
Delimited Continuations in Prolog: Semantics,
Use, and Implementation in the WAM

Tom Schrijvers
UGent

Bart Demoen
KU Leuven

Benoit Desouter
UGent

March 13, 2013

Abstract

An implementation of a delimited continuations, known in the functional pro-
gramming world, is shown in the context of the WAM, and more particular in
hProlog. Three new predicates become available to the user: reset/3 and shift/1 for
delimiting and capturing the continuation, and call continuation/1 for calling it.
The underlying low-level built-ins and modifications to the system are described
in detail. While these do not turn continuations into first-class Prolog citizens, their
usefulness is shown in a series of examples. The idea behind this implementation
can be adapted to other Prolog implementations. The constructs are compared with
similar ones in BinProlog and Haskell. Their interaction with other parts of Prolog
is discussed.

1

Contents
1 Introduction 3

2 Informal Semantics 3

3 Meta-Interpreter Semantics 5
3.1 Direct Style . 5
3.2 Continuation-Passing Style . 7

4 A program transformation based on the direct style interpreter 7

5 Useful Applications 8
5.1 Coroutines . 8

5.1.1 Iterators . 9
5.1.2 Iteratees . 10
5.1.3 General Coroutines . 11

5.2 Implementing catch/3 and throw/1 12

6 Native Implementation 13
6.1 An example with code . 16
6.2 The active Yvars . 17

7 Comparison 17
7.1 BinProlog and continuations . 17
7.2 BinProlog and Logic Engines . 18
7.3 Conventional Prolog Coroutines . 19
7.4 Environments on the Heap . 19
7.5 Coroutines in Haskell . 20
7.6 The Origin of Delimited Continuations 20
7.7 Coroutines in mainstream languages 20

8 Interaction with other parts of Prolog 21
8.1 Cut and If-then-else . 21
8.2 Re-activation . 22
8.3 The Goal in reset/3 . 23
8.4 Reset/shift and backtracking . 23
8.5 Possible Errors . 24
8.6 Catch/throw and reset/shift . 24

9 Performance 25

10 Conclusion 28

2

1 Introduction
As this is a technical report, we are not discussing in full a lot of related or seminal
work. We limit ourselves to pointing at [15], in which the prompt-facility was intro-
duced, which lead subsequently two related (but not identical) operators shift and reset
in [9]. We focus here on those two operators in the context of Prolog and their imple-
mentation in the WAM. These operators lead to three new built-ins are named reset/3,
shift/1, and call continuation/1. We came to considering these operators because of our
earlier work in [27], but we believe they are useful beyond that work, as was already
argued by the authors of [31] in the context of BinProlog.

Overview Section 2 presents the three predicates in an informal way and through
small examples. Section 3 shows the semantics based on two meta-interpreters, and
Section 4 shows how a program transformation can implement the predicates. Section
5 shows interesting uses of these predicates. Section 6 dwells on the implementation
details. Section 7 shows a comparison with other (Prolog) systems. Section 8 describes
how our implementation deals with the cut, if-then-else, repeated activation of a con-
tinuation, backtracking and catch&throw. Section 9 makes a performance analysis of
the new predicates. Section 10 concludes.

This work is a continuation and completion of [13]: as most technical details have
been improved in the mean time, we do not refer to that document for further explana-
tion.

We assume the reader knows the WAM [33, 3]

2 Informal Semantics
A manual could describe the three new predicates as follows:

• reset(Goal,Cont,Term1): Goal must be callable; the most common case is that
Goal is a simple goal (not a conjunction, disjunction or if-then-else)1. If the
scope of the execution of the first argument calls shift(Term2), execution of the
Goal ends

• shift(Term2): when called in the scope of a reset/3 goal, it unifies the delimited
continuation up to the nearest call to reset/3 goal with Cont, and Term1 with
Term2; it returns control to just after this nearest call to that reset/3 goal

• call continuation(Cont): for a continuation Cont constructed by shift/1, exe-
cutes that continuation

reset/3 and shift/1 should be used together, and call continuation/1 depends on a
continuation constructed by shift/1. So we start with an example only using reset/3 and
shift/1. In all following code, w(X) is an abbreviation for writeln(X).

1It would not be a bad idea to limit the use of reset/3 to a simple goal - see Section 8.3

3

p :- ?- p.
reset(q,Cont,Term1), a
w(Term1), qterm
w(Cont), [$cont$(785488,[])]
w(endp). endp

q :-
w(a),
shift(qterm),
w(b).

This first example shows that shift/1 unifies the last two arguments of reset/3: both
are printed out. A continuation is a particular Prolog term, in this case representing the
w(b) goal in the context of the activation of the clause for q/0. Since this continuation
is not activated, this goal has no effect. The example also shows that execution is
continued after the reset/3 goal.

One important thing this example shows is that it is up to the continuation of the
reset/3 to call the continuation is constructed by shift/1. A small adaptation of the
above example shows the use of call continuation/1:

p :- ?- p.
reset(q,Cont,Term1), a
w(Term1), qterm
call_continuation(Cont), b
w(endp). endp

q :-
w(a),
shift(qterm),
w(b).

The next example shows at the left a program using reset/shift and at the right a
close equivalent that could be achieved by program transformation. Section 4 describes
the transformation completely.

4

p0 :- p1 :-
w(before_reset), w(before_reset),
reset(q0,Cont,Term), q1(Cont,true,Term),
w(after_reset), w(after_reset),
w(Term), w(Term),
w(Cont), w(Cont),
call_continuation(Cont). call(Cont).

q0 :- q1(Cont,ContAccu,Term) :-
w(start_q), w(start_q),
r0, r1(Cont,(w(end_q),ContAccu),Term).
w(end_q).

r0 :- r1(Cont,ContAccu,Term) :-
w(start_r), w(start_r),
shift(rterm), Term = rterm,
w(end_r). Cont = (w(end_r),ContAccu).

?- p0. ?- p1.
before_reset before_reset
start_q start_q
start_r start_r
after_reset after_reset
rterm rterm
[$cont$(7624,[]),$cont$(7232,[])] w(end_r) , w(end_q) , true
end_r end_r
end_q end_q

3 Meta-Interpreter Semantics
We now make the informal understanding of the semantics precise in a meta-interpreter.

3.1 Direct Style
This meta-interpreter extends the well-known vanilla meta-interpreter for Prolog with
the three new operations reset/3, shift/1 and call continuation/1:

5

eval(G) :-
eval(G,Signal),
(Signal = shift(Term,Cont) ->

format(’ERROR: Uncaught ‘reset(˜w)\’.\n’,[Term]),
fail

;
true

).

eval(shift(Term),Signal) :- !,
Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !,
eval(G,Signal1),
(Signal1 = ok ->

Cont = 0,
Term = 0

;
Signal1 = shift(Term,Cont)

),
Signal = ok.

eval(call_continuation(Goal),Signal) :- !,
eval(Goal,Signal).

eval((G1,G2),Signal) :- !,
eval(G1,Signal1),
(Signal1 = ok ->

eval(G2,Signal)
;

Signal1 = shift(Term,Cont),
Signal = shift(Term,(Cont,G2))

).
eval(Goal,Signal) :-
built_in_predicate(Goal),
!,
call(Goal),
Signal = ok.

eval(Goal,Signal) :-
clause(Goal,Body),
eval(Body,Signal).

