209 research outputs found

    Design, Modeling, And Control Of Three-port Converters For Solar Power Applications

    Get PDF
    This paper describes the results of research into multi-port converter design and control, specifically a pair of three-port topologies based on the half-bridge and full-bridge topologies. These converters are capable of simultaneous and independent regulation of two out of their three ports, while the third port provides the power balance in the system. A dynamic model was developed for each topology to aid in testing and for designing the control loops. The models were then used to design the control structures, and the results were tested in Simulink. In addition, a basic outline of a system level architecture to control multiple converters working in parallel is presented. To improve the reliability of this system, output current sharing controls were also developed. Finally, one of the topologies is analyzed in detail in order to obtain a set of design equations that can be used to improve the efficiency, weight, and cost of the converter for a specific application

    Single-Switch Non-Isolated Resonant DC-DC Converter for Single-Input Dual-Output Applications

    Get PDF
    This paper describes a new configuration of Cuk and SEPIC (Single-Ended Primary Converter) ZVS-QR (zero-voltage switching quasi-resonant) combination DC-DC converter for bipolar output with a single switch. The proposed topology employs a single ground-referenced power switch, which simplifies the gate drive design with a single L-C resonant network and provides a bipolar output voltage with good regulation, acceptable efficiency and a step-down/up conversion ratio. This configuration provides dual-output voltage by switching the power switch to zero voltage, which is an interesting alternative for many applications where small size, light weight and high power density are very important aspects. In order to verify its performance, a SEPIC–Cuk Combination ZVS-QR prototype with a cost-effective commercial resonant controller was designed and tested. The experimental results show that the proposed combined topology is suitable for Single-Input Dual-Output (SIDO) applications

    The presentation of sustainable power source assets in the field of intensity age assumes an imperative job

    Get PDF
    DC to DC converters to interface lesser-voltage higher-control supply to the essential stock shows the most raised proficiency was practiced in the full-connect converter. Non-separated converters bury unified inductor help converters with essential voltage gain and furthermore converters hold lesser profitability, yet they huge in structure, even the quantity of latent parts is diminished. In like manner gives proficient utilization of semiconductor switches, have higher voltage yield and are prepared to work in lesser estimation of D interestingly with every single disconnected converter. High addition topologies are regularly outfitted with high voltage security structures. Few non-disengaged topologies gives voltage hang security circuits are pointless since capacitive fragments and circuit plan are progressed to work under higher information voltage and low power. That requires lesser qualities for convincing RAC obstruction and entomb partnered inductance dispersal to achieve more prominent adequacy of intensity change. Larger supply current needs extensive region of core area inter allied inductors

    High Current Density Low Voltage Isolated Dc-dc Converterswith Fast Transient Response

    Get PDF
    With the rapid development of microprocessor and semiconductor technology, industry continues to update the requirements for power supplies. For telecommunication and computing system applications, power supplies require increasing current level while the supply voltage keeps decreasing. For example, the Intel\u27s CPU core voltage decreased from 2 volt in 1999 to 1 volt in 2005 while the supply current increased from 20A in 1999 to up to 100A in 2005. As a result, low-voltage high-current high efficiency dc-dc converters with high power-density are demanded for state-of-the-art applications and also the future applications. Half-bridge dc-dc converter with current-doubler rectification is regarded as a good topology that is suitable for high-current low-voltage applications. There are three control schemes for half-bridge dc-dc converters and in order to provide a valid unified analog model for optimal compensator design, the analog state-space modeling and small signal modeling are studied in the dissertation and unified state-space and analog small signal model are derived. In addition, the digital control gains a lot of attentions due to its flexibility and re-programmability. In this dissertation, a unified digital small signal model for half-bridge dc-dc converter with current doubler rectifier is also developed and the digital compensator based on the derived model is implemented and verified by the experiments with the TI DSP chip. In addition, although current doubler rectifier is widely used in industry, the key issue is the current sharing between two inductors. The current imbalance is well studied and solved in non-isolated multi-phase buck converters, yet few discusse this issue in the current doubler rectification topology within academia and industry. This dissertation analyze the current sharing issue in comparison with multi-phase buck and one modified current doubler rectifier topology is proposed to achieve passive current sharing. The performance is evaluated with half bridge dc-dc converter; good current sharing is achieved without additional circuitry. Due to increasing demands for high-efficiency high-power-density low-voltage high current topologies for future applications, the thermal management is challenging. Since the secondary-side conduction loss dominates the overall power loss in low-voltage high-current isolated dc-dc converters, a novel current tripler rectification topology is proposed. Theoretical analysis, comparison and experimental results verify that the proposed rectification technique has good thermal management and well-distributed power dissipation, simplified magnetic design and low copper loss for inductors and transformer. That is due to the fact that the load current is better distributed in three inductors and the rms current in transformer windings is reduced. Another challenge in telecommunication and computing applications is fast transient response of the converter to the increasing slew-rate of load current change. For instance, from Intel\u27s roadmap, it can be observed that the current slew rate of the age regulator has dramatically increased from 25A/uS in 1999 to 400A/us in 2005. One of the solutions to achieve fast transient response is secondary-side control technique to eliminate the delay of optocoupler to increase the system bandwidth. Active-clamp half bridge dc-dc converter with secondary-side control is presented and one industry standard 16th prototype is built and tested; good efficiency and transient response are shown in the experimental section. However, one key issue for implementation of secondary-side control is start-up. A new zero-voltage-switching buck-flyback isolated dc-dc converter with synchronous rectification is proposed, and it is only suitable for start-up circuit for secondary-side controlled converter, but also for house-keeping power supplies and standalone power supplies requiring multi-outputs

