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Abstract

The past few years have seen a surge of interest in the field of probabilistic logic learning
and statistical relational learning. In this endeavor, many probabilistic logics have been
developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining
of large biological networks. In ProbLog, facts can be labeled with probabilities. These
facts are treated as mutually independent random variables that indicate whether these
facts belong to a randomly sampled program. Different kinds of queries can be posed
to ProbLog programs. We introduce algorithms that allow the efficient execution of these
queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their
performance in the context of large networks of biological entities.
To appear in Theory and Practice of Logic Programming (TPLP)

1 Introduction

In the past few years, a multitude of different formalisms combining probabilistic

reasoning with logics, databases, or logic programming has been developed. Promi-

nent examples include PHA and ICL (Poole 1993b; Poole 2000), PRISM (Sato

and Kameya 2001), SLPs (Muggleton 1995), ProbView (Lakshmanan et al. 1997),

CLP(BN ) (Santos Costa et al. 2003), CP-logic (Vennekens et al. 2004), Trio (Widom

2005), probabilistic Datalog (pD) (Fuhr 2000), and probabilistic databases (Dalvi

and Suciu 2004). Although these logics have been traditionally studied in the know-

ledge representation and database communities, the focus is now often on a machine

learning perspective, which imposes new requirements. First, these logics must be

simple enough to be learnable and at the same time sufficiently expressive to support

interesting probabilistic inferences. Second, because learning is computationally ex-

pensive and requires answering long sequences of possibly complex queries, inference
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in such logics must be fast, although inference in even the simplest probabilistic

logics is computationally hard.

In this paper, we study these problems in the context of a simple probabilistic

logic, ProbLog (De Raedt et al. 2007), which has been used for learning in the con-

text of large biological networks where edges are labeled with probabilities. Large

and complex networks of biological concepts (genes, proteins, phenotypes, etc.) can

be extracted from public databases, and probabilistic links between concepts can

be obtained by various techniques (Sevon et al. 2006). ProbLog is essentially an

extension of Prolog where a program defines a distribution over all its possible

non-probabilistic subprograms. Facts are labeled with probabilities and treated as

mutually independent random variables indicating whether or not the correspond-

ing fact belongs to a randomly sampled program. The success probability of a

query is defined as the probability that it succeeds in such a random subprogram.

The semantics of ProbLog is not new: it is an instance of the distribution seman-

tics (Sato 1995). This is a well-known semantics for probabilistic logics that has

been (re)defined multiple times in the literature, often in a more limited database

setting; cf. (Dantsin 1991; Poole 1993b; Fuhr 2000; Poole 2000; Dalvi and Suciu

2004). Sato has, however, shown that the semantics is also well-defined in the case

of a countably infinite set of random variables and formalized it in his well-known

distribution semantics (Sato 1995). However, even though relying on the same se-

mantics, in order to allow efficient inference, systems such as PRISM (Sato and

Kameya 2001) and PHA (Poole 1993b) additionally require all proofs of a query to

be mutually exclusive. Thus, they cannot easily represent the type of network analy-

sis tasks that motivated ProbLog. ICL (Poole 2000) extends PHA to the case where

proofs need not be mutually exclusive. In contrast to the ProbLog implementation

presented here, Poole’s AILog2, an implementation of ICL, uses a meta-interpreter

and is not tightly integrated with Prolog.

We contribute exact and approximate inference algorithms for ProbLog. We

present algorithms for computing the success and explanation probabilities of a

query, and show how they can be efficiently implemented combining Prolog infer-

ence with Binary Decision Diagrams (BDDs) (Bryant 1986). In addition to an itera-

tive deepening algorithm that computes an approximation along the lines of (Poole

1993a), we further adapt the Monte Carlo approach used by (Sevon et al. 2006)

in the context of biological network inference. These two approximation algorithms

compute an upper and a lower bound on the success probability. We also contribute

an additional approximation algorithm that computes a lower bound using only the

k most likely proofs.

The key contribution of this paper is the tight integration of these algorithms in

the state-of-the-art YAP-Prolog system. This integration includes several improve-

ments over the initial implementation used in (De Raedt et al. 2007), which are

needed to use ProbLog to effectively query Sevon’s Biomine network (Sevon et al.

2006) containing about 1,000,000 nodes and 6,000,000 edges, as will be shown in

the experiments.

This paper is organised as follows. After introducing ProbLog and its semantics

in Section 2, we present several algorithms for exact and approximate inference in
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Section 3. Section 4 then discusses how these algorithms are implemented in YAP-

Prolog, and Section 5 reports on experiments that validate the approach. Finally,

Section 6 concludes and touches upon related work.

2 ProbLog

A ProbLog program consists of a set of labeled facts pi :: ci together with a set

of definite clauses. Each ground instance (that is, each instance not containing

variables) of such a fact ci is true with probability pi , that is, these facts correspond

to random variables. We assume that these variables are mutually independent.1

The definite clauses allow one to add arbitrary background knowledge (BK).

Figure 1 shows a small probabilistic graph that we shall use as running example

in the text. It can be encoded in ProbLog as follows:

0. 8 :: edge(a, c). 0. 7 :: edge(a, b). 0. 8 :: edge(c, e).

0. 6 :: edge(b, c). 0. 9 :: edge(c, d). 0. 5 :: edge(e, d).
(1)

Such a probabilistic graph can be used to sample subgraphs by tossing a coin for

each edge. Given a ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪BK and a finite

set of possible substitutions {θj1, . . . θjij } for each probabilistic fact pj :: cj , let LT

denote the maximal set of logical facts that can be added to BK , that is, LT =

{c1θ11, . . . , c1θ1i1 , · · · , cnθn1, . . . , cnθnin}. As the random variables corresponding to

facts in LT are mutually independent, the ProbLog program defines a probability

distribution over ground logic programs L ⊆ LT :

P(L|T ) =
∏

ciθj∈L
pi

∏
ciθj∈LT\L

(1− pi). (2)

Since the background knowledge BK is fixed and there is a one-to-one mapping

between ground definite clause programs and Herbrand interpretations, a ProbLog

program thus also defines a distribution over its Herbrand interpretations. Sato

has shown how this semantics can be generalized to the countably infinite case;

we refer to (Sato 1995) for details. For ease of readability, in the remainder of this

paper we will restrict ourselves to the finite case and assume all probabilistic facts

in a ProbLog program to be ground. We extend our example with the following

background knowledge:

path(X, Y) : − edge(X, Y).

path(X, Y) : − edge(X, Z), path(Z, Y).
(3)

We can then ask for the probability that there exists a path between two nodes,

say c and d, in our probabilistic graph, that is, we query for the probability that a

randomly sampled subgraph contains the edge from c to d, or the path from c to

d via e (or both of these). Formally, the success probability Ps(q |T ) of a query q

in a ProbLog program T is the marginal of P(L|T ) with respect to q , i.e.

Ps(q |T ) =
∑

L⊆LT

P(q |L) · P(L|T ) , (4)

1 If the program contains multiple instances of the same fact, they correspond to different random
variables, i.e. {p :: c} and {p :: c, p :: c} are different ProbLog programs.
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Figure 1. Example of a probabilistic graph: edge labels indicate the probability

that the edge is part of the graph.

where P(q |L) = 1 if there exists a θ such that L ∪ BK |= qθ, and P(q |L) = 0

otherwise. In other words, the success probability of query q is the probability that

the query q is provable in a randomly sampled logic program.

