., ‘Single and multi-channel direct visual odometry
with binary descriptors,’ in Proceedings of ICIC 2019: Intelligent Computing Methodologies, D.-S.
Huang et al., Eds., Springer International Publishing, 2019, pp. 86–98, isbn: 978-3-030-26766-7.
doi: 10.1007/978-3-030-26766-7_9”

151

https://doi.org/10.1007/978-3-030-26766-7_9

5.2. INTRODUCTION 152

• All algorithms perform better than raw intensity, however, the alternative form
did not perform as well as the single-channel form.

• ORB descriptors have the best accuracy, while BRIEF descriptors had the
least computation time.

5.2 Introduction

Continuing on from the initialisation-stage algorithms presented in Chapters 3 and
4, regarding the three-stage pipeline presented in Figures 1.2 and 2.28, this chapter
explores the single-robot visual odometry procedure utilised in the second stage.
The primary goals for this is to incorporate the robust feature descriptors required
in the global mapping of the third stage into a direct visual odometry algorithm for
this second stage.

Visual odometry (VO) is one of the most active areas of research in computer
vision. It is the process of estimating the relative poses of subsequent frames from
a camera and forms the core of visual simultaneous localisation and mapping (V-
SLAM) seen in algorithms such as LSD-SLAM [92], ORB-SLAM [100], SVO [102]
and DSO [93].

There are two main types of VO — indirect and direct methods. Indirect meth-
ods use robustly matched feature correspondences to estimate poses [257], such as
in MonoSLAM [88] and ORB-SLAM [100]. Direct methods perform whole-image
alignment on intensity to estimate poses, generally using the Lucas-Kanade (LK)
algorithm [147] and recently the more efficient Inverse Compositional (IC-LK) for-
mulation [106]. Such direct VO algorithms include DTAM [89], LSD-SLAM [92]
and DSO [93]. A middle ground between these methods is to use densely evaluated
features in a direct VO framework. Standard direct methods rely on the brightness
consistency assumption (BCA) which is not robust to illumination changes seen in
real image sequences. Feature-based direct methods alleviate this using a descriptor
consistency assumption (DCA) instead [258].

Our work explores direct tracking with robust binary descriptors such as BRIEF
[152], ORB [101], and BRISK [151] which are efficient to compute and match. Many
existing feature-based direct methods either use expensive features such as SIFT
[259], or simpler binary descriptors such as the Census transform [260]. Our work
involves a simple single-channel method for direct tracking with IC-LK and binary
descriptors which performs extremely well on much larger descriptors and could be
extended to multi-view systems.

5.2. INTRODUCTION 153

5.2.1 Related work

There has been extensive work on improving the robustness of the LK algorithm,
particularly for use in VO and SLAM. Some algorithms still operate directly on
intensity values but also model changes in brightness, such as the pixel-wise lighting
and shadow model of Silveira and Malis [261], and the affine lighting model of Engel
et al. [93].

Feature-based LK has been used in areas including VO and optical flow. The
SIFT Flow algorithm uses dense SIFT descriptors with LK on each channel [259].
Bristow and Lucey showed that while dense descriptors are poor predictors of the
error surface they still have very good performance for gradient based methods [262].
Sevilla-Lara and Learned-Miller proposed distribution fields which ‘explode’ a single-
channel image into many channels based on the intensity values, thus preventing
smoothing from erasing small details [263]. They describe this form of DCA as
channel consistency [264]. Crivellaro and Lepetit use a similar idea where they
separate the image into channels for first and second order gradients which are
further separated by sign [179]. Binary features, mainly the Census transform, have
also seen use in LK. Although binary features are non-convex and non-differentiable,
Alismail et al. showed that they can be used in LK by splitting up each bit of
the descriptor into a different channel [265]. Their method had good performance
particularly in low-light scenes but does not scale well to larger descriptors which
could require as many as 512 channels. Recently, Park et al. showed that these
Census-based methods were more effective than other descriptor-based methods on
real-world images [266].

5.2.2 Contributions

We present a method for performing LK-based VO with binary features which oper-
ates only on a single channel, allowing the use of robust descriptors which are suitable
for wide baseline matching and challenging lighting conditions. The primary goal
of this chapter is to produce a robust single-robot visual odometry method for the
second stage of the pipeline presented in Figures 1.2 and 2.28. Our contributions
are:

• Considering the Census transform and its related Rank transform, we present
an LK-based algorithm that compares the binary features using their Ham-
ming distance but determines gradient and descent direction by comparing
Hamming weight.

• We show that this algorithm achieves excellent performance when applied to
BRIEF [152], ORB [101], and BRISK [151] descriptors, still operating on only

5.3. PRELIMINARIES 154

a single channel.

• We demonstrate an alternative multi-channel channel form, with still fewer
channels than other methods, by using the Hamming weight of segments of
the descriptor.

• Evaluations on real data demonstrate that our proposed method performs
better than raw intensity and the Bitplanes method of Alismail et al. [265].
Furthermore, incorporating sparsely evaluated robust descriptors does not im-
pact computational efficiency too much.

The remainder of the chapter is organised as follows: Section 5.3 covers the back-
ground information on the LK algorithm; Section 5.4 discusses our methods for
tracking on binary descriptors; Section 5.5 presents our test results and analyses the
performance; finally, Section 5.6 concludes the chapter and presents our direction
for future work.

5.3 Preliminaries

This section outlines the preliminary concepts for solving the direct visual odometry
problem, introduced in Section 2.4.1, using the Lucas-Kanade algorithm and its
variants.

5.3.1 Notation

In this work we represent vectors as bold lower-case letters (m), matrices as bold
upper-case letters (T). Functions, including images, are given by light upper-case
letters (I). Using the set of valid pixels in an image as Ω ⊂ R2 then we have images
I : Ω→ R+, depth maps D : Ω→ R+, and depth variance maps V : Ω→ R+ which
all map pixels to intensity, inverse depth, and inverse depth variance respectively.
Note that we use inverse depth d as opposed to depth z to parameterise points.

The projection of a 3D world point into an image is given by πK : R3 → Ω with
inverse projection π−1

K : Ω×R+ → R3 which requires the inverse depth of the point.
K denotes the camera’s intrinsic parameters for which we use the pinhole model
comprising of x- and y-axis focal lengths and image principal point and are assumed
to be known.

Poses are represented by rigid-body transformations T ∈ SE(3) which transform
3D world points from the one frame to another according to a rotation R and a
translation t. That is,

T =

[
R t
0 1

]
, where R ∈ SO(3) and t ∈ R3. (5.1)

5.3. PRELIMINARIES 155

For optimisation, we use a minimal representation of the camera poses given by
the element of the associated Lie-algebra ξ ∈ se(3) such that T = expse(3)(ξ) and
ξ = logSE(3)(T). The transformation of a point from the world frame to the camera
frame of image i is written as ξi whereas the transformation from frame i to j is
written as ξi→j. Poses can be composed with the operator ◦ : se(3)× se(3)→ se(3)

such that

ξi→k := ξi→j ◦ ξj→k := logSE(3)(expse(3)(ξi→j) · expse(3)(ξj→k)). (5.2)

With some abuse of notation, when referring to the general case of the pose
between some pair of images I and I ′, we write the transformation simply as ξ.

5.3.2 Direct visual odometry

Consider two images I and I ′. Direct visual odometry seeks to find the motion
parameters ξ which minimise the photometric error,

ξ∗ = argmin
ξ

∑
m∈Ω

|| I(w(m;D(m),∆ξ))− I ′(w(m;D(m), ξ))︸ ︷︷ ︸
r(m;d,ξ)

||22. (5.3)

In Equation 5.3, we use the the warp function w : Ω × R × se(3) → Ω which
warps a point m ∈ Ω in image I to m′ ∈ Ω′ in image I ′ according to the estimated
rigid-body transformation, inverse depth, and pinhole model projection. That is,

m′ = w(m; d, ξ) = πK(Rπ
−1
K (m; d) + t). (5.4)

Equation 5.3 is given in the inverse-compositional form of the Lucas-Kanade image
alignment algorithm which is solved by gradient descent. This form is efficient to
solve because the Jacobian matrices J are calculated at the zero warp and can
therefore be pre-computed and remain constant for all iterations.

∆ξ =
∑
m∈Ω

(J(m;D(m))TJ(m;D(m)))−1J(m;D(m))T r(m;D(m), ξ) (5.5)

where J(m; d) = ∇I(m)
∂w(m; d, ξ)

∂ξ

∣∣∣
ξ=0

(5.6)

The update computed in each iteration is therefore

ξ ← ξ ◦∆ξ. (5.7)

5.4. DIRECT TRACKING WITH BINARY FEATURES 156

5.3.3 Multi-channel and descriptor-based Lucas-Kanade

The LK algorithm can operate on an arbitrary number of image channels, Nc, by
finding the L2 or similar norm between each channel separately. This allows us
to perform alignment of multi-channel images, such as RGB images, or even using
dense descriptor images, such as densely evaluated SIFT descriptors. This gives us
the form

ξ∗ = argmin
ξ

∑
m∈Ω

Nc−1∑
i=0

||Φi(w(m;D(m),∆ξ))− Φ′
i(w(m;D(m), ξ))︸ ︷︷ ︸

ri(m;d,ξ)

||2 (5.8)

where Φi(·) is the value of the ith channel. This gives us a different update, given
by

∆ξ =
∑
m∈Ω

Nc−1∑
i=0

(Ji(m;D(m))TJi(m;D(m)))−1Ji(m;D(m))T ri(m;D(m), ξ) (5.9)

where Ji(m; d) =
∂Φi

∂m

∂w(m; d, ξ)

∂ξ

∣∣∣
ξ=0

. (5.10)

5.4 Direct tracking with binary features

In this section, a number of methods for performing IC-LK gradient descent with
binary descriptors is presented. Firstly, one of the most basic binary descriptors,
the Census transform, is introduced. Then, a method for estimating the gradient
and descent direction is outlined. This method is extended to arbitrary binary
descriptors, and finally, an alternate method based on the Rank transform is pro-
posed.

5.4.1 The Census and Rank transforms

We firstly consider the Census and Rank transforms which are single-channel descriptors
invariant to global monotonically increasing rescaling of the image [260]. The Census
transform compares a target pixel to each other pixel in a local patch, for example
3×3, and sets a corresponding bit in a bit string to one if it is greater than or equal.

ΦC(m) := {1(m≥m+∆m0), . . . ,1(m≥m+∆mNb
)}

with 1(x) =

1 if x is true,

0 otherwise

where {∆mi}Nb−1
i=0 is the set of neighbouring pixels within the patch and Nb is the

number of bits in the descriptor. The Rank transform is simply the sum of all set bits

5.4. DIRECT TRACKING WITH BINARY FEATURES 157

Figure 5.1: Various Census transform-related descriptors shown for an example
3 × 3 intensity patch. The Census transform uses comparison operations over
intensity to encode the local structure into a bit string and the Rank transform is
the sum of set bits in the Census transform. The Complete Census is the Census
transform repeated with each pixel acting as the base point, and the Complete
Rank is the Rank transform applied to each component of the Complete Census.

in the corresponding Census transform. That is, the Rank descriptor is essentially
the Hamming weight of the corresponding Census transform, given by

ΦR(m) := ||ΦC(m)||H

where ||Φ||H =

Nb−1∑
i=0

(Φ)i

with (·)i referring to the ith bit of the bit-string. We also consider two additional
descriptors. The Complete Census computes a Census transform for each pixel in
the image patch and the Complete Rank takes the Hamming weight of each of those
Census transforms [12]. An example of these four descriptors on a 3 × 3 intensity
patch is shown in Figure 5.1.

5.4.2 Estimating gradients and descent direction

Binary descriptors are matched using the Hamming distance norm rather than L2

norm. This counts the number of bits that differ between two binary descriptors,
given by

||Φ1, Φ2||H =

Nb−1∑
i=0

(Φ1 ⊕ Φ2)i

where ⊕ is the exclusive-or (XOR) operator. This norm results in a non-convex
and non-differentiable cost surface, preventing us from solving Equation 5.8. Bit-
planes [265] resolves this by separating each bit of the descriptors into a different
channel and performing LK on each binary image, however, this method becomes
computationally expensive with larger descriptors which could have as many as 512
channels.

For a single-channel solution, we consider the relationship between Rank and
Census transforms. If we were able to minimise Equation 5.8 for Census descriptors,

5.4. DIRECT TRACKING WITH BINARY FEATURES 158

Figure 5.2: For pairs of Census descriptors Φ1 and Φ2, the percentage of changes
from Φ2 to some Φ′

2 where a reduction in difference of Hamming weights also
results in a reduction in Hamming distance, separated by weight of Φ1.

we would be minimising Hamming distance. On the other hand, we can trivially
apply Equation 5.8 to an image of Rank descriptors in the same manner as it is
applied to raw intensity, using the L2 norm. In that case, we would essentially
be minimising the difference between Hamming weights. That is, since the Rank
transform is the Hamming weight of the corresponding Census transform, the L2

norm between two Rank descriptors is the difference between Hamming weights of
those Census descriptors.

Consider now two Census descriptors:

Φ1 = {1, 0, 1, 1, 1, 0, 1, 1}

Φ2 = {1, 1, 0, 0, 1, 0, 0, 1}

The Hamming distance between these two descriptors is 4, whereas their Hamming
weights are 6 and 4, respectively, giving a difference of 2. How consider moving
from Φ2 to a neighbouring descriptor Φ′

2 = {1, 1, 0, 0, 1, 0, 1, 1}. The Hamming
distance has now reduced to 3 and the difference in Hamming weights is 1. In this
particular example, a reduction in difference of Hamming weights has corresponded
to a reduction in Hamming distance as well. That is to say, in this case, following
the Rank descent also improved Census descriptor cost.

Obviously, this is not universally the case, and one could establish a counter-
example where the Rank descent direction corresponds to an increase in Census
descriptor cost. Exploring this, Figure 5.2 shows the percentage of movements where
reducing difference in Hamming weights also reduces Hamming distances. As can
be seen, the two comparisons align for the majority of cases.

5.4. DIRECT TRACKING WITH BINARY FEATURES 159

The Rank transform alone could potentially be used for tracking with the standard
L2 norm, however, it is far less discriminative than the Census transform. Therefore,
we propose to get residual size from the Hamming distance of Census descriptors,
but gradient and decent direction from the Rank descriptors. This allows gradi-
ent descent to be applied as though using the Rank descriptor, but to retain the
relatively more discriminative nature of the Census transform. That is,

r(m; d, ξ) = 1
ϵ
(ΦR(m), Φ′

R(w(m;d,ξ))) · ||ΦC(m), Φ′
C(w(m; d, ξ))||H (5.11)

J(m; d) =
∂ΦR

∂m

∂w(m; d, ξ)

∂ξ

∣∣∣
ξ=0

(5.12)

where 1ϵ
(x1,x2)

is the signed indicator function,

1
ϵ
(x1,x2)

=

1 if x1 − x2 > ϵ,

1 if x2 − x1 > ϵ,

0 otherwise.

5.4.3 Extending to arbitrary binary descriptors

The residuals and Jacobians in Equations 5.11 and 5.12 can be extended to a binary
descriptor of any size by using Hamming weights and distances in general. That is,

r(m; d, ξ) = 1
ϵ
(||Φ(m)||H , ||Φ′(w(m;d,ξ))||H) · ||Φ(m), Φ′(w(m; d, ξ))||H (5.13)

J(m; d) =
∂||Φ||H
∂m

∂w(m; d, ξ)

∂ξ

∣∣∣
ξ=0

. (5.14)

Therefore, the approach when applied to general binary descriptors can be sum-
marised as follows:

• Residual magnitude is determined by the Hamming norm between descriptors,

• Descent direction is determined by a signed indicator function applied to the
Hamming weights of each descriptor,

• Corresponding to the image gradient in Equation 5.6, we use the gradient of
Hamming weights of the unwarped descriptor image.

For dense descriptor images to work with gradient descent, they need good con-
vergence basins which are the region around the correct pixel match that results in
convergence. To demonstrate a reasonable convergence basin for the descriptors we
are using, we show in Figure 5.3 the sum of squared difference and sum of Hamming
distance costs over a translated window, which show a clear basin leading to the
correct translation at (0, 0).

5.4. DIRECT TRACKING WITH BINARY FEATURES 160

0

10

5

5 10

S
S

D
 C

o
s
t

10
5

Intensity

5

y offset (px)

10

0

x offset (px)

0
-5

-5
-10 -10

0

10

1

2

5 10

S
u
m

 o
f
H

a
m

m
in

g
 C

o
s
t 10

4

3

Census

5

y offset (px)

0

4

x offset (px)

0
-5

-5
-10 -10

0

10

5

5 10

S
S

D
 C

o
s
t

10
4

10

Rank

5

y offset (px)

0

x offset (px)

0
-5

-5
-10 -10

0

10

2

4

5 10

6

105

S
S

D
 C

o
s
t

8

Complete Rank

5

y offset (px)

0

10

x offset (px)

0
-5

-5
-10 -10

0

10

2

5 10

10
5

S
u

m
 o

f
H

a
m

m
in

g
 C

o
s
t

4

BRIEF16

5

y offset (px)

0

6

x offset (px)

0
-5

-5
-10 -10

Figure 5.3: The cost surface of a translated section of the image. The high-
lighted region is compared to a translated region using various descriptors and
their norms. Sum of squared difference is used for intensity, Rank and Complete
Rank. Sum of Hamming distances is used for Census and BRIEF descriptors.

5.4.4 Rank approximations

In the same vein as tracking directly on Rank transform descriptors, we consider the
possibility of tracking entirely on the Hamming weight of a binary descriptor. If one
computes a dense image of binary descriptors then takes the Hamming weight of all
descriptors, the resulting image is directly suitable for tracking with the L2 norm
with Equation 5.3. Expressing the residual in terms of the binary descriptor itself,
this would still use the Jacobian of Equation 5.14 but replace the corresponding
residual with Equation 5.15. We could also explore this in a multi-channel manner,
expressed in Equations 5.16 and 5.17, where each n-bit block of the descriptor is
a separate channel, for example 8-bit channels. Although this reduces structural
discrimination it maintains invariance to global monotonically increasing rescaling
of intensity.

r(m; d, ξ) = ||Φ(m)||H − ||Φ′(w(m; d, ξ))||H (5.15)

ri(m; d, ξ) = ||Φi(m)||H − ||Φ′
i(w(m; d, ξ))||H (5.16)

Ji(m; d) =
∂||Φi||H
∂m

∂w(m; d, ξ)

∂ξ

∣∣∣
ξ=0

(5.17)

5.4.5 Implementation details

The binary descriptor-based IC-LK tracking was implemented in C++ using the
OpenCV and Eigen libraries. Points were selected in each image using local max-
imums within a 3 × 3 patch with non-zero gradients. We tracked on a four-level
Gaussian pyramid and built a depth map for the point warping from small baseline
epipolar searches between images of known relative pose. For intensity, we used the

5.5. EVALUATIONS 161

Figure 5.4: Example stereo pair from New Tsukuba dataset [267]. Middle column
has dense depth maps built from scanning epipolar lines for minimum SSD over a
pixel patch (top), and scanning epipolar lines for best BRIEF16 descriptor match
(bottom). Right column shows the sparse depth map with BRIEF16 descriptors
(top) and successful points overlaid on image (bottom).

method of LSD-SLAM [92], searching the epipolar line for the minimum SSD over
a patch. For the binary features we replaced the patch-based SSD with Hamming
distance between descriptors. This process is shown in Figure 5.4. This method
requires bootstrapping for the first depth map or pose, as each require the other.
We used a standard feature-based method to estimate the first pose then proceeded
as described [257].

5.5 Evaluations

We evaluated our proposed methods using the KITTI Visual Odometry dataset seen
in Figure 5.5 [268]. This is comprised of footage taken on a road in a residential
area.

Firstly, we tested the method of Section 5.4.2 where residual magnitude was de-
termined by Census descriptors but gradient and descent direction was determined
by Rank transform. This was compared to tracking using Rank and Compete Rank
alone, as well as to ground truth, raw intensity, and Bitplanes [265]. Figure 5.6
shows on these results on the left, with intensity having the poorest performance.
The Rank transform performs better than intensity and then our approach with
the Census transform improves upon Rank slightly. This shows the effect of us-
ing the more discriminative Census transform, however, its effect with these simple
descriptors is only minor. The Bitplanes method is much better than our method
applied to the Census transform, however, it performs on par with simply tracking
on the Complete Rank descriptor.

We then tested our approach applied to the BRIEF16 descriptor, as well as the

5.5. EVALUATIONS 162

Figure 5.5: Example images from the KITTI dataset used for evaluation. Frame
0 (top) and frame 200 (bottom) from sequence 00 [268].

