
Kaisa Joki
A I 585

ANNALES UNIVERSITATIS TURKUENSIS

Kaisa Joki

BUNDLE METHODS IN 
NONSMOOTH DC OPTIMIZATION

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS
Sarja – ser. AI osa – tom. 585 | Astronomica – Chemica – Physica – Mathematica | Turku 2018

ISBN 978-951-29-7276-0 (PRINT)
ISBN 978-951-29-7277-7 (PDF)

ISSN 0082-7002 (PRINT) | ISSN 2343-3175 (PDF)

Pa
in

os
ala

m
a O

y, 
Tu

rk
u 

, F
in

lan
d 

 20
18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/198013383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Kaisa Joki

BUNDLE METHODS IN  
NONSMOOTH DC OPTIMIZATION

TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS
Sarja - ser. A I osa - tom. 585 | Astronomica - Chemica - Physica - Mathematica | Turku 2018



Supervised by

Professor Marko Mäkelä 
Department of Mathematics and Statistics
University of Turku
Turku, Finland 

Docent Napsu Karmitsa
Department of Mathematics and Statistics
University of Turku
Turku, Finland 

Professor Adil Bagirov
Faculty of Science and Technology
Federation University Australia
Ballarat, Australia

Reviewed by

Professor Hermann Schichl
Fakultät für Mathematik
Universität Wien
Wien, Austria

Professor Zhiyou Wu
School of Mathematical Sciences 
Chongqing Normal University 
Chongqing, China

Opponent

Doctor Annabella Astorino 
Istituto di Calcolo e Reti ad Alte Prestazioni 
Consiglio Nazionale delle Ricerche 
Rende, Italy

The originality of this thesis has been checked in accordance with the University of Turku quality 
assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-7276-0 (PRINT)
ISBN 978-951-29-7277-7 (PDF)
ISSN 0082-7002 (Print)
ISSN 2343-3175 (Online)
Painosalama Oy – Turku, Finland 2018

University of Turku 

Faculty of Science and Engineering
Department of Mathematics and Statistics
Doctoral Programme in Mathematics and Computer Sciences



Abstract

Due to the complexity of many practical applications, we encounter optimization
problems with nonsmooth functions, that is, functions which are not continuously
differentiable everywhere. Classical gradient-based methods are not applicable to
solve such problems, since they may fail in the nonsmooth setting. Therefore, it
is imperative to develop numerical methods specifically designed for nonsmooth
optimization. To date, bundle methods are considered to be the most efficient and
reliable general purpose solvers for this type of problems.

The idea in bundle methods is to approximate the subdifferential of the objec-
tive function by a bundle of subgradients. This information is then used to build
a model for the objective. However, this model is typically convex and, due to
this, it may be inaccurate and unable to adequately reflect the behaviour of the
objective function in the nonconvex case. These circumstances motivate to design
new bundle methods based on nonconvex models of the objective function.

In this dissertation, the main focus is on nonsmooth DC optimization that
constitutes an important and broad subclass of nonconvex optimization problems.
A DC function can be presented as a difference of two convex functions. Thus, we
can obtain a model that utilizes explicitly both the convexity and concavity of the
objective by approximating separately the convex and concave parts. This way
we end up with a nonconvex DC model describing the problem more accurately
than the convex one. Based on the new DC model we introduce three different
bundle methods. Two of them are designed for unconstrained DC optimization
and the third one is capable of solving also multiobjective and constrained DC
problems. The finite convergence is proved for each method. The numerical results
demonstrate the efficiency of the methods and show the benefits obtained from the
utilization of the DC decomposition.

Even though the usage of the DC decomposition can improve the performance
of the bundle methods, it is not always available or possible to construct. Thus, we
present another bundle method for a general objective function implicitly collecting
information about the DC structure. This method is developed for large-scale
nonsmooth optimization and its convergence is proved for semismooth functions.
The efficiency of the method is shown with numerical results.

As an application of the developed methods, we consider the clusterwise linear
regression (CLR) problems. By applying the support vector machines (SVM)
approach a new model for these problems is proposed. The objective in the new
formulation of the CLR problem is expressed as a DC function and a method based
on one of the presented bundle methods is designed to solve it. Numerical results
demonstrate robustness of the new approach to outliers.
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Tiivistelmä

Monissa käytännön sovelluksissa tarkastelun kohteena oleva ongelma on moni-
mutkainen ja joudutaan näin ollen mallintamaan epäsileillä funktioilla, jotka eivät
välttämättä ole jatkuvasti differentioituvia kaikkialla. Klassisia gradienttiin perus-
tuvia optimointimenetelmiä ei voida käyttää epäsileisiin tehtäviin, sillä epäsileillä
funktioilla ei ole olemassa klassista gradienttia kaikkialla. Näin ollen epäsileään
optimointiin on välttämätöntä kehittää omia numeerisia ratkaisumenetelmiä.
Näistä kimppumenetelmiä pidetään tällä hetkellä kaikista tehokkaimpina ja
luotettavimpina yleismenetelminä kyseisten tehtävien ratkaisemiseksi.

Ideana kimppumenetelmissä on approksimoida kohdefunktion alidifferentiaalia
kimpulla, joka on muodostettu keräämällä kohdefunktion aligradientteja edel-
lisiltä iteraatiokierroksilta. Tätä tietoa hyödyntämällä voidaan muodostaa koh-
defunktiolle malli, joka on alkuperäistä tehtävää helpompi ratkaista. Käytetty
malli on tyypillisesti konveksi ja näin ollen se voi olla epätarkka ja kykenemätön
esittämään alkuperäisen tehtävän rakennetta epäkonveksissa tapauksessa. Tästä
syystä väitöskirjassa keskitytään kehittämään uusia kimppumenetelmiä, jotka
mallinnusvaiheessa muodostavat kohdefunktiolle epäkonveksin mallin.

Pääpaino väitöskirjassa on epäsileissä optimointitehtävissä, joissa funktiot
voidaan esittää kahden konveksin funktion erotuksena (difference of two con-
vex functions). Kyseisiä funktioita kutsutaan DC-funktioiksi ja ne muodostavat
tärkeän ja laajan epäkonveksien funktioiden osajoukon. Tämä valinta mahdollistaa
kohdefunktion konveksisuuden ja konkaavisuuden eksplisiittisen hyödyntämisen,
sillä uusi malli kohdefunktiolle muodostetaan yhdistämällä erilliset konveksille
ja konkaaville osalle rakennetut mallit. Tällä tavalla päädytään epäkonveksiin
DC-malliin, joka pystyy kuvaamaan ratkaistavaa tehtävää tarkemmin kuin kon-
veksi arvio. Väitöskirjassa esitetään kolme erilaista uuden DC-mallin poh-
jalta kehitettyä kimppumenetelmää sekä todistetaan menetelmien konvergenssit.
Kaksi näistä menetelmistä on suunniteltu rajoitteettomaan DC-optimointiin
ja kolmannella voidaan ratkaista myös monitavoitteisia ja rajoitteellisia DC-
optimointitehtäviä. Numeeriset tulokset havainnollistavat menetelmien tehok-
kuutta sekä DC-hajotelman käytöstä saatuja etuja.

Vaikka DC-hajotelman käyttö voi parantaa kimppumenetelmien suoritusta,
sitä ei aina ole saatavilla tai mahdollista muodostaa. Tästä syystä väitöskirjassa
esitetään myös neljäs kimppumenetelmä konvergenssitodistuksineen yleiselle koh-
defunktiolle, jossa kerätään implisiittisesti tietoa kohdefunktion DC-rakenteesta.
Menetelmä on kehitetty erityisesti suurille epäsileille optimointitehtäville ja sen
tehokkuus osoitetaan numeerisella testauksella.

iii



iv Tiivistelmä

Sovelluksena väitöskirjassa tarkastellaan datalle klustereittain tehtävää line-
aarista regressiota (clusterwise linear regression). Kyseiselle sovellukselle muo-
dostetaan uusi malli hyödyntäen koneoppimisessa käytettyä SVM-lähestymistapaa
(support vector machines approach) ja saatu kohdefunktio esitetään DC-
funktiona. Näin ollen yhtä kehitetyistä kimppumenetelmistä sovelletaan tehtävän
ratkaisemiseen. Numeeriset tulokset havainnollistavat uuden lähestymistavan ro-
bustisuutta ja tehokkuutta.
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Chapter 1

Introduction

In optimization, the aim is to find the best possible solution fulfilling given con-
ditions. The general optimization problem deals with minimizing or maximizing
an objective function(s) under some constraints. The goal can be, for example, to
maximize the production of a company, to minimize the driving time or to design
an optimal shape for the wing of an aircraft. Since these types of mathematical
problems appear everywhere in real life it is important to have tools for solving
them. In addition, these problems are typically modelled with nonconvex func-
tions since, even though convexity is a preferred feature in optimization, it is often
a too restrictive assumption in practical applications. However, nonconvexity adds
another challenge, since verifiable characterizations of global solutions do not exist
and we face the difficult problem how to distinguish global solutions from local
ones. For this reason, we need efficient numerical solution algorithms to provide
solutions for complex problems.

In nonsmooth optimization (NSO), functions do not need to be continuously
differentiable (or smooth) everywhere. These types of functions appear naturally
in many practical applications when we construct a model of the problem. There
exist also several different sources for nonsmoothness (see, e.g., [93]). For exam-
ple, the original phenomenon itself can contain several discontinuities or we have
a technological constraint causing nonsmoothness of functions. Some solution al-
gorithms for optimization (e.g., the exact penalty function method) can translate
the original smooth problem into a nonsmooth one. There exist also so-called stiff
problems, which are analytically smooth, but numerically nonsmooth due to the
too rapidly varying gradient. Applications of NSO include, for example, mechanics
[100], machine learning [81], data mining [20], computational chemistry [39] and
control theory [30].

Most solution algorithms are designed to solve smooth optimization problems
and the most efficient of these methods utilize the derivative of the objective, since
the opposite of the gradient is always a descent direction for a smooth function.
Unfortunately, in NSO we face the situation, where a derivative does not exist for
some values of the variables. Due to this, we cannot directly apply the classical
optimization theory based on smoothness and the gradient based methods since
they may fail in the nonsmooth setting. Instead, we rely on the subdifferential
theory developed by Rockafellar [113] and Clarke [29] and use the so-called sub-
gradients (or generalized gradients) instead of gradients. It is also worth noting
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4 Introduction

that, if we can determine the whole subdifferential (i.e., the set of all subgradi-
ents) for a nonsmooth function at a point, then a descent direction at that point is
the opposite of the subgradient yielding the minimum norm in the subdifferential.
Unfortunately, in practise the calculation of the whole subdifferential is often a
too demanding or impossible task and we typically need to assume that only one
arbitrary subgradient is known. However, the opposite of this subgradient does
not need to be a descent direction.

One possible option to solve NSO problems is to use derivative free methods
such as Powel’s method (see, e.g., [111, 126]) and the Nelder-Mead method (see,
e.g., [101, 105]). However, these methods are quite unreliable and the larger the
problem is the more inefficient these methods become. Different kinds of smoothing
or regularization techniques (see, e.g., [28, 47, 106]) are another possibility but,
even though they work well in some special cases, they may not be efficient or
even applicable in general. Therefore, we need methods specially designed for
nonsmooth problems. In addition, nonsmoothness can be seen as an extension of
the smooth case, and NSO methods can be applied to solve smooth problems.

There exist several methods for NSO problems, which are typically divided
into two main classes: subgradient methods (see, e.g, [115]) and bundle methods
(see, e.g., [59, 72, 93, 96, 114]). The basic assumption in these methods is that
the objective function is locally Lipschitz continuous. These methods require also
that at each point we can compute the value of the objective function and one
arbitrary subgradient. In addition, other approaches for NSO include, for example,
the gradient sampling method [22, 23, 77, 78], the discrete gradient method [9, 68],
the quasi-secant method [8, 89] and the quasi-Newton method [87, 118].

In subgradient methods (Kiev methods), the basic idea is to replace the gradi-
ent with an arbitrary subgradient in smooth methods. This generalization is easy
to perform and due to its simple structure it is widely used. However, subgradi-
ent methods have some serious disadvantages. First, we cannot guarantee that a
descent direction is always obtained. Second, we do not have any implementable
subgradient based stopping condition. Finally, the convergence rate of subgradient
methods is poor.

To date, bundle methods together with their variations are considered to be
the most efficient and reliable general purpose methods for solving NSO problems.
The initial idea of bundle methods originates from the ε-steepest descent method
[86] combining the cutting plane model [70] with the conjugate subgradient method
[85, 125]. This method was developed further in [72], where two different strategies
were designed to bound the number of subgradients used. Especially one of them,
the so-called subgradient aggregation strategy, is widely used in various bundle
methods. Next improvements were the proximal bundle method [73] and the
bundle trust region method [114], which both present an insightful way to combine
the bundle method with the trust region concept. After this several different
bundle methods have been presented for both convex [3, 21, 66, 91, 92, 98, 104]
and nonconvex [2, 34, 42, 43, 51, 52, 53, 96, 102] functions.

