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Abstract

Feature selection is an important and active issue in clustering and classification
problems. By choosing an adequate feature subset, a dataset dimensionality re-
duction is allowed, thus contributing to decreasing the classification computational
complexity, and to improving the classifier performance by avoiding redundant or
irrelevant features. Although feature selection can be formally defined as an opti-
misation problem with only one objective, that is, the classification accuracy ob-
tained by using the selected feature subset, in recent years, some multi-objective
approaches to this problem have been proposed. These either select features that
not only improve the classification accuracy, but also the generalisation capa-
bility in case of supervised classifiers, or counterbalance the bias toward lower
or higher numbers of features that present some methods used to validate the
clustering/classification in case of unsupervised classifiers.

The main contribution of this paper is a multi-objective approach for fea-
ture selection and its application to an unsupervised clustering procedure based
on Growing Hierarchical Self-Organizing Maps (GHSOM) that includes a new
method for unit labelling and efficient determination of the winning unit. In
the network anomaly detection problem here considered, this multi-objective ap-
proach makes it possible not only to differentiate between normal and anomalous
traffic but also among different anomalies. The efficiency of our proposals has
been evaluated by using the well-known DARPA/NSL-KDD datasets that con-
tain extracted features and labeled attacks from around 2 million connections.
The selected feature sets computed in our experiments provide detection rates up
to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as
accuracy values up to 99.12%.
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1. Introduction

Frequently, existing classification problem features are not discriminative enough.
Moreover, the use of correct features improves classification performance and re-
duces computational time. Thus, feature extraction and selection are two impor-
tant classification problem issues that aim to obtain a subset of features in a lower
dimensional space. They provide different advantages:

1. Representing the data in a lower dimensional space avoids the curse of di-
mensionality [1, 2]:

e Diminishes the number of examples needed to train a classifier. The
number of train samples grows exponentially with the data dimension-
ality.

e Avoids overfitting and improves the classifiers’ generalisation perfor-
mance. In practice, there is an optimum number of features for maxi-
mum classification performance.

2. High informative features will represent the different class samples far away
in the feature space, while similar samples will be represented close to each
other.

3. The use of fewer features improves computational efficiency.

4. Data visualisation is easier and more intuitive in lower dimensional spaces
(for example, 2D or 3D).

However, feature extraction and feature selection are different processes, al-
though both can be used to obtain a discriminative subset. Thus, we will describe
both separately.

Feature extraction can be stated as follows: Let x € R" be the existing feature

set. The goal is to make existing features more descriptive through a mapping
function g(z) : R® — R™ in such a way that ¥ = g(x) preserves the infor-
mation and structure of data in R™. Thus, in general, g(x) may implement a
non-linear mapping. Frequently, linear transformations through a matrix H, are
usually applied to revise the initial feature set + £ = H'z. In this case, 7 is the
representation of x in the subspace spanned by the basis vectors in H [3].
A representative feature extraction example through linear mapping is Principal
Component Analysis (PCA). PCA generates an orthonormal basis vector indicat-
ing the maximum variance directions. Thus, projecting onto this basis maximises
the sample scatter. The data samples projected onto the low dimensional space
spanned by the central components are used in the classification task. Another
popular feature extraction technique that uses a classification criterion instead
of the representation error (as in PCA), is Linear Discriminant Analysis (LDA)
[1]. In this case, the samples may not be accurately represented by the projected
features (that is, reconstruction error is not minimised), but class discriminative
information is enhanced. PCA and LDA have been used in classical problems,
such as facial recognition, eigenfaces [4] and fisherfaces [5], respectively. Other
techniques such as Independent Component Analysis (ICA), [6] aim to find a lin-
ear representation of non-Gaussian data in such a way that the components are
as statistically independent as possible.



Unlike extraction, selection does not transform the existing features, but only
searches for the most informative subset. Feature selection algorithms are clas-
sified into two categories: filters, and wrappers. Filters do not use a classifier
and evaluate the features according to heuristics that accommodate different data
characteristics. Thus, features are ranked according to their importance for sepa-
rating classes using either statistical methods, information theory-based methods
or searching techniques. Statistical methods include hypothesis testing, such as
the Student’s t-test [7, 1]. Other statistical methods, such as the Fisher Dis-
criminant Ratio, can be used to quantify the discriminative power of individual
features between two equiprobable classes [1]. Information theory-based meth-
ods can use different metrics, such as Entropy, Kullback-Leibler divergence [1]
or the information gain measure [8] to rank the features. Moreover, [9, 10] use
the Conditional Mutual Information (CMI) as the criterion for selecting feature
subsets. Other filter algorithms use a correlation-based metric to evaluate feature
usefulness. Specifically, the Correlation-Based Feature Selection (CFS) algorithm
[11, 12] takes into account individual feature worth based on the hypothesis that
good feature subsets contain features highly correlated with the class, yet uncorre-
lated with each other [11].

Nevertheless, most filter methods evaluate feature usefulness for predicting
class labels by computing an average score on the different dataset classes. This
may lead to removing features from the final selection that could be specially rel-
evant for a certain class label. Thus, it is necessary to evaluate the discriminative
power of each feature, selecting those that best describe each individual class.
This is especially useful for imbalanced datasets or data with different statistical
class distribution. In order to overcome this limitation, [13] proposed a framework
focused on evaluating feature relevance and redundancy to a certain class label.

Unlike filters, wrappers use an objective function that returns the current
feature selection goodness. This feedback is obtained from the classifier outcome
(that is, classification accuracy or classification error) executed on the training
set. However, these approaches are classifier-dependent, and require executing
the training process in each iteration. Different searching strategies can be used
depending on the way the features are selected or discarded in each iteration.
However, their common goal is to keep the best feature combination (that is,
features that optimise the objective function). In this way, there are two main
searching strategies:

1. Suboptimal searching. These techniques aim to avoid trying all the feature
combinations. Sequential Forward Selection (SFS) and Sequential Backward
Selection (SBS) are well-known suboptimal searching methods [1].

2. Exhaustive searching. All possible feature combinations will be used to train
the classifier and to assess performance. It is computationally expensive and
may be unfeasible for high-dimensionality feature spaces or large datasets.

In wrapper feature selection approaches, evaluating a given set’s utility presents
different issues depending on the type, supervised or unsupervised, of the classifi-
cation procedure used. If the procedure is supervised, it is relatively easy to define
the utility cost function by using the classification error. Nevertheless, in unsu-
pervised procedures, the utility should be determined from a clustering quality
definition without having knowledge about the corresponding labels or even the



number of clusters. Frequently, the clustering quality measures use ratios between
intra-cluster compactness measures and inter-cluster separation ones. Neverthe-
less, the distances between points tend to be similar values as the dimensions are
higher, making these quality solutions biased toward lower dimension solutions
[2]. This way, although, as is indicated in [2], formulating feature selection as
a multi-objective optimisation problem could provide some advantages, results
would depend on whether the procedure is either supervised or unsupervised. In
the supervised classification procedures, the goal is usually maximising the clas-
sifier performance while the number of features is minimised as larger sets could
produce overfitting and low generalisation problems. This way, a multi-objective
optimisation approach that takes into account the classifier performance and the
number of features allows for an adequate formulation of this goal. The situation
in unsupervised classification problems is different. In this case, it is difficult to
evaluate the clustering and, as has been previously indicated, the applied valida-
tion techniques usually present a dimensionality bias to either smaller or larger
cardinality feature sets. Thus, a multi-objective approach could counterbalance
the specific bias of the considered cluster validation method. Here, we propose
using the NSGA-II algorithm [14] for multi-objective optimisation to build a wrap-
per approach that selects specific feature subsets for each class label. Some other
works have been proposed to implement feature selection as a multi-objective op-
timisation, either for supervised or unsupervised classifiers. They are referenced
and compared with the approach here proposed in Section 5.