The meta-interpreter extends every goal with an extra output parameter Signal. It
is instantiated to ok when the goal succeeds normally. The base case for this behavior
is the eval/2 clause for built-in predicates.

When a goal’s evaluation is abruptly terminated by a call to shift(Term) before
its continuation Cont can be executed, Signal is instantiated to shift(Term,Cont).
The base case for this behavior is the eval/2 clause for shift(Term), where the
empty continuation is represented by the goal true.

The clause for conjunction (G1,G2) evaluates the first goal. If it succeeds nor-
mally, the conjunction case proceeds with G2. If G1 is aborted by shift/1, then the
whole conjunction case is aborted too and G2 is added to the returned continuation.

The clause for reset(G,Cont,Term) evaluates G and binds Cont and Term
to 0 when G terminates normally; otherwise, they are bound to the returned values.

Finally, since the continuation is represented by a goal, call continuation/1
simply interprets it.

6

3.2 Continuation-Passing Style
The following continuation-passing style meta-interpreter is an alternative formaliza-
tion of the delimited continuation semantics. It materializes the call stack as a stack
of continuation frames. Every frame consists of a list (representing a conjunction)
of goals. The evaluation of a conjunction (G1,G2) adds the second conjunct G2 to
the front of the list of the current frame at the top of the stack. The evaluation of
reset/3 pushes a new frame on top of the stack and shift/1 pops the top frame
from the stack.
eval(G) :-
eval(G,top([])).

eval(reset(G,Cont,Term),Conts) :- !,
eval(G,push([],Cont,Term,Conts)).

eval(shift(Term),Conts) :- !,
eval_shift(Conts,Term).

eval(call_continuation(Cont0),Conts) :- !,
add_conts(Cont0,Conts,NConts),
eval_continue(NConts).

eval((G1,G2),Conts) :- !,
add_cont(G2,Conts,NConts),
eval(G1,NConts).

eval(true,Conts) :- !,
eval_continue(Conts).

eval(Goal,Conts) :-
clause(Goal,Body),
eval(Body,Conts).

eval_continue(top([])).
eval_continue(top([G|Gs]) :-
eval(G,top(Gs)).

eval_continue(push([],Cont,Term,Conts)) :-
Cont = 0,
Term = 0,
eval_continue(Conts).

eval_continue(push([G|Gs],Cont,Term,Conts) :-
eval(G,push(Gs,Cont,Term,Conts)).

eval_shift(top(Gs),Term) :-
format(’ERROR: Uncaught ‘reset(˜w)\’.\n’,[Term]),
fail.

eval_shift(push(Cont,C,T,Conts),Term) :-
C = Cont,
T = Term,
eval_continue(Conts).

add_cont(top(Gs),G,top([G|Gs])).
add_cont(push(Gs,Cont,Term,Conts),G,push([G|Gs],Cont,Term,Conts)).

add_conts([],Conts,Conts).
add_conts([G|Gs],Conts,NConts) :-
add_cont(Conts,G,Conts1),
add_conts(Gs,Conts1,NConts).

4 A program transformation based on the direct style
interpreter

By means of the second Futamura projection we obtain a program transformation from
the direct-style interpreter.

7

The general principle of the program transformation is that each predicate gets one
extra argument (we picture it as the first argument for simplicity), which captures both
the term of shift/1 and the continuation, just as the second argument Signal does in
Section 3.1.

We need to consider the transformation of a fact, and of three types of clauses:
below is at the left side the original form, and at the right the transformed form.

a. a(ok).

a :- b, a(X) :- b(Y),
c. (Y == ok -> c(X) ; addcont(Y,c(_),X)).

d :- reset(e,Cont,Term), d(X) :- e(Y),
(Y == ok -> Cont = 0, Term = 0
; s(Term,Cont) = Y),

g. g(X).

h :- shift(Term), k. h(X) :- X = s(Term,k(_)).

addcont(s(Term,Cont),G,s(Term,(Cont,G))).

In this context, it is also worth giving the implementation of call continuation/1
and call/1. call continuation/1 has as original definition:

call_continuation((G1,G2)) :- !,
call_continuation(G1),
call_continuation(G2).

call_continuation(G) :- call(G).

and the transformed version is obtained in the normal way.
For call/1, we write the transformed version by hand:

call(X,Goal) :-
call(Goal), % the normal call/1
arg(1,Goal,X).

5 Useful Applications
There are many applications of delimited continuations, both in the literature and in
the wild. While not all of these make sense in Prolog (e.g. for implementing non-
determinism), there are still quite a few useful applications that are relevant.

5.1 Coroutines
Delimited continuations lend themselves well to the implementation of various forms
of coroutines. By coroutines we do not mean the Prolog variety of coroutines, but
their more general meaning: subroutines that can be suspended and resumed at certain
locations. Most often a coroutine is suspended in order to communicate with another
routine.

8

Various forms of coroutines are distinguished based on the direction of commu-
nication. Coroutines that suspend to output, or yield, data are called iterators, while
those that suspend to receive data are called iteratees.

The main advantage of the coroutine approach is that a coroutine and its commu-
nication partner are usually loosely coupled. They are both implemented against a par-
ticular interface, which means that their communication partner can be easily replaced.
This engenders a flexible and modular design that promotes reuse.

While lazy evaluation has similar advantages, there is a growing consensus [20, 25]
in the lazy functional programming community that the coroutines are the better choice
of the two because they are easier to understand. We believe that this argument carries
over to Prolog: Prolog coroutines are to be preferred over lazy evaluation in Prolog in
the style of Ciao [7].

5.1.1 Iterators

Coroutine-based iterators exist in many languages (e.g. Python). Iterators are created
by generators that use the yield keyword to a suspend and return an intermediate
value before continuing with the generation of more values. We support a similar
yield/1 operation in Prolog, which allows us to define various kinds of generators:

fromList([]).
fromList([X|Xs]) :-
yield(X),
fromList(Xs).

enumFromTo(L,U) :-
(L < U ->

yield(L),
NL is L + 1,
enumFromTo(NL,U)

;
true

).

enumFrom(L) :-
yield(L),
NL is L + 1,
enumFrom(NL).

Generators resemble lazy and potentially infinite streams. The init iterator/2
predicate packages a generator goal in an iterator structure that captures the last yielded
element and the generator’s continuation. The next/3 predicate extracts this element
and builds the new iterator from the continuation.
yield(Term) :-
shift(yield(Term)).

init_iterator(Goal,Iterator) :-
reset(Goal,Cont,YE),
(YE = yield(Element) ->

Iterator = next(Element,Cont)
;

Iterator = done
).

next(next(Element,Cont),Element,Iterator) :-
init_iterator(call_continuation(Cont),Iterator).