In our example, 40 of the 64 possible subprograms allow one to prove path(c, d),

namely all those that contain at least the edge from c to d or both the edge from

c to e and from e to d, so the success probability of that query is the sum of the

probabilities of these programs: Ps(path(c, d)|T ) = P({ab, ac, bc, cd , ce, ed}|T ) +

. . . + P({cd}|T ) = 0. 94, where xy is used as a shortcut for edge(x , y) when list-

ing elements of a subprogram. We will use this convention throughout the paper.

Clearly, listing all subprograms is infeasible in practice; an alternative approach

will be discussed in Section 3.1.

A ProbLog program also defines the probability of a specific proof E , also called

explanation, of some query q , which is again a marginal of P(L|T ). Here, an expla-

nation is a minimal subset of the probabilistic facts that together with the back-

ground knowledge entails qθ for some substitution θ. Thus, the probability of such

an explanation E is that of sampling a logic program L ∪ E that contains at least

all the probabilistic facts in E , that is, the marginal with respect to these facts:

P(E |T ) =
∑

L⊆(LT\E)
P(L ∪ E |T ) =

∏
ci∈E

pi (5)

The explanation probability Px (q |T ) is then defined as the probability of the most

likely explanation or proof of the query q

Px (q |T ) = maxE∈E(q) P(E |T ) = maxE∈E(q)

∏
ci∈E

pi , (6)

where E (q) is the set of all explanations for query q , i.e., all minimal sets E ⊆ LT

of probabilistic facts such that E ∪ BK |= q (Kimmig et al. 2007).

In our example, the set of all explanations for path(c, d) contains the edge from

c to d (with probability 0.9) as well as the path consisting of the edges from c to e

and from e to d (with probability 0. 8 · 0. 5 = 0. 4). Thus, Px (path(c, d)|T ) = 0. 9.

The ProbLog semantics is essentially a distribution semantics (Sato 1995). Sato

has rigorously shown that this class of programs defines a joint probability dis-

tribution over the set of possible least Herbrand models of the program (allowing

functors), that is, of the background knowledge BK together with a subprogram

L ⊆ LT ; for further details we refer to (Sato 1995). The distribution semantics has

been used widely in the literature, though often under other names or in a more
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restricted setting; see e.g. (Dantsin 1991; Poole 1993b; Fuhr 2000; Poole 2000; Dalvi

and Suciu 2004).

3 Inference in ProbLog

This section discusses algorithms for computing exactly or approximately the suc-

cess and explanation probabilities of ProbLog queries. It additionally contributes a

new algorithm for Monte Carlo approximation of success probabilities.

3.1 Exact Inference

Calculating the success probability of a query using Equation (4) directly is infea-

sible for all but the tiniest programs, as the number of subprograms to be checked

is exponential in the number of probabilistic facts. However, as we have seen in

our example in Section 2, we can describe all subprograms allowing for a specific

proof by means of the facts that such a program has to contain, i.e., all the ground

probabilistic facts used in that proof. As probabilistic facts correspond to random

variables indicating the presence of facts in a sampled program, we alternatively

denote proofs by conjunctions of such random variables. In our example, query

path(c,d) has two proofs in the full program: {edge(c,d)} and {edge(c,e),edge(e,d)},
or, using logical notation, cd and ce ∧ ed . The set of all subprograms containing

some proof thus can be described by a disjunction over all possible proofs, in our

case, cd ∨ (ce ∧ ed). This idea forms the basis for the inference method presented

in (De Raedt et al. 2007), which uses two steps:

1. Compute the proofs of the query q in the logical part of the theory T , that

is, in BK ∪ LT . The result will be a DNF formula.

2. Compute the probability of this formula.

Similar approaches are used for PRISM (Sato and Kameya 2001), ICL (Poole 2000)

and pD (Fuhr 2000).

The probability of a single given proof, cf. Equation (5), is the marginal over

all programs allowing for that proof, and thus equals the product of the prob-

abilities of the facts used by that proof. However, we cannot directly sum the

results for the different proofs to obtain the success probability, as a specific sub-

program can allow several proofs and therefore contributes to the probability of

each of these proofs. Indeed, in our example, all programs that are supersets

of {edge(c,e),edge(e,d),edge(c,d)} contribute to the marginals of both proofs and

would therefore be counted twice if summing the probabilities of the proofs. How-

ever, for mutually exclusive conjunctions, that is, conjunctions describing disjoint

sets of subprograms, the probability is the sum of the individual probabilities. This

situation can be achieved by adding negated random variables to a conjunction,

thereby explicitly excluding subprograms covered by another part of the formula

from the corresponding part of the sum. In the example, extending ce ∧ ed to
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?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

cd ce

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Figure 2. SLD-tree for query path(c, d).

ce ∧ ed ∧¬cd reduces the second part of the sum to those programs not covered by

the first:

Ps(path(c, d)|T ) = P(cd ∨ (ce ∧ ed)|T )

= P(cd |T ) + P(ce ∧ ed ∧ ¬cd |T )

= 0. 9 + 0. 8 · 0. 5 · (1− 0. 9) = 0. 94

However, as the number of proofs grows, disjoining them gets more involved. Con-

sider for example the query path(a,d) which has four different but highly intercon-

nected proofs. In general, this problem is known as the disjoint-sum-problem or the

two-terminal network reliability problem, which is #P-complete (Valiant 1979).

Before returning to possible approaches to tackle the disjoint-sum-problem at the

end of this section, we will now discuss the two steps of ProbLog’s exact inference

in more detail.

Following Prolog, the first step employs SLD-resolution to obtain all different

proofs. As an example, the SLD-tree for the query ?- path(c, d). is depicted in

Figure 2. Each successful proof in the SLD-tree uses a set of ground probabilistic

facts {p1 :: c1, · · · , pk :: ck} ⊆ T . These facts are necessary for the proof, and the

proof is independent of other probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each ground probabilistic

fact pi :: ci ∈ T , indicating whether ci is in a sampled logic program, that is, bi
has probability pi of being true.2 A particular proof of query q involving ground

facts {p1 :: c1, · · · , pk :: ck} ⊆ T is thus represented by the conjunctive formula

b1∧· · ·∧bk , which at the same time represents the set of all subprograms containing

these facts. Furthermore, using E (q) to denote the set of proofs or explanations of

the goal q , the set of all subprograms containing some proof of q can be denoted

2 For better readability, we do not write substitutions explicitly here.
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by
∨

e∈E(q)

∧
ci∈e bi , as the following derivation shows:

∨
e∈E(q)

∧
ci∈e

bi =
∨

e∈E(q)

 ∧
ci∈e

bi ∧
∧

ci∈LT\e

(bi ∨ ¬bi)


=

∨
e∈E(q)

∨
L⊆LT\e

 ∧
ci∈e

bi ∧

 ∧
ci∈L

bi ∧
∧

ci∈LT\(L ∪ e)

¬bi


=

∨
e∈E(q),L⊆LT\e

 ∧
ci∈L ∪ e

bi ∧
∧

ci∈LT\(L ∪ e)

¬bi


=

∨
L⊆LT ,∃θL ∪ BK |=qθ

 ∧
ci∈L

bi ∧
∧

ci∈LT\L

¬bi


We first add all possible ways of extending a proof e to a full sampled program by

considering each fact not in e in turn. We then note that the disjunction of these

fact-wise extensions can be written on the basis of sets. Finally, we rewrite the

condition of the disjunction in the terms of Equation (4). This is possible as each

subprogram that is an extension of an explanation of q entails some ground instance

of q , and vice versa, each subprogram entailing q is an extension of some explanation

of q . As the DNF now contains conjunctions representing fully specified programs,

its probability is a sum of products, which directly corresponds to Equation (4):

P(
∨

L⊆LT ,∃θL ∪ BK |=qθ

 ∧
ci∈L

bi ∧
∧

ci∈LT\L

¬bi

)

=
∑

L⊆LT ,∃θL ∪ BK |=qθ

∏
ci∈L

pi ·
∏

ci∈LT\L

(1− pi)


=

∑
L⊆LT ,∃θL ∪ BK |=qθ

P(L|T )

We thus obtain the following alternative characterisation of the success probability:

Ps(q |T ) = P

 ∨
e∈E(q)

∧
ci∈e

bi

 (7)

where E (q) denotes the set of proofs or explanations of the goal q and bi denotes

the Boolean variable corresponding to ground probabilistic fact pi :: ci . Thus, the

problem of computing the success probability of a ProbLog query can be reduced

to that of computing the probability of a DNF formula.