Figure 5.6: Estimated paths for the first 1500 frames of the test dataset, using
intensity, Bitplanes, Census, Rank, Complete Rank, BRIEF16, and Hamming
weight approximations of BRIEF16.

single- and multi-channel Rank approximation alternatives. Again, this was com-
pared to ground truth, raw intensity, and Bitplanes. Figure 5.6 shows on these
results on the right. Our primary method improved upon the Bitplanes method
when applied to more robust descriptors. The multi-channel Rank approximation
method also had excellent performance, noticeably below our primary method but
better than the single-channel Rank approximation method.

Following this, we tested BRIEF16, BREIF32, ORB and BRISK descriptors with
our primary method of Section 5.4.3, shown compared to the ground truth in Figure
5.7. It is clear from this comparison that all four robust binary descriptors performed
to a similar accuracy, however, overall the ORB descriptor was the most accurate.
The other three descriptor types performed extremely similarly and would require
further testing on a wider variety of datasets to clearly determine a difference.

5.5. EVALUATIONS 163

Figure 5.7: Estimated paths for the first 1500 frames of the test dataset, using
intensity, BRIEF16, BRIEF32, ORB, and BRISK descriptors. A zoomed in sec-
tion is shown on the right.

Overall, these comparisons reveal a range of interesting information. Tracking
on intensity alone does not perform very well, however Bitplanes performs much
better. Our single-channel Census method is slightly better than a Rank transform
approach but performs below Bitplanes. Interestingly, the Complete Rank transform
performs almost as well as Bitplanes. The more complex descriptors perform much
better than the prior types, with all such descriptors performing similarly. However,
approximating the entire descriptor with its Hamming weight, even in a multi-
channel case, sees poorer performance.

Comparing the frame-by-frame error of BRIEF16 to Bitplanes in Figure 5.8, we
can see the very similar but clearly improved accuracy. This is because, although our
descent direction is only an approximation, BRIEF descriptors provide much more
information to exploit compared to Census descriptors. Therefore, our method can
be seen as a trade-off: approximating the gradient and descent direction reduces
the accuracy compared to the Bitplanes method, however, by enabling the use of
more robust descriptors in an efficient manner, even greater gains in accuracy are
achieved.

Looking at the ranges of errors for each descriptor type across all frames in Figure
5.9, we can see that our methods for BRIEF, ORB and BRISK out-perform the other
methods quite substantially, with ORB being marginally better than BRIEF16. In-
terestingly, the BRIEF32 descriptor performed worse than the BRIEF16 descriptor,
which warrants further investigation.

Table 5.1 shows the channels and bytes per channel for each descriptor and the
overall root-mean-squared error for translation and rotation, with ORB being most
accurate for all measurements. ORB was much better than the alternative descriptor
types for translation, however, this difference was more minor for rotation. The

5.5. EVALUATIONS 164

Figure 5.8: Error per frame in estimations of relative poses, shown for intensity,
Bitplanes, and BRIEF16 descriptors.

multi-channel approximate method for BRIEF16 can be seen to have about twice
the error than our primary method when applied to the same descriptor type. From
only an error point-of-view, we can clearly recommend the ORB descriptor as the
best out of the alternatives we have considered.

Considering processing time instead, Table 5.2 shows the execution times of differ-
ent parts of the algorithm for each of the four robust descriptors as well as raw intens-
ity. This includes constructing the Gaussian pyramids, computing the descriptors
and gradients, calculating the Jacobian, and performing one iteration of the IC-LK
alignment. The raw intensity method does not require any descriptor calculation.
In this comparison, we considered the case of computing dense descriptor images as
well as only computing the sparse keypoints that are actually utilised. The naïve
implementation computing dense descriptor images is clearly not suitable for real-
time use, however, intelligently computing the minimal number of descriptors that
get used speeds this up substantially. Much more processing time is spent in the
robust descriptor methods, however, in the sparse case this is still within reason for
real-time application. Of the alternatives considered, the BRIEF16 descriptor was
the fastest which is understandable as it is the shortest descriptor. When comparing
both accuracy and execution time, this demonstrates that BRIEF16 is an excellent
choice for our method.

Table 5.3 compares the results of our method using the complex descriptors to
other popular methods on the KITTI dataset. DSO [93] is a popular monocular

5.5. EVALUATIONS 165

Table 5.1: Number of channels, bytes per channel, and RMSE for translation
and rotation.

Descriptor Channels Bytes X(m) Y(m) Z(m) Rotation(deg/m)

Intensity 1 1 0.814 1.342 0.655 0.272
Bitplanes [265] 8 1 0.508 0.413 0.231 0.147
Census [260] 1 1 0.966 0.291 0.551 0.133
Rank [260] 1 1 1.136 0.415 0.725 0.115
Complete Rank [258] 9 1 0.519 0.845 0.318 0.193
BRIEF16 [152] 1 16 0.311 0.330 0.236 0.059
BRIEF16 Rank 1 1 1.044 0.910 0.617 0.118
BRIEF16 Rank MC 16 1 0.643 0.409 0.318 0.105
BRIEF32 [152] 1 32 0.360 0.373 0.273 0.068
ORB [101] 1 32 0.270 0.304 0.173 0.057
BRISK [151] 1 64 0.379 0.399 0.258 0.078

Table 5.2: Execution time for different parts of the algorithm for raw intensity
and four descriptor types. Times given in milliseconds (ms).

Stage RI BRIEF16 BRIEF32 ORB BRISK

Pyramid Construction 0.195
Descriptor Calculation (Dense) N/A 120.93 265.67 58.74 636.80
Gradient Calculation (Dense) 0.25 13.87 13.27 13.88 13.41
Descriptor Calculation (Sparse) N/A 3.03 3.27 2.97 85.05
Gradient Calculation (Sparse) 0.03 0.46 0.43 0.48 0.43
Jacobian Calculation 0.46 0.70 0.99 1.09 1.23
LK Iteration 0.52 1.11 1.59 1.87 2.58

5.6. SUMMARY 166

R
I

B
P

C
E

R
A

C
-R

A

B
F

1
6

B
F

-R

B
F

-R
M

C

B
F

3
2

O
R

B

B
K

Feature Type

10-1

100

101

T
ra

n
s
la

ti
o

n
 E

rr
o

r
(m

)

R
I

B
P

C
E

R
A

C
-R

A

B
F

1
6

B
F

-R

B
F

-R
M

C

B
F

3
2

O
R

B

B
K

Feature Type

10-2

10-1

100

R
o

ta
ti
o

n
 E

rr
o

r
(d

e
g

/m
)

Figure 5.9: Translation and rotation errors for relative pose estimations between
frames, for raw intensity, Bitplanes, Census, Rank, Complete Rank, BRIEF16
with single and multi-channel approximations, BRIEF32, ORB, and BRISK
descriptors.

Table 5.3: Comparison of our method on the KITTI dataset with four types of
descriptors to two widely used monocular methods and their stereo counterparts.

Method Translation (%) Rotation(deg/m)

Ours BRIEF16 7.80 0.059
Ours BRIEF32 7.84 0.068
Ours ORB 7.59 0.057
Ours BRISK 10.89 0.078
Mono DSO [93] 9.82 0.0021
ORB-SLAM [100] 14.37 0.0029
Stereo DSO [108] 0.93 0.0020
ORB-SLAM2 [109] 1.15 0.0027

visual odometry method and ORB-SLAM [100] is a monocular SLAM method. Both
have better results in terms of rotation whereas our results outperform in terms of
translation. Comparatively, Stereo DSO [108] and ORB-SLAM2 [109] demonstrate
the performance gains from introducing a second camera for stereo matching, with
significantly more accurate results for translation. We believe these results demon-
strate that our method provides a novel new approach to monocular visual odometry
with strong potential for further development.

5.6 Summary

This chapter has proposed a single-robot visual odometry method that is suitable
for use in the second stage of the distributed calibration, localisation, and mapping
pipeline presented in Figures 1.2 and 2.28. The primary goal of this method was

5.6. SUMMARY 167

to incorporate the robust binary feature descriptors often used for wide-baseline
matching between robots into the highly efficient direct visual odometry method.

Binary feature-based direct tracking shows promising performance compared to
intensity and alternative feature-based direct methods. Our method approximates
gradient and descent direction with Hamming weights, allowing the descriptors to
still be compared using Hamming distance. We derived this by considering the
relationship between Census and Rank transforms and extending to more complex
descriptors. Compared to alternative approaches for using binary descriptors in
the LK algorithm, ours uses a single channel regardless of descriptor size. We also
described further single- and multi-channel approximations using Hamming weights
entirely. On Census transforms, our method has similar performance to intensity,
but on BRIEF, ORB and BRISK descriptors we have much improved performance.
Our alternative approximations also perform better than intensity but worse than
our primary method.

We plan to integrate this type of binary descriptor tracking into existing VO and
SLAM methods to thoroughly demonstrate its performance. Also, we will seek to
improve the speed of the algorithm by intelligently computing the minimum number
of sparse descriptors required in an improve ‘lazy’ manner, which our results showed
is necessary for real-time execution. We can further improve speed with single-
instruction-multiple-data (SIMD) optimisations. Finally, as the features we use are
suitable for wide-baseline matching, our method is aimed to be extended into a
multi-camera VO system.

From this, the issues raised regarding the efficiency and use of robust descriptors
for the local tracking stage of the proposed pipeline have been addressed.

Chapter 6

Optimising edge weights for
distributed inference with Gaussian
belief propagationa

Contents
6.1 Summary of contributions 168

6.2 Introduction . 169

6.3 Preliminaries . 171

6.4 Gaussian belief propagation 172

6.5 Optimising weights for small-world networks 174

6.6 Application to factor graph localisation 178

6.7 Application to distributed calibration 181

6.8 Summary . 182

w

6.1 Summary of contributions

• Two empirically derived methods are presented for the determination of edge-
weights in Gaussian belief propagation.

• The weights are determined through the analysis of small-world networks of
varying sizes.

aChapter adapted from “B. Halloran et al., ‘Optimizing edge weights for distributed inference
with gaussian belief propagation,’ in Proceedings of ICIC 2018: Intelligent Computing Theories
and Application, D.-S. Huang et al., Eds., Springer International Publishing, 2018, pp. 46–59, isbn:
978-3-319-95930-6. doi: 10.1007/978-3-319-95930-6_6”

168

https://doi.org/10.1007/978-3-319-95930-6_6

6.2. INTRODUCTION 169

• The first method uses uniform edge-weights across the network based on the
average node degree.

• The second method uses different weights for each edge based on the average
of node degrees either side of an edge, therefore only using information known
locally and from direct neighbours.

• The improvements in convergence speed and accuracy of the estimation are
demonstrated on a simplified factor graph localisation problem.

6.2 Introduction

In the continuation of contributions to the proposed pipeline in Figures 1.2 and 2.28,
this chapter considers the performance of the distributed algorithms that would be
utilised for global pose optimisation in stages one and three.

Distributed processing is becoming more of an important paradigm as larger net-
works are being applied to various problems, particularly robotics and robotic vis-
ion. Traditional centralised solutions, where a single central processor takes data
from each node, suffer from scalability issues due to communication bottle-necks and
have a substantial risk of a single point of failure at the central node. Distributed al-
gorithms alleviate these issues by moving the processing to the nodes themselves and
using only local information with communication between direct neighbours, thereby
taking better advantage of the communication structure and increasing scalability.
These algorithms still need improvements, however, to achieve the same accuracy
as centralised systems.

Belief propagation (BP) is a well-known message passing algorithm for performing
efficient inference on graphical models [197]. Whilst the original BP algorithm per-
formed inference on discrete random variables, Gaussian belief propagation (GaBP)
is an extension of BP to continuous random variables which are modelled as Gaussian
densities [200, 242]. This allows many problems dealing with continuous variables,
such as localisation, to be interpreted as a distributed problem on a graph.

This chapter proposes improvements to the accuracy and convergence speed of
Gaussian belief propagation through the choices of edge-weights based on the ana-
lysis of small-world networks.

6.2.1 Related Work

Belief propagation was first proposed by Pearl for inference over discrete random
variables, guaranteeing exact inference on acyclic graphs [197]. It was later re-
formulated as Generalized Belief Propagation (GBP) for approximate inference on

6.2. INTRODUCTION 170

cyclic graphs [199]. It has also been shown that BP is equivalent to many sim-
ilar sum-product algorithms, such as fast Fourier transforms, Kalman filtering, and
average-consensus [94].

BP has been extended to work on continuous variables through non-parametric
belief propagation (NBP) [210], which uses particle filtering, and Gaussian belief
propagation (GaBP) [200, 242], which uses Gaussian densities. Although NBP
can represent more complex non-Gaussian distributions, GaBP requires much less
memory and processing power making it more suitable for low-cost hardware. GaBP
has been applied to many problems such as parallel SVMs [213], MMSE estimators
[269], Kalman filtering [214], linear least squares estimation [270], and multi-camera
calibration [36]. NBP has also seen successful application to localisation and tracking
[271, 272], however GaBP has been shown to achieve similar results through iterative
linearisation of the problem [273]. Recently, GaBP has been applied to finite-element
analysis, allowing greater parallelisation on GPUs [274] and high-performance com-
puting applications [275]. Recent work has been done to understand the convergence
conditions of GaBP, particularly analysing the information matrix [208, 209]. Other
work has sought to improve the accuracy of the different BP algorithms, generally
using different strategies for applying importance weights to the messages [210] Tree-
reweighted BP (TRW-BP) calculates the entire set of possible spanning-trees for a
given cyclic graph then weights edges based on the probability that an edge appears
in the set, calling these edge appearance probabilities (EAPs) [276]. It was later
shown that uniform weights across all edges could achieve similar results by approx-
imating the EAPs [277]. This has been successfully applied to NBP (TRW-NBP),
however the empirical relationship derived was based only on a specific network size
[211]. Consequently, we are motivated to derive a more general weighting system
for networks of varied sizes and connectivities.

6.2.2 Contributions

To increase the accuracy of Gaussian belief propagation, we present the following
improvements. Firstly, we have derived uniform message weights for minimising
root-mean-square error (RMSE), approximating the EAPs, by analysing optimal
weights for a range of small-world networks of differing sizes and connectivity. Next,
we have proposed an alternative non-uniform message weight based on our prior
derivation, which provides a further improvement to the algorithm accuracy. Finally,
we have provided a practical example of this being used in a distributed inference
problem through a demonstration of distributed localisation. The motivation for
this is to improve the convergence speed and accuracy of the distributed algorithms
that are utilised in the calibration, localisation, and mapping pipeline that has been

6.3. PRELIMINARIES 171

x₁ x₂

x₃ x₄

(1,2)

(2,4)

(3,4)

(1,3)
(2,3)

Figure 6.1: An example Markov random field, with nodes and edges identified.

discussed throughout this dissertation.
The remainder of the chapter is organised as follows: Section 6.3 reviews the

preliminaries of undirected graphical models and belief propagation; Section 6.4 de-
scribes GaBP and reweighted messages; Section 6.5 explains our empirical approach
to optimal weights; Section 6.6 provides an application of this algorithm to the loc-
alisation problem; Section 6.7 applies the algorithm to the distributed calibration
and localisation discussed in Chapters 3 and 4; and finally, Section 6.8 concludes
this chapter.

6.3 Preliminaries

In Section 2.5.1 the concept of the undirected graph was introduced, and in Section
2.5.2 the belief propagation algorithm was discussed. However, in the following
section, the important aspects of these preliminary concepts are reintroduced for
clarity.

As in previous chapters, consider a network of N nodes which are connected
in an ad-hoc manner. This network can be described by an undirected graph, or
Markov random field (MRF), G = {V , E}. Here, V = {1, . . . , N} is the set of
nodes and E ⊆ V × V is the set of edges containing (i, j) ∈ E pairs of nodes
where node i and j are connected. We denote the direct neighbours of node i as
Ni = {j ∈ V : (i, j) ∈ E}, which has degree di = |Ni|. An example of a simple MRF
is shown in Figure 6.1.

Consider each node i having a true state given by some variable zi. The meas-
urement xij is the noisy observation made by node i of either zj itself, or some
constraint on zj, where j ∈ Ni. We wish to to estimate zi from all xij by consid-
ering the joint density in Equation 6.1 with node potentials ϕi and edge potentials
ψij. This is solved using belief propagation by passing messages m(t)

i→j(zj), given in
Equation 6.2, from node i to node j across edges (i, j) ∈ E at every iteration t. The

6.4. GAUSSIAN BELIEF PROPAGATION 172

belief at each iteration, given in Equation 6.3 converges towards a global estimate
for zi, resulting in exact inference on trees and approximate inference otherwise.
Section 3.6 outlines the relationship between the problem formulation and belief
propagation in greater detail.

p(z0, ..., zN−1) ∝
∏
i∈V

ϕi(zi)
∏

(i,j)∈E

ψij(zi, zj) (6.1)

m
(t)
i→j(zj) ∝

∫
zi

ϕi(zi)ψij(zi, zj)
∏

k∈Ni\j

m
(t−1)
k→i (zi)dzi (6.2)

b
(t)
i (zi) ∝ ϕi(zi)

∏
j∈Ni

m
(t)
j→i(zi) (6.3)

6.4 Gaussian belief propagation

In Gaussian belief propagation, random variables are modelled as Gaussian densities.
Therefore, two scalars each represent potentials, messages, and beliefs — mean and
precision. In this chapter, compared to Chapters 3 and 4, a slightly different form
of the messages and beliefs is used based on the construction of an information
matrix and measurement vector. The mean is the noisy measurement xij and the
precision Pij is the inverse of its variance Σxij

. The graph is then represented by
an information matrix Ω, encoding the edges and precisions, and a measurement
vector ξ, containing precision-weighted sums of measurements. For example, if each
node has relative measurements of its neighbours, xij = zj − zi + wij, as well as an
absolute measurement, xii = zi +wii, where w is some zero-mean additive Gaussian
noise, then we would have

Ωij =

(di + 1)Pij for i = j,

−Pij for j ∈ Ni,

0 otherwise

ξi = (di + 1)xiiPii −
∑
j∈Ni

xijPij.

We can then reduce the messages of Equation 6.2 to the form used by Bickson

6.4. GAUSSIAN BELIEF PROPAGATION 173

[242] with mean and precision values,

P
(t)
i\j = Ωii +

∑
k∈Ni\j

P
(t−1)
k→i

µ
(t)
i\j = (P

(t)
i\j)

−1(ξi +
∑

k∈Ni\j

P
(t−1)
k→i µ

(t−1)
k→i)

P
(t)
i→j = −Ω2

ij(P
(t)
i\j)

−1

µ
(t)
i→j = −Ωiiµ

(t)
i\j(P

(t)
i\j)

−1

and the beliefs have the form

P
(t)
i = Ωii +

∑
j∈Ni

P
(t)
j→i

µ
(t)
i = (P

(t)
i)−1(ξi +

∑
j∈Ni

P
(t)
j→iµ

(t)
j→i)

with µ(t)
i converging towards a global consensus value for zi.

6.4.1 Message reweighting

Wainwright et al. first showed how messages can be reweighted in tree-reweighted
belief propagation, where weights were based on the probability that an edge appears
on a spanning-tree subgraph, ρij [276]. This method reduces RMSE in the solution
but isn’t suitable for use in distributed networks as it requires all possible spanning-
trees to be determined to calculate the edge appearance probabilities. Savic et
al. simplified this by approximating EAPs for lattice graphs and applied this to
nonparametric belief propagation [211]. Here, we will apply these weights to the
Gaussian-based equations. Firstly, edge weights ρij are applied to the messages for
belief in Equation 6.3,

b
(t)
i (zi) ∝ ϕi(zi)

∏
j∈Ni

(m
(t)
j→i(zi))

(ρij).

Then outgoing messages of Equation 6.2 include this new form of the reweighted
belief with the previous message from the target node removed, and have the inverse
weight applied to the edge potential, giving

m
(t)
i→j(zj) ∝

∫
zi

(ψij(zi, zj))
(1/ρij)

b
(t−1)
i (zi)

m
(t−1)
j→i (zi)

dzi.

This can then be converted to mean and precision for the Gaussian beliefs and

6.5. OPTIMISING WEIGHTS FOR SMALL-WORLD NETWORKS 174

messages.

P
(t)
i = Ωii +

∑
j∈Ni

ρijP
(t)
j→i

µ
(t)
i = (P

(t)
i)−1(ξi +

∑
j∈Ni

ρijP
(t)
j→iµ

(t)
j→i)

P
(t)
i\j = P

(t−1)
i − P (t−1)

j→i

µ
(t)
i\j = (P

(t)
i\j)

−1(P
(t−1)
i µ

(t−1)
i − P (t−1)

j→i µ
(t−1)
j→i)

P
(t)
i→j = −Ω2

ij(ρ
2
ijP

(t)
i\j)

−1

µ
(t)
i→j = −Ωiiµ

(t)
i\j(ρijP

(t)
i\j)

−1

In TRW-NBP, Savic et al. used uniform weights for the entire graph. That is,
ρij = ρopt for all edges (i, j) ∈ E , with ρopt being determined by their empirical
formula [211].