In this paper, feature selection is considered in the context of network intrusion
detection systems. With the growth of Internet, not only the number of intercon-
nected computers, but also the relevance of network applications, have increased
considerably. At the same time, the trend to online services has exposed a lot
of sensitive information [15, 16]. This way, there are three main alternatives for
protecting information. The first consists of avoiding sending information in clear
(without any encryption). Such systems encrypt the information before sending
for keeping its privacy. The second consists of using a separate physical or log-
ical channel to transfer the information. This is the case of the Virtual Private
Networks (VPN), which emulate a dedicated connection between two hosts. As a
third alternative, the information on the VPNs can also be encrypted. Neverthe-
less, there is not any infallible encryption method and the encryption/decryption
process can suppose a high overhead in high- speed networks that use the TCP/IP
protocol stack.

However, the previous approaches do not react to attackers or intruders, but
only suppose a passive protection to reduce exposure. The attacks can be classified
into four categories [17, 18]:

1. Denial of Service Attack (DoS). In this case, the attacker tries to overload
the victim machine in order to make it too busy to attend new legitimate
requests. This attack can be performed by exhausting the memory, the
network interface or other server resources.

2. User to Root Attack (U2R). In this case, the attacker logs into the system
as a normal user, and then tries to change to a super-user by exploiting
vulnerabilities.

3. Remote to Local Attack (R2L). In this case, the attacker uses system vul-
nerability to log into as a normal user. This attack may be a previous step
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of the U2R attack.

4. Probing Attack (PROBE). In this case, the attacker tries to retrieve infor-
mation about the computers attached to a network. Port scanning is an
example of this probing attack.

In this way, new attack complexity necessitates using elaborated methods, such

as pattern classification or artificial intelligence, to successfully detect an attack
or just to differentiate bewteen normal and anomalous traffic. Thus, Intrusion
Prevention or Intrusion Detection and Prevention (IPS or IDPS) are firewall-like
active systems that protect the network by calculating some features from the
network monitoring to be able to classify the traffic, detect abnormal behaviors
and react according to some predefined rules [19]. This paper mainly deals with
the Intrusion Detection system (IDS). There are two design approaches to IDS
[20]. The first consists of looking for patterns corresponding with known intrusion
signatures. The second searches for abnormal patterns by using more complex fea-
tures that can reveal not only an intrusion, but also a potential intrusion. This can
be figured by, for instance, discovering a misuse of the protocol flags or an abnor-
mal number of certain events (such as the number of TCP connection attempts).
Here, we approach network intrusion detection as a classification problem as in
the second alternative. In works such as [20, 21, 14, 22, 23], unsupervised classi-
fication techniques with unlabelled data are applied to differentiate normal from
anomalous traffic.
Unsupervised techniques for intrusion detection aim to group samples in clusters
depending on the distance to other samples. On the other hand, supervised algo-
rithms that work upon labelled data, such as k-nearest neighbour or Naive Bayes
classifiers, can be also used [20, 24, 25, 19, 26]. In this case, the algorithm classifies
new points based on the distance to the training set, as in the k-nearest neigh-
bour algorithm, where the majority class of the closest k-neighbours determines
the class of the new instance. However, classical clustering techniques require a
lot of iterations, making this technique not feasible for implementing real-time
IDS.

Papers such as [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 19|, describe the use
of artificial intelligence and other data-mining techniques to implement the in-
trusion detection and perform the attack classification. Paper [27] also applies
perceptron-like neural networks for traffic classification, as well as fuzzy classifiers
to improve decision making. In [28], SOMs [37] are used for data clustering and
to classify the traffic anomalies according to several known attacks, taking ad-
vantage of SOM clustering properties to group the data instances. In [30], radial
basis function (RBF) neural networks are used. Alternatively, several clustering
techniques have been hybridised in order to improve the detection rate. Thus, in
[31], RBF's with elliptical Gaussian basis functions are trained by using two differ-
ent alternatives in order to obtain a high generative or discriminative behaviour.
Generative models classify objects by building a probabilistic model for each cat-
egory. Then, variational Bayesian inference is used to have a probabilistic class
membership interpretation. On the other hand, discriminative classifiers estimate
the probability that one object belongs to a specific category directly.

Evolutionary computation has been also applied to intrusion detection [32, 33,
35, 38]. In [32], evolutionary computation optimises the RBF used in the clas-
sification task and [33, 39] presents hybrid systems (for instance, [33] combines



artificial immune systems and SOM) to detect abnormal traffic patterns and to
categorise them with SOM clustering. In addition, evolutionary techniques for
mobile and ad-hoc network intrusion detection have been used in [35]. In gen-
eral, SOMs are widely used for data-mining purposes to discover similarities in
high-dimensional data, generating a number of prototypes corresponding to the
number of SOM units, which generalises the data manifold. Moreover, a unique
SOM feature is that the units are arranged in a 2D or 3D space where the ones cor-
responding to the most similar prototypes are moved close together. On the other
hand, the units are moved away as the corresponding prototypes are dissimilar
among them [37]. In accordance with the aforementioned characteristics, SOMs
can be also seen as a dimension reduction method. Nevertheless, using SOMs
presents some difficulties, especially when the feature (input) space dimension is
very high. Moreover, the dimensions and size of the SOM have to be set before
the training process, and their optimal values have to be determined by trial and
error. However, the number of neurons on the output space determines the qual-
ity of the map and, then, the classification process performance ( that is, classes
should present enough differences among them and must be sufficiently apart from
the rest of classes in the output space). In this way, works such as [27, 28, 29, 40]
show the appropriateness of using hierarchical structures to improve the classifica-
tion process. Thus, hierarchical architectures aiming to improve the classification
performance have been used in these referenced works. As commented before,
a hierarchical perceptron-like neural network is presented in [27] and the use of
hierarchical SOM structures is considered in [28, 29]. The first approach uses a
reduced feature set for training the perceptron networks, while the last one uses
a first level comprised of three SOMs (each SOM representing one feature class)
and a second level that summarises the clusters found by the first one. Although
the proposal described in [28] tries to overcome some of the difficulties found on
the classic SOM static structure by splitting it into three maps, the sizes of these
maps are still static. In order to avoid some of these limitations, the Growing
Hierarchical SOM (GHSOM) has been proposed in [41]. It is a dynamic structure
in which the map grows during the training process to minimise its quantisation
error. Thus, the GHSOM model presents a hierarchical architecture composed of
several layers, also with several SOMs per layer. The number of SOMs per layer
and the size of each SOM are determined during the GHSOM training. There are
several papers that have applied GHSOM to IDS design [42] and have proposed
several enhancements to improve GHSOM performance [36, 19].

In this paper, GHSOM is used for both anomaly detection and attack clas-
sification. Our approach slightly oversizes the GHSOM along the training pro-
cess, leaving some units unlabeled (units that never win for any training pat-
tern). Nevertheless, these units can be used to spread the clusters by applying
the probability-based mechanism described in Section 3, to label the unlabeled
units in the previously trained GHSOM structure.

As was said at the beginning of this section and in Section 2, feature selection
clearly determines the classification performance. As is indicated in [2], feature se-
lection formulation as a multi-objective optimisation problem could provide some
advantages. Nevertheless, results would depend on whether the classification pro-
cedure is either supervised or unsupervised. In the supervised classification pro-
cedures, the goal has usually been the maximisation of the classifier performance
while the number of features is minimised as larger feature sets could produce



overfitting and low generalisation problems. This way, a multi-objective optimi-
sation approach that takes into account the classifier performance and the number
of features adequately allows an adequate formulation of this goal.

The situation in unsupervised classification problems is different. In this case, it
is difficult to evaluate the clustering, and the applied validation techniques usu-
ally present a dimensionality bias to either smaller or larger cardinality feature
sets. Thus, a multi-objective approach can counterbalance the specific bias of the
considered cluster validation method.

This paper proposes a multi-objective approach for feature selection that, al-
though it implements feature selection for unsupervised classification procedures
based on GHSOM, it also takes advantage of the labels that, in the available
data set, indicate the class to which each input pattern belongs. This way, after
training, it is possible to evaluate the classification accuracy, and the different
objectives correspond to the classification accuracies for each of the different con-
sidered attacks (classes).