However, as argued above, due to overlap between different conjunctions, the

proof-based DNF of Equation (7) cannot directly be transformed into a sum of

products. Computing the probability of DNF formulae thus involves solving the

disjoint-sum-problem, and therefore is itself a #P-hard problem. Various algorithms

have been developed to tackle this problem. The pD-engine HySpirit (Fuhr 2000)
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uses the inclusion-exclusion principle, which is reported to scale to about ten proofs.

For ICL, which extends PHA by allowing non-disjoint proofs, (Poole 2000) pro-

poses a symbolic disjoining algorithm, but does not report scalability results. Our

implementation of ProbLog employs Binary Decision Diagrams (BDDs) (Bryant

1986), an efficient graphical representation of a Boolean function over a set of vari-

ables, which scales to tens of thousands of proofs; see Section 4.4 for more details.

PRISM (Sato and Kameya 2001) and PHA (Poole 1993b) differ from the systems

mentioned above in that they avoid the disjoint-sum-problem by requiring the user

to write programs such that proofs are guaranteed to be disjoint.

On the other hand, as the explanation probability Px exclusively depends on the

probabilistic facts used in one proof, it can be calculated using a simple branch-

and-bound approach based on the SLD-tree, where partial proofs are discarded if

their probability drops below that of the best proof found so far.

3.2 Approximative Inference

As the size of the DNF formula grows with the number of proofs, its evaluation can

become quite expensive, and ultimately infeasible. For instance, when searching for

paths in graphs or networks, even in small networks with a few dozen edges there

are easily O(106) possible paths between two nodes. ProbLog therefore includes

several approximation methods.

3.2.1 Bounded Approximation

The first approximation algorithm, a slight variant of the one proposed in (De Raedt

et al. 2007), uses DNF formulae to obtain both an upper and a lower bound on the

probability of a query. It is closely related to work by (Poole 1993a) in the context

of PHA, but adapted towards ProbLog. The method relies on two observations.

First, we remark that the DNF formula describing sets of proofs is monotone,

meaning that adding more proofs will never decrease the probability of the formula

being true. Thus, formulae describing subsets of the full set of proofs of a query

will always give a lower bound on the query’s success probability. In our example,

the lower bound obtained from the shorter proof would be P(cd |T ) = 0. 9, while

that from the longer one would be P(ce ∧ ed |T ) = 0. 4.

Our second observation is that the probability of a proof b1 ∧ . . .∧ bn will always

be at most the probability of an arbitrary prefix b1∧ . . .∧bi , i ≤ n. In our example,

the probability of the second proof will be at most the probability of its first edge

from c to e, i.e., P(ce|T ) = 0. 8 ≥ 0. 4. As disjoining sets of proofs, i.e., including

information on facts that are not elements of the subprograms described by a certain

proof, can only decrease the contribution of single proofs, this upper bound carries

over to a set of proofs or partial proofs, as long as prefixes for all possible proofs are

included. Such sets can be obtained from an incomplete SLD-tree, i.e., an SLD-tree

where branches are only extended up to a certain point.

This motivates ProbLog’s bounded approximation algorithm. The algorithm re-

lies on a probability threshold γ to stop growing the SLD-tree and thus obtain
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Algorithm 1 Bounded approximation using iterative deepening with probability

thresholds.
function Bounds(interval width δp , initial threshold γ, constant β ∈ (0, 1))

d1 = False; d2 = False; P(d1|T ) = 0; P(d2|T ) = 1;

while P(d2|T )− P(d1|T ) > δp do

p =True;

repeat

Expand current proof p

until either p:

(a) Fails, in this case backtrack to the remaining choice points;

(b) Succeeds, in this case set d1 := d1 ∨ p and d2 := d2 ∨ p;

(c) P(p|T ) < γ, in this case set d2 := d2 ∨ p

if d2 == False then

set d2 = True

Compute P(d1|T ) and P(d2|T )

γ := γ · β
return [P(d1|T ),P(d2|T )]

DNF formulae for the two bounds3. The lower bound formula d1 represents all

proofs with a probability above the current threshold. The upper bound formula

d2 additionally includes all derivations that have been stopped due to reaching the

threshold, as these still may succeed. Our goal is therefore to grow d1 and d2 in

order to decrease P(d2|T )− P(d1|T ).

Given an acceptance threshold δp , an initial probability threshold γ, and a shrink-

ing factor β ∈ (0, 1), the algorithm proceeds in an iterative-deepening manner as

outlined in Algorithm 1. Initially, both d1 and d2 are set to False, the neutral

element with respect to disjunction, and the probability bounds are 0 and 1, as we

have no full proofs yet, and the empty partial proof holds in any model.

It should be clear that P(d1|T ) monotonically increases, as the number of proofs

never decreases. On the other hand, as explained above, if d2 changes from one

iteration to the next, this is always because a partial proof p is either removed from

d2 and therefore no longer contributes to the probability, or it is replaced by proofs

p1, . . . , pn , such that pi = p∧si , hence P(p1∨. . .∨pn |T ) = P(p∧s1∨. . .∨p∧sn |T ) =

P(p∧(s1∨. . .∨sn)|T ). As proofs are subsets of the probabilistic facts in the ProbLog

program, each literal’s random variable appears at most once in the conjunction

representing a proof, even if the corresponding subgoal is called multiple times

when constructing the proof. We therefore know that the literals in the prefix

p cannot be in any suffix si , hence, given ProbLog’s independence assumption,

P(p ∧ (s1 ∨ . . . ∨ sn)|T ) = P(p|T )P(s1 ∨ . . . ∨ sn |T ) ≤ P(p|T ). Therefore, P(d2)

monotonically decreases.

As an illustration, consider a probability threshold γ = 0. 9 for the SLD-tree in

3 Using a probability threshold instead of the depth bound of (De Raedt et al. 2007) has been
found to speed up convergence, as upper bounds have been found to be tighter on initial levels.
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Figure 2. In this case, d1 encodes the left success path while d2 additionally encodes

the path up to path(e, d), i.e., d1 = cd and d2 = cd∨ce, whereas the formula for the

full SLD-tree is d = cd ∨ (ce ∧ ed). The lower bound thus is 0. 9, the upper bound

(obtained by disjoining d2 to cd ∨ (ce ∧¬cd)) is 0. 98, whereas the true probability

is 0. 94.

Notice that in order to implement this algorithm we need to compute the prob-

ability of a set of proofs. This task will be described in detail in Section 4.