6.5 Optimising weights for small-world networks

For TRW-NBP, Savic et al. determined an empirical relationship between the op-
timal edge weights, with regard to RMSE, and the average node degree of the graph
nd, given by

ρopt(nd) = ρ0e
−kρnd (6.4)

where ρ0 and kρ were constants. These constants were found empirically for a
network of N = 25 nodes and were different for lattice and random graphs. In this
section, optimal weights are analysed for minimising RMSE in GaBP and extended
to more general small-world networks for a range of network sizes.

6.5.1 Small-world generation

A small-world network is an interpolation between lattice graphs, where nodes are
connected in a regular pattern, and random graphs. Small-world networks are char-
acterised by high clustering and having few hops between any two nodes. We chose
to optimise our algorithm weights for small-world networks due to their prevalence
in many naturally occurring systems. These networks can be generated with the
Watts-Strogatz model, where a lattice graph has its edges re-wired randomly with
some probability [278]. This process is as follows:

1. For a graph of N nodes, it has connectivity or average node degree nd with
N ≫ nd and a parameter representing the ‘randomness’ of the graph 0 ≤ β ≤
1.

6.5. OPTIMISING WEIGHTS FOR SMALL-WORLD NETWORKS 175

2. The graph is initially connected as in a regular lattice where each node is
connected to the nd/2 neighbours either side. That is,

E = {(i, j) : 0 < |i− j|mod(N − nd

2
− 1) <

nd

2
}

3. For each node i, take each edge (i, j) where j ∈ Ni and i < j, and with
probability β replace it with a random new edge (i, k) where k ̸= i and k /∈ Ni.

6.5.2 Uniform optimal weights

The main effect of the graph cycles on the GaBP solution is an increase of RMSE,
with acyclic graphs performing exact inference. Using small-world networks, the
effect of uniform message weights on RMSE was simulated on a variety of structures,
with four network sizes N and β varying from 0 to 1 in steps of 0.1. For N = 10,
small-worlds were generated of connectivities 1 ≤ nd/2 ≤ 4. For N = 20 and
N = 30, connectivities were 1 ≤ nd/2 ≤ 7. For N = 40, connectivities were
2 ≤ nd/2 ≤ 8. For each size, β, and connectivity, 1000 small-world networks were
generated. In each network a simple single variable problem was simulated with
nodes assigned true values zi ∈ [1, 100] and measurements taken of themselves
and neighbours affected by zero mean Gaussian noise of variance Σxij

= 0.5. The
maximum likelihood of zi was estimated using GaBP with uniform weights ρ ranging
from 0.01 to 1.0 in steps of 0.01, and the RMSE of these solutions was compared to
the RMSE of the unweighted GaBP solution.

Figure 6.2a shows results for N = 40 and β = 0.5. As the connectivity increases
the optimal weight decreases, whilst its effect on RMSE increases. For higher con-
nectivities, most weights have some positive effect on the RMSE compared to the
unweighted solution. It is only once the weights become much lower than the op-
timal weight that the error begins to increase rapidly, and the solution no longer
converges. Figure 6.2b shows that the location of the optimal weight does not only
rely on the average node degree nd, but also the graph size N . This is because the
amount by which the connectivity of a cyclic graph exceeds that of a valid spanning-
tree is dependent on N as well. Figure 6.2c shows the effect that different β values in
the small-world generation have on the location of the optimal weight. In a network
of N = 40 and nd = 12, the optimal weights for each value of β cluster around
ρ = 0.25 with no significant pattern. This result was similar for all graph sizes and
connectivities that were tested.

To explore these relationships further, the optimal weights for each graph size and
connectivity were analysed against nd/N . This revealed a power relationship, given

6.5. OPTIMISING WEIGHTS FOR SMALL-WORLD NETWORKS 176

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uniform Message Weights,

0.8

0.9

1

1.1

1.2

1.3

1.4

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

n
d
=4

n
d
=6

n
d
=8

n
d
=10

n
d
=12

n
d
=14

n
d
=16

(a) Different connectivities for N = 40 and
β = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uniform Message Weights,

0.8

0.9

1

1.1

1.2

1.3

1.4

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

N=20

N=30

N=40

(b) Different network sizes for nd = 12 and
β = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uniform Message Weights,

0.8

0.9

1

1.1

1.2

1.3

1.4

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

N=20

N=30

N=40

(c) Different β values for N = 40 and nd =
12.

Figure 6.2: Average RMSE relative to unweighted RMSE for different uniform
message weights in small-world networks with different connectivities, network
sizes, and β.

in Equation 6.4, as opposed to the exponential relationship of Equation 6.4.

ρopt(nd, N) = ρ0(
nd

N
)−kρ (6.5)

Figure 6.3 shows this for N = 40, taking the average optimal weight across all
β. This was repeated for all network stated sizes and revealed changing values of
ρ0 and kρ with N , shown in Figure 6.4. Using these trends, the following empirical
relationships were derived,

ρ0(N) = aρN
−bρ

kρ(N) = akN + bk

with the resulting data producing aρ = 2.9969, bρ = 0.845, ak = 0.0026, and bk =

0.444.

6.5. OPTIMISING WEIGHTS FOR SMALL-WORLD NETWORKS 177

y = 0.133x-0.536

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3 0.4 0.5
O

p
ti

m
a

l
E

d
g

e
 W

e
ig

h
t

(�

)

Average Node Degree on Graph Size, nd/N

Figure 6.3: Optimal weights for different connectivities against nd/N , for a
network of N = 40.

y = 2.9699x-0.845

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40 45

O
p

ti
m

a
l
⍴

0

Graph Size, N

(a) Optimal ρ0 for different graph sizes.

y = -0.0026x - 0.444

-0.56

-0.55

-0.54

-0.53

-0.52

-0.51

-0.5

-0.49

-0.48

-0.47

-0.46

0 5 10 15 20 25 30 35 40 45

O
p

ti
m

a
l

k
⍴

Graph Size, N

(b) Optimal kρ for different graph sizes.

Figure 6.4: Optimal values for ρ0 and kρ for different graph sizes.

6.5.3 Non-uniform weights

Next, the effect of non-uniform weights was explored. Considering that the heuristic
of Equation 6.5 aims to emulate the effect of EAP weights, individual node degrees
can be used rather than the average node degree. Since the probability of a given
edge being pruned to make a spanning-tree is related to the degrees of the nodes at
either end, we use the average of these degrees, dij, for edge specific weights given
in Equation 6.

dij =
di + dj

2
(6.6)

ρopt(dij, N) = ρ0(
dij
N

)−kρ (6.7)

6.5.4 Comparison of the weighting methods

The effects of these different weighting methods were compared using the same
rages of graph sizes, connectivities and β as in the previous simulation, measuring
the average RMSE relative to the unweighted solution, shown in Figure 6.5. As
a baseline, the ideal weights at the minima of the previous simulation, shown in

6.6. APPLICATION TO FACTOR GRAPH LOCALISATION 178

2 3 4 5 6 7 8

Average Node Connectivity, n
d

0.985

0.99

0.995

1

1.005

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

Sim Minimum

TRW-NBP

Uniform

Non-Uniform

(a) Graph size N = 10.

2 4 6 8 10 12 14

Average Node Connectivity, n
d

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

Sim Minimum

TRW-NBP

Uniform

Non-Uniform

(b) Graph size N = 20.

2 4 6 8 10 12 14

Average Node Connectivity, n
d

0.9

0.92

0.94

0.96

0.98

1

1.02

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E

Sim Minimum

TRW-NBP

Uniform

Non-Uniform

(c) Graph size N = 30.

4 6 8 10 12 14 16

Average Node Connectivity, n
d

0.8

0.85

0.9

0.95

1

1.05

R
M

S
E

,
R

e
la

ti
v
e
 t
o
 U

n
w

e
ig

h
te

d
 R

M
S

E
Sim Minimum

TRW-NBP

Uniform

Non-Uniform

(d) Graph size N = 40.

Figure 6.5: Average RMSE, relative to RMSE of unweighted GaBP of 1000
trials, for different weighting systems and graph sizes.

Figure 6.2 , were included. As the uniform weighting heuristic of Equation 6.5 aims
to follow these minima as closely as possible, it is as expected that these two lines
are close together. The non-uniform weighting heuristic, however, out-performed
these weights. The heuristic of Equation 6.4, from TRW-NBP, was also included for
comparison. This performed slightly worse than our weights and resulted increased
RMSE for low connectivities on the N = 10 graph.

6.6 Application to factor graph localisation

As a practical example of this algorithm, our weights were tested on a linear multi-
robot simultaneous localisation and mapping (SLAM) problem. SLAM uses meas-
urements between robot poses and landmarks to localise the robots and map the
landmarks. Graph-SLAM represents this as maximum a posteriori optimisation on
a factor graph [5]. BP has been shown to efficiently solve graphical representations
in localisation [273], tracking [279], and SLAM [280]. The difference between an
MRF, as discussed thus far in the chapter, and factor graph can be seen in Figure
6.6a, with visual representation of graph SLAM shown in Figure 6.6b. Nodes are
the same as those on an MRF, whilst the constraints between nodes and priors are

6.6. APPLICATION TO FACTOR GRAPH LOCALISATION 179

x₁ x₂ x₃

x₁ x₂ x₃
u₁

p₁ p₂ p₃

u₂

(a) MRFs and factor graphs

p

c₁

u₁

u₂

v₁
v₂

v₃
v₄x₁

x₂
x₃

l₁
l₂

(b) Factor graph representation of the
SLAM problem.

Figure 6.6: Factor graphs, (a) the conversion from an MRF with constraints
between nodes u and prior information p as factors, and (b) SLAM as a factor
graph with x a pose, l a landmark, p the prior, u a constraint between poses, v a
measurement of a landmark, and c a loop-closure.

now shown as factors represented by squares. The factor graph representation given
in Figure 6.6b is a simplified version of that in Figure 2.23 discussed in Section 2.4.2.

The simulation of our weighting method on the linear multi-robot SLAM problem
was done with a variable number of robots moving randomly on a 100m×100m plane
with four landmarks. To keep the problem linear for demonstration purposes, we are
only considering (x, y) positions. At each iteration, the robots measure the distance
to its previous pose and any landmarks or robots in range. The measurement radius
was 30m and were affected by zero-mean additive Gaussian noise of variance 3m.
This simulation was repeated for different numbers of robots ranging from 1 to 6, for
1000 trials each, to measure the average reduction in RMSE compared to unweighted
GaBP.

Figure 6.7 shows an output of this simulation performed with four robots, with
the ground truth paths shown as solid lines. The unweighted GaBP solution is
shown as the dashed line, whilst the non-uniform weighted GaBP is shown as the
dotted line, which was closer to the ground truth. This demonstrates a small but
clear improvement in the localisation accuracy for our linearised scenario.

The RMSE reduction for 1000 trials of 1 to 6 robots is shown in Figure 6.8.
As the number of robots increases, and therefore the graph size, the effect of the
weighted messages on RMSE increases as well. The TRW weights, however, decrease
in effectiveness as the graph size increases. This is understandable as the weights
being used in our methods are designed specifically for the type of network seen in
this robotics example.

6.6. APPLICATION TO FACTOR GRAPH LOCALISATION 180

0 20 40 60 80 100

0

20

40

60

80

100

Figure 6.7: Example result of using weighted GaBP to solve a 2D graph-SLAM
problem.

1 2 3 4 5 6

Number of Robots

0.88

0.9

0.92

0.94

0.96

0.98

1

A
v
e
ra

g
e
 R

M
S

E
 r

e
la

ti
v
e
 t
o
 u

n
w

e
ig

h
te

d
 R

M
S

E

TRW-NBP

Uniform

Non-Uniform

Figure 6.8: Relative reduction in RMSE compared to unweighted GaBP for
different numbers of robots, using TRW weights as well as our uniform and non-
uniform weights.

6.7. APPLICATION TO DISTRIBUTED CALIBRATION 181

Table 6.1: Comparison of the GaBP procedure used in Chapter 3 to the uni-
form and non-uniform weighted GaBP, evaluated for average iterations per GaBP
alignment and RMSE of the resulting calibration.

Weighting Iterations RMSE

Unweighted 27.4 0.486px
Uniform 38.8 0.461px
Non-uniform 19.1 0.453px

Table 6.2: Comparison of the GaBP procedure used in Chapter 4 to the uni-
form and non-uniform weighted GaBP, evaluated for average iterations per GaBP
alignment and RMSE of the resulting calibration.

Weighting Iterations RMSE

Unweighted 12.8 0.171px
Uniform 17.6 0.163px
Non-uniform 8.9 0.161px

6.7 Application to distributed calibration

In this dissertation, two forms of distributed one-dimensional calibration and local-
isation were presented. In Chapter 3, a distributed version of Zhang’s original one-
dimensional calibration algorithm was presented [15]. In Chapter 4, an improved
version of the multi-view general-motion one-dimensional calibration algorithm was
utilised [87]. Both of these Chapters utilised GaBP as the core of their consensus al-
gorithms and operated on graphs of a similar size to those discussed in this chapter;
Chapter 3 artificially constructed a lattice graph of ten nodes while Chapter 4 gener-
ated a small-world network of ten nodes from common observations. The main goal
of this chapter is to present a method of reducing RMSE in GaBP on cyclic graphs
like those found in these two networks, therefore, the effect of the edge weights on
those two algorithms is presented here.

For the first calibration method of Chapter 3, the GaBP procedure described in
Section 3.6 was replaced by the weighted GaBP of this chapter and evaluated on
the real-image dataset of Section 3.7.3. This was evaluated to compare the original
GaBP implementation to both the uniform and non-uniform weights in terms of
GaBP iterations per optimisation iteration as well as RMSE of the resulting cal-
ibration, as reported in Table 6.1. Similarly for the second calibration method of
Chapter 4, the GaBP procedure of Section 4.5.2 was replaced with the improved
GaBP and evaluated on the real-image dataset of Section 4.6.2. The results eval-
uating the GaBP iterations per outer iteration and RMSE for the original GaBP,
uniformly-weighted GaBP, and non-uniformly-weighted GaBP for this second calib-
ration algorithm are reported in Table 6.2.

6.8. SUMMARY 182

As can be seen, both the uniform and non-uniform variants of the algorithm
produce similar reduction in RMSE, with the non-uniform weights performing very
slightly better. Both algorithms utilised graphs that had moderate connectivities;
in Chapter 3, the graphs were lattice graph where the connectivity was intentionally
limited to avoid the higher errors seen in heavily cyclical graphs, and similarly, in
Chapter 4, the graph connections were limited by co-visibility of the calibration
object. Therefore, the reduction in RMSE being in similar magnitude to the 10
and 20 node simulated graphs is expected. An interesting outcome, however, is
that the uniform weights increase the average number of iterations required for
convergence but about 40% whereas the non-uniform weights decrease the average
number of iterations by almost one third. This reinforces that the non-uniform
weighting scheme is preferable choice.

6.8 Summary

This chapter has presented two weighting systems to reduce RMSE in Gaussian
belief propagation on cyclic graphs, with the goal of improving the accuracy of the
distributed algorithms being utilised in the multi-robot pipeline discussed through-
out this dissertation. The first method involves uniform weights based on graph size
and average node degree, whilst the second method uses non-uniform weights from
the average degree at the nodes on either end of an edge. These two weighting sys-
tems were empirically derived by analysing the RMSE minima for uniform weights
on small-world graphs of varying sizes and connectivities.

The results have shown that these weights effectively reduce the error in the
GaBP solution, with more significant effects on graphs of higher connectivity. It
was shown that in small-world networks, the proposed weighting method performed
better than the tree-reweighted alternative. Furthermore, the non-uniform weighting
method outperformed the uniform weighting method. These results were shown both
in an example application of linearised multi-robot graph SLAM as well as in the
distributed calibration algorithms discussed throughout this dissertation, with the
non-uniform weights achieving a more accurate solution in fewer iterations compared
to the unweighted GaBP. We will be continuing this work to better relate the optimal
message weights to the intrinsic properties of the graph and will also investigate
applying it to further robotics problems.

Chapter 7

Conclusions and future work

7.1 Overview

Advancements in robotic networks with vision applications has led to the need for
robust distributed algorithms that allow for greater robustness and scalability of
the systems [1, 2]. Standard centralised solutions have many issues with singular
points of failure, communication bottlenecks, and computational inefficiencies. Dis-
tributed alternatives reduce the problem to a combination of local computations and
information sharing with direct neighbours which removes the single point of failure,
reduces the communication load, and lowers the computational requirement for any
one processor [3]. With these favourable characteristics, distributed algorithms have
seen wide application in robotic vision networks for addressing the problems of cal-
ibration, localisation, visual odometry, and SLAM. This has raised questions as to
how these tasks can be formulated in an entirely distributed manner with equival-
ent performance to centralised alternatives, how these algorithms can be designed
to operate effectively within the constraints of low-cost on-board processing, and
how they can be incorporated into a consistent pipeline. This work contributed a
range of algorithms to this class of problems in three key stages of the pipeline: ini-
tialisation, local tracking, and global mapping. The goal of these algorithms was to
improve capabilities for robotic vision platforms to perform calibration, localisation,
and mapping.

Calibration and localisation are the crucial first steps for a vision network to ob-
tain an initialisation; the calibration provides knowledge of the intrinsic parameters
of the camera model and the localisation provides relative pose information between
the vision nodes [4]. This allows three-dimensional metric information to be determ-
ined from the scene, as seen by the robots, and produces an accurate starting point
for the application of higher-order robotic vision tasks such as mapping. Distrib-
uted approaches to this problem have mostly focused on the use of self-calibration

183

7.2. RESEARCH SUMMARY 184

algorithms [7], or exclusively focused on the localisation sub-problem [8], and have
solved the problem by utilising distributed algorithms such as belief propagation
and gradient descent through average consensus.

Following the initial calibration and localisation, a robotic vision network can per-
form tasks such as visual odometry and SLAM [5]. This can be seen as an extension
to the localisation problem, where the robots track their motion through an unknown
scene whilst producing a map. Many state-of-the-art visual SLAM implementations
can be interpreted using a keyframe-SLAM framework, where information from the
images, tracking, and mapping procedures are collected into certain images that
are kept as ‘keyframes’, on which optimisation is performed. Furthermore, most
visual SLAM algorithms fall into the paradigm distinction between indirect meth-
ods [20, 100], which use robust feature descriptors, and direct methods [92, 93],
which operate directly on the raw intensity values. Most distributed multi-robot
SLAM implementations rely on indirect methods due to the ability to use robust
feature descriptors for wide-baseline matching. Distributed SLAM systems generally
focus on applying distributed algorithms following a single-robot visual odometry in
order to perform map alignment [6, 24], merging [236, 237], and global optimisation
processes [25, 27, 238].

Following the thorough exploration of state-of-the-art calibration, localisation,
visual odometry and SLAM algorithms, as well as their application to distributed
multi-robot systems, presented in Chapter 2, a clear three-stage pipeline was identi-
fied. Firstly, the system requires an initialisation which is provided by the calibration
and localisation. This requires communication between nodes and distributed pro-
cessing to ensure that a globally consistent state is determined. Following this, a
standard single-robot visual odometry is performed to track the motion of each ro-
bot independently and produce local maps. Finally, inter-robot communication and
distributed algorithms are again leveraged to perform global mapping that combines
and optimises the trajectories and maps of all robots together. It is to these three
stages of the pipeline that this dissertation has contributed algorithms and furthered
understanding, underpinning the three primary goals.

7.2 Research summary

The three goals that were explored in this dissertation were as follows: the de-
velopment of a robust calibration and localisation algorithm that can initialise a
distributed multi-robot platform to an accurate metric state of known scale, as was
explored in Chapters 3 and 4; the development of a single-robot visual odometry
method that is suitable for the second stage, with a focus on computational effi-
ciency and data-type homogeneity, as was explored in Chapter 5; and finally, the

7.2. RESEARCH SUMMARY 185

improvement of convergence and accuracy of distributed algorithms for use in the
third stage, as was explored in Chapter 6.

In Chapter 3, a method for initialising a distributed robotic vision network was
explored based on the one-dimensional camera calibration algorithm of Zhang [15]
and the Gaussian belief propagation proposed by Weiss et al. [200]. Existing dis-
tributed camera sensor network calibration algorithms are based on self-calibration,
such as in the work by Devarajan et al. [7] or Tron and Vidal [8], which cannot
determine the scale of the scene. The introduction of a calibration object resolves
this ambiguity, however, not all calibration objects are made equal; one-dimensional
calibration objects were found to be ideal for the distributed camera system due to
the lack of self-occlusion at wide angles. Furthermore, the introduction of a calibra-
tion object simplified the construction of the vision graph and initial estimation of
extrinsic parameters through the alignment of the 3D points associated with the ob-
ject observations, providing known correspondences. Following this, a cluster-based
bundle adjustment was performed at each node on the lattice graph, which were
all brought into global consensus using Gaussian belief propagation. Evaluations
of this method demonstrated that the distributed algorithm performed to similar
accuracy to an equivalent centralised global bundle adjustment, showing that the
process could be effectively distributed across the network without significant losses
in accuracy.