9

Consumers of iterators are independent of the particular generator:

sum(Iterator,Acc,Sum) :-
(next(Iterator,X,NIterator) ->

NAcc is Acc + X,
sum(NIterator,NAcc,Sum)

;
Acc = Sum

).

and can be hooked up to many different ones:

?- init_iterator(fromList([7,2,3]),It), sum(It,0,Sum).
Sum = 12.

?- init_iterator(enumFromTo(1,5),It), sum(It,0,Sum).
Sum = 15.

Note that in a sense yield/1 generalizes Prolog’s write/1 built-in: the corou-
tine runs in a context that consumes its output in a user-defined way.

5.1.2 Iteratees

Iteratees are the opposite of iterators: they suspend to request external input. We pro-
vide the ask/1 predicate for this purpose.

For instance, this predicate requests two numbers and adds them up:

sum(Sum) :-
ask(X),
ask(Y),
Sum is X + Y.

The ask/1 predicate generalizes Prolog’s read/1 built-in: the coroutine’s con-
text determines the source of the data.

ask(X) :-
shift(ask(X)).

with_read(Goal) :-
reset(Goal,Cont,Term),
(Term = ask(X) ->

read(X),
with_read(call_continuation(Cont))

;
true

).

with_list(L,Goal) :-
reset(Goal,Cont,Term),
(Term = ask(X) ->

L = [X|T],
with_list(T,call_continuation(Cont))

;
true

).

The data source can be modularly replaced:

10

?- with_list([1,2],sum(Sum)).
Sum = 3.

?- with_read(sum(Sum)).
|: 42.
|: 7.
Sum = 49.

5.1.3 General Coroutines

Iterator and iteratee coroutines can easily be played against each other:

?- play(sum(Sum),fromList([1,2])).
Sum = 3.

?- play(sum(Sum),enumFromTo(7,10)).
Sum = 15.

where play/2 is defined as:

play(G1,G2) :-
reset(G1,Cont1,Term1),
(Cont1 == 0 ->

true
;

reset(G2,Cont2,Term2),
sync(Term1,Term2),
play(call_continuation(Cont1),call_continuation(Cont2))

).

sync(ask(X),yield(X)).
sync(yield(X),ask(X)).

More generally, coroutines can mix yield/1 and ask/1 to communicate in two
directions.
mapL([],[]).
mapL([X|Xs],[Y|Ys]) :-
yield(X),
ask(Y),
mapL(Xs,Ys).

scanSum(Acc) :-
ask(X),
NAcc is Acc + X,
yield(NAcc),
scanSum(NAcc).

For instance:

?- play(mapL([1,2,3,4],L),scanSum(0)).
L = [1,3,6,10].

Compare this coroutine-based approach to Sterling and Kirschenbaum’s approach of
applying techniques to skeletons [28]. The former are much more lightweight and
uniform. In contrast, the latter rely on program transformation or meta-interpretation
and are more ad-hoc.

11

Transducers A transducer transforms an iterator of one kind into an iterator of an-
other kind. A transducer communicates with two parties: it asks values from an under-
lying iterator and uses these to produce other values it yields to an iteratee.

The transduce/2 predicate applies a transducer to an iterator.

transduce(IG,TG) :-
reset(TG,ContT,TermT),
transduce_(TermT,ContT,IG).

transduce_(0,_,_).
transduce_(yield(NValue),ContT,IG)) :-
yield(NValue),
transduce(IG,call_continuation(ContT)).

transduce_(ask(Value),ContT,IG) :-
reset(IG,ContI,TermI),
(TermI == 0 ->

true
;

TermI = yield(Value),
transduce(call_continuation(ContI),call_continuation(ContT))

).

The doubler/2 predicate is an example of a transducer that doubles the values it
receives.

doubler :-
ask(Value),
NValue is Value * 2,
yield(NValue),
doubler.

Here is an example:

?- play(sum(Sum),transduce(fromList([1,2]),doubler)).
Sum = 6.

5.2 Implementing catch/3 and throw/1
The usual way to call catch/throw is in combination with each other, so that
catch(Goal,Ball1,Handler) corresponds to a throw(Ball2).

catch/throw has similarities with reset/shift, the important differences being:

1. throw/1 discards both the forward and backtracking continuation up to the match-
ing call to catch/3; shift/1 only discards the forward continuation

2. throw/1 makes a copy of Ball2 (let’s name it Ball2Copy) and then undoes the
bindings up to the catch/3; shift/1 does not make a copy of its argument and does
not undo bindings

3. if Ball1 and Ball2Copy do not unify, a matching call to catch/3 higher up in the
execution is searched for; if Term1 does not unify with Term2, this results in fail-
ure of the continuation of the reset/3 goal, and backtracking occurs, potentially
into Goal

4. as for catch/throw, it is as if the Handler is true

12

The following code shows how catch/3 and throw/1 can be implemented with
reset/shift.

catch(Goal,_Catcher,_Handler) :- catch1(Goal) :-
nb_setval(thrown,nothrow), reset(Goal,Cont,Term),
catch1(Goal). (Cont == 0 ->

catch(_Goal,Catcher,Handler) :- true % no ball was thrown
nb_getval(thrown,Term), ;
Term = ball(Ball), !,
nb_setval(thrown,nothrow), nb_setval(thrown,Term),
(Ball = Catcher -> fail

call(Handler)).
;

throw(Term) throw(Ball) :-
). copy_term(Ball,BC),

shift(ball(BC)).

Note that we use the fact that when there is no shift/1 inside the Goal of reset/3,
Cont is unified with the integer 0.

One might wonder whether implementing reset/shift with catch/throw is possible.
One showstopper is that throw/1 undoes all bindings up to the catch/3, while shift/1
does not. The other is that throw/1 copies (at least in its ISO compliant mode that SWI
does not adhere to in this case) while shift/1 does not make a copy of its argument.
Both are related of course.

6 Native Implementation
This section describes the nitty-gritty details of the hProlog-WAM implementation of
reset/3 and shift/1. Section 8 is much easier to follow once the implementation is
understood.

There are three main issues in the implementation: (1) the representation of a (de-
limited) continuation, (2) the change of control involved in shift/1, and (3) how to
pass the continuation and the argument of shift/1 to reset/3. All will be described at
the abstract machine level, using the hProlog WAM variant that originates in the XSB
implementation [29]: the names of several abstract machine instructions reflects that.
Still, the code below should be easily readable to all WAM-addicts. Note that hProlog
uses a separate environment and choicepoint stack.

The predicate reset/3 as written in hProlog is below on the left side: hProlog sup-
ports a (still limited) form of the C asm command for generating inline WAM instruc-
tions. The generated code is at the right.

reset(Goal,Cont,Term) :- allocate 4
getpvar Y2 A3
getpvar Y2 A3

call(Goal), call call/1 4
after_callcc, builtin_after_callcc_0
sysh:asm(getpval(Cont,1)), getpval Y3 A1
sysh:asm(getpval(Term,2)). getpval Y2 A2

dealloc_proceed

One idea is that the instruction builtin after callcc 0 acts like a marker in the code
that can be found (from a continuation pointer) by shift/1. The other idea is that in nor-

13

mal circumstances (i.e. a shift/1 finds this occurrence of a reset/3) the shift/1 puts in ar-
gument registers A2 and A1 the values of Term and Cont, and that builtin after callcc 0
is not executed. This will be shown in the code of shift/1. builtin after callcc 0 is only
executed if execution got there without a shift/1: how this is dealt with is shown later.