3.2.2 K-Best

Using a fixed number of proofs to approximate the probability allows better control

of the overall complexity, which is crucial if large numbers of queries have to be eval-

uated, e.g., in the context of parameter learning. (Gutmann et al. 2008) therefore

introduces the k -probability Pk (q |T ), which approximates the success probability

by using the k -best (that is, the k most likely) explanations instead of all proofs

when building the DNF formula used in Equation (7):

Pk (q |T ) = P

 ∨
e∈Ek (q)

∧
bi∈var(e)

bi

 (8)

where Ek (q) = {e ∈ E (q)|Px (e) ≥ Px (ek )} with ek the kth element of E (q)

sorted by non-increasing probability. Setting k =∞ leads to the success probability,

whereas k = 1 corresponds to the explanation probability provided that there is a

single best proof. The branch-and-bound approach used to calculate the explanation

probability can directly be generalized to finding the k -best proofs; cf. also (Poole

1993b).

To illustrate k -probability, we consider again our example graph, but this time

with query path(a, d). This query has four proofs, represented by the conjunctions

ac∧cd , ab∧bc∧cd , ac∧ce∧ed and ab∧bc∧ce∧ed , with probabilities 0. 72, 0. 378,

0. 32 and 0. 168 respectively. As P1 corresponds to the explanation probability Px ,

we obtain P1(path(a, d)) = 0. 72. For k = 2, the overlap between the best two proofs

has to be taken into account: the second proof only adds information if the first one

is absent. As they share edge cd , this means that edge ac has to be missing, leading

to P2(path(a, d)) = P((ac ∧ cd)∨ (¬ac ∧ ab ∧ bc ∧ cd)) = 0. 72 + (1− 0. 8) · 0. 378 =

0. 7956. Similarly, we obtain P3(path(a, d)) = 0. 8276 and Pk (path(a, d)) = 0. 83096

for k ≥ 4.

3.2.3 Monte Carlo

As an alternative approximation technique, we propose a Monte Carlo method,

where we proceed as follows.

Execute until convergence:

1. Sample a logic program from the ProbLog program

2. Check for the existence of some proof of the query of interest
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3. Estimate the query probability P as the fraction of samples where the query

is provable

We estimate convergence by computing the 95% confidence interval at each m

samples. Given a large number N of samples, we can use the standard normal

approximation interval to the binomial distribution:

δ ≈ 2×
√

P · (P − 1)

N

Notice that confidence intervals do not directly correspond to the exact bounds used

in our previous approximation algorithm. Still, we employ the same stopping crite-

rion, that is, we run the Monte Carlo simulation until the width of the confidence

interval is at most δp .

A similar algorithm (without the use of confidence intervals) was also used in

the context of biological networks (not represented as Prolog programs) by (Sevon

et al. 2006). The use of a Monte Carlo method for probabilistic logic programs

was suggested already by (Dantsin 1991), although he neither provides details nor

reports on an implementation. Our approach differs from the MCMC method for

Stochastic Logic Programs (SLPs) introduced by (Cussens 2000) in that we do

not use a Markov chain, but restart from scratch for each sample. Furthermore,

SLPs are different in that they directly define a distribution over all proofs of a

query. Investigating similar probabilistic backtracking approaches for ProbLog is a

promising future research direction.

4 Implementation

This section discusses the main building blocks used to implement ProbLog on

top of the YAP-Prolog system. An overview is shown in Figure 3, with a typical

ProbLog program, including ProbLog facts and background knowledge (BK), at

the top.

The implementation requires ProbLog programs to use the problog module. Each

program consists of a set of labeled facts and of unlabeled background knowledge, a

generic Prolog program. Labeled facts are preprocessed as described below. Notice

that the implementation requires all queries to non-ground probabilistic facts to be

ground on calling.

In contrast to standard Prolog queries, where one is interested in answer substi-

tutions, in ProbLog one is primarily interested in a probability. As discussed before,

two common ProbLog queries ask for the most likely explanation and its probabil-

ity, and the probability of whether a query would have an answer substitution. We

have discussed two very different approaches to the problem:

• In exact inference, k -best and bounded approximation, the engine explicitly

reasons about probabilities of proofs. The challenge is how to compute the

probability of each individual proof, store a large number of proofs, and com-

pute the probability of sets of proofs.
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Yap Prolog

ProbLog Program

BackgroundFacts

Queries

ProbLog Library

Array LibraryTrie Library

SimpleCUDD

Trie2BDD Script

Figure 3. ProbLog Implementation: A ProbLog program (top) requires the ProbLog

library which in turn relies on functionality from the tries and array libraries.

ProbLog queries (bottom-left) are sent to the YAP engine, and may require calling

the BDD library CUDD via SimpleCUDD.

• In Monte Carlo, the probabilities of facts are used to sample from ProbLog

programs. The challenge is how to compute a sample quickly, in a way that

inference can be as efficient as possible.

ProbLog programs execute from a top-level query and are driven through a ProbLog

query. The inference algorithms discussed above can be abstracted as follows:

• Initialise the inference algorithm;

• While probabilistic inference did not converge:

— initialise a new query;

— execute the query, instrumenting every ProbLog call in the current proof.

Instrumentation is required for recording the ProbLog facts required by

a proof, but may also be used by the inference algorithm to stop proofs

(e.g., if the current probability is lower than a bound);

— process success or exit substitution;

• Proceed to the next step of the algorithm: this may be trivial or may require

calling an external solver, such as a BDD tool, to compute a probability.

Notice that the current ProbLog implementation relies on the Prolog engine to

efficiently execute goals. On the other hand, and in contrast to most other proba-

bilistic language implementations, in ProbLog there is no clear separation between

logical and probabilistic inference: in a fashion similar to constraint logic program-

ming, probabilistic inference can drive logical inference.

From a Prolog implementation perspective, ProbLog poses a number of interest-

ing challenges. First, labeled facts have to be efficiently compiled to allow mutual

calls between the Prolog program and the ProbLog engine. Second, for exact in-

ference, k -best and bounded approximation, sets of proofs have to be manipulated

and transformed into BDDs. Finally, Monte Carlo simulation requires representing

and manipulating samples. We discuss these issues next.
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4.1 Source-to-source transformation

We use the term expansion mechanism to allow Prolog calls to labeled facts, and

for labeled facts to call the ProbLog engine. As an example, the program:

0. 715 :: edge(′PubMed 2196878′,′ MIM 609065′).

0. 659 :: edge(′PubMed 8764571′,′ HGNC 5014′).
(9)

would be compiled as:

edge(A, B) : − problog edge(ID, A, B, LogProb),

grounding id(edge(A, B), ID, GroundID),

add to proof(GroundID, LogProb).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0. 3348).

problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0. 4166).

(10)

Thus, the internal representation of each fact contains an identifier, the original

arguments, and the logarithm of the probability4. The grounding id procedure

will create and store a grounding specific identifier for each new grounding of a

non-ground probabilistic fact encountered during proving, and retrieve it on re-

peated use. For ground probabilistic facts, it simply returns the identifier itself. The

add to proof procedure updates the data structure representing the current path

through the search space, i.e., a queue of identifiers ordered by first use, together

with its probability. Compared to the original meta-interpreter based implementa-

tion of (De Raedt et al. 2007), the main benefit of source-to-source transformation

is better scalability, namely by having a compact representation of the facts for

the YAP engine (Santos Costa 2007) and by allowing access to the YAP indexing

mechanism (Santos Costa et al. 2007).