The basic idea in bundle methods is to approximate the subdifferential of an
objective function with a bundle by collecting subgradients from previous itera-
tions. This information is used to construct a model of the objective, which is
utilized to determine a solution for the original problem. Typically this approx-
imation is a convex cutting plane model defined as a point-wise maximum of a
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set of first order approximations and for a convex function this model is always
an underestimate. The convex cutting plane model is often reasonably good also
for a nonconvex function. An exception to this are those parts of the objective,
where there exists some concavity, since they cannot be captured with a convex
model. In addition, a first order approximation does not need to support from
below a nonconvex function. Therefore, we may loose the interpolation property
of the model and to guarantee it several authors have introduced possible down-
ward shifting of first order approximations (see, e.g., [74, 96, 114]). Due to these
facts, a convex model of a nonconvex function can be a really rough estimate of
the original problem and fail to represent the structure of the objective in the most
relevant parts.

In this dissertation, the aim is to design new bundle methods, which in the mod-
elling phase of the objective take both convex and concave behaviour explicitly into
account. Some bundle methods utilizing “implicitly” convexity and concavity of
the objective have been studied before [41, 42, 43, 46]. However, in these methods
different types of behaviours of the objective are captured at the current iteration
point by dividing first order approximations into two sets, but this may fail to de-
scribe the true structure of the objective. Therefore, we concentrate on so-called
DC functions, which are expressed as a difference of two convex (DC) functions.
These functions constitute an important and broad subclass of nonconvex func-
tions and in many practical applications functions can be modelled explicitly in
the DC form, for example, in production-transportation planning [60], data vi-
sualization [26] and computational chemistry [39]. In addition, the DC structure
enables us to use convex analysis and optimization to some extent, even though
this theory is typically lost in the nonconvex setting.

In our new bundle methods, the DC structure distinguishing convexity and
concavity gives us a way to form a more accurate and realistic cutting plane
model than the convex one, since we can construct separate approximations for
the convex and concave parts. The new model is nonconvex and DC. In addition,
it does not need the somewhat arbitrary downward shifting of the first order
approximations. Therefore, by designing bundle methods for DC functions we are
able to utilize the real nonconvex structure of the objective and this way obtain
more efficient and reliable methods. Moreover, bundle methods utilizing explicitly
the DC structure form a relatively new class of bundle methods and only recently
a couple of methods from this class have come to light [45, 103].

The bundle methods for nonsmooth DC optimization presented in this disser-
tation are local solution methods. Before, DC optimization problems have been
mainly considered in global optimization, where the aim is to find a global so-
lution. Algorithms to globally solve DC problems are introduced, for example,
in [61, 62, 120]. The development of local solution methods for DC optimization
has attracted less attention (see, e.g., [7, 12, 83, 117]) despite the fact that they
are typically needed in global solvers. At the moment one of the most commonly
used local methods is DCA [107, 108, 109] based on local optimality and duality
in DC optimization. However, there still exists a need for efficient local methods
specifically developed for DC problems.

The dissertation consists of two parts. The first part, Part I, summarizes
the results and contributions of this work and gives an introduction to related
research. The second part, Part II, contains five original publications on which



6 Introduction

this dissertation is based. Next, we give a more detailed description about Part I.
First, in Chapter 2 we give some basic notations and definitions. Especially,

we introduce some generalizations of the gradient that yield us tools for designing
methods in NSO. After that in Chapter 3 we familiarize ourselves with DC func-
tions and give definitions for single- and multiobjective DC problems. In addition,
we present different kinds of optimality conditions used in DC optimization.

In Chapter 4, we concentrate on standard proximal bundle methods and give
a survey of these methods both in the convex and nonconvex case. The aim of
this introduction is to highlight the characteristic features of bundle methods and
especially illustrate the differences in the convex and nonconvex settings.

Chapter 5 is devoted to the new bundle methods developed for nonsmooth
DC optimization. We start with introducing the new nonconvex DC cutting plane
model based on the explicit utilization of the DC structure and show how the model
is used to determine a search direction and a new iteration point. After that we
introduce three proximal bundle methods relying on the new model. The first
two of these methods are designed for unconstrained DC optimization whereas the
third one is also able to handle multiobjective and constrained DC optimization
problems.

Another new bundle method for unconstrained NSO is presented in Chapter 6.
This bundle method is designed for large-scale problems and it does not assume
that the objective function is a DC function. However, we implicitly collect some
local information about the DC structure by dividing the first order approxima-
tions of the objective function into two sets. This way we are able to introduce
another type of approach, which utilizes the convex and concave behaviour of the
objective, but at the same time is capable of solving large-scale problems.

In Chapter 7, we focus on clusterwise linear regression (CLR) problems and
introduce an approach to solve them, which is based on one of the methods de-
veloped in Chapter 5. We start with the introduction of a new formulation for
the CLR problem utilizing the support vector machines (SVM) technique. This
model is expressed as a DC function and a bundle method utilizing this DC struc-
ture is designed to solve CLR problems. In addition, some numerical results are
presented.

Finally, Chapter 8 concludes the dissertation by giving a short summary about
the benefits obtained by utilizing convexity and concavity of the objective function
in bundle methods. In addition, some ideas for future research are discussed.



Chapter 2

Preliminaries

In this chapter, we present some notations and basic definitions including defini-
tions of the generalized gradients for nonsmooth functions.

2.1 Notations and definitions

The n-dimensional Euclidean space is denoted by Rn and we use the notation
x ∈ Rn to present the column vector in this space. The row vector xT is obtained
by transposing x. The inner product xTy of two vector x and y in Rn is

xTy =

n∑

i=1

xiyi

and ‖ · ‖ is the norm in the n-dimensional Euclidean space Rn, that is, ‖x‖ =

(xTx)
1
2 . The open ball with a center x ∈ Rn and a radius ε > 0 is denoted by

B(x; ε) = {y ∈ Rn | ‖y − x‖ < ε}.

A square matrix is denoted by A ∈ Rn×n, where n is the number of rows and
columns. If A ∈ Rn×n is a diagonal matrix then we have nonzero elements only in
the main diagonal and all the other elements are zero. Moreover, a square matrix
A ∈ Rn×n is called positive definite if xTAx > 0 for all x ∈ Rn such that x 6= 0.
Similarly, a square matrix A ∈ Rn×n is negative definite if xTAx < 0 for all
x ∈ Rn such that x 6= 0.

A set S ⊆ Rn is compact if it is closed and bounded. In addition, the notation
cl S is used to denote the closure of S ⊆ Rn. A set S ⊆ Rn is a cone if λx ∈ S for
all x ∈ S and λ ≥ 0, and we denote by rayS = {λx |λ ≥ 0, x ∈ S} the smallest
cone containing S ⊆ Rn. In addition, a set S ⊆ Rn is convex if

λx+ (1− λ)y ∈ S

for all x and y in S and λ ∈ [0, 1] meaning that any closed line-segment joining
two points of the set S belongs to this set. The convex hull of any set S ⊆ Rn is
the smallest convex set containing S and it is denoted by convS.

7
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Next, we define some properties for a function f : Rn → R. First, a function f
is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x and y in Rn and λ ∈ [0, 1]. This means that any line-segment joining two
values of the function f is above or on the graph of f . Similarly, a function f is
concave if −f is convex. If f is not convex, then it is called nonconvex.

A function f is locally Lipschitz continuous if at each point x ∈ Rn there exists
a constant L > 0 and a scalar ε > 0 such that

|f(y)− f(z)| ≤ L‖y − z‖ for all y, z ∈ B(x; ε).

This property guarantees a good behaviour of f in the sense that it provides a
bound for the change in the function values. For example, every smooth function
as well as convex functions belong to the class of locally Lipschitz continuous
functions.

A directional derivative gives an approximation for the change in function
values. Thus, at any point it can be used to detect directions where the function
value either increases, decreases or stays the same. For a function f : Rn → R,
the directional derivative at x ∈ Rn in a direction d ∈ Rn is defined as

f ′(x;d) = lim
t↓0

f(x+ td)− f(x)

t
.

In addition, if at a point x ∈ Rn the directional derivative of f exists in every
direction d ∈ Rn, then f is directionally differentiable at x. Note that a general lo-
cally Lipschitz continuous function f is not necessarily directionally differentiable.
However, for a convex function f this property is always guaranteed. Similarly,
every difference of two convex functions can be shown to be directionally differen-
tiable.

2.2 Subdifferentials

Next, we introduce some generalizations of gradients, so-called subdifferentials.
Subdifferentials are important tools in nonsmooth analysis since for nonsmooth
functions continuous gradients do not exist everywhere. In the following, we
discuss the convex case and the general case separately and show relationships
between different types of subdifferentials. The aim is not to give a detailed de-
scription, but to collect only those definitions and results which are needed in
the following chapters. For more details about nonsmooth analysis we refer to
[10, 29, 96, 113].

The subdifferential (or generalized gradient) of a convex function f : Rn → R
at a point x ∈ Rn is defined as [113]

∂cf(x) =
{
ξ ∈ Rn | f(y) ≥ f(x) + ξT (y − x) for all y ∈ Rn

}
(2.1)

and each element ξ ∈ ∂cf(x) is called a subgradient. A subgradient can be inter-
preted as a slope of a linearization at a point x underestimating f . Therefore, for
a convex function f subgradients can be used to construct lower approximations
of f . This means that we preserve the useful property of gradients, since for a
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smooth convex function the gradient can always be used to form an underestimate
of f . However, in the nonsmooth case we may have several different linearizations
at a single point instead of only one, and thus several subgradients. Neverthe-
less, if a convex function f is differentiable at x ∈ Rn, then the subdifferential
∂cf(x) contains only one subgradient, which equals the gradient ∇f(x), that is,
∂cf(x) = {∇f(x)} [113].

To approximate the subdifferential of a convex function, we define the so-called
ε-subdifferential. For ε ≥ 0, the ε-subdifferential of a convex function f : Rn → R
at a point x ∈ Rn is the set [113]

∂εf(x) = {ξε ∈ Rn | f(y) ≥ f(x) + ξT (y − x)− ε for all y ∈ Rn}

and each ξε ∈ ∂εf(x) is called an ε-subgradient. In this subdifferential, we have
relaxed the condition that each ε-subgradient should construct a lower approxi-
mation of f since the deviation from the function value is tolerated with ε. Thus,
this set contains subgradient information from some neighbourhood of x and, the
smaller the parameter ε > 0 is, the better approximation of ∂cf(x) is obtained.

The previous definitions of the subdifferentials are not directly applicable for
nonconvex functions and we need to generalize them. There are several possible al-
ternatives available (see, e.g., [7, 12, 33, 99]). We present the Clarke subdifferential,
which is one of the most commonly used generalizations and provides useful tools
utilized, for example, in nonconvex bundle methods.

The Clarke subdifferential (or generalized subdifferential) for a locally Lipschitz
continuous function f : Rn → R at a point x ∈ Rn is defined as [29]

∂f(x) = conv
{

lim
i→∞

∇f(xi) |xi → x and∇f(xi) exists
}

and, similarly to the convex case, each ξ ∈ ∂f(x) is called a subgradient. Contrary
to the convex case, this subgradient does not necessarily provide a lower approx-
imation of a nonconvex f . Nevertheless, it is known that ∂f(x) = ∂cf(x) for a
convex function f : Rn → R [29]. Thus, in the rest of the dissertation the notation
∂f(x) is also used to denote the subdifferential of a convex function f .

The Goldstein ε-subdifferential of a locally Lipschitz continuous function f :
Rn → R at a point x ∈ Rn for ε ≥ 0 is given by the formula [96]

∂Gε f(x) = cl conv{∂f(y) |y ∈ B(x; ε)}. (2.2)

With the selection ε = 0, the set ∂Gε f(x) coincides with ∂f(x). Moreover,
∂f(x) ⊆ ∂Gε f(x) for any ε ≥ 0 and, therefore, the Goldstein ε-subdifferential
is a generalization of the Clarke subdifferential. For this reason, the Goldstein
ε-subdifferential can be used to approximate the set ∂f(x) since, like for the ε-
subdifferential, the decrease in the value of the parameter ε gives a more accurate
approximation of ∂f(x).
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Chapter 3

DC optimization

In this dissertation, the interest is in nonsmooth DC optimization. Therefore, we
introduce some basics about DC functions and give formal definitions for single-
objective and multiobjective DC problems. In the multiobjective setting, we also
introduce DC constraints providing a possibility to cover a wider and more complex
set of problems. In addition, we present different types of optimality conditions
used in DC optimization and discuss their usability since with these conditions
we are able to detect promising candidate solutions, where the execution of an
algorithm can be stopped. For more comprehensive study about DC optimization
we refer to [54, 61, 82, 83, 107, 120].

3.1 DC function

A DC function refers to a function which can be presented as a difference of
two convex (DC) functions and optimization problems having DC objectives and
constraints are called DC problems. Typically, DC functions are nonconvex but,
compared to a general nonconvex function, a DC function has a structure sepa-
rating the convex and concave behaviour of a function. More specifically, a DC
function is defined as follows:

Definition 3.1. A function f : Rn → R is a DC function if it can be represented
in the form

f(x) = f1(x)− f2(x),

where functions f1, f2 : Rn → R are convex.

The convex functions f1 and f2 defining a DC function f are called DC com-
ponents and f1 − f2 is a DC decomposition of f . In addition, DC functions are
locally Lipschitz continuous and they can be nonsmooth.

Nonconvexity of a DC function f is due to its concave part −f2. However,
the DC structure enables us to utilize convex analysis and optimization to some
extent. This is an advantage compared to a general nonconvex function for which
this useful theory is not applicable. Another nice feature is that DC functions
are stable in a sense that they preserve the DC structure under simple operations
frequently used in optimization. This differs from convexity which, for example,
will be lost when multiplied with a negative scalar.

