3,684 research outputs found

    Radical design processes for systemic change

    Get PDF
    To enable radical design in safety-critical collaborative workplaces, there is a need to engage a wide range of stakeholders. This paper reports on three design presentations carried out with the purpose of enabling systemic changes necessary to carry out a complete redesign of current ship bridges for advanced marine operations. The presentations showed possible future bridge designs developed from an extensive design-driven research and development project. The presentations were held inside the company commissioning the innovations and publicly at industrial meeting places where customers, sub-suppliers and regulatory authorities meet. We present the objectives, target groups, our strategy, the means of presentation and the results. Our preliminary work suggests there is a close relation between the presentations and the research and development project's ability to introduce radical innovations to marine industry. The presentations have aligned stakeholder expectations of future bridge development and as such prepared the community for systemic changes. We suggest the three presentations are examples of how design presentations can serve as systemic interventions that prime social systems so as to more easily accept and support radical innovation processes

    Using operational scenarios in a virtual reality enhanced design process

    Get PDF
    Maritime user interfaces for ships’ bridges are highly dependent on the context in which they are used, and rich maritime context is difficult to recreate in the early stages of user-centered design processes. Operations in Arctic waters where crews are faced with extreme environmental conditions, technology limitations and a lack of accurate navigational information further increase this challenge. There is a lack of research supporting the user-centered design of workplaces for hazardous Arctic operations. To meet this challenge, this paper reports on the process of developing virtual reality-reconstructed operational scenarios to connect stakeholders, end-users, designers, and human factors specialists in a joint process. This paper explores how virtual reality-reconstructed operational scenarios can be used as a tool both for concept development and user testing. Three operational scenarios were developed, implemented in a full mission bridge simulator, recreated in virtual reality (VR), and finally tested on navigators (end-users). Qualitative data were captured throughout the design process and user-testing, resulting in a thematic analysis that identified common themes reflecting the experiences gained throughout this process. In conclusion, we argue that operational scenarios, rendered in immersive media such as VR, may be an important and reusable asset when supporting maritime design processes and in maritime training and education

    Heads Up! Supporting Maritime Navigation using Augmented Reality

    Get PDF
    Augmented Reality (AR) is a technology that shows potential for the improvement of maritime safety. Today, the ship bridge suffers from a lack of standardization and integration. Head-Mounted Displays (HMDs) may alleviate these challenges by showing information when relevant and enhancing operator mobility. Microsoft HoloLens 2 (HL2) is such a HMD. Prior research shows the potential of HMDs in the Maritime AR domain (Rowen et al., 2019). Limited research has been conducted however on the design of AR User Interfaces (UIs) for maritime applications leveraging HMDs. As a result, no framework exists to test new UI designs in the real world, which is necessary due to many variables that cannot be accurately modelled in a lab setting. This led to the research questions (RQs) 1. What makes an effective head-mounted AR UI for maritime navigation? (RQ1); and 2. How can HL2 be used as a ship bridge system? (RQ2) A Research through Design (RtD) process is detailed where a UI design and functional prototype was developed in collaboration with end-users. The prototype, named SjĂžr, implements the aforementioned interface, provides a framework for in-context UI testing and can be viewed as the next step towards standardizing AR UIs for the maritime industry. The design and development process led to three contributions to the Maritime AR domain. Firstly, a framework for the visualization of location-based data about points of interest on predefined canvases co-located in the real world was developed (Technology Readiness Level (TRL) 6), which runs on the HL2. This first contribution is defined in Section 4 and provides an answer to RQ2. Secondly, using this framework, an interface design (including interactions) is developed in collaboration with end-users and proposed as an answer to RQ1. This process is described in Section 5. The third contribution is a research agenda which provides insights into how contemporary and future research can leverage the developed framework. Section 7 discloses this research agenda.Master's Thesis in Interaction and Media DesignMIX350MASV-MI

    A review of augmented reality applications for ship bridges

    Get PDF
    We present a state-of-the art analysis of Augmented Reality (AR) applications for ship bridge operation. We compiled and reviewed what type of use cases were published, what type of maritime applications have been adapted to AR, how they were prototyped and evaluated and what type of technology was used. We also reviewed the user interaction mechanisms, information display and adaptation to maritime environmental conditions. Our analysis shows that although there are many examples of AR applications in ship bridges, there is still much work that needs to be done before these solutions can be suitably adapted to commercial settings. In addition, we argue there is a need to develop design requirements and regulations that can guide the safe development of AR

    Development of an augmented reality concept for icebreaker assistance and convoy operations

    Get PDF
    A vessel convoy is a complex and high‐risk operation completed during icebreaking operations in the Arctic. Icebreaker navigators need to continuously communicate with their crew while monitoring information such as speed, heading, and distance between vessels in the convoy. This paper presents an augmented reality user interface concept, which aims to support navigators by improving oversight and safety during convoy operations. The concept demonstrates how augmented reality can help to realize a situated user interface that adapts to user’s physical and operational contexts. The concept was developed through a human‐centered design process and tested through a virtual reality simulator in a usability study involving seven mariners. The results suggest that augmented reality has the potential to improve the safety of convoy operations by integrating distributed information with heads‐up access to operation‐critical information. However, the user interface concept is still novel, and further work is needed to develop the concept and safely integrate augmented reality into maritime operations

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base

    The Digital in Architecture: Then, Now and In the Future

    Get PDF
    Authored by architecture theorist Mollie Claypool, it’s your one-stop-shop for the history of digital thinking in architecture. From debates around parametric design to the emergence of collaboration, the report condenses the interplay between digital innovation and architecture into one, tangible piece to reference

    Research in Norway : research actors focus on China

    Get PDF
    • 

    corecore