The implementation of shift/1 is given below: it relies on 5 new low-level built-ins.

• nextEP/3: given an environment pointer2 in the first argument, it returns in ar-
gument 2 and 3 the E and CP pointers in that environment; if the first argument
is the atom first, it returns the E and CP pointer from the current environment,
as that is the start of the chain that (normally) leads up to a builtin after callcc 0
instruction

• get all cc/3 constructs in its first argument Cont, the (delimited) continuation
starting from the given E,P combination, up to the first enclosing call to reset/3

• points to callcc/1 succeeds if and only if its argument points to the
builtin after callcc 0 instruction

• unwind stack callcc/0 unwinds the environment stack in a similar way as
get all cc traverses it: up to the first enclosing call to reset/3; unwinding means
that at the end, the E,P combination becomes the WAM E and P values - with a
small twist: P will point just after the builtin after callcc 0 instruction so that it
does not get executed

• get one tailbody/3 constructs in argument 3 the tail of the body starting at P, and
within the context of E; this is explained later; we name such a tail of a body a
chunk of the continuation, and the whole continuation is a list of such chunks

shift(Term) :- get_all_cc(L,E,P) :-
nextEP(first,E,P), (points_to_callcc(P) ->
get_all_cc(Cont,E,P), L = []
sysh:asm(putpval(Cont,1)), ;
sysh:asm(putpval(Term,2)), L = [TB|RestCC],
unwind_stack_callcc. get_one_tailbody(E,P,TB),

nextEP(E,NE,NP),
get_all_cc(RestCC,NE,NP)

).

The putpval instructions in shift/1 make sure that Cont and Term are in WAM argu-
ment registers A1 and A2, so that the two getpval instructions at the end of reset/3 unify
them with the appropriate arguments of reset/3. In between these putpval and getpval
instructions, the argument registers are not touched: only the unwind stack callcc is
executed.

There remains to explain get one tailbody/3: the general idea is that the third argu-
ment TB is unified with the clause tail starting at P in the context of E, i.e. a chunk of
the continuation.

P points into WAM-code, just after a call instruction (or one of its variants). At
that code point, no argument registers are live (that is a WAM invariant), and the set of
live environment variables LEV can be determined from the P pointer. The E pointer is

2It is actually a safe abstraction of an environment pointer.

14

relevant, because it allows to retrieve the values of the live environment variables from
the correct environment.

In hProlog, just as in YAP [8] and possibly other systems, the set LEV at a con-
tinuation point is determined at compile-time, and it is one way or another linked to
the continuation points. This basically follows the ideas in [6]. get one tailbody/3
constructs in its third argument TB a term $cont$/2 whose arguments are:

• arg1: a code pointer P, pointing into the code for a clause, just behind a call
instruction

• arg2: a list representing the values in LEV; this one can be composed because
the LEV can be reconstructed from P

Dually to get one tailbody/3, call tailbody/1 takes one chunk of continuation, and
constructs an environment on the local stack: its size can be found in the call-instruction
just before the code pointer in the first argument of $cont$/2. The appropriate variable
slots can be filled in, by using the information provided by P (which points indirectly
at the LEV) and the second argument of $cont$/2.

The native implementation of call continuation/1 uses call tailbody/1 as follows:

call_continuation([]).
call_continuation([TB|RestCC]) :-

call_tailbody1(TB),
call_continuation(RestCC).

15

6.1 An example with code
p :- 954176 allocate Y4

954192 putpvar Y2 A2
954208 putpvar Y3 A3
954224 put_atom A1 q

reset(q,Cont,Term), 954248 call reset/3 4
954280 putpval Y2 A1

w(Cont), 954296 call w/1 4
954328 putpval Y3 A1

w(Term), 954344 call w/1 4
954376 putpval Y2 A1

call_continuation(Cont). 954392 deallex call_continuation/1

q :- 954584 allocate Y2
r, 954600 call r/0 2

954632 put_atom A1 endq
w(endq). 954656 deallex w/1

r :- 954680 allocate Y3
954696 putpvar Y2 A1

foo(Y), 954712 call foo/1 3
954744 put_atom A1 shiftterm

shift(shiftterm), 954768 call shift/1 3
954800 putpval Y2 A1

w(Y). 954816 deallex w/1

foo(bla(_)).

?- p.
[$cont$(954800,[bla(_165)]),$cont$(954632,[])]
shiftterm
bla(_165)
endq

The flow of control should be clear to the reader by now. The above example is
meant to explain in more detail the representation of a continuation. The example
shows Prolog code at the left, and the WAM instructions as generated and loaded by
hProlog. The address of each instruction is shown in the same abstraction as the code
addresses used in the continuation.

• $cont$(954800,[bla(165)]) is the first part of the continuation starting at the
shift/1 call, up to the reset/3 goal; one can see that 954800 is the address of
the first instruction following the shift/1 goal; moreover, the environment of r/0
has at that point one active Yvar (Y2); note that the call instruction just before
has 3 as argument: that is the length of the environment at that point (E,CP and
Y2); the value of Y2 is put in the list of variables needed by the continuation;
during call continuation, this value is put in the appropriate environment slot (the
second slot) in a new environment; note that the value of Y2 is not copied with
copy term, but only the (dereferenced) reference to Y2 is copied in the list

• $cont$(954632,[]) is a continuation chunk whose code pointer 954632 points at
the instruction after the call to r/0 in the body of q/0; since that clause has no
permanent variables, the LEV is empty

Figure 1 completes the example: it shows the environments of the activations of
p, q and r, at the moment that shift/1 is constructing the continuation. The reader can

16

Y

p−env

q−env

r−env

Cont

Term

−

−

954632

954290

E

P = 954800

bla(_165)

Figure 1: The local stack and the E and P pointers at the moment shift/1 is called

check the values of all code pointers in the figure. Note that the term bla(165) resides
on the heap. The E,CP values of the p-environment are not given, because they are not
relevant.

6.2 The active Yvars
As mentioned earlier, hProlog basically follows the schema of [6]. There are many
ways to implement this. In hProlog, a bitmap of fixed size describing which slots are
live at that point in the execution of a clause, is an argument of each call instruction.
If this fixed bitmap size is too small to represent the active Yvars, it points to a piece
of memory after the code for the predicate (but still in the code zone), where there is
enough space. The loader takes care of this. The bitmaps are not shown in the WAM
code above.

7 Comparison

7.1 BinProlog and continuations
BinProlog [30] is based on explicit continuation passing: clauses are transformed to a
binary form and carry the continuation as a first class citizen3 in an extra argument. To
be more explicit, binarization of the fact/clause/query at the left results internally in the
constructs at the right:

a. a(Cont) :- call(Cont).

a :- b, c. a(Cont) :- b(c(Cont)).