11
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Proposition 3.2. [54, 61, 120] Let fi : Rn → R for i = 1, . . . , k be DC functions
on Rn. Then the following functions preserve the DC structure:

(i) the sum
∑k

i=1 cifi(x) for any ci ∈ R;

(ii) the upper and lower envelopes g(x) = max{f1(x), . . . , fk(x)} and h(x) =
min{f1(x), . . . , fk(x)};

(iii) the product
∏k

i=1 fi(x) and the quotient f1(x)/f2(x) if f2(x) 6= 0 on Rn;

(iv) the absolute value |fi(x)| for any i = 1, . . . , k.

The class of DC functions is very broad and covers many frequently used func-
tions in optimization. First, any convex or concave function has a trivial represen-
tation as a DC function. Second, every twice continuously differentiable function
is a DC function [54, 57]. Moreover, Proposition 3.2 shows that with simple DC
functions it is easy to generate really complex functions maintaining the DC struc-
ture. In addition, every continuous function can be approximated arbitrarily well
by a DC function [120].

Even though many functions are known to be DC, it is not always trivial to
obtain a DC decomposition. Thus, one important question in DC optimization
is how a DC decomposition can be obtained. For a function being composed of
convex and concave components, a DC decomposition is easily formed by sepa-
rating the convex and concave terms. In addition, for the functions presented
in Proposition 3.2 the DC decompositions can be formally written if the DC de-
compositions of the functions fi for i = 1, . . . , k are known. Finally, in some
applications DC representations can be explicitly constructed. These include clus-
ter analysis [15], spherical separation [5, 6], supervised data classification problems
[10], image restoration [84], finance and game theory [48], circuit design [88] and
computational chemistry [39], to name a few.

It is worth to note that from one DC representation we can easily construct
new ones by selecting any convex function and adding it to both DC components.
Therefore, each DC function has an infinite set of different DC decompositions.
The selected DC decomposition may have an influence on DC optimization and,
thus, we would like to do the selection as efficiently as possible. However, the
question how to select the best DC decomposition has no comprehensive answer.
Even though we cannot answer this question in a general case, there exists some
special cases where a solution is offered. One example is polynomials for which
special algorithms are presented to determine the best DC decomposition [1, 19,
37]. In addition, a special norm minimization problem is presented in [38] to
improve the DC representation mainly in the polynomial case.

3.2 Single-objective DC optimization problem

In single-objective DC optimization, we are minimizing one objective function.
Thus, the unconstrained DC minimization problem is of the form

{
min f(x)

s. t. x ∈ Rn,
(3.1)
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where the objective function f : Rn → R is a DC function. A global minimizer (or
a global optimum) is a point x∗ ∈ Rn satisfying f(x∗) ≤ f(x) for all x ∈ Rn. This
means that a global minimizer gives the smallest value for problem (3.1) on the
whole space Rn. However, problem (3.1) may have many local minimizers differing
from the global ones since a DC function is often nonconvex. A point x∗ ∈ Rn

is called a local minimizer (or a local optimum) if there exists ε > 0 such that
f(x∗) ≤ f(x) for all x ∈ B(x∗, ε). Therefore, a local minimizer x∗ is guaranteed to
yield the smallest value for problem (3.1) only in some neighbourhood of x∗. Even
though a global minimizer is always a local minimizer, it can be hard to distinguish
from a local minimizer since local and global minimizers usually satisfy the same
optimality conditions in algorithms. Therefore, we are typically content with local
optimization methods finding local minimizers.

In order to design solution methods for problem (3.1), we need to define some
optimality conditions which are used to detect solutions, where the execution of an
algorithm can be stopped. These conditions are typically divided into two classes
depending on whether they are sufficient or necessary. The satisfaction of a suf-
ficient condition guarantees that a solution is either a global or local minimizer.
Compared to this a necessary condition is weaker, since if such a condition is sat-
isfied it does not guarantee optimality without some extra assumptions. However,
both sufficient and necessary conditions can be used to exclude solutions, since if
a solution does not fulfil those conditions it cannot be a local or global minimizer.
Therefore, the use of necessary conditions also provides useful information and
yields promising candidate solutions. Unfortunately, sufficient conditions can be
hard to utilize in solution algorithms. Thus, we often need to be satisfied to use
those conditions, which can be verified during the execution of the algorithm, even
though they might be only necessary conditions.

Next, we introduce some optimality conditions for a DC function. This list is
not comprehensive and more conditions are presented, for example, in [58, 83, 107].
We start with stating three common necessary conditions.

Theorem 3.3. [29, 58, 83, 119] Let functions f1, f2 : Rn → R be convex. If a
point x∗ ∈ Rn is a local minimizer of a DC function f = f1−f2 then the following
conditions hold

∂f2(x∗) ⊆ ∂f1(x∗), (3.2)

0 ∈ ∂f(x∗) and (3.3)

∂f1(x∗) ∩ ∂f2(x∗) 6= ∅. (3.4)

Points satisfying the first condition (3.2) are called inf-stationary points. Inf-
stationarity is the strongest condition among the ones presented in Theorem 3.3,
since if this condition holds then the other two conditions are also fulfilled. Fur-
thermore, this condition guarantees local optimality if the second DC component
f2 is a polyhedral function of the form f2(x) = max1=1,...,m{aT

i x + bi}, where
ai ∈ Rn, bi ∈ R andm ∈ N. Therefore, it would be beneficial to use inf-stationarity
as a stopping condition in a solution algorithm. Unfortunately, this condition is
hard to utilize in practise since the whole subdifferentials of DC components need
to be known. Typically a subdifferential is not easy to calculate and sometimes
it can be time-consuming to obtain even one subgradient from this set. Thus,
in nonsmooth methods a typical requirement is that we know only one arbitrary
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subgradient for an objective function at x ∈ Rn. In DC optimization, this assump-
tion often appears in the form that at x ∈ Rn one arbitrary subgradient for both
DC components can be calculated and with this information we cannot validate
inf-stationarity.

Condition (3.3) is widely used in solution algorithms designed for general ob-
jective functions and points satisfying it are called Clarke stationary points. In the
convex case, this condition is also sufficient, since it guarantees global optimality.
Even though this condition is often utilized in convex and nonconvex optimiza-
tion, it can be hard to fulfil for a DC function if we do calculations only for DC
components. This follows from the subdifferential calculus rule yielding [10]

∂f(x) ⊆ ∂f1(x)− ∂f2(x) (3.5)

for a DC function f = f1 − f2. Thus, the difference of the subdifferentials of DC
components is an estimate for the subdifferential of f . If f1 or f2 is differentiable
then equality holds in (3.5) and the estimate coincides with the subdifferential of
f . However, for an arbitrary DC decomposition this estimate may be very coarse
[57]. Thus, arbitrary subgradients of DC components cannot be used to verify
Clarke stationarity.

The third condition (3.4) is a relaxation of inf-stationarity. In inf-stationarity,
the subdifferential of f2 needs to be a subset of the subdifferential of f1 and, thus,
the intersection of these subdifferentials cannot be empty. Points satisfying this
relaxed condition are called critical points. In addition, criticality is commonly
used as a stopping condition in DC optimization, since it is quite easy to verify
unlike conditions (3.2) and (3.3) and it typically provides good candidate solutions.
However, one major drawback of a critical point is that it does not need to be a
local optimum or even a saddle point. In the worst case, the algorithm may stop
at a point, where the original DC function f is differentiable and the opposite of
the gradient of f constructs a descent direction decreasing the value of f [65].

As already said, inf-stationarity is the strongest condition presented in The-
orem 3.3 and it always implies Clarke stationarity and criticality. In addition, a
Clarke stationary point always satisfies criticality. However, inverse relationships
between these necessary conditions are not obtained in a general case. This means
that criticality is the weakest condition. Due to the subdifferential calculus rule
(3.5), criticality can imply Clarke stationarity when either f1 or f2 is differentiable.
Moreover, to guarantee inf-stationarity with Clarke stationarity or criticality the
DC component f2 needs to be differentiable. A summary of these relationships is
presented in Figure 3.1.

It is also worth noting that instead of criticality it is possible to test its gener-
alization, the so-called ε-criticality, requiring that the ε-subdifferentials of the DC
components intersect at the point x∗ under consideration. This condition offers us
more freedom in the solution process, since we can compare a little bit larger sets.
In addition, the smaller the parameter ε > 0 is, the more accurate approximation
of criticality is obtained. Naturally, ε-criticality coincides with criticality with the
selection ε = 0.

For a DC function, it is also possible to construct the following sufficient op-
timality condition guaranteeing global optimality. Unfortunately, this condition
is really hard to utilize in practise, since it requires that for each ε ≥ 0 the ε-
subdifferential of the DC component f2 is a subset of the ε-subdifferential of the
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Inf-stationarity:
∂f2(x∗) ⊆ ∂f1(x∗)

Clarke stationarity:
0 ∈ ∂f(x∗)

Criticality:
∂f1(x∗) ∩ ∂f2(x∗) 6= ∅
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Figure 3.1: Relationships between different stationary points

DC component f1. Thus, with each value of ε we have the same difficulties than
with inf-stationarity.

Theorem 3.4. [58] Let functions f1, f2 : Rn → R be convex. A point x∗ ∈ Rn is
a global minimizer of a DC function f = f1 − f2, if and only if

∂εf
2(x∗) ⊆ ∂εf1(x∗) for all ε ≥ 0.

3.3 Multiobjective and constrained DC optimiza-
tion problem

Multiobjectivity arises inherently in many optimization problems. In production
planning, the interest may be, for example, to maximize quality while minimizing
production and labour costs. Therefore, in multiobjective optimization we are
optimizing several objective functions simultaneously instead of only one. In the
nontrivial setting, these functions conflict with each other, and we need to do
trade-offs between different goals to find a good enough compromise as a solution.
Thus, the concept of a solution differs from the single-objective case and typically
there does not exist a single solution yielding the optimal value for each objective
function. The constraints, in turn, are used to give restrictions for problems. This
way we are able to exclude some parts of the search space and to concentrate only
on the interesting and relevant region. For example, in production planning we
are able to restrict the amounts of products used.

The constrained multiobjective DC minimization problem is formally defined
as

{
min f1(x), . . . , fh(x)

s. t. x ∈ X, (3.6)
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where each objective function fi : Rn → R for i ∈ I is a DC function and I =
{1, . . . , h} is a set of indices of the objectives with h ≥ 2. The set X ⊆ Rn

is the feasible region and a point x belonging to X is called a feasible solution.
Since we consider only DC inequality constraints this set has the form X = {x ∈
Rn | gl(x) ≤ 0, l ∈ L}, where L = {1, . . . ,m} denotes the indices of the constraints
and each constraint gl : Rn → R, l ∈ L is a DC function. If we do not have
constraints in problem (3.6), then the set X = Rn.

To define the optimality concept in the multiobjective setting, we need to be
able to measure the quality of solutions with some preference relations. If two
solutions x and y on X satisfy the condition

fi(x) ≤ fi(y) for all i ∈ I and fi(x) < fi(y) for some i ∈ I

then x dominates y since one objective function has a strictly better value while
the others are at least equally good. Another preference can be defined for solutions
x and y on X with the condition

fi(x) < fi(y) for all i ∈ I.

In this case, x strictly dominates y since the value of each objective function is
strictly less than the one obtained with using the solution y. Utilizing these two
preferences we can define the optimality concept used in multiobjective optimiza-
tion, the so-called Pareto optimality.

Definition 3.5. For problem (3.6), a solution x∗ ∈ X is called

(i) globally Pareto optimal if there does not exist a solution x ∈ X dominating
x∗;

(ii) globally weakly Pareto optimal if there does not exist a solution x ∈ X
strictly dominating x∗;

(iii) locally (weakly) Pareto optimal if there exists δ > 0 such that x∗ is globally
(weakly) Pareto optimal on X ∩B(x∗; δ).

Pareto optimality means that there does not exist any feasible solution im-
proving one objective fi without impairing some other objective at the same time.
For problem (3.6), there usually exist several different Pareto optimal solutions.
These solutions may differ a lot from each other, but mathematically they are
equally good. On the other hand, weak Pareto optimality guarantees that there
does not exist a feasible solution improving the value of all the objective functions
fi, i ∈ I. Therefore, the set of weakly Pareto optimal solutions always contains
Pareto optimal solutions, but the inverse does not hold. In Figure 3.2, we have
illustrated these concepts for a multiobjective problem with two objectives.

To formulate an optimality condition for the constrained problem (3.6), we
introduce sets

F (x) =
⋃

i∈I
∂fi(x) and G(x) =

⋃

l∈L(x)

∂gl(x),

where L(x) = {l ∈ L | gl(x) = 0}. Moreover, we use the contingent cone KX(x)
of the set X at x ∈ X and the polar cone G≥(x) of the set G(x) (see, e.g., [10])



Multiobjective and constrained DC optimization problem 17

to define the constraint qualification

G≥(x) ⊆ KX(x). (3.7)

With these we can give the following necessary optimality condition.

Theorem 3.6. [94] If a point x∗ ∈ X is locally weakly Pareto optimal for problem
(3.6) and the constraint qualification (3.7) holds at x∗, then

0 ∈ convF (x∗) + cl coneG(x∗), (3.8)

where coneG(x∗) = ray convG(x∗) is the smallest convex cone containing G(x∗).

