|
B
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

yid

SN SO 2—

Metalevel Programming in Robotics: Some Issues

A. Kumar N. and N. Parameswaran \ é[g‘/&fﬁ
Indian Institute of Technology \ 'D (ﬂ
' Madras, India
-~ P
’ /,j ,"{j/—'.ﬂ/
/< ! f-/ ot I

R} ,
. Computing in robotics has two im tant requirements: efficiency and flexibility.
Algorithms for robot actions are implemerted usually in procedural languages such as VAL f:://
AL. But, since their excessive bindings (reate i:.flexible structures of computation,
Logic Programming as/a more suitable language for robot programming dce
to its non-determinism, declarative nature, and provision for metalevel programming. Logic
Programming, however, results 1ln inefficlent computations. As a solution to this problem,

discuss a framework in which controls can be described to improve efficiency. have divided
controls 1into: (i) 1in-code and (i1i) metalevel and discussed them wi reference to
selection of rules and dataflow. hame illustrated the merit of Log Programming by
modelling the motion of a robot from on4 point to another avoiding obstacl
S — [/
e / /
1. I;;;;gductiog T S ﬂ/{_.-z,e.c T —A/:o»‘;

Computing in robotics requires both efficiency and flexibility. Large scale real tise
computation, both symbolic and numeric, 1is necessary for even apparently simple robot
movements. Robot’s actions must be as time-efficient as possible at the end-effector azd
actuator levels{1]. At the same time, planning, backtracking, consulting knowledge about the
world etc., requires flexibility.

The world of the robot is dynamiczally changing, as in the case of telerobots, and the.
change in the world must be continually noted. Accordingly, <the planning of the robot at the
object and the objective levels has to be altered / readjusted. This is a strong case in
favour of flexible computation for robotics at the object and the objective levels.

In robotic computation, a third requirement is effective man machine communication [2].
This requires that the programming environment be as conducive to natural input and tke
language be as readable as possible.

Traditionally. languages for robots are procedural, such as VAL[3], AL [4] and RAPT [5].
They provide for efficient computation, but are not flexible or easily modifiable.

We propose that Logic Programming is more suitable for robot programming due to its noa-
determinism, declarative nature, and provision for metalevel programming. Description of the
world is most conveniently done in the declarative semant!:s of Logic Programming. Dynamic
change in the world can be easily incorporated by the addition / drecletion of logical
assertions in the program. The fact that visual world can be best described declaratively kas
been exploited in [6] for declarative graphics.

Howaver, a major problem in using Logic for computation in robotics is its inefficiency.
Typically, a Logic Programming language such as Prolog follows the depth-first strategy with
chronological backtracking and a few control features such as cut to improve efficiency [7]
However, recently, many features have been introduced in Prolog, to improve efficiency, such
&s intelligent backtracking{8,9], annotated variables[10], and metalevel programmingi11,6 12},

Of greatest relevance to robotic computation is the last feature viz., metalevel
programming. Here, the specification of control strategy for the object level program (OLP) is
expressed seperately, at a different level called metalevel. It permits one to intervene in
the interpretation of the object level programs to define new strategies of control. It also
allows one to specify one’s own interpreter.

Since metalevel description is kept entirely seperated from logic 1level, the basic

procedures and world description at the object level are left entirely untouched by efficiency
considerations. Object 1level programs are still as declarative ani flexible as ever. iAn

181

https://core.ac.uk/display/42827249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

additional element of flexibility is that the controi strategy for any conputation can be
changed to suit the needs of the current goal and world.

2. In_sgﬂg and Hg&nlgzgl Controls

For robot progra-ninc. we present control at two levels: (a) 1n—c6de. (b) metalevel; and
discuss them with respect to two types of controls ! (i) selection control (ii) data flow
control.

In~code control refers to control expressed textually along with the OLP clauses and the
syntax and the semantics are defined as part of the OLUP language. At this level we provide:
* efficient constructs which are procedural in nature.
* liberal bindings of as much dataflow as possible, using the idea of locations.
However, at the global level, we propose largely a declarative language.

Metalevel control refers to control over selection of rules and is textually separated
from OLP. At this level, control is expressed in the form of rules (different representations
are possible) so that it is easy to modify when required.

