3,397 research outputs found

    Adaptive inferential sensors based on evolving fuzzy models

    Get PDF
    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can a- ddress the challenges of the modern advanced process industry

    Trade-off between accuracy and interpretability: Experience-oriented fuzzy modeling via reduced-set vectors

    Get PDF
    AbstractThis paper focuses on accuracy and interpretability issue of fuzzy model approaches. In order to balance the trade-off between both of the aspects, a new fuzzy model based on experience-oriented learning algorithm is proposed. Firstly, support vector regression (SVR) with presented Mercer kernels is employed to generate the initial fuzzy model and the available experience on the training data. Secondly, a bottom-up simplification algorithm is introduced to generate reduced-set vectors for simplifying the structure of the initial fuzzy model, at the same time the parameters of the simplified model derived are adjusted by a hybrid learning algorithm including linear ridge regression algorithm and gradient descent method based on a new performance measure. Finally, taking the results from two-dimensional sinc function approximation and fuzzy control of the bar and beam system, the proposed fuzzy model preserves nice accuracy and interpretability

    F-transforms for the definition of contextual fuzzy partitions

    Get PDF
    Fuzzy partitions can be defined in many different ways, but usually, it is done taking into account the whole universe. In this paper, we present a method to define fuzzy partitions according to those elements in the universe holding certain fuzzy attribute. Specifically, we show how to define those fuzzy partitions by means of F-transforms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech This work has been partially supported by the Spanish Ministry of Science by the projects TIN15-70266-C2-P-1 and TIN2016-76653-

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    A Big-Bang Big-Crunch Type-2 Fuzzy Logic-based System for Malaria Epidemic Prediction in Ethiopia

    Get PDF
    ABSTRACT- Malaria is a life-threatening disease caused by Plasmodium parasite infection with huge medical, economic, and social impact. Malaria is one of a serious public health problem in Ethiopia since 1959, even if, its morbidity and mortality have been reduced starting from 2001. Various studies were conducted to predict the Malaria epidemic using mathematical and statistical regression approaches, nevertheless, they had no learning capabilities. In this paper, we presented a type-2 fuzzy logic-based system for Malaria epidemic prediction (MEP) in Ethiopia which has been optimized by the Big-Bang Big-Crunch (BBBC) approach to maximizing the model accuracy and interpretability to predict for the future occurrence of Malaria. We compared the proposed BBBC optimized type-2 fuzzy logic-based system against its counterpart T1FLS, non-optimized T2FLS, ANFIS and ANN. The results show that the optimized proposed T2FLS provides a more interpretable model that predicts the future occurrence of Malaria from one up to three months ahead with optimal accuracy. This helps to answer the question of when and where must make preparation to prevent and control the occurrence of Malaria epidemic since the generated rules from our system were able to explain the situations and intensity of input factors which contributed to the Malaria epidemic and outbreak

    Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem

    Get PDF
    In many fields where human understanding plays a crucial role, such as bioprocesses, the capacity of extracting knowledge from data is of critical importance. Within this framework, fuzzy learning methods, if properly used, can greatly help human experts. Amongst these methods, the aim of orthogonal transformations, which have been proven to be mathematically robust, is to build rules from a set of training data and to select the most important ones by linear regression or rank revealing techniques. The OLS algorithm is a good representative of those methods. However, it was originally designed so that it only cared about numerical performance. Thus, we propose some modifications of the original method to take interpretability into account. After recalling the original algorithm, this paper presents the changes made to the original method, then discusses some results obtained from benchmark problems. Finally, the algorithm is applied to a real-world fault detection depollution problem.Comment: pre-print of final version published in Fuzzy Sets and System

    Segmented software cost estimation models based on fuzzy clustering

    Get PDF
    Parametric software cost estimation models are based on mathematical relations, obtained from the study of historical software projects databases, that intend to be useful to estimate the effort and time required to develop a software product. Those databases often integrate data coming from projects of a heterogeneous nature. This entails that it is difficult to obtain a reasonably reliable single parametric model for the range of diverging project sizes and characteristics. A solution proposed elsewhere for that problem was the use of segmented models in which several models combined into a single one contribute to the estimates depending on the concrete characteristic of the inputs. However, a second problem arises with the use of segmented models, since the belonging of concrete projects to segments or clusters is subject to a degree of fuzziness, i.e. a given project can be considered to belong to several segments with different degrees. This paper reports the first exploration of a possible solution for both problems together, using a segmented model based on fuzzy clusters of the project space. The use of fuzzy clustering allows obtaining different mathematical models for each cluster and also allows the items of a project database to contribute to more than one cluster, while preserving constant time execution of the estimation process. The results of an evaluation of a concrete model using the ISBSG 8 project database are reported, yielding better figures of adjustment than its crisp counterpart.Ministerio de Ciencia y Tecnología TIN2004-06689-C0

    A Type-2 Fuzzy Logic Based System for Malaria Epidemic Prediction in Ethiopia

    Get PDF
    Malaria is the most prevalent mosquito-borne disease throughout tropical and subtropical regions of the world with severe medical, economic, and social impact. Malaria is a serious public health problem in Ethiopia since 1959, even if, its morbidity and mortality have been reduced starting from 2001. Various studies were conducted to predict the malaria epidemic using mathematical and statistical approaches, nevertheless, they had no learning capabilities. In this paper, we present a Type-2 Fuzzy Logic Based System for Malaria epidemic prediction in Ethiopia which was trained using real data collected throughout Ethiopia from 2013 to 2017. Fuzzy Logic Based Systems provide a transparent model which employs IF-Then rules for the prediction that could be easily analyzed and interpreted by decision-makers. This is quite important to fight the sources of Malaria and take the needed preventive measures where the generated rules from our system were able to explain the situations and intensity of input factors which contributed to Malaria epidemic incidence up to three months ahead. The presented Type-2 Fuzzy Logic System (T2FLS) learns its rules and fuzzy set parameters from data and was able to outperform its counterparts T1FLS in 2% and ANFIS in 0.33% in the accuracy of prediction of Malaria epidemic in Ethiopia. In addition, the proposed system did shed light on the main causes behind such outbreaks in Ethiopia because of its high level of interpretabilit

    Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems

    Full text link
    Antipollution legislation in automotive internal combustion engines requires active control and prediction of pollutant formation and emissions. Predictive emission models are of great use in the system calibration phase, and also can be integrated for the engine control and on-board diagnosis tasks. In this paper, fuzzy modelling of the NOx emissions of a diesel engine is investigated, which overcomes some drawbacks of pure engine mapping or analytical physical-oriented models. For building up the fuzzy NOx prediction models, the FLEXFIS approach (short for FLEXible Fuzzy Inference Systems) is applied, which automatically extracts an appropriate number of rules and fuzzy sets by an evolving version of vector quantization (eVQ) and estimates the consequent parameters of Takagi-Sugeno fuzzy systems with the local learning approach in order to optimize the least squares functional. The predictive power of the fuzzy NOx prediction models is compared with that one achieved by physical-oriented models based on high-dimensional engine data recorded during steady-state and dynamic engine states.This work was supported by the Upper Austrian Technology and Research Promotion. This publication reflects only the author's view. Furthermore, we acknowledge PSA for providing the engine and partially supporting our investigation. Special thanks are given to PO Calendini, P Gaillard and C. Bares at the Diesel Engine Control Department.Lughofer, E.; Macian Martinez, V.; Guardiola García, C.; Klement, EP. (2011). Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Applied Soft Computing. 11(2):2487-2500. doi:10.1016/j.asoc.2010.10.004S2487250011
    corecore