Chapter 4 expanded upon the method of Chapter 3 by improving it in a number
of ways. Firstly, the single-camera calibration method of Zhang [15] was replaced by
the multi-camera one-dimension calibration and localisation method of de França
[87] which couples the intrinsic and extrinsic calibration together. This method was
improved upon by applying better numerical condition through normalisation of
the projective reconstruction as well as condensing the multiple stages of nonlinear
optimisation into a single stage. As with Chapter 3, the presence of the calibration
object was then leveraged to initialise the vision graph, however, in this algorithm
small-world network structures were utilised to ensure better convergence of the dis-
tributed algorithm. Finally, the distributed consensus of the previous method, which
was essentially a variance-weighted distributed average of local objectives, was over-
hauled to ensure that the global objective was directly equivalent to a centralised
global bundle adjustment through the use of the alternating direction method of
multipliers [215]. This used an augmented Lagrangian approach to split the global
objective into local objectives with included consensus costs that were brought into
alignment using Gaussian belief propagation distributed averaging. Extensive test-
ing on real and simulated data demonstrated that the centralised version of the
algorithm showed superior performance to the original algorithm, self-calibration,
and 2D calibration for the extrinsic and a number of intrinsic parameters, with

7.2. RESEARCH SUMMARY 186

the distributed algorithm achieving similar accuracy to the centralised algorithm.
This reinforced the findings of the previous chapter — that distributed methods
could effectively split global objectives without losses in accuracy. Overall, these
two methods provided a highly accurate initialisation stage to a distributed robotic
vision network that was able to provide the localisation to a known scale.

The second stage of the pipeline was explored in Chapter 5 with the goal of de-
veloping a computationally efficient visual odometry method that is suitable for the
low-powered hardware found on many multi-robot platforms whilst maintaining the
use of the robust feature descriptors necessary for wide-baseline matching between
robots. The direct methods paradigm for visual odometry was identified as a signific-
ant trend in the field that produces highly efficient algorithms compared to indirect
methods [100, 107]. Despite this, direct methods still ultimately compute robust
feature descriptors for use in wide-baseline matching [107]. Therefore, a hybrid ap-
proach was taken to incorporate robust binary feature descriptors into the direct
whole-image alignment process in order to maintain the efficiency of direct meth-
ods whilst improving data-type homogeneity. This method was developed based
on consideration of the Census transform [260], which produces primitive binary
descriptors. Although these are matched using the Hamming norm, which cannot
be in gradient descent, the related Rank transform is matched using the standard L2

norm and can be used in gradient descent. From this, an approach was developed
where residuals were compared using the Hamming norm but gradients and descent
direction were determined by comparison of Hamming weights. This was expanded
to binary descriptors of arbitrary size and complexity and tested for a number of
widely used binary descriptors on real data. Results showed that this was signi-
ficantly more accurate than direct tracking on intensity and, when the descriptors
were only computed sparsely, computational requirements were not increased too
greatly. When considering accuracy alone, ORB descriptors were found to be the
best choice amongst the types considered [101], however, if considering both accur-
acy and efficiency, then BRIEF16 descriptors were found to be best [152]. This
method provided a robust and computationally efficient visual odometry algorithm
that was suitable for the second stage in the distributed robotic vision pipeline being
considered, as its use of robust descriptors lends well to incorporation into the global
mapping of the third stage.

Chapter 6 contributed to the accuracy and efficiency of the algorithms used in
this third stage, as well as in the first stage, through improvements to convergence
properties of Gaussian belief propagation [200, 242] for small-world networks [278].
Existing methods for accelerating the convergence for belief propagation, and there-
fore improving accuracy, use edge-weights which are applied to the messages [211,
276, 277]. These have been computed based on the probability that a given edge

7.3. FUTURE WORK 187

appears in the set of all spanning-trees for the cyclic graph, however, computation
of all spanning-trees is intractable for even moderately sized graphs. Alternatives
have estimated these probabilities using empirical approaches based on global in-
formation about the network structure [211, 277]. The method proposed in Chapter
6 derived an empirical approach that uses the node degrees at either end of a given
edge, reducing the amount of global information required at each node. The pre-
cise weighting values were determined through the analysis of small-world networks
of a range of sizes. Results showed that the reduction in RMSE compared to the
unweighted alternative became more significant as the size of the graph increased.
The method was also tested on a simple linearised multi-robot graph-SLAM prob-
lem, showing clear improvement in the localisation accuracy and again increasing
the level of improvement as the size of the graph increased. This demonstrated that
the weighting scheme was suitable for improving convergence speed and accuracy of
Gaussian belief propagation and therefore was beneficial for use in the distributed
algorithms for stages one and three of the pipeline.

Overall, the contributions of this dissertation can be summarised as three-fold: the
development of algorithms for the robust initialisation of a distributed multi-robot
vision platform, the development of a visual odometry approach that is computation-
ally efficient for use in low-powered hardware whilst utilising suitable data-types for
inter-robot matching in distributed networks, and finally, the improvement of con-
sensus speed and accuracy for the underlying distributed algorithm that help align
the local estimates into a global consensus. Through this, the three questions have
been addressed: algorithms have been presented for computing global objectives in
entirely distributed manners, algorithms have been proposed to meet the needs of
low-cost on-board processing, and finally, these algorithms have been incorporated
into a consistent pipeline for distributed robotic vision platforms.

7.3 Future work

The work presented in this dissertation has opened up a plethora of avenues for
future work investigating this distributed robotic vision pipeline for calibration,
localisation. and mapping.

• The work presented in Chapter 4 developed upon the work of Devarajan et
al. [7] by replacing the Gaussian belief propagation distributed averaging
with an ADMM-based optimisation procedure [215]. In Chapter 4, this was
only applied to one-dimensional calibration, however, it is equally suitable for
application to self-calibration [16, 17, 47]. Although self-calibration cannot
determine the scale of the scene, it has less strict requirements on all cameras

7.3. FUTURE WORK 188

observing a calibration object. Application of the ADDM bundle adjustment
to the self-calibration approach of Devarajan et al. [7] could improve the
accuracy whilst producing a method with better ease-of-use in situations where
known scene scale is not needed.

• Although ADMM provides a straight-forward method for producing a dis-
tributed algorithm from separable problems, it is not always the best choice
for doing this and is best used for when the local objective updates can be
computed analytically [215]. In the application presented in Chapter 4, the
algorithm ultimately performs an optimisation problem within the iterations
of an optimisation problem. The impact of this on computation time is min-
imised by only performing one iteration of the inner problem for each outer
iteration, however, alternative approaches can be explored. For example, the
average consensus-based gradient descent method of Tron and Vidal [8] could
be extended to the full calibration problem, including intrinsic parameters,
to replace the ADMM method entirely. On the other hand, the relaxation
used by Choudhary et al. [27] could be used within the ADMM approach to
improve the accuracy of the inner optimisation compared to simply perform-
ing one iteration of gradient descent, therefore reducing the number of outer
iterations required.

• Continuing the consideration of distributed bundle adjustment, the ADMM
approach could be extended to the type of bundle adjustment used in the
local and global optimisations in SLAM, as well as altered to the form used in
pose-graph optimisation. This is similar to the distributed bundle adjustment
proposed by Eriksson et al. [223] who used proximal splitting methods, how-
ever, their method was split in two different ways: firstly, by disjoint partitions
of images, and secondly, by the image points. This makes their algorithm ex-
cellent for parallel processing, but becomes more complicated on a distributed
robotic network where processing is ideally only separated by robots. The
general consensus form of ADMM could produce a version of their algorithm
that is more clearly separated by robots for use in stage three of the pipeline
discussed in this dissertation.

• Further work is being done on the method proposed in Chapter 5 for a hybrid
feature-based direct visual odometry. To compare the method more directly
to state-of-the-art visual odometry methods, such as DSO [93], the algorithm
should be incorporated into the keyframe-based pipeline discussed in Section
2.4.2. This would allow decisions over sparse point selection as well as keyframe
selection and management to be designed around both the usage of specific

7.3. FUTURE WORK 189

robust feature descriptors as well as the direct alignment procedure. Further-
more, analysis of the performance of each descriptor type in wide-baseline
matching would better inform descriptor choice when considering integration
into a multi-robot system.

• Considering an alternative approach to the single-robot visual odometry dis-
cussed in Chapter 5, rather than incorporating feature descriptors into the
direct alignment process, the results of the direct alignment process could
be incorporated into the global mapping step instead. Currently, most direct
methods rely on robust feature matching for wide-baseline pose estimation and
loop closure [107], which was the motivation for developing the algorithm in
Chapter 5. However, feature descriptors could be avoided entirely if the map
generated by direct methods could be used for loop closure. The inverse depth-
map representation of world points used in direct methods is similar to the
point cloud representation used in RGB-D SLAM methods, such as KinectFu-
sion [90] and ElasticFusion [96], which have been shown to perform accurate
loop closure on portions of this point cloud. Therefore, a similar approach
could be explored in direct methods to avoid feature descriptors entirely.

• Finally, in Chapter 6 an empirical method for choosing edge-weights was ap-
plied to small-world networks of a range of sizes based on node degrees. This
should be explored in greater detail to relate these weights more directly to the
properties of the graph. This is also related to the attenuation factor discussed
in the work of Moallemi and Van Roy [201] which was used to accelerate conver-
gence, however, like with the edge appearance potentials of Wainwright et al.
[276], Wymeersch et al. [277], and Savic et al. [211], decisions on the optimal
value for the attenuation factor was based on global information. Therefore,
research into appropriate edge-weights and attenuation factors based entirely
on local information would be highly useful, particularly on time-changing
graphs where these values could change.

Bibliography

[1] B. Song, C. Ding, A. T. Kamal, J. A. Farrell and A. K. Roy-chowdhury,
‘Distributed camera networks,’ IEEE Signal Processing Magazine, vol. 28,
no. 3, pp. 20–31, 2011. doi: 10.1109/MSP.2011.940441.

[2] R. Tron and R. Vidal, ‘Distributed computer vision algorithms through dis-
tributed averaging,’ in Proceedings of the 24th IEEE Conference on Com-
puter Vision and Pattern Recognition, Colorado Springs, CO, USA: IEEE
Computer Society, 2011, pp. 57–63. doi: 10.1109/CVPR.2011.5995654.

[3] R. J. Radke, ‘A survey of distributed computer vision algorithms,’ in Hand-
book of Ambient Intelligence and Smart Environments, H. Nakashima, H.
Aghajan and J. C. Augusto, Eds. Boston, MA: Springer US, 2010, pp. 35–55,
isbn: 978-0-387-93808-0. doi: 10.1007/978-0-387-93808-0_2.

[4] Z. Zhang, ‘Camera calibration,’ in Emerging Topics in Computer Vision, G.
Medioni and S. B. Kang, Eds., Prentice Hall PTR, 2005, ch. 2, pp. 5–43,
isbn: 978-0-13-101366-7.

[5] C. Cadena et al., ‘Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,’ IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309–1332, 2016. doi: 10.1109/TRO.2016.2624754.

[6] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz and B. Stewart, ‘Distrib-
uted multirobot exploration and mapping,’ Proceedings of the IEEE, vol. 94,
no. 7, pp. 1325–1339, 2006. doi: 10.1109/JPROC.2006.876927.

[7] D. Devarajan, Z. Cheng and R. J. Radke, ‘Calibrating distributed camera
networks,’ Proceedings of the IEEE, vol. 96, no. 10, pp. 1625–1639, 2008.
doi: 10.1109/JPROC.2008.928759.

[8] R. Tron and R. Vidal, ‘Distributed 3-d localization of camera sensor networks
from 2-d image measurements,’ IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3325–3340, 2014. doi: 10.1109/TAC.2014.2351912.

190

https://doi.org/10.1109/MSP.2011.940441
https://doi.org/10.1109/CVPR.2011.5995654
https://doi.org/10.1007/978-0-387-93808-0_2
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/JPROC.2006.876927
https://doi.org/10.1109/JPROC.2008.928759
https://doi.org/10.1109/TAC.2014.2351912

BIBLIOGRAPHY 191

[9] A. Cunningham, V. Indelman and F. Dellaert, ‘Ddf-sam 2.0: Consistent dis-
tributed smoothing and mapping,’ in Proceedings of the 2013 IEEE Interna-
tional Conference on Robotics and Automation, IEEE, 2013, pp. 5220–5227.
doi: 10.1109/ICRA.2013.6631323.

[10] D. C. Brown, ‘Close-range camera calibration,’ Photogrammetric Engineer-
ing, vol. 37, no. 8, pp. 855–866, 1971.

[11] J. Heikkila and O. Silven, ‘A four-step camera calibration procedure with im-
plicit image correction,’ in Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, IEEE, 1997, pp. 1106–1112.
doi: 10.1109/CVPR.1997.609468.

[12] R. Tsai, ‘A versatile camera calibration technique for high-accuracy 3d ma-
chine vision metrology using off-the-shelf tv cameras and lenses,’ IEEE Journal
on Robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987. doi: 10.1109/
JRA.1987.1087109.

[13] Z. Zhang, ‘A flexible new technique for camera calibration,’ IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–
1334, 2000. doi: 10.1109/34.888718.

[14] ——, ‘Camera calibration with one-dimensional objects,’ in Proceedings of
European Conference on Computer Vision, A. Heyden, G. Sparr, M. Nielsen
and P. Johansen, Eds., Springer, Berlin, Heidelberg, 2002, pp. 161–174, isbn:
978-3-540-47979-6. doi: 10.1007/3-540-47979-1_11.

[15] ——, ‘Camera calibration with one-dimensional objects,’ IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 7, pp. 892–899,
2004. doi: 10.1109/TPAMI.2004.21.

[16] O. D. Faugeras, Q.-T. Luong and S. J. Maybank, ‘Camera self-calibration:
Theory and experiments,’ in Proceedings of European Conference on Com-
puter Vision, G. Sandini, Ed., Springer, Berlin, Heidelberg, 1992, pp. 321–
334, isbn: 978-3-540-47069-4. doi: 10.1007/3-540-55426-2_37.

[17] Q.-T. Luong and O. D. Faugeras, ‘Self-calibration of a moving camera from
point correspondences and fundamental matrices,’ International Journal of
Computer Vision, vol. 22, no. 3, pp. 261–289, 1997. doi: 10 . 1023 / A :

1007982716991.

[18] M. Pollefeys and L. Van Gool, ‘A stratified approach to metric self-calibration,’
in Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, IEEE, 1997, pp. 407–412. doi: 10.1109/CVPR.
1997.609357.

https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/CVPR.1997.609468
https://doi.org/10.1109/JRA.1987.1087109
https://doi.org/10.1109/JRA.1987.1087109
https://doi.org/10.1109/34.888718
https://doi.org/10.1007/3-540-47979-1_11
https://doi.org/10.1109/TPAMI.2004.21
https://doi.org/10.1007/3-540-55426-2_37
https://doi.org/10.1023/A:1007982716991
https://doi.org/10.1023/A:1007982716991
https://doi.org/10.1109/CVPR.1997.609357
https://doi.org/10.1109/CVPR.1997.609357

BIBLIOGRAPHY 192

[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
ser. Cambridge Books Online. Cambridge University Press, 2003, isbn: 978-
0-521-54051-3.

[20] G. Klein and D. Murray, ‘Parallel tracking and mapping for small ar work-
spaces,’ in Proceedings of the 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality, IEEE, 2007, pp. 225–234. doi: 10.1109/
ISMAR.2007.4538852.

[21] M. Cummins and P. Newman, ‘Appearance-only slam at large scale with
fab-map 2.0,’ The International Journal of Robotics Research, vol. 30, no. 9,
pp. 1100–1123, 2011. doi: 10.1177/0278364910385483.

[22] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford and G. Wyeth,
‘Openfabmap: An open source toolbox for appearance-based loop closure
detection,’ in Proceedings of the International Conference on Robotics and
Automation, St Paul, Minnesota: IEEE, 2011. doi: 10.1109/ICRA.2012.
6224843.

[23] D. Gálvez-López and J. D. Tardos, ‘Bags of binary words for fast place re-
cognition in image sequences,’ IEEE Transactions on Robotics, vol. 28, no. 5,
pp. 1188–1197, 2012. doi: 10.1109/TRO.2012.2197158.

[24] X. S. Zhou and S. I. Roumeliotis, ‘Multi-robot slam with unknown initial cor-
respondence: The robot rendezvous case,’ in Proceedings of 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2006,
pp. 1785–1792. doi: 10.1109/IROS.2006.282219.

[25] J. Knuth and P. Barooah, ‘Collaborative 3d localization of robots from relat-
ive pose measurements using gradient descent on manifolds,’ in Proceedings
of 2012 IEEE International Conference on Robotics and Automation, IEEE,
2012, pp. 1101–1106. doi: 10.1109/ICRA.2012.6225066.

[26] ——, ‘Collaborative localization with heterogeneous inter-robot measure-
ments by riemannian optimization,’ in Proceedings of 2013 IEEE Interna-
tional Conference on Robotics and Automation, IEEE, 2013, pp. 1534–1539.
doi: 10.1109/ICRA.2013.6630774.

[27] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen and F.
Dellaert, ‘Distributed trajectory estimation with privacy and communication
constraints: A two-stage distributed gauss-seidel approach,’ in Proceedings of
2016 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2016, pp. 5261–5268. doi: 10.1109/ICRA.2016.7487736.

https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1177/0278364910385483
https://doi.org/10.1109/ICRA.2012.6224843
https://doi.org/10.1109/ICRA.2012.6224843
https://doi.org/10.1109/TRO.2012.2197158
https://doi.org/10.1109/IROS.2006.282219
https://doi.org/10.1109/ICRA.2012.6225066
https://doi.org/10.1109/ICRA.2013.6630774
https://doi.org/10.1109/ICRA.2016.7487736

BIBLIOGRAPHY 193

[28] A. Cunningham, M. Paluri and F. Dellaert, ‘Ddf-sam: Fully distributed slam
using constrained factor graphs,’ in Proceedings of the 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2010, pp. 3025–3030.
doi: 10.1109/IROS.2010.5652875.

[29] R. Olfati-Saber, ‘Flocking for multi-agent dynamic systems: Algorithms and
theory,’ IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–
420, 2006. doi: 10.1109/TAC.2005.864190.

[30] R. Tron, J. Thomas, G. Loianno, K. Daniilidis and V. Kumar, ‘A distributed
optimization framework for localization and formation control: Applications
to vision-based measurements,’ IEEE Control Systems Magazine, vol. 36,
no. 4, pp. 22–44, 2016. doi: 10.1109/MCS.2016.2558401.

[31] L. Xiao, S. Boyd and S. Lall, ‘A scheme for robust distributed sensor fusion
based on average consensus,’ in Proceedings of the Fourth International Sym-
posium on Information Processing in Sensor Networks, IEEE, 2005, pp. 63–
70. doi: 10.1109/IPSN.2005.1440896.

[32] M. Taj and A. Cavallaro, ‘Distributed and decentralized multicamera track-
ing,’ IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 46–58, 2011. doi:
10.1109/MSP.2011.940281.

[33] R. Tron and R. Vidal, ‘Distributed image-based 3-d localization of camera
sensor networks,’ in Proceedings of the 48th IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
IEEE, 2009, pp. 901–908. doi: 10.1109/CDC.2009.5400405.

[34] R. Olfati-Saber and R. M. Murray, ‘Consensus problems in networks of agents
with switching topology and time-delays,’ IEEE Transactions on Automatic
Control, vol. 49, no. 9, pp. 1520–1533, 2004. doi: 10.1109/TAC.2004.834113.

[35] R. Olfati-Saber, J. A. Fax and R. M. Murray, ‘Consensus and cooperation
in networked multi-agent systems,’ Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007. doi: 10.1109/JPROC.2006.887293.

[36] B. Halloran, P. Premaratne, P. Vial and I. Kadhim, ‘Distributed one dimen-
sional calibration and localisation of a camera sensor network,’ in Proceedings
of ICIC 2017: Intelligent Computing Theories and Application, D.-S. Huang,
K.-H. Jo and J. C. Figueroa-García, Eds., Springer International Publishing,
2017, pp. 581–593, isbn: 978-3-319-63312-1. doi: 10.1007/978- 3- 319-

63312-1_51.

https://doi.org/10.1109/IROS.2010.5652875
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/MCS.2016.2558401
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1109/MSP.2011.940281
https://doi.org/10.1109/CDC.2009.5400405
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1007/978-3-319-63312-1_51
https://doi.org/10.1007/978-3-319-63312-1_51

BIBLIOGRAPHY 194

[37] B. Halloran, P. Premaratne and P. J. Vial, ‘Optimizing edge weights for
distributed inference with gaussian belief propagation,’ in Proceedings of
ICIC 2018: Intelligent Computing Theories and Application, D.-S. Huang,
V. Bevilacqua, P. Premaratne and P. Gupta, Eds., Springer International
Publishing, 2018, pp. 46–59, isbn: 978-3-319-95930-6. doi: 10.1007/978-3-
319-95930-6_6.

