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Abstract
As a generalization of the KKM theorem in (Yang and Pu in J. Optim. Theory Appl.
154:17-29 2012), we propose some new nonempty intersection theorems for an
infinite family of set-valued mappings without convexity assumptions, and consider
generic stability and essential components of solutions of a nonempty intersection
theorem for an infinite family of set-valued mappings without convexity assumptions.
This paper is an attempt to establish analogue results for the class of equilibria
removing convexity assumptions. As applications, we deduce the corresponding
results for Ky Fan’s points, Nash equilibrium and variational relations.
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1 Introduction
The celebrated KKM theorem introduced in  [] has been extended with various ap-
plications to optimization-related problems for many decades. Fan [] and Browder []
gave a version of Hausdorff topological vector spaces for this problem. As a generaliza-
tion of the KKM theorem, Guillerme [] proved an intersection theorem for an infinite
family of set-valued mappings, where index is any set. Moreover, Hou [] proposed an
intersection theorem for an infinite family of set-valued mappings, which was defined on
non-compact spaces. Ding [] introduced product FC-spaces to generalize the KKM the-
orem, and established the existence of equilibrium for generalized multi-objective games
in FC-spaces, where the number of players was finite or infinite, and all payoffs were all
set-valued mappings. Recently, Lin [] brought forward systems of nonempty intersection
theorems, and established the existence of solutions of systems of quasi-KKM problems,
systems of quasi-variational inclusions and systems of quasi-variational inclusions, as par-
ticular cases.
Convexity assumptions or some convexity of mappings played an important role in

[–]. But, in many works on the theory, some authors replaced the convexity of map-
pings by more general concepts. For example, two important concepts were marked by
the seminal papers of Fan [, ] for removing the concavity/quasi-concavity assumptions
of functions, andNishimura and Friedman [] abandoned concavity completely. Later ex-
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tensions of the theory were due to Forgo for CF-concavity, Kim and Lee for C-concavity,
Hou for C-quasi-concavity, and others; see [–]. Moreover, Pu and Yang [, ] stud-
ied the KKM theorem without convex hull and variational relation problems without the
KKM property.
Themethod of essential solutions has beenwidely used in various fields [–]. The no-

tation of an essential solution for fixed points was first introduced in []. For a fixed point
x of amapping f , if eachmapping sufficiently near to f has a fixed point arbitrarily near to x,
x is said to be essential. However, it is not true that any continuousmapping has at least one
essential fixed point, even though the space has the fixed point property. Instead of con-
sidering the essential solution, Kinoshita [] introduced the notion of essential compo-
nents of the set of fixed points and proved that, for any continuous mapping of the Hilbert
cube into itself, there exists at least one essential component of the set of its fixed points.
Kohlberg andMertens [] introduced the notions of stable set and essential components
of Nash equilibria, and proved that every finite n-person noncooperative game has at least
one essential connected component of the set of its Nash equilibrium points. Later, Yu
and Xiang [] brought forward the notion of essential components of the set of Ky Fan’s
points, and deduced that every infinite n-person noncooperative game with concave pay-
off functions has at least one essential component of the set of its equilibrium points.
Motivated and inspired by research works mentioned above, we propose some new

nonempty intersection theorems for an infinite family of set-valued mappings without
convexity assumptions. Furthermore, we study the notion of essential stability of solutions
of a nonempty intersection theorem without convexity assumptions.

2 Nonempty intersection theoremwithout convexity assumptions
We recall first some definitions and known results concerning set-valued mappings.

Definition . Let X, Y be two Hausdorff topological spaces. A set-valued mapping F :
X ⇒ Y is said to be:
() upper semicontinuous at x ∈ X if, for any open subset O of Y with O ⊃ F(x), there

exists an open neighborhood U(x) of x such that O ⊃ F(x′) for any x′ ∈ U(x);
() upper semicontinuous on X if F is upper semicontinuous at each x ∈ X ;
() lower semicontinuous at x ∈ X if, for any open subsetO of Y with O∩F(x) �= ∅, there

exists an open neighborhood U(x) of x such that O∩ F(x′) �= ∅ for any x′ ∈U(x);
() lower semicontinuous on X if F is lower semicontinuous at each x ∈ X ;
() closed if Graph(F) = {(x, y) ∈ X × Y | y ∈ F(x)} is a closed subset of X × Y .

Definition . ([]) Let X be a nonempty subset of a Hausdorff topological space E.
X has the fixed point property, if and only if, every continuous mapping f : X −→ X has a
fixed point.