This strategy of splitting the controls has the foliouinz consoquedces on computation :

1. Locally, the computation 1is expressed as efficiently as possible at the cost of
flexibility. But, since it is only local, the resulting inflexibility may be acceptable as, in
the worst case, it can always be replaced when modifications are reguired.

2. Globally, the structure of computation is kept as flexible as possible, at the cost of
efficiency i.e.,the programs need not be radically re-altered when the world or the input
changes for a robot. Efficiency is improved by carefully choosing metalevel rules. Hence,
readability and modifiability of programs are preserved, which is very important for robotic
computation.

The following are the control features we have introduced to improve the efficiency:
CONTROL FLOW:
Incode: The scope of in-code controls is restricted to individual clauses and they are
directed to specific predicates.

(i) Forward Jjump F(X): Let F(X) be a predicate in the body of a clause C. The execution
of this predicate results in the transfer of control to the predicate in the clause C, ¢to
which X is instantiated, skipping the predicates between F(X) and X in C. F(X) fails when X is
uninstantiated or when backtracking.

(11) Backward Cut !(X): Let !(X) be a predicate in the body of a clause C. !(X) succeds
in the forward direction trivially. While backtracking, if !(X) is encountered, control is
transferred to the predicate X occuring within the clause C.

Metalevel: Several control features defined in Metalog[l1l] actually fall under this:
CHOOSECLAUSE, INHIBCLAUSE, INHIBACK, FACTOR and BACKFAIL. In addition, we grpropose R-
parallelism as a control structure on the set of modules. This makes it possible to control
parallelisam by controlling the number of processes. An important restriction we have placed
here is that these controls are expressed with respect to clauses and not individual
predicates. Thus the control hers will tell which clause to use but not which predicate in a
-clause. Controls of this type affect the top-to-bottom selection of clauses for interpretation
within a program. The scope of all the metalevel declarations is the entire program.

(1) OR Parallelism
(PARCHOOSECLAUSE literal 1[1]1.4f21.....1[n] clausebody) :- condition.

The execution of this predicate results in the simultaneous selection of n clausas for
interprecation in OR parallellisa where the clause heads are unifiable with Jliteral 1{3]
denotes tie j-th clause among the m clauses whose heads unify with literal. Whenn = 1, and
1{1] = 1, PARCHOOSECLAUSE reduces to CHOOSECLAUSE of Metalog[l1l].

DATAFLOW:

Icceode: In Prolog, data flow within a clause occurs through side-effects in the sense of [13].
We introduce new predicates create and assign to let data flow both in the forward and
backward (on backtracking) directions. This unlimited data flow within a clause enhances
efficiency considerably.

(1) greate(L1.L2.....Ln}: Let C be the clause in which the predicate create occurs.

182

Execution of this predicate in the forward direction results in the creation of locations Li,
4 21,,..,n.- These locations can be used to store values using the assign predicate desczibod
"bolow. Cruto un- during backtrack. .

(11) L.m‘n_(_h.mmu.gn)_ Exocution of this ptodicate results in atorin(‘the value '
of the expression 1n L, where L is a location. It fails when L is not created, and during
backtrack. R

AR ~,~' -

ugmml_ At this level the rules define global data locations for the program. Data flow can
occur across the clauses through parameters or global locations when it 1is convenient.
Distributed computing for coordinated activities in a colony of robots can be achieved by
appropriate metalevel descriptions of control and data flow.

Global locations
GLOBAL L1,L2,...,Ln.

This declaration at metalevel defines n locations L1,...,Ln that can be used as locations
to store data and use them later in the program; they are visible over the entire program.

3. ILLUSTRATION

In this section, "we address the problem of a robot moving in a world, avoidnig
obstacles. For simplicity, the world 1s divided into a number of squares. The obstacles are
distributed in ihe world as shown in Figure 1. The start position of the robot is assumed to

be the square (1,1), denoted by p(1,1). The target is the square p(8,4). We restrict the
motions of the robot to horizontal and vertical directions only.

RS RS R?

