10 research outputs found

    Arrhythmia Classification Algorithm Based on Multi-Feature and Multi-type Optimized SVM

    Get PDF
    The electrocardiogram (ECG) signal feature extraction and classification diagnosis algorithm is proposed to address the high incidence of heart disease and difficulty in self-detection. First, the collected ECG signals are preprocessed to remove the noise of the ECG signals. Next, wavelet packet decomposition is used to perform a four-layer transformation on the denoised ECG signal and the 16 obtained wavelet packet coefficients analyzed statistically. Next, the slope threshold method is used to extract the R-peak of the denoised ECG signal. The RR interval can be calculated according to the extracted R peak. The extracted statistical features and time domain RR interval features are combined into a multi-domain feature space. Finally, the particle swarm optimization algorithm (PSO), genetic algorithm (GA), and grid search (GS) algorithms are applied to optimize the support vector machine (SVM). The optimized SVM is utilized to classify the extracted multi-domain features. Classification results show the proposed algorithm can classify six types of ECG beats accurately. The classification efficiency achieved by PSO, GA, and GS are 97.78%, 98.33%, and 98.89%, respectively

    On the classification of arrhythmia using supplementary features from Tetrolet transforms

    Get PDF
    Heart diseases had been molded as potential threats to human lives, especially to elderly people in recent days due to the dynamically varying food habits among the people. However, these diseases could be easily caught by proper analysis of Electrocardiogram (ECG) signals acquired from individuals. This paper proposes a better method to detect and classify the arrhythmia using 15 features which include 4 R-R interval features, 3 statistical and 6 chaotic features estimated from ECG signals. Additionally, Entropy and Energy features had been gained after converting one dimensional ECG signals to two dimensional data and applied Tetrolet transforms on that.  Total numbers of 15 features had been utilized to classify the heart beats from the benchmark MIT-Arrhythmia database using Support Vector Machines (SVM). The classification performance was analyzed under various kernel functions and different Tetrolet decomposition levels. It is found that Radial Basis Function (RBF) kernel could perform better than linear and polynomial kernels. This research attempt yielded an accuracy of 99.35 % against the existing works. Moreover, addition of two more features had introduced a negligible overhead of time. Hence, this method is better suitable to detect and classify the Arrhythmia in both online and offline

    Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers

    Get PDF
    ©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Mondéjar-Guerra, V., Novo, J., Rouco, J., Penedo, M. G., & Ortega, M. (2019). “Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers” has been accepted for publication in Biomedical Signal Processing and Control, 47, 41–48. The Version of Record is available online at: https://doi.org/10.1016/j.bspc.2018.08.007.[Abstract]: A method for the automatic classification of electrocardiograms (ECG) based on the combination of multiple Support Vector Machines (SVMs) is presented in this work. The method relies on the time intervals between consequent beats and their morphology for the ECG characterisation. Different descriptors based on wavelets, local binary patterns (LBP), higher order statistics (HOS) and several amplitude values were employed. Instead of concatenating all these features to feed a single SVM model, we propose to train specific SVM models for each type of feature. In order to obtain the final prediction, the decisions of the different models are combined with the product, sum, and majority rules. The designed methodology approaches are tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal and normal beats. Our approach based on an ensemble of SVMs offered a satisfactory performance, improving the results when compared to a single SVM model using the same features. Additionally, our approach also showed better results in comparison with previous machine learning approaches of the state-of-the-art.This work was partially supported by the Research Project RTC-2016-5143-1, financed by the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (ERDF). Also, this work has received financial support from the ERDF and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Identifying HRV patterns in ECG signals as early markers of dementia

    Get PDF
    The appearance of Artificial Intelligence (IA) has improved our ability to process large amount of data. These tools are particularly interesting in medical contexts, in order to evaluate the variables from patients’ screening analysis and disentangle the information that they contain. We propose in this work a novel method for evaluating the role of electrocardiogram (ECG) signals in the human cognitive decline. This framework offers a complete solution for all the steps in the classification pipeline, from the preprocessing of the raw signals to the final classification stage. Numerous metrics are computed from the original data in terms of different domains (time, frequency, etc.), and dimensionality is reduced through a Principal Component Analysis (PCA). The resulting characteristics are used as inputs of different classifiers (linear/non-linear Support Vector Machines, Random Forest, etc.) to determine the amount of information that they contain. Our system yielded an area under the Receiver Operating Characteristic (ROC) curve of 0.80 identifying Mild Cognitive Impairment (MCI) patients, showing that ECG contain crucial information for predicting the appearance of this pathology. These results are specially relevant given the fact that ECG acquisition is much more affordable and less invasive than brain imaging used in most of these intelligent systems, allowing our method to be used in environments of any socioeconomic range.Funding for open access charge: Universidad de Málaga/CBUA. This work was supported by projects PID2022-137461NB-C32 (Spanish “Ministerio de Ciencia e Innovación, /AEI /10.13039/501100011033/ FEDER, UE), UMA20-FEDERJA-086 European Regional Development Funds (ERDF) “Una manera de hacer Europa”, and by Spanish “Ministerio de Universidades” (Next Generation EU funds) through Margarita-Salas grant to J.E. Arco