[38] B. Halloran, P. Premaratne, P. J. Vial and I. Kadhim, ‘Single and multi-
channel direct visual odometry with binary descriptors,’ in Proceedings of
ICIC 2019: Intelligent Computing Methodologies, D.-S. Huang, Z.-K. Huang
and A. Hussain, Eds., Springer International Publishing, 2019, pp. 86–98,
isbn: 978-3-030-26766-7. doi: 10.1007/978-3-030-26766-7_9.

[39] B. Halloran, P. Premaratne and P. J. Vial, ‘Robust one-dimensional cal-
ibration and localisation of a distributed camera sensor network,’ Pattern
Recognition, vol. 98, 107058, pp. 1–12, 2020. doi: 10.1016/j.patcog.2019.
107058.

[40] I. J. Kadhim, P. Premaratne, P. J. Vial and B. Halloran, ‘A comparative
analysis among dual tree complex wavelet and other wavelet transforms based
on image compression,’ in Proceedings of ICIC 2017: Intelligent Computing
Theories and Application, D.-S. Huang, K.-H. Jo and J. C. Figueroa-García,
Eds., Springer International Publishing, 2017, pp. 569–580, isbn: 978-3-319-
63312-1. doi: 10.1007/978-3-319-63312-1_50.

[41] Q. Al-Shebani, P. Premaratne, P. J. Vial, D. J. McAndrew and B. Halloran,
‘Co-simulation method for hardware/software evaluation using xilinx system
generator: A case study on image compression algorithms for capsule endo-
scopy,’ in Proceedings of 2018 12th International Conference on Signal Pro-
cessing and Communication Systems (ICSPCS), IEEE, 2018, pp. 1–4. doi:
10.1109/ICSPCS.2018.8631737.

[42] C. Shiranthika, P. Premaratne, Z. Zheng and B. Halloran, ‘Realtime computer
vision-based accurate vehicle counting and speed estimation for highways,’ in
Proceedings of ICIC 2019: Intelligent Computing Methodologies, D.-S. Huang,
Z.-K. Huang and A. Hussain, Eds., Springer International Publishing, 2019,
pp. 583–592, isbn: 978-3-030-26766-7. doi: 10.1007/978-3-030-26763-
6_56.

[43] I. J. Kadhim, P. Premaratne, P. J. Vial and B. Halloran, ‘Comprehensive
survey of image steganography: Techniques, evaluations, and trends in future
research,’ Neurocomputing, vol. 335, pp. 299–326, 2019, issn: 0925-2312. doi:
10.1016/j.neucom.2018.06.075.

https://doi.org/10.1007/978-3-319-95930-6_6
https://doi.org/10.1007/978-3-319-95930-6_6
https://doi.org/10.1007/978-3-030-26766-7_9
https://doi.org/10.1016/j.patcog.2019.107058
https://doi.org/10.1016/j.patcog.2019.107058
https://doi.org/10.1007/978-3-319-63312-1_50
https://doi.org/10.1109/ICSPCS.2018.8631737
https://doi.org/10.1007/978-3-030-26763-6_56
https://doi.org/10.1007/978-3-030-26763-6_56
https://doi.org/10.1016/j.neucom.2018.06.075

BIBLIOGRAPHY 195

[44] P. Premaratne, M. Abdullah, I. Kadhim, B. Halloran and P. Vial, ‘Optim-
ization of low-speed dual rotor axial flux generator design through electro-
magnetic modelling and simulation,’ in Proceedings of ICIC 2021: Intelli-
gent Computing Theories and Application, D.-S. Huang, K.-H. Jo, J. Li, V.
Gribova and V. Bevilacqua, Eds., Springer International Publishing, 2021,
pp. 786–801, isbn: 978-3-030-84522-3. doi: 10.1007/978-3-030-84522-
3_64.

[45] R. I. Hartley, ‘In defense of the eight-point algorithm,’ IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580–593,
1997. doi: 10.1109/34.601246.

[46] ——, ‘Estimation of relative camera positions for uncalibrated cameras,’ in
Proceedings of European Conference on Computer Vision, Berlin, Heidelberg:
Springer, 1992, pp. 579–587, isbn: 978-3-540-47069-4. doi: 10.1007/3-540-
55426-2_62.

[47] B. Triggs, ‘Autocalibration and the absolute quadric,’ in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
IEEE, 1997, pp. 609–614. doi: 10.1109/CVPR.1997.609388.

[48] R. I. Hartley, ‘Self-calibration from multiple views with a rotating camera,’ in
Proceedings of European Conference on Computer Vision, Berlin, Heidelberg:
Springer, 1994, pp. 471–478, isbn: 978-3-540-48398-4. doi: 10.1007/3-540-
57956-7_52.

[49] M. Armstrong, A. Zisserman and R. Hartley, ‘Self-calibration from image
triplets,’ in Proceedings of European Conference on Computer Vision, Springer,
Berlin, Heidelberg: Springer, 1996, pp. 1–16, isbn: 978-3-540-49949-7. doi:
10.1007/BFb0015519.

[50] P. Sturm, ‘Critical motion sequences for monocular self-calibration and un-
calibrated euclidean reconstruction,’ in Proceedings of IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, IEEE, 1997,
pp. 1100–1105. doi: 10.1109/CVPR.1997.609467.

[51] ——, ‘A case against kruppa’s equations for camera self-calibration,’ IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10,
pp. 1199–1204, 2000. doi: 10.1109/34.879804.

[52] Y. Gao and H. Radha, ‘A multistage camera self-calibration algorithm,’ in
Proceedings of 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, IEEE, vol. 3, 2004, pp. iii–537. doi: 10.1109/ICASSP.
2004.1326600.

https://doi.org/10.1007/978-3-030-84522-3_64
https://doi.org/10.1007/978-3-030-84522-3_64
https://doi.org/10.1109/34.601246
https://doi.org/10.1007/3-540-55426-2_62
https://doi.org/10.1007/3-540-55426-2_62
https://doi.org/10.1109/CVPR.1997.609388
https://doi.org/10.1007/3-540-57956-7_52
https://doi.org/10.1007/3-540-57956-7_52
https://doi.org/10.1007/BFb0015519
https://doi.org/10.1109/CVPR.1997.609467
https://doi.org/10.1109/34.879804
https://doi.org/10.1109/ICASSP.2004.1326600
https://doi.org/10.1109/ICASSP.2004.1326600

BIBLIOGRAPHY 196

[53] T. Köhler, ‘Comparison of self-calibration algorithms for moving cameras,’
M.S. thesis, University of Applied Sciences Munich, 2010.

[54] B. Zhuang, Q.-H. Tran, G. H. Lee, L. F. Cheong and M. Chandraker, ‘De-
generacy in self-calibration revisited and a deep learning solution for uncal-
ibrated slam,’ in Proceedings of 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2019, pp. 3766–3773. doi:
10.1109/IROS40897.2019.8967912.

[55] C. Zhang, F. Rameau, J. Kim, D. M. Argaw, J.-C. Bazin and I. S. Kweon,
‘Deepptz: Deep self-calibration for ptz cameras,’ in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2020, pp. 1041–
1049.

[56] Z. Tang, Y.-S. Lin, K.-H. Lee, J.-N. Hwang and J.-H. Chuang, ‘Esther: Joint
camera self-calibration and automatic radial distortion correction from track-
ing of walking humans,’ IEEE Access, vol. 7, pp. 10 754–10 766, 2019. doi:
10.1109/ACCESS.2019.2891224.

[57] Y. Abdel-Aziz and H. Karara, ‘Direct linear transformation from comparator
coordinates into object space coordinates in close-range photogrammetry,’ in
Proceedings of the Symposium on Close-Range Photogrammetry, 1971, pp. 1–
18. doi: 10.14358/PERS.81.2.103.

[58] J. Weng, P. Cohen, M. Herniou et al., ‘Camera calibration with distortion
models and accuracy evaluation,’ IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 14, no. 10, pp. 965–980, 1992. doi: 10.1109/
34.159901.

[59] Z. Zhang, ‘Determining the epipolar geometry and its uncertainty: A review,’
International Journal of Computer Vision, vol. 27, no. 2, pp. 161–195, 1998.
doi: 10.1023/A:1007941100561.

[60] P. F. Sturm and S. J. Maybank, ‘On plane-based camera calibration: A gen-
eral algorithm, singularities, applications,’ in Proceedings of 1999 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (Cat.
No PR00149), IEEE, vol. 1, 1999, pp. 432–437. doi: 10.1109/CVPR.1999.
786974.

[61] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, 2008, isbn: 978-0-596-55404-0.

[62] J.-Y. Bouguet. ‘Camera calibration toolbox for matlab.’ (2004), [Online].
Available: http : / / www . vision . caltech . edu / bouguetj / calib _ doc /

index.html (visited on 30/04/2021).

https://doi.org/10.1109/IROS40897.2019.8967912
https://doi.org/10.1109/ACCESS.2019.2891224
https://doi.org/10.14358/PERS.81.2.103
https://doi.org/10.1109/34.159901
https://doi.org/10.1109/34.159901
https://doi.org/10.1023/A:1007941100561
https://doi.org/10.1109/CVPR.1999.786974
https://doi.org/10.1109/CVPR.1999.786974
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

BIBLIOGRAPHY 197

[63] S. Daftry, M. Maurer, A. Wendel and H. Bischof, ‘Flexible and user-centric
camera calibration using planar fiducial markers.,’ in Proceedings of 2013
British Machine Vision Conference, T. Burghardt, D. Damen, W. Mayol-
Cuevas and M. Mirmehdi, Eds., BMVA Press, 2013, 19, pp. 1–13, isbn: 1-
901725-49-9. doi: 10.5244/C.27.19.

[64] C. Schmalz, F. Forster and E. Angelopoulou, ‘Camera calibration: Active
versus passive targets,’ Optical Engineering, vol. 50, no. 11, 113601, pp. 1–
11, 2011. doi: 10.1117/1.3643726.

[65] M. Fiala, ‘Designing highly reliable fiducial markers,’ IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1317–1324,
2009. doi: 10.1109/TPAMI.2009.146.

[66] M. Fiala and C. Shu, ‘Self-identifying patterns for plane-based camera calib-
ration,’ Machine Vision and Applications, vol. 19, no. 4, pp. 209–216, 2008.
doi: 10.1007/s00138-007-0093-z.

[67] B. Atcheson, F. Heide and W. Heidrich, ‘Caltag: High precision fiducial mark-
ers for camera calibration.,’ in Proceedings of the 15th International Work-
shop on Vision, Modeling and Visualization 2010 (VMV 2010), R. Koch, A.
Kolb and C. Rezk-salama, Eds., vol. 10, The Eurographics Association, 2010,
pp. 41–48, isbn: 978-3-905673-79-1. doi: 10.2312/PE/VMV/VMV10/041-048.

[68] P. Hammarstedt, P. Sturm and A. Heyden, ‘Degenerate cases and closed-form
solutions for camera calibration with one-dimensional objects,’ in Proceedings
of Tenth IEEE International Conference on Computer Vision (ICCV’05),
IEEE, vol. 1, 2005, pp. 317–324. doi: 10.1109/ICCV.2005.68.

[69] F. Wu, Z. Hu and H. Zhu, ‘Camera calibration with moving one-dimensional
objects,’ Pattern Recognition, vol. 38, no. 5, pp. 755–765, 2005, issn: 0031-
3203. doi: 10.1016/j.patcog.2004.11.005.

[70] F. Qi, Q. Li, Y. Luo and D. Hu, ‘Camera calibration with one-dimensional
objects moving under gravity,’ Pattern Recognition, vol. 40, no. 1, pp. 343–
345, 2007, issn: 0031-3203. doi: 10.1016/j.patcog.2006.06.029.

[71] ——, ‘Constraints on general motions for camera calibration with one-dimensional
objects,’ Pattern Recognition, vol. 40, no. 6, pp. 1785–1792, 2007, issn: 0031-
3203. doi: 10.1016/j.patcog.2006.11.001.

[72] J. A. de França, M. R. Stemmer, M. B. d. M. França and E. G. Alves,
‘Revisiting zhang’s 1d calibration algorithm,’ Pattern Recognition, vol. 43,
no. 3, pp. 1180–1187, 2010, issn: 0031-3203. doi: 10.1016/j.patcog.2009.
08.001.

https://doi.org/10.5244/C.27.19
https://doi.org/10.1117/1.3643726
https://doi.org/10.1109/TPAMI.2009.146
https://doi.org/10.1007/s00138-007-0093-z
https://doi.org/10.2312/PE/VMV/VMV10/041-048
https://doi.org/10.1109/ICCV.2005.68
https://doi.org/10.1016/j.patcog.2004.11.005
https://doi.org/10.1016/j.patcog.2006.06.029
https://doi.org/10.1016/j.patcog.2006.11.001
https://doi.org/10.1016/j.patcog.2009.08.001
https://doi.org/10.1016/j.patcog.2009.08.001

BIBLIOGRAPHY 198

[73] K. Shi, Q. Dong and F. Wu, ‘Weighted similarity-invariant linear algorithm
for camera calibration with rotating 1-d objects,’ IEEE Transactions on Im-
age Processing, vol. 21, no. 8, pp. 3806–3812, 2012. doi: 10.1109/TIP.2012.
2195013.

[74] L. Wang, F. Duan and K. Lu, ‘An adaptively weighted algorithm for camera
calibration with 1d objects,’ Neurocomputing, vol. 149, pp. 1552–1559, 2015,
issn: 0925-2312. doi: 10.1016/j.neucom.2014.08.037.

[75] M. Pollefeys, R. Koch and L. Van Gool, ‘Self-calibration and metric recon-
struction inspite of varying and unknown intrinsic camera parameters,’ In-
ternational Journal of Computer Vision, vol. 32, no. 1, pp. 7–25, 1999. doi:
10.1023/A:1008109111715.

[76] M. I. Lourakis and R. Deriche, ‘Camera self-calibration using the kruppa
equations and the svd of the fundamental matrix: The case of varying intrinsic
parameters,’ INRIA, Research Report RR-3911, 2000, pp. 1–35.

[77] M. Brückner and J. Denzler, ‘Active self-calibration of multi-camera systems,’
in Proceedings of 32nd Joint Pattern Recognition Symposium, M. Goesele,
S. Roth, A. Kuijper, B. Schiele and K. Schindler, Eds., Berlin, Heidelberg:
Springer, 2010, pp. 31–40, isbn: 978-3-642-15986-2. doi: 10.1007/978-3-
642-15986-2_4.

[78] Q. Sun and D. Xu, ‘Self-calibration of multi-camera networks without feature
correspondence between different cameras,’ Optik, vol. 125, no. 13, pp. 3331–
3336, 2014, issn: 0030-4026. doi: 10.1016/j.ijleo.2013.12.041.

[79] F. Vasconcelos, J. P. Barreto and E. Boyer, ‘Automatic camera calibration
using multiple sets of pairwise correspondences,’ IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 791–803, 2018.
doi: 10.1109/TPAMI.2017.2699648.

[80] R. Shen, I. Cheng and A. Basu, ‘Multi-camera calibration using a globe,’ in
Proceedings of the 8th Workshop on Omnidirectional Vision, Camera Net-
works and Non-classical Cameras - OMNIVIS, R. Swaminathan, V. Caglioti
and A. Argyros, Eds., 2008.

[81] Z. Liu, G. Zhang, Z. Wei and J. Sun, ‘A global calibration method for multiple
vision sensors based on multiple targets,’ Measurement Science and Techno-
logy, vol. 22, no. 12, 125102, 2011. doi: 10.1088/0957-0233/22/12/125102.

[82] R. Xia, M. Hu, J. Zhao, S. Chen and Y. Chen, ‘Global calibration of multi-
cameras with non-overlapping fields of view based on photogrammetry and
reconfigurable target,’ Measurement Science and Technology, vol. 29, no. 6,
065005, 2018. doi: 10.1088/1361-6501/aab028.

https://doi.org/10.1109/TIP.2012.2195013
https://doi.org/10.1109/TIP.2012.2195013
https://doi.org/10.1016/j.neucom.2014.08.037
https://doi.org/10.1023/A:1008109111715
https://doi.org/10.1007/978-3-642-15986-2_4
https://doi.org/10.1007/978-3-642-15986-2_4
https://doi.org/10.1016/j.ijleo.2013.12.041
https://doi.org/10.1109/TPAMI.2017.2699648
https://doi.org/10.1088/0957-0233/22/12/125102
https://doi.org/10.1088/1361-6501/aab028

BIBLIOGRAPHY 199

[83] F. Zhao, T. Tamaki, T. Kurita, B. Raytchev and K. Kaneda, ‘Marker based
simple non-overlapping camera calibration,’ in Proceedings of 2016 IEEE In-
ternational Conference on Image Processing (ICIP), IEEE, 2016, pp. 1180–
1184. doi: 10.1109/ICIP.2016.7532544.

[84] M. Feng, X. Jia, J. Wang, S. Feng and T. Zheng, ‘Global calibration of multi-
cameras based on refractive projection and ray tracing,’ Sensors, vol. 17,
no. 11, p. 2494, 2017, issn: 1424-8220. doi: 10.3390/s17112494.

[85] Y. Kojima, T. Fujii and M. Tanimoto, ‘New multiple-camera calibration
method for a large number of cameras,’ in Videometrics VIII, J.-A. Be-
raldin, S. F. El-Hakim, A. Gruen and J. S. Walton, Eds., International So-
ciety for Optics and Photonics, vol. 5665, SPIE, 2005, pp. 156–163. doi:
10.1117/12.587700.

[86] L. Wang, F. Wu and Z. Hu, ‘Multi-camera calibration with one-dimensional
object under general motions,’ in Proceedings of 2007 IEEE 11th Interna-
tional Conference on Computer Vision (ICCV 2007), IEEE, 2007, pp. 1–7.
doi: 10.1109/ICCV.2007.4408994.

[87] J. A. De França, M. R. Stemmer, M. B. d. M. França and J. C. Piai, ‘A
new robust algorithmic for multi-camera calibration with a 1d object under
general motions without prior knowledge of any camera intrinsic parameter,’
Pattern Recognition, vol. 45, no. 10, pp. 3636–3647, 2012, issn: 0031-3203.
doi: 10.1016/j.patcog.2012.04.006.

[88] A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, ‘Monoslam: Real-time
single camera slam,’ IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007. doi: 10.1109/TPAMI.2007.
1049.

[89] R. A. Newcombe, S. J. Lovegrove and A. J. Davison, ‘Dtam: Dense tracking
and mapping in real-time,’ in Proceedings of 2011 International Conference
on Computer Vision, IEEE, 2011, pp. 2320–2327. doi: 10.1109/ICCV.2011.
6126513.

[90] R. A. Newcombe et al., ‘Kinectfusion: Real-time dense surface mapping and
tracking,’ in Proceedings of 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, 2011, pp. 127–136. doi: 10.1109/ISMAR.
2011.6092378.

[91] A. I. Mourikis and S. I. Roumeliotis, ‘A multi-state constraint kalman filter for
vision-aided inertial navigation,’ in Proceedings of 2007 IEEE International
Conference on Robotics and Automation, IEEE, 2007, pp. 3565–3572. doi:
10.1109/ROBOT.2007.364024.

https://doi.org/10.1109/ICIP.2016.7532544
https://doi.org/10.3390/s17112494
https://doi.org/10.1117/12.587700
https://doi.org/10.1109/ICCV.2007.4408994
https://doi.org/10.1016/j.patcog.2012.04.006
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ROBOT.2007.364024

BIBLIOGRAPHY 200

[92] J. Engel, T. Schöps and D. Cremers, ‘Lsd-slam: Large-scale direct monocular
slam,’ in Proceedings of European Conference on Computer Vision, D. Fleet,
T. Pajdla, B. Schiele and T. Tuytelaars, Eds., Springer International Pub-
lishing, 2014, pp. 834–849, isbn: 978-3-319-10605-2. doi: 10.1007/978-3-
319-10605-2_54.

[93] J. Engel, V. Koltun and D. Cremers, ‘Direct sparse odometry,’ IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–
625, 2017. doi: 10.1109/TPAMI.2017.2658577.

[94] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, ‘Factor graphs and the
sum-product algorithm,’ IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001. doi: 10.1109/18.910572.

[95] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly and A. J.
Davison, ‘Slam++: Simultaneous localisation and mapping at the level of
objects,’ in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013, pp. 1352–1359. doi: 10.1109/CVPR.
2013.178.

