182 research outputs found

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Analysing the Moodle e-learning platform through subgroup discovery algorithms based on evolutionary fuzzy systems

    Get PDF
    Nowadays, there is a increasing in the use of learning management systems from the universities. This type of systems are also known under other di erent terms as course management systems or learning content management systems. Speci cally, these systems are e-learning platforms o ering di erent facilities for information sharing and communication between the participants in the e-learning process. This contribution presents an experimental study with several subgroup discovery algorithms based on evolutionary fuzzy systems using data from a web-based education system. The main objective of this contribution is to extract unusual subgroups to describe possible relationships between the use of the e-learning platform and marks obtained by the students. The results obtained by the best performing algorithm, NMEEF-SD, are also presented. The most representative results obtained by this algorithm are summarised in order to obtain knowledge that can allow teachers to take actions to improve student performance

    Designing a Framework for Solving Multiobjective Simulation Optimization Problems

    Full text link
    Multiobjective simulation optimization (MOSO) problems are optimization problems with multiple conflicting objectives, where evaluation of at least one of the objectives depends on a black-box numerical code or real-world experiment, which we refer to as a simulation. This paper describes the design goals driving the development of the parallel MOSO library ParMOO. We derive these goals from the research trends and real-world requirements that arise when designing and deploying solvers for generic MOSO problems. Our specific design goals were to provide a customizable MOSO framework that allows for exploitation of simulation-based problem structures, ease of deployment in scientific workflows, maintainability, and flexibility in our support for many problem types. We explain how we have achieved these goals in the ParMOO library and provide two examples demonstrating how customized ParMOO solvers can be quickly built and deployed in real-world MOSO problems

    Generative Evolutionary Strategy For Black-Box Optimizations

    Full text link
    Many scientific and technological problems are related to optimization. Among them, black-box optimization in high-dimensional space is particularly challenging. Recent neural network-based black-box optimization studies have shown noteworthy achievements. However, their capability in high-dimensional search space is still limited. This study proposes a black-box optimization method based on the evolution strategy (ES) and the generative neural network (GNN) model. We designed the algorithm so that the ES and the GNN model work cooperatively. This hybrid model enables reliable training of surrogate networks; it optimizes multi-objective, high-dimensional, and stochastic black-box functions. Our method outperforms baseline optimization methods in this experiment, including ES, and Bayesian optimization

    Benchmarking Continuous Dynamic Optimization: Survey and Generalized Test Suite

    Get PDF
    Dynamic changes are an important and inescapable aspect of many real-world optimization problems. Designing algorithms to find and track desirable solutions while facing challenges of dynamic optimization problems is an active research topic in the field of swarm and evolutionary computation. To evaluate and compare the performance of algorithms, it is imperative to use a suitable benchmark that generates problem instances with different controllable characteristics. In this paper, we give a comprehensive review of existing benchmarks and investigate their shortcomings in capturing different problem features. We then propose a highly configurable benchmark suite, the generalized moving peaks benchmark, capable of generating problem instances whose components have a variety of properties such as different levels of ill-conditioning, variable interactions, shape, and complexity. Moreover, components generated by the proposed benchmark can be highly dynamic with respect to the gradients, heights, optimum locations, condition numbers, shapes, complexities, and variable interactions. Finally, several well-known optimizers and dynamic optimization algorithms are chosen to solve generated problems by the proposed benchmark. The experimental results show the poor performance of the existing methods in facing new challenges posed by the addition of new properties

    Feature selection by multi-objective optimization: application to network anomaly detection by hierarchical self-organizing maps.

    Get PDF
    Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organizing Maps (GHSOM) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labeled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.This work has been funded by FEDER funds and the Ministerio de Ciencia e Innovación of the Spanish Government under Project No. TIN2012-32039

    Optimal Observability-based Modelling, Design and Characterization of Piezoelectric Microactuators.