Points satisfying condition (3.8) are called weakly Pareto stationary. In addition,
this condition is often used to create a stopping condition in multiobjective solution
algorithms and it can be seen as a generalization of Clarke stationarity.
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Figure 3.2: Illustrations about Pareto and weak Pareto optimal solutions
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Chapter 4

Standard proximal bundle
method

The main focus in this dissertation is on bundle methods for NSO. Therefore, we
now present the basic idea of general bundle methods both in the convex and
nonconvex cases. It is worth to note that these bundle methods do not utilize or
assume the DC structure of the objective. Despite of that many of their distinctive
features are later on used when we design bundle methods for DC functions.

Bundle methods are iterative solution algorithms and one of their character-
istic feature is to approximate the subdifferential of the objective function with
a bundle. At the current iteration, this bundle contains subgradients obtained
from previous iterations together with the newest one and this way we can take
advantage of the information produced during the execution of the algorithm. To
determine a new iteration point, the bundle is utilized to construct an approxi-
mation for the objective. This model is typically piecewise linear and convex, but
also other types of models have been designed (see, e.g., [4, 35, 36, 41, 91]). By
adding a stabilizing term in the model, we obtain a direction finding problem,
whose solution is a descent direction for the model and, in a good case, also for
the original objective.

When the search direction is found, a line search is typically performed to ob-
tain an auxiliary point. After this another characteristic feature of bundle methods
is to decide whether to execute a serious or null step. If the value of the objective
decreases significantly in the auxiliary point, then we perform a serious step and
update the current iteration point with the auxiliary point. Otherwise, we need to
improve the model by executing a null step and the current iteration point does
not change. However, in both steps the bundle is improved with a new subgradient
to build a more accurate approximation of the objective.

In this chapter, we concentrate on proximal bundle methods, where a specific
parameter, the so-called proximity measure, is utilized in the stabilizing term. In
the convex case, the usage of this parameter enables us to omit the line search since
the stepsize can be controlled with the parameter. Next, we introduce a survey of
the standard proximal bundle method and highlight the differences between the
convex and nonconvex cases. For more detailed descriptions we refer to [56, 72,
73, 96, 114].

19
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4.1 Model for a function

We start with assuming that the objective function f is locally Lipschitz contin-
uous. To construct a model for such a function, we need some information about
the objective and its subdifferential. Since in practise the whole subdifferential
∂f(x) is usually hard or even impossible to determine the main requirement in
bundle methods is the following:

Assumption 4.1. At each point x ∈ Rn we can calculate the value of the function
f(x) and one arbitrary subgradient ξ ∈ ∂f(x).

This assumption guarantees that at each point we obtain a sufficient amount of in-
formation to build a model. Furthermore, since we assume that only one arbitrary
subgradient is calculated at any point the requirement is not really restrictive and
can be satisfied in many optimization problems.

An important feature in bundle methods is to utilize the information from the
previous iterations. Therefore, this information is collected into a bundle providing
an approximation for the subdifferential of the objective. During the iteration k,
let xk ∈ Rn be the current iteration point. In addition, we have at our disposal
auxiliary points yj ∈ Rn and subgradients ξj ∈ ∂f(yj) for j ∈ Jk, where the
index set Jk is typically a nonempty subset of {1, . . . , k}. In order to maintain
this information, the bundle is defined as a set

Bk = {(yj , f(yj), ξj)) | j ∈ Jk}. (4.1)

Note that the current iteration point is always one of the auxiliary points and,
thus, it belongs to Bk.

The bundle has a central role in the model construction, since each of its
elements can be used to determine a linearization of f . For the index j ∈ Jk, the
linearization lj : Rn → R is defined as

lj(x) = f(yj) + ξTj (x− yj) for all x ∈ Rn.

For a convex function, this linearization always supports from below the epigraph
of the function since subgradients satisfy formula (2.1). This is a desired property
in most bundle methods, but unfortunately it is not necessarily true for a noncon-
vex function. Therefore, we need to adjust linearizations in the nonconvex case to
guarantee that they underestimate f at least in some neighbourhood of xk. Next,
we present separately the models for convex and nonconvex functions.

4.1.1 Convex case

The aim is to construct a model underestimating the convex function f . Since
we assume convexity each element of the bundle constructs a linearization being
a lower approximation of f . Thus, at the point xk the model for f is obtained by
combining the linearizations and the piecewise linear approximation is given by

f̂k(x) = max
j∈Jk

{lj(x)} = max
j∈Jk

{
f(yj) + ξTj (x− yj)

}
(4.2)

for all x ∈ Rn. This model is the classical cutting plane model used in convex
bundle methods [64, 73, 93, 96, 114]. It has several good features which support
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its usefulness. First, the cutting plane model underestimates f everywhere since
the upper envelope maintains the corresponding property of linearizations. Second,
f̂k(yj) = f(yj) for j ∈ Jk and, thus, the model is accurate at any auxiliary point.
Furthermore, the model maintains convexity and by adding new linearizations we
obtain a more accurate approximation of f . In Figure 4.1, we have illustrated
these properties by presenting the cutting plane model of the convex function
f(x) = max{x2 +x+2,−x+2}, when linearizations are constructed at points −3,
−1 and 1.
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Figure 4.1: The convex cutting plane model of the convex function

Another useful feature of the model is that it can be rewritten in the form

f̂k(x) = max
j∈Jk

{
f(xk) + ξTj (x− xk)− αk

j

}
, (4.3)

when we utilize the current iteration point xk and define the linearization error

αk
j = f(xk)− f(yj)− ξTj (xk − yj) for all j ∈ Jk. (4.4)

The linearization error describes the difference at the current iteration point xk

between the actual value of f and the value of the linearization constructed at yj .
Formula (2.1) guarantees that linearization errors are always nonnegative, that is,
αk
j ≥ 0 for j ∈ Jk and this means that each linearization is below the function f

at xk. In addition, the linearization error can be used to measure the quality of
the model since the smaller the linearization error is, the better the corresponding
linearization represents the function f at the point xk.

4.1.2 Nonconvex case

For a nonconvex function f , the aim is also to design a proper approximation, and
in many nonconvex bundle methods (see, e.g., [42, 72, 96, 114]) the construction
is done similarly to the convex case. However, since linearizations do not need to
underestimate a nonconvex function we may be unable to produce even a local
underestimate of f at xk (see Figure 4.2). In model (4.3), this type of an un-
desirable feature occurs whenever a linearization error is negative. Moreover, a
linearization error may be small even though an auxiliary point yj is far away from
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xk. Therefore, a linearization error is not a reliable tool to measure the quality of
the model in nonconvex settings [93].

One option to guarantee the interpolation property at least at the current
iteration point xk is to downward shift linearizations. Several authors have used
this approach (see, e.g., [72, 96, 114]) and utilized subgradient locality measures
βk
j instead of linearization errors αk

j . Typically the definition of βk
j is given in the

form

βk
j = max

{
|αk

j |, γ‖xk − yj‖ω
}
,

where γ ≥ 0 is a distance measure parameter and ω ≥ 1 is a locality measure pa-
rameter. Thus, βk

j includes the comparison of the absolute value of the lineariza-
tion error with some positive distance measure. This way negative linearization
errors are replaced with nonnegative values and we obtain some localizing infor-
mation to the approximation, which also takes into account the distance between
an auxiliary point yj and the current iteration point xk.

Utilizing subgradient locality measures, the cutting plane model of f at xk can
be defined similarly to (4.3) with the formula

f̂k(x) = max
j∈Jk

{
f(xk) + ξTj (x− xk)− βk

j

}
. (4.5)

Unlike in the convex case, this model is guaranteed to be only a local approximation
of a nonconvex f at some neighbourhood of xk and it does not necessarily coincide
with f at each yj for j ∈ Jk. Moreover, the model maintains convexity and, thus, it
is not able to capture a concave behaviour of a nonconvex f . Another disadvantage
is that the amount of shifting is more a less arbitrary and we do not know how
the subgradient locality measure affects the model.
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Figure 4.2: The convex model (4.3) of the nonconvex function

To illustrate the cutting plane model in the nonconvex setting, we consider
the function f(x) = max{x2 + x + 2,−x + 2} − max{0.5x2, x + 1} and let the
current iteration point xk be 1. Linearizations are formed at points −3, −1 and 1.
The direct application of model (4.3) is presented in Figure 4.2 and this example
shows the undesired and problematic feature that the function f is overestimated
at xk = 1. To fix this problem, the cutting plane model (4.5) shifts linearizations
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with subgradient locality measures. One option is the absolute value of the lin-
earization error, that is, βk

j = |αk
j | for all j ∈ Jk. With this selection we obtain

the approximation presented in Figure 4.3 and it supports from below f at xk but
not, for example, at point zero.
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Figure 4.3: The convex cutting plane model with βk
j = |αk

j |

4.2 Direction finding

Bundle methods are typically descent algorithms. That is, during each iteration
the aim is to generate a search direction yielding a new better iteration point,
which decreases the value of the objective. For this reason, the search direction
has a central role in bundle methods and, next, we consider how it is obtained by
utilizing the cutting plane model.

In the previous sections, we have presented the cutting plane models separately
for convex and nonconvex functions. Since model (4.5) can be seen as an extension
of (4.3) with the selection βk

j = αk
j we consider in the following only the cutting

plane model (4.5). First, we denote by d = x − xk the search direction at the
current iteration point xk. With this notation we can rewrite model (4.5) as
follows

f̂k(xk + d) = max
j∈Jk

{
f(xk) + ξTj d− βk

j

}
. (4.6)

It would be logical to determine the search direction dk ∈ Rn by minimizing
the cutting plane model (4.6). Unfortunately, this model cannot be directly ap-
plied since it is piecewise linear and it does not necessarily have a finite minimizer.
Therefore, we cannot guarantee the existence of a solution. Moreover, the approx-
imation of f can be trusted only in some neighbourhood of xk. This is due to the
fact that usually the farther away we are from the point xk, the more unreliable
the approximation becomes. Thus, we need to insert a stabilizing term into the
model to guarantee the existence of the solution and to keep the approximation lo-
cal enough [93]. There exist several different stabilizing terms for bundle methods
(see, e.g., [40, 73, 75, 93]). In proximal bundle methods, this term is of the form
(1/2t)‖d‖2, where t > 0 is a proximity measure. The benefit of this selection is
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that we can modify the stepsize by changing the proximity measure. In addition,
the proximity measure is able to accumulate some second order information of the
curvature of f around xk [10].

The search direction dk ∈ Rn is now obtained by solving the optimization
problem

{
min f̂k(xk + d) + 1

2t‖d‖2
s. t. d ∈ Rn,

(4.7)

where the proximity measure t controls the stepsize. In addition, the tuning of
the proximity measure can be seen as the adjustment of the trust region, since an
increase in the value of t enlarges the search space whereas a decrease in t makes
the acceptable region smaller [114]. Furthermore, the adjustment of the proxim-
ity measure needs to be done appropriately and different adjustment schemes are
presented in [74, 76, 114]. However, the general idea is that if our approximation
is inconsistent and fails to model f , then we can decrease t in order to concen-
trate the search on a smaller neighbourhood of the current iteration point xk.
Correspondingly, we can increase the value of t whenever the model described f
correctly in order to speed up the execution of the method.

To obtain the search direction dk, we need to minimize the nonsmooth strictly
convex problem (4.7). Unfortunately, in this form the optimization problem is
challenging to solve due to nonsmoothness. However, the specific structure of
f̂k enables us to rewrite (4.7) easily as a smooth strictly convex optimization
problem with a quadratic objective and linear constraints [93]. More precisely the
reformulation is stated as





min v + 1
2t‖d‖2

s. t. ξTj d− βk
j ≤ v for all j ∈ Jk

v ∈ R, d ∈ Rn.

(4.8)

Therefore, we are able to utilize the powerful tools of smooth convex analysis and
use a quadratic solver designed for linearly constrainted problems [90]. Instead of
problem (4.8) it is also possible to solve its dual counterpart which is presented
in a general form, for example, in [93]. This can ease the solution process, since
the dual formulation is typically easier and less time-consuming to solve than the
primal problem (4.8).

4.3 Determination of a new iteration point

After the search direction dk is computed the next step is to decide how the new
iteration point xk+1 is calculated. Unfortunately, a simple choice xk+1 = xk +dk
is not enough to guarantee global convergence of the proximal bundle method.
Moreover, the straightforward minimization of the function f along the direction
dk is not always sufficient either. One reason for this is that even though dk is a
descent direction for the model f̂k it may be a nondescent direction for f . Second,
whenever f is decreased this reduction needs to be sufficiently large since otherwise
we may have infinitely many steps with only a marginal decrease which can impair
the convergence [96]. Thus, we need more sophisticated ways to determine xk+1.
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This determination is started by computing a new auxiliary point yk+1. In the
nonconvex case, we need to perform a specific line search (see, e.g., [72, 96]) along
the direction dk to generate it. Thus, this procedure yields the stepsize tkL > 0
after which we set yk+1 = xk + tkLdk. In the convex case, the proximity measure
eases this calculation and it is not obligatory to use a line search procedure even
though it can speed up the performance of the method. Instead, we can directly
select the stepsize tkL = 1 and set as a new auxiliary point yk+1 = xk + dk.

After the auxiliary point is obtained characteristic to bundle methods is to
decide whether we perform a serious step or a null step. In order to do a serious
step, the decrease in the objective function needs to be significant. Since the
cutting plane model provides the predicted amount of descent

vk = f̂k(xk + dk)− f(xk) < 0,

we require that the real decrease of f is at least some sufficient percentage of the
predicted one. This means that a serious step is done by setting xk+1 = yk+1 if

f(yk+1)− f(xk) ≤ mtkLvk, (4.9)

where m ∈ (0, 1/2) is a descent parameter. After this we calculate ξk+1 ∈ f(xk+1)
and add a new element (xk+1, f(xk+1), ξk+1) into the bundle before starting a new
iteration.