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    Independent component analysis for naive bayes classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Towards a better understanding of the precordial leads : an engineering point of view

    Get PDF
    This thesis provides comprehensive literature review of the electrocardiography evolution to highlight the important theories behind the development of the electrocardiography device. More importantly, it discusses different electrode placement on the chest, and their clinical advantages. This work presents a technical detail of a new ECG device which was developed at MARCS institute and can record the Wilson Central Terminal (WCT) components in addition to the standard 12-lead ECG. This ECG device was used to record from 147 patients at Campbelltown hospital over three years. The first two years of recording contain 92 patients which was published in the Physionet platform under the name of Wilson Central Terminal ECG database (WCTECGdb). This novel dataset was used to demonstrate the WCT signal characterisation and investigate how WCT impacts the precordial leads. Furthermore, the clinical influence of the WCT on precordial leads in patients diagnosed with non-ST segment elevation myocardial infarction (NSTEMI) is discussed. The work presented in this research is intended to revisit some of the ECG theories and investigate the validity of them using the recorded data. Furthermore, the influence of the left leg potential on recording the precordial leads is presented, which lead to investigate whether the WCT and augmented vector foot (aVF) are proportional. Finally, a machine learning approach is proposed to minimise the Wilson Central Terminal

    Técnicas baseadas em subespaços e aplicações

    Get PDF
    Doutoramento em Engenharia ElectrónicaEste trabalho focou-se no estudo de técnicas de sub-espaço tendo em vista as aplicações seguintes: eliminação de ruído em séries temporais e extracção de características para problemas de classificação supervisionada. Foram estudadas as vertentes lineares e não-lineares das referidas técnicas tendo como ponto de partida os algoritmos SSA e KPCA. No trabalho apresentam-se propostas para optimizar os algoritmos, bem como uma descrição dos mesmos numa abordagem diferente daquela que é feita na literatura. Em qualquer das vertentes, linear ou não-linear, os métodos são apresentados utilizando uma formulação algébrica consistente. O modelo de subespaço é obtido calculando a decomposição em valores e vectores próprios das matrizes de kernel ou de correlação/covariância calculadas com um conjunto de dados multidimensional. A complexidade das técnicas não lineares de subespaço é discutida, nomeadamente, o problema da pre-imagem e a decomposição em valores e vectores próprios de matrizes de dimensão elevada. Diferentes algoritmos de préimagem são apresentados bem como propostas alternativas para a sua optimização. A decomposição em vectores próprios da matriz de kernel baseada em aproximações low-rank da matriz conduz a um algoritmo mais eficiente- o Greedy KPCA. Os algoritmos são aplicados a sinais artificiais de modo a estudar a influência dos vários parâmetros na sua performance. Para além disso, a exploração destas técnicas é extendida à eliminação de artefactos em séries temporais biomédicas univariáveis, nomeadamente, sinais EEG.This work focuses on the study of linear and non-linear subspace projective techniques with two intents: noise elimination and feature extraction. The conducted study is based on the SSA, and Kernel PCA algorithms. Several approaches to optimize the algorithms are addressed along with a description of those algorithms in a distinct approach from the one made in the literature. All methods presented here follow a consistent algebraic formulation to manipulate the data. The subspace model is formed using the elements from the eigendecomposition of kernel or correlation/covariance matrices computed on multidimensional data sets. The complexity of non-linear subspace techniques is exploited, namely the preimage problem and the kernel matrix dimensionality. Different pre-image algorithms are presented together with alternative proposals to optimize them. In this work some approximations to the kernel matrix based on its low rank approximation are discussed and the Greedy KPCA algorithm is introduced. Throughout this thesis, the algorithms are applied to artificial signals in order to study the influence of the several parameters in their performance. Furthermore, the exploitation of these techniques is extended to artefact removal in univariate biomedical time series, namely, EEG signals.FCT - SFRH/BD/28404/200

    Novel ECG signal classification based on KICA nonlinear feature extraction

    No full text
    Electrocardiogram (ECG) signal feature extraction is important in diagnosing cardiovascular diseases. This paper presents a new method for nonlinear feature extraction of ECG signals by combining principal component analysis (PCA) and kernel independent component analysis (KICA). The proposed method first uses PCA to decrease the dimensions of the ECG signal training set and then employs KICA to calculate the feature space for extracting the nonlinear features. Support vector machine (SVM) is utilized to determine the nonlinear features of the ECG signal classification. Genetic algorithm is also used to optimize the SVM parameters. The proposed method is advantageous because it does not require a huge amount of sampling data, and this technique is better than traditional strategies to select optimal features in the multi-domain feature space. Computer simulations reveal that the proposed method yields more satisfactory classification results on the MIT-BIH arrhythmia database, reaching an overall accuracy of 97.78 %
    corecore