?- q. ?- q(true).

3Unfortunately, being first class means it is an infinite term as soon as it is used explicitly.

17

While the continuation is normally invisible to the user, [31] describes how (still
based on program transformation) the user can have access to the continuation, and
then manipulate it. The special notation for that is by allowing multi-headed clauses of
the form

p(foo), bla :- body.

whose meaning is if p/1 is called with first argument foo, and a continuation start-
ing with bla, then execute body. The above clause is binarized using the built-in Bin-
Prolog predicate strip cont/3, which splits a continuation (a conjunction of goals, but
in binarized nested form) into its first goal and the rest of the continuation. As [31]
says: strip cont/3 acts as if defined by

strip_cont(f(X1,...,Xn,Cont), f(X1,...,Xn), Cont).

for every f/(n+1).
strip cont/3 acts in a similar way to our get one tailbody/3 (see Section 6).
Based on strip cont/3 and the implementation of catch and throw in BinProlog, we

have build an implementation of reset/3 and shift/1 as follows:

reset(Goal,Cont,Term) :-
call(Goal),
marker(Cont,Term).

shift(Term) :-
Marker = marker(Cs,Term),
get_cont(Cont),
consume_cont(Marker,(_,_,Cs),Cont,NewCont),
call_cont(NewCont).

consume_cont(Marker,Gs,Cont,LastCont):-
strip_cont(Cont,Goal,NextCont),
(Goal = Marker ->

LastCont = NextCont,
Gs = true

;
Gs=(Goal,OtherGs),
consume_cont(Marker,OtherGs,NextCont,LastCont)

).

marker(0,0). % for catching the absence of a shift/1 goal inside Goal

The predicate consume cont/4, is similar to our get all cc/3: it keeps peeling of the
first goal of a continuation until the marker is found in the continuation. The above
code works in BinProlog and we used it for the benchmarking.

7.2 BinProlog and Logic Engines
BinProlog [30, 22] also provides a coroutine-like feature: logic engines. A logic engine
is essentially an independent Prolog environment that can be queried for successive
answers to a goal.

In spirit, the logic engines approach and our coroutines are quite similar: to con-
sider concurrency decoupled from multi-threading. However, our coroutines are more

18

lightweight as they live in the same engine and, e.g., share the same heap and choice-
point stack. Moreover, in our approach the interfaces are more symmetric: corou-
tines receive data with ask/1 that was sent by another coroutine with yield/1
and vice versa. Logic engines receive data with from engine/1 that was sent by
to engine/2 and and return data with return/1 that was requested by get/2.

7.3 Conventional Prolog Coroutines
Various coroutine-like features have been proposed in the context of Prolog for im-
plementing alternative execution mechanisms such as constraint logic programming:
freeze/2, block/1 declarations, . . .

Nowadays most of these are based on a single primitive concept: attributed vari-
ables [17, 21, 24, 10]. These attributed variables combine three useful aspects in one
feature:

1. The ability to associate (updateable) data with a variable using get attr/3
and put attr/3,

2. The ability to associate a goal, a call to the user-defined predicate attr unify hook/2,
with the instantiation of the variable (the coroutine), and

3. The implicit and automatic invocation of the coroutine goal when the variable
becomes instantiated or aliased to another attributed variable.

A significant difference with delimited continuations is that attributed variables
allow only one way of transferring control: instantiation of a variable. In contrast, the
predicates reset/shift offer explicit transfer of control.

Implementation wise and conceptually, the attributed variable coroutines are not
based on continuations. Typically, either a routine is triggered only once, or the same
(modified) goal is triggered over and over again. Any continuation-like behavior must
be programmed explicitly.

7.4 Environments on the Heap
In [12] the authors describe an implementation of co-routining in which environments
of certain (declared) predicates are put on the heap instead of on the local stack: the
programming interface proposed in that paper can be easily implemented with the con-
structs of the current paper. Without going in too much detail, it is fairly clear that our
reset/shift are more general, and therefore not so efficient as the mechanism in [12].
However, the latter inferes more with other parts of the implementation (stack manage-
ment, garbage collection ...) and is therefore perhaps not so attractive. Future work on
the implementation might lead to a unified implementation which uses the best of both
approaches.

19

7.5 Coroutines in Haskell
Our Prolog meta-interpreter implementation closely resembles James and Sabry’s im-
plementation in terms of the coroutine monad [18]. The Haskell code for this imple-
mentation is:4

-- The coroutine monad

data Yield t a = Return a | Yield a (Yield t a)

instance Monad (Yield t) where
return x = Return x
(Return x) >>= f = f x
(Yield t cont) >>= f = Yield t (cont >>= f)

yield :: t -> Yield t ()
yield t = Yield t (return ())

-- The shift/reset implementation

shift :: t -> Yield t ()
shift t = yield t

reset :: Yield t a -> Yield t (Either (t, Yield t a) a)
reset (Return x) = return (Right x)
reset (Yield t cont) = return (Left (t,cont))

Note that the Haskell constructors Return and Yield in this code correspond to
the Signal parameter in our meta-interpreter. Additionally, the definition of the
monadic bind (>>=) closely corresponds to the treatment of conjunction in the meta-
interpreter.

James and Sabry are not the first to study the coroutine monad. Different variants
of the coroutine monad (transformer) [5] have been studied under different names:
resumption monad [26], free monad [4] and step monad [19].

7.6 The Origin of Delimited Continuations
Felleisen introduced reset and shift (“prompt applications”) using the untyped lambda-
calculus [15]. He defined the semantics via translation to a stack-machine, but did not
provide an actual implementation. One of his examples was a yield-mechanism on a
tree. Felleisen already pointed out the relation of continuations to stream-programming,
although he did not distinguish yield as a separate operator. Duba et al. added first-
class continuations to the statically typed ML language [14]. Flatt et al. implemented
a production version in Scheme [16].

7.7 Coroutines in mainstream languages
Today, many mainstream languages like C], Ruby, JavaScript and Python, have some
variant of a yield, although the operator is not widely described as a delimited contin-
uation operator [2, 1, 23, 32]. Moreover expressivity greatly differs from language to
language.

4We have omitted a few parts of James and Sabry’s definition that may obfuscate the connection to our
Prolog setting.

20

Statements vs. Expressions One distinguishing characteristic is whether the yield is
an expression or a statement [18]. If yield is used as an expression, it means the iterator
takes input from its calling context. This is possible in Ruby and Python 2.5. In earlier
versions of Python, yield was a statement, as in Javascript 1.7 and C].

The continuations in our Prolog setting are essentially goals, which have a statement-
like quality. However, as we have shown with iteratees, they are nevertheless able to
take input from their context.

First-Class Iterators Another characteristic is whether iterators are first-class val-
ues. It is the case in C], although iterators are mostly used in combination with a
foreach loop, as well as JavaScript and Python. A first-class iterator is more flexible
and it is easier to work with more than one at the same time.

As we have shown, our iterators are first-class values in Prolog. They can be passed
around freely.