4.2 Proof Manipulation

Manipulating proofs is critical in ProbLog. We represent each proof as a queue con-

taining the identifier of each different ground probabilistic fact used in the proof,

ordered by first use. The implementation requires calls to non-ground probabilistic

facts to be ground, and during proving maintains a table of groundings used within

the current query together with their identifiers. Grounding identifiers are based

on the fact’s identifier extended with a grounding number, i.e. 5 1 and 5 2 would

refer to different groundings of the non-ground fact with identifier 5. In our imple-

mentation, the queue is stored in a backtrackable global variable, which is updated

by calling add to proof with an identifier for the current ProbLog fact. We thus

exploit Prolog’s backtracking mechanism to avoid recomputation of shared proof

prefixes when exploring the space of proofs. Storing a proof is simply a question of

adding the value of the variable to a store.

As we have discussed above, the actual number of proofs can grow very quickly.

4 We use the logarithm to avoid numerical problems when calculating the probability of a deriva-
tion, which is used to drive inference.
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ProbLog compactly represents a proof as a list of numbers. We would further like

to have a scalable implementation of sets of proofs, such that we can compute the

joint probability of large sets of proofs efficiently. Our representation for sets of

proofs and our algorithm for computing the probability of such a set are discussed

next.

4.3 Sets of Proofs

Storing and manipulating proofs is critical in ProbLog. When manipulating proofs,

the key operation is often insertion: we would like to add a proof to an existing set of

proofs. Some algorithms, such as exact inference or Monte Carlo, only manipulate

complete proofs. Others, such as bounded approximation, require adding partial

derivations too. The nature of the SLD-tree means that proofs tend to share both

a prefix and a suffix. Partial proofs tend to share prefixes only. This suggests using

tries to maintain the set of proofs. We use the YAP implementation of tries for

this task, based itself on XSB Prolog’s work on tries of terms (Ramakrishnan et al.

1999), which we briefly summarize here.

Tries (Fredkin 1962) were originally invented to index dictionaries, and have

since been generalised to index recursive data structures such as terms. Please refer

to (Bachmair et al. 1993; Graf 1996; Ramakrishnan et al. 1999) for the use of tries in

automated theorem proving, term rewriting and tabled logic programs. An essential

property of the trie data structure is that common prefixes are stored only once.

A trie is a tree structure where each different path through the trie data units,

the trie nodes, corresponds to a term described by the tokens labelling the nodes

traversed. For example, the tokenized form of the term f (g(a), 1) is the sequence of

4 tokens: f /2, g/1, a and 1. Two terms with common prefixes will branch off from

each other at the first distinguishing token.

Trie’s internal nodes are four field data structures, storing the node’s token,

a pointer to the node’s first child, a pointer to the node’s parent and a pointer

to the node’s next sibling, respectively. Each internal node’s outgoing transitions

may be determined by following the child pointer to the first child node and, from

there, continuing sequentially through the list of sibling pointers. When a list of

sibling nodes becomes larger than a threshold value (8 in our implementation), we

dynamically index the nodes through a hash table to provide direct node access and

therefore optimise the search. Further hash collisions are reduced by dynamically

expanding the hash tables. Inserting a term requires in the worst case allocating

as many nodes as necessary to represent its complete path. On the other hand,

inserting repeated terms requires traversing the trie structure until reaching the

corresponding leaf node, without allocating any new node.

In order to minimize the number of nodes when storing proofs in a trie, we use

Prolog lists to represent proofs. For example, a ProbLog proof [3, 5 1, 7, 5 2] uses

ground fact 3, a first grounding of fact 5, ground fact 7 and another grounding of

fact 5, that is, list elements in proofs are always either integers or two integers with

an underscore in between.

Figure 4 presents an example of a trie storing three proofs. Initially, the trie
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LIST

root node

7

5_2

END_LIST

3

5_1

9

7

5_2

END_LIST

4

7

END_LIST

LIST

root node

7

5_2

END_LIST

3

5_1

9

7

5_2

END_LIST

LIST

root node

7

5_2

END_LIST

3

5_1

(a) (b) (c)

Figure 4. Using tries to store proofs. Initially, the trie contains the root node only.

Next, we store the proofs: (a) [3, 5 1, 7, 5 2]; (b) [3, 5 1, 9, 7, 5 2]; and (c) [3, 4, 7].

cd

ce
0.1

10.9

ed0.8

00.2
0.5

0.5

Figure 5. Binary Decision Diagram encoding the DNF formula cd ∨ (ce ∧ ed), cor-

responding to the two proofs of query path(c,d) in the example graph. An internal

node labeled xy represents the Boolean variable for the edge between x and y ,

solid/dashed edges correspond to values true/false and are labeled with the prob-

ability that the variable takes this value.

contains the root node only. Next, we store the proof [3, 5 1, 7, 5 2] and six nodes

(corresponding to six tokens) are added to represent it (Figure 4(a)). The proof

[3, 5 1, 9, 7, 5 2] is then stored which requires seven nodes. As it shares a common

prefix with the previous proof, we save the three initial nodes common to both

representations (Figure 4(b)). The proof [3, 4, 7] is stored next and we save again

the two initial nodes common to all proofs (Figure 4(c)).

4.4 Binary Decision Diagrams

To efficiently compute the probability of a DNF formula representing a set of proofs,

our implementation represents this formula as a reduced ordered Binary Decision

Diagram (BDD) (Bryant 1986), which can be viewed as a compact encoding of a

Boolean decision tree. Given a fixed variable ordering, a Boolean function f can

be represented as a full Boolean decision tree, where each node on the ith level
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Algorithm 2 Translating a trie T representing a DNF to a BDD generation script.

Replace(T ,C ,ni) replaces each occurence of C in T by ni .

function Translate(trie T )

i := 1

while ¬leaf (T ) do

S∧ := {(C ,P)|C leaf in T and single child of its parent P}
for all (C ,P) ∈ S∧ do

write ni = P ∧ C

T := Replace(T , (C ,P),ni)

i := i + 1

S∨ := {[C1, . . . ,Cn ]| leaves Cj are all the children of some parent P in T}
for all [C1, . . . ,Cn ] ∈ S∨ do

write ni = C1 ∨ . . . ∨ Cn

T := Replace(T , [C1, . . . ,Cn ],ni)

i := i + 1

write top = ni−1

is labeled with the ith variable and has two children called low and high. Leaves

are labeled by the outcome of f for the variable assignment corresponding to the

path to the leaf, where in each node labeled x , the branch to the low (high) child is

taken if variable x is assigned 0 (1). Starting from such a tree, one obtains a BDD

by merging isomorphic subgraphs and deleting redundant nodes until no further

reduction is possible. A node is redundant if the subgraphs rooted at its children

are isomorphic. Figure 5 shows the BDD for the existence of a path between c and

d in our earlier example.

We use SimpleCUDD5 as a wrapper tool for the BDD package CUDD6 to con-

struct and evaluate BDDs. More precisely, the trie representation of the DNF is

translated to a BDD generation script, which is processed by SimpleCUDD to build

the BDD using CUDD primitives. It is executed via Prolog’s shell utility, and results

are reported via shared files.

During the generation of the code, it is crucial to exploit the structure sharing

(prefixes and suffixes) already in the trie representation of a DNF formula, otherwise

CUDD computation time becomes extremely long or memory overflows quickly.