    Analysis and Development of Multiple Phase Shift Modulation in A SiC-Based Dual Active Bridge Converter

    Get PDF
    Renewable energy adoption is a popular topic to release the stress of climate change caused by greenhouse gas. Electricity is ideal secondary energy for clean primary energy such as nuclear, wind, photovoltaic, and so on. To extend the application of electricity and reduce fossil energy consumption by transportation sectors, electric vehicles (EVs) become promising technology that can further inspire the development of renewable energy. Battery as the core in an EV provides the energy to the motor and all on-board electric equipment. The battery charger is mainly composed of a power factor correction (PFC) and isolated DC-DC converter. Therefore, power electronics equipment plays an important role in automotive products. Meanwhile, in recent years, the market capacity for wide band-gap devices, SiC MOSFET, continues to increase in EV applications. Dual active bridge (DAB) is an excellent candidate for isolated DC-DC converter in EV battery charger. The characteristics include an easy control algorithm, galvanic isolation and adjustable voltage gain. Different modulation strategies are developed to improve the performance and stability by using multiple phase shift (MPS) control. This thesis focuses on the utilization of different modulation strategies to realize smooth transition among MPS control in full operational range with securing zero-voltage-switching (ZVS) to eliminate the crosstalk in the hard-switching process. The influence of MPS control on ZVS resonance transient is also addressed to find out the accurate minimum required energy of the inductor to finish the ZVS transition. Furthermore, a general common-mode voltage model for DAB is proposed to analyze the impact of MPS control on the common-mode performance

    Development of a Hybrid-Electric Aircraft Propulsion System Based on Silicon Carbide Triple Active Bridge Multiport Power Converter

    Get PDF
    Constrained by the low energy density of Lithium-ion batteries with all-electric aircraft propulsion, hybrid-electric aircraft propulsion drive becomes one of the most promising technologies in aviation electrification, especially for wide-body airplanes. In this thesis, a three-port triple active bridge (TAB) DC-DC converter is developed to manage the power flow between the turbo generator, battery, and the propulsion motor. The TAB converter is modeled based on the emerging Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) modules operating at high switching frequency, so the size of the magnetic transformer can be significantly reduced. Different operation modes of this hybrid-electric propulsion drive based on the SiC TAB converter are modeled and simulated to replicate the takeoff mode, cruising mode, and regenerative charging mode of a typical flight profile. Additionally, soft switching is investigated for the TAB converter to further improve the efficiency and power density of the converter, and zero voltage switching is achieved at heavy load operating conditions. The results show that the proposed TAB converter is capable of achieving high efficiency during all stages of the flight profile

    Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations.

    Get PDF

    Development of Efficient Soft Switching Synchronous Buck Converter Topologies for Low Voltage High Current Applications

    Get PDF
    Switched mode power supplies (SMPS) have emerged as the popular candidate in all the power processing applications. The demand is soaring to design high power density converters. For reducing the size, weight, it is imperative to channelize the power at high switching frequency. High switching frequency converters insist upon soft switching techniques to curtail the switching losses. Several soft switching topologies have been evolved in the recent years. Nowadays, the soft switching converters are vastly applied modules and the demand is increasing for high power density and high efficiency modules by minimizing the conduction and switching losses. These modules are generally observed in many applications such as laptops, desktop processors for the enhancement of the battery life time. Apart from these applications, solar and spacecraft applications demand is increasing progressively for stressless and more efficient modules for maximizing the storage capacity which inturn enhances the power density that improves the battery life to supply in the uneven times. Modern trends in the consumer electronic market focus increases in the demand of lower voltage supplies. Conduction losses are significantly reduced by synchronous rectifiers i.e., MOSFET’s are essentially used in many of the low voltage power supplies. Active and passive auxiliary circuits are used in tandem with synchronous rectifier to diminish the crucial loss i.e., switching loss and also it minimizes the voltage and current stresses of the semiconductor devices. The rapid progress in the technology and emerging portable applications poses serious challenges to power supply design engineers for an efficient power converter design at high power density. The primary aim is to design and develop high efficiency, high power density topologies like: buck, synchronous buck and multiphase buck converters with the integration of soft switching techniques to minimize conduction and switching losses sustaining the voltage and current stresses within the tolerable range. In this work, two ZVT-ZCT PWM synchronous buck converters are introduced, one with active auxiliary circuit and the other one with passive auxiliary circuit. The operating principle and comprehensive steady state analysis of the ZVT-ZCT PWM synchronous buck converters are presented. The converters are designed to have high efficiency and low voltage that is suitable for high power density application. The semiconductor devices used in the topologies in addition to the main switch operate with soft switching conditions. The viii Abstract topologies proposed render a large overall efficiency in contrast to the contemporary topologies. In addition the circuit’s size is less, reliable and have high performance-cost ratio. The new generation microprocessor demands the features such as low voltage, high current, high power density and high efficiency etc., in the design of power supplies. The supply voltage for the future generation microprocessors must be low, in order to decrease the power consumption. The voltage levels are dripping to a level even less than 0.7V, and the power consumption increases as there is an increase in the current requirement for the processor. In order to meet the demands of the new generation microprocessor power supply, a soft switching multiphase PWM synchronous buck converter is proposed. The losses in the proposed topology due to increasing components are pared down by the proposed soft switching technique. The proposed converters in this research work are precisely described by the mathematical modelling and their operational modes. The practicality of the proposed converters for different applications is authenticated by their simulation and experimental results
    corecore