[96] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker and A. Davison,
‘Elasticfusion: Dense slam without a pose graph,’ in Proceedings of Robotics:
Science and Systems XI, L. E. Kavraki, D. Hsu and J. Buchli, Eds., RSS
Foundation, Rome, Italy, 2015. doi: 10.15607/RSS.2015.XI.001.

[97] C. G. Harris and M. Stephens, ‘A combined corner and edge detector,’ in
Proceedings of the Alvey Vision Conference, AVC, C. J. Taylor, Ed., vol. 15,
Manchester, UK: Alvey Vision Club, 1988, pp. 147–151. doi: 10.5244/C.2.
23.

[98] J. Shi and C. Tomasi, ‘Good features to track,’ in Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, IEEE, 1994, pp. 593–
600. doi: 10.1109/CVPR.1994.323794.

[99] E. Rosten and T. Drummond, ‘Machine learning for high-speed corner de-
tection,’ in Proceedings of European Conference on Computer Vision, A. Le-
onardis, H. Bischof and A. Pinz, Eds., Springer, Berlin, Heidelberg, 2006,
pp. 430–443, isbn: 978-3-540-33833-8. doi: 10.1007/11744023_34.

[100] R. Mur-Artal, J. M. M. Montiel and J. D. Tardos, ‘Orb-slam: A versatile and
accurate monocular slam system,’ IEEE Transactions on Robotics, vol. 31,
no. 5, pp. 1147–1163, 2015. doi: 10.1109/TRO.2015.2463671.

https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/CVPR.2013.178
https://doi.org/10.1109/CVPR.2013.178
https://doi.org/10.15607/RSS.2015.XI.001
https://doi.org/10.5244/C.2.23
https://doi.org/10.5244/C.2.23
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1007/11744023_34
https://doi.org/10.1109/TRO.2015.2463671

BIBLIOGRAPHY 201

[101] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, ‘Orb: An efficient al-
ternative to sift or surf,’ in Proceedings of 2011 International Conference on
Computer Vision, IEEE, 2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.
6126544.

[102] C. Forster, M. Pizzoli and D. Scaramuzza, ‘Svo: Fast semi-direct monocular
visual odometry,’ in Proceedings of 2014 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2014, pp. 15–22. doi: 10.1109/
ICRA.2014.6906584.

[103] V. Usenko, N. Demmel, D. Schubert, J. Stückler and D. Cremers, ‘Visual-
inertial mapping with non-linear factor recovery,’ IEEE Robotics and Auto-
mation Letters, vol. 5, no. 2, pp. 422–429, 2019. doi: 10.1109/LRA.2019.
2961227.

[104] M. A. Fischler and R. C. Bolles, ‘Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated carto-
graphy,’ Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. doi:
10.1145/358669.358692.

[105] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, ‘Robust visual inertial odo-
metry using a direct ekf-based approach,’ in Proceedings of 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2015, pp. 298–304. doi: 10.1109/IROS.2015.7353389.

[106] S. Baker and I. Matthews, ‘Lucas-kanade 20 years on: A unifying framework,’
International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.
doi: 10.1023/B:VISI.0000011205.11775.fd.

[107] J. Engel, J. Stückler and D. Cremers, ‘Large-scale direct slam with stereo
cameras,’ in Proceedings of 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 1935–1942. doi:
10.1109/IROS.2015.7353631.

[108] R. Wang, M. Schworer and D. Cremers, ‘Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras,’ in Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017, pp. 3903–3911. doi:
10.1109/ICCV.2017.421.

[109] R. Mur-Artal and J. D. Tardós, ‘Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,’ IEEE Transactions on Robotics,
vol. 33, no. 5, pp. 1255–1262, 2017. doi: 10.1109/TRO.2017.2705103.

[110] Z. Zhang, ‘Microsoft kinect sensor and its effect,’ IEEE MultiMedia, vol. 19,
no. 2, pp. 4–10, 2012. doi: 10.1109/MMUL.2012.24.

https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/LRA.2019.2961227
https://doi.org/10.1109/LRA.2019.2961227
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/IROS.2015.7353389
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://doi.org/10.1109/IROS.2015.7353631
https://doi.org/10.1109/ICCV.2017.421
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/MMUL.2012.24

BIBLIOGRAPHY 202

[111] C. Forster, Z. Zhang, M. Gassner, M. Werlberger and D. Scaramuzza, ‘Svo:
Semidirect visual odometry for monocular and multicamera systems,’ IEEE
Transactions on Robotics, vol. 33, no. 2, pp. 249–265, 2016. doi: 10.1109/
TRO.2016.2623335.

[112] D. Scaramuzza, A. Martinelli and R. Siegwart, ‘A flexible technique for ac-
curate omnidirectional camera calibration and structure from motion,’ in
Proceedings of Fourth IEEE International Conference on Computer Vision
Systems (ICVS’06), IEEE, 2006, pp. 45–45. doi: 10.1109/ICVS.2006.3.

[113] D. Caruso, J. Engel and D. Cremers, ‘Large-scale direct slam for omnidirec-
tional cameras,’ in Proceedings of 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 141–148. doi:
10.1109/IROS.2015.7353366.

[114] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler and D. Cremers, ‘Omni-
directional dso: Direct sparse odometry with fisheye cameras,’ IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 3693–3700, 2018. doi: 10.1109/
LRA.2018.2855443.

[115] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart and P. Furgale, ‘Keyframe-
based visual–inertial odometry using nonlinear optimization,’ The Interna-
tional Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015. doi:
10.1177/0278364914554813.

[116] L. Von Stumberg, V. Usenko and D. Cremers, ‘Direct sparse visual-inertial
odometry using dynamic marginalization,’ in Proceedings of 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), IEEE, 2018,
pp. 2510–2517. doi: 10.1109/ICRA.2018.8462905.

[117] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel and J. D. Tardos,
‘Orb-slam3: An accurate open-source library for visual, visual-inertial and
multi-map slam,’ IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–
1890, 2021. doi: 10.1109/TRO.2021.3075644.

[118] A. Rosinol, M. Abate, Y. Chang and L. Carlone, ‘Kimera: An open-source lib-
rary for real-time metric-semantic localization and mapping,’ in Proceedings
of 2020 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2020, pp. 1689–1696. doi: 10.1109/ICRA40945.2020.9196885.

[119] A. J. Davison, ‘Real-time simultaneous localisation and mapping with a single
camera,’ in Proceedings Ninth IEEE International Conference on Computer
Vision, IEEE Computer Society, vol. 2, 2003, pp. 1403–1403. doi: 10.1109/
ICCV.2003.1238654.

https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/ICVS.2006.3
https://doi.org/10.1109/IROS.2015.7353366
https://doi.org/10.1109/LRA.2018.2855443
https://doi.org/10.1109/LRA.2018.2855443
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/ICRA.2018.8462905
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/ICRA40945.2020.9196885
https://doi.org/10.1109/ICCV.2003.1238654
https://doi.org/10.1109/ICCV.2003.1238654

BIBLIOGRAPHY 203

[120] ——, ‘Scenelib 1.0.’ (2003), [Online]. Available: https://www.doc.ic.ac.
uk/~ajd/Scene/index.html (visited on 11/03/2021).

[121] H. Kim. ‘Scenelib2.’ (2011), [Online]. Available: https : / / github . com /

hanmekim/SceneLib2 (visited on 11/03/2021).

[122] G. Klein and D. Murray, ‘Improving the agility of keyframe-based slam,’
in Proceedings of European Conference on Computer Vision, D. Forsyth, P.
Torr and A. Zisserman, Eds., Springer, Berlin, Heidelberg, 2008, pp. 802–815,
isbn: 978-3-540-88688-4. doi: 10.1007/978-3-540-88688-4_59.

[123] ——, ‘Parallel tracking and mapping on a camera phone,’ in Proceedings of
2009 8th IEEE International Symposium on Mixed and Augmented Reality,
IEEE, 2009, pp. 83–86. doi: 10.1109/ISMAR.2009.5336495.

[124] G. Klein. ‘Ptam-gpl.’ (2013), [Online]. Available: https://github.com/

Oxford-PTAM/PTAM-GPL (visited on 11/03/2021).

[125] P. Foster. ‘Opendtam.’ (2014), [Online]. Available: https://github.com/
anuranbaka (visited on 11/03/2021).

[126] C. Diller. ‘Kinectfusionlib.’ (2018), [Online]. Available: https://github.
com/chrdiller/KinectFusionLib (visited on 11/03/2021).

[127] M. Li and A. I. Mourikis, ‘High-precision, consistent ekf-based visual-inertial
odometry,’ The International Journal of Robotics Research, vol. 32, no. 6,
pp. 690–711, 2013. doi: 10.1177/0278364913481251.

[128] K. Sun. ‘Msckf vio.’ (2018), [Online]. Available: https : / / github . com /

KumarRobotics/msckf_vio (visited on 11/03/2021).

[129] K. Chaney. ‘Monocular msckf.’ (2018), [Online]. Available: https://github.
com/daniilidis-group/msckf_mono (visited on 11/03/2021).

[130] J. Engel, J. Sturm and D. Cremers, ‘Semi-dense visual odometry for a mon-
ocular camera,’ in Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2013, pp. 1449–1456. doi: 10.1109/ICCV.2013.183.

[131] J. Engel. ‘Lsd-slam: Large-scale direct monocular slam.’ (2014), [Online].
Available: https://github.com/tum-vision/lsd_slam (visited on 11/03/2021).

[132] C. Forster. ‘Svo.’ (2014), [Online]. Available: https://github.com/uzh-
rpg/rpg_svo (visited on 11/03/2021).

[133] R. Mur-Artal. ‘Orb-slam monocular.’ (2015), [Online]. Available: https://
github.com/raulmur/ORB_SLAM (visited on 11/03/2021).

[134] T. Whelan. ‘Elasticfusion.’ (2015), [Online]. Available: https://github.
com/mp3guy/ElasticFusion (visited on 11/03/2021).

https://www.doc.ic.ac.uk/~ajd/Scene/index.html
https://www.doc.ic.ac.uk/~ajd/Scene/index.html
https://github.com/hanmekim/SceneLib2
https://github.com/hanmekim/SceneLib2
https://doi.org/10.1007/978-3-540-88688-4_59
https://doi.org/10.1109/ISMAR.2009.5336495
https://github.com/Oxford-PTAM/PTAM-GPL
https://github.com/Oxford-PTAM/PTAM-GPL
https://github.com/anuranbaka
https://github.com/anuranbaka
https://github.com/chrdiller/KinectFusionLib
https://github.com/chrdiller/KinectFusionLib
https://doi.org/10.1177/0278364913481251
https://github.com/KumarRobotics/msckf_vio
https://github.com/KumarRobotics/msckf_vio
https://github.com/daniilidis-group/msckf_mono
https://github.com/daniilidis-group/msckf_mono
https://doi.org/10.1109/ICCV.2013.183
https://github.com/tum-vision/lsd_slam
https://github.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svo
https://github.com/raulmur/ORB_SLAM
https://github.com/raulmur/ORB_SLAM
https://github.com/mp3guy/ElasticFusion
https://github.com/mp3guy/ElasticFusion

BIBLIOGRAPHY 204

[135] S. Leutenegger. ‘Okvis: Open keyframe-based visual-inertial slam.’ (2015),
[Online]. Available: https://github.com/ethz- asl/okvis (visited on
11/03/2021).

[136] M. Bloesch, M. Burri, S. Omari, M. Hutter and R. Siegwart, ‘Iterated ex-
tended kalman filter based visual-inertial odometry using direct photometric
feedback,’ The International Journal of Robotics Research, vol. 36, no. 10,
pp. 1053–1072, 2017. doi: 10.1177/0278364917728574.

[137] M. Bloesch. ‘Rovio.’ (2015), [Online]. Available: https://github.com/ethz-
asl/rovio (visited on 11/03/2021).

[138] R. Mur-Artal. ‘Orb-slam2.’ (2017), [Online]. Available: https://github.
com/raulmur/ORB_SLAM2 (visited on 11/03/2021).

[139] J. Engel. ‘Dso: Direct sparse odometry.’ (2017), [Online]. Available: https:
//github.com/JakobEngel/dso (visited on 11/03/2021).

[140] R. Sun. ‘Vi-stereo-dso.’ (2019), [Online]. Available: https://github.com/
RonaldSun/VI-Stereo-DSO (visited on 11/03/2021).

[141] J. Zubizarreta, I. Aguinaga and J. M. M. Montiel, ‘Direct sparse mapping,’
IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1363–1370, 2020. doi:
10.1109/TRO.2020.2991614.

[142] ——, ‘Dsm: Direct sparse mapping.’ (2019), [Online]. Available: https://
github.com/jzubizarreta/dsm (visited on 11/03/2021).

[143] R. Mur-Artal and J. D. Tardós, ‘Visual-inertial monocular slam with map
reuse,’ IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 796–803,
2017. doi: 10.1109/LRA.2017.2653359.

[144] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel and J. D. Tardos.
‘Orb-slam3.’ (2020), [Online]. Available: https://github.com/UZ-SLAMLab/
ORB_SLAM3 (visited on 11/03/2021).

[145] V. Usenko, N. Demmel, D. Schubert, J. Stückler and D. Cremers. ‘Basalt.’
(2019), [Online]. Available: https://gitlab.com/VladyslavUsenko/basalt
(visited on 11/03/2021).

[146] A. Rosinol, M. Abate, Y. Chang and L. Carlone. ‘Kimera.’ (2019), [On-
line]. Available: https : / / github . com / MIT - SPARK / Kimera (visited on
11/03/2021).

[147] B. D. Lucas and T. Kanade, ‘An iterative image registration technique with
an application to stereo vision,’ in Proceedings of the 7th International Joint
Conference on Artificial Intelligenc, IJCAI, Vancouver, British Columbia,
1981, pp. 674–679.

https://github.com/ethz-asl/okvis
https://doi.org/10.1177/0278364917728574
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/rovio
https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://github.com/JakobEngel/dso
https://github.com/JakobEngel/dso
https://github.com/RonaldSun/VI-Stereo-DSO
https://github.com/RonaldSun/VI-Stereo-DSO
https://doi.org/10.1109/TRO.2020.2991614
https://github.com/jzubizarreta/dsm
https://github.com/jzubizarreta/dsm
https://doi.org/10.1109/LRA.2017.2653359
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://gitlab.com/VladyslavUsenko/basalt
https://github.com/MIT-SPARK/Kimera

BIBLIOGRAPHY 205

[148] C. Tomasi and T. Kanade, ‘Detection and tracking of point features,’ Tech.
Rep., 1991, pp. 137–154.

[149] D. G. Lowe, ‘Object recognition from local scale-invariant features,’ in Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
IEEE, vol. 2, 1999, pp. 1150–1157. doi: 10.1109/ICCV.1999.790410.

[150] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, ‘Speeded-up robust features
(surf),’ Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–
359, 2008, issn: 1077-3142. doi: 10.1016/j.cviu.2007.09.014.

[151] S. Leutenegger, M. Chli and R. Y. Siegwart, ‘Brisk: Binary robust invari-
ant scalable keypoints,’ in Proceedings of 2011 International Conference on
Computer Vision, IEEE, 2011, pp. 2548–2555. doi: 10.1109/ICCV.2011.
6126542.

[152] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha and P. Fua,
‘Brief: Computing a local binary descriptor very fast,’ IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1281–1298,
2011. doi: 10.1109/TPAMI.2011.222.

[153] D. G. Lowe, ‘Distinctive image features from scale-invariant keypoints,’ In-
ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. doi:
10.1023/B:VISI.0000029664.99615.94.

[154] B. Triggs, P. F. McLauchlan, R. I. Hartley and A. W. Fitzgibbon, ‘Bundle
adjustment — a modern synthesis,’ in International Workshop on Vision
Algorithms, B. Triggs, A. Zisserman and R. Szeliski, Eds., Springer, Berlin,
Heidelberg, 1999, pp. 298–372, isbn: 978-3-540-44480-0. doi: 10.1007/3-
540-44480-7_21.

[155] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman and W. T. Freeman, ‘Dis-
covering objects and their location in images,’ in Proceedings of Tenth IEEE
International Conference on Computer Vision (ICCV’05), IEEE, vol. 1, 2005,
pp. 370–377. doi: 10.1109/ICCV.2005.77.

[156] D. Devarajan and R. J. Radke, ‘Calibrating distributed camera networks
using belief propagation,’ EURASIP Journal on Applied Signal Processing,
vol. 2007, no. 1, pp. 221–221, 2007. doi: 10.1155/2007/60696.

[157] D. Devarajan, R. J. Radke and H. Chung, ‘Distributed metric calibration of
ad hoc camera networks,’ ACM Transactions on Sensor Networks (TOSN),
vol. 2, no. 3, pp. 380–403, 2006. doi: 10.1145/1167935.1167939.

[158] D. Devarajan and R. J. Radke, ‘Distributed metric calibration of large cam-
era networks,’ in Proceedings of the First Workshop on Broadband Advanced
Sensor Networks, vol. 3, 2004, pp. 5–24.

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/TPAMI.2011.222
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1109/ICCV.2005.77
https://doi.org/10.1155/2007/60696
https://doi.org/10.1145/1167935.1167939

BIBLIOGRAPHY 206

[159] D. Makris, T. Ellis and J. Black, ‘Bridging the gaps between cameras,’ in
Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, (CVPR 2004), IEEE, vol. 2, 2004. doi: 10.
1109/CVPR.2004.1315165.

[160] D. Marinakis and G. Dudek, ‘Topology inference for a vision-based sensor
network,’ in Proceedings of the 2nd Canadian Conference on Computer and
Robot Vision (CRV’05), IEEE, 2005, pp. 121–128. doi: 10.1109/CRV.2005.
81.

[161] X. Zou, B. Bhanu, B. Song and A. K. Roy-Chowdhury, ‘Determining to-
pology in a distributed camera network,’ in Proceedings of the 2007 IEEE
International Conference on Image Processing, IEEE, vol. 5, 2007, pp. 133–
136. doi: 10.1109/ICIP.2007.4379783.

[162] R. Farrell, D. Doermann and L. S. Davis, ‘Learning higher-order transition
models in medium-scale camera networks,’ in Proceedings of the 2007 IEEE
11th International Conference on Computer Vision, IEEE, 2007, pp. 1–8.
doi: 10.1109/ICCV.2007.4409203.

[163] R. Farrell and L. S. Davis, ‘Decentralized discovery of camera network topo-
logy,’ in Proceedings of the 2008 Second ACM/IEEE International Conference
on Distributed Smart Cameras, IEEE, 2008, pp. 1–10. doi: 10.1109/ICDSC.
2008.4635696.

[164] P. Kulkarni, P. Shenoy and D. Ganesan, ‘Approximate initialization of cam-
era sensor networks,’ in Proceedings of the European Conference on Wireless
Sensor Networks, K. Langendoen and T. Voigt, Eds., Springer, 2007, pp. 67–
82, isbn: 978-3-540-69830-2. doi: 10.1007/978-3-540-69830-2_5.

[165] S. Avidan, Y. Moses and Y. Moses, ‘Centralized and distributed multi-view
correspondence,’ International Journal of Computer Vision, vol. 71, no. 1,
pp. 49–69, 2007. doi: 10.1007/s11263-005-4888-y.

[166] Z. Cheng, D. Devarajan and R. J. Radke, ‘Determining vision graphs for
distributed camera networks using feature digests,’ EURASIP Journal on
Applied Signal Processing, vol. 2007, no. 1, pp. 220–220, 2007. doi: 10.1155/
2007/57034.

[167] A. Van Den Hengel, A. Dick, H. Detmold, A. Cichowski and R. Hill, ‘Finding
camera overlap in large surveillance networks,’ in Proceedings of the 2007
Asian Conference on Computer Vision (ACCV 2007), Y. Yagi, S. B. Kang,
I. S. Kweon and H. Zha, Eds., Springer, Berlin, Heidelberg, 2007, pp. 375–
384, isbn: 978-3-540-76386-4. doi: 10.1007/978-3-540-76386-4_35.

https://doi.org/10.1109/CVPR.2004.1315165
https://doi.org/10.1109/CVPR.2004.1315165
https://doi.org/10.1109/CRV.2005.81
https://doi.org/10.1109/CRV.2005.81
https://doi.org/10.1109/ICIP.2007.4379783
https://doi.org/10.1109/ICCV.2007.4409203
https://doi.org/10.1109/ICDSC.2008.4635696
https://doi.org/10.1109/ICDSC.2008.4635696
https://doi.org/10.1007/978-3-540-69830-2_5
https://doi.org/10.1007/s11263-005-4888-y
https://doi.org/10.1155/2007/57034
https://doi.org/10.1155/2007/57034
https://doi.org/10.1007/978-3-540-76386-4_35

BIBLIOGRAPHY 207

[168] Z. Mandel, I. Shimshoni and D. Keren, ‘Multi-camera topology recovery from
coherent motion,’ in Proceedings of the 2007 First ACM/IEEE International
Conference on Distributed Smart Cameras, IEEE, 2007, pp. 243–250. doi:
10.1109/ICDSC.2007.4357530.