Since CUDD builds BDDs by joining smaller BDDs using logical operations, the trie

is traversed bottom-up to successively generate code for all its subtrees. Algorithm 2

gives the details of this procedure. Two types of operations are used to combine

nodes. The first creates conjunctions of leaf nodes and their parent if the leaf is

a single child, the second creates disjunctions of all child nodes of a node if these

child nodes are all leaves. In both cases, a subtree that occurs multiple times in the

trie is translated only once, and the resulting BDD is used for all occurrences of

that subtree. Because of the optimizations in CUDD, the resulting BDD can have

5 http://www.cs.kuleuven.be/~theo/tools/simplecudd.html
6 http://vlsi.colorado.edu/~fabio/CUDD

http://www.cs.kuleuven.be/~theo/tools/simplecudd.html
http://vlsi.colorado.edu/~fabio/CUDD
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cd ce

ed

ac ab

bc

cd ce

ed

(a)

cd

ac ab

n1 bc

cd n1

(b)

n2

n2

ac ab

bc

(c)

n3 ab

n4

(d)

n3 n5

(e)

Figure 6. Translating the DNF for path(a,d).

Algorithm 3 Calculating the probability of a BDD.

function Probability(BDD node n )

If n is the 1-terminal then return 1

If n is the 0-terminal then return 0

let h and l be the high and low children of n

prob(h) := call Probability(h)

prob(l) := call Probability(l)

return pn · prob(h) + (1− pn) · prob(l)

a very different structure than the trie. The translation for query path(a,d) in our

example graph is illustrated in Figure 6, it results in the following script:

n1 = ce ∧ ed

n2 = cd ∨ n1

n3 = ac ∧ n2

n4 = bc ∧ n2

n5 = ab ∧ n4

n6 = n3 ∨ n5

top = n6

After CUDD has generated the BDD, the probability of a formula is calculated

by traversing the BDD, in each node summing the probability of the high and low

child, weighted by the probability of the node’s variable being assigned true and false

respectively, cf. Algorithm 3. Intermediate results are cached, and the algorithm has

a time and space complexity linear in the size of the BDD. For illustration, consider

again Figure 5. The algorithm starts by assigning probabilities 0 and 1 to the 0- and

1-leaf respectively. The node labeled ed has probability 0. 5 · 1 + 0. 5 · 0 = 0. 5, node

ce has probability 0. 8 · 0. 5 + 0. 2 · 0 = 0. 4; finally, node cd , and thus the entire

formula, has probability 0. 9 · 1 + 0. 1 · 0. 4 = 0. 94.
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Algorithm 4 Monte Carlo Inference.

function MonteCarlo(query q , interval width δp , constant m)

c = 0; i = 0; p = 0; δ = 1;

while δ > δp do

Generate a sample P ′;

if P ′ |= q then

c := c + 1;

i := i + 1;

if i mod m == 0 then

p := c/i

δ := 2×
√

p·(p−1)
i

return p

4.5 Monte Carlo

The Monte Carlo implementation is shown in Algorithm 4. It receives a query q ,

an acceptance threshold δp and a constant m determining the number of samples

generated per iteration. At the end of each iteration, it estimates the probability

p as the fraction of programs sampled over all previous iterations that entailed

the query, and the confidence interval width to be used in the stopping criterion

as explained in Section 3.2.3. Monte Carlo execution is quite different from the

approaches discussed before, as the two main steps are (a) generating a sample

program and (b) performing standard refutation on the sample. Thus, instead of

combining large numbers of proofs, we need to manipulate large numbers of different

programs or samples.

Our first approach was to generate a complete sample and to check for a proof.

In order to accelerate the process, proofs were cached in a trie to skip inference on

a new sample. If no proofs exist on a cache, we call the standard Prolog refutation

procedure. Although this approach works rather well for small databases, it does

not scale to larger databases where just generating a new sample requires walking

through millions of facts.

We observed that even in large programs proofs are often quite short, i.e., we

only need to verify whether facts from a small fragment of the database are in

the sample. This suggests that it may be a good idea to take advantage of the

independence between facts and generate the sample lazily : we verify whether a

fact is in the sample only when we need it for a proof. YAP represents samples

compactly as a three-valued array with one field for each fact, where 0 means the

fact was not yet sampled, 1 it was already sampled and belongs to the sample, 2 it

was already sampled and does not belong to the sample. In this implementation:

1. New samples are generated by resetting the sampling array.

2. At every call to add to proof, given the current ProbLog literal f :

(a) if s[f ] == 0, s[f ] = sample(f );

(b) if s[f ] == 1, succeed;

(c) if s[f ] == 2, fail;
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Note that as fact identifiers are used to access the array, the approach cannot di-

rectly be used for non-ground facts. The current implementation of Monte Carlo

therefore uses the internal database to store the result of sampling different ground-

ings of such facts.

5 Experiments

We performed experiments with our implementation of ProbLog in the context of

the biological network obtained from the Biomine project (Sevon et al. 2006). We

used two subgraphs extracted around three genes known to be connected to the

Alzheimer disease (HGNC numbers 983, 620 and 582) as well as the full network.

The smaller graphs were obtained querying Biomine for best paths of length 2

(resulting in graph Small) or all paths of length 3 (resulting in graph Medium)

starting at one of the three genes. Small contains 79 nodes and 144 edges, Medium

5220 nodes and 11532 edges. We used Small for a first comparison of our algorithms

on a small scale network where success probabilities can be calculated exactly.

Scalability was evaluated using both Medium and the entire Biomine network

with roughly 1,000,000 nodes and 6,000,000 edges. In all experiments, we queried

for the probability that two of the gene nodes mentioned above are connected,

that is, we used queries such as path(’HGNC 983’,’HGNC 620’,Path). We used

the following definition of an acyclic path in our background knowledge:

path(X, Y, A) : − path(X, Y, [X], A),

path(X, X, A, A).

path(X, Y, A, R) : − X \ == Y,

edge(X, Z),

absent(Z, A),

path(Z, Y, [Z|A], R).

(11)

As list operations to check for the absence of a node get expensive for long paths,

we consider an alternative definition for use in Monte Carlo. It provides cheaper

testing by using the internal database of YAP to store nodes on the current path

under key visited:

memopath(X, Y, A) : − eraseall(visited),

memopath(X, Y, [X], A).

memopath(X, X, A, A).

memopath(X, Y, A, R) : − X \ == Y,

edge(X, Z),

recordzifnot(visited, Z, ),

memopath(Z, Y, [Z|A], R).

(12)
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path 983 − 620 983 − 582 620 − 582
k TP TB P TP TB P TP TB P

1 0 13 0.07 0 7 0.05 0 26 0.66
2 0 12 0.08 0 6 0.05 0 6 0.66
4 0 12 0.10 10 6 0.06 0 6 0.86
8 10 12 0.11 0 6 0.06 0 6 0.92
16 0 12 0.11 10 6 0.06 0 6 0.92
32 20 34 0.11 10 17 0.07 0 7 0.96
64 20 74 0.11 10 46 0.09 10 38 0.99
128 50 121 0.11 40 161 0.10 20 257 1.00
256 140 104 0.11 80 215 0.10 90 246 1.00
512 450 118 0.11 370 455 0.11 230 345 1.00
1024 1310 537 0.11 950 494 0.11 920 237 1.00

exact 670 450 0.11 8060 659 0.11 630 721 1.00

Table 1. k -probability on Small.

Finally, to assess performance on the full network for queries with smaller proba-

bilities, we use the following definition of paths with limited length:

lenpath(N, X, Y, Path) : − lenpath(N, X, Y, [X], Path).

lenpath(N, X, X, A, A) : − N ≥ 0.

lenpath(N, X, Y, A, P) : − X\ == Y,

N > 0,

edge(X, Z),

absent(Z, A),

NN is N− 1,

lenpath(NN, Z, Y, [Z|A], P).