Throughout this paper, let K (X) (CK (X)) stand for the set of nonempty compact (con-
vex) subsets of X, and

�n =

{
(λ, . . . ,λn) ∈R

n
∣∣∣ n∑

i=

λi = ,λi ≥ 

}
,

J(λ) =
{
i ∈ {, . . . ,n} | λi > 

}
, ∀λ ∈ �n.
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A new nonempty intersection theorem for an infinite family of set-valued mappings
without convexity assumptions is obtained.

Theorem . Let I be any index set. For each i ∈ I , let Xi be a nonempty and compact
subset of a Hausdorff topological space Ei, let X =

∏
i∈I Xi have the fixed point property,

and let Fi : Xi ⇒ X be a set-valued mapping. Assume that:
(i) for any yi ∈ Xi, Fi(yi) is closed in X ;
(ii) for any finite subset N = {y, . . . , yn} of X , there exists a continuous mapping

φN : �n −→ X such that, for any λ = (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ) for which
φN (λ) ∈ Fi(y

j
i) for each i ∈ I .

Then

⋂
i∈I

⋂
yi∈Xi

Fi(yi) �= ∅.

Proof Define the set-valued mapping F : X ⇒ X by

F(x) =
⋂
i∈I

Fi(xi), ∀x = (xi)i∈I ∈ X.

Let x ∈ X be arbitrarily fixed. By (ii), for the setN = {x}, there exists a continuousmapping
φN :� −→ X such that φN () ∈ F(x), hence F has nonempty closed values.
Using again (ii), we infer that, for every finite subset N = {x, . . . ,xn} of X, there exists a

continuousmapping φN :�n −→ X such that, for any (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ)
for which φN (λ) ∈ F(x). Thus F satisfies all the conditions of Theorem . in []. Hence
there exists x∗ ∈ X such that

x∗ ∈
⋂
y∈X

F(y) =
⋂
i∈I

⋂
yi∈Xi

Fi(yi).

This completes the proof. �

If I is a singleton, then Theorem . collapses Theorem ., the main result of [].

Theorem . Let X be a nonempty and compact subset of a Hausdorff topological space
E, let X have the fixed point property, and let F : X ⇒ X be a set-valued mapping. Assume
that:

(i) for any y ∈ X , F(y) is nonempty and closed in X ;
(ii) for any finite subset N = {y, . . . , yn} of X , there exists a continuous mapping

φN : �n −→ X such that, for any λ = (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ) for which
φN (λ) ∈ F(yj).

Then

⋂
y∈X

F(y) �= ∅.

Next, we obtain a generalized nonempty intersection theorem for an infinite family of
set-valued mappings without convexity assumptions.

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Theorem . Let I be any index set. For each i ∈ I , let Xi be a nonempty and compact
subset of a locally convex topological linear space Ei, let X =

∏
i∈I Xi have the fixed point

property, and let Gi : X ⇒ Xi, Fi : Xi ⇒ X be two set-valued mappings. Assume that:
(i) Graph(Fi) is closed in Xi ×X ;
(ii) Gi is continuous with nonempty compact values;
(iii) for any finite subset N = {y, . . . , yn} of X , there exists a continuous mapping

φN : �n −→ X such that, for any λ = (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ) for which
φN (λ) ∈ Fi(y

j
i) and φN (λ)i ∈Gi(φN (λ)) for each i ∈ I .

Then there exists x∗ ∈ X such that, for each i ∈ I , x∗
i ∈Gi(x∗) and

x∗ ∈
⋂
i∈I

⋂
yi∈Gi(x∗)

Fi(yi).

Proof Let Ei be the locally convex topological vector space containing Xi, and let �i be a
basis of open neighborhoods of Ei. For every Vi ∈ �i, consider the set-valued mapping

GVi (x) =
(
Gi(x) +Vi

) ∩Xi.

Since Gi is continuous with nonempty compact values, then �i = {x ∈ X : xi ∈ Gi(x)} is
closed in X, and G–

Vi (yi) is open in X for any yi ∈ Xi.
For any V ∈ ∏

i∈I �i and each i ∈ I , define the mapping FV
i : Xi ⇒ X by

FV
i (yi) =

[(
X\G–

Vi (yi)
) ∪ Fi(yi)

] ∩ �i.

Clearly, (i) for any yi ∈ Xi, FV
i (yi) is closed in X; (ii) for any finite subset N = {y, . . . , yn}

of X, there exists a continuous mapping φN : �n −→ X such that, for any λ = (λ, . . . ,
λn) ∈ �n, there exists j ∈ J(λ) for which φN (λ) ∈ FV

i (y
j
i) for each i ∈ I . By Theorem .,

there exists xV ∈ X such that

xV ∈
⋂
i∈I

⋂
yi∈Xi

FV
i (yi),

i.e., for each i ∈ I , xVi ∈Gi(xV ) and xV ∈ Fi(yi) for any yi ∈GVi(xV ). Since X is compact, we
may assume without loss of generality that xV −→ x. Then xi ∈Gi(x) for each i ∈ I .
Suppose that there are i ∈ I and yi ∈ Gi(x) such that x /∈ Fi(yi), i.e., (yi,x) /∈ Graph(Fi).