When condition (4.9) is not satisfied we perform a null step and set xk+1 = xk.
Since the model is inconsistent we need to improve it to get a more accurate ap-
proximation. Therefore, before starting a new iteration, we insert into the bundle
a new element (yk+1, f(yk+1), ξk+1) calculated at the auxiliary point yk+1 where
ξk+1 ∈ ∂f(yk+1). In the convex case, this new element always improves the model.
However, without the line search a similar improvement is not always guaranteed
in the nonconvex case. Due to this, the auxiliary point yk+1 is calculated with this
specific procedure forcing a significant modification into the cutting plane model
whenever a null step is done.

The basic structure of the proximal bundle method is presented in Figure 4.4.
From this flowchart we see that the proximal bundle method consists of a sequence
of null and serious steps and the execution of the algorithm is continued until the
desired accuracy is achieved. Typically the predicted descent vk (or its modifica-
tion) is used as a stopping condition guaranteeing Clarke stationarity. That is,
the execution can be stopped, for example, when |vk| ≤ ε where ε > 0 is a final
accuracy parameter supplied by the user [10].

The global convergence of the proximal bundle method is proved under the as-
sumption of upper semi-smoothness [18] for a locally Lipschitz continuous function
which is neither necessarily convex nor differentiable. In addition, for a convex
f we can guarantee that a Clarke stationary point is always a global minimizer.
For a nonconvex function, this kind of a result does not hold without some extra
assumptions and, thus, we only know that the algorithm converges to a Clarke
stationary point.

To implement the proximal bundle method, the size of Bk has to be bounded.
The reason for this is that the larger the bundle Bk is, the more memory is required
and the more difficult problem (4.8) becomes. One option to limit the size of Bk
and still guarantee the global convergence is to utilize a subgradient aggregation
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strategy [72], which uses an aggregated subgradient and linearization error to
accumulate information from the previous iterations. Even with this option the
number of stored subgradients is typically related to the dimension of the problem
and, thus, the standard bundle method is developed only for small- and medium-
scale problems.

Initialization:
Select x0 ∈ Rn and the proximity measure
t > 0. Calculate ξ0 ∈ ∂f(x0) and initialize

B0 = {(x0, f(x0), ξ0)}. Set k = 0.

Search direction:
Determine dk by

solving problem (4.7)

Update t and
set k = k + 1

Desired
accuracy ?

STOP with
x∗ = xk as the
final solution

Line search:
Evaluate the

auxiliary
point yk+1

Is the descent in f
enough ?

Null step:
Set xk+1 = xk

and update
the bundle Bk

Serious step:
Set xk+1 = yk+1 and
update the bundle Bk

Yes

No

No

Yes

Figure 4.4: The basic structure of the proximal bundle method



Chapter 5

Usage of the DC structure in
bundle methods

In this chapter, we review shortly original Publications I−III, where proximal bun-
dle methods for nonsmooth DC optimization are designed. Thus, instead of general
nonconvex objective functions we restrict our consideration on DC functions. As
we have already seen, the class of DC functions is very broad and constitutes an
important subclass of nonconvex functions.

The benefit of our choice enables us to utilize explicitly the DC structure of
the objective in the model construction. This way we are able to build a convex
cutting plane model separately for both convex DC components. In addition, by
combining these separate models we obtain a new nonconvex DC cutting plane
model capturing both the convex and concave behaviour of the objective. This
way we obtain a more accurate approximation of a nonconvex objective since
the convex cutting plane model (4.5) used in nonconvex bundle methods can be
replaced with it.

In the following, we first introduce the new cutting plane model and show
how it yields a search direction together with a new iteration point. After that
we highlight the main aspects of three different bundle methods utilizing this
new model. Publication I introduces the first method, the so-called proximal
bundle method (PBDC), designed for unconstrained DC problems (3.1). This
method is proved to find ε-critical points. Since critical points have some poor
properties, the double bundle method (DBDC) based on a stronger optimality
condition is designed in Publication II. The main difference to the PBDC is the new
escaping procedure which guarantees Clarke stationarity of the obtained solution.
Similar to the PBDC, the DBDC is also designed for unconstrained DC problems
(3.1). Lastly, we present the multiobjective double bundle method (MDBDC)
for problem (3.6) developed in Publication III. This method is the successor of
the DBDC capable of handling multiobjective DC problems together with DC
constraints.

27
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5.1 Model for a DC function

We start with presenting the new cutting plane model of a DC function. Charac-
teristic to bundle methods we assume that some information about the objective
is provided at each point x ∈ Rn. However, since the DC decomposition is utilized
the following requirement differs from the one presented in Assumption 4.1.

Assumption 5.1. At each point x ∈ Rn we can evaluate the value of the DC
components f1(x) and f2(x) and two arbitrary subgradients ξ1 ∈ ∂f1(x) and
ξ2 ∈ ∂f2(x).

With this assumption we can guarantee that at each point we obtain the same
amount of information about both DC components. In addition, this requirement
is typically quite easy to satisfy if the DC decomposition of the objective is known.
Therefore, it is important to have the exact DC decomposition, since otherwise
the DC structure cannot be utilized.

The main idea is to approximate both DC components separately. Therefore,
we form for each DC component its own bundle (4.1) approximating its sub-
differential. This means that at the current iteration point xk ∈ Rn we have two
separate bundles, which are denoted by

B i
k = {(yj , f

i(yj), ξ
i
j)) | j ∈ J i

k} for i = 1, 2, (5.1)

where the superscript i tells the DC component in question and ξij ∈ ∂f i(yj). In
addition, the index sets J1

k and J2
k need not to be similar. However, the current

iteration point xk is always assumed to belong to both bundles.
To utilize the DC structure in the model construction, we first form the clas-

sical convex cutting plane model (4.3) for both DC components. Therefore, the
approximation of the DC component f i is constructed with the formula

f̂ ik(x) = max
j∈Ji

k

{
f i(xk) + (ξij)

T (x− xk)− αk
j,i

}
for i = 1, 2,

where αk
j,i is the linearization error calculated for f i and it can be obtained from

(4.4) by replacing the function f with f i and the subgradient ξj with ξij .
The new model of the original DC function f is formed by combining the

separate approximations of its DC components f1 and f2. This yields a nonconvex
DC cutting plane model

f̃k(x) = f̂1k (x)− f̂2k (x), (5.2)

which is piecewise linear and captures both the convex and concave behaviour of f .
Therefore, the main advantage of the model is its ability to produce a more realistic
and accurate approximation of a nonconvex objective than the convex model (4.5).
Another benefit is that the new model coincides with f at the current iteration
point xk. Therefore, it is enough to use the linearization errors αk

j,i for i = 1, 2 and
we avoid the somewhat arbitrary downward shifting of linearizations often used in
nonconvex bundle methods.

To better illustrate the differences between approximations (4.5) and (5.2), we
have presented one example of the new nonconvex DC cutting plane model for a
DC function f = f1 − f2 with DC components f1(x) = max{x2 + x+ 2,−x+ 2}
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Figure 5.1: The convex cutting plane models of the DC components

and f2(x) = max{0.5x2, x+1}. This nonconvex function is already used in Figure
4.3 to demonstrate model (4.5) and, thus, linearizations of both DC components
are also formed at points −3, −1 and 1. With this selection we obtain the convex
cutting plane models of the DC components presented in Figure 5.1. The overall
approximation of f is seen in Figure 5.2 and this model is able to describe quite
correctly the behaviour of the nonconvex f , even though we use only three points
in the model construction. This differs from model (4.5) presented in Figure 4.3,
since that model is not able to capture the real structure of f due to the convexity
of the model. This supports the conclusion that it is beneficial to use the new
nonconvex DC model (5.2) to approximate nonconvex DC functions.
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Figure 5.2: The nonconvex DC cutting plane model of the nonconvex DC function

5.2 Direction finding and a new iteration point

To determine the search direction dk ∈ Rn, we need to globally minimize the
problem

{
min f̃k(xk + d) + 1

2t‖d‖2
s. t. d ∈ Rn.

(5.3)
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Unlike (4.7) this direction finding problem is nonconvex if |J2
k | ≥ 2 and this is the

price we have to pay for the more accurate model. Therefore, problem (5.3) is
more difficult to solve than a convex one since the global minimizer needs to be
distinguished from local minimizers. In general, this is not an easy task. However,
problem (5.3) has a specific DC structure which makes it possible for us to solve
it globally quite easily with an approach described in [82, 83, 107].

In the approach, the main observation is that the cutting plane model (5.2)
can be rewritten in a form which enables us to divide problem (5.3) into separate
subproblems. Thus, instead of (5.3) we can solve for each j ∈ J2

k a nonsmooth
convex subproblem

{
min f̂1(xk + d)− f2(xk)− (ξ2j )Td+ αk

j,2 + 1
2t‖d‖2

s. t. d ∈ Rn
(5.4)

and the global minimizer dk for (5.3) is obtained by selecting the best solution
among the subproblem minimizers. In addition, for each j ∈ J2

k subproblem (5.4)
can be reformulated as a convex quadratic programming problem





min v + 1
2t‖d‖2

s. t. (ξ1i − ξ2j )Td− (αk
i,1 − αk

j,2) ≤ v for all i ∈ J1
k

v ∈ R, d ∈ Rn

and this problem is of the same form as (4.8). Therefore, to obtain the global
minimizer dk we need to solve |J2

k | smooth subproblems or their dual counterparts.
Moreover, the larger the bundle B2k is, the more time-consuming it is to determine
the search direction, but at the same time we are able to improve the accuracy of
the approximation of the objective f . This shows that the nonconvex DC model
increases the computational burden, since for the convex model (4.5) it is enough
to solve only one smooth problem (4.8). However, the only requirement for the size
of the bundle B2k is that |J2

k | ≥ 1. Thus, we can control the amount of computation
used.

After the search direction dk is obtained, we set yk+1 = xk + dk as a new
auxiliary point and decide whether we execute a serious step or a null step. Note
that we do not need to perform a line search even though the objective f is
nonconvex. Another nice feature of the new model f̃k is that it provides us the
predicted amount of descent

ṽk = f̃k(xk + dk)− f(xk) < 0.

Thus, if the decrease in the objective satisfies the condition

f(yk+1)− f(xk) ≤ mṽk < 0

with the descent parameter m ∈ (0, 1/2), we perform a serious step by setting
xk+1 = yk+1 and inserting a new element calculated at xk+1 into both bundles
B1k and B2k. Otherwise a null step is executed and xk+1 = xk. In this case, we
improve the model either by updating the proximity measure t or by inserting a
new element obtained at yk+1 into B1k. A new element can also be inserted into
B2k, but this insertion is not obligatory and can be done when needed.
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5.3 Proximal bundle method PBDC

In this section, we briefly introduce the proximal bundle method (PBDC) designed
in Publication I. This method is developed to solve a single-objective unconstrained
DC problem (3.1) and it utilizes the DC cutting plane model (5.2) together with
the direction finding problem (5.3) to determine a new iteration point.

The execution of the PBDC method is stopped at a point which is either critical
or ε-critical. As we have already seen criticality is a weaker optimality condition
than Clarke stationarity. However, criticality can be guaranteed easily by using
information about DC components and, thus, it can be seen as a natural optimality
condition for the PBDC method. In practise, the simplest way to test criticality is
to compare subgradients of the DC components at the current iteration point xk.
If the difference between those subgradients is smaller than some small stopping
tolerance δ > 0 then the point xk is critical and the algorithm can be stopped. By
replacing subgradients with ε-subgradients, we obtain a similar test for ε-criticality.

The basic structure of the PBDC method is illustrated in Figure 5.3. From
this flowchart we see that the method has all the characteristic steps used in the
standard proximal bundle method (see Figure 4.4). However, since ε-criticality is
guaranteed we use two different stopping conditions. The first condition is tested
at the beginning of an iteration whenever a serious step has yielded the current
iteration point xk and it simply tests if the point xk is critical by comparing
the arbitrary subgradients of the DC components at xk. The other, so-called
approximate stopping condition, is tested if the norm of the search direction dk
is small since in this case we have achieved either ε-criticality or our model is
inconsistent. To find out which one of these two options occurs, we remove from
the bundles B1k and B2k the elements which are not ε-subgradients at point xk.
This way we can construct approximations of the ε-subdifferentials of the DC
components at xk. After this we solve the quadratic minimization problem





min ‖ξ1 − ξ2‖
s. t. ξ1 ∈ conv

{
ξ1j | j ∈ J1

k

}

ξ2 ∈ conv
{
ξ2j | j ∈ J2

k

}

and its solution identifies the case, where the approximations of the ε-
sudifferentials of the DC components intersect. If ε-criticality is not verified in
this procedure, our model needs to be improved by decreasing the proximity mea-
sure t and this decrease together with other parameter updates are inspired by
[41, 42, 43].

The convergence of the method to an ε-critical point after a finite number of
steps is proved. This requires that the level set F0 = {x ∈ Rn | f(x) ≤ f(x0)}
is compact for a starting point x0 ∈ Rn and that the overestimates of Lipschitz
constants of the DC components are known. These requirements are not really
restrictive since the first one holds for well-defined problems (3.1) whereas the
second one is easily satisfied since any overestimate is acceptable.

