4,315 research outputs found

    Quasi regular Dirichlet forms and the stochastic quantization problem

    Full text link
    After recalling basic features of the theory of symmetric quasi regular Dirichlet forms we show how by applying it to the stochastic quantization equation, with Gaussian space-time noise, one obtains weak solutions in a large invariant set. Subsequently, we discuss non symmetric quasi regular Dirichlet forms and show in particular by two simple examples in infinite dimensions that infinitesimal invariance, does not imply global invariance. We also present a simple example of non-Markov uniqueness in infinite dimensions

    A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Get PDF
    We propose in this paper an adaptive reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No \textit{a priori} knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.Comment: Submitted for publication in CMAM

    An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals: Continuum and Discrete Analysis

    Full text link
    This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.Comment: 31 pages, 3 figures, 3 table

    Bayesian Inference Application

    Get PDF
    In this chapter, we were introduced the concept of Bayesian inference and application to the real world problems such as game theory (Bayesian Game) etc. This chapter was organized as follows. In Sections 2 and 3, we present Model-based Bayesian inference and the components of Bayesian inference, respectively. The last section contains some applications of Bayesian inference

    Scaling limit of stochastic dynamics in classical continuous systems

    Full text link
    We investigate a scaling limit of gradient stochastic dynamics associated to Gibbs states in classical continuous systems on Rd,d≥1{\mathbb R}^d, d \ge 1. The aim is to derive macroscopic quantities from a given micro- or mesoscopic system. The scaling we consider has been investigated in \cite{Br80}, \cite{Ro81}, \cite{Sp86}, and \cite{GP86}, under the assumption that the underlying potential is in C03C^3_0 and positive. We prove that the Dirichlet forms of the scaled stochastic dynamics converge on a core of functions to the Dirichlet form of a generalized Ornstein--Uhlenbeck process. The proof is based on the analysis and geometry on the configuration space which was developed in \cite{AKR98a}, \cite{AKR98b}, and works for general Gibbs measures of Ruelle type. Hence, the underlying potential may have a singularity at the origin, only has to be bounded from below, and may not be compactly supported. Therefore, singular interactions of physical interest are covered, as e.g. the one given by the Lennard--Jones potential, which is studied in the theory of fluids. Furthermore, using the Lyons--Zheng decomposition we give a simple proof for the tightness of the scaled processes. We also prove that the corresponding generators, however, do not converge in the L2L^2-sense. This settles a conjecture formulated in \cite{Br80}, \cite{Ro81}, \cite{Sp86}

    Correlation functions from a unified variational principle: trial Lie groups

    Full text link
    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest …\ldotsComment: 42 page
    • …
    corecore