(13)

All experiments were performed on a Core 2 Duo 2.4 GHz 4 GB machine running

Linux. All times reported are in msec and do not include the time to load the graph

into Prolog. The latter takes 20, 200 and 78140 msec for Small, Medium and

Biomine respectively. Furthermore, as YAP indexes the database at query time,

we query for the explanation probability of path(’HGNC 620’,’HGNC 582’,Path)

before starting runtime measurements. This takes 0, 50 and 25900 msec for Small,

Medium and Biomine respectively. We report TP , the time spent by ProbLog to

search for proofs, as well as TB , the time spent to execute BDD programs (whenever

meaningful). We also report the estimated probability P . For approximate inference

using bounds, we report exact intervals for P , and also include the number n of

BDDs constructed. We set both the initial threshold and the shrinking factor to

0. 5. We computed k -probability for k = 1, 2, . . . , 1024. In the bounding algorithms,

the error interval ranged between 10% and 1%. Monte Carlo recalculates confidence

intervals after m = 1000 samples. We also report the number S of samples used.
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path 983 − 620 983 − 582 620 − 582
δ TP TB n P TP TB n P TP TB n P

0.10 0 48 4 [0.07,0.12] 10 74 6 [0.06,0.11] 0 25 2 [0.91,1.00]
0.05 0 71 6 [0.07,0.11] 0 75 6 [0.06,0.11] 0 486 4 [0.98,1.00]
0.01 0 83 7 [0.11,0.11] 140 3364 10 [0.10,0.11] 60 1886 6 [1.00,1.00]

Table 2. Inference using bounds on Small.

path 983 − 620 983 − 582 620 − 582
δ S TP P S TP P S TP P

0.10 1000 10 0.11 1000 10 0.11 1000 30 1.00
0.05 1000 10 0.11 1000 10 0.10 1000 20 1.00
0.01 16000 130 0.11 16000 170 0.11 1000 30 1.00

Table 3. Monte Carlo Inference on Small.

Small Sized Sample We first compared our algorithms on Small. Table 1 shows the

results for k -probability and exact inference. Note that nodes 620 and 582 are close

to each other, whereas node 983 is farther apart. Therefore, connections involving

the latter are less likely. In this graph, we obtained good approximations using a

small fraction of proofs (the queries have 13136, 155695 and 16048 proofs respec-

tively). Our results also show a significant increase in running times as ProbLog

explores more paths in the graph, both within the Prolog code and within the

BDD code. The BDD running times can vary widely, we may actually have large

running times for smaller BDDs, depending on BDD structure. However, using

SimpleCUDD instead of the C++ interface used in (Kimmig et al. 2008) typically

decreases BDD time by at least one or two orders of magnitude.

Table 2 gives corresponding results for bounded approximation. The algorithm

converges quickly, as few proofs are needed and BDDs remain small. Note however

that exact inference is competitive for this problem size. Moreover, we observe

large speedups compared to the implementation with meta-interpreters used in (De

Raedt et al. 2007), where total runtimes to reach δ = 0. 01 for these queries were

46234, 206400 and 307966 msec respectively. Table 3 shows the performance of the

Monte Carlo estimator. On Small, Monte Carlo is the fastest approach. Already

within the first 1000 samples a good approximation is obtained.

The experiments on Small thus confirm that the implementation on top of YAP-

Prolog enables efficient probabilistic inference on small sized graphs.

Medium Sized Sample For graph Medium with around 11000 edges, exact inference

is no longer feasible. Table 4 again shows results for the k -probability. Comparing

these results with the corresponding values from Table 1, we observe that the es-

timated probability is higher now: this is natural, as the graph has both more
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path 983 − 620 983 − 582 620 − 582
k TP TB P TP TB P TP TB P

1 180 6 0.33 1620 6 0.30 10 6 0.92
2 180 6 0.33 1620 6 0.30 20 6 0.92
4 180 6 0.33 1630 6 0.30 10 6 0.92
8 220 6 0.33 1630 6 0.30 20 6 0.92
16 260 6 0.33 1660 6 0.30 30 6 0.99
32 710 6 0.40 1710 7 0.30 110 6 1.00
64 1540 7 0.42 1910 6 0.30 200 6 1.00
128 1680 6 0.42 2230 6 0.30 240 9 1.00
256 2190 7 0.55 2720 6 0.49 290 196 1.00
512 2650 7 0.64 3730 7 0.53 1310 327 1.00
1024 8100 41 0.70 5080 8 0.56 3070 1357 1.00

Table 4. k -probability on Medium.

memo 983 − 620 983 − 582 620 − 582
δ S TP P S TP P S TP P

0.10 1000 1180 0.78 1000 2130 0.76 1000 1640 1.00
0.05 2000 2320 0.77 2000 4230 0.74 1000 1640 1.00
0.01 29000 33220 0.77 29000 61140 0.77 1000 1670 1.00

Table 5. Monte Carlo Inference using memopath/3 on Medium.

nodes and is more connected, therefore leading to many more possible explana-

tions. This also explains the increase in running times. Approximate inference using

bounds only reached loose bounds (with differences> 0. 2) on queries involving node

’HGNC 983’, as upper bound formulae with more than 10 million conjunctions were

encountered, which could not be processed.

The Monte Carlo estimator using the standard definition of path/3 on Medium

did not complete the first 1000 samples within one hour. A detailed analysis shows

that this is caused by some queries backtracking too heavily. Table 5 therefore

reports results using the memorising version memopath/3. With this improved defi-

nition, Monte Carlo performs well: it obtains a good approximation in a few seconds.

Requiring tighter bounds however can increase runtimes significantly.

Biomine Database The Biomine Database covers hundreds of thousands of enti-

ties and millions of links. On Biomine, we therefore restricted our experiments to

the approximations given by k -probability and Monte Carlo. Given the results on

Medium, we directly used memopath/3 for Monte Carlo. Tables 6 and 7 show the

results on the large network. We observe that on this large graph, the number of

possible paths is tremendous, which implies success probabilities practically equal

to 1. Still, we observe that ProbLog’s branch-and-bound search to find the best
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path 983 − 620 983 − 582 620 − 582
k TP TB P TP TB P TP TB P

1 5,760 49 0.16 8,910 48 0.11 10 48 0.59
2 5,800 48 0.16 10,340 48 0.17 180 48 0.63
4 6,200 48 0.16 13,640 48 0.28 360 48 0.65
8 7,480 48 0.16 15,550 49 0.38 500 48 0.66
16 11,470 49 0.50 58,050 49 0.53 630 48 0.92
32 15,100 49 0.57 106,300 49 0.56 2,220 167 0.95
64 53,760 84 0.80 146,380 101 0.65 3,690 167 0.95
128 71,560 126 0.88 230,290 354 0.76 7,360 369 0.98
256 138,300 277 0.95 336,410 520 0.85 13,520 1,106 1.00
512 242,210 730 0.98 501,870 2,744 0.88 23,910 3,444 1.00
1024 364,490 10,597 0.99 1,809,680 100,468 0.93 146,890 10,675 1.00

Table 6. k -probability on Biomine.

memo 983 − 620 983 − 582 620 − 582
δ S TP P S TP P S TP P

0.10 1000 100,700 1.00 1000 1,656,660 1.00 1000 1,696,420 1.00
0.05 1000 100,230 1.00 1000 1,671,880 1.00 1000 1,690,830 1.00
0.01 1000 93,120 1.00 1000 1,710,200 1.00 1000 1,637,320 1.00

Table 7. Monte Carlo Inference using memopath/3 on Biomine.

solutions performs reasonably also on this size of network. However, runtimes for

obtaining tight confidence intervals with Monte Carlo explode quickly even with

the improved path definition. Given that sampling a program that does not entail

the query is extremely unlikely for the setting considered so far, we performed an

additional experiment on Biomine, where we restrict the number of edges on the

path connecting two nodes to a maximum of 2 or 3. Results are reported in Ta-

ble 8. As none of the resulting queries have more than 50 proofs, exact inference is

much faster than Monte Carlo, which needs a higher number of samples to reliably

estimate probabilities that are not close to 1.