Numerical experiments in Publication I show the good performance and effi-
ciency of the PBDC method. In addition, the results are compared with three
bundle methods [42, 43, 96], DCA [83] and the truncated codifferential method
[12] to validate the use of the bundle method explicitly utilizing the DC structure
in the model construction. The most interesting observation is that the PBDC is
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Figure 5.3: The flowchart of the proximal bundle method PBDC

nearly always able to produce the global minimizer or best known solution for test
problems. In addition, it outperforms the other tested methods in this feature.
Therefore, even though the PBDC is only a local method, it seems that the new
DC model is able to capture some relevant information about the objective which
helps to avoid local minimizers.
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5.4 Double bundle method DBDC

Even though criticality can be easily tested in algorithms utilizing the DC struc-
ture, its drawback is that a solution satisfying it does not need to be a local
optimum or even a saddle point. Thus, we may stop at a point having this type
of an undesirable feature without knowing it and one illustrative example of this
is presented in Publication II. In order to avoid this unwanted feature, the double
bundle method (DBDC) is developed in Publication II to strengthen the stopping
condition used in the PBDC. The DBDC is the successor of the PBDC method
that presents a new escaping procedure which either guarantees Clarke stationar-
ity at a candidate solution or generates a descent direction decreasing the value of
the objective.

The sketch of the DBDC is shown in Figure 5.4 and this flowchart closely
reminds of the one used in the PBDC (see Figure 5.3). The biggest difference is the
new escaping procedure which is utilized whenever a promising candidate solution
is encountered due to the fulfilment of the criticality condition or the small value of
the norm of the search direction. With the escaping procedure we produce a point
x+ and if it coincides with xk we have obtained approximate Clarke stationarity
and the DBDC algorithm can be stopped. Otherwise, we execute a serious step
since x+ significantly decreases the value of the objective.

The novelty of the escaping procedure lies in its ability to ensure that the dif-
ference of subgradients of the DC components belongs to the subdifferential of the
original DC function and as we have already seen this is not true in general. There-
fore, the selection of subgradients of the DC components needs to be done with
care and the main tool in this selection is provided by the directional derivative.
First, we know that the directional derivative for a DC component f i, i = 1, 2, at
x ∈ Rn into a direction d ∈ Rn can be obtained with the formula (see, e.g., [10])

(f i )′(x;d) = max
{
ξTd | ξ ∈ ∂f i(x)

}

giving a link to the subdifferential ∂f i(x). In addition, for any d ∈ Rn, d 6= 0, we
can define by

Gi(x;d) =
{
ξ ∈ ∂f i(x) | ξTd = (f i )′(x;d)

}

the set of the subgradients yielding the directional derivative of f i. One of the
main results in Publication II is the following useful theorem:

Theorem 5.2. Let f = f1−f2 be a DC function and x ∈ Rn. If G1(x;d) = {ξ1}
and G2(x;d) = {ξ2} are singletons for some d ∈ Rn then ξ1 − ξ2 ∈ ∂f(x).

Therefore, if there exists only one subgradient for both DC components yielding
the directional derivative, the subgradient of the DC function can be obtained by
calculating those specific subgradients. Nevertheless, the result in Theorem 5.2
depends on the direction and does not necessarily hold if this selection is done
arbitrarily.

In the escaping procedure presented in Figure 5.5, the aim is to detect whether
a candidate solution xk is Clarke stationary or not. Thus, during the execution
of this algorithm we build an approximation U of the Goldstein ε-subdifferential
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Initialization:
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Figure 5.4: The flowchart of the double bundle method DBDC

∂Gε f(xk) (see definition (2.2)) of the DC function f for some small ε > 0 such that
U ⊆ ∂Gε f(xk). By solving the norm minimization problem

{
min 1

2‖u‖2
s. t. u ∈ U,

we obtain the solution u∗ yielding the minimum norm in the approximation of
∂Gε f(xk). If this minimum norm is smaller than the stopping tolerance δ > 0,
then the execution of the escaping procedure can be stopped since u∗ is close
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Initialization:
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Figure 5.5: The flowchart of the escaping procedure

to the zero vector and yields approximate Clarke stationarity of xk. Otherwise a
search direction d∗ is formed by utilizing u∗. If this new direction gives a sufficient
descent in the value of the objective, then the point xk is not Clarke stationary and
we can exit from the procedure with a new better iteration point. Otherwise, the
approximation of the Goldstein ε-subdifferential needs to be improved with a new
subgradient generated at a point x̃ ∈ B(xk; ε) by using the direction d∗ and the
DC components. Since the result in Theorem 5.2 may not hold for a fixed direction
we show in Publication II that a small controlled change in d∗ is always permitted
and yields a direction d such that the sets G1(x̃;d ) and G2(x̃;d ) are singletons
and Gi(x̃;d ) ⊆ Gi(x̃;d∗) ⊆ ∂f i(x̃) for i = 1, 2. Thus, the subgradient of the
objective f can be computed by defining the subgradients of the DC components
which give the directional derivatives into the directiond .

The finite convergence of the DBDC method to an approximative Clarke sta-
tionary point is ensured when two assumptions are fulfilled. The first one is the
same as in the PBDC requiring that the level set F0 = {x ∈ Rn | f(x) ≤ f(x0)}
is compact for a starting point x0 ∈ Rn. The second one assumes that the sub-
differentials of the DC components are polytopes at each x ∈ Rn and it is required
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when we show that the escaping procedure stops after a finite number of steps.
Therefore, the second assumption differs from the one used in the PBDC, but it
is not very restrictive since it nearly always holds in practical applications.

The performance of the DBDC is tested in numerical experiments. The com-
parison with the PBDC shows that the DBDC maintains the good ability of the
PBDC to find global minimizers and it even succeeds in finding a better solution
than the PBDC method in a couple of test problems. In addition, the DBDC
is efficient to solve the test problems, but it sometimes requires a little bit more
computational effort than the PBDC. This is mainly due to the new escaping pro-
cedure. However, it cannot be seen as a real disadvantage since we are able to
guarantee a stronger optimality condition.

5.5 Multiobjective double bundle method
MDBDC

In the two previous sections, we have presented methods for single-objective and
unconstrained DC optimization. Therefore, to cover a wider set of problems, the
multiobjective double bundle method (MDBDC) is designed in Publication III to
extend the DBDC also to multiobjective and constrained DC problems (3.6). It
is worth to note that this extension can be used to solve also single-objective DC
problems with DC inequality constraints.

To solve problem (3.6), we need to handle several objectives and inequality
constraints. A useful strategy for this is to utilize the improvement function [71,
123] which is employed, for example, in the multiobjective proximal bundle method
(MPB) [95, 97] inspiring the framework used in the MDBDC. For problem (3.6),
the improvement function H : Rn × Rn → R is defined by

H(x,y) = max{fi(x)− fi(y), gl(x) | i ∈ I, l ∈ L}.

This function has three important elementary properties giving a justification for
its use.

Theorem 5.3. [95, 123] The improvement function H(·,y) has the following prop-
erties:

(i) If the solution x∗ ∈ X is globally weakly Pareto optimal for problem (3.6),
then

x∗ = arg min
x∈Rn

H(x,x∗).

(ii) If 0 ∈ ∂H(x∗,x∗) then the solution x∗ ∈ X is weakly Pareto stationary for
problem (3.6).

(iii) If H(x,y) < H(y,y), x ∈ Rn, y ∈ X then fi(x) < fi(y) for all i ∈ I and
gl(x) < 0 for all l ∈ L.

The properties (i) and (ii) of Theorem 5.3 give a link between the original
problem (3.6) and the improvement function. Therefore, the aim is to modify the
single-objective DBDC method to find a Clarke stationary solution x∗ ∈ X for
the improvement function H(·,x∗) (i.e. 0 ∈ ∂H(x∗,x∗)) since such a solution is
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weakly Pareto stationary for the original multiobjective problem (3.6). For this
reason, we determine the search direction dk ∈ Rn at the current iteration point
xk by solving the single-objective unconstrained problem

{
min H(xk + d,xk)

s. t. d ∈ Rn.
(5.5)

Additionally, the last property of Theorem 5.3 guarantees that a descent direction
for the improvement function is also a descent direction for the original problem
(3.6) in a sense that it decreases the values of all the objectives simultaneously
and also maintains feasibility. Thus, the benefit of the improvement function
springs from the ability to state the multiobjective and constrained problem as
an unconstrained single-objective one and at the same time maintain a useful link
between the problem and its transformation.

In order to solve problem (5.5), we need to build a model approximating the
nonsmooth objective. First, we notice that the improvement function H(·,y) is
a DC function by using the case (ii) of Proposition 3.2 and for such a function
the DC decompostion is easily formulated as in [57]. To write it, we let the DC
decompositions of fi and gl be fi = f1i − f2i for i ∈ I and gl = g1l − g2l for l ∈ L.
With this selection the DC decomposition of H(·,y) can be presented in the form

H(x,y) = H1(x,y)−H2(x)

with DC components

H1(x,y) = max{Ai(x,y), Bl(x) | i ∈ I, l ∈ L} and

H2(x) =
∑

i∈I
f2i (x) +

∑

l∈L
g2l (x),

where

Ai(x,y) = f1i (x) +
∑

j∈I
j 6=i

f2j (x) +
∑

t∈L
g2t (x)− fi(y) and

Bl(x) = g1l (x) +
∑

t∈L
t6=l

g2t (x) +
∑

i∈I
f2j (x).

Therefore, we can utilize a DC cutting plane model resembling (5.2) since both
DC components H1(·,y) and H2 are convex with respect to x and the vector y is
treated as a constant.

To construct a model at the current iteration point xk ∈ Rn, we assume that
each fi and gl satisfies Assumption 5.1. Thus, we calculate the corresponding
information about DC components for each objective and constraint at an auxiliary
point yj ∈ Rn. With it we can easily compute the values of Ai(yj ,xk), Bl(yj),
H1(yj ,xk) and H2(yj) and their subgradients by using the subdifferential calculus
rules of convex functions [10]. This shows that at any yj ∈ Rn we obtain with
a small effort a linearization for each Ai(·,xk) and Bl. Therefore, we form a
bundle (4.1) for each Ai(·,xk) and Bl which together constitute the bundle B1k
of H1(·,xk). Since we also get one linearization for the second DC component
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H2 at yj we can directly construct the bundle B2k for H2 with formula (4.1) and
this bundle does not differ from (5.1) used for the second DC component in model
(5.2).

The separate bundles of Ai(·,xk) and Bl mean that we can construct the
classical convex cutting plane model (4.2) for each Ai(·,xk) and Bl at the current
iteration point xk. In the following, they are denoted by Âk

i and B̂k
l , respectively.

Therefore, the convex cutting plane model of the first DC component is

Ĥ1
k(x) = max{Âk

i (x), B̂k
l (x) | i ∈ I, l ∈ L}.

However, the treatment of the second DC component H2 does not differ from
Section 5.1 and, thus, its approximation Ĥ2

k is the convex cutting plane model
(4.2). By combining the approximations of the DC components, the DC cutting
plane model of the improvement function is

H̃k(x) = Ĥ1
k(x)− Ĥ2

k(x).

This approximation has the same structure as model (5.2), but the main difference
is that we maintain a more accurate approximation of the first DC component. In
addition, the search direction problem

{
min H̃k(xk + d) + 1

2t‖d‖2
s. t. d ∈ Rn

(5.6)

closely reminds of (5.3) and, especially, the global solution dk ∈ Rn can be com-
puted in the same way as in Section 5.2.

The flowchart of the MDBDC method is presented in Figure 5.6. By compar-
ing the MDBDC and DBDC (see Figure 5.4), we notice that the overall structure
of these methods is identical, if we leave out of consideration the update of the
proximity measure t after a serious step in the MDBDC. This is due to the uti-
lization of the improvement function, since it enables us to nearly directly use the
DBDC method to minimize the unconstrained single-objective problem with the
DC cutting plane model of the improvement function as the objective. In addition,
the escaping procedure is executed like in Figure 5.5, but instead of f we use the
improvement function H(·,xk). Therefore, the MDBDC stops at a point x∗ ∈ Rn

which is Clarke stationary for the improvement function. Together with the case
(ii) of Theorem 5.3 this shows that the solution x∗ is weakly Pareto stationary for
the original problem (3.6) and x∗ ∈ X.

The convergence of the MDBDC is proved to a weakly Pareto stationary point
for problem (3.6) after a finite number of steps. In the unconstrained single-
objective case, we are also able to show a similar result, but the solution obtained
is Clarke stationary. Both convergence results require the fulfilment of two as-
sumptions and they resemble closely the ones used in the DBDC. First, the level
set F0 = {x ∈ X | fi(x) ≤ fi(x0) for all i ∈ I} defined at a starting point x0 ∈ X
needs to be compact. Second, we assume that the subdifferentials ∂H1(x,y) and
∂H2(x) are polytopes at each x ∈ Rn.