After this introduction, the remainder of this paper is organised as follows. Sec-
tion 2 describes the main contribution of this paper: a dimensionality reduction
technique based on multi-objective optimisation. Moreover, Section 2 provides
a brief introduction to GHSOM-based classification procedure with the enhance-
ments described in Section 3.1, as it has been used in the proposed wrapper
method. In Section 4, the results obtained with and without feature selection are
shown. In addition, statistical significance tests have been performed to demon-
strate implementation improvement. Section 5 depicts the related works in IDS;
finally, Section 6 provides the conclusions of this work.

2. Feature selection by multi-objective optimisation

Since classifier performance depends on the set of features used, it is necessary
to accomplish an adequate feature selection. As it has been said, feature sub-
set selection problem consist on applying a learning algorithm for selecting some
subset of existing features upon which to focus its attention, while ignoring the
rest. Specifically, in wrapper approaches, feature subsets are selected to maxi-
mize the value of a specific criterion as the classification accuracy in supervised
classifiers [43, 44| or indirect measures as clustering quality in unsupervised ones.
Thus, wrapper can be grouped into the classifier-specific feature selection (CSFS)
methods [44]. Anyway, feature selection by exhaustive searching, which eventu-
ally results in testing all the possible feature subsets, is not feasible in terms of
processing time. Subsequently, the use of suboptimal techniques that avoid to
evaluate all the feature subsets provide an effective way to find relevant features.
In what follows, we propose a feature selection procedure based on multi-objective
optimisation. Here, as the problem consists of finding the features that maximise
classifier performance, and since the dataset is labeled, a similarity measurement
can be defined in order to simultaneously measure the number of elements being
correctly classified. This way, we use the Jaccard’s coefficient [45], which is a
measurement of the asymmetric information on variables. In other words, it is a
similarity measurement between datasets.

Let C, be the ground truth labels provided by the dataset to identify the
corresponding class to each pattern, and let Cs be the classification result. Thus,
we can determine the Jaccard’s coefficient for a specific class between the ground



truth labels and the labels calculated by our classifier, J(class), as indicated in
Equation 1.

J(class) = m (1)

Where:

- p is the number of elements successfully classified (true positives).

- fn is the number of elements labeled as a € Cy in the dataset, but non-
labeled as a € C; by the classifier (false negatives).

- fp the number of non-labeled as a € C, in the dataset and labeled as a € Cj
by the classifier (false positives).

- class indicates whether traflic without attacks is considered class=normal

or the type of attack (class is DOS, PROBE, U2R or R2L).

Thus, the Jaccard’s coefficient provides a classifier performance measurement
for the corresponding class. This coefficient can be used to select the features
that fit better for a specific class, since these selected features will maximise
the corresponding Jaccard’s coefficient. Optimising classifier performance means
maximising, at the same time, a number of objective functions equal to the number
of classes. Each of these objective functions corresponds to the Jaccard’s similarity
coefficient for the given class.

Thus, the five objectives used for feature selection in the network anomaly
detection problem are: J(normal), J(DOS), J(PROBE), J(R2L) and J(U2ZR).
Thus, p, fn and fp in formula 1 refers to positives, false negatives and false
positives, respectively, for each class label. As our work is focused on feature
selection, we used a similarity index as the objective function for each class label
in order to maximise this similarity between the predicted class labels and the
ground truth. This way, accuracy is not directly used in the feature selection
method, but rather in the assessment. On the other hand, our goal was to compare
our results to previous work that used the same dataset; used as baseline, they
only provided accuracy results without statistical validation.

Feature selection based on multi-objectives is suitable whenever:

e The experiments performed to reduce the feature set by using linear and
multivariate techniques (such as PCA) show that it is not possible to effec-
tively reduce the feature space dimension using linear techniques, in which
case non-linear or stochastic methods should be used.

e The features that maximise one attack type do not always maximise the
detection rate for all classes. In other words, maximising the detection rate
for all classes deals with mutually exclusive objectives.

As a result of this multi-objective optimisation process implemented here by
the NSGA-II algorithm [46, 14] and described in Algorithm 1 and Figure 1, we
obtain the Pareto front which summarises the non-dominated solutions found by
the multi-objective optimisation process. Thus, the Pareto front contains enough
information to select the features for each attack type. The key point is to feed the



classifier with the most discriminant features to detect the elements belonging to
the interest class. Hence, using a reduced set of features leverages the classification
performance while the computing time for training is reduced.

Algorithm 1 Pseudo-code of the multi-objective optimisation process for feature
selection with NSGA-II [46, 14]

1: Generate an initial population
Evaluate objective values:
(Classifier training
Dataset classification
Jaccard’s coefficients calculation
NSGA-II Loop
Assign rank based on Pareto Dominance as in NSGA-II to select non-
dominated individuals
Apply evolutionary operators to generate a new population
9: Evaluate objective values
10: Classifier training
11: Dataset classification
12: Jaccard’s coefficients calculation

13: End NSGA-II loop

*®

Dataset

(NSL-KDD)
l
. Classifier NSL-KDD
Population: o P
Individual = set — tra'::l% oy — - Clafzsrlz;::rt‘lon
o features individual individual

b

Evolution of Evaluation of

population < Jaccard index

for each
gl individual

|
l NSGA-Il Converges

Pareto fronts
of Jaccard
indexes:
feature sets

Figure 1: Scheme for Multi-objective optimisation with NSGA-IT algorithm for
feature selection. Solutions computed by NSGA-II correspond to feature selections

In Section 4, we compare the performance of this procedure with the results
obtained by using the whole feature set and also with the use of PCA to reduce
the dataset dimension. Parameter settings for NSGA-II execution are detailed in
Section 4.



3. Classification with GHSOM

The classification procedure used in the wrapper procedure proposed in this
work (step 10 in Algorithm 1), is based on the Growing Hierarchical SOM (GHSOM).
Thus, this section introduces the main concepts of Self-Organizing Maps (SOMs)
and GHSOM and describes some improvements in the GHSOM model consisting
on a probabilistic labelling method. Although details on the SOM and GHSOM
algorithms can be found elsewhere [37, 41], in this section, we briefly describe these
neural models here for quick reference. We also motivate the need for GHSOM,
and the way the winning map neuron, also called Best Matching Unit (BMU),
can be obtained.

The SOM [37] is one of the most used artificial neural network models for unsu-
pervised learning. The main purpose of SOMs is to group similar data instances
close into two- or three-dimensional lattices (output maps), while computing a
number of prototypes that generalise the input data manifold. SOMs consist of
a number of neurons also called units that are arranged following a previously
determined lattice. During the training phase, in each iteration ¢, the distance
between an input vector and the weights associated to the units on the output
map are calculated. Usually, the Euclidean distance is used, as in Equation 2

U(t) = argmin | (t) —wi(?) || (2)

that provides the index, U(t), of the winning unit, also called Best Matching Unit
(BMU), that is, the unit with the smallest Euclidean distance to the input pattern
x(t)). Then, the weights of the units in the neighbourhood of the winning unit
are also updated as in Equation 3

wit +1) = w;(t) + at) hye () (@(t) — w;(t)) (3)

where «(t) is the learning factor, that decreases with time linearly or exponentially,
and hU(t) is the topological neighbourhood function, usually a Gaussian function

(4)

2
_ ”TU(t) —rgll

huw(t) =e 2007 (4)

in which the size of the topological neighbourhood, «(t), shrinks with time as
shown in (5).

o(t) = ope (5)

In (4), r; represents the position on the output space (2D or 3D) and || ryu) —
r; || is the Euclidean distance between the winning unit U(¢) and the unit i-th
within the (2D or 3D) output space. The SOM performance can be evaluated by
using two measures. The first is the quantisation error, ¢, a measure of the map
resolution, defined in (6)

1
- . — 2 6
1= — 3 lwi-g| ©)

@ T eC;

where C; is the set of input vectors mapped into the unit ¢, x; is the j-th input
vector belonging to C;, w; is the weight associated to the unit 7, and n¢, is the
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number of vectors in C;. The other measure is the topographic error, t, that
evaluates the SOM-quality topology-preservation characteristics (7)

1
t= 5 u(@) 7

where NV is the total number of input vectors and u(fi) is 1 if the first and second
BMUs for the input vector = are adjacent units, and is 0 otherwise [37]. The
lower ¢ and t, the better the SOM is adapted to the input patterns.