: »* x . : TARGET
: * J :

4 * e T
H : x H
R2 : H H
3 e eeeeeeeeed ... *
: * :
: x H

2 T
x : x :
START : * : = :
1 N .

1 Rt 2 3 R4 4 5 R 6

Figure 1: The robot world.

The solution 1is provided at two levels: object level, and metalevel. At the obJect
level, the mechanical actions and the simple heuristics the robot employs on encountering
obstacles are described. At the metalevel, knowledg@e about the distridbution of the obstacles
in the world and the mechanisms for supplying information about local regions in the world ar:»
described in order to guide the robot towards its target. The knowledge encoded in the objec:
level description is complete in the sense that the knowledge is sufficient, in principle, fo.
the robot to reach any given target, by exhaustive search. Metalevel knowledge is incomplets
in this sense, but it can greatly aid in reducing the exhaustive search, and thus improvir-
the efficiency.

At the object level, we have the following heuristic to guide the robot: Let the current
position of the robot be (Cx,Cy) and the target location (Tx,Ty), where Tx >z Cx and Ty >= Cy.
I£ Tx = Cx and Ty = Cy, then the robot has reached its target, and therefore it halts; else,
the robot moves to the square (Cx + 1, Cy) if Tx > Cx and (Cx + 1, Cy) is obstacle-free, or to
the square (Cx, Cy + 1) if Ty > Cy and {(Cx, Cy + 1) is obstacle°free. Otherwise, it consults
the expert in the current region.

At the metalevel, the squares are grouped into regions. For example, p(1,1), p(1,2),
p{(2,1) and p(2,2) form Rl.(see Figure 1.) Each region has an expert who has the knowledge of
the obstacles present in that domain. The expert has the ability to suggest a way out to
each of its neighbouring regions, when consulted. For example, when consulted, Rl shows the
way out to R2 via the square p(1,3). At the metalevel, we also have the following control
heuristic to avoid infinite paths: In any region Ri,the robot ignores the advice of the expert
of this region, if the advice leads the robot back to any of the previously travelled region
Rj. In case of failure of a solution suggested by an expert, the robot backtracks to any
alternative solutions that the expert may have suggested. If all the suggestions of the

183

c&rfqnt expert fall to provide an exit, the robot will take up any untried altermative
suggestions of the earlier expert; and so on.) -

The robot initially traces the following squares: p(1,1), p(1,2), p(1,3), Pp(2,3),
p(3,3), p(4,3), »p(4,4). At this point, the robot is not able to move further on its own, and
s0 it consults RS5. R5 suggests the way out to R2, R4 and R€. The way out to R2 is ignored. If
the robot accepts the way out to K4, via p(4,1) or p(3,2), the robot finds itself once again
at a dead end. However, on backtracking, it tries the third solution suggested by R5, thus
entering R8, and the target eventually.

/* Robot: Object level program x/
/% Initialise stack for local expert and start x/

toptrav(p(*X,sY), p(*X1,3Y1)) :- create (*list),
assign (*list, []),
trav (p(*X,*Y), p(*X1,*Y1l)).

trav(p(sX,*Y), p(*X,>Y)) :- !

trav(p(3X,*Y), p(*X1,sY1)) :-
advance(p(*X,*Y),p(*X1,sY1), p(*X2,*Y2)),
trav(p(*X2,*Y2), p(*X1,xY1l)).

advance(p(*X,xY), p(*X1,*Y1l), p(*X2,*Y2)) :- =xX1 > =X,

X2 is xX + 1,
checkobst(*X2,%xY), /% A built-in procedure that checks

whether the square (X2,Y) has an obstacle */
in_region(p(*X2,%xY), *R), /* Finds out the region to which (X2,Y) belongs */
test_append(*R, *1list), /% Checks whether *R has already been traversed ¥/
move(p(*X2,*Y)), /% A built-in procedure that enables the robot move by a square %/
F('), move(p(*X,xY)), !(move). /% The robot retraces its path

in case of failure x/

advance(p(*X,*Y), p(*X1,*Y1), p(*X2,%Y2)) :- =Yl > xY,
*Y2 is Y + 1,
checkobst(*X,xY2),
in_region(p(=*X,*Y2), *R),
test_append(*R, *list),
move(p(*X,*Y2)),
F(!), move(p(*X,xY)), !{ move).

advance(p(*X,*Y), p(*X1,*Y1l), p(*X2,*Y2)) :-
in_region(p(*X,*Y), *R1),
consult(*Rl, p(*X,*Y), p(*X2,*Y2)). /% If met with a dead end,
. consult local expert #/

/* To check whether R has been already consulted x/

test_append(*R, *1list) :- member(*R, xlist), !.
test_append(*R, *1list) :- append(*R, *1list, *1listl),
: assign(*1list, *1listl).