In the numerical experiments, the MDBDC is compared to the multiobjective
proximal bundle method MPB [95, 97] having a somewhat similar structure than
the MDBDC. Additionally, the MPB is designed for general multiobjective prob-
lems. The comparison of the numerical results show that the MDBDC has a good



Multiobjective double bundle method MDBDC 39
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Figure 5.6: The flowchart of the multiobjective double bundle method MDBDC

performance and it yields in 30 % of the test problems a better solution (i.e. every
objective has a better value) than the one obtained with the MPB. Furthermore,
in the large test problems (n > 100) the MDBDC uses nearly always significantly
less computational effort than the MPB. All in all, we can conclude that, if the DC
structure is known, it is beneficial to use the MDBDC method specially designed
for DC functions instead of the MPB method developed for general nonconvex
functions.
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Chapter 6

Utilizing concavity and
convexity in bundling

We have already seen that using the DC decomposition of the objective function
we can improve the performance of the bundle method and yield an accurate
approximation of the objective. Unfortunately, the useful DC structure is not
always available since we may be unable to write it or the objective function is
not a DC function. Thus, in such cases we cannot use the most evident way to
distinguish the convex and concave behaviour of the objective function. At the
same time we may face also a situation that an optimization problem has a large
number of variables. Therefore, the computational demand of the bundle methods
presented in Chapters 4 and 5 may grow to be too high and cause a failure in the
solution process. Due to this, it is important to have also tools to handle large-scale
problems.

In this chapter, we introduce another type of approach, which utilizes the lin-
earization error measuring the goodness of a linearization at the current iteration
point. This allows us to get some information about the convexity and concavity
of the objective function at the current iteration, even though the structure of the
objective may be unknown. In particular, if the linearization error is negative then
the linearization overestimates the objective function and the corresponding aux-
iliary point exhibits a “concave” behaviour with respect to the current iteration
point. Similarly the positive value of the linearization error means that we have
an underestimate of the objective function at the current iteration point and the
auxiliary point captures a “convex” behaviour. Therefore, by splitting the auxil-
iary points according to the sign of the linearization error, we can construct two
sets of points, which somehow capture implicitly local information about the DC
structure of the objective. In addition, the sizes of these sets can be kept limited,
which makes the approach suitable also for large-scale optimization.

Next, we are going to present how this type of divided information can be
utilized in the splitting metrics diagonal bundle method (SMDB) originally de-
veloped in Publication IV. This bundle method is designed for the unconstrained

41



42 Utilizing concavity and convexity in bundling

nonsmooth optimization problem of the form

{
min f(x)

s. t. x ∈ Rn,

where the objective f : Rn → R is semismooth (see, e.g., [18]) and the dimension
n is assumed to be large. This differs from the previous bundle methods since
they are developed only for small- and medium-scale problems. In addition, in-
stead of the DC structure required in the previous methods we now assume the
semismoothess of the objective.

6.1 Splitting the information in direction finding

The aim of the SMDB is to solve large-scale problems. However, when the dimen-
sion of the problem grows, the computational demand in the quadratic direction
finding problem (4.8) expands and this problem can be too complex and time-
consuming to be solved. Therefore, to handle large-scale problems we exploit the
same ideas as limited memory bundle methods [50, 51, 67]. This enables us to
utilize some characteristic features of the standard bundle methods, namely, null
steps, serious steps and a subgradient aggregation. In addition, the search di-
rection can be calculated by using a limited memory approach constructing an
approximation of the inverse of the Hessian matrix of the objective function and,
thus, the time-consuming quadratic direction finding problem does not need to
be solved. To form the approximation of the inverse matrix of the Hessian, we
especially utilize the diagonal update formula used in the diagonal bundle method
(D-bundle [67]) since this method has a good ability to handle the sparsity of the
problem together with large dimensionality. Another benefit is that for the diag-
onal update formula it is easy to check positive (or negative) definiteness of the
generated matrices.

In order to construct the approximation of the inverse of the Hessian, we need
some information about the objective function and, characteristic to bundle meth-
ods, we assume that Assumption 4.1 holds. Therefore, whenever we obtain a new
auxiliary point yk+1 ∈ Rn at the current iteration point xk ∈ Rn, we can gener-
ate a function value f(yk+1) and a subgradient ξ ∈ ∂f(yk+1). This information
provides us the linearization error

αk+1 = f(xk)− f(yk+1)− ξTk+1(xk − yk+1),

which is used in the SMDB method to detect the “convex” and the “concave”
behaviour of the objective function. More precisely, the point is said to exhibit a
“convex” or “concave” behaviour with respect to xk according to the positive or
negative sign of the linearization error αk+1, respectively. Therefore, as in [41, 46],
we use the sign of the linearization error to split the information into two separate
sets. This way we can maintain some information about the nonconvex structure of
the objective, since we do not directly perform the somewhat arbitrary downward
shifting by replacing linearization errors with subgradient locality measures.

Typically limited memory bundle methods, like the D-bundle, construct only
one approximation of the inverse of the Hessian matrix during each iteration.
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However, since we divide the auxiliary points into two sets based on the sign of
the linearization error, we want to generate different metrics for the convex and
concave behaviour of the objective. Therefore, the SMDB maintains two differ-
ent approximations of the inverse of the Hessian matrix. These approximations
are diagonal matrices and at the current iteration point xk they are denoted by
D+

k ∈ Rn×n and D−k ∈ Rn×n, where the supercript tells whether the points with
positive or negative linearization errors are used to generate them. The limited
memory diagonal update D+

k is called the “convex approximation” whereas D−k
is the “concave approximation”. In order to save storage space, both matrices are
constructed from the diagonal update formula introduced in [55] requiring only few
correction vectors to represent them. Therefore, instead of the whole matrices, it
is sufficient to store and manipulate for each approximation its own set of the cor-
rection vectors describing the essential knowledge about objective function values
and subgradients. In addition, D+

k is required to be positive definite whereas D−k
needs to be negative definite. Thus, depending on whether we calculate D+

k or
D−k , we add the requirement about positive or negative definiteness as a constraint
into the problem.

In the SMDB method, the diagonal approximations are used to calculate the
search direction. The “convex approximation” D+

k is used during iteration k, if
the linearization error is nonnegative or the previous step was a serious step. In
this case, the search direction is

dk = −D+
k ξ̃k,

where ξ̃k is an aggregated subgradient of the objective function. This subgradi-
ent is a convex combination of three previously calculated subgradients and it is
obtained with a procedure presented in [50, 51]. Therefore, the number of stored
subgradients can be kept limited since it is enough to store only three subgra-
dients. This is a big benefit compared to the standard bundle method, which
typically requires that the number of stored subgradients needs to grow with the
dimension of the problem. The “concave approximation” D−k , in turn, is utilized
if the linearization error is negative. However, D−k cannot be directly used, but we
need to determine the smallest value pk ∈ (0, 1) such that the convex combination
pkD

+
k + (1 − pk)D−k remains positive definite. Thus, we merge the concave and

convex information and the search direction is obtained by the formula

dk = −(pkD
+
k + (1− pk)D−k )ξ̃k.

6.2 Diagonal bundle method SMDB

The simplified structure of the splitting metrics diagonal bundle method (SMDB)
combining the D-bundle method [67] with the different usage of the metrics is
presented in Figure 6.1. Therefore, in some steps we utilize the knowledge about
the convex and concave behaviour of the objective function. However, the main
structure of the SMDB resembles the one used in the standard bundle method (see
Figure 4.4) and the execution of the SMDB is characterized with the usage of null
and serious steps.

In order to decide whether we perform a serious step or a null step after the
search direction is computed, we need to generate an auxiliary point yk+1. To
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obtain it, we perform a specific line search procedure presented in [50, 122] yielding
the stepsize tL > 0 and we set yk+1 = xk + tLdk. A necessary condition for the
serious step is that the decrease of the objective function is sufficient and, in this
case, we can set xk+1 = yk+1. In order to validate this, we calculate the predicted

descent vk from a specific formula utilizing the diagonal approximation D+
k and

test if the descent condition (4.9) holds. Otherwise we perform a null step and
xk+1 = xk. In this case, we calculate a new aggregated subgradient and improve
the diagonal approximations by computing either a convex or concave update.

Initialization:
Select x0 ∈ Rn. Calculate ξ0 ∈ ∂f(x0) and
initialize D+

0 = I. Set ξ̃0 = ξ0 and k = 0.

“Convex”
direction finding:
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k ξ̃k

Set k = k + 1
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STOP with
x∗ = xk as the
final solution

Line search:
Evaluate the point

yk+1, ξk+1 ∈ ∂f(yk+1)
and αk+1
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enough ?

Serious step:
If αk+1 ≥ 0 update D+

k+1.

Otherwise update D−
k+1.

Set xk+1 = yk+1

and ξ̃k+1 = ξk+1.
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Figure 6.1: The simplified flowchart of the diagonal bundle method SMDB
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The convergence result of the SMDB method shows that each accumulation
point of the sequence {xk} is Clarke stationary for the objective function. To prove
this two assumptions are required to hold. First, the objective function f needs
to be semismooth (see, e.g., [18]) and this is a typical requirement in nonconvex
bundle methods. Second, the level set F0 = {x ∈ Rn | f(x) ≤ f(x0)} is assumed
to be compact for the starting point x0 ∈ Rn used in the algorithm. Thus, the
latter assumption is the same as the one used in the bundle methods presented in
Chapter 5. However, semismoothness is not needed in those bundle methods due
to the usage of the DC structure. Instead, we need an assumption about the DC
components.

To validate the efficiency of the new SMDB method, we have used in our nu-
merical experiments a set of large-scale nonsmooth minimization problems with
up to one million variables. In addition, the results of the SMDB method are
compared with the ones obtained from two other limited memory bundle meth-
ods LMBM [50, 51] and D-bundle [67] to find out how the new splitting metrics
procedure affects the performance of the SMDB. The results show that the new
procedure is as efficient as the other methods developed for large-scale problems.
In addition, it is able to give some advantage over the traditional usage of the
subgradient locality measures in the nonconvex case. Therefore, we can conclude
that the SMDB method is a good option to solve nonsmooth optimization prob-
lems in the large-scale setting and it can be used to solve also extremely large-scale
problems.
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Chapter 7

Application to clusterwise
linear regression

Nowadays we are able produce and collect huge amounts of data. Therefore, there
exists an urgent need to analyse data efficiently and to transform it to useful
information. To answer this demand, data mining has developed to be an impor-
tant field providing efficient tools to classify and highlight useful features of data
and give support to decision making. In addition, optimization plays a crucial
role in this field since several applications of data mining can be modelled as an
optimization problem.

Data classification problems include, for example, clustering [79] and regression
analysis [49]. Clustering is an unsupervised classification technique, where the
aim is to divide a data set into subsets of similar objects in order to recognize
patterns in data. It is one of the most fundamental tasks in data mining and it is
applicable in nearly all areas of research including, for example, medical sciences
[17, 121], computer sciences [24, 63] and economics [80]. Regression analysis,
in turn, concentrates on fitting a regression function to a data set to estimate
the dependencies between variables. Therefore, regression analysis can be used
to discover trends in data and it has numerous applications which cover different
disciplices such as medical science [16], finance [32] and history [27], to name a few.
When we have some preliminary knowledge about a data set, we can select some
specific structure for the regression function. For example, in linear regression
we adjust a hyperplane to a data set. Thus, linear regression consists of finding
a linear relationship describing how one or more variables vary as a function of
another variable.

By combining clustering and linear regression analysis, we obtain another clas-
sification problem, the so-called clusterwise linear regression (CLR). The goal in
CLR is to simultaneously divide a data set into mutually exclusive subsets (or
clusters) and to form a hyperplane for each cluster to approximate it. CLR has
several applications including, for example, the consumer benefit segmentation
[124], market segmentation stock-exchange [112], metal inert gas welding process
[44], rainfall prediction [11] and PM10 prediction [110].

In this chapter, we review shortly a new approach to solve CLR problems orig-
inally presented in Publication V. The novelty of this method relies on the utiliza-
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tion of the support vector machines (SVM) approach to model the CLR problem.
This way we obtain a new nonsmooth DC formulation of the CLR problem, which
is solved by combining the DBDC method with an incremental algorithm [13]. In
the following, we give a more detailed description of the approach.

7.1 SVM for clusterwise linear regression

In CLR, we consider a given data set

A = {(ai, bi) ∈ Rn × R | i = 1, . . . ,m}.

The goal is to partition this set into k clusters and at the same time fit a hyperplane
to each cluster to capture a linear trend in that subset of data. Moreover, each
point in A needs to be assigned to exactly one cluster in such a way that each
cluster is nonempty. Our aim is to formulate a model capable of solving this
problem efficiently.

In many CLR models (see, e.g., [13, 14, 25]), the deviation of the point (ai, bi) ∈
A from the closest hyperplane

f(a) = aTx+ y (7.1)

with coefficients x ∈ Rn and y ∈ R is penalized, if the point is not located
exactly on this hyperplane. This means that even small perturbations are taken
into account, even though in a larger scale they may be nearly insignificant. In
addition, many data sets typically contain some noise. Therefore, it would be more
reasonable to allow small perturbations from the hyperplanes without penalizing
them. This kind of idea is utilized in the SVM for the regression method [31, 116],
where one hyperplane is fitted to the data set A. In order to generalize this
approach to the CLR problems, we first introduce briefly the SVM approach for
linear regression.

In ε-SVM linear regression, we are looking for one hyperplane of the form (7.1)
to approximate the set A with a precision ε > 0. Therefore, the coefficients x
and y of the hyperplane need to be determined in such a way that at each point
(ai, bi) ∈ A the deviation between f(ai) and the obtained target bi does not exceed
the tolerance ε. Moreover, the hyperplane should be as flat as possible, meaning
that we minimize the norm of x. This regression problem can be modelled as a
constrained nonsmooth optimization problem





min 1
2‖x‖2

s. t. |xTai + y − bi| ≤ ε, i = 1, . . . ,m

x ∈ Rn, y ∈ R.

