313 research outputs found

    Non-Fragile Guaranteed Cost Control of Nonlinear Systems with Different State and Input Delays Based on T-S Fuzzy Local Bilinear Models

    Get PDF
    This paper focuses on the non-fragile guaranteed cost control problem for a class of Takagi-Sugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different state and input delays. A non-fragile guaranteed cost state-feedback controller is designed such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymptotically stable, and the closed-loop fuzzy system performance is constrained to a certain upper bound when the additive controller gain perturbations exist. By employing the linear matrix inequality (LMI) technique, sufficient conditions are established for the existence of desired non-fragile guaranteed cost controllers. The simulation examples show that the proposed approach is effective and feasible

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Design of Hybrid Regrouping PSO-GA based Sub-optimal Networked Control System with Random Packet Losses

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.In this paper, a new approach has been presented to design sub-optimal state feedback regulators over Networked Control Systems (NCS) with random packet losses. The optimal regulator gains, producing guaranteed stability are designed with the nominal discrete time model of a plant using Lyapunov technique which produces a few set of Bilinear Matrix Inequalities (BMIs). In order to reduce the computational complexity of the BMIs, a Genetic Algorithm (GA) based approach coupled with the standard interior point methods for LMIs has been adopted. A Regrouping Particle Swarm Optimization (RegPSO) based method is then employed to optimally choose the weighting matrices for the state feedback regulator design that gets passed through the GA based stability checking criteria i.e. the BMIs. This hybrid optimization methodology put forward in this paper not only reduces the computational difficulty of the feasibility checking condition for optimum stabilizing gain selection but also minimizes other time domain performance criteria like expected value of the set-point tracking error with optimum weight selection based LQR design for the nominal system

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization

    Get PDF
    Copyright @ 2014 Elsevier Ltd. All rights reserved.This paper deals with the finite-horizon reliable H∞ output feedback control problem for a class of discrete time-varying systems with randomly occurring uncertainties (ROUs), randomly occurring nonlinearities (RONs) as well as measurement quantizations. Both the deterministic actuator failures and probabilistic sensor failures are considered in order to reflect the reality. The actuator failure is quantified by a deterministic variable varying in a given interval and the sensor failure is governed by an individual random variable taking value on [0,1]. Both the nonlinearities and the uncertainties enter into the system in random ways according to Bernoulli distributed white sequences with known conditional probabilities. The main purpose of the problem addressed is to design a time-varying output feedback controller over a given finite horizon such that, in the simultaneous presence of ROUs, RONs, actuator and sensor failures as well as measurement quantizations, the closed-loop system achieves a prescribed performance level in terms of the H∞-norm. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. A numerical example is given to demonstrate the effectiveness of the proposed design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61134009, 61273156, 61333012, 61422301 and 61374127, the Scientific and Technology Research Foundation of Heilongjiang Education Department of China under Grant 12541061, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    corecore