241 research outputs found

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications

    Full text link
    In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and im- plementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning

    PTL: A Model Transformation Language based on Logic Programming

    Get PDF
    In this paper we present a model transformation language based on logic programming. The language, called PTL (Prolog based Transformation Language), can be considered as a hybrid language in which ATL (Atlas Transformation Language)-style rules are combined with logic rules for defining transformations. ATL-style rules are used to define mappings from source models to target models while logic rules are used as helpers. The implementation of PTL is based on the encoding of the ATL-style rules by Prolog rules. Thus, PTL makes use of Prolog as a transformation engine. We have provided a declarative semantics to PTL and proved the semantics equivalent to the encoded program. We have studied an encoding of OCL (Object Constraint Language) with Prolog goals in order to map ATL to PTL. Thus a subset of PTL can be considered equivalent to a subset of ATL. The proposed language can be also used for model validation, that is, for checking constraints on models and transformations. We have equipped our language with debugging and tracing capabilities which help developers to detect programming errors in PTL rules. Additionally, we have developed an Eclipse plugin for editing PTL programs, as well as for debugging, tracing and validation. Finally, we have evaluated the language with several transformation examples as well as tested the performance with large models

    Test Data Generation of Bytecode by CLP Partial Evaluation

    Full text link
    We employ existing partial evaluation (PE) techniques developed for Constraint Logic Programming (CLP) in order to automatically generate test-case generators for glass-box testing of bytecode. Our approach consists of two independent CLP PE phases. (1) First, the bytecode is transformed into an equivalent (decompiled) CLP program. This is already a well studied transformation which can be done either by using an ad-hoc decompiler or by specialising a bytecode interpreter by means of existing PE techniques. (2) A second PE is performed in order to supervise the generation of test-cases by execution of the CLP decompiled program. Interestingly, we employ control strategies previously defined in the context of CLP PE in order to capture coverage criteria for glass-box testing of bytecode. A unique feature of our approach is that, this second PE phase allows generating not only test-cases but also test-case generators. To the best of our knowledge, this is the first time that (CLP) PE techniques are applied for test-case generation as well as to generate test-case generators

    Delimited continuations in Prolog: semantics, use, and implementation in the WAM

    Get PDF
    An implementation of a delimited continuations, known in the functional programming world, is shown in the context of the WAM, and more particular in hProlog. Three new predicates become available to the user: reset/3 and shift/1 for delimiting and capturing the continuation, and call continuation/1 for calling it. The underlying low-level built-ins and modifications to the system are described in detail. While these do not turn continuations into first-class Prolog citizens, their usefulness is shown in a series of examples. The idea behind this implementation can be adapted to other Prolog implementations. The constructs are compared with similar ones in BinProlog and Haskell. Their interaction with other parts of Prolog is discussed

    Metalevel programming in robotics: Some issues

    Get PDF
    Computing in robotics has two important requirements: efficiency and flexibility. Algorithms for robot actions are implemented usually in procedural languages such as VAL and AL. But, since their excessive bindings create inflexible structures of computation, it is proposed that Logic Programming is a more suitable language for robot programming due to its non-determinism, declarative nature, and provision for metalevel programming. Logic Programming, however, results in inefficient computations. As a solution to this problem, researchers discuss a framework in which controls can be described to improve efficiency. They have divided controls into: (1) in-code and (2) metalevel and discussed them with reference to selection of rules and dataflow. Researchers illustrated the merit of Logic Programming by modelling the motion of a robot from one point to another avoiding obstacles
    corecore