Although an SOM is a very useful tool for discovering structures and similar-
ities in high-dimensional data, it is not able to figure out its inherent hierarchical
structure [41], and its performance depends on the map size being determined
in advance. GHSOM [41] is a hierarchical and non-fixed structure developed to
overcome these problems. The GHSOM structure consists of multiple layers com-
posed of several independent SOMs whose number and size are determined during
the training phase. The adaptive growing process is controlled by two parameters
that determine the hierarchy depth and each map’s breadth. Therefore, these
two parameters are the only ones that have to be initially set. In GHSOM, the
quantisation error of each unit is given by Equation (8)

=Y lwi—gl (8)

z;€C;

where C, z;, C;, and w; are defined as in (6). Initially, all the input vectors belong
to Cy (all the inputs are used to compute the initial quantisation error, go).

If ¢; < 7 - qo, neuron 7 is expanded in a new map on the next level of the
hierarchy. Each new map is trained as an independent SOM, and the BMU
calculation is performed as shown in Equation (3).

Alternatively, given a unit 7, its mean quantisation error, mg;, can be used to
control the growing process. The value of mg; is calculated by using Equation (6).
Since mg; measures the dissimilarity of the data already mapped to a specific unit,
the growth process can be controlled in order to diminish mg; until a minimum is
reached.

Once the training of a map m is finished, the mean quantisation error, M @Q),,,
is obtained as the mean of the mg; values for all units ¢ in the map; it can be
used to check map growth. Thus, the map should grow whenever M@Q,,, > 71 - q,
is verified (g, is the quantisation error of unit u on the upper layer and 7y is a
parameter to control the depth of the GHSOM). To grow the map, a row or a
column of units is inserted between the unit e with the highest quantisation error
and its most dissimilar neighbour unit d = arg maz;(|| we — w; ||), where units 4
belong to the neighbourhood of e. In order to calculate the BMU in the GHSOM,
we have to follow the hierarchy to determine the winning unit and the map to
which it belongs.

Thus, an iterative algorithm is applied as shown in Figure 2, where an example of
BMU calculation on a three-level GHSOM hierarchy is provided. Let us suppose
that we calculate the distances between an input pattern and the weight vectors
of the level 0 map, and then compute the minimum of these distances. As a result,
the winning neuron on map 1 is found. Since another map could be grown from
this winning neuron, we have to check whether the winning neuron is a parent unit
(that is, a unit from which a new map has grown). This can be accomplished by
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Figure 2: BMU calculation on the GHSOM hierarchy

using the parent vectors that contain the growing path (that is, the parent vectors
and the index of this new map) resulting from the GHSOM training process. If
a new map arose from the winning neuron, the BMU on this map would be
calculated. This process is repeated until a BMU with no growing map is found.
Thus, the GHSOM BMU is associated to the map in the corresponding hierarchy
layer (that is, in Figure 2, Unit 4 of Map 5, in Layer 2).

3.1. GHSOM with probabilistic relabelling (GHSOM-pr)

In this section, we propose a procedure to label the GHSOM units that make
possible a probabilistic clustering process behaviour. The values of parameters
71 and Ty, previously introduced, have to be set carefully to achieve an efficient
training process. For example, higher values for 7, and 75 make the GHSOM grow
more than necessary, leaving some of the units unlabeled. Thus, the number of
neurons on the output map surrounding the winning neuron for training data is
increased. Whenever an input pattern similar to one of the training patterns is
presented to the GHSOM, the winning neuron can be labelled or unlabeled. The
label of a unit determines the data class to which it belongs. If the winning neuron
(BMU) is unlabeled, a probability-based procedure is proposed in order to deter-
mine that neuron’s label. In this procedure, the winning neuron is relabeled with
the most repeated label in its neighbourhood by using a probability determined
according to (9).

Ma(u,e) (U)
n

P, = (9)

In this expression, P, is the probability for the winning unit u to be success-
fully relabelled, M (,¢ (w) is the number of units in the Gaussian neighbourhood,
o(u,€), is the winning unit u that is labelled with the more frequent label in
o(u,€), and n is the number of neurons belonging to o(u,€). In this equation,
the parameter € determines the width of the winning neuron neighbourhood. Al-
though through this procedure we assign a label to an unlabeled unit, in most
cases we have called it as relabelling, since the term “labelling” is usually applied
along the training process. In Figure 3, an example of the relabelling process is
shown. In this Figure 3, the BMU that has not been initially labelled is rela-
belled by using € = 1 to establish its neighbourhood. In this neighbourhood, we
found four units labelled as L1, one unit labelled as L2 and one unit labelled as
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L3. Then, P,, the a priori probability for successful relabelling for this BMU is
4/6=0.66 (66%) (My(u,e)(u) =4, n =6).

Gaussian kernel determines
the neighborhood of the
GHSOM SUBMAP

&0 O
@ o 0
O 8. @

Figure 3: Example of the relabelling process (white units are unlabeled).

Moreover, the posterior relabelling probability for unit k& can be computed by
means of the Bayes’ theorem:

p(xlwr) Plwr)
p(x)

In Equation 10, p(wg|x) represents the posterior probability that a sample

vector = belongs to class wy, while p(z|wy) is the conditional probability of x to

the class k, P(wy,) is the a priori probability and p(z) is a normalisation constant,
computed as

p(wilz) = (10)

p(x) = plafwr)p(wr) (11)

This way, this posterior probability can be used to classify new samples. In this
work, the posterior probabilities have been used to relabel the units that remain
unlabelled during the SOM training process. This way, the dynamic relabelling
of the map units presented in this section introduces a probabilistic clustering
process behaviour that improves the GHSOM models, as shown in the results
provided in Section 4.

In [47], GMM is used to model the clusters in SOM. Then, a probabilistic
labelling method is applied, but it only takes into account a priori probabilities
computed according to equation 9 (it uses the most frequent label in the neigh-
bourhood). Moreover, [34] uses a similar labelling scheme for dead units [37]
based on a priori probabilities. However, the method proposed in this work uses
posterior probabilities through the Bayes formula to compute the most probable
label, according to Equation 10. This constitutes an important improvement, as
computing unit labels depends not only on the map labels, but also on the current
sample, assigning the label of each BMU in an adaptive way.

4. Experimental results: application to Intrusion Detection

IDSs are firewall-like active systems that calculate some network monitoring
features to be able to detect anomalous traffic. In this section, we present the
experimental results obtained by applying the GHSOM classifier described in
Section 3 and the multi-objective optimisation-based feature selection approach
described in Section 2, to the NSL-KDD dataset [20]. This dataset comes from the
KDD’99 dataset [48], that contains about 4GB of compressed data from captures
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of tepdump [49] in the DARPA’98 IDS evaluation program [17], corresponding to
about seven weeks of network traffic. There are three extracted features included
in the KDD’99 dataset:

e Basic features. These features summarise all the properties of a TCP/IP
connection.

o Traffic-based features. These features are computed over a time interval
(window) and contain information about the connections in which the des-
tination port or the service remains the same after the corresponding time
windows. In the KDD’99, the time window used to compute these features
is two seconds.

e Content-based features. Since U2R or R2L attacks consist of repeatedly
sending similar patterns on the packet payload, it is necessary to examine
the packet contents to figure out these attacks. Thus, statistics regarding
the packet contents are calculated and classified as content-based features.
An example of content-based features statistics is the number of failed login
attempts.