SinceG is continuous, there is yVi ∈ Xi such that yVi ∈Gi(xV ) ⊂Gi(xV )+Vi. SinceGraph(Fi)
is closed in Xi ×X, (yVi ,xV ) /∈Graph(Fi), which implies that yVi ∈GVi(xV ) and xV /∈ Fi(yVi ).
It is a contradiction. Hence, for each i ∈ I , xi ∈Gi(x) and

x ∈
⋂
i∈I

⋂
yi∈Gi(x)

Fi(yi). �

3 Essential stability
In this section, we study the essential stability of solutions of a nonempty intersection
theorem without convexity assumptions. Let I be a finite set. For each i ∈ I , let Xi be a
nonempty, convex and compact subset of a normed linear space Ei, and let {φN :�|N | −→
X | N is any finite subset of X} be a set of continuous mappings. Denote by M the set of

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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w = (F ,G) such that the following conditions hold: (i) for any i ∈ I , Graph(Fi) is closed
in X × Xi; (ii) Gi is continuous with nonempty convex compact values; (iii) for any finite
subset N = {y, . . . , yn} of X, there exists a continuous mapping φN : �n −→ X such that,
for any λ = (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ) for which φN (λ) ∈ Fi(y

j
i) and φN (λ)i ∈

Gi(φN (λ)) for each i ∈ I .
By Theorem ., for each w = (F ,G) ∈ M, there exists x ∈ X such that, for each i ∈ X,

xi ∈ Gi(x) and x ∈ Fi(yi) for any yi ∈ Xi, which is called a solution of (F ,G). The solution
set of (F ,G), denoted by S(F ,G), is nonempty. The solution correspondence S : M ⇒ X is
well defined. Moreover, to analyze the stability of solutions, some topological structure in
the collection M is also needed. For each w = (F ,G),w′ = (F ′,G′) ∈ M, we define

ρ
(
w,w′) = sup

i∈I
Hi

(
Graph(Fi),Graph

(
F ′
i
))

+ sup
i∈I

sup
x∈X

hi
(
Gi(x),G′

i(x)
)
,

where Hi is the Hausdorff distance defined on Xi × X, and hi is the Hausdorff distance
defined on Xi. Then M becomes a metric space.

Definition . Let w ∈ M. An x ∈ S(w) is said to be an essential point of S(w) if, for any
open neighborhood N(x) of x in X, there is a positive δ such that N(x)∩ S(w′) �= ∅ for any
w′ ∈ M with ρ(w,w′) < δ. w is said to be essential if all x ∈ S(w) is essential.

Definition . Letw ∈ M. A nonempty closed subset e(w) of S(w) is said to be an essential
set of S(w) if, for any open set U , e(w) ⊂U , there is a positive δ such that U ∩ S(w′) �= ∅ for
any w′ ∈ M with ρ(w,w′) < δ.

Definition . Let w ∈ M. An essential subset m(w) ⊂ S(w) is said to be a minimal es-
sential set of S(w) if it is a minimal element of the family of essential sets ordered by set
inclusion. A component C(w) is said to be an essential component of S(w) if C(w) is es-
sential.

Remark . It is easy to see that the problemw ∈ M is essential, if and only if, themapping
S : M ⇒ X is lower semicontinuous at w.

First of all, let us introduce some mathematical tools for the following proof.

Lemma . ([]) Let X and Y be two topological spaces with Y compact. If F is a closed
set-valued mapping from X to Y , then F is upper semicontinuous.

Lemma . ([]) If X, Y are two metric spaces, X is complete and F : X ⇒ Y is upper
semicontinuous with nonempty compact values, then the set of points, where F is lower
semicontinuous, is a dense residual set in X .

Lemma . ([]) Let (Y ,ρ) be a metric space, K and K be two nonempty compact sub-
sets of Y , V and V be two nonempty disjoint open subsets of Y . If h(K,K) < ρ(V,V) :=
inf{ρ(x, y) | x ∈ V, y ∈ V}, then

h
(
K, (K\V)∪ (K\V)

) ≤ h(K,K),

where h is the Hausdorff distance defined on Y .

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Lemma . ([]) Let X, Y , Z be three metric spaces, S : Y ⇒ X and S : Z ⇒ X be two
set-valued mappings. Suppose that there exists at least one essential component of S(y)
for each y ∈ Y , and there exists a continuous single-valued mapping T : Z −→ Y such that
S(z) ⊃ S(T(z)) for each z ∈ Z. Then there exists at least one essential component of S(z)
for each z ∈ Z.