(7.2)

The disadvantage of this formulation is that it is does not necessarily have any
feasible solution, if there does not exist any hyperplane approximating all data
points with the required accuracy ε. Thus, it is beneficial to relax the formula-
tion to guarantee feasibility. This can be done by utilizing the penalty function
approach [127], which enables us to rewrite (7.2) as an unconstrained convex non-
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smooth minimization problem
{

min 1
2‖x‖2 + C

∑m
i=1 max

(
0,
∣∣xTai + y − bi

∣∣− ε
)

s. t. x ∈ Rn, y ∈ R,
(7.3)

where C > 0 is a regularization or penalty parameter. We see that similar to (7.2)
small perturbations are not punished in the model. However, the set of acceptable
solutions is enlarged and this yields more “freedom” in the solution process.

In the CLR problem, our aim is similar, but we adjust k hyperplanes to approx-
imate the data set A with a precision ε > 0. Let xj and yj be the coefficients of the
jth hyperplane. Therefore, the vectors x = (x1, . . . ,xk)T and y = (y1, . . . , yk)T

represent the combined values of the regression coefficients of the hyperplanes. By
utilizing the same idea as in (7.2), the SVM-CLR problem can be stated in the
form





min 1
2

∑k
j=1 ‖xj‖2

s. t. min
j=1,...,k

∣∣(xj)Tai + yj − bi
∣∣ ≤ ε, i = 1, . . . ,m

x ∈ Rnk, y ∈ Rk.

In the spirit of (7.3), we can rewrite it as an unconstrained nonsmooth minimiza-
tion problem {

min Fk(x,y)

s. t. x ∈ Rnk, y ∈ Rk,
(7.4)

where the objective function is

Fk(x,y) =
1

2

k∑

j=1

‖xj‖2 + C

m∑

i=1

max

(
0, min

j=1,...,k

∣∣(xj)Tai + yj − bi
∣∣− ε

)
. (7.5)

Unlike (7.3) problem (7.4) is nonconvex and this is due to the fact that we fit
several regression functions simultaneously.

One benefit of the new SVM-CLR formulation (7.4) is that it allows us to
omit small perturbations in the model unlike in many other CLR formulations. In
addition, the objective function (7.5) is a DC function and, thus, we can utilize
the DC structure to obtain a solution. In order to write the DC representation,
we start with denoting by

ei(x
j , yj) =

∣∣(xj)Tai + yj − bi
∣∣

the error of the point (ai, bi) ∈ A from the jth hyperplane. This enables us to
write the DC representation of (7.5) in the form

Fk(x,y) = F 1
k (x,y)− F 2

k (x,y)

with DC components

F 1
k (x,y) =

1

2

k∑

j=1

‖xj‖2 + C

m∑

i=1

max

{
k∑

j=1

ei(x
j , yj), max

j=1,...,k

k∑

t=1,t6=j

ei(x
t, yt) + ε

}

and F 2
k (x,y) = C

m∑

i=1

(
max

j=1,...,k

k∑

t=1,t6=j

ei(x
t, yt) + ε

)
.
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7.2 Double bundle method DB-SVM-CLR

To solve the SVM-CLR problem (7.4), the modified double bundle method (DB-
SVM-CLR) is introduced in Publication V. The method is inspired by the DBDC
method presented in Section 5.4 offering an efficient way to utilize the DC structure
of (7.4) in the solution process. However, the SVM-CLR problem has several local
solutions and, thus, the aim is to locate global or near global ones, since they are
the most useful and significant solutions. This is in general a challenging task
and it strongly depends on the choice of the starting point. Therefore, in order
to provide good starting points, the DB-SVM-CLR method combines the DBDC
with a modified version of the incremental algorithm [13].

The main idea in the incremental algorithm is to build clusters as well as
hyperplanes incrementally. This means that the solution of the (k−1)th SVM-CLR
problem, which fits k − 1 hyperplanes into the data set, is used to produce good
starting points for the kth SVM-CLR problem. In this step, the central role is on
the so-called kth auxiliary SVM-CLR problem presented in Publication V. In the
kth auxiliary problem, the best position of one new hyperplane is searched among
the hyperplanes obtained from the solution of the (k − 1)th SVM-CLR problem.
This auxiliary problem is also a DC problem and it is easer and less time-consuming
to solve than the original problem. The auxiliary problem is solved starting from
several different initial points and this provides a set of starting points for the
kth SVM-CLR problem. Thus, we may obtain several different solutions for the
kth SVM-CLR problem. After the best solution is selected we can continue the
incremental algorithm by adding a new hyperplane.

The DB-SVM-CLR method is presented in Figure 7.1 highlighting the basic
structure of the incremental algorithm. First, the method is started by adjusting
one hyperplane to the whole data set and, in this case, the corresponding opti-
mization problem is actually convex and easy to solve. After this a new hyper-
plane is added one at a time until the required number of hyperplanes is reached.
Therefore, by solving the kth SVM-CLR problem, we obtain as a by-product a
solution for each smaller SVM-CLR problem. In addition, whenever the auxiliary
SVM-CLR problem or the SVM-CLR problem is solved we use the DBDC method
introduced in Section 5.4 since both problems are unconstrained and have a DC
function as the objective. The sets S1 and S2 are used to denote the starting points
for the auxiliary SVM-CLR problem and the SVM-CLR problem, respectively. For
a more detailed description of the selection of these sets see [13].

The solution for each SVM-CLR problem solved during the execution of the
DB-SVM-CLR is proved to be approximately Clarke stationary. This result di-
rectly follows from the convergence result of the DBDC method and the fact that
the DBDC is applied a finite number of times during the process of adjusting new
hyperplanes. Therefore, the convergence of the DB-SVM-CLR method requires
the fulfilment of the same two assumptions as the DBDC. However, the formula-
tion of the auxiliary SVM-CLR problem and the SVM-CLR problem guarantees
that both assumptions are trivially satisfied.
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Initialization:

Adjust one hyperplane to
the whole set A. Set l = 1.

Set l = l + 1.
Stopping condition:

l > k ?

Initialization of auxiliary
SVM-CLR problem:

Use the solution of the (l − 1)th
SVM-CLR problem to define

a set S1 of starting points
for the lth auxiliary problem.

Auxiliary SVM-CLR problem:

Apply the DBDC method to
solve the lth auxiliary problem
starting from each point in S1.

Initialization of
SVM-CLR problem:

Use the solutions of the lth aux-
iliary SVM-CLR problem to

define a set S2 of starting points
for the lth SVM-CLR problem.

SVM-CLR problem:

Apply the DBDC method to
solve the lth SVM-CLR problem
starting from each point in S2.

Choose the best solution.

STOP

Yes

No

Figure 7.1: The flowchart of the double bundle method DB-SVM-CLR

7.3 Numerical results

To confirm the efficiency and reliability of the DB-SVM-CLR method, numerical
experiments are performed in Publication V. The results are compared with a
frequently used piecewise quadratic fit function

F̂k(x,y) =

m∑

i=1

min
j=1,...,k

{(
(xj)Tai + yj − bi

)2}
(7.6)

in order to validate the reliability of the new SVM-CLR formulation for the CLR
problem and to give motivation for its usage. Note that the fit function (7.6) is
often used to formulate the CLR problem [13, 14, 69] and we use the LMBM-CLR
method [69] to minimize it. Therefore, by drawing the hyperplanes obtained with
the fit function and the SVM-CLR formulation we can compare and illustrate the
main differences in the solutions.

In the numerical results, we have concentrated on demonstrating the ability
to find hyperplanes in two types of data structures. Altogether, we have used six
different data sets and three of them are generated based on hyperplanes whereas
three others are constructed using known clusters. To illustrate here the results
in both data structures, we have selected data sets Two Lines and Clusters 1 from
Publication V.
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Figure 7.2 shows the performance in Two Lines data, which is generated by
using two hyperplanes and by adding some noise and distinctive outliers. The
results clearly show that the solution obtained by using the fit function (7.6) is
considerably affected by outliers. Therefore, we are not able to detect the correct
hyperplanes. However, the new SVM-CLR formulation (7.5) is a lot more reliable
since outliers do not distort the solutions and the hyperplanes are placed correctly.

The same kind of observation can also be made in Clusters 1 data, which
is generated based on four known clusters. The results of both the SVM-CLR
formulation (7.5) and the fit function (7.6) are presented in Figure 7.3 showing
that the performance of the fit function is again distorted by outliers. In this case,
it means that one hyperplane out of three is placed to approximate the outliers.
Thus, only two hyperplanes are able to approximate the clusters. The SVM-CLR
formulation, in turn, is able to place all hyperplanes quite correctly and in this
way captures more useful information about the data set.

All in all, the numerical results show that the new SVM-CLR formulation
(7.5) outperforms the fit function (7.6) in nearly all test problems. Unlike the fit
function, the SVM-CLR model is also able to distinguish hyperplanes correctly in
the cases, where data points cover the input space quite evenly. In addition, a
significant feature of the new model is the ability to tolerate outliers, which often
appear in data sets. Therefore, we can conclude that the DB-SVM-CLR method
is a robust and useful alternative to solve CLR problems.
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Figure 7.2: Result for Two Lines data set with two adjusted hyperplanes
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Figure 7.3: Result for Clusters 1 data set with three adjusted hyperplanes



Chapter 8

Conclusions

The existing bundle methods are considered to be efficient and reliable methods
for nonsmooth optimization (NSO). The power of these methods typically rely on
the bundling of subgradients and a convex cutting plane model of the objective
function, which in the convex case gives a good estimate for the problem. However,
in the nonconvex setting, a convex cutting plane model is not able to describe
the concave behaviour of the objective, which can result in an inaccurate model
unable to capture the most relevant parts of the nonconvex objective function.
Therefore, in this dissertation, we have focused on developing new bundle methods
for nonsmooth DC optimization, where the objective function is assumed to be
a difference of two convex (DC) functions. These types of bundle methods have
not been considered before, even though by explicitly utilizing the DC structure,
we are able to take into account both the convex and concave behaviour of the
objective function. In addition, DC functions cover a broad class of nonconvex
functions frequently encountered in optimization.

In this dissertation, the DC structure has enabled us to form separate ap-
proximations for both the convex and concave parts of the objective function.
Therefore, by combining these approximations we have obtained a new nonconvex
DC cutting plane model, which is a more realistic and accurate approximation of
the nonconvex function than the convex cutting plane model. In addition, this
approach has made it possible to avoid the somewhat arbitrary downward shifting
of the first order approximations typically used in nonconvex bundle methods to
guarantee the interpolation property of the model.

Based on the new nonconvex DC cutting plane model we have presented new
bundle methods for nonsmooth DC optimization. The first one is the proximal
bundle method (PBDC) and it is designed to find critical points for unconstrained
DC problems. Since criticality has some poor features, we have developed the dou-
ble bundle method (DBDC) for unconstrained DC problems to improve the opti-
mality condition by guaranteeing Clarke stationarity instead of criticality. To cover
even a wider set of problems, we have designed the multiobjective double bundle
method (MDBDC) capable of handling both multiobjective and constrained DC
problems. The numerical results have shown that each of these new bundle meth-
ods is efficient and has a good performance. One major benefit of these methods
is their ability to find global minimizers, even though they are only local solution
methods. One reason for this seems to be the nonconvex DC cutting plane model,
which is able to capture relevant information about the objective function.
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Unfortunately, the DC decomposition of the objective function is not always
available or possible to construct. Thus, we have also introduced the splitting
metrics diagonal bundle method (SMDB) utilizing implicitly the DC structure
of the objective function. This method has been designed to cover large-scale
problems in unconstrained nonsmooth optimization, while the PBDC, DBDC and
MDBDC are capable of handling small- or medium-scale problems only. The
numerical results of the SMDB have confirmed the efficiency of the method and
shown that the implicit utilization of the DC structure gives some advantages
over the subgradient locality measures used in more traditional large-scale bundle
methods.

To consider the usage of the DC structure in practical applications, we have
proposed a bundle method based on the DBDC to solve clusterwise linear regres-
sion (CLR) problems. The main idea has been to use the support vector machines
(SVM) approach to model the CLR problem after which we have constructed the
DC decomposition of the new formulation. Finally, the new model has been solved
with the new bundle method (DB-SVM-CLR) combining the DBDC and the in-
cremental approach. The numerical results have proved that the DB-SVM-CLR
is a robust and useful alternative to provide solutions for CLR problems.

In summary, we have introduced new bundle methods for nonsmooth optimiza-
tion, which utilize either explicitly or implicitly the DC structure of the objective
function. With these methods the aim has been to offer approaches, which take
into account the real nonconvex structure of the objective in order to better handle
nonconvexity in optimization. Even though these new methods have shown to be
efficient, some work and open questions still remain. First, the methods developed
will be used to solve some other practical applications encountered, for example,
in data mining. Second, the strongest optimality condition used in our methods
is Clarke stationarity. However, inf-stationarity is a stronger optimality condition
for DC problems and, therefore, another goal could be to design a method guar-
anteeing inf-stationarity. In addition, the SMDB method only implicitly utilizes
the DC structure. Thus, we will design a bundle method for large-scale problems
using the DC decomposition explicitly, since this could give an even bigger benefit
that the implicit usage of the DC structure.
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[92] Lukšan, L., and Vlček, J. Globally convergent variable metric method
for convex nonsmooth unconstrained minimization. Journal of Optimization
Theory and Applications 102, 3 (1999), 593–613.
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