8 Interaction with other parts of Prolog

8.1 Cut and If-then-else
One way or another, information on up to which choicepoint to cut needs to be stored
in an environment. Two case are common: a cut not appearing as the first goal in a
clause5, and if-then-else with a non-simple test. Both are exemplified below:

p :- savecp(B), p(B).
p :- a, !, body1. p(B) :- a, cutto(B), body1.
p :- body2. p(_) :- body2.

q :- b, (c -> d ; e), f. q :- b, savecp(B), (c, cutto(B) ; e), f.

At the left, the user-written code is shown, at the right the equivalent code using
the (non-ISO) predicates savecp/1 and cutto/1. The predicate savecp/1 unifies in its
argument the current choice point pointer B. Later cutto/1 uses this pointer to cut up to
the correct choice point.

In both cases, the variable B is a permanent variable that resides in the environment
of that clause activation. The above is hProlog specific (and actually follows the XSB
implementation), but a similar thing happens in many other Prolog implementations.

Since a continuation saves the active permanent variables, it is possible that the
value of such a B is captured. The situation in which later the cutto(B) goal is executed
in the delimited continuation must be treated carefully: the choice point B refers to
might not exist any longer, and even if it does, it would be strange to cut all choicepoints
upto B away, as there could be new choicepoints that are related to the continuation of
the reset/3 goal.

A choice needs to be made, and we have decided that a cut in a captured contin-
uation can only cut up to (but not included) the youngest choicepoint before calling
call continuation.

5If cut is the first goal in the clause, the relevant choicepoint can be detected in a different way.

21

The two examples below show this.

p0 :- p1 :-
reset(q0,Cont,Term), reset(q1,Cont,Term),
w(Term), w(Term),
call_continuation(Cont). call_continuation(Cont).

q0 :- writeln(q_1), shift(fromq_1), !, q1 :- (writeln(q_1), shift(fromq_1) ->
writeln(endq_1). writeln(endq_1)

;
q0 :- writeln(q_1), shift(fromq_2), writeln(q_1), shift(fromq_2),

writeln(endq_2). writeln(endq_2)
).

?- p0, fail. ?- p1, fail.
q_1 q_1
fromq_1 fromq_1
endq_1 endq_1
q_1 q_1
fromq_2 fromq_2
endq_2 endq_2

As for the implementation, one needs to take care that any active permanent vari-
able whose value represents a choice point, is replaced by the appropriate choice point
on executing a continuation containing that cut.

8.2 Re-activation
A continuation consists of chunks, each of which corresponds to the rest of a clause
starting from a point in the clause. This point is represented by the a pointer into
the WAM code of this clause, and the initial state of the execution is captured by the
value of the permanent variables that have already been initialized by the WAM. The
temporary variables (the argument registers) are irrelevant, as the code pointer always
points just behind a call instruction, and argument registers do not survive a call. Below
are two examples of reactivation of a continuation chunk.

calltwice1 :- calltwice2 :-
reset(f1,Cont,_), reset(f2,Cont,_),
writeln(Cont), writeln(Cont),
call_continuation(Cont), call_continuation(Cont),
call_continuation(Cont). call_continuation(Cont).

f1 :- f2 :-
foo(Y),
shift(ignored), shift(ignored),
writeln(’Y’ = Y), writeln(’Y’ = Y),
Y = 1. Y = 1.

foo(_).

?- calltwice1. ?- calltwice2.
[$cont$(787800,[_263])] [$cont$(788000,[])]
Y = _263 Y = _282
Y = 1 Y = _300

In both pieces of code, Y is a permanent variable. However, in f1/0, Y is initialized
before the call to shift/1, so it appears in the continuation (one can see that the variable
263 occurs in the output twice), while in f2/0, Y is initialized after the call to shift/1:

22

so the initialization of Y in the second case happens in the continuation, every time the
continuation is activated. This explains the output in both cases as well.

One could argue that the WAM optimization which initializes variables as late as
possible is no good in this context, and it makes the results dependent on other opti-
mizations (e.g. inline the call foo(Y) to Y = and than remove that unification as it
has no effect). So it seems difficult to rely on a particular sharing behavior of multi-
ple invocations of the same continuation within the WAM. However, also in the case
of BinProlog, the exact form of a continuation can depend on optimizations, or the
particularities of the binarizing transformation.

8.3 The Goal in reset/3
Given the clauses for a/0 and b/0 below,

a :- ?- a.
reset((b, w(inside_reset(Term))),Cont,Term), after_reset
w(after_reset), after_shift
call_continuation(Cont). inside_reset(shifted)

b :-
shift(shifted),
w(after_shift).

the result of the query ?- a. might surprise. However, it is completely in line with the
description that Cont captures the whole of the continuation after the call to shift/1 up
to just after the reset/3 goal. Another way to see that this is the desired behavior is by
considering that the clause for a/0 above is equivalent to

a :-
reset(newpred(Term),Cont,Term),
w(after_reset),
call_continuation(Cont).

newpred(Term) :- b, w(inside_reset(Term)).

Even though the behavior of a compound goal in reset/3 is quite easy to understand,
it might still be good to limit oneself to simple goals.

8.4 Reset/shift and backtracking
The following example shows that shift/1 does not cut away choicepoints:

c :- ?- c.
reset(d,Cont,Term), t(1)
w(Term), aftershift(1)
call_continuation(Cont).

Yes ;
d :- t(2)

(X=1 ; X=2), aftershift(2)
shift(t(X)),
w(aftershift(X)). Yes

23

8.5 Possible Errors
• there is no shift/1 inside the Goal of reset/3: there are basically the following

options

– fail
– throw an exception
– unify Cont and Term with default values and proceed execution

All three are easy to implement, but the third option seems the most useful one:
we choose to unify Cont and Term with the integer 0. This is used in the code of
catch/3 shown earlier, and many other places.

• there is no reset/3 corresponding to a shift/1: the options are

– fail
– throw an exception
– let a default reset/3 goal at the toplevel handle it

Again, all three are easy to implement. We choose the third option. It implies
that in the code for get all cc/3 in Section 6 the test points to callcc(P) eventually
succeeds, and ther is no risk to cross the boundaries of the environment stack.

8.6 Catch/throw and reset/shift
(ISO) Prolog has catch/throw as a scoped construct. Reset/shift is also scoped, so we
must understand the interaction between both.

As long as the two constructs are properly nested, the resulting behavior is relatively
easy to predict: the inner nested construct does not really interfere with the outer one.

When the two constructs are not properly nested, a little more thought is needed.
The first case is exemplified by the code below: it shows a continuation containing

a throw/1. This continuation is picked up by reset/3 and is subsequently called. The
call to throw/1 is no longer in the scope of the initially corresponding catch/3 goal, so
the throw remains uncaught.

p :-
reset(q,Cont,Term),
writeln(Term),
call_continuation(Cont).

q :- catch(r,Ball,writeln(Ball)).

r :- shift(rterm), throw(rball).

?- p.
rterm
Uncaught exception(rball)

From the language design point of view, there might be different options to explore.
We are satisfied the current implementation behaves reasonably.