Lemma . ([]) Let C, D be two nonempty, convex and compact subsets of a linear
normed space Y . Then

h(C,λC +μD) ≤ h(C,D),

where λ,μ ≥ , λ +μ = , and h is the Hausdorff distance defined on Y .

Theorem . (M,ρ) is a complete metric space.

Proof Let {wn}∞n= be any Cauchy sequence in M, i.e., for any ε > , there exists N > 
such that ρ(wn,wm) < ε for any n,m > N. Then, for each i ∈ I and x ∈ X, {Graph(Fn

i )}∞n=
and {Gn

i (x)}∞n= are two Cauchy sequences in K (Xi × X) and CK (Xi), converging to Ai ∈
K (Xi × X) and Gi(x) ∈ CK (Xi). Denote Fi(yi) = {x ∈ X : (yi,x) ∈ Ai}. We will show that
w := ((Fi)i∈I , (Gi)i∈I) ∈ M.
(i) Clearly, wm −→ w under the metric ρ .
(ii) Assume that w /∈ M, then there are a finite set N = {y, . . . , yn} of X and λ ∈ �n

such that, for any j ∈ J(λ), there is i ∈ I for which φN (λ) /∈ Fi (y
j
i ), i.e., (y

j
i ,φN (λ)) /∈

Graph(Fi ), or φN (λ)i /∈ Gi (φN (λ)). Since wm −→ w under the metric ρ , (yji ,φN (λ)) /∈
Graph(Fm

i ), i.e., φN (λ) /∈ Fm
i (y

j
i ), or φN (λ)i /∈ Gm

i (φN (λ)) for enough large m, which
contradicts the fact that wm ∈ M. This completes the proof. �

Theorem . The corresponding S : (M,ρ)⇒ X is upper semicontinuous with nonempty
compact values.

Proof The desired conclusion follows from Lemma . as soon as we show that Graph(S)
is closed. Let {(wn,xn)} be a sequence in M × X converging to (w,x) such that xn ∈ S(wn)
for any n. Then, for each i ∈ I , xni ∈ Gn

i (xn) and xn ∈ Fn
i (yi) for any yi ∈ Xi and any i ∈ I .

Since xn −→ x and wn −→ w, then xi ∈Gi(x) for each i ∈ I .
Suppose that there are i ∈ I and yi ∈ Gi(x) such that x /∈ Fi(yi), then there exists a se-

quence {yni } of Xi such that yni −→ yi and yni ∈Gn
i (xn). Since wn −→ w, xn −→ x and yni −→

yi, (yni ,xn) /∈ Graph(Fn
i ) for enough large n, which implies yni ∈ Gn

i (xn) and xn /∈ Fn
i (yni ). It

is a contradiction. Hence, for each i ∈ I , xi ∈ Gi(x) and x ∈ Fi(yi) for any yi ∈ Gi(x). This
completes the proof. �

Theorem . There exists a dense residual subset G of M such that for each w ∈ G, w is
essential. In other words, there are most of the problems, whose solutions are all essential.

Proof Since (M,ρ) is complete, and S : M ⇒ X is upper semicontinuous with nonempty
compact values, by Lemma ., there is a dense residual subset G of M, where w is lower
semicontinuous. Hence w is essential for each w ∈ G. �

Theorem . For each w ∈ M, there exists at least one minimal essential subset of S(w).

http://www.fixedpointtheoryandapplications.com/content/2014/1/3


Yang Fixed Point Theory and Applications 2014, 2014:3 Page 7 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/3

Proof Since S : M ⇒ X is upper semicontinuous with nonempty compact values, then,
for each open set O ⊃ S(w), there exists δ >  such that O ⊃ S(w′) for any w′ ∈ M with
ρ(w,w′) < δ. Hence S(w) is an essential set of itself.
Let 
 denote the family of all essential sets of S(w) ordered by set inclusion. Then 


is nonempty and every decreasing chain of elements in 
 has a lower bound (because by
the compactness the intersection is in 
); therefore, by Zorn’s lemma, 
 has a minimal
element, and it is a minimal essential set of S(w). �

Theorem . For each w ∈ M, every minimal essential subset of S(w) is connected.