[169] E. B. Ermis, P. Clarot, P.-M. Jodoin and V. Saligrama, ‘Activity based match-
ing in distributed camera networks,’ IEEE Transactions on Image Processing,
vol. 19, no. 10, pp. 2595–2613, 2010. doi: 10.1109/TIP.2010.2052824.

[170] L. Esterle, P. R. Lewis, X. Yao and B. Rinner, ‘Socio-economic vision graph
generation and handover in distributed smart camera networks,’ ACM Trans-
actions on Sensor Networks (TOSN), vol. 10, no. 2, p. 20, 2014. doi: 10.
1145/2530001.

[171] R. O. Saber and R. M. Murray, ‘Consensus protocols for networks of dynamic
agents,’ in Proceedings of the 2003 American Control Conference, vol. 2, 2003,
pp. 951–956. doi: 10.1109/ACC.2003.1239709.

[172] W. Ren and R. W. Beard, ‘Consensus seeking in multiagent systems under dy-
namically changing interaction topologies,’ IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655–661, 2005. doi: 10.1109/TAC.2005.846556.

[173] M. G. Rabbat, R. D. Nowak and J. A. Bucklew, ‘Generalized consensus com-
putation in networked systems with erasure links,’ in IEEE 6th Workshop
on Signal Processing Advances in Wireless Communications, IEEE, 2005,
pp. 1088–1092. doi: 10.1109/SPAWC.2005.1506308.

[174] F. Xiao and L. Wang, ‘Asynchronous consensus in continuous-time multi-
agent systems with switching topology and time-varying delays,’ IEEE Trans-
actions on Automatic Control, vol. 53, no. 8, pp. 1804–1816, 2008. doi: 10.
1109/TAC.2008.929381.

[175] Y. G. Sun, L. Wang and G. Xie, ‘Average consensus in networks of dynamic
agents with switching topologies and multiple time-varying delays,’ Systems
& Control Letters, vol. 57, no. 2, pp. 175–183, 2008, issn: 0167-6911. doi:
10.1016/j.sysconle.2007.08.009.

[176] P. Lin and Y. Jia, ‘Average consensus in networks of multi-agents with both
switching topology and coupling time-delay,’ Physica A: Statistical Mechanics
and its Applications, vol. 387, no. 1, pp. 303–313, 2008, issn: 0378-4371. doi:
10.1016/j.physa.2007.08.040.

[177] Y. Chen, R. Tron, A. Terzis and R. Vidal, ‘Corrective consensus: Converging
to the exact average,’ in Proceedings of the 2010 49th IEEE Conference on
Decision and Control (CDC), IEEE, 2010, pp. 1221–1228. doi: 10.1109/
CDC.2010.5717925.

https://doi.org/10.1109/ICDSC.2007.4357530
https://doi.org/10.1109/TIP.2010.2052824
https://doi.org/10.1145/2530001
https://doi.org/10.1145/2530001
https://doi.org/10.1109/ACC.2003.1239709
https://doi.org/10.1109/TAC.2005.846556
https://doi.org/10.1109/SPAWC.2005.1506308
https://doi.org/10.1109/TAC.2008.929381
https://doi.org/10.1109/TAC.2008.929381
https://doi.org/10.1016/j.sysconle.2007.08.009
https://doi.org/10.1016/j.physa.2007.08.040
https://doi.org/10.1109/CDC.2010.5717925
https://doi.org/10.1109/CDC.2010.5717925

BIBLIOGRAPHY 208

[178] Y. Su and J. Huang, ‘Two consensus problems for discrete-time multi-agent
systems with switching network topology,’ Automatica, vol. 48, no. 9, pp. 1988–
1997, 2012, issn: 0005-1098. doi: 10.1016/j.automatica.2012.03.029.

[179] F. Chen, Y. Cao, W. Ren et al., ‘Distributed average tracking of multiple
time-varying reference signals with bounded derivatives,’ IEEE Transactions
on Automatic Control, vol. 57, no. 12, pp. 3169–3174, 2012. doi: 10.1109/
TAC.2012.2199176.

[180] X. Xu, S. Chen, W. Huang and L. Gao, ‘Leader-following consensus of discrete-
time multi-agent systems with observer-based protocols,’ Neurocomputing,
vol. 118, pp. 334–341, 2013, issn: 0925-2312. doi: 10.1016/j.neucom.2013.
02.023.

[181] G. Wen, Z. Duan, G. Chen and W. Yu, ‘Consensus tracking of multi-agent
systems with lipschitz-type node dynamics and switching topologies,’ IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 2,
pp. 499–511, 2014. doi: 10.1109/TCSI.2013.2268091.

[182] G. S. Seyboth, D. V. Dimarogonas and K. H. Johansson, ‘Event-based broad-
casting for multi-agent average consensus,’ Automatica, vol. 49, no. 1, pp. 245–
252, 2013, issn: 0005-1098. doi: 10.1016/j.automatica.2012.08.042.

[183] C. Nowzari and J. Cortés, ‘Distributed event-triggered coordination for av-
erage consensus on weight-balanced digraphs,’ Automatica, vol. 68, pp. 237–
244, 2016, issn: 0005-1098. doi: 10.1016/j.automatica.2016.01.069.

[184] H. Li, G. Chen, T. Huang, Z. Dong, W. Zhu and L. Gao, ‘Event-triggered dis-
tributed average consensus over directed digital networks with limited com-
munication bandwidth,’ IEEE Transactions on Cybernetics, vol. 46, no. 12,
pp. 3098–3110, 2016. doi: 10.1109/TCYB.2015.2496977.

[185] Z. Zuo and L. Tie, ‘Distributed robust finite-time nonlinear consensus pro-
tocols for multi-agent systems,’ International Journal of Systems Science,
vol. 47, no. 6, pp. 1366–1375, 2016. doi: 10.1080/00207721.2014.925608.

[186] C. N. Hadjicostis, N. H. Vaidya and A. D. Dominguez-Garcia, ‘Robust distrib-
uted average consensus via exchange of running sums,’ IEEE Transactions
on Automatic Control, vol. 61, no. 6, pp. 1492–1507, 2016. doi: 10.1109/
TAC.2015.2471695.

[187] A. Jadbabaie, J. Lin and A. S. Morse, ‘Coordination of groups of mobile
autonomous agents using nearest neighbor rules,’ IEEE Transactions on Auto-
matic Control, vol. 48, no. 6, pp. 988–1001, 2003. doi: 10.1109/TAC.2003.
812781.

https://doi.org/10.1016/j.automatica.2012.03.029
https://doi.org/10.1109/TAC.2012.2199176
https://doi.org/10.1109/TAC.2012.2199176
https://doi.org/10.1016/j.neucom.2013.02.023
https://doi.org/10.1016/j.neucom.2013.02.023
https://doi.org/10.1109/TCSI.2013.2268091
https://doi.org/10.1016/j.automatica.2012.08.042
https://doi.org/10.1016/j.automatica.2016.01.069
https://doi.org/10.1109/TCYB.2015.2496977
https://doi.org/10.1080/00207721.2014.925608
https://doi.org/10.1109/TAC.2015.2471695
https://doi.org/10.1109/TAC.2015.2471695
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10.1109/TAC.2003.812781

BIBLIOGRAPHY 209

[188] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, ‘Novel type of
phase transition in a system of self-driven particles,’ Physical Review Letters,
vol. 75, no. 6, pp. 1226–1229, 1995. doi: 10.1103/PhysRevLett.75.1226.

[189] A. V. Savkin, ‘Coordinated collective motion of groups of autonomous mobile
robots: Analysis of vicsek’s model,’ IEEE Transactions on Automatic Control,
vol. 49, no. 6, pp. 981–982, 2004. doi: 10.1109/TAC.2004.829621.

[190] Z. Lin, M. Broucke and B. Francis, ‘Local control strategies for groups of mo-
bile autonomous agents,’ IEEE Transactions on Automatic Control, vol. 49,
no. 4, pp. 622–629, 2004. doi: 10.1109/TAC.2004.825639.

[191] A. Muhammad and M. Egerstedt, ‘Connectivity graphs as models of local
interactions,’ Applied Mathematics and Computation, vol. 168, no. 1, pp. 243–
269, 2005, issn: 0096-3003. doi: 10.1016/j.amc.2004.08.039.

[192] J. Cortes, S. Martinez, T. Karatas and F. Bullo, ‘Coverage control for mobile
sensing networks,’ IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 243–255, 2004. doi: 10.1109/TRA.2004.824698.

[193] R. Olfati-Saber and J. S. Shamma, ‘Consensus filters for sensor networks
and distributed sensor fusion,’ in Proceedings of the 44th IEEE Conference
on Decision and Control, IEEE, 2005, pp. 6698–6703. doi: 10.1109/CDC.
2005.1583238.

[194] D. P. Spanos, R. Olfati-Saber and R. M. Murray, ‘Approximate distributed
kalman filtering in sensor networks with quantifiable performance,’ in Pro-
ceedings of the Fourth International Symposium on Information Processing
in Sensor Networks, IEEE, 2005, pp. 133–139. doi: 10.1109/IPSN.2005.
1440912.

[195] R. Olfati-Saber, ‘Distributed kalman filter with embedded consensus filters,’
in Proceedings of the 44th IEEE Conference on Decision and Control, IEEE,
2005, pp. 8179–8184. doi: 10.1109/CDC.2005.1583486.

[196] ——, ‘Distributed kalman filtering for sensor networks,’ in Proceedings of the
2007 46th IEEE Conference on Decision and Control, IEEE, 2007, pp. 5492–
5498. doi: 10.1109/CDC.2007.4434303.

[197] J. Pearl, ‘Fusion, propagation, and structuring in belief networks,’ Artificial
intelligence, vol. 29, no. 3, pp. 241–288, 1986, issn: 0004-3702. doi: 10.1016/
0004-3702(86)90072-X.

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1109/TAC.2004.829621
https://doi.org/10.1109/TAC.2004.825639
https://doi.org/10.1016/j.amc.2004.08.039
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1109/CDC.2005.1583238
https://doi.org/10.1109/CDC.2005.1583238
https://doi.org/10.1109/IPSN.2005.1440912
https://doi.org/10.1109/IPSN.2005.1440912
https://doi.org/10.1109/CDC.2005.1583486
https://doi.org/10.1109/CDC.2007.4434303
https://doi.org/10.1016/0004-3702(86)90072-X
https://doi.org/10.1016/0004-3702(86)90072-X

BIBLIOGRAPHY 210

[198] K. P. Murphy, Y. Weiss and M. I. Jordan, ‘Loopy belief propagation for
approximate inference: An empirical study,’ in Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Pub-
lishers Inc., Stockholm, Sweden, 1999, pp. 467–475, isbn: 1-55860-614-9. doi:
10.5555/2073796.2073849.

[199] J. S. Yedidia, W. T. Freeman, Y. Weiss et al., ‘Generalized belief propaga-
tion,’ in Proceedings of the 13th International Conference on Neural Inform-
ation Processing Systems, T. Leen, T. Dietterich and V. Tresp, Eds., vol. 13,
MIT Press, 2000, pp. 689–695. doi: 10.5555/3008751.3008848.

[200] Y. Weiss and W. T. Freeman, ‘Correctness of belief propagation in gaussian
graphical models of arbitrary topology,’ vol. 12, S. Solla, T. Leen and K.
Müller, Eds., pp. 673–679, 1999. doi: 10.5555/3009657.3009753.

[201] C. C. Moallemi and B. Van Roy, ‘Consensus propagation,’ IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 4753–4766, 2006. doi: 10.1109/
TIT.2006.883539.

[202] R. Olfati-Saber, E. Franco, E. Frazzoli and J. Shamma, ‘Belief consensus
and distributed hypothesis testing in sensor networks,’ Networked Embedded
Sensing and Control, pp. 169–182, 2006. doi: 10.1007/11533382_11.

[203] A. T. Ihler, J. W. Fisher, R. L. Moses and A. S. Willsky, ‘Nonparametric
belief propagation for self-localization of sensor networks,’ IEEE Journal on
Selected Areas in Communications, vol. 23, no. 4, pp. 809–819, 2005. doi:
10.1109/JSAC.2005.843548.

[204] J. K. Johnson, D. M. Malioutov and A. S. Willsky, ‘Walk-sum interpret-
ation and analysis of gaussian belief propagation,’ Proceedings of the 18th
International Conference on Neural Information Processing Systems, vol. 18,
pp. 579–586, 2006. doi: 10.5555/2976248.2976321.

[205] D. M. Malioutov, J. K. Johnson and A. S. Willsky, ‘Walk-sums and belief
propagation in gaussian graphical models,’ Journal of Machine Learning Re-
search, vol. 7, pp. 2031–2064, 2006.

[206] Q. Su and Y.-C. Wu, ‘Convergence analysis of the variance in gaussian be-
lief propagation,’ IEEE Transactions on Signal Processing, vol. 62, no. 19,
pp. 5119–5131, 2014. doi: 10.1109/TSP.2014.2345635.

[207] ——, ‘On convergence conditions of gaussian belief propagation,’ IEEE Trans-
actions on Signal Processing, vol. 63, no. 5, pp. 1144–1155, 2015. doi: 10.
1109/TSP.2015.2389755.

https://doi.org/10.5555/2073796.2073849
https://doi.org/10.5555/3008751.3008848
https://doi.org/10.5555/3009657.3009753
https://doi.org/10.1109/TIT.2006.883539
https://doi.org/10.1109/TIT.2006.883539
https://doi.org/10.1007/11533382_11
https://doi.org/10.1109/JSAC.2005.843548
https://doi.org/10.5555/2976248.2976321
https://doi.org/10.1109/TSP.2014.2345635
https://doi.org/10.1109/TSP.2015.2389755
https://doi.org/10.1109/TSP.2015.2389755

BIBLIOGRAPHY 211

[208] J. Du, S. Ma, Y.-C. Wu, S. Kar and J. M. Moura, ‘Convergence analysis of
distributed inference with vector-valued gaussian belief propagation,’ Journal
of Machine Learning Research, vol. 18, no. 1, pp. 6302–6339, 2017.

[209] ——, ‘Convergence analysis of the information matrix in gaussian belief
propagation,’ in Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 4074–4078. doi:
10.1109/ICASSP.2017.7952922.

[210] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman and A. S. Willsky,
‘Nonparametric belief propagation,’ Communications of the ACM, vol. 53,
no. 10, pp. 95–103, 2010. doi: 10.1145/1831407.1831431.

[211] V. Savic, H. Wymeersch, F. Penna and S. Zazo, ‘Optimized edge appearance
probability for cooperative localization based on tree-reweighted nonpara-
metric belief propagation,’ in Proceedings of the 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2011, pp. 3028–3031. doi: 10.1109/ICASSP.2011.5946296.

[212] O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson and D. Dolev, ‘Gaussian belief
propagation solver for systems of linear equations,’ in Information Theory,
2008. ISIT 2008. IEEE International Symposium on, IEEE, 2008, pp. 1863–
1867.

[213] D. Bickson, E. Yom-Tov and D. Dolev, ‘A gaussian belief propagation solver
for large scale support vector machines,’ arXiv preprint arXiv:0810.1648,
2008. doi: 10.48550/arXiv.0810.1648.

[214] D. Bickson, O. Shental and D. Dolev, ‘Distributed kalman filter via gaussian
belief propagation,’ in Proceedings of the 2008 46th Annual Allerton Confer-
ence on Communication, Control, and Computing, IEEE, 2008, pp. 628–635.
doi: 10.1109/ALLERTON.2008.4797617.

[215] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., ‘Distributed optim-
ization and statistical learning via the alternating direction method of multi-
pliers,’ Foundations and Trends in Machine learning, vol. 3, no. 1, pp. 1–122,
2011. doi: 10.1561/2200000016.

[216] N. Parikh and S. Boyd, ‘Proximal algorithms,’ Foundations and Trends in
Optimization, vol. 1, no. 3, pp. 127–239, 2014. doi: 10.1561/2400000003.

[217] P. L. Combettes and J.-C. Pesquet, ‘Proximal splitting methods in signal
processing,’ in Fixed-point algorithms for inverse problems in science and
engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser,
D. R. Luke and H. Wolkowicz, Eds., New York, NY: Springer, 2011, pp. 185–
212, isbn: 978-1-4419-9569-8. doi: 10.1007/978-1-4419-9569-8_10.

https://doi.org/10.1109/ICASSP.2017.7952922
https://doi.org/10.1145/1831407.1831431
https://doi.org/10.1109/ICASSP.2011.5946296
https://doi.org/10.48550/arXiv.0810.1648
https://doi.org/10.1109/ALLERTON.2008.4797617
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2400000003
https://doi.org/10.1007/978-1-4419-9569-8_10

BIBLIOGRAPHY 212

[218] S. Setzer, ‘Split bregman algorithm, douglas-rachford splitting and frame
shrinkage,’ in Proceedings of the International Conference on Scale Space and
Variational Methods in Computer Vision, X.-C. Tai, K. Mørken, M. Lysaker
and K.-A. Lie, Eds., Springer, Berlin, Heidelberg, 2009, pp. 464–476, isbn:
978-3-642-02256-2. doi: 10.1007/978-3-642-02256-2_39.

[219] I. D. Schizas, A. Ribeiro and G. B. Giannakis, ‘Consensus in ad hoc wsns with
noisy links—part i: Distributed estimation of deterministic signals,’ IEEE
Transactions on Signal Processing, vol. 56, no. 1, pp. 350–364, 2008. doi:
10.1109/TSP.2007.906734.

[220] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis and A. Ribeiro, ‘Consensus in
ad hoc wsns with noisy links—part ii: Distributed estimation and smoothing
of random signals,’ IEEE Transactions on Signal Processing, vol. 56, no. 4,
pp. 1650–1666, 2008. doi: 10.1109/TSP.2007.908943.

[221] A. Eriksson and M. Isaksson, ‘Pseudoconvex proximal splitting for l-infinity
problems in multiview geometry,’ in Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 4066–4073.
doi: 10.1109/CVPR.2014.518.

[222] A. Eriksson, M. Isaksson and T.-J. Chin, ‘High breakdown bundle adjust-
ment,’ in Proceedings of the 2015 IEEE Winter Conference on Applications
of Computer Vision, IEEE, 2015, pp. 310–317. doi: 10.1109/WACV.2015.48.

[223] A. Eriksson, J. Bastian, T.-J. Chin and M. Isaksson, ‘A consensus-based
framework for distributed bundle adjustment,’ in Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 1754–1762. doi: 10.1109/WACV.2015.48.

[224] E. Elhamifar and R. Vidal, ‘Distributed calibration of camera sensor net-
works,’ in Proceedings of the 2009 Third ACM/IEEE International Confer-
ence on Distributed Smart Cameras (ICDSC), IEEE, 2009, pp. 1–7. doi:
10.1109/ICDSC.2009.5289397.

[225] W. E. Mantzel, H. Choi and R. G. Baraniuk, ‘Distributed camera network
localization,’ in Proceedings of the Thirty-Eighth Asilomar Conference on
Signals, Systems and Computers., IEEE, vol. 2, 2004, pp. 1381–1386. doi:
10.1109/ACSSC.2004.1399380.

[226] A. Barton-Sweeney, D. Lymberopoulos and A. Savvides, ‘Sensor localization
and camera calibration in distributed camera sensor networks,’ in Proceedings
of the 2006 3rd International Conference on Broadband Communications,
Networks and Systems, IEEE, 2006, pp. 1–10. doi: 10.1109/BROADNETS.
2006.4374301.

https://doi.org/10.1007/978-3-642-02256-2_39
https://doi.org/10.1109/TSP.2007.906734
https://doi.org/10.1109/TSP.2007.908943
https://doi.org/10.1109/CVPR.2014.518
https://doi.org/10.1109/WACV.2015.48
https://doi.org/10.1109/WACV.2015.48
https://doi.org/10.1109/ICDSC.2009.5289397
https://doi.org/10.1109/ACSSC.2004.1399380
https://doi.org/10.1109/BROADNETS.2006.4374301
https://doi.org/10.1109/BROADNETS.2006.4374301

BIBLIOGRAPHY 213

[227] G. Kurillo, Z. Li and R. Bajcsy, ‘Wide-area external multi-camera calibration
using vision graphs and virtual calibration object,’ in Proceedings of the 2008
Second ACM/IEEE International Conference on Distributed Smart Cameras,
IEEE, 2008, pp. 1–9. doi: 10.1109/ICDSC.2008.4635695.

[228] H. Medeiros, H. Iwaki and J. Park, ‘Online distributed calibration of a large
network of wireless cameras using dynamic clustering,’ in Proceedings of
the 2008 Second ACM/IEEE International Conference on Distributed Smart
Cameras, IEEE, 2008, pp. 1–10. doi: 10.1109/ICDSC.2008.4635698.