Altogether, the experiments confirm that our implementation provides efficient

inference algorithms for ProbLog that scale to large databases. Furthermore, com-

pared to the original implementation of (De Raedt et al. 2007), we obtain large

speedups in both the Prolog and the BDD part, thereby opening new perspectives

for applications of ProbLog.

6 Conclusions

ProbLog is a simple but elegant probabilistic logic programming language that al-

lows one to explicitly represent uncertainty by means of probabilistic facts denoting
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len 983 − 620 983 − 582 620 − 582
δ S T P S T P S T P

0.10 1000 21,400 0.04 1000 18,720 0.11 1000 19,150 0.58
0.05 1000 19,770 0.05 1000 20,980 0.10 2000 35,100 0.55
0.01 6000 112,740 0.04 16000 307,520 0.11 40000 764,700 0.55

exact - 477 0.04 - 456 0.11 - 581 0.55

0.10 1000 106,730 0.14 1000 105,350 0.33 1000 45,400 0.96
0.05 1000 107,920 0.14 2000 198,930 0.34 1000 49,950 0.96
0.01 19000 2,065,030 0.14 37000 3,828,520 0.35 6000 282,400 0.96

exact - 9,413 0.14 - 9,485 0.35 - 15,806 0.96

Table 8. Monte Carlo inference for different values of δ and exact inference using

lenpath/4 with length at most 2 (top) or 3 (bottom) on Biomine. For exact

inference, runtimes include both Prolog and BDD time.

independent random variables. The language is a simple and natural extension of

the logic programming language Prolog. We presented an efficient implementation

of the ProbLog language on top of the YAP-Prolog system that is designed to scale

to large sized problems. We showed that ProbLog can be used to obtain both expla-

nation and (approximations of) success probabilities for queries on a large database.

To the best of our knowledge, ProbLog is the first example of a probabilistic logic

programming system that can execute queries on such large databases. Due to the

use of BDDs for addressing the disjoint-sum-problem, the initial implementation of

ProbLog used in (De Raedt et al. 2007) already scaled up much better than alter-

native implementations such as Fuhr’s pD engine HySpirit (Fuhr 2000). The tight

integration in YAP-Prolog presented here leads to further speedups in runtime of

several orders of magnitude.

Although we focused on connectivity queries and Biomine in this work, similar

problems are found across many domains; we believe that the techniques presented

apply to a wide variety of queries and databases because ProbLog provides a clean

separation between background knowledge and what is specific to the engine. As

shown for Monte Carlo inference, such an interface can be very useful to improve

performance as it allows incremental refinement of background knowledge, e.g.,

graph procedures. Initial experiments with Dijkstra’s algorithm for finding the ex-

planation probability are very promising.

ProbLog is closely related to some alternative formalisms such as PHA and

ICL (Poole 1993b; Poole 2000), pD (Fuhr 2000) and PRISM (Sato and Kameya

2001) as their semantics are all based on Sato’s distribution semantics even though

there exist also some subtle differences. However, ProbLog is – to the best of the

authors’ knowledge – the first implementation that tightly integrates Sato’s origi-

nal distribution semantics (Sato 1995) in a state-of-the-art Prolog system without



On the Implementation of ProbLog 25

making additional restrictions (such as the exclusive explanation assumption made

in PHA and PRISM). As ProbLog, both PRISM and the ICL implementation

AILog2 use a two-step approach to inference, where proofs are collected in the

first phase, and probabilities are calculated once all proofs are known. AILog2 is

a meta-interpreter implemented in SWI-Prolog for didactical purposes, where the

disjoint-sum-problem is tackled using a symbolic disjoining technique (Poole 2000).

PRISM, built on top of B-Prolog, requires programs to be written such that alterna-

tive explanations for queries are mutually exclusive. PRISM uses a meta-interpreter

to collect proofs in a hierarchical datastructure called explanation graph. As proofs

are mutually exclusive, the explanation graph directly mirrors the sum-of-products

structure of probability calculation (Sato and Kameya 2001). ProbLog is the first

probabilistic logic programming system using BDDs as a basic datastructure for

probability calculation, a principle that receives increased interest in the proba-

bilistic logic learning community, cf. for instance (Riguzzi 2007; Ishihata et al.

2008).

Furthermore, as compared to SLPs (Muggleton 1995), CLP(BN ) (Santos Costa

et al. 2003), and BLPs (Kersting and De Raedt 2008), ProbLog is a much simpler

and in a sense more primitive probabilistic programming language. Therefore, the

relationship between probabilistic logic programming and ProbLog is, in a sense,

analogous to that between logic programming and Prolog. From this perspective, it

is our hope and goal to further develop ProbLog so that it can be used as a general

purpose programming language with an efficient implementation for use in statisti-

cal relational learning (Getoor and Taskar 2007) and probabilistic programming (De

Raedt et al. 2008). One important use of such a probabilistic programming language

is as a target language in which other formalisms can be efficiently compiled. For

instance, it has already been shown that CP-logic (Vennekens et al. 2004), a recent

elegant probabilistic knowledge representation language based on a probabilistic

extension of clausal logic, can be compiled into ProbLog (Riguzzi 2007) and it is

well-known that SLPs (Muggleton 1995) can be compiled into Sato’s PRISM, which

is closely related to ProbLog. Further evidence is provided in (De Raedt et al. 2008).

Another, related use of ProbLog is as a vehicle for developing learning and min-

ing algorithms and tools (Kimmig et al. 2007; De Raedt et al. 2008; Gutmann

et al. 2008; Kimmig and De Raedt 2009; De Raedt et al. 2009). In the context

of probabilistic representations (Getoor and Taskar 2007; De Raedt et al. 2008),

one typically distinguishes two types of learning: parameter estimation and struc-

ture learning. In parameter estimation in the context of ProbLog and PRISM, one

starts from a set of queries and the logical part of the program and the problem

is to find good estimates of the parameter values, that is, the probabilities of the

probabilistic facts in the program. (Gutmann et al. 2008) introduces a gradient

descent approach to parameter learning for ProbLog that extends the BDD-based

methods discussed here. In structure learning, one also starts from queries but has

to find the logical part of the program as well. Structure learning is therefore closely

related to inductive logic programming. The limiting factor in statistical relational

learning and probabilistic logic learning is often the efficiency of inference, as learn-

ing requires repeated computation of the probabilities of many queries. Therefore,
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improvements on inference in probabilistic programming implementations have an

immediate effect on learning. The above compilation approach also raises the inter-

esting and largely open question whether not only inference problems for alternative

formalisms can be compiled into ProbLog but whether it is also possible to compile

learning problems for these logics into learning problems for ProbLog.

Finally, as ProbLog, unlike PRISM and PHA, deals with the disjoint-sum-problem,

it is interesting to study how program transformation and analysis techniques could

be used to optimize ProbLog programs, by detecting and taking into account situ-

ations where some conjunctions are disjoint. At the same time, we currently inves-

tigate how tabling, one of the keys to PRISM’s efficiency, can be incorporated in

ProbLog (Mantadelis and Janssens 2009; Kimmig et al. 2009).
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