The metalevel description defines the local experts, and the position of obstacles.
Associated with each expert is its knowledge regarding the position of squares which the robot
should try to reach in order to avoid infinite paths.

/* Local Experts: Metalevel program */

consult(*R1l, p(*X,xY), p(*X2,*Y2)) :- out(*R1, =Z),
meaber(p(*X2,xY2), =xZ),
in_region(p(*X2, *Y2), *R2),
not(member(*R2, »1ist)),
advance(p(*X,*Y),p(*X2,*Y2),p(*X2,*Y2)).

region(R1, [p(1,1), p(1,2), p(2,1), p(2,2)]). /% Definition of ;;gion Rl »/
region(R2, [p(1,3), p(2,3), p(3,3) }).
region(B4, [p(3,1), p(3,2), p(4,1)]).

out(RS, R2, [p(2.3) 1). '
out(R5, R4, { p(3.2), p(4.1)]).
out(RS, R6, [p(5.2) 1).

184

/% Description of location of obstacles %/

obst(2,1). - obst(2,2). obst(3,4).
obst(5,1). obst(5,3). obst(5.4).
4. Conclusion ' '

In this paper, we have discussed the merits of Logic programming for robotic
computations. Towards improving the efficiency of computation, while retaining the declarative
nature of programming, we have split the control into two levels: in-code and metalevel. We
have proposed several constructs at both these levels, that improve efficiency. ¥We have
illustrated the eclegance of metalevel logic programming and the usage of the predicates we
have introduced, on a simple robot prodbles.

BEFERENCES :

1. Kogan Page,Logic and Programming., Robot Technology series Voi 5., London 1983.

2. Ambler A.P., ’'Languages for programming robots’, in Robotics and Artificial Iatelligence,
NATO AS] series 1984.

3. 'Users guide to VAL’, Unimation Inc.)
4. Goldman R., Mujtaba S.M.,’The Al users maaual’, Stan-CS-79-718, Stanford Univ,,Jan 1979.

5. Popplestone R.J.,Ambler A.P.,Bellos T.M., 'An interpreter for a Language for describing
assemblies’, AI, vol.14, 1980, pp79-107.

6. Richard Helm and Kim Marriott, ’Declarative Graphics’, Proc. of Third Intl. Conf. on Logic
Programming, July 1986 (Lecture Notes in Comp. Science 225). °

'lé W. F. Clocksin and C. S. Mellish, ’Programming in Prolog’ Springer Verlag, 2nd. edition
1984.

8. M. Bruynocoghe and L. M. Pereira, ’Deduction revision by intelligent backtracking®’, in
'Implementations of Prolog’ ed. J. A. Campbell, Ellis Horwood Ltd., 1984.

9. P. T. Cox, 'Finding backtrack points for intelligent backtracking’ in ’'Implementations of
Prolog’ ed. J. A. Campbell, Ellis Horwood Ltd., 1984. ’

10. Clark K. L., and McGabe F. G., ’IC-PROLOG : Language features®’ Proc. Logic Programming
Workshop, Debrecen, July 1980. i

11. Mehmet Dincbas et al., ‘'Metacontrol of Logic prcgrams in Metalog’ in Proc. of the Intl.
Conf. on Fifth Generation Computer Systems, ICOT, 1984.

12. Colmerauer A., ‘'PROLOG-II:Manuel de reference et modele theorique’, GIA, Faculte des
Sciences de Luminy, Mars 1982 .

13. Terrence W. Pratt, ’'Programming Languages: Design and Implementation’, Prentice Hall
Inc., 2nd edition 1984. -

185