The other improper nesting is exemplified below:

24

a :-
catch(b,Ball,writeln(Ball)).

b :-
reset(c,Cont,Term),
writeln(Term),
call_continuation(Cont).

c :-
throw(ballfromc),
shift(notseen).

?- a.
ballfromc

Since throw/1 discards the forward continuation, it is clear that this situation does
not pose any problems.

9 Performance
A comparison with functional programming implementations might be appropriate as
well, but we limit ourselves here to a comparison with other Prolog systems. Not every
Prolog system has delimited continuations. So we present just one small benchmark,
consisting of 8 runs, grouped in two sets of 4. Below is the complete description of the
first set:

test(N) :-
reset(long0(N),Cont,_),
time(contlong,call_continuation(Cont)), nl,
fail.

test(N) :-
reset(short0(N),Cont,_),
time(contshort,call_continuation(Cont)), nl,
fail.

test(N) :-
time(direct,direct0(N)), nl,
fail.

test(N) :-
G = (p,p,p,p,p,p,p),
time(meta,meta0(N,G)), nl,
fail.

long0(0) :- !, direct0(0) :- !.
time(longshift,shift(longshift)). direct0(N) :-

long0(N) :- M is N - 1,
M is N - 1, direct0(M),
long0(M), p,p,p,p,p,p,p.
p,p,p,p,p,p,p.

meta0(0,_) :- !.
meta0(N,G) :-

short0(0) :- !, M is N - 1,
time(shortshift,shift(shortshift)). meta0(M,G),

short0(N) :- call(G).
M is N - 1,
short0(M), p07 :- p,p,p,p,p,p,p.
p07.

The second set of 4 runs is obtained from the above by replacing every p/0 by
p(X,Y,Z) and and adding the fact p(, ,)..

25

These runs compare the performance of constructing and calling a continuation
with directly executing it, and with meta-calling it6.

The above code can be run directly in hProlog: Table 1 refers to it as hProlog
native.

The same code can be run in BinProlog when supplied with the definitions of re-
set/shift in Section 7.1: the results are in the column BinProlog native=binary.

The same code can be transformed using the transformation in Section 4: it is plain
Prolog, so it can be executed in any system. We choose hProlog, SWI Prolog and
YAP7.

Finally, that same code can be binarized and executed with appropriate definitions
of reset/shift (see the Appendix) in hProlog.8 It is referred to as hProlog binary in the
table.

Apart from hProlog 3.2.22-64 [11], we used YAP 6.2.2 [8], SWI-Prolog 6.2.1 [34]
and BinProlog #12.00 [30].

The queries whose timings we report in Table 1 are equivalent to ?- test(2000000).
(for the code above). Garbage collection or stack expansions were excluded from the
timings. Times are in msecs. The figures were obtained on an Intel Core2 Duo Proces-
sor T8100 2.10.

6Note however that in the binarized version later, every single goal is meta-called.
7It works also in BinProlog
8That code also works in SWI and YAP, but we did not try it yet at the time of writing - it is not clear we

can learn something from it.

26

benchmark hProlog hProlog hProlog SWI YAP BinProlog
native transformed binary transformed transformed native=binary

long cont 0 72+128=200 396+984=1380 1696+256=1952 10508+2523=13031 460+1188=1648 2440+770=3210
short cont 0 68+148=236 128+324=452 232+224=456 449+1331=1780 188+488=676 340+340=680
direct call 0 100 272 388 1167 380 280
meta-call 0 1124 (404) 1140 (464) 340 2461 (496) (620)
long cont 3 80+196=274 532+980=1512 1780+392=2172 1673+2715=4388 716+1248=1964 2450+990=3440
short cont 3 68+208=276 128+388=516 232+296=528 443+1458=1901 184+792=976 350+590=940
direct call 3 172 384 616 1428 504 560
meta-call 3 1180 (444) 1248 (524) 360 3750 (516) (850)

Table 1: Timings for 4 systems, 8 benchmarks, 4 variants

The numbers between brackets are obtained with a non-ISO conforming implemen-
tation of call/1: this is the default in YAP, and can be switched on/off in hProlog. This
affects the benchmarks in which a conjunction of goals is metacalled. Also BinProlog’s
metacall is non-ISO conforming. Table 1 shows roughly that

• in hProlog, capturing and executing a continuation takes about twice as long as
directly calling a clause, and half as long as meta-calling (in non-ISO mode) the
body of a clause; the ISO meta-call takes considerably more time

• native hProlog is much faster than transformed hProlog: this shows that it is
worth doing the native implementation

• transformed hProlog is a bit faster than transformed YAP and much faster than
transformed SWI: this shows that YAP and SWI could also benefit a lot from a
native implementation of delimited continuations

• in hProlog, both direct calling, and meta-calling is at least as fast as in YAP, and a
lot faster than in SWI: this supports the conclusion that the native implementation
in any system can come close to a transformed solution

• as for comparing with BinProlog: transformed hProlog is significantly better
than BinProlog, and even binary hProlog is as far as the continuation implemen-
tation goes (the rows long/short cont); this seems to indicate that the binarizing
approach by BinProlog does not necessarily give a performance advantage com-
pared to another transformational approach; it is not clear whether pushing down
the implementation of reset/shift deeper into the BinProlog bowels, can make it
significantly faster, because in some sense, binarization itself sits in the way

We can conclude that the performance of the native implementation of reset/shift
in hProlog is reasonable: one could not expect it to be as fast as direct calling, and we
are satisfied it is faster than the very fast (non-ISO) hProlog meta-call.

The reason why the transformed figures are not good, is twofold: the program
transformation of Section 4 introduces testing at every inference, and the size of the
representation of a single continuation chunk is much bigger. In the native approach
that size is linear in the number of live variables in it, while for the transformation
approach, the size is linear in the number of goals of the chunk plus their arguments.
So, in the case of the benchmark at hand, the difference is:

27

native size transformation size
p,p,p,p,p,p,p 3 heap cells 32 heap cells

p(X,Y,Z)*7 8 heap cells 46 heap cells

Of course, raw performance is not the main issue of delimited continuations: their
added value is in the extra programming power they allow.

10 Conclusion
Our main motivation in writing down this technical report was to show an implemen-
tation of delimited continuations (reset/shift) which is new because in the context of a
non-continuation passing style Prolog implementation - and based on the WAM - and
(once more) showing examples of the usefulness of these constructs. The implementa-
tion is quite independent of the rest of the system, and its interaction with other parts
of the system were shown. The performance is good: even in the very fast hProlog
system, performance seems not an impediment to using the extra functionality offered
by delimited continuations.

Acknowledgments
We thank Henk Vandecasteele for his work on the ilProlog compiler used within hPro-
log, and Paul Tarau for enlightning discussions.

References
[1] Python PEP 342 — Coroutines via Enhanced Generators, 2005. http://www.

python.org/dev/peps/pep-0342/.

[2] C] Language Specification Version 4.0, 2010. http://msdn.microsoft.
com/en-us/library/x53a06bb.aspx.

[3] H. Ait-Kaci. Warren’s Abstract Machine. The MIT Press, Cambridge, MA, 1991.