    Get PDF
    International audienceThis paper deals with the optimal design of monolithic piezoelectric microactuators with integrated proprioceptive sensors. Dedicated to the microrobotic and micromechatronic fields, these works detail the modelling and the characterization of compliant structures with integrated actuating and sensing elements. The proposed optimal design procedure adresses not only static criteria but also dynamic ones. This leads to microdevices which are more performant with regards to mechanical (displacement, force...) and control (dynamics, stability, precision) characteristics. Efficient design of such devices is achieved using a flexible building block method. A topological optimization method combined with an evolutionary algorithm is used to optimize the design of truss-like planar structure. This method chooses the best location among the different piezoelectric elements. Different mechanical, actuation or sensing elements are accordingly chosen from a data bank. From the control point of view, optimisation criteria are considered to enforce the observability of the vibrational dominant modes of the structure. Therefore, control and observation Gramians are exploited in the optimal design to shape the open loop frequency response of both, actuation and sensing functions of the integrated device. In the last part of the paper, based on these results, the optimal design and manufacturing of an innovative piezoelectric flexible microgripper is proposed. The prototype is manufactured from a monolithic piezoelectric material (PIC 151). Its reduced size (15 mm x 18 mm) fits the requirement of both microrobotics and micromechatronics applications, which is suitable for micromanipulation tasks. The characterization and the performance of this integrated microactuator finally close the paper and the efficiency of the optimal design procedure for micromechatronics applications are shown

    A hybrid bi-objective optimization approach for joint determination of safety stock and safety time buffers in multi-item single-stage industrial supply chains

    Get PDF
    In material requirements planning (MRP) systems, safety stock and safety time are two well-known inventory buffering strategies to protect against supply and demand uncertainties. While the role of safety stocks in coping with uncertainty is well studied, safety time has received only scarce attention in the supply chain management literature. Particularly, most previous operations research models have typically considered the use of such inventory buffers in a separate fashion, but not together. Here, we propose a decision support system (DSS) to address the problem of integrating optimal safety stock and safety time decisions at the component level, in multi-supplier multi-item single-stage industrial supply chains under dynamic demands and stochastic lead times. The DSS is based on a hybrid bi-objective optimization approach that simultaneously optimizes upstream inventory holding costs and β-service levels, suggesting multiple non-dominated Pareto-optimal solutions to decision-makers. We further explore a weighted closed-form analytical expression to select a single Pareto-optimal point from a set of non-dominated solutions, thereby enhancing the practical application of the proposed DSS. We describe the implementation of our approach in a major automotive electronics company operating under a myriad of components with dynamic demand, uncertain supply and requirements plans with different degrees of sparsity. We show the potential of our approach to improve β-service levels while minimizing inventory-related costs. The results suggest that, in certain cases, it appears to be more cost-effective to combine safety stock with safety time compared to considering each inventory buffer independently.This work has been supported by the European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Pro-gram (COMPETE 2020) [Project No. 39479, Funding reference: POCI-01–0247-FEDER-39479]