The KDD’99 dataset presents some inherent problems, such as the synthetic
characteristic of the data [17, 23], and consequently, may not be representative
of real attacks. Thus, the Network Security Lab - Knowledge Discovery and
Data Mining (NSL-KDD) dataset was proposed. Moreover, in the NSL-KDD,
redundant KDD’99 records were removed and the attacks labelled and sorted by
their detection difficulty level. Taking into account all these characteristics, the
NSL-KDD can be considered a good approximation of present known attacks.
Moreover, NSL-KDD constitutes an adequate dataset to evaluate our procedure
as the most recent reference works in IDS [50, 51, 26, 52, 40] also use the NSL-
KDD.

The experiments have been performed in two ways: the first corresponds to
classification experiments using the full feature set (41 features), while the second
consists of applying dimensionality reduction techniques to the feature set in order
to avoid using the full feature set. This dimension reduction is accomplished
either by linear techniques (PCA) or by the multi-objective optimisation method
described in Section 2 for comparison.

In order to prove that the system is not over-fit and thus, has a good generali-
sation performance, feature selection and training processes have been assessed by
k-fold cross-validation (k=10). Since k=10, partitions containing 90% of samples
were randomly selected to fit the model; the rest of the samples (10%) were used
for testing. These subsets are different and do not share any samples. This pro-
cess was repeated for the 10 folds, ensuring test data is never used in the feature
selection or the classifier training. Hence, the results provided for selected feature
subsets and classification accuracy are computed as the average of 10 evaluations
throughout 10 folds. The main purpose of cross-validation is to estimate the
generalisation error, ensuring that similar results will be obtained on new data
(that is, low generalisation error). This method estimates the prediction error and
avoids double-dipping. Moreover, it is worth noting that due to the high number
of available dataset samples, both training and test processes are addressed using
a high number of samples. This provides a lower generalisation error variance
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estimate.

Additionally, several tests with different values for 7 (to control the map
breadth) and 75 (to control the depth) have been performed.

Data preprocessing

Despite data preprocessing playing an important role in classification perfor-
mance, few works pay enough attention to it [53]. Data preprocessing comprises
encoding non-continuous variables and normalisation. As described in the pre-
ceding section, KDD’99-based datasets consist of 41 features, which should be
enough to characterise anomalous connections. They are classified into three
groups: continuous, symbolic and binary features. As most classifiers only accept
numeric values, the first issue is related to symbolic feature encoding. In several
works, they are usually coded by simply substituting each different feature with
an integer number [53, 54]. Although this can be acceptable in many situations,
it is not the best encoding solution for classifiers based on the Euclidean distance
[55]. This way, we adopt a different solution that maps each symbolic feature to a
R? subspace, where d is the number of possible discrete variable values. Although
this solution increases data dimensionality (for instance, the service feature can
take 65 different values), it is not critical for the classifiers used in this work.
Furthermore, dimensionality reduction techniques are used to compress relevant
information with fewer features. Thus, a different value on these features con-
tributes V2 to the distance measure.

Data normalisation

Data normalisation ensures that no feature contributes more than another in
the distance measure. There are different ways of normalising data [1]. In this
work, continuous variables are normalised to zero mean and unity variance using
the equation 12.

r—T

T =

- (12

where T and ¢ are the mean and the standard deviation of variable x, respectively.
This is equivalent to expressing the variable z as the number of standard deviations
away from its mean. Moreover, all the variables are scaled to [0,1]. Symbolic
(already encoded to binary vectors) and binary features are not normalised.

4.1. Ezperimental results

First, the NSL-KDD dataset with all the features is used for classification.
The purpose of these first results is to demonstrate the improvements obtained
by the GHSOM relabeling method described in Section 3.1.

In Figure 4, the detection rate for each attack present on the NSL-KDD dataset
is shown (Anomalies in Figure 4 can be grouped as belonging to an attack type
as indicated in Table 1). As this figure shows, our probability-based relabeling
process performed with new data (black bar) increases the detection rate for most
attacks. The average improvement is about 3.5% over all the attacks, and 5.5%
over the attacks on which the relabeling creates improvements.

Detection rate in Figures reflects the percentage of anomalies correctly iden-
tified (that is, true positives). False positives (fp), true negatives (tn) and false

15



100 T

L i B [—_"JNo Relabeling

o h , | | M + I Relabeling | |
80— n
70 n
60 1 n
50 - 7
40— —
30~ n
20— 7
1 |
0 | I 1

& )

Detection success (%)

> & S & > & &
LESF T ELEFFEE &L E S
& K & o F V&S S A Py
& @ 3 K . L & & & &
@ & NS Q N &
& ™ Attack name

Figure 4: Detection rate with unit relabeling (black bar) and without unit rela-
beling (white bar). GHSOM is trained with the full feature set (1,384 neurons,
five layers).

Attack type Attack name

DOS apache2, back, land, mailbomb,
neptune, pod, processtable, smurf,
teardrop, udpstorm

PROBE  ipsweep, mscan, nmap,

portsweep, saint, satan

R2L ftp_write, guess_passwd, httptunnel,
imap, multihop, named, phf,
sendmail, snmpgetattack, snmpguess,
spy, warezclient, warezmaster,
worm, xlock, xsnoop

U2R buffer_overflow, loadmodule, perl,
ps, rootkit, sqlattack, xterm

Table 1: Classification of network anomalies into different attack types

negatives (fn) are indicated by means of the ROC curves and accuracy values pro-
vided further in this section. In order to show the effectiveness of the relabeling
process described in Section 3.1, the ROC curves are shown in Figure 5.

Figure 5a shows the ROC curve (false positive rate) and Figure 5b the mirrored
ROC curve (true negative rate) obtained for classifying the test dataset (not used
during training). Regarding the performance derived from these curves, we have
computed the Area Under ROC Curve (AUC). Using AUC makes interpreting
the results from the ROC curve easier. Thus, a perfect classifier will provide an
AUC=1.0 and an AUC=0.5 in a random classifier. In these graphs, the cut-off
point determines the best performance provided by the classifier.

Figure 6 presents the detection rate per attack type. As can be seen, the
relabeling method increases classification performance in most cases, as well as
the detection rate. It is worth mentioning that performance is worse for U2R than
for other attack types, due to the smaller number of U2R training patterns in the
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Figure 5: ROC curves for the relabeling process. GHSOM is trained with the full
feature set (1384 neurons, 5 layers).

NSL-KDD dataset [52].
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Figure 6: Detection rate for different types of attacks (GHSOM with 1384 neurons)

Results detailed at attack-type level in Figure 6 are summarised in Table 2,
where detection and false positive rates are presented. As shown in this table,
99.8% of the patterns corresponding to normal traffic patterns and 99.5% of the
patterns corresponding to the different attacks are correctly classified. High de-
tection rates are possible, as shown in Figure 6, although most U2R attacks are
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not classified correctly, since the KDD dataset is rather unbalanced. In fact,
U2R and R2L samples represent only 0.001% and 0.02% of the training samples,
respectively [40].

Connection | Detection Rate (%) | False Positive rate (%)
Normal 99.8 + 0.10 1.10 £ 0.92
Attack 99.5 £ 0.33 4.33 £ 0.56

Table 2: Normal/Attack detection rates

Nevertheless, when the whole set of features is used, a large number of GHSOM
neurons are required to reach the highest detection rate, as shown in Figure 6.
Figure 7 shows the performance provided by the classification algorithm as a
function of the number of GHSOM neurons. At the same time, Figure 7 shows
the performance increase achieved by the relabeling process described in Section
3.1. The probability of structural dead units increases as the GHSOM grows. This
effect is reflected in the classification accuracy as shown in Figure 7. However,
units that remain unlabelled during the training process (that is, a dead unit),
can be the BMU for new data instances. In this case, relabeling wakes up dead
units depending on the label previously assigned to the neighbour units during
training. Moreover, Figure 7 shows the effect of the relabeling method and its
advantage when the number of units grows.