Proof For eachw ∈ M, letm(w) ⊂ S(w) be aminimal essential subset of S(w). Suppose that
m(w) was not connected, then there exist two non-empty compact subsets c(w), c(w)
with m(w) = c(w)∪ c(w), and there exist two disjoint open subsets V, V in X such that
V ⊃ c(w), V ⊃ c(w). Since m(w) is a minimal essential set of S(w), neither c(w) nor
c(w) is essential. There exist two open sets O ⊃ c(w),O ⊃ c(w) such that for any δ > ,
there exist w,w ∈ M with

ρ
(
w,w) < δ, ρ

(
w,w) < δ, S

(
w) ∩O = ∅, S

(
w) ∩O = ∅.

Here, we choose two open setsW,W such that

c(w) ⊂W ⊂W  ⊂O ∩V, c(w) ⊂W ⊂W  ⊂O ∩V,

and, for each i ∈ I , denote M
i = Xi × W, M

i = Xi × W, which are open in Xi × X, and
inf{d(a,b) | a ∈M

i ,b ∈M
i , i ∈ I} = ε > .

Sincem(w) ⊂W ∪W and it is essential, there exists  < δ∗ < ε such that S(w′)∩ (W ∪
W) �= ∅ for any w′ ∈ M with ρ(w,w′) < δ∗. Sincem(w) is the minimal essential set, neither
c(w) nor c(w) is essential. Then, for δ∗

 > , there exist two w,w ∈ M such that

S
(
w) ∩W = ∅, S

(
w) ∩W = ∅, ρ

(
w,w

)
<

δ∗


, ρ

(
w,w

)
<

δ∗


.

Thus ρ(w,w) < δ∗
 .

We define w′ = ((F ′
i )i∈I , (G′

i)i∈I) by

G′
i(x) = λ(x)G

i (x) +μ(x)G
i (x),

Ai =
[
Graph

(
F
i
)\M

i
] ∪ [

Graph
(
F
i
)\M

i
]
,

F ′
i (yi) =

{
x ∈ X | (yi,x) ∈ Ai

}
,

where

λ(x) =
d(x,W )

d(x,W ) + d(x,W )
, ∀x ∈ X,

μ(x) =
d(x,W )

d(x,W ) + d(x,W )
, ∀x ∈ X.

Now we will show that w′ ∈ M and ρ(w,w′) < δ∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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(i) Clearly, Graph(F ′
i ) is closed in Xi ×X for any i ∈ I .

(ii) G′
i is continuous with nonempty convex compact values.

(iii) Assume that w′ /∈ M, then there are a finite subset N = {y, . . . , yn} of X and λ ∈
�n such that, for any j ∈ J(λ), there is i ∈ I for which φN (λ) /∈ F ′

i (y
j
i ), or φN (λ)i /∈

G′
i (φN (λ)). Since φN (λ)i ∈ G

i (φN (λ)) and φN (λ)i ∈G
i (φN (λ)),

φN (λ)i = λ
(
φN (λ)

)
φN (λ)i +μ

(
φN (λ)

)
φN (λ)i ∈ G′

i

(
φN (λ)

)
.

Hence φN (λ)i /∈ G′
i (φN (λ)) is false.

Since W ∩ W = ∅, φN (λ) /∈ W or φN (λ) /∈ W. Without loss of generality, we may
assume that φN (λ) /∈ W. Since

φN (λ) /∈ F ′
i

(
yji

)
=

(
F
i

(
yji

)\W
) ∪ (

F
i

(
yji

)\W
)
,

then φN (λ) /∈ F
i (y

j
i )\W. Therefore φN (λ) /∈ F

i (y
j
i ), which contradicts the fact that

w ∈ M. Hence w′ ∈ M.
(iv) By Lemma . and Lemma .,

ρ
(
w′,w

)
= sup

i∈I,x∈X
hi

(
Gi(x),G′

i(x)
)
+ sup

i∈I
Hi

(
Graph(Fi),Graph

(
F ′
i
))

≤ sup
i∈I,x∈X

hi
(
Gi(x),G

i (x)
)
+ sup

i∈I,x∈X
hi

(
G

i (x),G
′
i(x)

)
+ sup

i∈I
Hi

(
Graph(Fi),Graph

(
F
i
))

+ sup
i∈I

Hi
(
Graph

(
F
i
)
,Graph

(
F ′
i
))

≤
(


+


+


+



)
δ∗

=



δ∗.

Hence ρ(w′,w) < δ∗.
Since (S(w′) ∩ W) ∪ (S(w′) ∩ W) = S(W ′) ∩ (W ∪ W) �= ∅, we assume S(w′) ∩ W �= ∅

without loss of generality, i.e., there exists x ∈ X such that x ∈ S(w′) ∩W. It follows from
the definition of w′ that x ∈ S(w), which contradicts the fact that S(w) ∩ W = ∅. This
completes the proof. �

Theorem . For each w ∈ M, there exists at least one essential component of S(w).