    Bundle methods in nonsmooth DC optimization

    Get PDF
    Due to the complexity of many practical applications, we encounter optimization problems with nonsmooth functions, that is, functions which are not continuously differentiable everywhere. Classical gradient-based methods are not applicable to solve such problems, since they may fail in the nonsmooth setting. Therefore, it is imperative to develop numerical methods specifically designed for nonsmooth optimization. To date, bundle methods are considered to be the most efficient and reliable general purpose solvers for this type of problems. The idea in bundle methods is to approximate the subdifferential of the objective function by a bundle of subgradients. This information is then used to build a model for the objective. However, this model is typically convex and, due to this, it may be inaccurate and unable to adequately reflect the behaviour of the objective function in the nonconvex case. These circumstances motivate to design new bundle methods based on nonconvex models of the objective function. In this dissertation, the main focus is on nonsmooth DC optimization that constitutes an important and broad subclass of nonconvex optimization problems. A DC function can be presented as a difference of two convex functions. Thus, we can obtain a model that utilizes explicitly both the convexity and concavity of the objective by approximating separately the convex and concave parts. This way we end up with a nonconvex DC model describing the problem more accurately than the convex one. Based on the new DC model we introduce three different bundle methods. Two of them are designed for unconstrained DC optimization and the third one is capable of solving also multiobjective and constrained DC problems. The finite convergence is proved for each method. The numerical results demonstrate the efficiency of the methods and show the benefits obtained from the utilization of the DC decomposition. Even though the usage of the DC decomposition can improve the performance of the bundle methods, it is not always available or possible to construct. Thus, we present another bundle method for a general objective function implicitly collecting information about the DC structure. This method is developed for large-scale nonsmooth optimization and its convergence is proved for semismooth functions. The efficiency of the method is shown with numerical results. As an application of the developed methods, we consider the clusterwise linear regression (CLR) problems. By applying the support vector machines (SVM) approach a new model for these problems is proposed. The objective in the new formulation of the CLR problem is expressed as a DC function and a method based on one of the presented bundle methods is designed to solve it. Numerical results demonstrate robustness of the new approach to outliers.Monissa käytännön sovelluksissa tarkastelun kohteena oleva ongelma on monimutkainen ja joudutaan näin ollen mallintamaan epäsileillä funktioilla, jotka eivät välttämättä ole jatkuvasti differentioituvia kaikkialla. Klassisia gradienttiin perustuvia optimointimenetelmiä ei voida käyttää epäsileisiin tehtäviin, sillä epäsileillä funktioilla ei ole olemassa klassista gradienttia kaikkialla. Näin ollen epäsileään optimointiin on välttämätöntä kehittää omia numeerisia ratkaisumenetelmiä. Näistä kimppumenetelmiä pidetään tällä hetkellä kaikista tehokkaimpina ja luotettavimpina yleismenetelminä kyseisten tehtävien ratkaisemiseksi. Ideana kimppumenetelmissä on approksimoida kohdefunktion alidifferentiaalia kimpulla, joka on muodostettu keräämällä kohdefunktion aligradientteja edellisiltä iteraatiokierroksilta. Tätä tietoa hyödyntämällä voidaan muodostaa kohdefunktiolle malli, joka on alkuperäistä tehtävää helpompi ratkaista. Käytetty malli on tyypillisesti konveksi ja näin ollen se voi olla epätarkka ja kykenemätön esittämään alkuperäisen tehtävän rakennetta epäkonveksissa tapauksessa. Tästä syystä väitöskirjassa keskitytään kehittämään uusia kimppumenetelmiä, jotka mallinnusvaiheessa muodostavat kohdefunktiolle epäkonveksin mallin. Pääpaino väitöskirjassa on epäsileissä optimointitehtävissä, joissa funktiot voidaan esittää kahden konveksin funktion erotuksena (difference of two convex functions). Kyseisiä funktioita kutsutaan DC-funktioiksi ja ne muodostavat tärkeän ja laajan epäkonveksien funktioiden osajoukon. Tämä valinta mahdollistaa kohdefunktion konveksisuuden ja konkaavisuuden eksplisiittisen hyödyntämisen, sillä uusi malli kohdefunktiolle muodostetaan yhdistämällä erilliset konveksille ja konkaaville osalle rakennetut mallit. Tällä tavalla päädytään epäkonveksiin DC-malliin, joka pystyy kuvaamaan ratkaistavaa tehtävää tarkemmin kuin konveksi arvio. Väitöskirjassa esitetään kolme erilaista uuden DC-mallin pohjalta kehitettyä kimppumenetelmää sekä todistetaan menetelmien konvergenssit. Kaksi näistä menetelmistä on suunniteltu rajoitteettomaan DC-optimointiin ja kolmannella voidaan ratkaista myös monitavoitteisia ja rajoitteellisia DC-optimointitehtäviä. Numeeriset tulokset havainnollistavat menetelmien tehokkuutta sekä DC-hajotelman käytöstä saatuja etuja. Vaikka DC-hajotelman käyttö voi parantaa kimppumenetelmien suoritusta, sitä ei aina ole saatavilla tai mahdollista muodostaa. Tästä syystä väitöskirjassa esitetään myös neljäs kimppumenetelmä konvergenssitodistuksineen yleiselle kohdefunktiolle, jossa kerätään implisiittisesti tietoa kohdefunktion DC-rakenteesta. Menetelmä on kehitetty erityisesti suurille epäsileille optimointitehtäville ja sen tehokkuus osoitetaan numeerisella testauksella Sovelluksena väitöskirjassa tarkastellaan datalle klustereittain tehtävää lineaarista regressiota (clusterwise linear regression). Kyseiselle sovellukselle muodostetaan uusi malli hyödyntäen koneoppimisessa käytettyä SVM-lähestymistapaa (support vector machines approach) ja saatu kohdefunktio esitetään DC-funktiona. Näin ollen yhtä kehitetyistä kimppumenetelmistä sovelletaan tehtävän ratkaisemiseen. Numeeriset tulokset havainnollistavat uuden lähestymistavan robustisuutta ja tehokkuutta
    corecore