100

96 -

= = = Normal with relabeling
----- Attack with relabeling
— Normal without relabeling
““““ Attack without relabeling

Classification accuracy (%)

95

9g[)O 460 660 860 10‘00 12‘00 1400
GHSOM units
Figure 7: Detection rate with and without relabeling when the full feature set is
used, as a function of the number of neurons on the GHSOM. (The GHSOM has
been trained with the full feature set; its maximum size is 1,384 units and five
layers)

Thus, when relabeling is applied, the detection rate depends less on the number
of GHSOM neurons. Moreover, the performance of the system without relabeling
decreases as the number of GHSOM neurons grows. Then, since the use of non-
optimised feature sets allows wider and deeper GHSOM with more neurons, the
relabeling process has a positive performance effect. This is precisely the situation
in cases of unknown attacks, where the features cannot be selected according to
their discriminative properties.
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4.2. Ezxperimental results with reduced feature sets

As is shown in Section 4.1, although GHSOM with relabeling allows high de-
tection rates, using large GHSOM maps is necessary to provide detection rates
higher than 98%. However, the goal of the algorithms proposed in this paper is
to implement the IDS/IPS in a real-time module that could detect anomalous
behaviours and decide whether or not to block a connection. Then, the whole
process has to be fast enough; to speed up the detection process makes it neces-
sary to reduce the complexity of both the feature selection and the classification
processes.

Consequently, reducing the feature space dimension is convenient in order to
optimise both the classification rate and the computation time while preserving
labelling process performance. Training the classifier with a reduced set of features
could improve performance, while producing smaller GHSOM if the features are
suitably selected to discriminate among the input patterns. On the other hand,
since the classifier is trained by using vectors with fewer dimensions, the training
process, as well as the BMU calculation, will be faster. In fact, Figure 8 shows
that GHSOM training time grows exponentially when the unit number increases.

60
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o o o
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N
o
T

500 1000 1500 2000
GHSOM units

Figure 8: Training time depending on the number of GHSOM units

However, finding a reduced and discriminative enough set of features is not straight-
forward. In this section, we show the results obtained with feature sets selected for
each attack type by using our multi-objective optimisation procedure described
in Section 2. Each feature set is used to train a GHSOM and to classify the test
patterns.

It is worth noting that Pareto fronts in Figure 9 have been computed using
the training data, since labels are necessary to compute the Jaccard index used
in fitness functions. As the Pareto fronts are five-dimensional in this case (that
is, five objective functions are considered in the optimisation process). Figure 9
shows four projections of the obtained Pareto fronts into the planes corresponding
to four pairs of objectives. From the Pareto front obtained by out multi-objective
optimisation procedure, several different feature sets can be selected. In our ex-
periments shown below, we have used the feature sets S1, S2, S3, S4 and S5, as
is shown in Figure 9.

The obtained non-dominated feature sets selected are used for training the
GHSOM. In the following, we show the classification results when the GHSOM is
trained and tested with the optimised feature sets obtained from the Pareto front,
as indicated in Figure 9.
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Figure 9: Pareto Fronts for (a) Normal/DOS, (b) PROBE/U2R, (c) U2R/R2L
and (d) DOS/PROBE. GHSOM is trained with the non-dominated feature sets
S1 (340 neurons, five layers), S2 (308 neurons, six layers), S3 (340 neurons, five
layers), S4 (420 neurons, five layers) and S5 (225 neurons, five layers).
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Figure 10: Detection Rate using non-dominated feature sets selected from multi-
objective optimisation. GHSOM is trained with all feature (1384 neurons, five
layers), the optimum feature sets for Normal attacks (340 neurons, five layers),
DOS attacks (308 neurons, six layers), PROBE attacks (340 neurons, five layers),
U2R attacks (420 neurons, five layers) and R2L attacks (225 neurons, five layers).

In Figure 10, detection rates obtained using non-dominated feature sets se-
lected from multi-objective optimisation are shown. As detecting each attack
type is addressed by different feature set, the GHSOM structure developed dur-
ing training is different. As Figure 10 shows, non-dominated feature sets provide
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higher detection rate values for different attacks than the alternative using all
features. Additionally, in the case of the U2R attack, feature set S4, in which
the Jaccard index for U2R is maximum, provides higher classification accuracy
than the full feature set. It is important to indicate that while the non-dominated
feature sets have been computed from the training samples, the classification
results shown on Figure 10 are obtained with the test dataset. The use of all
features provides high accuracy levels for most probable classes. This is the case
of Normal, DOS or PROBE classes. However, selected features clearly provide a
higher performance for less probable classes, such as U2R and R2L, as indicated
in Figure 10. Moreover, the purpose of feature selection is not only to leverage
the classification performance, but also to have a reduced set of discriminative
features providing the high accuracy values. Thus, using fewer features reduces
the computational burden associated with training and classifying new samples.
In other words, as selected features provide at least the same accuracy as the full
feature set, our method effectively discards non-informative or redundant features
for each class label.
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Figure 11: Detection Rate comparison for different number of PCs. GHSOM is
trained with all features (1,384 neurons, five layers), S1 set (340 neurons, five
layers), S2 set (308 neurons, six layers), S3 set (340 neurons, five layers), S4 set
(420 neurons, five layers) and S4 set (225 neurons, five layers).

In Figure 11, the normal/attack detection rate is summarised when using fea-
ture sets from the Pareto front obtained by multi-objective optimisation procedure
based on the NSGA-II algorithm. In this figure, it is clear that the S4 feature set
provides better attack classification results than the full feature set. Additionally,
it requires fewer GHSOM units; consequently, training and classification processes
are less computationally expensive.

NSGA-IT chromosomes consist of binary strings that determine the subset of
features to be selected in each iteration. Thus, we use the single-point crossover
and bitwise mutation operators. Initial NSGA-II population consists of 30 indi-
viduals. Moreover, crossover probability of p. = 0.9 and mutation probability of
pm = 1/1 where [ is the gene length, are used (p,, = 1/41). These values yield
good results in different experiments performed in [46] on different datasets; they
also provided a good solution spread, as well as algorithm convergence as shown
in Section 4.3.

Figure 12 shows the ROC curves for normal/attack-type classification using
relabeling with the corresponding non-dominated feature set. From these curves,
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Figure 12: ROC curves for the relabeling process with the non-dominated feature
set obtained for (a) S1 (340 neurons, five layers), (b) S2 (308 neurons, six layers),
(¢) S3 (340 neurons, five layers), (d) S4 (225 neurons, five layers), (e) S5 (420
neurons, five layers) and (f) PCA with 30 PCs (1654 neurons, five layers)

it is clear that non-dominated feature sets improve the results obtained with the

full feature set in terms of sensitivity and specificity.

Feature set Number offeatures Accuracy (%) False Positive (%)
All Features 41 99.6 £ 0.33 4.32 £ 0.80
S1 22 98.12 + 1.10 3.10 £ 0.76
S2 29 99.12+ 0.61 2.24 £ 0.41
S3 25 98.27 + 1.19 2.13 £ 0.59
S4 25 98.10 = 1.71 3.15 £ 0.50
S5 29 97.18 + 1.43 4.16 £ 0.52
PCA 20 82.1 £5.13 6.50 £ 1.00

Table 3: Classification accuracy for different feature sets.

Table 3 gives the classification process accuracies, and the different feature
sets determined by our multi-objective optimisation procedure. The last row of
Table 3 provides the accuracy obtained with the best set of features determined
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by Principal Component Analysis (PCA). An accuracy of 99.12% is achieved for
the five different attacks here considered when using the non-dominated feature
set with maximum Jaccard Index for S4.

In previous sections, we analysed the performance of the GHSOM when de-
tecting different attack types. Nevertheless, detecting normal and attack traffic
with maximum accuracy is essential for practical implementation, meaning high
accuracy detection is not useful if other attack types are not similarly detected.