Proof By Theorem ., there exists at least one connected minimal essential subset m(w)
of S(w). Thus, there is a component C of S(w) such that m(w) ⊂ C. It is obvious that C is
essential. Hence C is an essential component of S(w). �

Denote by M′ the set of F , when I is a singleton and G(x) = X. The following results are
obtained.

Theorem . There exists a dense residual subset � of M′ such that, for each F ∈ �, F is
essential.

Theorem . For each F ∈ M′, there exists at least one minimal essential subset of S(F).

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Theorem . For each F ∈ M′, every minimal essential subset of S(F) is connected.

Theorem . For each F ∈ M′, there exists at least one essential component of S(F).

Remark . Theorems .-. are generalizations of the results of [], where convexity
assumptions of KKMmappings are necessary.

Remark . Khanh and Quan [] obtained generic stability and essential components
of generalized KKM points. Thus it is worth comparing the results in Section  of this
paper with the results of [].

(i) This paper is a multiplied version of the KKM theorem.
(ii) If () I is a singleton, and G(x) = X for any x ∈ X in this paper; () in [], X = Y = Z

is a nonempty and compact subset of a metric space, and holds the fixed property;
() in [], T is the identity mapping, Theorems .-. coincide with Section  and
Section  of [].

4 Application (I): Ky Fan’s points
To discuss the essential components of Ky Fan’s points without convexity assumptions, we
need the following definitions.

Definition . ([]) Let X be a Hausdorff topological space, let {φN : �|N | −→ X |
N is any finite subset of X} be a set of continuous mappings. A function f : X × X −→ R

is said to be C-quasi-concave on X if, for any finite subset N = {x, . . . ,xn} of X, one has
f (φN (λ),φN (λ))≥mini∈J(λ) f (xi,φN (λ)) for any λ = (λ, . . . ,λn) ∈ �n.

Definition. LetX be a nonempty and compact subset of ametric space having the fixed
point property, and let {φN : �|N | −→ X |N is any finite subset of X} be a set of continuous
mappings. Denote by � the set of all functions ϕ : X × X −→ R such that the following
conditions hold: (i) for each fixed y ∈ X, x −→ ϕ(x, y) is lower semicontinuous; (ii) for each
fixed x ∈ X, y−→ ϕ(x, y) is C-quasi-concave on X; (iii) ϕ(x,x)≤  for all x ∈ X.

For each ϕ ∈ �, we denote S(ϕ) = {x ∈ X | ϕ(x, y) ≤ ,∀y ∈ X}, which is nonempty
and compact (see []). Furthermore, points in S(ϕ) are called Ky Fan’s points of ϕ (see
[]). The solution mapping S : � ⇒ X is well defined. For each ϕ ∈ �, we define the
corresponding Fϕ : X ⇒ X by

Fϕ(y) =
{
x ∈ X | ϕ(x, y) ≤ 

}
, ∀y ∈ X.

Clearly, Fϕ ∈ M for each ϕ ∈ �. It is easy to see that the single-valuedmappingT :� −→
M by T(ϕ) = Fϕ is isometric. Furthermore, S(ϕ) = S(Fϕ) = S(T(ϕ)). For any ϕ,ϕ′ ∈ �,
define the distance on � by ρ(ϕ,ϕ′) = ρ(Fϕ ,Fϕ′ ).

Theorem . For each ϕ ∈ �, there exists at least one essential component of S(ϕ).

Proof Since T : � −→ M is an isometric mapping, it is continuous. Since there exists at
least one essential component of S(F) for each F ∈ M, by Lemma ., there exists at least
one essential component of S(ϕ) for each ϕ ∈ �. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Remark . In [], X is a nonempty, convex and compact subset of a normed linear
space. Denote by �′

 the set of all functions ϕ : X ×X −→R such that the following condi-
tions hold: () for each fixed y ∈ X, x −→ ϕ(x, y) is lower semicontinuous; () for each fixed
x ∈ X, y −→ ϕ(x, y) is concave; () ϕ(x,x) ≤  for all x ∈ X; () sup(x,y)∈X×X |ϕ(x, y)| < +∞.
Clearly, �′

 ⊂ �. For each ϕ ∈ �, for each fixed x ∈ X, y −→ ϕ(x, y) is C-quasi-concave,
not only concave, and sup(x,y)∈X×X |ϕ(x, y)| < +∞ is unnecessary. In [], the notion of es-
sential components is based on the metric ρ ′

, which is defined by

ρ ′
(ϕ,ψ) = sup

(x,y)∈X×X

∣∣ϕ(x, y) –ψ(x, y)
∣∣, ∀ϕ,ψ ∈ �′

.

Next we will explain that the metric ρ is neither stronger nor weaker than ρ ′
 even in the

same space �′
.