[4] S. Awodey. Category Theory, volume 49 of Oxford Logic Guides. Oxford Uni-
versity Press, Oxford, 2006.

[5] M. Blazevic. monad-coroutine: Coroutine monad transformer for suspending and
resuming monadic computations, 2010. http://hackage.haskell.org/
package/monad-coroutine.

[6] P. Branquart and J. Lewi. A Scheme of Storage Allocation and Garbage Col-
lection for Algol 68. In J. E. L. Peck, editor, ALGOL 68 Implementation, pages
199–238. North-Holland, 1970.

28

[7] A. Casas, D. Cabeza, and M. V. Hermenegildo. A syntactic approach to com-
bining functional notation, lazy evaluation, and higher-order in lp systems. In
M. Hagiya and P. Wadler, editors, Functional and Logic Programming, 8th Inter-
national Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006, Pro-
ceedings, volume 3945 of Lecture Notes in Computer Science, pages 146–162.
Springer, 2006.

[8] V. S. Costa, R. Rocha, and L. Damas. The YAP Prolog system. TPLP, 12(1-2):5–
34, 2012.

[9] O. Danvy and A. Filinski. Abstracting control. In Proceedings of the 1990 ACM
conference on LISP and functional programming, LFP ’90, pages 151–160, New
York, NY, USA, 1990. ACM.

[10] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evalu-
ation. Report CW 350, Dept. of Comp. Sc., KU Leuven, Belgium, Oct. 2002.

[11] B. Demoen and P.-L. Nguyen. So many WAM Variations, so little Time. In
J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M.
Pereira, Y. Sagiv, and P. J. Stuckey, editors, Computational Logic - CL2000, First
International Conference, London, UK, July 2000, Proceedings, volume 1861 of
Lecture Notes in Artificial Intelligence, pages 1240–1254. ALP, Springer, 2000.

[12] B. Demoen and P.-L. Nguyen. Two WAM implementations of action rules. In
M. Garcia de la Banda and E. Pontelli, editors, Lecture Notes in Computer Sci-
ence,, pages 621–635. Springer, Dec. 2008.

[13] B. Demoen and T. Schrijvers. A 10’ implementation of callcc in the WAM. Report
CW 628, Dept. of Computer Science, KU Leuven, Belgium, Nov. 2012.

[14] B. Duba, R. Harper, and D. MacQueen. Typing first-class continuations in ML.
In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’91, pages 163–173, New York, NY, USA, 1991.
ACM.

[15] M. Felleisen. The theory and practice of first-class prompts. In Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’88, pages 180–190, New York, NY, USA, 1988. ACM.

[16] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding delimited and com-
posable control to a production programming environment. SIGPLAN Not.,
42(9):165–176, Oct. 2007.

[17] C. Holzbaur. Meta-structures vs. Attributed Variables in the Context of Extensible
Unification. In M. Bruynooghe and M. Wising, editors, Proceedings of the Fourth
International Symposium on Programming Language Implementation and Logic
Programming, number 631, pages 260–268. Springer-Verlag, Aug. 1992.

[18] R. James and A. Sabry. Yield: Mainstream delimited continuations, 2011.

29

[19] M. Jaskelioff and E. Moggi. Monad transformers as monoid transformers. Theor.
Comput. Sci., 411(51-52):4441–4466, Dec. 2010.

[20] O. Kiselyov. Iteratees. In FLOPS, volume 7294 of LNCS, pages 166–181.
Springer, 2012.

[21] S. Le Houitouze. A New Data Structure for Implementing Extensions to Pro-
log. In P. Deransart and J. Maluszynski, editors, Proceedings of the Second In-
ternational Symposium on Programming Language Implementation and Logic
Programming, number 456, pages 136–150. Springer-Verlag, Aug. 1990.

[22] W. D. Meuter and G.-C. Roman, editors. Coordination Models and Languages -
13th International Conference, COORDINATION 2011, Reykjavik, Iceland, June
6-9, 2011. Proceedings, volume 6721 of Lecture Notes in Computer Science,
Berlin Heidelberg, 2011. Springer.

[23] Mozilla.org. Javascript 1.7, 2006. https://developer.mozilla.org/
en/New_in_JavaScript_1.7.

[24] U. Neumerkel. Extensible unification by metastructures. In Proceedings of the
second workshop on Metaprogramming in Logic (META’90), pages 352–364,
Apr. 1990.

[25] A. S. Oleg Kiselyov, Simon Peyton-Jones. Lazy vs. yield: Incremental, lazy
pretty-printing. In APLAS, 2012.

[26] N. S. Papaspyrou. A Resumption Monad Transformer and its Applications in
the Semantics of Concurrency. Technical Report CSD-SW-TR-2-01, National
Technical University of Athens, 2001.

[27] T. Schrijvers, M. Triska, and B. Demoen. Tor: extensible search with hookable
disjunction. In Proceedings of the 14th symposium on Principles and Practice
of Declarative Programming, PPDP ’12, pages 103–114, New York, NY, USA,
2012. ACM.

[28] L. S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In Con-
structing Logic Programs, pages 127–140. John Wiley, 1993.

[29] T. Swift and D. S. Warren. XSB: Extending Prolog with Tabled Logic Program-
ming. TPLP, 12(1-2):157–187, 2012.

[30] P. Tarau. The BinProlog experience: Architecture and implementation choices for
continuation passing Prolog and first-class logic engines. TPLP, 12(1-2):97–126,
2012.

[31] P. Tarau and V. Dahl. Logic Programming and Logic Grammars with First-order
Continuations. In Proceedings of LOPSTR’94, LNCS, Springer, Pisa, June 1994.

[32] D. Thomas and A. Hunt. Programming Ruby: the Pragmatic Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

30

[33] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI,
1983.

[34] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. 12(1-2):67–
96, 2012.

31

Appendix: shift/2 and reset/4 for hProlog binary
In BinProlog parlance, the code below should be taken as if :- were actually ::-, i.e. the
code is not subject to binarization.

reset(Goal,Cont,Term,D) :-
add1arg(Goal,marker(Cont,Term,D),NewGoal),
call(NewGoal).

shift(Term,Cont) :-
Marker = marker(Before,Term,_),
b_setval(cont,Cont),
split_at_marker(Marker,Before,After),
call(After).

split_at_marker(Marker,Before,After) :-
b_getval(cont,CurrentCont),
(
CurrentCont = Marker ->
Marker = marker(_,_,After),
Before = true,
b_setval(cont,[])

;
functor(CurrentCont,_,N),
arg(N,CurrentCont,NewCurrentCont),
b_setval(cont,NewCurrentCont),
CurrentCont = Before,
setarg(N,CurrentCont,NewBefore),
split_at_marker(Marker,NewBefore,After)

).

marker(0,0,Cont) :- call(Cont).

add1arg(Head,X,NewHead) :-
Head =.. [Name|Args],
append(Args,[X],NewArgs),
NewHead =.. [Name|NewArgs].

Note how we avoid the continuation to become an infinite term by not letting it be
a first class term.

32