IDS implementation Features Detection False
used for Accuracy (%)  Positive(%)
classification

Without Feature Selection

Naive Bayes [23] 41 76.56 Not provided
Random Forest [23] 41 80.67 Not provided
Decision Tress (J48) [23] 41 81.05 Not provided
AdaBoost [50] 41 90.31 3.38
GHSOM-pr 41 99.59 £ 2.25 4.32 £1.93
GHSOM [56] 41 96.02 4.92
A-GHSOM [19] 11 96.63 1.80

Kayacik et al. [40] 41 90.40 1.38

Filter methods

Naive Bayes+N2B [50] 41 96.50 3.00
PCA 30 821 +5.13  6.50 + 1.00
FDR + Kernel PCA [57] 23 90.0 8.00

Wrapper methods

Decision tree-based [58] 16 98.38 £ 1.62  Not provided
GHSOM + 25 99.12 + 0.61 2.24 + 0.41
Multiobjective

Feature Selection (S4)

Table 4: Detection accuracy comparison for different classification methods. Stan-
dard deviation values are shown whenever available

Methods shown in Table 4 have been classified into 1) methods not using
feature selection, 2) filter methods and 3) wrapper methods. In Table 4, the
comparison with other existing methods using the NSL-KDD dataset is shown.
As shown in this table, our approach reaches a high rate of detected attacks in
the range of the best-performing existing approaches. Nevertheless, it has to be
pointed out that with the results of Table 4 we only give an idea of the performance
of our procedure compared with the results provided by other authors. Although,
in the cases shown in Table 4, our proposal outperforms other previous procedures,
we do not claim that our method is better than the rest ones in all the cases and
classification problems. Such an exhaustive comparison is not possible because the
only available performance results refer to detection rate, the standard deviation
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is not even available in all cases, and we have not the specific implementations of
the different procedures to accomplish the required set of executions.

4.8. NSGA-II performance evaluation

In this section, we provide NSGA-II convergence results to show the number
of generations needed to provide good enough solutions. Although determination
of convergence in multi-objective algorithms is not straightforward [59], in this
work, we used the well-known hyper-volume metric [60]. This way, the higher
the hyper-volume, the greater the number of non-dominated solutions, indicating
better performance. In evolutionary algorithms, population size plays an impor-
tant role as it is directly related to its diversity. Low diversity populations may
need a higher number of generations to evolve to acceptable solutions. On the
contrary, high-diversity populations increases the complexity and eventually the
processing time. The experiments performed here have shown that populations
of 30 individuals provide the best results as it is depicted in Figure 13a as well as
a good trade-off between preserving time and classification accuracy as shown in
Figure 13b. Moreover, Table 5 shows the mean Jaccard index for all the classes as
the multi-objective approach aims to maximize it for all classes simultaneously as
well as the hyper-volume computed for the corresponding non-dominated fronts.
As it is shown in Table 5 and Figure 13a, populations of 30, 40 and 50 individu-
als (N) provide the same performance taking into account the standard deviation
values. However, computational complexity is considerably higher for N=40 as
shown in Figure 13b. Similarly, while N=20 provides lower hyper-volume val-
ues, the ones provided by N=30, N=40 and N=50 are not significantly different,
indicating similar convergence levels.

Population size Hyper-volume Jaccard Index

20 0.95+0.35 0.88+0.01

30 1.60+£0.15 0.92 +0.01
40 1.57£0.12 0.910£0.005
20 1.50+0.12 0.91040.005

Table 5: Hyper-volume metric for NSGA-II execution using different population
sizes and 50 generations

4.4. Computational Efectiveness

Feature selection method aim to compute feature sets discriminative enough
for all the classes in an acceptable amount of time. Thus, processing time is still
an issue as exponential complexities limit the usefulness of some approaches for
problems above a given dimension, but whenever this dimension is higher than the
one corresponding to real problems, it is better to have a procedure that is able to
provide a good solution of the problem in acceptable amount of time than a pro-
cedure that obtains a not so good solution, although very fast. Subsequently, it is
important to characterize the space of feature selection procedures where we have
a certain kind of multi-objective problem where the cost function are the com-
puting time and the solution quality. The issue is to determine the non-dominant
solutions corresponding to high quality feature selections although it could require
more computing time than obtaining not so good feature selections. To complete
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Figure 13: Average Jaccard index (a) and processing time for J = 0.88 (b) for dif-
ferent population sizes with the corresponding standard deviation values. (Note
that standard deviation values are not apparent in (b) as they are small in com-
parison with the mean values)

the characterization of our wrapper procedure, we have obtained details about
their computing time requirements, including a comparison with other filter and
wrapper methods. Thus, Table 6 shows the CPU time required for selecting the
best feature set provided by each technique and using GHSOM-pr as classifier.
Moreover, the training set has been used to determine the number of features
providing the best classification results in terms of the Jaccard index.

It is worth noting that we evaluated the processing time required to compute
acceptable solutions in terms of the mean Jaccard index computed for all classes,
as it accounts for multi-class classification performance. Figure 13 shows that a
population of 30 individuals provide a good trade-off between performance and
complexity, as increasing the number of individuals (i.e. N=40) imply a consid-
erably higher processing time. In this figure, standard deviations according to
values in Table 6 are shown.

Feature Selection Processing Jaccard Index
method time (s)

Filter methods

PCA 79620 0.83+£0.04
FDR 597+3 0.74+£0.03
ReliefF 32112432 0.92+0.04

Wrapper methods

BackwardFS 17194+121 0.82+0.07
Multiobjective 8084+180 0.92+0.01
Feature Selection

Table 6: Computational complexity and accuracy for different feature selection
methods. GHSOM-pr classifier is used in all cases for comparison. Average Jac-
card index along all the classes is shown
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4.5. Statistical Significance

Due to the variability imposed by both the GHSOM pseudo-random initialisa-
tion process and the evolutionary algorithm used for multi-objective optimisation,
classification outcomes may vary among different runs. In this way, in Tables 3 and
4 respectively, the mean results corresponding to feature reduction by PCA and
the multi-objective optimisation method are provided with the standard deviation
computed over 50 training/classification algorithm runs. Moreover, statistical sig-
nificance tests are necessary in order to guarantee that mean values obtained by
different experiments are different. This has been addressed through hypothesis
testing under the assumption that results from the different experiments are drawn
from a distribution with the same average (null hypothesis). While ANOVA [61]
is used to find significant differences among group means, multiple comparison
tests try to identify the specific groups whose means are significantly different.

ANOVA has been performed on results obtained using multi-objective opti-
misation to reduce the feature space dimension; these results are presented in
Figure 14. The p-value provided by the ANOVA analysis (p < 1077) indicates
that all the means are significantly different. However, a multi-comparison test
reveals that results obtained using non-dominated feature sets S1, S2, S3, S4 and
S5 are not statistically different for normal/attack detection, providing the same
accuracy.
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Figure 14: ANOVA test for experimental results using multi-objective optimisa-
tion (a) and multiple comparison tests to identify the source of mean differences

(b).

5. Related works

This section comments on the work done vis-a-vis the paper’s main contribu-
tions. The feature selection for network-based IDS is not straightforward and a
number of papers have been published dealing with this topic. There are works
[52, 62, 63] that use multivariate techniques such as PCA [52] or LDA [62], thus
supposing that the other components are not important or are just noise. Al-
though good results are obtained in [52, 62, 63|, other works show that using
the full set of features outperforms using feature selection with PCA/LDA [24].
This way, feature reduction has to be applied to each input vector since the most
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discriminative component depends on the specific attack. Thus, in [15], an SOM
classifier for attack detection is presented without reducing the feature space.
However, the authors use a selection of 28 features from the 41 available ones
in the KDD-NSL dataset. In this work, the influence of each feature is figured
through each component’s U-Matrix [37] on the input (feature) space.

In [40], the feature selection, along with its interaction with the partition of
training data, and the number of layers of an SOM hierarchy are analysed. They
concluded that a two-layer SOM hierarchy based on the 41 features of the KDD
set is the better choice. A detection rate of 90.4% and a false positive rate of
1.38% are reported.