Example . Let X = [, ], ϕ(x, y) =  for all (x, y) ∈ X ×X. Then ϕ ∈ �′
 and Fϕ(y) = [, ]

for all y ∈ X.
() For each n, we define ϕn(x, y) =  for all (x, y) ∈ X × X. Then ϕn ∈ �′

, Fϕn (y) = [, ]
for all y ∈ X, and ρ ′

(ϕn,ϕ) = , ρ(ϕn,ϕ) = . Then ϕn −→ ϕ under the metric ρ, while
ϕn �−→ ϕ under the metric ρ ′

.
() For each n, we define

ϕn(x, y) =

n
x –


n
y, ∀(x, y) ∈ X ×X.

Then ϕn ∈ �′
 and

Fϕn (y) = [, y], Fϕ(y) = [, ], ∀y ∈ X.

Hence

ρ ′

(
ϕn,ϕ

) ≤ 
n

−→ , ρ
(
ϕn,ϕ

)
= sup

y∈X
h
(
Fϕn (y),Fϕ(y)

)
> .

Then ϕn −→ ϕ under the metric ρ ′
, while ϕn �−→ ϕ under the metric ρ.

5 Application (II): Nash equilibrium
An n-person non-cooperative game � is a tuple (I,Xi, fi), where I = {, . . . ,n}, the ith player
has a strategy set Xi, and fi :

∏
i∈I Xi −→R is his payoff function. Denote X =

∏
i∈I Xi, X–i =∏

j∈I\{i} Xj, x–i = (x, . . . ,xi–,xi+, . . . ,xn) ∈ X–i, x = (xi,x–i) ∈ X. A point x∗ = (x∗
i ,x∗

–i) ∈ X is
said to be a Nash equilibrium point if, for each i ∈ I , fi(x∗

i ,x∗
–i) =maxui∈Xi fi(ui,x∗

–i). Denote
by S(�) the set of Nash equilibrium points of �.

Definition . Denote by � the set of all games such that the following conditions hold:
(i) for each i ∈ I , Xi is a nonempty and compact subset of a metric space Ei, X =

∏
i∈I Xi

has the fixed point property, and {φN : �|N | −→ X | N is any finite subset of X} is a set of
continuous mappings; (ii) for each i ∈ I , fi is upper semicontinuous on X, and fi(xi, ·) is
lower semicontinuous on X–i for any xi ∈ Xi (iii) for any finite subset N = {y, . . . , yn} of
X and any λ = (λ, . . . ,λn) ∈ �n, there exists j ∈ J(λ) such that fi(φN (λ)) ≥ fi(y

j
i, (φN (λ))–i),

∀i ∈ I .

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Theorem . For any � ∈ �, S(�) �= ∅.

Proof For any � ∈ � and any i ∈ I , define the corresponding F�
i : Xi ⇒ X by

F�
i (yi) =

{
x ∈ X | fi(yi,x–i) ≤ fi(x)

}
.

Clearly, F� = (F�
i )i∈I satisfies all the conditions of Theorem .. Hence S(�) = S(F�) �= ∅.�

Clearly, F� ∈ M for each � ∈ �. It is easy to see that the single-valued mapping T :
� −→ M by T(�) = F� is isometric. Furthermore, S(�) = S(F�) = S(T(�)). For any
�,�′ ∈ �, define the distance on � by ρ(�,�′) = ρ(F� ,F�′ ).

Theorem . For each � ∈ �, there exists at least one essential component of S(�).

Proof Since T :� −→ M is an isometric mapping, it is continuous. Since, there exists at
least one essential component of S(F) for each F ∈ M, by Lemma ., there exists at least
one essential component of S(�) for each � ∈ �. �

Remark . In [], denote by �′
 the set of games such that the following conditions

hold: () for any i ∈ I , Xi is a nonempty, compact and convex subset of a normed lin-
ear space; ()

∑n
i= fi is upper semicontinuous on X; () for any i ∈ I and any ui ∈ Xi,

fi(ui, ·) is lower semicontinuous on X–i; () for any u–i ∈ X–i, fi(·,u–i) is concave on X;
() supx∈X

∑n
i= |fi(x)| < +∞. Clearly, �′

 �= �. Games in �′
 have concave and uniform

bounded payoffs, which are invalid for games in �. In [], the notion of essential com-
ponents is based on the metric ρ ′

, which is defined by

ρ ′

(
�,�′) = sup

x∈X

n∑
i=

∣∣fi(x) – f ′
i (x)

∣∣, ∀�,�′ ∈ �′
.

It is neither stronger nor weaker than ρ even in the same space � ∩ �′
.