[229] T. Pollok and E. Monari, ‘A visual slam-based approach for calibration of
distributed camera networks,’ in Proceedings of the 2016 13th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance (AVSS),
IEEE, 2016, pp. 429–437. doi: 10.1109/AVSS.2016.7738081.

[230] L. Riazuelo, J. Civera and J. M. Montiel, ‘C2tam: A cloud framework for co-
operative tracking and mapping,’ Robotics and Autonomous Systems, vol. 62,
no. 4, pp. 401–413, 2014, issn: 0921-8890. doi: 10.1016/j.robot.2013.11.
007.

[231] J. Dong, E. Nelson, V. Indelman, N. Michael and F. Dellaert, ‘Distributed
real-time cooperative localization and mapping using an uncertainty-aware
expectation maximization approach,’ in Proceedings of the 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), IEEE, 2015,
pp. 5807–5814. doi: 10.1109/ICRA.2015.7140012.

[232] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese and C. Hertzberg, ‘Hierarch-
ical optimization on manifolds for online 2d and 3d mapping,’ in Proceedings
of the 2010 IEEE International Conference on Robotics and Automation,
IEEE, 2010, pp. 273–278. doi: 10.1109/ROBOT.2010.5509407.

[233] K. Ni and F. Dellaert, ‘Multi-level submap based slam using nested dis-
section,’ in Proceedings of the 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2010, pp. 2558–2565. doi: 10.1109/
IROS.2010.5650197.

[234] L. Zhao, S. Huang and G. Dissanayake, ‘Linear slam: A linear solution to the
feature-based and pose graph slam based on submap joining,’ in Proceedings
of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, 2013, pp. 24–30. doi: 10.1109/IROS.2013.6696327.

[235] A. Birk and S. Carpin, ‘Merging occupancy grid maps from multiple robots,’
Proceedings of the IEEE, vol. 94, no. 7, pp. 1384–1397, 2006. doi: 10.1109/
JPROC.2006.876965.

https://doi.org/10.1109/ICDSC.2008.4635695
https://doi.org/10.1109/ICDSC.2008.4635698
https://doi.org/10.1109/AVSS.2016.7738081
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1109/ICRA.2015.7140012
https://doi.org/10.1109/ROBOT.2010.5509407
https://doi.org/10.1109/IROS.2010.5650197
https://doi.org/10.1109/IROS.2010.5650197
https://doi.org/10.1109/IROS.2013.6696327
https://doi.org/10.1109/JPROC.2006.876965
https://doi.org/10.1109/JPROC.2006.876965

BIBLIOGRAPHY 214

[236] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos and G. Grisetti,
‘Multi-robot slam using condensed measurements,’ in Proceeedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2013, pp. 1069–1076. doi: 10.1109/IROS.2013.6696483.

[237] R. Aragues, J. Cortes and C. Sagues, ‘Distributed consensus on robot net-
works for dynamically merging feature-based maps,’ IEEE Transactions on
Robotics, vol. 28, no. 4, pp. 840–854, 2012. doi: 10.1109/TRO.2012.2192012.

[238] E. D. Nerurkar, S. I. Roumeliotis and A. Martinelli, ‘Distributed maximum a
posteriori estimation for multi-robot cooperative localization,’ in Proceedings
of the 2009 IEEE International Conference on Robotics and Automation,
IEEE, 2009, pp. 1402–1409. doi: 10.1109/ROBOT.2009.5152398.

[239] L. Paull, G. Huang, M. Seto and J. J. Leonard, ‘Communication-constrained
multi-auv cooperative slam,’ in Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2015, pp. 509–516.
doi: 10.1109/ICRA.2015.7139227.

[240] T. Cieslewski, S. Choudhary and D. Scaramuzza, ‘Data-efficient decentralized
visual slam,’ in Proceedings of the 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 2466–2473. doi: 10 .

1109/ICRA.2018.8461155.

[241] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone and G. Beltrame, ‘Door-
slam: Distributed, online, and outlier resilient slam for robotic teams,’ IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1656–1663, 2020. doi:
10.1109/LRA.2020.2967681.

[242] D. Bickson, ‘Gaussian belief propagation: Theory and application,’ Ph.D.
dissertation, The Hebrew University of Jerusalem, 2008. doi: 10.48550/

arXiv.0811.2518.

[243] L. Wang, W. Wang, C. Shen and F. Duan, ‘A convex relaxation optimiza-
tion algorithm for multi-camera calibration with 1d objects,’ Neurocomputing,
vol. 215, pp. 82–89, 2016, issn: 0925-2312. doi: 10.1016/j.neucom.2015.
07.158.

[244] B. Triggs, ‘Autocalibration from planar scenes,’ in Proceedings of the European
Conference on Computer Vision, H. Burkhardt and B. Neumann, Eds., Springer,
Berlin, Heidelberg, 1998, pp. 89–105, isbn: 978-3-540-69354-3. doi: 10.1007/
BFb0055661.

[245] S. Ramalingam and P. Sturm, ‘A unifying model for camera calibration,’
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 7, pp. 1309–1319, 2017. doi: 10.1109/TPAMI.2016.2592904.

https://doi.org/10.1109/IROS.2013.6696483
https://doi.org/10.1109/TRO.2012.2192012
https://doi.org/10.1109/ROBOT.2009.5152398
https://doi.org/10.1109/ICRA.2015.7139227
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/LRA.2020.2967681
https://doi.org/10.48550/arXiv.0811.2518
https://doi.org/10.48550/arXiv.0811.2518
https://doi.org/10.1016/j.neucom.2015.07.158
https://doi.org/10.1016/j.neucom.2015.07.158
https://doi.org/10.1007/BFb0055661
https://doi.org/10.1007/BFb0055661
https://doi.org/10.1109/TPAMI.2016.2592904

BIBLIOGRAPHY 215

[246] Y. Bastanlar, ‘A simplified two-view geometry based external calibration
method for omnidirectional and ptz camera pairs,’ Pattern Recognition Let-
ters, vol. 71, pp. 1–7, 2016, issn: 0167-8655. doi: 10.1016/j.patrec.2015.
11.013.

[247] A. Zaharescu, R. Horaud, R. Ronfard and L. Lefort, ‘Multiple camera cal-
ibration using robust perspective factorization,’ in Third International Sym-
posium on 3D Data Processing, Visualization, and Transmission (3DPVT’06),
IEEE, 2006, pp. 504–511. doi: 10.1109/3DPVT.2006.100.

[248] M. Zhu and S. Martinez, ‘Discrete-time dynamic average consensus,’ Auto-
matica, vol. 46, no. 2, pp. 322–329, 2010, issn: 0005-1098. doi: 10.1016/j.
automatica.2009.10.021.

[249] J. Knuth and P. Barooah, ‘Distributed collaborative 3d pose estimation of
robots from heterogeneous relative measurements: An optimization on man-
ifold approach,’ Robotica, vol. 33, no. 7, pp. 1507–1535, 2015. doi: 10.1017/
S0263574714000794.

[250] J. Thunberg, J. Goncalves and X. Hu, ‘Consensus and formation control on
se (3) for switching topologies,’ Automatica, vol. 66, pp. 109–121, 2016, issn:
0005-1098. doi: 10.1016/j.automatica.2015.12.035.

[251] L. Luft, T. Schubert, S. I. Roumeliotis and W. Burgard, ‘Recursive decent-
ralized localization for multi-robot systems with asynchronous pairwise com-
munication,’ The International Journal of Robotics Research, vol. 37, no. 10,
pp. 1152–1167, 2018. doi: 10.1177/0278364918760698.

[252] H. Cui, S. Shen and Z. Hu, ‘Tracks selection for robust, efficient and scalable
large-scale structure from motion,’ Pattern Recognition, vol. 72, pp. 341–354,
2017, issn: 0031-3203. doi: 10.1016/j.patcog.2017.08.002.

[253] R. Munoz-Salinas, M. J. Marin-Jimenez and R. Medina-Carnicer, ‘Spm-slam:
Simultaneous localization and mapping with squared planar markers,’ Pat-
tern Recognition, vol. 86, pp. 156–171, 2019, issn: 0031-3203. doi: 10.1016/
j.patcog.2018.09.003.

[254] R. Munoz-Salinas, M. J. Marin-Jimenez, E. Yeguas-Bolivar and R. Medina-
Carnicer, ‘Mapping and localization from planar markers,’ Pattern Recogni-
tion, vol. 73, pp. 158–171, 2018.

[255] D. W. Marquardt, ‘An algorithm for least-squares estimation of nonlinear
parameters,’ Journal of the Society for Industrial and Applied Mathematics,
vol. 11, no. 2, pp. 431–441, 1963. doi: 10.1137/0111030.

https://doi.org/10.1016/j.patrec.2015.11.013
https://doi.org/10.1016/j.patrec.2015.11.013
https://doi.org/10.1109/3DPVT.2006.100
https://doi.org/10.1016/j.automatica.2009.10.021
https://doi.org/10.1016/j.automatica.2009.10.021
https://doi.org/10.1017/S0263574714000794
https://doi.org/10.1017/S0263574714000794
https://doi.org/10.1016/j.automatica.2015.12.035
https://doi.org/10.1177/0278364918760698
https://doi.org/10.1016/j.patcog.2017.08.002
https://doi.org/10.1016/j.patcog.2018.09.003
https://doi.org/10.1016/j.patcog.2018.09.003
https://doi.org/10.1137/0111030

BIBLIOGRAPHY 216

[256] T. D. Barfoot and P. T. Furgale, ‘Associating uncertainty with three-dimensional
poses for use in estimation problems,’ IEEE Transactions on Robotics, vol. 30,
no. 3, pp. 679–693, 2014. doi: 10.1109/TRO.2014.2298059.

[257] P. H. Torr and A. Zisserman, ‘Feature based methods for structure and mo-
tion estimation,’ in Proceedings of the 1999 International Workshop on Vision
Algorithms, B. Triggs, A. Zisserman and R. Szeliski, Eds., ser. Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer, 1999, pp. 278–294, isbn:
978-3-540-44480-0. doi: 10.1007/3-540-44480-7_19.

[258] O. Demetz, ‘Feature invariance versus change estimation in variational mo-
tion estimation,’ Ph.D. dissertation, University of Saarland, 2015. doi: 10.
22028/D291-26623.

[259] C. Liu, J. Yuen and A. Torralba, ‘Sift flow: Dense correspondence across
scenes and its applications,’ IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 5, pp. 978–994, 2010. doi: 10.1109/TPAMI.
2010.147.

[260] R. Zabih and J. Woodfill, ‘Non-parametric local transforms for computing
visual correspondence,’ in Proceedings of European Conference on Computer
Vision, J.-O. Eklundh, Ed., Springer, Berlin, Heidelberg, 1994, pp. 151–158,
isbn: 978-3-540-48400-4. doi: 10.1007/BFb0028345.

[261] G. Silveira and E. Malis, ‘Real-time visual tracking under arbitrary illumin-
ation changes,’ in Proceedings of the 2007 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2007, pp. 1–6. doi: 10.1109/CVPR.
2007.382993.

[262] H. Bristow and S. Lucey, ‘In defense of gradient-based alignment on densely
sampled sparse features,’ in Dense Image Correspondences for Computer Vis-
ion, T. Hassner and C. Liu, Eds., Springer International Publishing, 2016,
pp. 135–152, isbn: 978-3-319-23048-1. doi: 10.1007/978-3-319-23048-1_7.

[263] L. Sevilla-Lara and E. Learned-Miller, ‘Distribution fields for tracking,’ in
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 1910–1917. doi: 10.1109/CVPR.2012.6247891.

[264] L. Sevilla-Lara, D. Sun, E. G. Learned-Miller and M. J. Black, ‘Optical flow
estimation with channel constancy,’ in Proceedings of the European Confer-
ence on Computer Vision, D. Fleet, T. Pajdla, B. Schiele and T. Tuytelaars,
Eds., Springer International Publishing, 2014, pp. 423–438, isbn: 978-3-319-
10590-1. doi: 10.1007/978-3-319-10590-1_28.

https://doi.org/10.1109/TRO.2014.2298059
https://doi.org/10.1007/3-540-44480-7_19
https://doi.org/10.22028/D291-26623
https://doi.org/10.22028/D291-26623
https://doi.org/10.1109/TPAMI.2010.147
https://doi.org/10.1109/TPAMI.2010.147
https://doi.org/10.1007/BFb0028345
https://doi.org/10.1109/CVPR.2007.382993
https://doi.org/10.1109/CVPR.2007.382993
https://doi.org/10.1007/978-3-319-23048-1_7
https://doi.org/10.1109/CVPR.2012.6247891
https://doi.org/10.1007/978-3-319-10590-1_28

BIBLIOGRAPHY 217

[265] H. Alismail, M. Kaess, B. Browning and S. Lucey, ‘Direct visual odometry in
low light using binary descriptors,’ IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 444–451, 2016. doi: 10.1109/LRA.2016.2635686.

[266] S. Park, T. Schöps and M. Pollefeys, ‘Illumination change robustness in direct
visual slam,’ in Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2017, pp. 4523–4530. doi: 10 .

1109/ICRA.2017.7989525.

[267] M. Peris, S. Martull, A. Maki, Y. Ohkawa and K. Fukui, ‘Towards a simu-
lation driven stereo vision system,’ in Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), IEEE, 2012, pp. 1038–1042.

[268] A. Geiger, P. Lenz and R. Urtasun, ‘Are we ready for autonomous driving?
the kitti vision benchmark suite,’ in Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, 2012, pp. 3354–3361.
doi: 10.1109/CVPR.2012.6248074.

[269] D. Bickson, D. Dolev, O. Shental, P. H. Siegel and J. K. Wolf, ‘Gaussian belief
propagation based multiuser detection,’ in Proceedings of the 2008 IEEE In-
ternational Symposium on Information Theory, IEEE, 2008, pp. 1878–1882.
doi: 10.1109/ISIT.2008.4595314.

[270] O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson and D. Dolev, ‘Gaussian
belief propagation solver for systems of linear equations,’ in Proceedings of
the 2008 IEEE International Symposium on Information Theory, IEEE, 2008,
pp. 1863–1867. doi: 10.1109/ISIT.2008.4595311.

[271] V. Savic and S. Zazo, ‘Cooperative localization in mobile networks using non-
parametric variants of belief propagation,’ Ad Hoc Networks, vol. 11, no. 1,
pp. 138–150, 2013, issn: 1570-8705. doi: 10.1016/j.adhoc.2012.04.012.

[272] V. Savic and H. Wymeersch, ‘Simultaneous localization and tracking via real-
time nonparametric belief propagation,’ in Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, IEEE,
2013, pp. 5180–5184. doi: 10.1109/ICASSP.2013.6638650.

[273] A. F. Garcia-Fernandez, L. Svensson and S. Särkkä, ‘Cooperative localiza-
tion using posterior linearization belief propagation,’ IEEE Transactions on
Vehicular Technology, vol. 67, no. 1, pp. 832–836, 2017. doi: 10.1109/TVT.
2017.2734683.

[274] Z. Hosseinidoust, D. Giannacopoulos and W. J. Gross, ‘Gpu optimization and
implementation of gaussian belief propagation algorithm,’ in Proceedings of
the 2016 IEEE Conference on Electromagnetic Field Computation (CEFC),
IEEE, 2016, pp. 1–5. doi: 10.1109/CEFC.2016.7816128.

https://doi.org/10.1109/LRA.2016.2635686
https://doi.org/10.1109/ICRA.2017.7989525
https://doi.org/10.1109/ICRA.2017.7989525
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/ISIT.2008.4595314
https://doi.org/10.1109/ISIT.2008.4595311
https://doi.org/10.1016/j.adhoc.2012.04.012
https://doi.org/10.1109/ICASSP.2013.6638650
https://doi.org/10.1109/TVT.2017.2734683
https://doi.org/10.1109/TVT.2017.2734683
https://doi.org/10.1109/CEFC.2016.7816128

BIBLIOGRAPHY 218

[275] Y. El-Kurdi, D. Fernández, W. J. Gross and D. D. Giannacopoulos, ‘Acceler-
ation of the finite-element gaussian belief propagation solver using minimum
residual techniques,’ IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1–4,
2015. doi: 10.1109/TMAG.2015.2487683.

[276] M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, ‘Tree-reweighted belief
propagation algorithms and approximate ml estimation by pseudo-moment
matching,’ in Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, C. M. Bishop and B. J. Frey, Eds., ser. Proceedings
of Machine Learning Research, PMLR, vol. R4, 2003, pp. 308–315.

[277] H. Wymeersch, F. Penna and V. Savić, ‘Uniformly reweighted belief propaga-
tion: A factor graph approach,’ in Proceedings of the 2011 IEEE Interna-
tional Symposium on Information Theory, IEEE, 2011, pp. 2000–2004. doi:
10.1109/ISIT.2011.6033905.

[278] D. J. Watts and S. H. Strogatz, ‘Collective dynamics of ‘small-world’ net-
works,’ Nature, vol. 393, no. 6684, pp. 440–442, 1998. doi: 10.1038/30918.

[279] F. Meyer et al., ‘Message passing algorithms for scalable multitarget track-
ing,’ Proceedings of the IEEE, vol. 106, no. 2, pp. 221–259, 2018. doi: 10.
1109/JPROC.2018.2789427.

[280] E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson and M. Z.
Win, ‘A belief propagation algorithm for multipath-based slam,’ IEEE Trans-
actions on Wireless Communications, vol. 18, no. 12, pp. 5613–5629, 2019.
doi: 10.1109/TWC.2019.2937781.

https://doi.org/10.1109/TMAG.2015.2487683
https://doi.org/10.1109/ISIT.2011.6033905
https://doi.org/10.1038/30918
https://doi.org/10.1109/JPROC.2018.2789427
https://doi.org/10.1109/JPROC.2018.2789427
https://doi.org/10.1109/TWC.2019.2937781

	Distributed Robotic Vision for Calibration, Localisation, and Mapping
	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	List of abbreviations and symbols
	Introduction
	Overview
	Research motivation and problems
	Research questions
	Research objectives
	Structure of the dissertation
	Publications

	Literature review
	Summary of contributions
	Introduction
	Motivation
	Organisation

	Calibration and localisation
	Calibration problem statement
	Camera calibration algorithms
	Multi-camera calibration and localisation
	Summary and open problems

	Visual odometry and visual SLAM
	VO and SLAM paradigms
	Generalised keyframe VO and SLAM architecture
	Summary and open problems

	Distributed calibration, localisation, and SLAM
	Distributed camera sensor networks
	Distributed consensus algorithms
	Distributed calibration and localisation
	Distributed multi-robot visual odometry and SLAM
	Summary and open problems

	Chapter summary and proposed framework
	Applications to the present work

	Distributed one-dimensional camera calibration and localisation with Gaussian belief propagation
	Summary of contributions
	Introduction
	Related Work
	Contributions

	Preliminaries
	Camera sensor networks as Markov random fields
	The pinhole camera model

	One-dimensional camera calibration
	Zhang's One-dimensional calibration algorithm
	Improvements to Zhang's Method

	Initialising the distributed network
	Connecting the vision graph
	Estimating extrinsic parameters
	Cluster-based bundle adjustment

	Gaussian belief propagation
	Frame alignment

	Experiments and results
	Simulating the one-dimensional calibration
	Simulating the distributed localisation
	Evaluation on real data

	Summary

	Robust one-dimensional calibration and localisation of a distributed camera sensor network
	Summary of contributions
	Introduction
	Related work
	Contributions

	Preliminaries
	The pinhole camera model
	The one dimensional calibration object
	Camera sensor networks as Markov random fields

	Multi-view calibration with one-dimensional objects
	De França's one dimensional calibration with general motion
	Our improvements to the one-dimensional calibration

	Calibrating a distributed camera sensor network
	General consensus alternating direction method of multipliers
	Gaussian belief propagation
	Adapting 1D calibration for distributed processing

	Experimental results
	Simulation data
	Real data

	Summary

	Direct visual odometry with binary descriptors
	Summary of contributions
	Introduction
	Related work
	Contributions

	Preliminaries
	Notation
	Direct visual odometry
	Multi-channel and descriptor-based Lucas-Kanade

	Direct tracking with binary features
	The Census and Rank transforms
	Estimating gradients and descent direction
	Extending to arbitrary binary descriptors
	Rank approximations
	Implementation details

	Evaluations
	Summary

	Optimising edge weights for distributed inference with Gaussian belief propagation
	Summary of contributions
	Introduction
	Related Work
	Contributions

	Preliminaries
	Gaussian belief propagation
	Message reweighting

	Optimising weights for small-world networks
	Small-world generation
	Uniform optimal weights
	Non-uniform weights
	Comparison of the weighting methods

	Application to factor graph localisation
	Application to distributed calibration
	Summary

	Conclusions and future work
	Overview
	Research summary
	Future work

	Bibliography