Other proposals, such as [47] use Gaussian Mixture Models (GMM) to model
SOM unit activation. This provides an activation level for each SOM unit and
allows tuning the map response by modifying the prior activation probabilities.
However, the labels are assigned by simple majority voting and are static. More-
over, the map can not be oversized as dead units have to be necessarily avoided
(that is, the activation likelihood of a dead unit is zero, and its posterior activation
level is also zero). On the other hand, the GMM method in [47] is used to model
the SOM and aims to differentiate between normal and abnormal samples. In
GHSOM sub-maps (where this method could be applied independently), samples
are small enough to make the GMM method unfeasible. On the other hand, prob-
abilistic relabelling in [34] only takes into account a priori probabilities to label
any unlabelled unit (that is, uses the most frequent label in the neighbourhood).
However, the method proposed in this paper uses posterior probabilities through
the Bayes’ formula to compute the most probable label, according to equation 10.
This constitutes an important improvement, as computing unit labels depends
not only on the map labels, but also on the current sample, assigning the label
of each BMU in an adaptive way. Moreover, the relabelling method in this work
computes the BMU label for each new sample, and not only for BMUs that are
never activated during the training stage.

As commented in the introduction, computing an average score on different
dataset classes may lead to removing features from the final selection that could
be specially relevant for a certain class label. Thus, it is necessary to consider
methods that evaluate each feature’s discriminative power, selecting those that
best describe each individual class. Consequently, the method proposed in [57]
uses an ensemble of specialised SVC classifiers, each trained using specific fea-
tures computed for each anomaly type. Nevertheless, the experiments performed
in [57] reveal that neither linear nor non-linear projection techniques are able to
find discriminative enough features. Thus, some works have been proposed in the
formulation of feature selection as a multi-objective optimisation problem, either
as supervised or unsupervised classifiers. A very good review of the alternatives
and previous references on this topic is the paper by J. Handl and J. Knowles [2].
With respect to supervised classifiers, in [64], multi-objective feature selection
procedures that take into account the number of features and the performance
of the classifier are provided. In [65], a variation of the NPGA algorithm [66]
for multi-objective optimisation is applied, whilst [67] uses NSGA [68] and [64]
uses NSGA-II. In this paper, we have also used NSGA-II, as in [64]. In our case,
a similarity measurement between the predicted labels and the ground truth for
each anomaly type is treated as a different objective to be maximised jointly. Al-
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though the number of features is not taken into account as an objective function,
our results show that subsets corresponding to non-dominated solutions contain
reduced, but discriminative feature subsets for each class label. Thus, the ap-
proach proposed in [64] does not take into account each class label independently
in the selection process, and it uses k-NN as the wrapper procedure classifier in-
stead of GHSOM, as in our case. In [13], a feature selection framework is proposed
that takes into account the relevance and redundancy of the selected features for
the different class labels. Nevertheless, that paper does not approach the prob-
lem as a Pareto-front searching. From a multi-objective optimisation perspective,
as in our proposal, the Jaccard’s coefficients for the different labels (used as a
classifier’s performance measure for each label) are the objectives of the problem
considered. In [69] NSGA-II, along with other proposed procedures, is applied to
select the global non-dominated feature subsets for customer churn prediction in
telecommunications. In this multi-objective feature selection procedure, there are
three cost functions: the proportion of the total number of correct predictions,
the proportion of churn cases that were correctly identified, and the proportion
of non-churn cases that were correctly identified. This kind of information is con-
sidered in our approach, but through a Jaccard’s coefficient for each label. In our
case, the objectives are precisely the Jaccard’s coefficients and we have as many
objectives as labels. Moreover, the classification in [69] is done through decision
tree C4.5 [70], so it corresponds to a different approach to that described herein,
which is based on Self-Organizing Maps.

In the case of unsupervised classification, we have the papers [2, 71, 72|. In
[71], given a feature selection, the k-means algorithm is used to build a clustering
and is evaluated via four objectives (number of features, number of clusters, com-
pactness of the clusters, and separation between clusters). The paper [72] also
uses k-means for clustering and the number of features and the Davies-Boulding
Index (DBI) [73]. Along with a critical review of papers [71] and [72], and an ex-
perimental study of different alternatives for unsupervised feature selection with
multi-objective optimisation, the paper [2] provides a strategy to select (without
external knowledge) the most adequate solution from the obtained Pareto front
approximation.

In this paper, we propose the use of a dynamic structure, GHSOM-pr, based
on the previously proposed GHSOM, and a new approach for dimensionality re-
duction through feature selection based on multi-objective optimisation. Some
works on GHSOM for IDS design have been previously proposed [42, 36, 19]. Af-
ter the results provided by [42], some enhancements in the GHSOM procedure
have been proposed in [36, 19]. In [36], a new metric including numerical and
symbolic data is introduced along with a procedure to allow an automatic map
growth control that avoids the use of parameter 7. The paper shows that the
improved GHSOM is better than an SOM used as the base map configuration
and provides detection rates below 96.9%. The same strategy is considered in
[19], where four GHSOM enhancements are proposed. These enhancements are
related to training, input normalisation, adaptation of the quantisation error, and
a mechanism for confidence filtering and forwarding. The resulting hierarchical
organising map, called A-GHSOM, provides an overall accuracy of 99.63% and a
false positive rate of 1.8%.

With respect to those works, we have proposed using a dynamic structure
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that includes a new probabilistic relabelling in the previously proposed clustering
procedure GHSOM, along with a multi-objective approach for feature selection.
These tools have been applied to the IDS design; the results obtained outperform
those provided by all the considered approaches except those of false positive rates
shown in [19]. In this case, there is only a 0.44 % of difference in false positive
rate.

6. Conclusions

In this paper, we present an intrusion detection approach that takes advan-
tage of the discriminating properties of Self-Organizing Maps. More specifically,
we have considered GHSOM where we have introduced a relabelling procedure
that improves its intrusion detection and prevention performance. This clustering
procedure allows a better labelling of the incoming data by taking into account
the clusters found by the previously trained GHSOM. It also includes a multi-
objective procedure based on NSGA-II algorithm for feature selection in order to
reduce the complexity of the GHSOM and to improve the classification perfor-
mance.

The experiments performed with the KDD-NSL dataset show the relabelling
method efficiency through the corresponding ROC curves and the classification
rate improvements. Thus, the results obtained with GHSOM and the proposed
relabelling method reaches a detection rate of 99.4% for normal patterns, and
99.2% for attack connections. A reduction in the GHSOM size that is able to
provide a given classification rate is important for the computational efficiency of
the intrusion detection approach. Thus, if normal and anomalous behaviours are
accurately detected with lightweight processing, it is possible to perform other
actions, such as IP blocking, in real time. An approach to achieve this goal is
to select the most suitable set of features instead of using the whole feature set.
For the most adequate set of features, the Jaccard index for each type of at-
tack, evaluated after training the GHSOM, is used as one of the objectives of a
multi-objective procedure based on the NSGA-II. In our experiments, we have
considered five different non-dominant solutions (sets of selected features) that
belong to the obtained Pareto front. These five solutions have been chosen in
such a way that they optimise the Jaccard index for the normal traffic situations
and one of the attack types (NORMAL, DOS, PROBE, U2R, and R2L). The
results obtained on the KDD-NSL show that the feature set that maximises the
Jaccard index for the U2R attack, along with the relabelling procedure applied in
the GHSOM training procedure, provides detection rates up to 99.8% for normal
traffic, and up to 99.4% for anomalous traffic with five levels and 225 neurons.
The detection accuracy achieved by the proposed procedure is 99.12%, thus im-
proving the results obtained by the considered proposed procedures (Table 4).
In future work, we plan to analyse how the current GHSOM could be improved
by hybridising it with other improved clustering techniques, such as the Gaussian
Mixture Model [22] or using Support Vector Machines (SVM). On the other hand,
alternatives for efficiently implementing intrusion prevention systems by using op-
timised kernel modules in computers with several processors and/or programmable
network interface cards (for example, including network processors) will also be
analysed. We consider that taking advantage of the parallelism present on the
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current processing nodes will improve IPS performance, thus enabling efficient
active intrusion prevention systems.
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