Example . Let I = {, }, X = X = [, ], X = X × X, f(x,x) = , f(x,x) = . Then
� ∈ � ∩ �′



() For each n, we define f n (x,x) = , f n (x,x) = . Then �n ∈ � ∩ �′
,

F�
i (yi) = F�n

i (yi) = [, ]× [, ] = X, ∀y ∈ X, i = , .

Then �n −→ � under the metric ρ, while �n �−→ � under the metric ρ ′
.

() For each n, we define

f n (x,x) =

n
x, f n (x,x) =


n
x.

Then �n ∈ � ∩ �′
 and

F�n
 (y) = [y, ]× [, ], F�n

 (y) = [, ]× [, ] ∀y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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Hence

ρ ′

(
�n,�

) ≤ 
n

−→ , ρ
(
�n,�

)
= sup

i∈I
sup
yi∈Xi

h
(
F�
i (yi),F

�n
i (yi)

)
> .

Then �n −→ � under the metric ρ ′
, while �n �−→ � under the metric ρ.

6 Application (III): variational relations
Luc [] introduced amore general model of equilibrium problems, which is called a vari-
ational relation problem (in short, VRP). Further studies of variational relation problems
were done in [–]. Let A, B and C be nonempty sets, S : A ⇒ A, T : A × B ⇒ C be
set-valued mappings with nonempty values, and R(a,b, c) be a relation linking elements
a ∈ A, b ∈ B and c ∈ C.
(VRP) Find a∗ ∈ A such that:
(i) a∗ ∈ S(a∗);
(ii) R(a∗,b, c) holds for any b ∈ S(a∗) and any c ∈ T(a∗,b).

Definition . ([]) Let A and B be nonempty subsets of topological spaces E and E,
respectively, and R(a,b) be a relation linking a ∈ A and b ∈ B. For each fixed b ∈ B, we
say that R(·,b) is closed in the first variable if, for every net {aα} converges to some a, and
R(aα ,b) holds for any α, then the relation R(a,b) holds.

Let X be a nonempty and compact subset of a metric space having the fixed point
property, and let {φN : �|N | −→ X | N is any finite subset of X} be a set of continuous
mappings. Denote by � the set of variational relations such that the following con-
ditions hold: (i) A := {x ∈ X | x ∈ S(x)} is closed; (ii) S(x) ⊂ S(x) for any x ∈ X, and
S– (y) is open in X for any y ∈ X; (iii) for any fixed y ∈ X, S(·, y) is lower semicontinu-
ous; (iv) for any fixed y ∈ X, R(·, y, ·) is closed; (v) for any finite subset {x, . . . ,xn} of X
and any λ = (λ, . . . ,λn) ∈ �n, there exists i ∈ J(λ) such that R(φn(λ),xi, z) holds for any
z ∈ S(φn(λ),xi); if xi ∈ S(φn(λ)) for any i ∈ J(λ), then φn(λ) ∈ S(φn(λ)).
For any q = (S,S,S,R) ∈ �, denote by V (q) the solution set of q, which is nonempty

and compact. The solution mapping V : � ⇒ X is well defined. Moreover, define the
mapping Fq : X ⇒ X by

Fq(y) =
[
X\S– (y)

] ∪ {
x ∈ X | x ∈ S(x) and R(x, y, z) holds for all z ∈ S(x, y)

}
.

Clearly, Fq ∈ M for each q ∈ �. It is easy to see that the single-valued mapping T :
� −→ M by T(q) = Fq is isometric. Furthermore, V (q) = S(Fq) = S(T(q)). For any q,q′ ∈
�, define the distance on � by ρ(q,q′) = ρ(Fq,Fq′ ).

Theorem . For each q ∈ �, there exists at least one essential component of V (q).

Proof Since T :� −→ M is an isometric mapping, it is continuous. Since there exists at
least one essential component of S(F) for each F ∈ M, by Lemma ., there exists at least
one essential component of V (q) for each q ∈ �. �

Remark . As convexity assumptions are not necessary to variational relation problem
in �, Theorem . includes properly Theorem . of [].

http://www.fixedpointtheoryandapplications.com/content/2014/1/3
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7 Conclusion
As a generalization of the KKM theorem in [], we propose a new nonempty intersection
theorem for an infinite family of set-valuedmappings without convexity assumptions, and
study the notion of essential stability of a solution set of the nonempty intersection theo-
remwithout convexity assumptions.We show that most of problems (in the sense of Baire
category) are essential and, for any problem, there exists at least one essential component
of its solution set. This paper is the attempt to establish analogue results for the class of
equilibria removing convexity assumptions. As applications, we deduce the corresponding
results for Ky Fan’s points, Nash equilibrium and variational relations.
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